
Control of High-Dimensional Systems with

Applications in Transportation

Stanley Smith

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-175

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-175.html

August 9, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Control of High-Dimensional Systems with Applications in Transportation

by

Stanley W. Smith

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Murat Arcak, Chair
Professor Francesco Borrelli
Professor Sanjit A. Seshia

Summer 2021

Control of High-Dimensional Systems with Applications in Transportation

Copyright 2021
by

Stanley W. Smith

1

Abstract

Control of High-Dimensional Systems with Applications in Transportation

by

Stanley W. Smith

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

Important control applications in the fields of robotics and transportation frequently involve
high-dimensional systems; for example, robots with many degrees of freedom, or groups of
connected automated vehicles (CAVs). In safety-critical applications, the system of interest
must also meet a complex set of requirements formalized in a control specification. Formal
methods for control synthesis are useful in such applications since they partially automate
the controller design process, while also providing guarantees that the control specification
will be satisfied. However, when the system dimension becomes too large, such techniques
cannot be directly applied due to their computational complexity.

This dissertation focuses on addressing this challenge using hierarchical and distributed
control techniques, with an emphasis on applications in transportation. To enable control
synthesis for high-dimensional systems, in Chapter 2 we propose techniques for construct-
ing approximate abstractions of a class of interconnected control systems, to be used in a
hierarchical control framework. On the application side, in Chapters 3 and 4 we explore
the potential for CAVs to improve the efficiency and safety of traffic flows at intersections.
For improving efficiency, we discuss how traffic throughput at intersections can be increased
by forming vehicle platoons. In particular, this is accomplished using a distributed model-
predictive control approach, which is enabled by vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication. For improving safety, we show how safe behaviors can
be accurately characterized for certain challenging driving maneuvers, such as unprotected
left turns.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 Control Synthesis for Large-Scale Systems 1
1.2 Applications in Transportation . 2
1.3 Further Background and Summary of Contributions 3

2 Approximate Abstractions of Control Systems 11
2.1 Introduction . 11
2.2 Control Systems . 12
2.3 Abstraction Synthesis for Linear Systems . 15
2.4 Compositionality . 18
2.5 Aggregation . 22
2.6 Example . 30
2.7 Proofs of Main Results . 33

3 Vehicle Platooning 40
3.1 Introduction . 40
3.2 Platoon Model and Management . 42
3.3 MPC Formulation . 50
3.4 Safety Constraints and MPC Solution . 54
3.5 Simulation Results . 59
3.6 Experimental Results . 62

4 Safety in Real Driving Scenarios 67
4.1 Introduction . 67
4.2 Monotonicity Concepts . 68
4.3 Vehicle-Following Scenario . 69
4.4 Unprotected Left Turn Scenario . 76

ii

5 Conclusion and Future Directions 81

Bibliography 83

iii

List of Figures

1.1 As part of an experimental research effort, we have developed a scaled-car test
platform for conducting various experiments. We integrated our test vehicle’s
hardware based on the f1tenth platform (see https://f1tenth.org/about.html).
The test platform was developed in collaboration with Sirej Dua, Milad Noori,
Canberk Hurel, and Nicholas Liu. 4

1.2 The three possible traffic movements (through, left turn, and right turn) are
shown for one of the lanes approaching the intersection. While there are a total
of twelve possible traffic movements at the intersection, only a fraction of these
movements are allowable simultaneously. This means the intersection’s capacity
is reduced by a factor gi/T as in (1.4). 6

1.3 A photograph taken after the crash that occurred between an Uber automated
Volvo and a Honda CR-V in Tempe, Arizona. 9

1.4 Conflict zone (shown in orange) between a through movement and a left turn
movement at an intersection. To ensure safety, only one vehicle can occupy the
conflict zone at a time. 10

2.1 An interconnection of N control subsystems Σ1, . . . ,ΣN 19
2.2 An equitable partition of a circle graph with L = 5 nodes into three groups (left).

Note that the partition into two groups (right) is not equitable. 24
2.3 Simulation results for the temperature regulation example. We require the tem-

perature in each area of the building to reach its corresponding target temperature
range (indicated by the dashed lines) within 20 minutes after the signal is trig-
gered. The signal is triggered at the 20 minute mark - the aggregate system
(left) reaches the temperature target within 20 minutes, and the concrete system
(right) closely follows the reference. 33

3.1 Test vehicles at the Hyundai-KIA Motors California Proving Grounds, California
City, CA. 41

3.2 Depiction of the states for a platoon of size N = 3 and public lead vehicle ap-
proaching an upcoming traffic light. 43

https://f1tenth.org/about.html

iv

3.3 Flow of V2V messages for a platoon of size N = 4, where the blue node represents
the leader vehicle and the grey node represents the rear vehicle. Figure 3a shows
the transmission of velocity forecasts and 3b shows the transmission of GPS
coordinates from the rear vehicle (used by the leader to determine if the platoon
can make it through the intersection, see Section 3.2). Figure 3c shows how we
share radar measurements when we use the second method for estimating si(t)
as in (3.10). 47

3.4 A diagram of the transitions in our finite state machine, shown here for the leader
vehicle for simplicity. 49

3.5 Experimental data collected in Arcadia, CA during the platoon formation process.
The vehicles begin at a low speed and unequal spacing. At around the 2s mark,
the platoon leader proposes a ‘plan’ which is accepted by the following vehicles,
and the plan status signal (plotted above) switches from 0 to 1. This engages all
platooning controllers simultaneously, and the vehicles quickly converge to the
desired speed and distance. 50

3.6 In 3.6a and 3.6b we plot the terminal sets (3.28) and (3.30) for the front ve-
hicle and upcoming intersection, respectively. For computing the sets, we use
amin,brake = 3.2 m/s2 and amax,brake = 5.0912 m/s2. 56

3.7 View from the middle platooning vehicle as it approaches an intersection during
our demonstration in Arcadia, CA. In Figure 3.7a there is a slow-moving truck
attempting to turn right ahead of the leader vehicle. Since the truck takes priority
over the intersection at this point, the platoon is forced to slow down. In Figure
3.7b the truck completes the right turn and priority shifts to the intersection. . . 57

3.8 Simulation results for an urban traffic scenario with a non-platooning lead vehicle
and multiple signalized intersections. In the top plot, we show the position of all
simulated vehicles (including the public vehicle which is not platooning), as well
as the position of each intersection which has either a yellow or red phase. In the
bottom three plots, we show the inter-vehicle distances (including the distance
from the leader to the public vehicle), velocities, and torque commands for the
platooning vehicles. 60

3.9 Depiction of the on-board hardware setup for the test vehicles. The local CAN bus
(in red) connects the computational devices (Matrix embedded PC and dSPACE
MicroAutoBox) to the Cohda OBU for DSRC communication. The HCU (CAN
gateway) provides an interface between the local CAN bus and the production
systems of the test vehicle. Using the local CAN bus and the gateway function-
ality of the HCU, we can send commands and access measurements to and from
the production systems without needing access to proprietary vehicle data. . . . 63

v

3.10 Experimental results from the Hyundai-KIA Motors California Proving Grounds
with the test vehicles shown in Figure 3.1. Here, we had the platoon track a
reference trajectory which was generated via our simulation tool. The position,
inter-vehicle distance, velocity, and MPC torque command for each vehicle are
shown in each subplot, respectively. The desired distance between vehicles was 6
meters. 64

3.11 Overhead view of the platoon crossing an intersection in Arcadia, CA. 65

4.1 The state space is divided into three areas: the area corresponding to set S
(bottom left cell), the area corresponding to unsafe impacts (top left cell), and
the area where no impact has occurred (right cells). 73

4.2 Boundary of safe set Z ⊂ X for the strict (top surface) and relaxed (bottom sur-
face) vehicle-following specification. The safe sets lay below the depicted bound-
aries. 75

4.3 Depiction of the states for the ego (blue) and oncoming (yellow) vehicle in the
unprotected left turn scenario. 76

4.4 Safe set boundaries for the unprotected left turn scenario. In Figure 4.4a all
states below the surface are in Zwait. Conversely, in Figure 4.4b all states above
the surface are in Zgo. 78

4.5 Simulation results for the unprotected left turn scenario. The input bounds are
indicated with dotted red lines. We note two vehicles never occupy the intersec-
tion (bounded by the dotted purple lines) simultaneously. 79

vi

List of Tables

2.1 Partitioning of the 30 rooms into 3 groups. 32

3.1 Model Parameters . 44
3.2 MPC Parameters . 52
3.3 Improved Throughput . 62
3.4 Baseline Throughput . 62

vii

Acknowledgments

First of all, I want to thank Murat Arcak for being a great advisor and mentor during my time
at UC Berkeley. I appreciate Murat’s encouragement to take on challenging projects that
ended up being very rewarding in the end, and the trust he placed in my work throughout
my PhD. I also thank Murat for the freedom he gave me to explore my intellectual interests,
which enabled me to discover the research areas I am most passionate about.

Thanks to Alan Brown, who piqued my initial interest in control engineering during my
first internship at HELLA Electronics. Thanks as well to Necmiye Ozay, Petter Nilsson, and
Jessy Grizzle for guiding me as I started doing research at the University of Michigan and
while I was applying to graduate programs.

Thanks to Majid Zamani for your collaboration on the hierarchical control work, and
also to Galaxy Yin for helping extend this work to incorporate sum-of-squares programming
methods. Thanks as well to Adnane Saoud for your collaboration on the work involving
real driving scenarios, and for your helpful advice. Thanks also to Matthew Wright for
your advice and interesting discussions which led me to some of the research presented in
this thesis. Thanks to Sanjit Seshia for having me as a GSI in EECS 149/249A (a great
experience!), and for being on my qualifying exam and dissertation committees.

To the many people I worked with on the vehicle platooning project - especially Yeojun
Kim, Jacopo Guanetti, and Bruce Wootton - thanks for your collaboration and for the truly
memorable experiences working on the project. Thanks as well to Alex Kurzhanskiy, Roberto
Horowitz, Ching-Yao Chan, and Pravin Varaiya for providing guidance throughout which
helped us make progress. Of course, special thanks to Francesco Borrelli for his leadership on
the project, and also for being on my qualifying exam and dissertation committees. Finally,
thanks to Ruolin Li, Roya Firoozi, Mikhail Burov, Galaxy Yin, and Emmanuel Sin for
helping conduct experiments with the test vehicles.

Thanks to everyone in the Arcak lab for pleasant chats over lunch and for creating a wel-
coming and fun atmosphere in our group: John Maidens, Marcella Gomez, Eric Kim, Mindy
Perkins, Galaxy Yin, Emmanuel Sin, Pierre-Jean Meyer, Mikhail Burov, Kate Schweidel,
Alex Devonport, and Adnane Saoud.

Thanks to the Berkeley gang: Gautam Gunjala, Alan Dong, Alain Anton, Alex Reinking,
Chandan Singh, Kieran Peleaux, Phong Nguyen, and David Ren for many fun times which
really enriched my PhD experience. Thanks as well to Kristina Monakhova, Kevin Laeufer,
and Michael Dennis for your friendship and for getting me more into hiking and camping.
Finally, thanks to the many friends from Michigan I’ve kept in touch with during my PhD,
especially Mike Choe, Kevin Zywicki, Trevor Brust, Sameer Desai, and Mostafa Shuva. It
has been great spending time with you all whenever I am visiting home.

Of course, thanks so much to my family for their love and encouragement as I pursued
my PhD. Thanks to my parents Anthony and Michele and my siblings Madeline and Nathan
for inspiring me to always do my best, and for always being there for me. Finally, thanks as
well to all of my extended family for your support during my graduate studies.

viii

Finally, I would like to acknowledge the generous support I received from the National
Science Foundation, the Department of Transportation, the Air Force Office of Scientific
Research, and the Office of Naval Research, which made the research in this thesis possible.
Lastly, I am also grateful for the support I received from the Department of Defense through
the National Defense Science and Engineering Graduate Fellowship program.

1

Chapter 1

Introduction

This dissertation focuses on the task of designing controllers for large-scale systems. In par-
ticular, we are mainly interested in formal methods for control synthesis, where the controller
is generated using a partially-automated design procedure, and the control specification is
typically described using a formal language such as linear temporal logic (LTL) [45] or sig-
nal temporal logic (STL) [35]. An important benefit of such formal specification languages
is their ability to rigorously describe the requirements that are imposed on the system of
interest. For example, a reach-avoid specification, which requires a vehicle to reach a target
area while avoiding several obstacles along the way, is common in robotics and transporta-
tion, and can be easily represented as an LTL / STL specification. While formal synthesis
procedures are desirable for these reasons, a well-known limitation of these methods is that
they usually cannot be applied directly to large-scale systems due to the complexity of the
required computations. Because of this, recent research has focused on developing different
methods for addressing this issue (see, for example, [38]).

1.1 Control Synthesis for Large-Scale Systems

There are a number of approaches for making control synthesis computationally tractable
when dealing with large-scale systems. In hierarchical control, for example, the goal is to
instead use an abstraction in the control synthesis procedure, where the abstraction is a
simplified representation of the original control system with a low state dimension, thereby
making it amenable to formal synthesis techniques. We consider two primary types of ab-
straction in this dissertation: continuous abstraction and discrete abstraction, which are
relevant in Chapters 2 and 4, respectively. In continuous abstraction (see, for example, [1]),
we represent the system of interest with a continuous-state control system, where the state,
inputs, and outputs are continuous variables and, hence, each of their respective domains
is infinite. Similarly, in discrete abstraction (see [66]), we represent the system of interest
with a discrete-state (and usually discrete-time) control system, where the state, inputs, and
outputs are discrete variables, each belonging to a respective finite domain.

CHAPTER 1. INTRODUCTION 2

Several other methods employ a divide-and-conquer approach for control synthesis, where
the goal is to break down the large-scale system into smaller subcomponents, each of which
is more manageable in size. This allows one to do control synthesis for each subsystem
separately, where the system of interest is modelled as an interconnection / composition of
these subsystems. In Chapter 2, for example, we consider a general class of interconnected
control systems, where the inputs of each subsystem depend (linearly) on the outputs of the
other subsystems. Techniques for cases where the subsystems affect each other in other ways
are also available - for example, [60] considers an application where the dynamics of each
subsystem depend (possibly nonlinearly) on the dynamics of the other subsystems.

1.2 Applications in Transportation

Throughout the dissertation, we will focus on applications in the area of transportation,
where hierarchical and compositional control design procedures can be very useful. For
example, an interesting application of compositional control synthesis can be found in trans-
portation: in advanced driver-assistance systems (ADAS), the longitudinal and lateral dy-
namics of the vehicle are typically handled by separate controllers, each of which also has
a separate control specification. The longitudinal controller can, for example, ensure that a
safe distance to the lead vehicle (when present) is maintained at all times, and the lateral
controller can ensure that the ego vehicle does not stray out of its desired lane. Since the
longitudinal and lateral vehicle dynamics are interdependent, however, the overall vehicle
dynamics must be treated as a composition of the longitudinal and lateral subsystems, and
the effect of each subsystem on the other must be taken into account during the control
synthesis process [60]. Another important transportation application of interest is vehicle-
platooning (see, for example, [37]), where a group of vehicles coordinate their motion in
order to move together in a tight formation. When the platoon has a large number of vehi-
cles in it, the system state dimension becomes large and we are faced again with the same
problem discussed previously. Therefore, in this application it is much more desirable to
use a distributed control approach, where each vehicle has its own separate longitudinal
controller, and the group of vehicles coordinate their motion using vehicle-to-vehicle (V2V)
communication.

We are also interested in traffic flows at intersections and, more specifically, how we
can improve the ways that traffic moves through intersections. Indeed, intersections are
complex environments, and navigating them safely is a challenging task even for a human
driver. Furthermore, intersections form bottlenecks in the flow of traffic, as we will discuss in
Section 1.3, and therefore they significantly decrease the efficiency of traffic. To address these
issues, we will explore the potential for connected automated vehicles (CAVs) to improve
the efficiency and safety of traffic flows at intersections in Chapters 3 and 4.

CHAPTER 1. INTRODUCTION 3

1.3 Further Background and Summary of

Contributions

This dissertation is divided into three main parts: Chapter 2 focuses on using approximate
abstractions for hierarchical control, Chapter 3 focuses on vehicle platooning, and Chapter
4 focuses on ensuring safety in real driving scenarios. The remainder of the introduction
provides further background and motivation for the research presented in this dissertation,
as well as a summary of any preliminary papers that led to the work contained in each
chapter.

Chapter 2: Approximate Abstractions of Control Systems

To provide further intuition behind continuous abstraction, we begin by walking through
an example application in vehicle motion planning. The goal in motion planning is to have
a vehicle navigate through its environment and eventually reach a desired destination. To
do so safely, the vehicle may also have to avoid several (potentially mobile) obstacles in its
environment at all times. At a high level, the inputs to the motion planning algorithm are
a desired destination and the safety constraints imposed on the vehicle, and the outputs are
the final sequence of acceleration and steering angle commands to be sent to the vehicle’s
actuators. Indeed, this problem falls neatly into a hierarchical control framework. The
control objective for the vehicle can be represented as a reach-avoid specification using LTL
or STL, and the motion planning problem itself can be naturally decomposed into separate
planning and control tasks. In particular, the planner system processes the system inputs
in order to produce a safe pathway for the vehicle, and the control system then converts
the resulting pathway into the final system outputs. Indeed, these systems interact with
each other in a hierarchical fashion: the planner system takes into account all of the high-
level requirements imposed on the vehicle, and the control system then handles the low-level
control of the vehicle actuators. This framework is especially useful since we can use a
simplified vehicle model at the planning stage, as the path-planning algorithms used by
the planner system are often computationally intensive. Therefore, the model used by the
planner system can be viewed as an abstraction of the true vehicle dynamics.

It turns out that this framework is also the standard approach used to do motion planning
for autonomous vehicles (AVs). Indeed, two important elements of the AV software stack
are the planner and control systems [18], which interact in the same hierarchical fashion
discussed above. In particular, the planner system analyzes information from the vehicle’s
onboard sensors (and V2X communication module, if present) and then uses this information
to compute a safe pathway through the surrounding environment. In doing so, the planner
system must, for example, make use of the predicted trajectories of nearby agents - such as
other vehicles, bicyclists, and pedestrians - in order to always maintain a safe distance to
these agents (this is part of the motivation for V2V communication, since it allows nearby
vehicles to broadcast their planned trajectories). The control system then commands the

CHAPTER 1. INTRODUCTION 4

Figure 1.1. As part of an experimental research effort, we have developed a scaled-car test platform
for conducting various experiments. We integrated our test vehicle’s hardware based on the f1tenth
platform (see https://f1tenth.org/about.html). The test platform was developed in collaboration
with Sirej Dua, Milad Noori, Canberk Hurel, and Nicholas Liu.

vehicle steering angle and wheel torque such that the AV accurately follows the planned
pathway with small tracking error. So long as this tracking error is small enough, the AV
will meet the given reach-avoid specification.

To further elucidate the hierarchical control framework, we now discuss some models that
could be used by the planner and control systems in our motion planning example. Recently,
we have also developed a scaled car (see Figure 1.1) to be used as a test platform for our
approach. For the planner system we can use a Dubin’s vehicle model:

˙̂px(t) = v̂(t) cos(θ̂(t)), (1.1a)

˙̂py(t) = v̂(t) sin(θ̂(t)), (1.1b)

˙̂
θ(t) = û(t), (1.1c)

where the states (p̂x(t), p̂y(t)) and θ̂(t) are the vehicle’s position and heading, and the control
inputs v̂(t) and û(t) are the vehicle’s velocity and turning rate. Indeed, the Dubin’s vehicle
model captures the essence of the vehicle’s motion in a simplified three-dimensional model.
With its low state dimension, it can be used to compute pathways through the vehicle’s
environment with limited computational resources, making it a good choice of model for the
planner system. We note, however, that (1.1) does not contain the low-level control inputs
to be implemented on the vehicle’s actuators, such as the acceleration and steering angle
commands. Furthermore, (1.1) does not take into consideration other elements that impact
the vehicle’s motion, such as the size and dimensions of the vehicle itself. Due to this, for

https://f1tenth.org/about.html

CHAPTER 1. INTRODUCTION 5

the control system we can use a more realistic kinematic bicycle model:

ṗx(t) = v(t) cos(θ(t) + β), (1.2a)

ṗy(t) = v(t) sin(θ(t) + β), (1.2b)

θ̇(t) =
v(t)

lr
sin(β), (1.2c)

v̇(t) = a(t), (1.2d)

β = tan−1

(
lr

lf + lr
tan(δf)

)
(1.2e)

where the control inputs a(t) and δf (t) are the vehicle’s acceleration and steering angle, and
here, the vehicle’s velocity v(t) is a state rather than a control input, as it was in (1.1). The
remaining states, however, are the same as before. Furthermore, lf and lr are the distances
from the vehicle’s center of mass to its front and rear axles, respectively, and β is the angle
that the vehicle’s direction of motion makes with its longitudinal axis (see, for example, [29]
for an illustrative figure and an experimental evaluation for this particular model).

Given the aforementioned models, the goal for the control system is to accurately track
the reference trajectory provided by the planner system. In our motion planning example,
this means the control system must have the vehicle accurately follow the planned pathway
through the environment. Let x̂(t) and û(t) be the state and input for the abstraction
(corresponding to (1.1) in this example), and x(t) and u(t) be the state and input for the high-
fidelity model (corresponding to (1.2) in this example). Then, in the general case, the control
system can accomplish its task by applying a feedback control law u(t) = k(x(t), x̂(t), û(t))
which attempts to drive the system state x(t) to a manifold

x(t) = π(x̂(t), û(t)) (1.3)

where, in this example, the manifold we are interested in is given by [px(t); py(t); θ(t); v(t)] =

[p̂x(t); p̂y(t); θ̂(t); v̂(t)]. In [59], we focused on a few special cases of this problem and
provided a method for obtaining a bound on the error e(t) := x(t) − π(x̂(t), û(t)) using a
simulation function V (x(t), x̂(t)), where the bound depends on a residual term r(û(t), x̂(t)).
The main benefit of our approach from [59] is that the abstraction is not required to satisfy
certain restrictive geometric conditions - hence, we refer to abstractions of this type as
approximate abstractions. In Chapter 2, we extend this approach to a class of interconnected
control systems and then connect our results to an application in aggregation [11].

Chapter 3: Vehicle Platooning

In Chapter 3 we focus on improving traffic throughput at intersections by forming platoons
of vehicles. As discussed in [32], we can define the capacity of an intersection as

Capacity =
∑
i

si ·
gi
T

(1.4)

CHAPTER 1. INTRODUCTION 6

Figure 1.2. The three possible traffic movements (through, left turn, and right turn) are shown
for one of the lanes approaching the intersection. While there are a total of twelve possible traffic
movements at the intersection, only a fraction of these movements are allowable simultaneously.
This means the intersection’s capacity is reduced by a factor gi/T as in (1.4).

where T is the traffic light cycle time, and for movement i, si is the saturation flow rate
in vehicles per hour (vph) and gi is the green time. Here, the saturation flow rate si is
the throughput at the intersection (in vehicles per hour) that is achieved if an infinitely
long string of vehicles were to travel through the intersection along one of its movements i,
completely uninterrupted by changes in the traffic light signal. This scenario describes the
steady state behavior of the system, and therefore si is a steady state flow rate. Since the
traffic light signal cycles periodically between the red, yellow, and green phases, however,
there is only a finite window of opportunity for the vehicles entering the intersection to
achieve this saturation flow rate, meaning the intersection capacity is reduced by a factor of
gi/T as shown in (1.4). Furthermore, when the light cycles from red to green, there is also a
short period of transient behavior when the vehicles are accelerating from a complete stop to
their nominal velocity, meaning saturation flow is not achieved immediately. Although this
latter effect has no impact on the capacity of the intersection as defined in (1.4), it further
reduces the intersection efficiency in practice.

In order to improve the capacity of the intersection, [32] proposes increasing the saturation
flow rate si in (1.4) by forming vehicle platoons at the intersection. Indeed, their simulation
results show that doing so could potentially double traffic throughput in urban roadways.
One benefit of this approach is that it does not require modifying the timing of the traffic light
phases, but only the behavior of the vehicles themselves moving through the intersection. To
further improve the efficiency of the intersection in practice, it is also important to consider
the transient behavior mentioned earlier. That is, in the ideal case, a long platoon of vehicles

CHAPTER 1. INTRODUCTION 7

stopped at a red light will quickly and safely approach steady state behavior (where the
saturation flow rate si is achieved) when the traffic light cycles from red to green, thereby
minimizing the negative impact of the transient behavior on the intersection efficiency. To do
so, the vehicles in the platoon need to be able to accurately maintain constant inter-vehicle
distances while accelerating and decelerating, which is a challenging engineering task. More
precisely, the platoon control system needs to ensure string stability of the group of vehicles
(for more details on string stability, we refer the interested reader to [65]). The idea is to
ensure that any disturbances that begin at the front of the platoon - for example, changes
in velocity or acceleration of the platoon leader - are not amplified as they move toward
the back of the platoon, as each subsequent vehicle in the group reacts to the disturbance.
String stability has been shown to depend, in particular, on the flow of V2V messages
within the platoon [23]. In our work, we ensure string stability by using an information flow
topology which enables each follower vehicle in the platoon to do distance tracking (that is,
maintaining a constant distance to a target object) of the leader vehicle, meaning that when
the platoon leader accelerates, each follower vehicle in the platoon accelerates simultaneously
in response. This is a significant improvement over human drivers, who typically respond
to the vehicle directly in front of them with a nontrivial reaction time. For the reasons
discussed earlier, this can cause instabilities in the flow of traffic and decrease the efficiency
of intersections. Indeed, vehicle platooning offers a significant improvement over the way
most humans drive.

In practice, forming platoons of vehicles at intersections is a challenging engineering
problem, and not unlike many engineering problems, there are a few tradeoffs present. One
tradeoff is between passenger comfort and traffic throughput. Consider when the light cycles
from red to green, for example - the platoon could accelerate more quickly from a stop in
order to pass through the intersection sooner and increase throughput, but this will come
at the cost of passenger comfort. Another important tradeoff is between safety and traffic
throughput, which was studied using simulation in our preliminary work [61]. Intuitively,
by pushing the vehicles in the platoon closer together, we can achieve higher levels of traffic
throughput at the intersection; however, doing so can introduce some risk to the follower
vehicles in the platoon. Our results in [61] show that, in order to achieve a reasonable
improvement in traffic throughput at the intersection, the vehicles in the platoon must
essentially “trust” each other and drive as closely together as possible. More specifically,
each platooning vehicle must broadcast a custom V2V message with a prediction on its own
future velocity trajectory, and the other platooning vehicles must assume the prediction is
accurate and use it in their respective MPC problems. Building off this work in [61], in
Chapter 3 we provide an overview of a recent experimental project, in collaboration with the
MPC lab at UC Berkeley, where we implemented a vehicle platooning system on Hyundai
Ioniq test vehicles and evaluated it in an urban traffic setting.

CHAPTER 1. INTRODUCTION 8

Chapter 4: Safety in Real Driving Scenarios

While in Chapter 3 we focused on improving the efficiency of traffic flows by forming vehicle
platoons at intersections, in Chapter 4 we turn our focus toward improving the safety of traffic
flows. Specifically, we focus on efficiently designing vehicle controllers which can guarantee
safety in two real driving scenarios, one of which typically occurs at an intersection. The
first scenario we consider is a vehicle-following scenario. In this scenario, the longitudinal
dynamics of the ego vehicle and a lead vehicle ahead of it are considered, and the goal is to
design a controller for the ego vehicle such that a safety specification on the relative distance
and velocity of the two vehicles is met. In particular, we consider a safety specification from
[31] which relaxes the constraints on the ego vehicle, allowing the two vehicles to drive more
closely together. This is crucial in vehicle platooning, for example, where the goal for the ego
vehicle is to maintain a short distance to the lead vehicle at all times. The second scenario
we consider is an unprotected left turn scenario. In this scenario, the ego vehicle is trying to
make a left turn (typically at an intersection) in a situation where it does not have the right
of way. Hence, the ego vehicle must yield to any oncoming vehicles that are passing through
the intersection while it is attempting to execute its turn.

The second driving scenario we consider is particularly challenging due to the fact that
intersections are complex and dangerous environments. Indeed, navigating through an in-
tersection safely requires a driver to analyze and respond to the nuanced behavior of nearby
vehicles, bicyclists, and pedestrians. For example, while executing an unprotected left turn,
an AV must rely on its predictions of the velocity trajectories of any oncoming vehicles in
order to consistently maintain a safe distance to those vehicles. In fact, Cruise, a self-driving
startup owned by General Motors, has said that making an unprotected left turn at an in-
tersection is one of the most difficult maneuvers a self-driving vehicle can perform [71]. Due
to this, Cruise has done extensive testing in San Francisco focused on improving how well
their AVs execute unprotected left turns, as well as other difficult driving maneuvers. On
the other hand, other startups developing self-driving technology have faced setbacks while
conducting tests at public intersections; in 2017, an Uber AV was involved in a collision
at an intersection in Tempe, Arizona - see Figure 1.3 for a photo [46]. The crash occurred
between the Uber automated Volvo, which was driving straight through the intersection,
and a human-driven Honda CR-V, which was attempting to make a left turn. Unfortu-
nately, heavy traffic occluded the Honda CR-V so that neither the Uber AV’s sensors nor
its human operator could detect the oncoming vehicle in time to avoid the collision. Since
the Uber AV had a yellow light with enough time to make it through the intersection, it
simply maintained its speed of 38 miles per hour immediately prior to the crash. No one
was injured in the accident, and since the Uber AV technically had the right of way, it was
not legally at fault for the collision. Nevertheless, this incident highlights the importance
of improving the safety of intersections, and has since become a useful case study in the
academic community [22]. In particular, the inability of the Uber AV’s onboard sensors to
detect the Honda CR-V early on were an interesting contributing factor to the accident. To
address this limitation and avoid such an accident in the future, the authors of [22] suggest

CHAPTER 1. INTRODUCTION 9

Figure 1.3. A photograph taken after the crash that occurred between an Uber automated Volvo
and a Honda CR-V in Tempe, Arizona.

utilizing vehicle-to-infrastructure communication. For example, a SPaT message broadcast
by the intersection could notify the approaching Uber AV that the light is about to turn
yellow, encouraging it to slow down. In Chapter 4, however, we are most interested in the
conflict zone analysis discussed in [22]. The main idea is to identify areas in the intersection
where two driving movements overlap with one another, and then ensure that two vehicles
never occupy the same conflict zone simultaneously. As an example, Figure 1.4 shows the
conflict zone for a through movement and unprotected left turn movement at an intersection
- we will return to this example in Chapter 4.

In order to design a safety controller for the ego vehicle in each driving scenario, we apply
recently developed symbolic control techniques from [28] and [52]. The salient features of
our approach are: 1) we use discrete abstractions of the system dynamics, and 2) we exploit
monotonicity properties of the system dynamics to reduce computational complexity. Before
diving into the details in Chapter 4, here we provide some intuition behind our approach
for the unprotected left turn scenario. The system dynamics are monotone since we assume
neither vehicle will reverse. Furthermore, there are two strategies for the ego vehicle to
safely execute its turn - it can either wait and let the oncoming vehicle pass through the
intersection (or, more specifically, the conflict zone) before beginning its turn, or it can
go first and complete its turn before the oncoming vehicle enters the intersection. The
formal control specification corresponding to each of these strategies is directed (see [28] for
a definition). Indeed, if the ego vehicle wants to turn first, it is always better off if 1) the
ego vehicle is farther along in its turn, 2) its velocity is larger, and 3) the oncoming vehicle
is farther away. On the other hand, if the ego vehicle wants to let the oncoming vehicle go

CHAPTER 1. INTRODUCTION 10

Figure 1.4. Conflict zone (shown in orange) between a through movement and a left turn movement
at an intersection. To ensure safety, only one vehicle can occupy the conflict zone at a time.

first, the converse is true. This means we can employ an efficient algorithm from [52] to
identify the set of safe states in this scenario and design a safety controller. The main idea
is that we only need to test states on the boundary of a region to determine if the entire
region is safe, due to the monotonicity properties of the system and specification. This saves
us significant computational effort, as we will demonstrate.

11

Chapter 2

Approximate Abstractions of Control
Systems

2.1 Introduction

The synthesis of controllers for dynamical systems enforcing complex logic properties, e.g.
those expressed as linear or signal temporal logic (LTL/STL) formulas [8, 16], is hampered
by computational challenges. One way of tackling the design complexity is by employing
abstractions, which are simpler representations of original systems with the property that
controllers designed for them to enforce desired properties can be refined to the ones for the
concrete systems. The errors suffered in this controller synthesis detour can be quantified a
priori. The abstraction is called finite if its set of states is finite, and infinite otherwise. In
this chapter, we only deal with infinite abstractions.

Abstractions of non-stochastic dynamical systems has a long history. Examples of such
results include constructive procedures for the construction of infinite abstractions of linear
control systems using exact simulation relations [53]. In contrast to the exact notions,
the results in [1] provide an approach for the construction of infinite abstractions of linear
control systems using approximate simulation relations based on simulation functions. The
construction schemes proposed in [53, 1] are monolithic in the sense that infinite abstractions
are constructed from the complete system model. Compositional construction of approximate
abstractions for the interconnection of two subsystems is studied in [19] using small gain
type conditions. This result was extended in [50] to networks of systems, again with small
gain type reasoning. The recent result in [74] employs broader dissipativity methods for
constructing approximate abstractions for networks.

The infinite abstractions discussed here are also related to the rich theory of model order
reduction, which seeks abstractions with reduced state-space dimensions [5, 26]. However,
the model mismatch in [5, 26] is established with respect to H2/H∞ norms whereas we use
notions of simulation functions to derive L∞ error bounds, which are crucial to reason about
complex logic properties, e.g., LTL or STL formulas [8, 16].

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 12

The aforementioned results on the construction of exact or approximate infinite abstrac-
tions, [53, 1, 50, 74], require restrictive geometric conditions which, in some cases, are
satisfied only when the state dimensions of the abstraction and the original system are the
same (i.e., no order reduction).

In this work, we address this shortcoming as follows. We first show that, when construct-
ing an abstraction monolithically, one can relax the geometric conditions appearing in [53,
1, 50, 74]. We quantify the effect of this relaxation via a nonnegative function which can
be bounded in a formal synthesis of the abstract controller. To translate this bound into
one on the error between the concrete system and its abstraction, we modify the definition
of simulation functions from [1] to that of practical simulation functions, which include the
nonnegative function in the upper bound on their derivative.

Next, we show that when constructing an abstraction in a compositional manner, one
can also relax a restrictive condition on the interconnection topology from [50, 74]. We show
that this relaxation greatly expands the domain of applicability of model order reduction via
aggregation, where one creates an abstraction by partitioning agents into aggregate areas. In
addition, our construction utilizes a modified version of storage functions from [74], which we
refer to as practical storage functions. This notion allows us to accommodate heterogeneity
in the agent models in aggregation.

The flexibility of our approach greatly broadens the applicability of infinite abstractions,
including their usage in formal control synthesis procedures. Indeed, it was previously dif-
ficult and at times intractable to find an infinite abstraction satisfying the aforementioned
geometric conditions. Thus, our method overcomes a significant limitation of abstraction-
based controller design by allowing one to instead use an approximate abstraction which
need not satisfy such conditions. The additional error introduced by this approach can then
be quantified with our newly introduced notion of a practical simulation function.

The chapter is organized as follows. In Section 2.2, we introduce the class of control
systems and corresponding abstractions studied in the chapter. We show in Section 2.3 how
one can construct an abstraction in a monolithic manner for the class of linear systems. The
discussion in Section 2.3 is based on the preliminary work in [59]; however, the content after
Section 2.3 is entirely new. In Section 2.4, we consider a class of interconnected control
systems, and present a result on the compositional construction of an abstraction for such
systems. In Section 2.5, we show how our theory can aid in the procedure of aggregation,
and include an example in building temperature regulation in Section 2.6. All proofs are
given in the Appendix.

2.2 Control Systems

Notation.

We denote the set of real numbers as R, and write the set of positive and nonnegative real
numbers as R>0 and R≥0, respectively. For a, b ∈ R with a ≤ b, we denote with (a, b) the

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 13

open interval from a to b. The n-dimensional Euclidean space is denoted with Rn. We use
1n and 0n to denote the n-dimensional vector with all entries equal to 1 and 0, respectively.
The vector space of matrices with n rows and m columns is represented by Rn×m. We use
In to denote the identity matrix with n rows and columns. The concatenation of vectors
xi ∈ Rni for i = 1, . . . , N is given by [x1;x2; . . . ;xN] ∈ Rn, where n =

∑N
i=1 ni. Similarly,

the block-diagonal concatenation of matrices Pi ∈ Rmi×ni for i = 1, . . . , N is written as
diag(P1, . . . , PN) ∈ Rm×n, where m and n are defined in the same way. The null space of a
matrix P ∈ Rm×n is given by N (P) := {x ∈ Rn : Px = 0m}. Furthermore, ‖P‖F and tr(P)
refer to the Frobenius norm and trace of P , respectively. The map ‖ · ‖ : Rn×m → R≥0 refers
to the Euclidean norm when the argument is a vector, and the matrix norm induced by the
Euclidean norm when the argument is a matrix. For a symmetric matrix P ∈ Rn×n, we use
λmin(P) and λmax(P) to denote the minimum and maximum eigenvalue of P , respectively.
We denote the Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q as A⊗B ∈ Rmp×nq.

A continuous function α : R≥0 → R≥0 belongs to class K if it is strictly increasing and
α(0) = 0; furthermore, α : R≥0 → R≥0 belongs to class K∞ if α ∈ K and α(s) → ∞ as
s → ∞. A continuous function β : R≥0 × R≥0 → R≥0 is said to belong to class KL if, for
each fixed t, the map β(r, t) belongs to class K with respect to r and, for each fixed nonzero
r, the map β(r, t) is decreasing with respect to t and β(r, t) → 0 as t → ∞. Lastly, for a
measurable function f : R≥0 → Rn, we use ‖f‖∞ to indicate supt≥0 ‖f(t)‖.

Control systems and their abstractions.

We first define the class of control systems studied in this chapter:

Definition 2.2.1. A control system Σ is a tuple Σ = (Rn,Rm, f,Rq, h), where Rn, Rm, and
Rq are the state, input, and output spaces, respectively. The evolution of the state and output
trajectories are governed by

Σ :

{
ξ̇(t) = f(ξ(t), υ(t)),

ζ(t) = h(ξ(t)),

where f : Rn×Rm → Rn is locally Lipschitz, and we refer to h : Rn → Rq as the output map.

We denote by ξxυ(t) the state reached at time t under the input υ : R≥0 → Rm from the
initial condition x = ξxυ(0); the state ξxυ(t) is uniquely determined due to the assumptions
on f [64]. We also denote by ζxυ(t) the corresponding output value of ξxυ(t), i.e. ζxυ(t) =
h(ξxυ(t)).

When the dimension of the state space is large, one can avoid the computational burden
of a direct controller synthesis for Σ by introducing an abstraction Σ̂, potentially with a
smaller state-space dimension n̂. Typically, the abstraction Σ̂ is related to the concrete
system Σ via a simulation function [1], which enables one to bound the error between the
outputs of the two systems. We now define a modified version of simulation functions, which
we refer to as practical simulation functions:

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 14

Definition 2.2.2. Consider a control system Σ = (Rn,Rm, f,Rq, h) with corresponding ab-
straction Σ̂ = (Rn̂,Rm̂, f̂ ,Rq, ĥ). Let V : Rn × Rn̂ → R≥0 be a continuously differentiable
function and v : Rn×Rn̂×Rm̂ → Rm a locally Lipschitz function. We say that V is a practi-
cal simulation function from Σ̂ to Σ with an associated interface v if there exist ν, η ∈ K∞,
ρ ∈ K ∪ {0}, and ∆ : Rn̂ → R≥0 such that for all x, x̂, and û we have

ν(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂) (2.1)

and

∂V (x, x̂)

∂x
f(x, v(x, x̂, û)) +

∂V (x, x̂)

∂x̂
f̂(x̂, û) ≤ −η(V (x, x̂)) + ρ(‖û‖) + ∆(x̂). (2.2)

Here, we modified the definition of simulation functions to include a nonnegative term
∆(x̂) in the upper bound of their derivatives. Thus, when ∆(x̂) = 0 we refer to V (x, x̂) as
a simulation function. We note that the associated interface v(x, x̂, û) helps to achieve (2.2)
and, in particular, can be used to reduce the term ∆(x̂) as much as possible. The usefulness
of ∆(x̂) will become apparent in Section 2.3, where we show that its addition allows one to
relax the geometric conditions typically required in the construction of infinite abstractions.
To further motivate the addition of the term ∆(x̂), we provide an example of a system and
abstraction which admit a practical simulation function as in Definition 2.2:

Example 1. Consider the control system

Σ :

(
ξ̇1(t)

ξ̇2(t)

)
=

(
−1.5ξ3

1(t) + υ(t)

−ξ3
2(t) + υ(t)

)
,

ζ(t) = (ξ1(t) + ξ2(t))/2,

with ξ1(t), ξ2(t), ζ(t) ∈ R, and where ξ1(t) and ξ2(t) are aggregated into a single state variable
ξ̂(t) ∈ R governed by

Σ̂ :

{
˙̂
ξ(t) = −1.5ξ̂3(t) + υ̂(t),

ζ̂(t) = ξ̂(t),

with ζ̂(t) ∈ R. Then, by defining the associated interface

v(x, x̂, û) = û,

we have that V (x, x̂) := (1/2)(x− x̂12)T (x− x̂12) is a practical simulation function from Σ̂
to Σ since one can verify that

((x1 + x2)/2− x̂)2 ≤ V (x, x̂)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 15

and

V̇ (x, x̂) = (x− x̂12)T (ẋ− ˙̂x12)

=

[
x1 − x̂
x2 − x̂

]T [−1.5x3
1 + û− (−1.5x̂3 + û)

−x3
2 + û− (−1.5x̂3 + û)

]
≤ −1

8
V 2(x, x̂) +

3

8
x̂4

hold. Thus, we have that (2.1) and (2.2) from Definition 2.2 are satisfied with ν(s) :=
s2, η(s) := (1/8)s2, ρ(s) = 0, and ∆(x̂) := (3/8)x̂4.

The next theorem shows the usefulness of a practical simulation function by providing
a bound on the error between the output behaviors of control systems to those of their
abstractions.

Theorem 1. Consider a system Σ = (Rn,Rm, f,Rq, h) with corresponding abstraction Σ̂ =
(Rn̂,Rm̂, f̂ ,Rq, ĥ), and let V be a practical simulation function from Σ̂ to Σ. Then, there
exists a class KL function β and class K functions γ1, γ2 such that for any measurable
υ̂ : R≥0 → Rm̂ and x ∈ Rn, x̂ ∈ Rn̂, there exists a measurable υ : R≥0 → Rm via the associated
interface v such that the following bound holds for all t ∈ R≥0:

‖ζxυ(t)− ζ̂x̂υ̂(t)‖ ≤ β(V (x, x̂), t) + γ1(‖υ̂‖∞) + γ2(‖∆(ξ̂x̂υ̂)‖∞).

The proof of Theorem 1 is similar to the one of Theorem 3.5 in [74] and is omitted here
due to lack of space.

2.3 Abstraction Synthesis for Linear Systems

To demonstrate the relaxation of geometric constraints, here we adapt our approach to linear
control systems

Σ :

{
ξ̇(t) = Aξ(t) +Bυ(t),

ζ(t) = Cξ(t),
(2.3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, and the pair (A,B) is stabilizable. Our goal is to
represent (2.3) with an abstract control system

Σ̂ :

{
˙̂
ξ(t) = Âξ̂(t) + B̂υ̂(t),

ζ̂(t) = Ĉξ̂(t),
(2.4)

where Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×m̂, and Ĉ ∈ Rq×n̂. It has been shown in [1, Theorem 2] that if one
can find matrices P ∈ Rn×n̂ and Q ∈ Rm×n̂ such that Ĉ = CP , and the condition

AP = PÂ−BQ (2.5)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 16

holds, then there exists a practical simulation function from Σ̂ to Σ with an associated
interface given by

v(x, x̂, û) = K(x− Px̂) +Qx̂+Rû (2.6)

where the matrix K ∈ Rm×n in (2.6) is a feedback gain to be designed and R ∈ Rm×m̂ is
selected to minimize ‖BR − PB̂‖. As alluded to previously, the requirement (2.5) can be
restrictive in general. Indeed, the following lemma, quoted from [1, Lemma 2], provides the
geometric conditions on P such that (2.5) is satisfiable:

Lemma 1. For given matrices A, P , and B, there exist matrices Â and Q satisfying (2.5)
if and only if

Im(AP) ⊆ Im(P) + Im(B).

To address the restriction implicit in (2.5), we propose a relaxation by allowing a nonzero
residual term given by

D := AP − PÂ+BQ.

The effect of a nonzero matrix D is seen by examining the dynamics of the error e(t) :=
ξ(t)− P ξ̂(t), which become

ė(t) = (A+BK)e(t) +Dξ̂(t) + (BR− PB̂)υ̂(t) (2.7)

where
Dξ̂(t) + (BR− PB̂)υ̂(t) (2.8)

is treated as a disturbance. Thus, by relaxing (2.5), we have introduced a new term depending
on ξ̂ into the disturbance (2.8), which previously only depended on υ̂.

We next design the feedback gain K to mitigate the effect of this disturbance. To this
end we rewrite (2.7) as

ė(t) = (A+BK)e(t) +Wd(t) (2.9)

where we have defined

W :=
[
I BR− PB̂

]
, d :=

[
Dξ̂
υ̂

]
, (2.10)

where I is the identity matrix of appropriate size. The magnitude of d can be bounded
by placing constraints on Dξ̂ and υ̂, to be respected for all t ≥ 0. This can be done by
introducing an appropriate STL specification for Σ̂ which constrains Dξ̂ and υ̂, and then
synthesizing a control law υ̂ such that the resulting trajectories of Σ̂ satisfy said specification -
known as a formal synthesis procedure. In this chapter, we apply a formal synthesis procedure
utilizing model predictive control (MPC) [47]; MPC is well known for being able to handle
such constraints. Note that we do not need to constrain ξ̂ itself to be small, but rather the
value of Dξ̂. For example, in a motion coordination application in [59], Dξ̂ yields relative

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 17

positions and the constraints do not unreasonably restrict the absolute positions contained
in the vector ξ̂.

We remark that using MPC to design υ̂ requires discretization of the dynamics (2.4). This
is important to note, in particular, since this implies the constraints on d in (2.10) will only
hold at each sampling instant. Thus, we must establish a growth bound on each component
of d in order to characterize its inter-sample behavior. For ξ̂, one can impose constraints

such that Âξ̂ and B̂υ̂ are bounded, and then subsequently bound
˙̂
ξ from (2.4). Furthermore,

since υ̂ is a zero-order hold signal its derivative between samples is zero. Combining these
facts to provide a bound on d, we ensure the quality of the abstraction Σ̂.

After designing υ̂, our goal becomes to design K to minimize the L∞ gain from d to error
e. Since (2.9) is linear, an estimate for this gain is obtained by finding a bound e := ‖e‖∞
when d := ‖d‖∞ ≤ 1. We pursue this by numerically searching for U = UT > 0 such that
the ellipsoid E = {e : eTUe ≤ 1} is invariant. This results in e = 1/

√
λmin(U), since this is

the radius of the smallest ball enclosing E . The following optimization problem combines the
search for U with a simultaneous search for a K that minimizes e. Its derivation is similar
to Section 6.1.3 of [10] and is omitted here due to lack of space.

Optimization Problem 1:

minimize β over Z := U−1, Y := KZ,

subject to Z ≤ βI, (2.11)

X(Z, Y, α) ≤ 0, (2.12)

where

X(Z, Y, α) :=

[
AZ + ZAT + Y TBT +BY + αZ W

W T −αI

]
,

which is an LMI in Z and Y if the scalar α > 0 is fixed. In particular, by minimizing
β and imposing (2.11), we are effectively maximizing λmin(U). Here, this is equivalent to
minimizing the error bound since e = 1/

√
λmin(U). The next theorem states that a solution

to Optimization Problem 1 yields a practical simulation function from Σ̂ to Σ.

Theorem 2. Suppose that U and K are a solution to Optimization Problem 1, and Ĉ in
(2.4) satisfies Ĉ = CP . Then V (x, x̂) := (x − Px̂)TU(x − Px̂) is a practical simulation
function from Σ̂ to Σ with an associated interface v(x, x̂, û) as in (2.6).

As mentioned in Theorem 1, the practical simulation function V (x, x̂) bounds the error
between the outputs of Σ and Σ̂. This allows us to translate guarantees on Σ̂ to weakened
guarantees on Σ. For example, if one designs a controller enforcing a set Ω̂ to be invariant
for Σ̂, then the refined controller makes Ωē invariant for Σ, where in this case Ωē := {e+Px̂ :
‖e‖∞ ≤ ē, x̂ ∈ Ω̂}. The question then becomes how to obtain a small bound on e so that the
desired behavior is realized on Σ. A rigorous procedure for doing so is not the main focus

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 18

of this chapter, but is explored in [72]. Here, we simply focus on improving the error bound
via the two steps outlined in this section: first, by designing υ̂ to restrict d, and second,
by using the interface v(x, x̂, û) to reduce the gain from d to e. Our procedure is oriented
towards control synthesis, as our goal is to move from designing an abstract controller towards
designing a concrete one. In verification, where one wants to verify behavior correctness via
abstraction, these steps cannot be applied in the reverse direction to reduce error, which
could result in poor abstraction quality. Thus, we remark that our approach cannot be
extended to verification in a straightforward way.

2.4 Compositionality

Interconnected control systems

In this section we propose an approach to construct an abstraction and corresponding prac-
tical simulation function for a class of interconnected control systems. In particular, we show
how to do so by composing the abstractions of the subsystems. We start by defining the
class of subsystems that we consider:

Definition 2.4.1. A control subsystem Σ is a tuple Σ = (Rn,Rm,Rp, f,Rq1 ,Rq2 , h1, h2), where
Rn, Rm, Rp, Rq1, and Rq2 are the state, external input, internal input, external output, and
internal output spaces, respectively. The evolution of the state and output trajectories are
governed by the equations

Σ :

ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ1(t) = h1(ξ(t)),

ζ2(t) = h2(ξ(t)),

where f : Rn × Rm × Rp → Rn and h2 : Rn → Rq2 are locally Lipschitz. We refer to
h1 : Rn → Rq1 and h2 : Rn → Rq2 as the external and internal output maps, respectively.

Similar to a practical simulation function, a storage function [74] can be used to relate a
control subsystem Σ to its abstraction Σ̂ by describing a dissipativity property of the error
dynamics.

Definition 2.4.2. Consider a control system Σ = (Rn,Rm,Rp, f,Rq1 ,Rq2 , h1, h2) and cor-
responding abstraction Σ̂ = (Rn̂,Rm̂,Rp̂, f̂ ,Rq1 ,Rq̂2 , ĥ1, ĥ2). Let V : Rn × Rn̂ → R≥0 be a
continuously differentiable function and v : Rn × Rn̂ × Rm̂ → Rm a locally Lipschitz func-
tion. We say that V is a practical storage function from Σ̂ to Σ if there exist ν, η ∈ K∞,
ρ ∈ K ∪ {0}, a function ∆ : Rn̂ → R≥0, matrices W , Ŵ , H of appropriate dimensions, and
matrix X = XT of appropriate dimension with conformal block partitions X11, X12, X21,
and X22, such that for any x ∈ Rn, x̂ ∈ Rn̂, û ∈ Rm̂, ŵ ∈ Rp̂, and w ∈ Rp we have

ν(‖h1(x)− ĥ1(x̂)‖) ≤ V (x, x̂)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 19

and

∂V (x, x̂)

∂x
f(x, v(x, x̂, û), w) +

∂V (x, x̂)

∂x̂
f̂(x̂, û, ŵ)

≤ −η(V (x, x̂)) + ρ(‖û‖) + ∆(x̂) +

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]T [
X11 X12

X21 X22

] [
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
.

Here, we relaxed the definition of storage functions given in [74] to practical storage functions
by allowing the upper bound on their derivative to include a nonnegative function ∆(x̂). The
term v(x, x̂, û) acts as the associated interface in Definition 2.4.2 by providing the concrete
control input u. We note that the purpose of matrix H is to allow comparison between h2(x)
and ĥ2(x̂), which can have different output dimensions. Similarly, matrices W and Ŵ allow
comparison between w and ŵ. The choice of matrices X11, X12, X21, and X22 specify the
type of dissipativity property being described [7].

Next, we define the class of interconnected control systems that we consider in this
chapter:

Definition 2.4.3. Consider N control subsystems Σi = (Rni ,Rmi ,Rpi , fi,Rq1i ,Rq2i , h1i, h2i),
i = 1, . . . , N , and a static matrix M of appropriate dimension describing the coupling of
these subsystems. The interconnected control system Σ = (Rn,Rm, f,Rq, h), denoted as
I(Σ1, . . . ,ΣN), is given by n =

∑N
i=1 ni, m =

∑N
i=1mi, q =

∑N
i=1 q1i, and

f(x, u) := [f1(x1, u1, w1); . . . ; fN(xN , uN , wN)],

h(x) := [h11(x1); . . . ;h1N(xN)],

where u = [u1; . . . ;uN] ∈ Rn, x = [x1; . . . ;xN] ∈ Rm, and with the internal variables con-
strained by

[w1; . . . ;wN] = M [h21(x1); . . . ;h2N(xN)]. (2.13)

A depiction of an interconnected control system I(Σ1, . . . ,ΣN) is given in Figure 2.1.

⌃1

⌃N

. . .

M

y

[h
2
1
(x

1
);

..
.;

h
2
N

(x
N

)]

u

[w
1
;.

..
;w

N
]

Figure 2.1. An interconnection of N control subsystems Σ1, . . . ,ΣN .

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 20

Compositionality result

We now provide a theorem containing our main result on the compositional construction
of an abstraction and corresponding practical simulation function. In Definition 2.4.2 we
included a nonnegative term ∆(x̂), allowing one to construct abstractions at the subsystem
level by utilizing a relaxation similar to what was done in Section 2.3. Our next result
is to show that a similar relaxation can also be made at the level of the interconnected
control system. We first review a theorem from [74] that constructs simulation functions
from storage functions associated to subsystems; we then present a modified version with
relaxed conditions.

Theorem 3. [74, Theorem 4.2] Consider the interconnected control system I(Σ1, . . . ,ΣN)
induced by N control subsystems Σi and the coupling matrix M . Suppose each subsystem
Σi admits an abstraction Σ̂i and corresponding storage function Vi, each with the associated
functions and matrices νi, ηi, ρi, vi, Hi, Wi, Ŵi, Xi, X

11
i , X12

i , X21
i , and X22

i appearing in
Definition 2.4.2 (by dropping term ∆(x̂)). If there exist scalars µi > 0, i = 1, . . . , N , and
matrix M̂ of appropriate dimension such that the following matrix (in)equality constraints[

WM
Iq̃

]T
X(µ1X1, . . . , µNXN)

[
WM
Iq̃

]
≤ 0, (2.14)

WMH = ŴM̂, (2.15)

are satisfied, where q̃ =
∑N

i=1 q2i and

W := diag(W1, . . . ,WN), Ŵ := diag(Ŵ1, . . . , ŴN), H := diag(H1, . . . ,HN), (2.16)

X(µ1X1, . . . , µNXN) :=

µ1X
11
1 µ1X

12
1

. . .
. . .

µNX
11
N µNX

12
N

µ1X
21
1 µ1X

22
1

. . .
. . .

µNX
21
N µNX

22
N

, (2.17)

then

V (x, x̂) :=
N∑
i=1

µiVi(xi, x̂i) (2.18)

is a simulation function from the interconnected control system Σ̂ = I(Σ̂1, . . . , Σ̂N), with the
coupling matrix M̂ , to Σ.

The following theorem relaxes (2.15) in Theorem 3 as follows:

Theorem 4. Suppose, instead of (2.15), one can only find a matrix M̂ yielding a residual

Y := WMH − ŴM̂ (2.19)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 21

which is nonzero, and all other hypotheses of Theorem 3 hold with each Vi being a practical
storage function as in Definition 2.4.2. Then (2.18) is a practical simulation function from
Σ̂ to Σ if there exist µi > 0 and matrix Z = ZT ≥ 0 of appropriate dimensions such that the
following matrix inequality constraint holds

Q(Z, µ1, . . . , µN) :=

[
Y WM
0 Iq̃

]T
X(µ1X1, . . . , µNXN)

[
Y WM
0 Iq̃

]
−
[
Z 0
0 0

]
≤ 0. (2.20)

In particular, the function ∆(x̂) in Definition 2.2.2 is given by

∆(x̂) :=

 ĥ21(x̂1)
...

ĥ2N(x̂N)

T

Z

 ĥ21(x̂1)
...

ĥ2N(x̂N)

+
N∑
i=1

µi∆i(x̂i). (2.21)

Theorem 4 dropped the constraint (2.15) from Theorem 3, resulting in a residual term
(2.19). The effect of this relaxation is then quantified via the term ∆(x̂), which is parame-
terized by the matrix Z and scalars µi in (2.21). Therefore, Theorem 4 is beneficial when no
matrix M̂ satisfying (2.15) exists. For such a scenario, we provide two optimization problems
that can be solved in sequence to minimize the resulting ∆(x̂). First, with matrices W , M ,
H, and Ŵ fixed, we select the matrix M̂ to minimize the residual (2.19) as measured by the
Frobenius norm:

Optimization Problem 2:

minimize ‖WMH − ŴM̂‖F over M̂.

With M̂ thus selected, our next goal is to find a minimal ∆(x̂) as defined in (2.21). We
first introduce a diagonal scaling matrix S that induces the functions h̃2i, i = 1, . . . , N , as
follows h̃21(x̂1)

...

h̃2N(x̂N)

 :=

s1Iq̂21
. . .

sNIq̂2N

︸ ︷︷ ︸

:=S

 ĥ21(x̂1)
...

ĥ2N(x̂N)

 .
In particular, the scalars si > 0 are to be chosen so the outputs of the functions h̃2i(x̂i),
i = 1, . . . , N , are comparable in order of magnitude. Next, we define the scalars ri > 0,
i = 1, . . . , N , which scale the functions ∆i(x̂i) in the same way. Then, we propose finding a
minimal ∆(x̂) by solving the following optimization problem.

Optimization Problem 3:

minimize tr(S−TZS−1) +
N∑
i=1

µi
ri

over Z ≥ 0, µi ≥ 1, i = 1, . . . , N,

subject to Q(Z, µ1, . . . , µN) ≤ 0. (2.22)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 22

In particular, here the objective function represents our goal of minimizing ∆(x̂) in (2.21),
thus minimizing the error bound obtained via Theorem 1. Here, we constrain µi ≥ 1 so that
the decision variables µi and Z do not become too small and, as a result, poorly scaled. We
note that Optimization Problems 2 and 3 are both conic, and thus can be solved with a
conic optimization tool such as MOSEK [6].

2.5 Aggregation

A common approach to model order reduction in large scale systems is aggregation, which
combines physical variables into a small number of groups and studies the interaction among
these groups. Examples include power systems, where geographical areas in which generators
swing in synchrony are aggregated into equivalent machines [11], and multicellular ensem-
bles, where groups of cells exhibiting homogeneous behavior are represented with lumped
biochemical reaction models [17].

In this section we study a network of agents and first review an equitable partition criterion
for aggregation when the agents have identical models. We next relax the identical model
assumption and the equitability criterion by using the results of the previous sections. We
formulate an optimization problem that penalizes the violation of the equitability condition
when partitioning the agents into aggregate groups and, finally, study a special class of
systems that encompasses the temperature control example in the next section.

Equitable partition criterion for aggregation

Consider L agents with identical dynamical models:

ξ̇`(t) = g(ξ`(t), υ`(t), ω`(t)) (2.23)

ζ`1(t) = ς(ξ`(t)) (2.24)

ζ`2(t) = σ(ξ`(t)) ` = 1, 2, · · · , L, (2.25)

ξ`(t) ∈ Rn, υ`(t) ∈ Rm, ω`(t) ∈ Rp, ζ`1(t) ∈ Rq, ζ`2(t) ∈ Rp, for any t ≥ 0, interconnected
according to the relationω

1(t)
...

ωL(t)

 = (M̃ ⊗ Ip)

ζ
1
2 (t)
...

ζL2 (t)

 , M̃ ∈ RL×L. (2.26)

We partition the agents {1, . . . , L} into N ≤ L groups and describe the assignment of the
agents to the groups with the L×N partition matrix

P`,i =

{
1 if ` ∈ group i
0 otherwise.

(2.27)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 23

In particular, each agent is assigned to exactly one group, and each group must have at least
one agent assigned to it. We then aggregate the agents comprising each group into a single
agent model that describes homogeneous behavior within the group. Thus, the abstraction
for group i is

˙̂
ξi(t) = g(ξ̂i(t), υ̂i(t), ω̂i(t)) (2.28)

ζ̂1i(t) = 1Li
⊗ ς(ξ̂i(t)) (2.29)

ζ̂2i(t) = σ(ξ̂i(t)) i = 1, 2, · · · , N, (2.30)

where Li is the number of agents in group i, ξ̂i(t) ∈ Rn, υ̂i(t) ∈ Rm, ω̂i(t) ∈ Rp, ζ̂1i(t) ∈ RqLi ,
ζ̂2i(t) ∈ Rp, for any t ≥ 0, and the interconnection relation is ω̂1(t)

...
ω̂N(t)

 = (M̄ ⊗ Ip)

 ζ̂21(t)
...

ζ̂2N(t)

 , (2.31)

where M̄ ∈ RN×N is to be selected.
For the groups to exhibit perfectly homogeneous behavior, the trajectories must converge

to and remain on the subspace where ξ` = ξ̂i for each ` in group i, i = 1, . . . , N . The
invariance of this subspace is ensured if υ` = υ̂i and ω` = ω̂i on the subspace, because

ξ`(0) = ξ̂i(0), υ` = υ̂i and ω` = ω̂i imply ξ̇` =
˙̂
ξi by (2.23) and (2.28). The internal inputs

ω`, however, are not independent variables and the condition that ω` = ω̂i for having ξ` = ξ̂i
for each ` in group i must be further examined. To do so, first note from (2.25) and (2.30)
that ξ` = ξ̂i implies ζ`2 = ζ̂2i, which meansζ

1
2 (t)
...

ζL2 (t)

 = (P ⊗ Ip)

 ζ̂21(t)
...

ζ̂2N(t)

and, from (2.26), ω

1(t)
...

ωL(t)

 = (M̃P ⊗ Ip)

 ζ̂21(t)
...

ζ̂2N(t)

 . (2.32)

The desired condition is ω`(t) = ω̂i(t) for each ` in group i, that isω
1(t)
...

ωL(t)

 = (P ⊗ Ip)

 ω̂1(t)
...

ω̂N(t)

 ,
which is consistent with (2.32) if and only if M̄ in (2.31) satisfies

M̃P = PM̄. (2.33)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 24

1

2

3

4

5

𝟏

𝟐

𝟏

𝟐

𝟑

1

2

3

4

5

Figure 2.2. An equitable partition of a circle graph with L = 5 nodes into three groups (left). Note
that the partition into two groups (right) is not equitable.

Thus, the invariance of the subspace ξ` = ξ̂i for each ` in group i hinges upon the property
(2.33), formalized in the following definition:

Definition 2.5.1. Given L agents with interconnection matrix M̃ ∈ RL×L, a partition into
N groups is said to be equitable if the partition matrix P in (2.27) satisfies (2.33) for some
M̄ ∈ RN×N .

To provide intuition behind equitability, suppose M̃ corresponds to the Laplacian matrix
of an unweighted, undirected graph, where each node represents an agent and edges are
drawn between agents which are connected to one another. In this case, a partition of the
graph is equitable if each node in group k has exactly ck` neighbors in group `, regardless
of which node in class k we select [21]. Here, the constant ck` depends on k and `. As an
illustration, an equitable partition of a five-node circle graph is displayed in Figure 2.2 (left),
where group 1 consists of node 3, group 2 consists of nodes {2, 4}, and group 3 consists of
nodes {1, 5}. Each node in group 2 is connected to c21 = 1 node in group 1 and c23 = 1
node in group 3. On the other hand, note that the partition displayed in Figure 2.2 (right)
into groups {2, 3, 4} and {1, 5} is not equitable. Although we discussed unweighted graphs
for simplicity, the extension to weighted graphs is straightforward by considering the sum of
the edge weights connected to a particular node instead of the number of neighbors.

Relaxing the identical agent and equitable partition assumptions

The assumptions that the agent dynamics be identical and that an equitable partition exist
for their interconnection can be restrictive in practice. The control specifications may further
limit the choice of partition, since the states of agents in the same group are lumped together
in the abstraction and the specifications cannot distinguish between them.

Here we relax both assumptions using the results of Section 2.4. First we replace the
agent dynamics (2.23) with

ξ̇`(t) = g`(ξ`(t), υ`(t), ω`(t)), (2.34)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 25

where g` : Rn × Rm × Rp → Rn, ` = 1, . . . , L, allow for deviations from the nominal model
g used in the abstraction (2.28). We note that it is also possible to define separate nominal
dynamics for each group in order to minimize said deviations further. For simplicity, here
we use the same nominal model for each group. In preparation for constructing a simulation
function, we assume that there exist practical storage functions from the agents to the
nominal model with identical supply rates as the following:

Assumption 1. There exist a locally Lipschitz function ṽ` : Rn×Rn×Rm → Rm, a continu-
ously differentiable function Ṽ ` : Rn×Rn → R≥0, ν̃`, η̃` ∈ K∞, ρ̃` ∈ K∪{0}, ∆̃` : Rn → R≥0,
and a matrix X̃ = X̃T ∈ R2p×2p such that for all x ∈ Rn, x̂ ∈ Rn, û ∈ Rm, w ∈ Rp, ŵ ∈ Rp,

ν̃`(‖ς(x)− ς(x̂)‖) ≤ Ṽ `(x, x̂), (2.35)

∂Ṽ `(x, x̂)

∂x
g`(x, ṽ`(x, x̂, û), w) +

∂Ṽ `(x, x̂)

∂x̂
g(x̂, û, ŵ) (2.36)

≤− η̃`(Ṽ `(x, x̂)) + ρ̃`(‖û‖) + ∆̃`(x̂) +

[
w − ŵ

σ(x)− σ(x̂)

]T
X̃

[
w − ŵ

σ(x)− σ(x̂)

]
. (2.37)

In the next subsection we show a class of systems that satisfy Assumption 1. One will see,
in particular, that the term ∆̃`(x̂) in (2.37) is critical for absorbing the mismatch between g`

and g, which is due to the heterogeneity of the agent models. In the example in Section 6, we
show how the interface function can be used to help to shrink ∆̃`(x̂) and satisfy Assumption
1 with a tight upper bound in (2.36).

We let each group i = 1, . . . , N in the partition define a subsystem, and derive a composite
storage function and dissipation inequality from Assumption 1. Let Li ≥ 1 denote the
number of agents in group i, L1 + · · · + LN = L, and define the state vector xi ∈ RLin by
concatenating the state vectors x` of the agents assigned to group i. Defining ui ∈ RLim,
wi ∈ RLip, y2i ∈ RLiq and y2i ∈ RLip, we write the model for subsystem i as

ξ̇i(t) = fi(ξi(t), υi(t), ωi(t)) (2.38)

ζ1i(t) = h1i(ξi(t)) (2.39)

ζ2i(t) = h2i(ξi(t)) (2.40)

where fi(ξi(t), vi(t), ωi(t)), h1i(ξi(t)) and h2i(ξi(t)) are obtained by concatenating the terms
g`(ξ`(t), v`(t), ω`(t)), ς(ξ`(t)) and σ(ξ`(t)), respectively, over each ` in group i.

We assume, without loss of generality, that the agents are indexed such that the first L1

constitute group 1, the next L2 group 2, and so on. It then follows from (2.26) thatω1(t)
...

ωN(t)

 = (M̃ ⊗ Ip)

 ζ21(t)
...

ζ2N(t)

 , (2.41)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 26

since the respective vectors in (2.26) and (2.41) are identical. Without this assumption an
appropriate permutation can be applied to the matrix M̃ and the subsequent results do not
change.

Using Assumption 1 we let each agent ` in group i apply the feedback u` = ṽ`(x`, x̂i, ûi),
and define the practical storage function for subsystem i to be

Vi(xi, x̂i) =
∑

`∈group i

Ṽ `(x`, x̂i). (2.42)

Then, we obtain the dissipativity property:

∂Vi(xi, x̂i)

∂xi
fi(xi, ui, wi)+

∂Vi(xi, x̂i)

∂x̂i
g(x̂i, ûi, ŵi)

=
∑

`∈group i

{
∂Ṽ `(x`, x̂i)

∂x`
g`(x`, ṽ`(x`, x̂i, ûi), w

`) +
∂Ṽ `(x`, x̂i)

∂x̂i
g(x̂i, ûi, ŵi)

}

≤
∑

`∈group i

{
−η̃`(Ṽ `(x`, x̂i)) + ρ̃`(‖ûi‖) + ∆̃`(x̂i) +

[
w` − ŵi

σ(x`)− σ(x̂i)

]T
X̃

[
w` − ŵi

σ(x`)− σ(x̂i)

]}

≤ −ηi(Vi(xi, x̂i)) + ρi(‖ûi‖) + ∆i(x̂i) +

[
wi − (1Li

⊗ Ip)ŵi
y2i − (1Li

⊗ Ip)ŷ2i

]T
Xi

[
wi − (1Li

⊗ Ip)ŵi
y2i − (1Li

⊗ Ip)ŷ2i

]
where, for s ∈ R≥0 and y ∈ Rn, we define

ηi(s) := min
z∈RL

≥0

∑
`∈group i

η̃`(z`) s.t.
∑

`∈group i

z` = s, ρi(s) :=
∑

`∈group i

ρ̃`(s), ∆i(y) :=
∑

`∈group i

∆̃`(y), (2.43)

Xi :=

[
ILi
⊗ X̃11 ILi

⊗ X̃12

ILi
⊗ X̃21 ILi

⊗ X̃22

]
, (2.44)

and where X̃11, X̃12, X̃21, X̃22 denote p × p matrices obtained by partitioning X̃ ∈ R2p×2p

conformally. Defining, in addition,

Wi := ILip, Ŵi = Hi := 1Li
⊗ Ip (2.45)

and
νi(s) := min

z∈RL
≥0

∑
`∈group i

ν̃`(z`) s.t.
∑

`∈group i

z` = s, (2.46)

we summarize the conclusion in the following proposition:

Proposition 1. Suppose the agents ` = 1, . . . , L satisfy Assumption 1, and each subsystem
i = 1, . . . , N is defined as in (2.38)-(2.40), with the abstraction (2.28)-(2.30) obtained by
aggregating Li agents. Then Vi in (2.42) is a practical storage function as in Definition
2.4.2, with (2.43)-(2.46), ĥ1i(x̂i) = 1Li

⊗ ς(x̂i), and ĥ2i(x̂i) = σ(x̂i).

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 27

We next examine the conditions of Theorem 3 and Theorem 4. From (2.45) and (2.16)
we have:

W = ILp, and Ŵ = H = P ⊗ Ip, (2.47)

where
P = diag(1L1 , · · · ,1LN

) (2.48)

Since we assumed that the agents are indexed such that the first L1 constitute group 1, the
next L2 group 2, and so on, the definition of P in (2.48) is consistent with the partition
matrix defined in (2.27). If the subsystem abstractions are interconnected as in (2.31), then
M̂ = M̄⊗Ip and, thus, condition (2.15) of Theorem 3 is identical to the equitability criterion
(2.33). This means that we can relax the equitability condition with Theorem 4. The first
residual term in (2.21) is then due to the relaxation of equitability, and the second term
is due to model variations of non-identical agents, absorbed into ∆̃` in Assumption 1 and
combined into ∆i in (2.43).

An optimization problem for near-equitability

We note that relaxing the equitability condition (2.33) results in a residual term given by

Ȳ := M̃P − PM̄. (2.49)

Our goal now becomes choosing a partition of the agents - equivalently, a partition matrix
P and coupling matrix M̄ - such that (2.49) is minimized. We propose approaching this
task in two steps. First, we allow for some agents to be assigned to groups by hand. Since
aggregated agents share the same specification, this allows one to assign agents to separate
groups if they require separate specifications. Conversely, one can also assign agents to the
same group if it is desirable for them to abide by the same specification. In the second step,
the remaining agents are to be assigned to groups automatically via an optimization problem
to be defined next. The pre-assigned agents induce an L×N matrix P̄ as follows

P̄`,i =

{
1 if ` is pre-assigned to group i
0 otherwise

(2.50)

as well as a diagonal matrix
T = diag(t1, · · · , tN) (2.51)

where ti is the number of agents pre-assigned to group i. We note that if an agent ` is not
pre-assigned to any group, then the corresponding row ` of P̄ will contain only zeros.

To partition the remaining agents, we solve a mixed-integer program. We model M̄ as
a continuous decision variable and, noting (2.27), model P as a binary decision variable.
The objective function of our problem is the Frobenius norm of the residual term Ȳ , the
minimization of which yields an equitable partition when one exists, and a near-equitable
partition otherwise.

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 28

We also note it is possible to enforce (2.49) using linear constraints. Since M̃ is fixed, the
term M̃P is linear - the problematic term is PM̄ , as it is the product of two decision variables.
Linearity is achieved with a reformulation, implemented as the command “binmodel” [33]
in the toolbox YALMIP [34]. To see the idea for the scalar case, consider the product of
a binary variable p ∈ {0, 1} and a continuous variable m ∈ R. Suppose that m has lower
bound m ∈ R and upper bound m ∈ R. Then, the product p · m can be replaced with a
continuous auxiliary variable y ∈ R by including the following linear constraints

mp ≤ y ≤ mp, m(1− p) ≤ m− y ≤ m(1− p).

This procedure can be applied in a similar fashion to (2.49). Thus, the following optimiza-
tion problem can be cast as a mixed-integer quadratic program with linear constraints:

Optimization Problem 4:

minimize ‖Ȳ ‖F over P, M̄

such that P is binary, (2.52)

P1N = 1L, (2.53)

1TLP ≥ 1N , (2.54)

P̄ TP = T, (2.55)

Ȳ = M̃P − PM̄, (2.56)

where (2.53) ensures each node is assigned to exactly one class, (2.54) requires that each class
has at least one node assigned to it, and (2.55) assures that the pre-assignments represented
by P̄ and T , as defined in (2.50) and (2.51), are respected. We note that Optimization Prob-
lem 4 is a mixed integer quadratic program and therefore can be solved with an optimization
tool such as Gurobi [24].

Note that Optimization Problem 4 minimizes the same residual as Optimization Problem
2, since Y in (2.19) is equal to Ȳ ⊗ Ip. However, here we have the additional flexibility of

adjusting P , whereas the equivalent matrices Ŵ and H in Optimization Problem 2 are fixed.
Furthermore, since M̄ is selected to minimize the Frobenius norm, the special structure of
the matrix P implies that Ȳ has the following property:

Lemma 2. The matrix Ȳ obtained by solving Optimization Problem 4 satisfies Ȳ T1L = 0.

We will refer back to this fact after we state Theorem 5, at which point it will become
relevant.

A special class of agent models

We now study a class of agent models of the form (2.24), (2.25), (2.34) with

g`(x, u, w) = α`(x) + β`(x)u+Bw, ς(x) = x, σ(x) = Cx, (2.57)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 29

where α` : Rn → Rn and β` : Rn → Rn×m are allowed to vary by agent ` and are replaced with
nominal ones α : Rn → Rn and β : Rn → Rn×m, respectively, in the abstraction (2.28)-(2.30):

g(x̂, û, ŵ) = α(x̂) + β(x̂)û+Bŵ. (2.58)

We note that α` in (2.57) is assumed to be continuously differentiable. The following propo-
sition gives sufficient conditions under which Assumption 1 holds for (2.57) and (2.58) above:

Proposition 2. If there exists ṽ` : Rn×Rn×Rm → Rm, ρ̃` ∈ K∪{0}, constants λ`, ϑ`, and
n× n matrix Q` = QT

` > 0 such that, for all x ∈ Rn, x̂ ∈ Rn,

Q`

(
∂α`(x)

∂x

)
+

(
∂α`(x)

∂x

)T
Q` ≤ 2λ`In (2.59)

(x− x̂)TQ`

(
β`(x)ṽ`(x, x̂, û)− β(x̂)û

)
≤ ϑ`‖x− x̂‖2 + ρ̃`(‖û‖) (2.60)

λ` + ϑ` < 0 (2.61)

Q`B = CT , (2.62)

then Assumption 1 holds with

Ṽ (x, x̂) =
1

2
(x− x̂)TQ`(x− x̂), η̃`(s) =

2ε`
λmax(Q`)

s,

∆̃`(x̂) =
1

4(|λ` + ϑ`| − ε`)
‖Q`(α`(x̂)− α(x̂))‖2, X̃ =

1

2

[
0 Ip
Ip 0

]
(2.63)

for any choice of ε` ∈ (0, |λ` + ϑ`|).

Note that the conditions (2.59) - (2.62) imply that the system in (2.57) is incrementally
stabilizable. We also note, in particular, that the term ∆̃`(x̂) is due to the deviation of α`(x̂)
from α(x̂). Under the hypotheses of Proposition 2 it follows from Proposition 1 that the
subsystems and their abstractions satisfy the dissipativity property in Definition 2.4.2 with

Xi =
1

2

[
0 ILip

ILip 0

]
and, if we use identical weights µi = 1, i = 1, . . . , N, then the matrix X in Theorem 3 is

X =
1

2

[
0 ILp
ILp 0

]
.

Since W = ILp by (2.47), condition (2.14) of Theorem 3 is[
WM
I

]T
X

[
WM
I

]
=

1

2
(M̃ + M̃T)⊗ Ip ≤ 0.

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 30

Theorem 5. Suppose the agents ` = 1, . . . , L are described by (2.24) - (2.26), (2.34), with
the special form (2.57) and interconnection matrix

M̃ + M̃T ≤ 0, (2.64)

and let the hypothesis of Proposition 2 hold. If the partition of the agents is equitable, then
V in (2.18) is a practical simulation function from Σ̂ to Σ with Vi as in (2.42) and µi = 1,
i = 1, . . . , N . If the equitability condition (2.33) is relaxed so Ȳ in (2.49) is nonzero, then
V is a practical simulation function if there exists a matrix Z = ZT ≥ 0 satisfying (2.20)
with Y = Ȳ ⊗ Ip and µi = 1 for i = 1, . . . , N . Furthermore, N (M̃ + M̃T) ⊆ N (Ȳ T) is a
necessary and sufficient condition for such a Z to exist.

The matrix Z in Theorem 5 can be found by solving Optimization Problem 3, where we
append the constraint µi = 1 for i = 1, . . . , N . Furthermore, when M̄ and Ȳ are obtained
via Optimization Problem 4, the null space condition of Theorem 5 holds automatically if
N (M̃ + M̃T) is spanned by 1L, since Ȳ satisfies Ȳ T1L = 0 from Lemma 2. More generally,
we also note if the stronger condition

M̃ + M̃T < 0

on the interconnection matrix holds, then the null space condition is satisfied since N (M̃ +
M̃T) = {0L}.

2.6 Example

Room Temperature Model

We now consider a temperature control application adapted from [20]. Our goal is to control
the temperature of L rooms connected in a circle. We model the dynamics of the temperature
ξ`(t) ∈ R in room ` ∈ {1, . . . , L} as

ξ̇`(t) = a`(Te − ξ`(t)) + b`(Th − ξ`(t))υ`(t) + γω`(t),

ω`(t) = ξ`+1(t) + ξ`−1(t)− 2ξ`(t), (2.65)

where a`, b`, γ ∈ R>0 are conduction coefficients (where the former two may depend on
room index), Te and Th are the temperatures of the external environment and room heater,
respectively, and υ` is a control input. Furthermore, we let ξ0 = ξL and ξ1 = ξL+1 so that
the indices in (2.65) are valid for rooms ` = 1 and ` = L. Note that this model can be
represented as in (2.57) with α`(s) = a`(Te − s), β`(s) = b`(Th − s), B = γ, and C = 1.

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 31

Furthermore, the coupling matrix is given by:

M̃ =

−2 1 0 · · · · · · 1
1 −2 1 0 · · · 0

0
.

...
...

. 0

0
. 1

1 0 · · · 0 1 −2

. (2.66)

Aggregate Model

For the aggregate model, we partition the rooms into N ≤ L distinct areas via Optimization
Problem 4. The aggregate temperature ξ̂i(t) in area i ∈ {1, . . . , N} is governed by

˙̂
ξi(t) = a(Te − ξ̂i(t)) + b(Th − ξ̂i(t))υ̂i(t) + γω̂i(t)

where, in this case, the coupling ŵi depends on the particular M̄ we obtain by solving
Optimization Problem 4. The conduction coefficients a and b in the nominal model are
obtained by averaging over the conduction coefficients a` and b` for the individual rooms, so
that a := 1

L

∑L
`=1 a` and b := 1

L

∑L
`=1 b`. In this case, conditions (2.59), (2.60), and (2.62)

hold for the function

ṽ`(x, x̂, û) =
1

b`(Th − x)
[b(Th − x̂)û− k`(x− x̂)] (2.67)

where k` ∈ R≥0, ρ̃`(‖û‖) = 0, λ` = −a`/γ, ϑ` = −k`, and Q` = 1/γ. Furthermore, condition
(2.61) is satisfied if the gain k` is chosen such that k` > −a`/γ. Therefore, the result of
Theorem 5 is applicable to this example, since M̃ = M̃T ≤ 0. We also note that division by
zero in (2.67) can be avoided by imposing constraints on x̂ in a formal synthesis procedure -
indeed, by combining this with a bound on the error between x and x̂, we can conclude that
x will never reach the heater temperature Th. A similar line of reasoning ensures the inputs
of the aggregated systems will not diverge arbitrarily far from each other due to varying
state errors. Indeed, when the error is zero for all aggregated systems in a group, i.e. x = x̂,
(2.67) reduces to ṽ` = (b/b`) · û. Thus, taking into account the difference between each b`
and b, one can again use the bound on the error between x and x̂ to bound the deviation of
ṽ` from û.

Temperature Regulation

We consider the task of regulating the temperature in a network of L = 30 rooms connected
in a circle. The coupling matrix M̃ ∈ R30×30 is as shown in (2.66). We assume rooms 1-6,
11-18, and 21-27 are pre-assigned to 3 separate groups; the remaining rooms are assumed to

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 32

Table 2.1: Partitioning of the 30 rooms into 3 groups.

Group 1 Group 2 Group 3

Pre-assignments 1-6 11-18 21-27
Final partition 1-6 7-20 21-30

be flexible with regard to temperature level, and are assigned to groups automatically via
Optimization Problem 4. The pre-assignments and final partition are shown in Table 2.1.
The aggregate coupling matrix between the groups, obtained simultaneously with the final
partition via Optimization Problem 4, is given by

M̄ =

−1/3 1/6 1/6
1/14 −1/7 1/14

1/10 1/10 −1/5

 .
One notes that this partition is not equitable - indeed, with the pre-assignments shown in
Table 2.1, an equitable partition cannot be achieved. This is not problematic, however, since
Theorem 5 relaxes the requirement of equitability of our partition, as long as we can find
a matrix Z ≥ 0 satisfying (2.20), where Y = Ȳ ⊗ Ip and µi = 1, i = 1, 2, 3. Lemma 2
and Theorem 5 guarantee this is possible, however, since N (M̃ + M̃T) is spanned by 1L in
this case, as M̃ is a Laplacian matrix. Thus, we solve Optimization Problem 3, with the
additional constraint µi = 1, i = 1, 2, 3 as mentioned, and obtain

Z =

 2.0016 −1.0490 −0.9526
−1.0490 1.9897 −0.9407
−0.9526 −0.9407 1.8933

 .
Since we also relaxed the assumption of identical agents, the conduction coefficients a` and
b` in our concrete model are permitted to vary between rooms. For each room, we select
a` from a normal distribution with mean 0.005 and standard deviation 0.0015, and select b`
from a normal distribution with mean 0.035 and standard deviation 0.0075. Furthermore,
since Theorem 1 allows us to aggregate subsystems with non-equal initial conditions, we
select the initial temperature for each concrete room from a normal distribution with mean
18 and standard deviation 0.15. We then set

ξ̂i(0) =
1

Li

 ∑
`∈group i

ξ`(0)

 (2.68)

that is, the initial temperature of each aggregate room is equal to the average temperature
of the aggregated rooms in its group. To demonstrate the robustness of our approach, we
chose the standard deviation for the parameters and the initial conditions to be sufficiently

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 33

17
18
19
20
21

ξ`
(t

)

0 10 20 30 40

0

1

2

t

υ
` (
t)

17
18
19
20
21

ξ̂ i
(t

)

0 10 20 30 40

0

1

2

t

υ̂
i(
t)

Figure 2.3. Simulation results for the temperature regulation example. We require the temperature
in each area of the building to reach its corresponding target temperature range (indicated by the
dashed lines) within 20 minutes after the signal is triggered. The signal is triggered at the 20
minute mark - the aggregate system (left) reaches the temperature target within 20 minutes, and
the concrete system (right) closely follows the reference.

large so that room temperatures within each group deviate visibly from each other during
simulation (as seen in Figure 2.3).

We require the room temperature in the three areas of the building to increase to three
separate temperature ranges in response to a signal which indicates, for example, that the
building is currently occupied and must be adjusted to a more comfortable temperature. This
specification can be represented via, for example, a signal temporal logic (STL) formula [16,
35]. Due to lack of space, we omit the details of the STL formula and refer the reader to [59],
which includes two similar examples. Although STL formulae are typically evaluated with
respect to continuous time signals (see [35], which considers dense-time real-valued signals),
here we use the MPC approach from [47] which defines a semantics for STL over discrete time
signals. Since the approach in [47] utilizes mixed-integer programming, the computational
burden of control synthesis of υ̂ is reduced significantly by using an aggregate model. The
aggregate input is refined to a concrete input via the interface function (2.67) with k` = 2.5
for ` = 1, . . . , L. Simulation results are shown in Figure 2.3.

2.7 Proofs of Main Results

Proof of Theorem 2

Let ε = x− Px̂ and note that we have the following bounds

‖h(x)− ĥ(x̂)‖2 = εTCTCε ≤ λmax(CTC)‖ε‖2, λmin(U)‖ε‖2 ≤ εTUε = V (x, x̂),

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 34

for all x and x̂, since Ĉ = CP . Thus, (2.1) holds with ν(s) = s2λmin(U)/λmax(CTC), where
ν ∈ K∞ since U is positive definite.

Next, we apply the congruency transformation diag(U, I) to (2.12), yielding the equivalent
condition [

ATKU + UAK + αU UW
W TU −αI

]
≤ 0.

where we have defined AK , A + BK. Thus, for all x, x̂, and û (determining ε and d), we
have [

ε
d

]T [
ATKU + UAK + αU UW

W TU −αI

] [
ε
d

]
≤ 0

so that

∇V (x, x̂)T
[
Ax+BK(x− Px̂) +BQx̂+BRû

Âx̂+ B̂û

]
= εT

[
ATKU + UAK

]
ε+ dTW TUε+ εTUWd

≤ −αεTUε+ αdTd

= −αV (x, x̂) + α‖û‖2 + α‖Dx̂‖2

which verifies that (2.2) holds with η(s) = αs, ρ(s) = αs2, and ∆(x̂) = α‖Dx̂‖2.

Proof of Theorem 4

Without modifications due to our relaxation, we can construct a K∞ function ν satisfying
(2.1) as in the proof of Theorem 4.2 given in [74]. Thus, we omit this portion of the proof
and focus on showing that (2.2) holds. We define the following error between the concrete
and aggregate systems e1

...
eN

 :=

 h21(x1)−H1ĥ21(x̂1)
...

h2N(xN)−HN ĥ2N(x̂N)

 .
Then, from (2.13) and (2.19), it follows that

W

w1
...
wN

− Ŵ
 ŵ1

...
ŵN

 = WM

 e1
...
eN

+ Y

 ĥ21(x̂1)
...

ĥ2N(x̂N)

 . (2.69)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 35

Now, using the relation (2.69), we obtain
W

w1
...
wN

− Ŵ
 ŵ1

...
ŵN

h21(x1)−H1ĥ21(x̂1)

...

h2N(xN)−HN ĥ2N(x̂N)

T

X(µ1X1, . . . , µNXN)

W

w1
...
wN

− Ŵ
 ŵ1

...
ŵN

h21(x1)−H1ĥ21(x̂1)

...

h2N(xN)−HN ĥ2N(x̂N)

=

ĥ21(x̂1)
...

ĥ2N(x̂N)
e1
...
eN

T

[
Y WM
0 Iq̃

]T
X

[
Y WM
0 Iq̃

]

ĥ21(x̂1)
...

ĥ2N(x̂N)
e1
...
eN

≤

 ĥ21(x̂1)
...

ĥ2N(x̂N)

T

Z

 ĥ21(x̂1)
...

ĥ2N(x̂N)

where the inequality follows from the fact that Z and µ1, . . . , µN satisfy (2.20). Using this
bound, the proof of Theorem 4.2 given in [74] can be easily modified to show that (2.2)
holds for an appropriate choice of η ∈ K∞, ρ ∈ K ∪ {0}, and with ∆(x̂) as defined in (2.21).
Therefore, we conclude that V in (2.18) is a practical simulation function from Σ̂ to Σ.

Proof of Lemma 2

We note that P has the form P = diag(1L1 , · · · ,1LN
) upon a permutation. Therefore,

PM̄ =

m̄111L1 . . . m̄1N1L1

m̄211L2 . . . m̄2N1L2

...
...

m̄N11LN
. . . m̄NN1LN

where the m̄ij ∈ R denote entries of M̄ . Let

v11 . . . v1N

v21 . . . v2N
...

...
vN1 vNN

 := M̃P, vij ∈ RLi .

Then, we see that

M̃P − PM̄ =

 v11 − m̄111L1 . . . v1N − m̄1N1L1

...
...

vN1 − m̄N11LN
. . . vNN − m̄NN1LN

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 36

and

‖M̃P − PM̄‖F =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

v11 − m̄111L1

...
vN1 − m̄N11LN

...
v1N − m̄1N1L1

...
vNN − m̄NN1LN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Minimization of the latter Euclidean norm over M̄ can be decomposed into the independent
problems

min
m̄ij

‖vij − m̄ij1Li
‖, i, j = 1, . . . , N.

Since ‖vij − m̄ij1Li
‖2 = (vij − m̄ij1Li

)T (vij − m̄ij1Li
) = vTijvij − 2m̄ij1

T
Li
vij + m̄2

ijLi, the
minimizer is m̄∗ij = (1/Li)1

T
Li
vij.

We now verify the claim of Lemma 2; we have

1TLP = 1TL

1L1

. . .

1LN

 =
[
L1 . . . LN

]
thus,

1TLPM̄ =
[
L1 . . . LN

]
M̄ =

[∑N
i=1 m̄i1Li . . .

∑N
i=1 m̄iNLi

]
.

Since the optimal values for m̄ij give

N∑
i=1

m̄∗ijLi =
N∑
i=1

1TLi
vij = 1TL

v1j
...
vNj

 ,
we get

1TLPM̄ = 1TL

v11 . . . v1N
...

...
vN1 vNN

 = 1TLM̃P

and therefore 1TL(PM̄ − M̃P) = 1TLȲ = 0.

Proof of Proposition 2

If we let Ṽ ` = 1
2
(x − x̂)TQ`(x − x̂), then (2.35) holds with ς(x) = x, ν̃`(s) = 1

2
λmin(Q`)s

2,
and (2.36) becomes

(x− x̂)TQ`(α`(x)− α(x̂)) + (x− x̂)TQ`

(
β`(x)ṽ`(x, x̂, û)− β(x̂)û

)
+ (x− x̂)TQ`B(w − ŵ)

≤ (x− x̂)TQ`(α`(x)− α(x̂)) + ϑ`‖x− x̂‖2 + ρ̃`(‖û‖) + (σ(x)− σ(x̂))T (w − ŵ), (2.70)

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 37

where the inequality follows from (2.60) and (2.62), combined with σ(x) = Cx from (2.57).
We rewrite the first term on the right hand side of (2.70) as

(x− x̂)TQ`(α`(x)− α(x̂)) = (x− x̂)TQ`(α`(x)− α`(x̂)) + (x− x̂)TQ`(α`(x̂)− α(x̂)). (2.71)

It follows from (2.59) that

(x− x̂)TQ`(α`(x)− α`(x̂)) ≤ λ`‖x− x̂‖2. (2.72)

To see this, define the function Ω(t) = α`(x̂+ t(x− x̂)) and note

(x− x̂)TQ`

∫ 1

0

Ω′(t)dt (2.73)

is equal to the left hand side of (2.72) by the fundamental theorem of calculus. From the
chain rule, (2.73) equals

(x− x̂)TQ`

∫ 1

0

J(x̂+ t(x− x̂))dt(x− x̂) (2.74)

where J is the Jacobian of α`. Rewriting (2.74) as

1

2
(x− x̂)T

(∫ 1

0

(
Q`J + JTQ`

)
dt

)
(x− x̂),

we see from (2.59) that the integrand is bounded above by 2λ`In, which confirms (2.72).
Next, we note that

(x− x̂)TQ`(α`(x̂)− α(x̂)) ≤ κ‖x− x̂‖2 +
1

4κ
‖Q`(α`(x̂)− α(x̂))‖2 (2.75)

for any choice of κ > 0, which follows from Young’s inequality [73]. Then, from (2.71), (2.72)
and (2.75), an upper bound on (2.70) is

(λ` + ϑ` + κ)‖x− x̂‖2 +
1

4κ
‖Q`(α`(x̂)− α(x̂))‖2 + ρ̃`(‖û‖) + (σ(x)− σ(x̂))T (w− ŵ). (2.76)

We select κ = |λ` + ϑ`| − ε`, which is positive since ε` ∈ (0, |λ` + ϑ`|), and note that (2.76)
becomes

−ε`‖x−x̂‖2+
1

4(|λ` + ϑ`| − ε`)
‖Q`(α`(x̂)−α(x̂))‖2+ρ̃`(‖û‖)+(σ(x)−σ(x̂))T (w−ŵ). (2.77)

Substituting the inequality ε`‖x− x̂‖2 ≥ 2ε`
λmax(Q`)

Ṽ ` = η̃`(Ṽ `) in (2.77), we obtain (2.37) with

the terms defined in (2.63).

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 38

Proof of Theorem 5

We have shown the equitability criterion (2.33) is identical to condition (2.15) of Theorem 3;
also, that if we select µi = 1, i = 1, . . . , N , then (2.64) implies condition (2.14) of Theorem
3 holds. Thus, if we use an equitable partition for aggregation and (2.64) holds, then both
conditions of Theorem (3) also hold so that (2.18) is indeed a simulation function from Σ̂ to
Σ, with Vi(xi, x̂i) as in (2.42), and where µi = 1, i = 1, . . . , N . It follows that relaxing the
equitability condition as in (2.49) is identical to the relaxation (2.19) given in Theorem 4.
Thus, in this case one must choose a matrix Z = ZT ≥ 0 satisfying (2.20), with Y = Ŷ ⊗ Ip
and µi = 1 for i = 1, . . . , N .

To show that N (M̃ + M̃T) ⊆ N (Ȳ T) is a necessary and sufficient condition for such a Z
to exist, we prove the following fact. Let B ∈ Rm×n be an arbitrary matrix and C ∈ Rn×n be
such that C = CT ≤ 0. Then, there exists a matrix A ∈ Rn×n such that A = AT ≥ 0 and[

−A B
BT C

]
≤ 0 (2.78)

if and only if N (C) ⊆ N (B). To see the necessity, suppose there exists a vector y ∈ Rn such
that y ∈ N (C) but y /∈ N (B). Then, for any x ∈ Rm, we have[

x
y

]T [−A B
BT C

] [
x
y

]
= −xTAx+ 2xTBy. (2.79)

Let x = θBy, where θ ∈ R>0. Then, a lower bound for (2.79) is

(2θ − θ2λmax(A))‖By‖2

which is positive for any choice of θ ∈ (0, 2/λmax(A)). Thus, for any A = AT ≥ 0, condition
(2.78) does not hold. For the sufficiency, suppose N (C) ⊆ N (B), and let φ > 0 be the
smallest nonzero eigenvalue of −C (if −C has no nonzero eigenvalues, then C is the zero
matrix and the proof follows trivially). We select A = −(1/φ)BBT , and note that[

x
y

]T [−(1/φ)BBT B
BT C

] [
x
y

]
= −(1/φ)xTBBTx+ 2xTBy + yTCy. (2.80)

Next, we decompose y as y = y1 + y2, where y1 ∈ N (C) and yT1 y2 = 0. We note that, by
assumption, (2.80) becomes

−(1/φ)xTBBTx+ 2xTBy2 + yT2 Cy2 ≤ −(1/φ)xTBBTx+ 2xTBy2 − φ‖y2‖2

= −(1/φ)‖z‖2 + 2zTy2 − φ‖y2‖2 (2.81)

where the second step follows since y2 /∈ N (C), and the third step results from the definition
z := BTx. Finally, using Young’s inequality [73] as

zTy2 ≤
1

2φ
‖z‖2 +

φ

2
‖y2‖2

CHAPTER 2. APPROXIMATE ABSTRACTIONS OF CONTROL SYSTEMS 39

one can see that (2.81) is bounded above by zero.
We can then recover the null space condition of Theorem 5 as follows. Using the notation

in (2.20), we note that

Q(Z, 1, . . . , 1) =

[
−Z 1

2
Ȳ T ⊗ Ip

1
2
Ȳ ⊗ Ip 1

2
(M̃ + M̃T)⊗ Ip

]
which can be mapped to the matrix in (2.78) by taking A = Z, B = 1

2
Ȳ T ⊗ Ip and C =

1
2
(M̃+M̃T)⊗Ip. Thus, a necessary and sufficient condition for the existence of a Z = ZT ≥ 0

such that Q(Z, 1, . . . , 1) ≤ 0 is N (1
2
(M̃ + M̃T)⊗ Ip) ⊆ N (1

2
Ȳ T ⊗ Ip), which is equivalent to

N (M̃ + M̃T) ⊆ N (Ȳ T).

40

Chapter 3

Vehicle Platooning

3.1 Introduction

Vehicle connectivity and autonomy are important areas of research, both of which have
made a notable impact on the automotive industry [23]. For example, advanced driver assist
systems (ADAS) which automate the longitudinal and lateral motion of the vehicle, such as
the Tesla Autopilot and Cadillac Super Cruise systems, are being offered as an option in an
increasing number of production vehicles. Furthermore, V2V communication technology is
now included as a standard feature in Cadillac CTS sedans [69].

The advent of connected automated vehicles has also paved the way towards significant
improvements in transportation broadly [68], including increased safety (by allowing, for
example, the detection of vehicles occluded from sight) and reduced reliance on traffic lights
[48]. V2V communication allows for nearby vehicles to coordinate their motion accurately
and to form vehicle platoons : strings of vehicles driving at the same speed and at short
distance. There are two primary benefits of vehicle platooning: an improvement in traffic
efficiency due to increased roadway capacity, and an increase in fuel efficiency due to reduced
aerodynamic drag forces acting on the platooning vehicles, especially for heavy-duty vehicles
such as semi-trucks. Regarding the first point, there is demonstrated potential for platooning
to increase the capacity of both highways and urban roadways. For example, a microscopic
simulation study in [57] predicts that increasing the penetration of vehicles capable of coop-
erative adaptive cruise control (CACC) will result in an increase in highway capacity, since
it enables the driver to select smaller time headways. In [32] the authors predict that the
throughput of urban roadways could potentially be doubled by forming platoons of vehicles,
particularly by increasing the capacity of intersections, which they confirm with a subse-
quent simulation study. For the second point, experiments presented in [9] confirm that
small spacings between two heavy-duty trucks results in reduced fuel consumption.

Previous demonstrations have showcased the technical feasibility of vehicle platooning.
For example, vehicle platooning was demonstrated in 1994 and 1997 by the California PATH
team on the I-18 highway in San Diego, CA [56]. Other experimental evaluations conducted

CHAPTER 3. VEHICLE PLATOONING 41

Figure 3.1. Test vehicles at the Hyundai-KIA Motors California Proving Grounds, California City,
CA.

on highways include [3], where the authors develop a platooning system architecture for
heavy-duty vehicles. The system is evaluated in terms of controller tracking performance
and fuel consumption over varying levels of road grade. In [42, 37] the authors present
the design of a CACC system and tested it on a fleet of test vehicles. A primary controller
performance metric in these works is string stability [65], meaning that the preceding vehicles
are able to attenuate disturbances in traffic downstream (for example, changes in velocity).
In 2011 the first Grand Cooperative Driving Challenge was held in the Netherlands [44], with
the goal of accelerating the deployment of cooperative driving technologies. The competition
focused on CACC and included both an urban and highway driving challenge [40]. For the
urban driving challenge one criterion used to judge the participating teams was throughput
improvement at the traffic light. This scenario is similar to the one we considered in our
previous work [61], where we focused on the trade-off between traffic throughput gains and
safety.

In addition to maintaining a platoon formation, the related tasks of forming, merging,
and splitting platoons require structured coordination between vehicles, i.e. interaction
protocols, which can be achieved in principle with V2V communication. For example, in
[27] state machines are provided which describe the sequence of events, coordinated via
V2V communication, that must occur during merge, split, and change lane maneuvers.
Furthermore, low level control laws for the leader vehicle to execute these maneuvers have
been developed [31]. In [58] an extended message set is proposed for the purpose of enabling
connected vehicles to coordinate more complex maneuvers in merging, intersection, and
emergency vehicle scenarios for a follow-up Grand Cooperative Driving Challenge which
was held in 2016 [43]. Other works studying communication include [15], where the authors
present a strategy for maintaining string stability in a vehicle platoon while using significantly
fewer communication resources.

Unlike the aforementioned studies, in this work we focus on advancing vehicle platoon-

CHAPTER 3. VEHICLE PLATOONING 42

ing to a public urban environment where increased intersection throughput can result in
significant improvements in overall traffic efficiency. Enabling platooning in an urban envi-
ronment involves addressing various challenges, such as forming and disbanding platoons in
moving traffic, decision-making (e.g. whether or not to proceed through an upcoming inter-
section), and ensuring safety when a lead vehicle is present. These challenges are especially
important on a public roadway, where the future behavior of vehicles ahead of the platoon
and the phase of upcoming traffic lights are uncertain. We present a design for the urban
platooning system, and then analyze performance by estimating throughput using data ob-
tained from simulations and experiments conducted on a closed track. We also introduce a
state machine for managing the participating platooning vehicles, and propose strategies for
the platoon to ensure safety when it encounters an intersection and / or a leading vehicle,
utilizing predictions of their future behavior.

The closest comparable effort that we are aware of is the MAVEN project, which has laid
out the various technologies that are needed to develop and deploy urban platooning, and
reported on test results with two automated vehicles [54], where technologies such as a green
light optimal speed advisory system and a collective perception message were utilized. The
MAVEN project has similar goals of increasing traffic efficiency and safety by managing CAVs
at signalised intersections. Unlike [54], however, our focus in this chapter is on improving
throughput primarily by maintaining short (constant) distances between the vehicles as the
platoon accelerates from rest to a nominal speed. In particular, we achieve such accurate
tracking by transmitting velocity forecasts between platooning vehicles and using them as
disturbance previews in our MPC problems. In contrast, in [54] the platooning vehicles do
not create such a tight formation.

The remainder of the chapter is organized as follows. We outline our design for the urban
vehicle platooning system in Sections 3.2 - 3.4, including a platoon model and management
system, MPC formulation, and strategy for the leader to ensure safety. In Section 3.5 we
present results from our simulation tool, and analyze the performance of the platooning
system by estimating the potential gains in intersection throughput. Next, in Section 3.6 we
discuss the experimental setup and present results from conducting tests on a closed track
and on public roadways in Arcadia, CA, including our estimates of throughput. We note
that parts of Sections 3.2 - 3.4 are adapted from our previous work [61], but the remaining
content in the chapter is completely new and advances platooning to an urban setting.

3.2 Platoon Model and Management

In this section we introduce the model of the platoon and various systems that enable
management of its behavior (beyond the control algorithms themselves), including state
estimation via on-board sensors, V2X communication, and a finite-state machine (FSM)
system which ensures that the platoon acts in a coordinated manner, that is, vehicles start
moving as a single platoon at the same time and break the platoon at the same time as
needed. In particular, we discuss how vehicle-to-vehicle communication enables the follower

CHAPTER 3. VEHICLE PLATOONING 43

𝑝1

𝑣1

𝑝2

𝑣2

𝑝𝐿

𝑣𝐿

ℎ1 ℎ𝐿

𝑝𝐹

𝑣𝐹

𝑑𝐿
𝑇𝐿

ℎ2

Platooning vehicles Public lead vehicle

Figure 3.2. Depiction of the states for a platoon of size N = 3 and public lead vehicle approaching
an upcoming traffic light.

vehicles to do accurate distance tracking of the leader, and how vehicle-to-infrastructure
communication enables the leader to decide whether or not to proceed through an upcoming
intersection.

Vehicle Models

The longitudinal dynamics of the leader vehicle [25] are modelled as

ṗL(t) = vL(t), (3.1a)

ḣL(t) = vF (t)− vL(t), (3.1b)

ḋTLL (t) = −vL(t), (3.1c)

v̇L(t) =
1

M

(
T aL(t)− T bL(t)

Rw

− Ff (t)
)
, (3.1d)

Ṫ aL(t) =
1

τ

(
T a,refL (t)− T aL(t)

)
, (3.1e)

where the states are as follows: pL(t) is the position, hL(t) is the distance to the public
vehicle ahead (specifically, the distance from the front bumper of the leader vehicle to the
rear bumper of the front vehicle), dTLL (t) is the distance to the nearest upcoming intersection
stop bar, vL(t) is the ego vehicle velocity, and T aL(t) ∈ R≥0 is the accelerating wheel torque.
The inputs T a,refL (t) ∈ R≥0 and T bL(t) ∈ R≥0 are the accelerating wheel torque command and
the braking wheel torque. Lastly, vF (t) is the velocity of the public vehicle ahead, henceforth
referred to as the front vehicle. The parameters M , Rw, and τ are the vehicle mass, wheel
radius, and actuation time constant for acceleration, respectively. We note that (3.1e) models
actuation delay while the vehicle is accelerating, which has been empirically estimated by
collecting wheel torque measurements from the test vehicle. During these experiments we
observed no delay while braking, and therefore the model does not include actuation delay

CHAPTER 3. VEHICLE PLATOONING 44

Table 3.1: Model Parameters

M vehicle mass kg 2044
Rw wheel radius m 0.3074
β frictional force modelling parameter - 339.1329
γ (same as above) - 0.77
τ accelerating torque actuation time constant s 0.7868

∆t sampling time s 0.1

while braking. Lastly, F f
L(t) is a longitudinal force acting on the leader vehicle, given by

F f
L(t) = Mg ((sin(θ) + r cos(θ)) +

1

2
ρAcxvL(t)2 (3.2)

where g is the gravitational constant, θ is road grade, A is the area of the vehicle, r is a
rolling coefficient of the vehicle, ρ is air density, and cx is an air drag coefficient. We assume
road grade is negligible, and thus θ = 0 for t ≥ 0. For simplicity, we represent (3.2) as

F f
L(t) = β + γvL(t)2 (3.3)

where the parameters β, γ ∈ R≥0 were identified by collecting driving data at a testing area
near UC Berkeley, and then fitting predictions from (3.3) to the data (see Table 3.1). We
write the leader vehicle dynamics (3.1) concisely as

ẋL(t) = fL(xL(t), uL(t), wL(t)) (3.4)

where xL(t) := [pL(t); hL(t); dTLL (t); vL(t); T aL(t)], uL(t) := [T a,refL (t); T bL(t)], and wL(t) :=
vF (t). Note that the velocity of the front vehicle vF (t) appears as a disturbance here.
Since we cannot accurately predict the behavior of non-platooning vehicles, we make the
conservative assumption that the front vehicle will decelerate from its current speed until
coming to a stop. This assumed trajectory of the front vehicle is used for planning, to be
discussed further in Section 3.3.

We model the longitudinal dynamics of each of the N −1 follower vehicles in the platoon
as

ṗi(t) = vi(t), (3.5a)

ḣi(t) = vi−1(t)− vi(t), (3.5b)

ṡi(t) = vL(t)− vi(t), (3.5c)

v̇i(t) =
1

M

(
T ai (t)− T bi (t)

Rw

− Ff (t)
)
, (3.5d)

Ṫ ai (t) =
1

τ

(
T a,refi (t)− T ai (t)

)
, i = 1, . . . , N, (3.5e)

CHAPTER 3. VEHICLE PLATOONING 45

where si(t), used for distance tracking relative to the leader vehicle, is defined as follows:

si(t) =
i∑

k=1

hk(t). (3.6)

We refer to si(t) as the distance from follower i to the leader (note that (3.6) implies s1(t) =
h1(t)). Furthermore, we let v0(t) = vL(t) so that (3.5c) is valid for follower i = 1. We write
(3.5) compactly as

ẋi(t) = fi(xi(t), ui(t), wi(t)), i = 1, . . . , N − 1, (3.7)

where xi(t) := [pi(t); hi(t); d
TL
i (t); vi(t); T

a
i (t)], ui(t) := [T a,refi (t); T bi (t)], and wi(t) :=

[vL(t); vi−1(t)]. We note that the velocity of the leader and front vehicle vL(t) and vi−1(t)
appear as disturbances here - since these are both platooning vehicles in this case, we can
receive a forecast of their future behavior via V2V communication. In Section 3.2 we discuss
the information transmitted between platooning vehicles which includes a velocity forecast,
to be used as a disturbance preview in our MPC formulation.

For planning, our goal is to obtain linear, discrete time models from (3.4) and (3.7). We
use the procedure outlined in [61] for doing so: we first linearize the leader and follower
vehicle dynamics about the nominal velocities v0

L and v0
i , respectively, and then discretize

the resulting linear models each with time step ∆t = 0.1s, resulting in

xL(k + 1) = ALxL(k) +BLuL(k) + ELwL(k),

xi(k + 1) = Aixi(k) +Biui(k) + Eiwi(k), (3.8)

where the matrices AL ∈ R5×5 and BL ∈ R5×2 are functions of the velocity v0
L, and Ai ∈ R6×6

and Bi ∈ R6×2 are functions of the velocity v0
i . At each time step, the current ego vehicle

velocity is substituted into these expressions to obtain the appropriate dynamics matrices to
be used for MPC.

State Estimation

To localize the leader and follower vehicle positions pL(t) and pi(t) we use a differential
GPS measurement which has lane-level accuracy. Furthermore, with GPS and information
received from nearby traffic lights we can also estimate the distances dTLL (t) and dTLi (t) from
each vehicle to the nearest upcoming traffic light. The forward-looking radar on each vehicle
measures the headways hL(t) and hi(t), and standard on-board sensors provide the current
velocity estimates vL(t) and vi(t), as well as estimates of the accelerating wheel torques T aL(t)
and T ai (t).

An important sensing challenge for each follower i is to estimate the distance to the
leader as defined in (3.6). We have tested two methods for doing so: 1) estimating si(t)
using GPS, and 2) estimating si(t) directly using the radar measurements hi(t), which can

CHAPTER 3. VEHICLE PLATOONING 46

be transmitted via V2V communication. For the first method, we use GPS to measure the
distance dLi (t) from the center of vehicle i to the center of the leader vehicle and use the
estimate

ŝi(t) = d̂Li (t)− i · Lveh (3.9)

where d̂Li (t) is an estimate of dLi (t) from GPS. The main drawback to this approach is GPS
measurement noise - we observed up to 3 meters of error when estimating si(t) using GPS.
Because of this, we also used a Kalman filter, where the idea is to use the current velocity
of the leader (received via V2V communication) and the ego vehicle velocity to improve our
estimate of si(t). For the second method, we use the estimate

ŝi(t) =
i∑

k=1

ĥk(t), (3.10)

where ĥk(t) is an estimate of hk(t) from radar. Since measurements from the forward-looking
radar are generally very reliable, we observed smaller measurement errors using the second
method. The main drawback to the second approach, however, is that it will require more
vehicles in the platoon to communicate with one another (discussed further in the next
section). For the experiments discussed in Section 3.6 we used GPS to estimate si(t), and
for the experiments in Section 3.6 we used radar measurements to estimate si(t).

Vehicle-to-vehicle communication

We assume each platooning vehicle is capable of V2V communication. An important piece
of information transmitted within the platoon is a forecast of the future velocity trajectory
for each vehicle, given by

vforecast
L = [vL(t|t); vL(t+ 1|t); . . . ; vL(t+Np|t)],
vforecast
i = [vi(t|t); vi(t+ 1|t); . . . ; vi(t+Np|t)], (3.11)

for the leader vehicle and follower vehicle i, respectively. Here, vL(k|t) is the planned velocity
of the leader vehicle at time step k, obtained by solving an MPC problem at the current
time step t (the notation is the same for the follower vehicles), and Np is the MPC horizon
in time steps. Each follower vehicle receives a velocity forecast from the front vehicle and
the leader vehicle, corresponding to the flow of information depicted in Figure 3a. The front
vehicle forecast is used to ensure safety, and the leader vehicle forecast is used to do distance
tracking of the leader.

In addition to the velocity forecast, each experimental vehicle transmits its radar measure-
ment, current GPS coordinates, and plan status signal. A secondary reason for transmitting
GPS coordinates, beyond estimating si(t), is so that the leader vehicle can estimate the dis-
tance dN−1

L (t) from itself to the rear platooning vehicle. The transmission of GPS coordinates
from follower N − 1 to the leader is shown in Figure 3b. This lets the leader check whether

CHAPTER 3. VEHICLE PLATOONING 47

(a)

(b)

(c)

Figure 3.3. Flow of V2V messages for a platoon of size N = 4, where the blue node represents the
leader vehicle and the grey node represents the rear vehicle. Figure 3a shows the transmission of
velocity forecasts and 3b shows the transmission of GPS coordinates from the rear vehicle (used
by the leader to determine if the platoon can make it through the intersection, see Section 3.2).
Figure 3c shows how we share radar measurements when we use the second method for estimating
si(t) as in (3.10).

the entire platoon has enough time to pass through an upcoming intersection, as discussed
in the next section. As mentioned in the previous section, for some of our experiments we
used radar measurements, transmitted via V2V communication, to estimate si(t). In Figure
3c we depict the flow of information in this case, for N = 4. We note that each vehicle, upon
receiving an incoming message, checks the ID of the vehicle that transmitted it (indicating
the vehicle’s position in the platoon, e.g. leader vehicle, rear vehicle, etc.) to determine
which information fields to extract, if any.

Vehicle-to-infrastructure communication

In addition to V2V messages, we assume the platooning vehicles also receive SPaT (signal,
phase, and timing) messages from nearby traffic lights via V2I communication. In this way,
each vehicle obtains the following prediction on the nearest upcoming traffic light state:

x̂TL(t) = [pup(t); cr(t)] (3.12)

where pup(t) ∈ {red, yellow, green} is the current phase of the nearest upcoming traffic light
and cr(t) ∈ R≥0 is a prediction on the time remaining in the current phase. We note that it
is necessary to predict cr(t) here since in our experiments the traffic signals are actuated.

In the remainder of this section, we discuss how the leader decides whether or not the
platoon should stop at an upcoming traffic light. This decision is handled by the leader
only - the follower vehicles simply track the leader, and therefore we do not allow platoon

CHAPTER 3. VEHICLE PLATOONING 48

separation. Suppose the platoon is approaching a traffic light during its green phase, with
cr(t) seconds remaining in the phase. In this scenario, the leader checks if the following
condition holds

cr(t) · vL(t) ≥ dN−1
L (t) + dTLL (t) + Lint (3.13)

to determine whether a stop is necessary (specifically, if (3.13) is false the platoon should
stop), where Lint is the intersection length. Condition (3.13) provides a quick and simple
way to check whether the rear platooning vehicle, travelling at the current leader velocity
vL(t), will pass through the intersection during the green phase. We use vL(t) in (3.13)
since the leader effectively sets the speed for all platooning vehicles behind it, and also to
avoid having to transmit vN−1(t) to the leader. We note that when N is large, dN−1

L (t) is
large and thus (3.13) is easily violated. This means the platoon may begin braking during a
green light, which can be unexpected for nearby drivers. To avoid this, for large N allowing
platoon separation may become necessary.

At low velocity (3.13) is not easily satisfied and will be overly restrictive, for example if
the light just turned green and the platoon is stopped. For this reason, if vL(t) ≤ vlow the
leader simply checks if the following condition holds

cr(t) ≥ tmin (3.14)

where the threshold tmin is a tuning parameter. If so, it is considered safe to proceed. By
checking (3.13) and (3.14) to determine whether to stop, we try to ensure the platoon will
not be crossing the intersection when the phase becomes yellow. However, since the traffic
signal is actuated and can change randomly due to uncertain traffic conditions, we cannot
formally guarantee that this will never occur.

Suppose the leader determines it should stop while the phase is green, or that the phase
is yellow, in which case the leader should stop if it can do so safely. Then, we also check if
the leader is capable of stopping before the intersection stop line with a margin of dmin, that
is

vL(t)2

2amin,brake

≤ dTLL (t)− dmin (3.15)

where −amin,brake ∈ R<0 is an upper bound on (3.1d) while the maximum braking force is
applied. If (3.15) does not hold, then it is deemed safer for the leader to proceed through
the intersection (in this scenario, for large N a platoon separation may also be necessary).
For a red phase, however, we require the platoon to stop in any case.

Finite state machine (FSM)

We have designed a FSM (see Figure 3.4) which acts as a mechanism for safely forming and
maintaining a platoon. There are four primary states in our FSM: ‘Ready’, ‘Plan Proposed’,
‘Plan Active’, and ‘Plan Cancel’. Each platooning vehicle is initialized in the ‘Ready’ state
and communicates its state at all times. The platoon formation process is initiated when the
leader moves to the ‘Plan Proposed’ state by proposing to the follower vehicles the ‘plan’,

CHAPTER 3. VEHICLE PLATOONING 49

READY

LEADER
PLAN

PROPOSED

LEADER
PLAN
ACTIVE

LEADER
PLAN
CANCEL

Platoon
start request

Timeout

/ plan
rejected

Not enough
acknowledgements

All vehicles
acknowledge

Plan
cancel

No timeout &
safe conditions

Timeout

/ unsafe
condition

Cancel wait
time over

Figure 3.4. A diagram of the transitions in our finite state machine, shown here for the leader
vehicle for simplicity.

including a plan ID, ordering of the vehicles in the platoon, desired gap / speed, etc. Note
that the ordering of vehicles in the platoon refers to the list of vehicle IDs ordered from the
leader to the last follower. As soon as the ‘plan’ is received by the followers, the states of the
followers transition to the ‘Plan Proposed’ state. In the ‘Plan Proposed’ state, each vehicle
acknowledges that the ‘plan’ is valid by checking the on-board sensor data and communicated
GPS data. For example, each vehicle can confirm that the driver agrees to join the platoon
and that the proposed ‘Plan’ is safe to follow. We also note that the leader can manually
cancel the plan while in the ‘Plan Proposed’ state, forcing a transition to the ‘Plan Cancel’
state.

When the leader receives an acknowledgement from every vehicle in the ‘Plan’, it moves
to the ‘Plan Active’ state while also informing the followers so that all vehicles move to the
‘Plan Active’ state together. To ensure safety, while in the ‘Plan Active’ state every vehicle
in the platoon continuously monitors the surrounding conditions to decide if the ‘Plan’ must
stop. In our experiments, the conditions that cancel the plan include: 1) incorrect ordering
of the vehicles, 2) message timeout, 3) any driver taps the gas / brake pedal, 4) front vehicle
out of range (radar measurement too high), and 5) velocity upper / lower bound violated.
Here, message timeout refers to when a particular message has not been received for a period
of time longer than a specified threshold. When one of these conditions is detected by one
vehicle, it informs the other vehicles in the platoon and they move together to the ‘Plan
Cancel’ state. After some threshold time, each vehicle transitions from the ‘Plan Cancel’
state to the ‘Ready’ state and the platoon can be restarted as needed.

In Figure 3.5 we display some data collected while forming a platoon during testing in

CHAPTER 3. VEHICLE PLATOONING 50

Figure 3.5. Experimental data collected in Arcadia, CA during the platoon formation process. The
vehicles begin at a low speed and unequal spacing. At around the 2s mark, the platoon leader
proposes a ‘plan’ which is accepted by the following vehicles, and the plan status signal (plotted
above) switches from 0 to 1. This engages all platooning controllers simultaneously, and the vehicles
quickly converge to the desired speed and distance.

Arcadia, CA (see Section 3.6). The procedure for forming a platoon was to manually drive
the test vehicles to get them close together and moving at similar speeds, at which point
the leader vehicle would propose a ‘plan’ via the state machine and engage the platoon-
ing controllers simultaneously. This enabled platoon formation even while the vehicles are
moving.

3.3 MPC Formulation

In this section we present our MPC problem formulation for the platoon. The leader vehicle
has a separate MPC problem which allows it to react to changing traffic conditions and set
the desired velocity for the following vehicles. For example, if a stop at an intersection is
necessary, the leader computes a velocity trajectory in order to stop safely and comfortably
at the intersection stop bar. Furthermore, the leader maintains a safe following distance

CHAPTER 3. VEHICLE PLATOONING 51

when a vehicle is present ahead of it. The follower vehicles simply do distance tracking
relative to the leader, as we do not allow platoon separation.

Leader vehicle MPC

The goal for the leader is to track a desired velocity when it is safe to do so. When necessary,
it must yield to a slower-moving front vehicle or stop at the intersection stop bar. The MPC
problem for the leader is

min
ui(·|t)

JL =

t+Np+1∑
k=t

(vL(k|t)− vdesL)2 (3.16a)

+

t+Np∑
k=t

uL(k|t)TRuL(k|t) (3.16b)

+ α

t+Np−1∑
k=t

‖uL(k + 1|t)− uL(k|t)‖2 (3.16c)

s.t. xL(k + 1|t) = (3.16d)

ALxL(k|t) +BLuL(k|t) + ELŵL(k),

vmin ≤ vL(k|t) ≤ vmax, (3.16e)

dmin + thvL(k|t) ≤ d∗L(k|t), (3.16f)

0 ≤ T aL(k|t) ≤ T amax, (3.16g)

0 ≤ T a,refL (k|t) ≤ T amax, (3.16h)

0 ≤ T bL(k|t) ≤ T bmax, (3.16i)

xL(t|t) = x̂L(t), (3.16j)

∀k = t, . . . , t+Np,[
d∗L(t+Np|t)
vL(t+Np|t)

]
∈ C(x̂L(t), v̂F (t), v̂F (t+Np)), (3.16k)

where Np is the MPC horizon in time steps, and xL(k|t) and uL(k|t) are the planned state
and input of the leader vehicle at time step k, computed at time step t, respectively (the
notation for the other states is the same). Furthermore, d∗L(k|t) is the distance from the
leader vehicle to either the front vehicle or the upcoming intersection stop bar - whichever
is a higher priority obstacle (the method for determining this is outlined in Section 3.4).
Lastly, x̂L(t), v̂F (t) are estimates of the leader vehicle and front vehicle state, based on
measurements from the on-board sensors, and v̂F (t+Np) is an estimate of the front vehicle
velocity at the end of the MPC planning horizon. Indeed, since ŵL(k) := v̂F (k) appears as
a disturbance in (3.16d), we must predict the future velocity trajectory of the front vehicle.
To ensure safety, we assume worst-case behavior, i.e. the front vehicle will decelerate from

CHAPTER 3. VEHICLE PLATOONING 52

Table 3.2: MPC Parameters

ddes desired distance m 6
dmin minimum distance (front vehicle) m 6
dmin minimum distance (stop bar) m 5
th time headway s 1.6
vdes
L desired velocity (leader) m/s 15
vmin minimum velocity m/s 0
vmax maximum velocity m/s 20
T amax maximum accelerating torque Nm 1500
T bmax maximum braking torque Nm 2000
Np MPC horizon - 20

its current speed at the rate amax,brake ∈ R>0 until coming to a complete stop as follows

ŵL(k) := v̂F (k) =

{
ṽ0, k = t,

max(0, v̂F (k − 1)− k · amax,brake ·∆t), k = t+ 1, . . . , t+Np,
(3.17)

where ṽ0 is an under-approximation of the front vehicle’s current velocity v0, to be discussed
further in Section 3.4. Here, −amax,brake ∈ R<0 is a lower bound for (3.1d) and (3.5d) while
the maximum braking force is applied.

The leader vehicle cost function JL penalizes deviations from the desired velocity vdesL

(3.16a), nonzero control inputs (3.16b), and nonzero control input rates (3.16c), effectively
penalizing vehicle jerk. The scalar α ∈ R>0 and matrix R ∈ R2×2 are design parameters which
allow one to tune controller performance. Increasing α, for example, smooths the acceleration
and deceleration profiles of the vehicle, but reduces the controller’s agility. Furthermore, we
set

R =

[
Ra R0

R0 Rb

]
(3.18)

where the diagonal entries Ra, Rb ∈ R can be increased to encourage the controller to
use smaller actuation torques TLa,ref (t) and TLa (t), respectively, and the off-diagonal entries
R0 ∈ R are made sufficiently large in order to prevent the accelerating and braking control
inputs from being active simultaneously.

The leader MPC problem is subject to the following constraints: vehicle dynamics
(3.16d), lower and upper bounds on velocity (3.16e), distance constraint (3.16f), torque
and reference torque constraints (3.16g) - (3.16i), and initial condition (3.16j). The terminal
constraint (3.16k) ensures the leader maintains a safe distance to any obstacle ahead (namely,
a front vehicle or intersection requiring a stop), and will be discussed further in Section 3.4.
The parameters dmin and th are tuned to increase passenger comfort. For example, if th is
too small it may feel as if the vehicle is braking late when approaching slow-moving traffic or

CHAPTER 3. VEHICLE PLATOONING 53

a stop bar, and if th is too large the vehicle will brake harshly in response to cut-in vehicles.
The values of all MPC parameters are given in Table 3.2.

At each time step, the leader vehicle solves its MPC problem and obtains an optimal
control input sequence and velocity trajectory:

uL(t|t), uL(t+ 1|t), . . . , uL(t+Np|t), (3.19)

vL(t|t), vL(t+ 1|t), . . . , vL(t+Np + 1|t). (3.20)

The first control input uL(t|t) of the sequence (3.19) is then implemented on the vehicle,
and the MPC problem is solved again at the next time step. Furthermore, the computed
velocity trajectory in (3.20) is sent to the other platooning vehicles at each time step via
V2V communication as a velocity forecast, as discussed in Section 3.2.

Follower vehicle MPC

The goal of each follower vehicle is to maintain a desired distance sdes
i to the leader vehicle,

while also maintaining a minimum safety distance dmin to the front vehicle at all times. The
MPC problem to be solved is defined as follows

min
ui(·|t)

Ji =

t+Np+1∑
k=t

(si(k|t)− sdesi)2 (3.21a)

+

t+Np∑
k=t

ui(k|t)TRui(k|t) (3.21b)

+ α

t+Np−1∑
k=t

‖ui(k + 1|t)− ui(k|t)‖2 (3.21c)

s.t. xi(k + 1|t) = (3.21d)

Aixi(k|t) +Biui(k|t) + Eiŵi(k),

vmin ≤ vi(k|t) ≤ vmax, (3.21e)

dmin ≤ hi(k|t), (3.21f)

0 ≤ T ai (k|t) ≤ T amax, (3.21g)

0 ≤ T a,refi (k|t) ≤ T amax, (3.21h)

0 ≤ T bi (k|t) ≤ T bmax, (3.21i)

xi(t|t) = x̂i(t), (3.21j)

∀k = t, . . . , t+Np,[
hi(t+Np|t)
vi(t+Np|t)

]
∈ CF (v̂i−1(t+Np)), (3.21k)

CHAPTER 3. VEHICLE PLATOONING 54

where the notation used is the same as in (3.16). The follower vehicle objective function Ji
penalizes deviations from the desired distance to the leader vehicle, given by

sdes
i := ddes · i, (3.22)

where ddes is a design parameter. Furthermore, we also include penalties on input (3.21b)
and jerk (3.21c). Similar to the leader, these penalties have to be adjusted carefully to
balance performance and passenger comfort. Furthermore, we note that constraints (3.21e)
and (3.21k) are imposed with respect to the front (platooning) vehicle only, since safety
tasks regarding an upcoming intersection are handled by the platoon leader (the terminal
constraint (3.21k) will be discussed further in the next section).

Similar to the leader, at each time step the follower vehicle solves its MPC problem and
obtains an optimal control input sequence and velocity trajectory. We apply the first control
input of the sequence, and the computed velocity trajectory is broadcast to the platoon
via V2V communication. Hence, since velocity forecasts (3.11) are received by all follower
vehicles via V2V communication, we use the following disturbance preview for MPC:

ŵi(k) := [v̂L(k); v̂i−1(k)] = [vL(k|t); vi−1(k|t)], k = t, . . . , t+Np, (3.23)

where the planned velocity trajectories vL(k|t) and vi−1(k|t) were computed by the leader
and front vehicle when they solved their respective MPC problems.

Remark 1. Since we use the full velocity forecast as a disturbance preview in (3.23), a
natural question that arises is whether or not these predictions are reliable. To address this
question, in [61] we defined the trust horizon F , which allows us to adjust how much of
the velocity forecasts are used. For a trust horizon of F , time steps t through t + F of all
velocity forecasts are used. After time step t + F the front vehicle is assumed to decelerate
at the maximum rate until coming to a stop, and therefore the terminal constraint (3.21k)
is imposed at time step t+ F . This is in contrast to the approach in this chapter, where we
assume the front (platooning) vehicle will fully realize the trajectory in its velocity forecast as
in (3.23), corresponding to F = Np. Doing so introduces some risk to the follower vehicles;
however, this is necessary to achieve a reasonable increase in traffic throughput with vehicle
platooning, as shown in our previous work [61].

3.4 Safety Constraints and MPC Solution

We now discuss how we formally ensure safety in an urban traffic setting. First, in Section
3.4 we describe the set of safe states for a vehicle in relation to the two primary obstacles it
can encounter in an urban setting: another vehicle ahead of it, and an upcoming intersection.
Furthermore, we show that at each time instant the vehicle needs to consider only one of
these obstacles, which we refer to as the priority obstacle, thereby simplifying the task of
ensuring safety. Next, in Section 3.4 we discuss how we use the safe sets from Section 3.4 in
our MPC problems, as well as how we efficiently solve the MPC problems at runtime.

CHAPTER 3. VEHICLE PLATOONING 55

Safe States and Priority Obstacle

Consider an ego vehicle (representing either a platoon leader or follower here), a front vehicle
ahead of it, and an upcoming intersection. Throughout the section, we let a(t) and aF (t)
be the accelerations of the ego and front vehicles, respectively, so that the vehicle dynamics
become

ḣ(t) = vF (t)− v(t),

ḋTL(t) = −v(t),

v̇F (t) = aF (t),

v̇(t) = a(t), (3.24)

where h(t) is the headway of the ego vehicle, dTL(t) is the distance from the ego vehicle
to the upcoming traffic light stop bar, and vF (t) and v(t) are the velocities of the front
and ego vehicles, respectively. Since we observed no actuation delay while braking during
experimentation, it is sufficient to use (3.24) in place of (3.1) for the analysis here.

We first assume that only a front vehicle is present, and define safety for the ego vehicle
with respect to the front vehicle as

h(t) ≥ dmin, t ≥ 0. (3.25)

To enforce (3.25), the ego vehicle must ensure it can maintain a minimum safety distance
dmin if the front vehicle applies the maximum braking force until coming to a stop. We
formalize this requirement in the following Proposition:

Proposition 3. Consider the vehicle dynamics given in (3.24). Let amin,brake, amax,brake ∈
R>0, and amin,brake ≤ amax,brake. Suppose the accelerations aF (t) and a(t) satisfy

aF (t) =

{
−amax,brake, t ∈ [0, tsF],

0, t > tsF ,
(3.26)

a(t) =

{
−amin,brake, t ∈ [0, ts],

0, t > ts,
(3.27)

where tsF := vF (0)/amax,brake and ts := vL(0)/amin,brake are the first time instants in seconds
such that vF (tsF) = 0 and v(ts) = 0, respectively. Then, (3.25) will hold if [h(0); v(0)] ∈
CF (vF (0)), where

CF (vF (0)) :=

[
h(0)
v(0)

]
:

h(0) ≥ v(0)2

2amin,brake

− vF (0)2

2amax,brake

+ dmin,

h(0) ≥ dmin, v(0) ≥ 0

 (3.28)

CHAPTER 3. VEHICLE PLATOONING 56

0 20 40 60 80 100 120 140
0

5

10

15

20

Distance h(0) (m)

V
el

o
ci

ty
v
(0

)
(m

/s
)

(a) CF (vF (0)) for vF (0) = 14m/s and dmin = 6m.

0 20 40 60 80 100 120 140
0

5

10

15

20

Distance dTL(0) (m)

V
el

o
ci

ty
v
(0

)
(m

/s
)

(b) CTL for dmin = 5m.

Figure 3.6. In 3.6a and 3.6b we plot the terminal sets (3.28) and (3.30) for the front vehicle and
upcoming intersection, respectively. For computing the sets, we use amin,brake = 3.2 m/s2 and
amax,brake = 5.0912 m/s2.

for vF (0) ∈ R≥0. For a proof we refer to [67], Lemma 1 (see also [31, 55]). We note that in
addition to vF (0), the set CF (vF (0)) also depends on amin,brake, amax,brake, dmin ∈ R>0. A plot
of CF is given in Figure 3.6a.

Next, we suppose that only an upcoming intersection requiring a stop is present. In this
case, the ego vehicle must ensure it can make a complete stop and leave a distance of dmin

to the intersection stop bar. Formally, we require that if the ego vehicle decelerates until
coming to a stop as in (3.27), then the following will hold

dTL(t) ≥ dmin, t ≥ 0. (3.29)

We note that when the light cycles to green, this constraints is relaxed and the platoon is
allowed to proceed. Similar to Proposition 5, we can show that (3.29) holds if the ego vehicle
decelerates as in (3.27) and [dTL(0); v(0)] ∈ CTL, where

CTL :=

{[
dTL(0)
v(0)

]
: dTL(0) ≥ v(0)2

2amin,brake

+ dmin, v(0) ≥ 0

}
. (3.30)

CHAPTER 3. VEHICLE PLATOONING 57

(a) Truck has priority.

(b) Intersection has priority.

Figure 3.7. View from the middle platooning vehicle as it approaches an intersection during our
demonstration in Arcadia, CA. In Figure 3.7a there is a slow-moving truck attempting to turn
right ahead of the leader vehicle. Since the truck takes priority over the intersection at this point,
the platoon is forced to slow down. In Figure 3.7b the truck completes the right turn and priority
shifts to the intersection.

A plot of CTL is given in Figure 3.6b.
Now, we suppose that both a front vehicle and an upcoming intersection requiring a stop

are present simultaneously. In this scenario, we require that if the front and ego vehicle
(representing the platoon leader here) decelerate until coming to a stop as in (3.26) and
(3.27), then both (3.25) and (3.29) will hold. To determine which obstacle is prioritized, the
ego vehicle can check if the following condition holds:

h(0) +
vF (0)2

2amax,brake

≤ dTL(0). (3.31)

CHAPTER 3. VEHICLE PLATOONING 58

If (3.31) holds then the front vehicle is capable of stopping in front of the intersection stop
line, and therefore must be prioritized. If (3.31) does not hold then the upcoming intersection
is prioritized (see Figure 3.7 for an illustration). We summarize this idea in the following
Proposition, which follows directly from the definitions of CF and CTL.

Proposition 4. Assume h(0) ≥ dmin. If (3.31) does not hold, then [dTL(0); v(0)] ∈ CTL
implies [h(0); v(0)] ∈ CF (vF (0)). Otherwise, if (3.31) holds, then [h(0); v(0)] ∈ CF (vF (0))
implies [dTL(0); v(0)] ∈ CTL.

Based on Proposition 4, we conclude that for the leader vehicle MPC problem discussed
in the previous section, it is sufficient to impose a terminal constraint with respect to only
the priority obstacle. This is beneficial for efficiently solving the MPC problems at runtime,
as discussed further in the next section.

Remark 2. In the above discussion we assumed dmin is the same for both the front vehicle and
the intersection, whereas in our experiments we used slightly different values of dmin for each.
Although this is beneficial for passenger comfort, there is one drawback to this adjustment: in
corner cases where priority between the two obstacles can easily switch, we may only satisfy
(3.25) and (3.29) for the minimum of these two values, i.e. for dmin := min{dmin,F , dmin,TL},
where dmin,F and dmin,TL are the unique minimum distance values used for the front vehicle
and intersection, respectively. We ensured, however, that this minimum safety margin is still
sufficient for testing purposes. Furthermore, in normal traffic conditions the priority between
obstacles is clear (usually, the front vehicle is clearly stopping at the intersection, or clearly
passing through it).

Remark 3. If an upcoming intersection is not present (or does not require a stop), then the
front vehicle is prioritized if one is present. This allows, for example, the platoon to pass
through a green light if it is safe to do so. Similarly, if only a front vehicle is present then it
is prioritized. If neither obstacle is present, then no obstacle-related constraints are imposed
on the leader.

Terminal Constraints and MPC Solution

We now connect the discussion in the previous section to terminal constraints (3.16k) and
(3.21k). For the follower vehicles, the primary safety task is to maintain a minimum distance
to the front (platooning) vehicle. Therefore, the terminal constraint (3.21k) is imposed with
respect to the front vehicle only. For the leader vehicle, the primary safety tasks are to stop
at an upcoming intersection when necessary, and to maintain a minimum distance to the
front (non-platooning) vehicle. Based on the discussion in Section 3.4, this is accomplished
by imposing the terminal constraint (3.16k) with respect to the priority obstacle. To this
end, we define

d∗L(t+ k|t) :=

{
hL(t+ k|t), if x̂L(t) and v̂F (t) satisfy (3.31),

dTLL (t+ k|t), otherwise,
(3.32)

CHAPTER 3. VEHICLE PLATOONING 59

as the planned distance from the leader to the priority obstacle at time step k, computed at
time step t, and

C(x̂L(t), v̂F (t), v̂F (t+Np)) :=

{
CF (v̂F (t+Np)), x̂L(t) and v̂F (t) satisfy (3.31),

CTL, otherwise,
(3.33)

as the terminal set with respect to the priority obstacle. We note that the priority obstacle
will be the same throughout the MPC planning horizon, since (3.31) checks whether the
front vehicle can stop before the intersection stop bar if it decelerates at the rate amax,brake,
which is its assumed behavior in the leader MPC problem in (3.17).

To solve the leader and follower vehicle MPC problems at runtime we use the tool CVX-
GEN [36], which allows one to generate C code for solving a custom quadratic program
(QP) reliably and efficiently. Since CVXGEN can only be used for moderately-sized QPs, it
is beneficial to impose terminal constraint (3.16k) with respect to only the priority obstacle,
as imposing a terminal constraint with respect to both obstacles would create additional
(redundant) constraints. Furthermore, since our MPC problems must be represented as QPs
with linear constraints, the sets CF and CTL discussed in the previous section cannot be
directly encoded into our MPC problems. Instead, we use a procedure from [30] to compute
polyhedral constraint sets to be used in place of CF and CTL. In particular, we compute
a collection of sets CF (vF (0)) to be used for vF (0) ∈ [vmin, vmax]. This collection of sets is
computed offline, and the proper set is selected during runtime to be used for MPC (for
more details, we refer the reader to [61]).

Since it is important to avoid infeasibility of the MPC problems during experimentation,
all constraints in each problem (except for the vehicle dynamics constraints) are converted
to soft constraints. This means that for a hard constraint such as Gx ≤ h, where x ∈ Rn,
G ∈ Rm×n, and h ∈ Rm, we instead add the term λ1T (Gx − h)+ to the objective function,
where λ ∈ R>0, 1 ∈ Rm is the vector of all 1’s, and y+ for y ∈ Rm indicates that we are
thresholding each element of y so that y+ ∈ Rm≥0 (see [12]).

3.5 Simulation Results

We now present results from our simulation tool developed in MATLAB, which enabled us to
validate the platooning software prior to conducting real-world experiments. In particular,
the tool is useful to confirm that the platoon preserves safety even when it encounters
traffic lights and other non-platooning vehicles, using the approach in Sections 3.2 and 3.4.
Furthermore, we are able to estimate the potential gains in traffic throughput at intersections,
using a metric from [61].

Urban Stop and Go Scenario

We use our tool to simulate the vehicle platoon travelling along an arterial roadway with
moderate traffic. In particular, our goal here is to imitate the conditions we will encounter

CHAPTER 3. VEHICLE PLATOONING 60

Figure 3.8. Simulation results for an urban traffic scenario with a non-platooning lead vehicle and
multiple signalized intersections. In the top plot, we show the position of all simulated vehicles
(including the public vehicle which is not platooning), as well as the position of each intersection
which has either a yellow or red phase. In the bottom three plots, we show the inter-vehicle distances
(including the distance from the leader to the public vehicle), velocities, and torque commands for
the platooning vehicles.

during our field experiments in Arcadia, CA (see Section 3.6). To simulate public vehicles in
traffic, we create velocity trajectories in simulation and then replay them so that simulations
are repeatable. Taking into account the positions / velocities of the platoon leader and a
public vehicle ahead of it, we can send radar signals as an input to the leader controller and
observe how the platoon responds. Furthermore, we can also create signalized intersections
with the following attributes: position (m), V2I communication range (m), cycle offset (s),
red / yellow / green time (s), and cycle length (s). We placed intersections along the
simulated arterial road so that the distances between traffic lights are similar to the Arcadia
corridor discussed in Section 3.6. All the individual intersections are composed to create a
traffic network object which can be queried to determine the nearest upcoming traffic light
relative to the platoon leader. As the platoon leader approaches the intersection, we send
V2I messages from that traffic light as an input to the leader controller and simulate the
platoon response.

The simulation results are shown in Figure 3.8. In particular, we note that the horizontal

CHAPTER 3. VEHICLE PLATOONING 61

yellow and red lines in the top plot represent intersections which have a yellow and red phase
at that time instant, respectively. Furthermore, the purple line represents the position of
a public vehicle which is not platooning. In the beginning of the simulation, the platoon
encounters red lights at the first few intersections, stopping at each. Near the end of the
simulation the platoon approaches a (non-platooning) public vehicle which is travelling much
more slowly, and the platoon is forced to reduce its speed for the remainder of the simulation.
We note that near the end of the simulation, the public vehicle comes to a complete stop
at an intersection and as a result the platoon leader also stops, leaving a distance of 6m as
desired. As mentioned previously, one of the primary goals of the simulation tool is to verify
that the platoon responds appropriately when it encounters other non-platooning vehicles
and signalized intersections. Observing the simulation results, we can see that the platoon
stops at each intersection when necessary, and that the distance from the leader to the
public vehicle stays above 6m at all times as desired. Lastly, we remark that for simulation
we did not use the same controller parameters that we did for experimentation, where the
parameters were mainly selected to improve passenger comfort.

Estimating Throughput

We now analyze the performance of the vehicle platooning system by estimating intersection
throughput. To do so, we recall a performance metric defined in [61]. At time t = 0 let the
platoon be stopped at the (current) intersection stop bar with no vehicles ahead

[pL(0); vL(0)] = [−dmin; 0],

[pi(0); vi(0)] = [−dmin − (Lveh + ddes) · i; 0], i = 1, . . . , N − 1,

where Lveh is the vehicle length (assumed to be uniformly 4.5 meters for all vehicles), and
the intersection stop bar is assumed to be positioned at 0 meters. Suppose at time t = 0 the
traffic light cycles from red to green, and the platoon immediately starts moving through
the intersection. Let ` ∈ R>0 be the length of the intersection in meters, and define tL and
tN−1 to be the smallest time instants in seconds such that pL(tL) ≥ ` and pN−1(tN−1) ≥ `,
respectively. We then estimate intersection throughput in vehicles per hour as

throughput (vph) ≈ 3600 · N − 1

tN−1 − tL
. (3.34)

Thus, performance is maximized when the platoon 1) accelerates to a high velocity while
crossing the intersection, and 2) accurately maintains the desired inter-vehicle gaps while
accelerating. We note that for the estimate (3.34) to be accurate, we must consider the
length of each vehicle, as opposed to treating each as a point mass.

Throughput analysis of simulation results (as well as the test-track experiments discussed
in Section 3.6) is shown in Tables 3.3 and 3.4, where all estimates are obtained via (3.34).
In particular, throughput is estimated at the 1st, 2nd, and 4th intersection, located at
approximately 0.18 km, 0.43 km, and 1.33 km in the simulation, respectively. In Table 3.3

CHAPTER 3. VEHICLE PLATOONING 62

Table 3.3: Improved Throughput

Simulation Intersection 1 4,336.4 vph
Simulation Intersection 2 4,336.4 vph
Simulation Intersection 4 2,477.8 vph
Test Track Intersection (Virtual) 4,463.4 vph

Table 3.4: Baseline Throughput

Simulation Intersection 1 2149.8 vph
Simulation Intersection 2 2156.9 vph
Simulation Intersection 4 1710.5 vph
Test Track Intersection (Virtual) 2730.7 vph

we show improved levels of throughput achieved using our vehicle platooning system, which
are estimated from the simulation run shown in Figure 3.8. In Table 3.4 we show baseline
levels of throughput, which are estimated by running the same simulation with the trust
horizon (discussed in Remark 1) set to F = 0. We note that throughput is much lower
at the 4th intersection, due to the presence of a slower-moving public vehicle ahead of the
platoon. Indeed, in situations like this, the benefit of vehicle platooning in terms of traffic
throughput may not be fully realized. We note also that our predictions here are in line
with predictions from previous works which utilized simulation. For example, in [32] the
authors predict that vehicle platooning could enable a saturation flow rate of 4800 vph per
intersection movement.

3.6 Experimental Results

In this section we present the experimental results and evaluate the performance of our pla-
tooning controller via the throughput metric from Section 3.5. We discuss the experimental
setup in Section 3.6, and in Section 3.6 we present results from preliminary tests on a closed
track at the Hyundai-KIA Motors California Proving Grounds in California City, CA. Next,
we give an overview of a final platooning demonstration on public roadways in Arcadia, CA
in Section 3.6. Links to drone videos of each series of tests are also provided.

Test Vehicles

We use the three test vehicles shown in Figure 3.1, each of which is equipped with a pro-
duction forward-looking radar and camera that estimate the front vehicle distance, velocity,

CHAPTER 3. VEHICLE PLATOONING 63

Ego vehicle

Matrix
Embedded

PC

dSPACE
MicroAutoB

ox

CAN
gateway

Cohda MK5
OBU

Other
platooning

vehicle

Sensys
Networks

traffic light
DSRC

CAN bus

DSRC

Figure 3.9. Depiction of the on-board hardware setup for the test vehicles. The local CAN bus
(in red) connects the computational devices (Matrix embedded PC and dSPACE MicroAutoBox)
to the Cohda OBU for DSRC communication. The HCU (CAN gateway) provides an interface
between the local CAN bus and the production systems of the test vehicle. Using the local CAN
bus and the gateway functionality of the HCU, we can send commands and access measurements
to and from the production systems without needing access to proprietary vehicle data.

and acceleration. To enable V2V and V2I communication, we use a Cohda Wireless MK5
V2X on-board unit (OBU), which also has an integrated GPS. The Cohda OBU allows the
vehicles to exchange BSMs and custom V2V messages, which include a velocity forecast and
other information. This transmitted information allows the third vehicle in the platoon, for
instance, to estimate its current distance to the leader vehicle. The Cohda also allows each
vehicle to communicate with any nearby traffic lights which are instrumented to broadcast
SPaT and MAP messages. Lastly, the controller for each vehicle is implemented on a dSpace
MicroAutoBox, and a Matrix embedded PC exchanges information between the Cohda, Mi-
croAutoBox, and the ego vehicle controller area network (CAN bus). The Matrix also runs a
state machine which manages the role of each vehicle in the platoon, and is discussed further
in Section 3.2. A diagram of the hardware setup is shown in Figure 3.9.

An important hardware consideration for platooning is that of communication latencies.
In [61] we discussed how including a time stamp in transmitted messages enables each vehicle
to account for V2V communication delays. The idea is to use the time stamp to estimate
the delay d in time-steps (with sampling time ∆t = 0.1s), and then to shift the velocity
forecast used for MPC by d steps, where we assume the transmitting vehicle will maintain
a constant velocity beyond its planned trajectory. For the experimental work presented
in this chapter, however, we assume there are no communication delays between vehicles,
which is done for two reasons. The first reason is that we have observed that communication
latencies are typically small enough to be ignored for our application. The second reason is

CHAPTER 3. VEHICLE PLATOONING 64

Figure 3.10. Experimental results from the Hyundai-KIA Motors California Proving Grounds with
the test vehicles shown in Figure 3.1. Here, we had the platoon track a reference trajectory which
was generated via our simulation tool. The position, inter-vehicle distance, velocity, and MPC
torque command for each vehicle are shown in each subplot, respectively. The desired distance
between vehicles was 6 meters.

that estimating d accurately is challenging in practice. Since the clocks on the test vehicle
computers are not synchronized, one must estimate the clock skew between vehicles, which
could potentially be time-varying, in order to accurately estimate delays.

Closed track experiments

Preliminary vehicle platooning experiments were conducted on a closed test track at the
Hyundai-KIA Motors California Proving Grounds in California City, CA (see Figure 3.1).
For all of the tests the leader vehicle does velocity tracking of a predetermined velocity
trajectory (meaning vdesL in (3.16a) becomes time-dependent), and the follower vehicles do
distance tracking relative to the leader vehicle. The predetermined velocity trajectories used
for tracking were either from real velocity data collected during previous experiments, or
artificial velocity data generated by our simulation tool. In Figure 3.10 we show experimental
results from a test using artificial velocity data which has a step function-like trajectory. For
these experiments we used a larger admissible range of the wheel torque for the follower
vehicles, as seen in the bottom plot of Figure 3.10. In particular, we note that the torque

CHAPTER 3. VEHICLE PLATOONING 65

Figure 3.11. Overhead view of the platoon crossing an intersection in Arcadia, CA.

plotted is the desired torque, i.e. the output of the MPC algorithm, as opposed to the
measured torque (estimated by the vehicle). However, the inter-vehicle distances and vehicle
velocities are both from on-board measurements (the position data is then obtained offline
by integrating the velocity data). We can see that as the platoon accelerates and decelerates,
the followers accurately track the desired distance of 6m to the front vehicle - all tracking
errors stay below about 1m throughout the experiment. We note, however, that there is
slightly larger tracking error (as well as larger variation of the wheel torque command) for
the second follower in this experiment. We can mainly attribute this to state estimation
error since GPS was used to estimate the distance si(t) for all experiments at the California
Proving Grounds, as discussed in Section 3.2.

A video of the testing is available online at https://youtu.be/U-O9iUZElR8, which
includes several test runs with varying levels of the trust horizon F (discussed in Remark
1). We note that in test runs with a small trust horizon, for example F = 10 (half of the
velocity forecast is trusted) or F = 0 (none of the velocity forecast is trusted, meaning
the vehicles effectively do not use V2V communication), large gaps appear between the
platooning vehicles while they are accelerating. This behavior is expected, since using the
full velocity forecast relaxes the constraints on following distance so that the follower vehicles
can get closer to the vehicle ahead. In the test run shown in Figure 3.10 we used F = 15,
demonstrating that we are able to get accurate tracking performance when using a large
portion of the velocity forecast (elsewhere in the chapter we use F = Np = 20). Similar
to Section 3.5, we estimate throughput for the test run shown in Figure 3.10 by treating
the platoon as if it begins stopped at an intersection - our estimate is shown in Table 3.3.
Furthermore, in Table 3.4 we show a baseline level of throughput computed using data from
a test run with F = 0. As expected, significantly higher throughput is achieved by utilizing
the velocity forecast.

https://youtu.be/U-O9iUZElR8

CHAPTER 3. VEHICLE PLATOONING 66

Public Road Demonstration

To demonstrate vehicle platooning in an urban environment with a moderate level of traffic,
we conducted further experiments in Arcadia, CA. Our testing area is a 2.45 km long stretch
of roadway on Live Oak Ave between S Santa Anita Ave and Peck Rd, and has eight
consecutive intersections which are instrumented to send out SPaT and MAP messages for
our vehicle platoon to receive. All tests in Arcadia were completed with a 3-vehicle platoon
using the same MPC parameters as shown in Table 3.1, with the exception that vdes

L = 14 m/s
was used here. Footage of our testing is available online: https://youtu.be/xPYR_xP3FuY.
It captures a few instances where the platoon stops at the stop bar for a red light with no
vehicles queued ahead of it. When the light turns green the platoon reacts immediately and
moves through the intersection more quickly and compactly than the human-driven vehicles
near it, further demonstrating the potential for throughput improvement (see Figure 3.11).

https://youtu.be/xPYR_xP3FuY

67

Chapter 4

Safety in Real Driving Scenarios

4.1 Introduction

A commonly studied traffic situation is the vehicle-following scenario. For this scenario,
one typically designs a controller for the ego vehicle with the goal of meeting a particular
specification, e.g. ensuring a safety constraint on the distance between the ego and lead
vehicle is maintained at all times [39]. In some cases, it is beneficial to relax this safety
specification slightly - for example, in vehicle platooning, where the goal is to have a group
of vehicles drive closely together in a tight formation (see [61] and [62]). To this end, in
[31] the authors allow a soft impact with bounded relative velocity to occur in a worst-case
driving scenario. By doing so, the time required to safely execute a platoon join maneuver,
for example, is reduced.

Another common maneuver that a driver must execute is an unprotected left turn. Recent
works have studied this scenario due to its complexity; see e.g. [41]. In [70] the authors
consider an analogous scenario of highway merging for connected vehicles, where the ego
vehicle can merge either ahead of or behind the other vehicle. In each case, the state space
is separated into conflict, nonconflict, and uncertain regions, where the boundaries of these
regions are dependent on the acceleration capabilities of each vehicle. Similarly, in [13] the
authors compute a capture set, i.e. the set of states that lead to conflict regardless of input
choice. In particular, this computation can be done efficiently if the system has an order
preserving property. The authors propose a control map ensuring the capture set is avoided,
and the approach is demonstrated on an example where two connected vehicles approach an
intersection, and also on an autonomous roundabout scenario in [14].

In this chapter, we apply symbolic control techniques from [28] and [52] to both driving
scenarios mentioned above. Symbolic control techniques have multiple advantages - for
example, they can handle complex specifications, and can be applied directly to nonlinear
systems. In contrast, [31], [70], and [14] ignore nonlinearities in the vehicle dynamics, and
[13] uses feedback linearization. Similarly, in [2] the authors only consider nonlinear vehicle
dynamics on a restricted input space, otherwise using a linear approximation.

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 68

By exploiting the monotonicity of the system dynamics, we reduce the computational
complexity of the controller synthesis and implementation [52]. We show how monotonicity
makes it possible to deal with complex scenarios, such as the vehicle following scenario with
safe impact and left turn scenario, while handling model uncertainty.

The contribution of this work is two-fold. First, we showcase the flexibility of symbolic
control techniques by applying them in two realistic driving situations: a vehicle-following
scenario in Section 4.3, and an unprotected left turn scenario in Section 4.4, each of which is
of independent interest. Second, to deal with the specification in each scenario we construct
a non-standard abstraction, in which we introduce new special states to transform the spec-
ifications into lower closed safety specifications [52]. We also introduce a new construction
of the transition relation which ensures monotonicity of the abstraction, where a new partial
order has been defined to deal with the special states.

4.2 Monotonicity Concepts

In this section, we overview the monotonicity and symbolic control concepts we will use
throughout the chapter.

Partial orders

A partially ordered set L has an associated binary relation ≤L where for all l1, l2, l3 ∈ L,
the binary relation satisfies: (i) l1 ≤L l1, (ii) if l1 ≤L l2 and l2 ≤L l1 then l1 =L l2 and, (iii)
if l1 ≤L l2 and l2 ≤L l3 then l1 ≤L l3. Given a partially ordered set L, for a ∈ L the lower
closure of the element a ∈ L is denoted ↓ a and defined as ↓ a := {x ∈ L : x ≤L a}. The
lower closure of a set A ⊆ L is ↓ A :=

⋃
a∈A ↓ a. A subset A ⊆ L is said to be lower-closed

if ↓ A = A.

Monotone Transition Systems

Below we recall the notion of a transition system [66] and define monotone transition systems
that preserve a partial order on input and state spaces.

Definition 4.2.1. A transition system is a tuple T = (X,X0, U,∆), where X is a set of
states, X0 ⊆ X is a set of initial states, U is a set of inputs and ∆ : X × U → X is a
deterministic transition relation.

Definition 4.2.2. A transition system T = (X,X0, U,∆) is said to be input-state monotone
if X and U are equipped with partial orders ≤X , ≤U , respectively, and for all x1, x2 ∈ X, for
all u1, u2 ∈ U, with x1 ≤X x2 and u1 ≤U u2, it follows that ∆(x1, u1) ≤X ∆(x2, u2).

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 69

Controller Synthesis for Safety Specifications

Maximal safety controller

Given a transition system T = (X,X0, U,∆), a controller for T is a set-valued map C : X ⇒ U
and its domain is defined as dom(C) = {x ∈ X : C(x) 6= ∅}. A safety controller is then defined
as:

Definition 4.2.3. A safety controller C for the transition system T = (X,X0, U,∆) and the
safe set XS ⊆ X satisfies:

• dom(C) ⊆ XS;

• ∀x ∈ dom(C) and ∀u ∈ C(x), ∆(x, u) ⊆ dom(C).

A suitable solution to the safety problem is a controller that enables as many actions as
possible. This controller C∗ is said to be a maximal safety controller, in the sense that for
any other safety controller and for all x ∈ X, we have C(x) ⊆ C∗(x).

Lazy controller synthesis for safety specifications

Consider an input-state monotone transition system T = (X,X0, U,∆) and a safety specifi-
cation XS ⊆ X. The safety specification XS is said to be lower closed (respectively, upper
closed) if XS is a lower closed (respectively, upper closed) subset of X. Classical approaches
use a fixed-point algorithm [66] for general safety specifications. For upper and lower safety
specifications, efficient symbolic abstractions and lazy synthesis approaches have been pro-
posed recently in [28] and [52]. These approaches allow us to compute the maximal safety
controller while reducing the computational cost required for the synthesis and implementa-
tion of the maximal safety controller. Indeed, in classical approaches [66], one first constructs
the entire abstraction for the original system and then uses the pre-computed abstraction to
synthesize the controller. In lazy approaches, however, the abstraction and controller syn-
thesis are done in parallel, making it possible to compute only a fragment of the abstraction
that is essential for the controller synthesis.

4.3 Vehicle-Following Scenario

In this section, we consider a vehicle-following scenario. We first introduce the vehicle
dynamics model that we use and present the control objective. We then use the monotonicity
properties of the model to construct a symbolic abstraction and to synthesize a controller.

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 70

Monotone Vehicle Dynamics

The vehicle-following model is:

ḣ = vL − v,
v̇ = f(u, v, θ),

v̇L = f(uL, vL, θL), (4.1)

where h ∈ R is the headway between the vehicles, v, u ∈ R are the velocity and wheel torque
for the ego vehicle, vL, uL ∈ R are the velocity and wheel torque for the lead vehicle, and
θ, θL ∈ R5 contain modelling parameters. The individual vehicle dynamics evolve according
to

f(u, v, θ) :=

g(u, v, θ), v > 0,

max {g(u, v, θ), 0} , v = vmin,

min {g(u, v, θ), 0} , v = vmax,

(4.2)

where

g(u, v, θ) =
1

M

(
u

Rw

− Ff
)

and Ff = α + βv + γv2 (4.3)

give the vehicle’s acceleration and frictional force acting on it. We note the vehicle dynam-
ics model ensures both vehicles never exceed their velocity bounds - that is v(t), vL(t) ∈
[vmin, vmax] for t ≥ 0. Furthermore, (4.1) - (4.3) contain the following modelling parameters:
M > 0 is the vehicle mass, Rw > 0 is the wheel radius, and α > 0, β > 0, and γ > 0 are
friction coefficients. We collect all modelling parameters in θ := [M ; Rw; α; β; γ] for the
ego vehicle and, similarly, in θL for the lead vehicle (which may have different modelling
parameters). For each vehicle, the values of the modelling parameters are unknown and
are only assumed to lie within a bounded interval of values, where the interval bounds are
known. For example, we assume γ, γL ∈ [γmin, γmax], where γmin > 0 and γmax > 0 are known.

Next, we define the state of (4.1) as x(t) := [h(t); v(t); vL(t)], the input u(t), and the
disturbance w(t) := uL(t), each of which are assumed to lie within a corresponding constraint
set at all times

X :=
{
x : vmin ≤ v and vL,min ≤ vL ≤ vL,max

}
,

U :=
{
u : umin ≤ u ≤ umax

}
,

W :=
{
w : wmin ≤ uL ≤ wmax

}
. (4.4)

The solution of the vehicle model (4.1) at time t > 0, from an initial condition x0 ∈ X, under
a control input u : [0, t] → U , a disturbance input w : [0, t] → W and a vector of unknown
parameters [θ; θL] is denoted Φ(t;x0, u, w, [θ; θL]). Hence, under the same conditions, the
reachable set over the time interval [0, t] reads Φ([0, t];x0, u, w, [θ; θL]).

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 71

Finally, we equip the state, input and disturbance spaces of the model in (4.1) with the
partial orders

(x1 ≤X x2) ⇐⇒
[
(h1 ≥ h2) ∧ (v1 ≤ v2) ∧ (vL,1 ≥ vL,2)

]
(u1 ≤U u2) ⇐⇒ (u1 ≤ u2), (4.5)

(w1 ≤W w2) ⇐⇒ (uL,1 ≥ uL,2) (4.6)

where ≤ is the usual partial order on R. With the partial order defined above, it is easy to
verify that the dynamics in (4.1) are monotone [4]. This property states that for x1 ≤X x2,
u1 ≤U u2, and w1 ≤W w2, we have for t ≥ 0:

Φ(t;x1, u1, w1, [θ; θL]) ≤ Φ(t;x2, u2, w2, [θ; θL]). (4.7)

Control Objective

We now discuss the control objective we want the ego vehicle to satisfy. Typically, one would
require

x(t) ∈ X ∩H, H :=
{
x : hmin < h and v ≤ vmax

}
, (4.8)

to hold for t ≥ 0. From the definition of the set of constraints X in (4.4), the condition
x(t) ∈ X, for all t ≥ 0 is already satisfied. The objective here is to synthesize a controller
for the ego vehicle ensuring that x(t) ∈ H, for all t ≥ 0, which, as discussed in Section 4.2,
is a lower closed safety specification with respect to the partial order (4.5). In words, (4.8)
means the ego vehicle must ensure it never collides with the lead vehicle. Moreover, the ego
vehicle velocity must be bounded by the maximum velocity vmax, while assuming the lead
vehicle velocity is also bounded by vmax.

Next, we define the set of states for which a soft impact has occurred [31]:

S :=
{
x : h ≤ hmin and v − vL ≤ vallow

}
. (4.9)

For our modified safety specification, we allow a soft impact to occur in a worst-case driving
scenario, but never an unsafe impact - that is, one that violates (4.9). This is beneficial since
it relaxes the restrictive constraint (4.8) on the ego vehicle, allowing it to follow the lead
vehicle more closely, for example. We now formally state the control objective considered in
this section:

Problem 1. Given the model of the vehicle-following scenario in (4.1), synthesize a sampled-
data controller C : X ⇒ U such that either (4.8) holds or the following holds:

∃t0 ≥ 0 s.t. x(t0) ∈ S and x(t) ∈ X ∩H for t ∈ [0, t0).

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 72

The control objective described above is in the same spirit of a reach-avoid specification, in
the sense that the system state must either remain in the set X ∩ H for all time (avoiding
an unsafe impact), or eventually reach the set S. We emphasize that the set S will only be
reached in a worst-case scenario - for example, if the ego vehicle fails to satisfy (4.8) because
the lead vehicle applied harsh brakes.

Synthesis using the symbolic approach

In this section, we design a control law C : X ⇒ U which is a solution to Problem 1 using the
symbolic control approach [66] that relies on the use of symbolic models, which are discrete
abstractions of continuous dynamics.

Symbolic abstraction

An abstraction Σa for the vehicle model in (4.1) is a transition system Σa := (Xa, Xa
0 , U

a,∆a),
where Xa, Xa

0 and Ua are finite (symbolic) sets of states and control inputs respectively, while
∆ : Xa × Ua → Xa is a transition relation. For constructing the symbolic sets and in view
of the control objective defined in Problem 1, the set X of constraints on the state-space
defined in (4.4) is decomposed into three regions: an impact-free region, represented by the
set H in (4.8), a region of soft impact, represented by the set S in (4.9), and a remaining
unsafe region given by X \ (H ∪ S). Each of these regions is represented in symbolic form
as follows:

• We discretize the impact-free region H into N ≥ 1 half-open intervals qi = (q
i
; qi] using

a finite partition. Since H is unbounded, we follow the approach in [51, Section V-B-3]
which uses bounded and unbounded intervals to construct the partition. The states of
these regions are represented by the green states in Figure 4.1.

• We use a unique state qsink to model the safe-impact region S, represented by the blue
state in Figure 4.1.

• We use a unique state qunsafe to represent the unsafe region X \ (H ∪ S); see the red
state in Figure 4.1.

The symbolic set Xa consists then of N + 2 states Xa :=
{
qi : i = 1, . . . , N

}
∪{qsink, qunsafe}.

The set of initial conditions corresponds to Xa
0 =

{
qi : i = 1, . . . , N

}
. Moreover, we

discretize the set of inputs U into M ≥ 2 values, with the discrete input set given by
Ua :=

{
uj : j = 1, . . . ,M

}
.

Assuming the controller to be designed is implemented by a microprocessor with a sam-
pling time τ > 0, the transition relation ∆ : Xa × Ua ⇒ Xa can be defined as follows. For
any q, q′ ∈ Xa, u ∈ Ua, q′ = ∆(q, u) if and only if one of the following scenarios holds:

(i) For q, q′ ∈ Xa
0 and u ∈ Ua, q′ = ∆(q, u) if and only if Φ([0, τ]; q, u, wmin, [θmax; θL,min]) ⊆

H and Φ(τ ; q, u, wmin, [θmax; θL,min]) ∈ q′;

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 73

ℎ ≤ 0 ℎ = 0 ℎ ≥ 0

𝑣 ≥
𝑣𝐿 + 𝑣𝑎𝑙𝑙𝑜𝑤

𝑣 ≤
𝑣𝐿 + 𝑣𝑎𝑙𝑙𝑜𝑤

𝑣 =
𝑣𝐿 + 𝑣𝑎𝑙𝑙𝑜𝑤

ℎ

𝑣

𝑆

Figure 4.1. The state space is divided into three areas: the area corresponding to set S (bottom
left cell), the area corresponding to unsafe impacts (top left cell), and the area where no impact
has occurred (right cells).

(ii) For q ∈ Xa
0∪{qsink} and u ∈ Ua, qsink = ∆(q, u) if and only if q = qsink or there exists s ∈

[0, τ] such that Φ(s; q, u, wmin, [θmax; θL,min]) ∈ S and Φ([0, τ]; q, u, wmin, [θmax; θL,min]) ⊆
H ∪ S;

(iii) For q ∈ Xa
0 ∪ {qunsafe} and u ∈ Ua, qunsafe = ∆(q, u) if and only if q = qunsafe or

Φ([0, τ]; q, u, wmin, [θmax; θL,min]) ∩ (X \ (H ∪ S)) 6= ∅.

In each scenario, for each transition the vector of unknown parameters [θmax; θL,min] are
selected to maximize (minimize) the acceleration of the ego (lead) vehicle during the sam-
pling period, depending on the control input applied. For example, intuitively we want to
underestimate how much air drag will help the ego vehicle avoid a collision, and overestimate
how much it will help the lead vehicle cause one. This represents the worst-case values for
the modelling parameters in (4.1). Furthermore, wmin is the maximum braking torque for
the lead vehicle. For the construction of the transition relation, the first scenario is used to
represent the impact-free case where the trajectory of the vehicles remains in the set X ∩H.
The second scenario represents the case of soft impact. Moreover, in this second scenario we
added a self-loop to the sink state qsink to transform the reach-avoid specification in Prob-
lem 1 to a safety problem. Finally, the last scenario is used to represent the fact that the
trajectory of the vehicle is unsafe, in the sense that an unsafe impact violating (4.9) occurs.

Remark 4. In view of Problem 1, a transition to qsink should be created from q ∈ Xa and u ∈
Ua if and only if q = qsink or there exists s ∈ [0, τ] such that Φ(s; q, u, wmin, [θmax; θL,min]) ∈ S

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 74

and also Φ([0, s]; q, u, wmin, [θmax; θL,min]) ⊆ H∪ S. The latter condition is replaced in (ii) by
Φ([0, τ]; q, u, wmin, [θmax; θL,min]) ⊆ H ∪ S in order to preserve the monotonicity property of
the transition system, at the cost of a small additional conservatism.

Abstract control objective

Using such construction of the symbolic abstraction Σa, the concrete control objective in
Problem 1 can be transformed to the following abstract control objective:

Problem 2. Given the abstraction Σa of the vehicle-following model in (4.1), synthesize the
maximal discrete safety controller D : Xa ⇒ Ua keeping the trajectories of the transition
system Σa in the set Xa

0 ∪ {qsink}.

To synthesize the controller D, we rely on the use of the monotonicity concepts introduced
in Section 4.2. We first have the following result, characterizing the structural properties of
the abstraction Σa and the considered specification.

Proposition 5. The transition system Σa := (Xa, Xa
0 , U

a,∆a) defined above is an input-
state monotone transition system and the safety specification Xa

0 ∩ {qsink} is lower closed.

Proof. We start by defining the partial order for the discrete state and input spaces. We
define a partial order ≤Xa over the set of discrete states Xa as follows: for q1, q2 ∈ Xa

0 ,
q1 ≤Xa q2 if and only if q1 ≤X q2. For the special states qunsafe and qsink we have the
following: for all q ∈ Xa

0 , q ≤Xa qsink ≤Xa qunsafe. Moreover, since Ua ⊆ U , the partial order
≤Ua on the discrete input space is inherited from ≤U . The fact that the set Xa

0 ∩ qsink is
lower closed follows immediately from the definition of the partial order ≤Xa .

Let us show the monotonicity of the transition system Σa. Consider q1, q2 ∈ Xa, u1, u2 ∈
Ua with q1 ≤Xa q2 and u1 ≤Ua u2. We will show that ∆(q1, u1) ≤ ∆(q2, u2). From the defi-
nition of the monotonicity property in (4.7), we have that Φ(τ ; q1, u1, wmin, [θmax; θL,min]) ≤
Φ(τ ; q2, u2, wmin, [θmax; θL,min]). To complete the proof, we distinguish three cases:

• ∆(q1, u1) ∈ Xa
0 : In this case, we have two options. If ∆(q2, u2) ∈ Xa

0 , then we get
directly from (4.7) that ∆(q1, u1) ≤ ∆(q2, u2). Otherwise, we have that ∆(q2, u2) = qsink
or ∆(q2, u2) = qunsafe, which implies from the construction of the partial order ≤Xa

above that ∆(q1, u1) ≤ ∆(q2, u2).

• ∆(q1, u1) = qsink: In this case, we have from (4.7) that ∆(q2, u2) = qsink or ∆(q2, u2) =
qunsafe, which implies from the construction of the partial order≤Xa above that ∆(q1, u1) ≤
∆(q2, u2).

• ∆(q1, u1) = qunsafe: In this case we have either q1 ∈ Xa
0 or q1 = qunsafe. If q1 ∈

Xa
0 , we have from the construction of the transition relation ∆ and using (4.7) that

∆(q2, u2) = qunsafe, which implies that ∆(q1, u1) ≤ ∆(q2, u2). Otherwise, if q1 = qunsafe
then q2 = qunsafe and ∆(q1, u1) = qunsafe ≤ ∆(q2, u2) = qunsafe.

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 75

Figure 4.2. Boundary of safe set Z ⊂ X for the strict (top surface) and relaxed (bottom surface)
vehicle-following specification. The safe sets lay below the depicted boundaries.

We now have all the ingredients to provide a solution to Problem 1. First, using the
lazy controller synthesis approach for input-state upper monotone transition systems and
directed safety specification (see Section 4.2) we can construct the maximal abstract safety
controller D : Xa ⇒ Ua for the transition system Σa and lower closed safety specification
Xa

0 ∪ {qsink}, which is indeed a solution to Problem 2. Second, using the construction of
the abstraction Σa, one can show, similarly to [28], that the abstraction Σa is related to the
original system in (4.1) by an upper alternating simulation relation1. This relation is useful
for controller refinement for our lower closed safety specification Xa

0 ∪ {qsink}. Based on this
relationship, we can refine the abstract controller D : Xa ⇒ Ua into a concrete controller
C : X ⇒ U , providing a solution to Problem 1. In this case, the concrete controller C can be
defined for x ∈ X as follows: C(x) = D(Q(x)), where Q is the quantizer associated to the
abstraction Σa and relating the continuous state-space X to the discrete state-space Xa as
follows: Q : X → Xa, with Q(x) = q if and only if x ∈ q.

Using the lazy controller synthesis approach, we compute a safe set (that is, the set
Z = dom(C) ⊂ X where we can enforce the given specification) with respect to both the strict
specification (4.8) and the relaxed specification given in Problem 1. The numerical values
of the vehicle parameters and the control objective are as follows: M ∈ [2000kg, 2250kg],
Rw ∈ [0.30m, 0.35m], α ∈ [300, 350], β ∈ [0.10, 0.25], γ ∈ [0.30, 0.65], vmin = vL,min = 0m/s,
vmax = vL,max = 20m/s, umin = −2500Nm, umax = 1200Nm, wmin = −1800Nm, wmax =
1200Nm, hmin = 0m, and vallow = 3m/s. Furthermore, we discretized the state and input
using the following resolutions: hres = 2m, vres = vL,res = 1m/s, and Tres = 100Nm. As
expected, relaxing the safety specification expands the safe set. This allows the vehicles to

1While traditional alternating simulation relations [66] impose output equivalence, the upper alternating
simulation relation relaxes that condition to an ordering relation. In our case, the upper alternating simu-
lation relation between the abstraction Σa and the original system in (4.1) is defined for (x, q) ∈ X ×Xa,
with q = (q; q], as (x, q) ∈ R if and only if x ≤ q.

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 76

𝑣

𝑠

𝑠 = 𝑟 = 0

𝑟

Figure 4.3. Depiction of the states for the ego (blue) and oncoming (yellow) vehicle in the unpro-
tected left turn scenario.

drive more closely together and improve traffic efficiency - for example, in vehicle platooning
[62].

4.4 Unprotected Left Turn Scenario

In this section, we compute a safety controller for an unprotected left turn scenario using
the approach established in Section 4.3. Indeed, the vehicle dynamics in this scenario are
monotone, and collision avoidance only requires the ego vehicle to adjust its velocity along
its current path [2].

Monotone Vehicle Dynamics and Control Objective

We model the vehicle dynamics in the unprotected left turn scenario as follows

ṡ = v,

v̇ = f(u, v, θ),

ṙ = v0, (4.10)

where s, v ∈ R are the position and velocity of the ego vehicle along its (curved) path,
and r ∈ R is the position of the oncoming vehicle along its path. The positions s and
r increase in the direction of travel, and at the point s = r = 0 the vehicle paths cross.
Furthermore, u ∈ R is the ego vehicle wheel torque, and the ego vehicle dynamics evolve
as in (4.1), where θ ∈ R5 includes the modelling parameters from the previous example.
All of the modelling parameters in θ are again unknown and only assumed to lie within

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 77

bounded intervals. Similarly, the value of v0 > 0 is also uncertain here, and we only assume
v0 ∈ [v0,min, v0,max], where v0,min > 0 and v0,max > 0 are known.

To address the possibility of a collision between the ego and oncoming vehicles, we define
a conflict zone [22] around this crossing point, and require the two vehicles to never occupy
the conflict zone simultaneously. Formally, we define the following set of conflicting states

C :=
{
x : |s| ≤ ` and |r| ≤ `

}
, (4.11)

where ` > 0 is an adjustable parameter. To avoid the unsafe set (4.11) at all times, the
ego vehicle can either go first and complete its turn before the oncoming vehicle enters the
intersection, or wait for the the oncoming vehicle to pass through the intersection first, and
then start its turn. For each case, we define a respective goal set

Gwait :=
{
x : r > `

}
, Ggo :=

{
x : s > `

}
, (4.12)

which represents the opposite side of the intersection for each vehicle. Next, we define the
following constraint sets for the state and input. For i ∈ {wait, go}, we have

X i :=

{
x :

simin ≤ s ≤ simax, v
i
min ≤ v ≤ vimax,

rimin ≤ r ≤ rimax

}
,

U :=
{
u : umin ≤ u ≤ umax

}
, (4.13)

where the bounds on each of the state variables depend on the ego vehicle’s strategy for
executing the turn. For example, the set Xgo will exclude states where the oncoming vehicle
occupies the intersection, since we want the ego vehicle to go first in this case. With (4.11)
- (4.13), we state our control objective.

Problem 3. Our control objective is to ensure the conflict set is avoided at all times, that
is x(t) /∈ C for t ≥ 0, and a goal set is eventually reached, that is ∃t0 s.t. x(t) ∈ Gi for t >
t0 and x(t) ∈ X i for t ∈ [0, t0], where i ∈ {wait, go} depending on the ego vehicle’s strategy
for executing the turn.

We again wish to accurately characterize the set of states Zwait ⊂ Xwait and Zgo ⊂ Xgo

from which it is possible for the ego vehicle to safely execute its left turn, by either waiting for
the oncoming vehicle or going first, respectively. Since the system dynamics are monotone,
and since we are again considering a (directed) reach-avoid type specification, we are able
to compute safe sets Zwait and Zgo using the same symbolic control approach outlined in
Section 4.3. The numerical values are as follows: l = 10m, vwait

min = vgo
min = 0m/s, vwait

max =
vgo
max = 12m/s swait

min = sgo
min = −70m, swait

max = −10m, sgo
max = 10m, rwait

max = 10m, rgo
max = −10m,

umin = −2500Nm and umax = 1200Nm. Furthermore, v0 ∈ [8m/s, 12m/s], and we use the
same uncertainty bounds on θ from the previous example. For each scenario, we discretized
the state and input using the following resolutions: sres = 2m, vres = 0.5m/s, rres = 2m, and
ures = 100Nm. The resulting safe sets are shown in Figure 4.4. Furthermore, to demonstrate

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 78

(a) Safe set Zwait ⊂ Xwait.

(b) Safe set Zgo ⊂ Xgo.

Figure 4.4. Safe set boundaries for the unprotected left turn scenario. In Figure 4.4a all states
below the surface are in Zwait. Conversely, in Figure 4.4b all states above the surface are in Zgo.

the computational advantages of our approach, for this example we have also computed these
sets using a standard fixed-point algorithm. Indeed, computing safe sets Zwait and Zgo took
47.86s and 202.92s using the lazy fixed-point algorithm, whereas the same computations
took 3540.29s and 9991.78s using the standard fixed-point algorithm. We also note that the
controller synthesized using the lazy approach can be stored more efficiently, since it only
needs to specify upper and lower safety bounds on the control input u for each state. This
is in contrast to the controller synthesized using the standard approach, which lists the set
of safe control inputs for each state. As a result, controllers Cwait and Cgo synthesized using
the lazy approach can each be stored with 254.2KB of memory, but require 8744.2KB and
4706.4KB of memory, respectively, when synthesized using the standard approach.

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 79

−60
−40
−20

0
20

P
os

.
(m

)
Ego Oncoming 1 2

5

10

15

V
el

.
(m

/
s)

0 1 2 3 4 5 6
−2

−1

0

1

2

Time (s)

T
or

q
u
e

(k
N

m
)

Figure 4.5. Simulation results for the unprotected left turn scenario. The input bounds are indicated
with dotted red lines. We note two vehicles never occupy the intersection (bounded by the dotted
purple lines) simultaneously.

Two Oncoming Vehicles

We now apply safe sets Zwait and Zgo in an unprotected left turn scenario with two oncoming
vehicles. Our goal is to design a controller for the ego vehicle such that it safely cuts in-
between the two oncoming vehicles to execute its turn, i.e, a controller that keeps the state in
Zwait∩Zgo at all times. The standard approach to resolve this problem relies on the use of the
classical fixed-point algorithm [66], which consists of exploring all the states in Zwait∩Zgo and
all the inputs u ∈ U . Since we represent the ‘wait’ and ‘go’ strategies for executing the turn
as upper and lower-closed safety specifications, we can do this by performing an incremental
synthesis procedure for the intersection of an upper and lower-closed safety specification in
two steps:

1. We synthesize the controllers CZwait and CZgo for the lower and upper closed safety
specifications Zwait and Zgo, respectively.

2. We synthesize the maximal safety controller for the transition system T and safety
specification dom(CZwait)∩dom(CZgo), where for each state x ∈ dom(CZwait)∩dom(CZgo),
we explore only the inputs u ∈ CZwait(x) ∩ CZgo(x).

CHAPTER 4. SAFETY IN REAL DRIVING SCENARIOS 80

Figure 4.5 shows simulation results with this controller. Since the velocity of each on-
coming vehicle is uncertain, we simulate the worst-case scenario where the first and second
oncoming vehicles travel at velocities v0,min = 8m/s and v0,max = 12m/s, respectively. At
each time step we obtain a feasible range of inputs via the synthesized controller. As long
as a control input in this range is selected, the ego vehicle will not conflict with either on-
coming vehicle. A simple model-predictive controller is used to choose the optimal control
input in this feasible range, with the objective of maintaining a velocity of 11.5m/s. The
input bounds and optimal input are both plotted in the bottom of Figure 4.5.

81

Chapter 5

Conclusion and Future Directions

In this dissertation we explored various methods for designing controllers for large-scale
systems, with an emphasis on applications to self-driving vehicles. In particular, we were
mainly interested in designing controllers via formal synthesis procedures, such that the
system of interest meets a given specification. In order to make the control synthesis problem
tractable for large-scale systems, in Chapter 2 we showed how to represent large-scale systems
with approximate abstractions that have increased flexibility, to be used in a hierarchical
control framework. Next, in Chapter 3 we showed how distributed control techniques can be
applied to coordinate CAVs to form platoons of vehicles. Finally, in Chapter 4 we applied
formal synthesis techniques to design vehicle controllers for more complex driving maneuvers.
The results in Chapters 3 and 4 can help improve the safety and efficiency of traffic flows at
intersections, which often become congested with traffic such that they are less safe.

In order for autonomous vehicles to be deployed and operated successfully on a large
scale, there are a few additional problems in the area of controls that must be overcome. We
now discuss a few interesting research directions related to these challenges which build off
of the material presented in this dissertation.

Hierarchical Control for Embedded Systems

The hierarchical control framework discussed in Chapter 2 is a standard approach used in
self-driving vehicles. Therefore, it is important to test the control algorithms developed
using this framework on real embedded platforms. The main goal is to investigate how well
the theoretical error bounds, such as the ones derived in Chapter 2, hold up on a real test
vehicle with unmodelled dynamics, limited onboard computational power, and imperfect
sensors and actuators. If the theoretical error bounds are violated, additional modifications
to the controller may be necessary in order to improve performance. In particular, it will also
be interesting to also test feedback laws which are designed using sum-of-squares methods
(see related work [63]).

A primary motivation for assembling the scaled car test platform mentioned in Sec-
tion 1.3 is to evaluate how well it can track a desired reference trajectory in practice, us-

CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS 82

ing the framework established in Chapter 2. We have already begun implementing some
of the software that can be used to control the vehicle in this manner using ROS (see
https://www.ros.org/about-ros/). Currently, our planner system generates common maneu-
vers (such as a left or right turn) for the vehicle to track, and the control system then uses
NLopt (see https://nlopt.readthedocs.io/en/latest/) to solve a nonlinear MPC problem, al-
lowing the vehicle to accurately follow the planned reference trajectory. Preliminary code is
available at https://github.com/swsmth4776/f1tenth.

Automated Tuning of Embedded Controllers

The control system in an autonomous vehicle often utilizes techniques such as model predic-
tive control or feedback control which require manual tuning in a potentially time-consuming
process. Indeed, in the project described in Chapter 3 of this dissertation, multiple trial runs
on a closed test track were necessary in order to converge on acceptable values for the tun-
ing parameters in our MPC problem. To reduce development time, it will be interesting to
see how a learning-based approach could potentially expedite this procedure. Furthermore,
since different classes of vehicles have different performance characteristics and therefore need
separate tuning values, learning-based performance tuning may also help to accelerate the
deployment of autonomous vehicles more broadly. Indeed, many companies are now looking
at developing self-driving semi trucks, for example, which certainly handle much differently
than smaller vehicle classes such as sedans or crossovers. As these companies expand their
operations to include more and more classes of vehicles, the need for automated tuning of
embedded controllers will become increasingly important. There is already some promising
research along this front; for example, in [49] the authors present a learning model predic-
tive control framework in which a controller automatically improves its own performance by
leveraging collected data.

https://www.ros.org/about-ros/
https://nlopt.readthedocs.io/en/latest/
https://github.com/swsmth4776/f1tenth

83

Bibliography

[1] A. Girard and G. J. Pappas. “Hierarchical control system design using approximate
simulation”. In: Automatica 45.2 (2009), pp. 566–571.

[2] H. Ahn and D. Del Vecchio. “Safety verification and control for collision avoidance at
road intersections”. In: IEEE Transactions on Automatic Control 63.3 (2017), pp. 630–
642.

[3] A. Alam et al. “Heavy-duty vehicle platooning for sustainable freight transportation:
A cooperative method to enhance safety and efficiency”. In: IEEE Control Systems
Magazine 35.6 (2015), pp. 34–56.

[4] D. Angeli and E. D. Sontag. “Monotone control systems”. In: IEEE Transactions on
automatic control 48.10 (2003), pp. 1684–1698.

[5] A. C. Antoulas. Approximation of large-scale dynamical systems. Vol. 6. SIAM, 2005.

[6] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1.
2017. url: http://docs.mosek.com/8.1/toolbox/index.html.

[7] M. Arcak, C. Meissen, and A. Packard. Networks of dissipative systems: compositional
certification of stability, performance, and safety. Springer, 2016.

[8] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[9] C. Bonnet and H. Fritz. Fuel consumption reduction in a platoon: Experimental results
with two electronically coupled trucks at close spacing. Tech. rep. SAE Technical Paper,
2000.

[10] S. Boyd et al. Linear matrix inequalities in system and control theory. SIAM, 1994.

[11] J. H. Chow, ed. Time-Scale Modeling of Dynamic Networks with Applications to Power
Systems. Berlin Heidelberg: Springer-Verlag, 1982.

[12] CVXGEN: Code Generation for Convex Optimization - Handling Infeasibility. https:
//cvxgen.com/docs/infeasibility.html. Accessed: 2020-04-13.

[13] D. Del Vecchio, M. Malisoff, and R. Verma. “A separation principle for a class of
hybrid automata on a partial order”. In: 2009 American Control Conference. IEEE.
2009, pp. 3638–3643.

http://docs.mosek.com/8.1/toolbox/index.html
https://cvxgen.com/docs/infeasibility.html
https://cvxgen.com/docs/infeasibility.html

BIBLIOGRAPHY 84

[14] V. Desaraju et al. “Partial order techniques for vehicle collision avoidance: Application
to an autonomous roundabout test-bed”. In: 2009 IEEE International Conference on
Robotics and Automation. IEEE. 2009, pp. 82–87.

[15] V. S. Dolk, J. Ploeg, and W. P. M. H. Heemels. “Event-triggered control for string-
stable vehicle platooning”. In: IEEE Transactions on Intelligent Transportation Sys-
tems 18.12 (2017), pp. 3486–3500.

[16] A. Donzé. “On signal temporal logic”. In: International Conference on Runtime Veri-
fication. Springer. 2013, pp. 382–383.

[17] A. S. R. Ferreira and M. Arcak. “A graph partitioning approach to predicting patterns
in lateral inhibition systems”. In: SIAM Journal on Applied Dynamical Systems 12.4
(2013), pp. 2012–2031.

[18] General Motors 2018 Self-Driving Safety Report. https://www.gm.com/content/
dam/company/docs/us/en/gmcom/gmsafetyreport.pdf. Accessed: 2021-04-20.

[19] A. Girard. “A composition theorem for bisimulation functions”. In: arXiv preprint
arXiv:1304.5153 (2013).

[20] A. Girard, G. Gössler, and S. Mouelhi. “Safety controller synthesis for incrementally
stable switched systems using multiscale symbolic models”. In: IEEE Transactions on
Automatic Control 61.6 (2016), pp. 1537–1549.

[21] C. Godsil and G. F. Royle. Algebraic graph theory. Vol. 207. Springer Science & Busi-
ness Media, 2013.

[22] O. Grembek et al. “Making intersections safer with I2V communication”. In: Trans-
portation Research Part C: Emerging Technologies 102 (2019), pp. 396–410.

[23] J. Guanetti, Y. Kim, and F. Borrelli. “Control of connected and automated vehicles:
State of the art and future challenges”. In: Annual Reviews in Control 45 (2018),
pp. 18–40.

[24] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2018. url: http:

//www.gurobi.com.

[25] L. Guzzella, A. Sciarretta, et al. Vehicle propulsion systems. Vol. 1. Springer, 2007.

[26] H. Sandberg and R. M. Murray. “Model reduction of interconnected linear systems”.
In: Optimal Control Applications and Methods 30.3 (2009), pp. 225–245.

[27] A. Hsu et al. Design of platoon maneuver protocols for IVHS. Tech. rep. 1991.

[28] E. S. Kim, M. Arcak, and S. A. Seshia. “Symbolic control design for monotone systems
with directed specifications”. In: Automatica 83 (2017), pp. 10–19. doi: https://doi.
org/10.1016/j.automatica.2017.04.060.

[29] J. Kong et al. “Kinematic and dynamic vehicle models for autonomous driving control
design”. In: 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2015, pp. 1094–
1099.

https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/https://doi.org/10.1016/j.automatica.2017.04.060
https://doi.org/https://doi.org/10.1016/j.automatica.2017.04.060

BIBLIOGRAPHY 85

[30] S. Lefèvre, A. Carvalho, and F. Borrelli. “A learning-based framework for velocity
control in autonomous driving”. In: IEEE Transactions on Automation Science and
Engineering 13.1 (2015), pp. 32–42.

[31] P. Li, L. Alvarez, and R. Horowitz. “AHS safe control laws for platoon leaders”. In:
IEEE Transactions on Control Systems Technology 5.6 (1997), pp. 614–628.

[32] J. Lioris et al. “Platoons of connected vehicles can double throughput in urban roads”.
In: Transportation Research Part C: Emerging Technologies 77 (2017), pp. 292–305.

[33] J. Lofberg. binmodel. https://yalmip.github.io/command/binmodel/. 2016 (accessed
December 2017).

[34] J. Lofberg. “YALMIP: A toolbox for modeling and optimization in MATLAB”. In:
Computer Aided Control Systems Design, 2004 IEEE International Symposium on.
IEEE. 2004, pp. 284–289.

[35] O. Maler and D. Nickovic. “Monitoring temporal properties of continuous signals”.
In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems.
Springer, 2004, pp. 152–166.

[36] J. Mattingley and S. Boyd. “CVXGEN: A code generator for embedded convex opti-
mization”. In: Optimization and Engineering 13.1 (2012), pp. 1–27.

[37] V. Milanés et al. “Cooperative adaptive cruise control in real traffic situations”. In:
IEEE Transactions on Intelligent Transportation Systems 15.1 (2013), pp. 296–305.

[38] P. Nilsson. “Correct-by-construction control synthesis for high-dimensional systems”.
PhD thesis. 2017.

[39] P. Nilsson et al. “Correct-by-construction adaptive cruise control: Two approaches”.
In: IEEE Transactions on Control Systems Technology 24.4 (2015), pp. 1294–1307.

[40] E. van Nunen et al. “Cooperative competition for future mobility”. In: IEEE Trans-
actions on Intelligent Transportation Systems 13.3 (2012), pp. 1018–1025.

[41] S. Oh et al. “Safe Decision and Control of Connected Automated Vehicles for an
Unprotected Left Turn”. In: ASME 2020 Dynamic Systems and Control Conference.
American Society of Mechanical Engineers Digital Collection. 2020.

[42] J. Ploeg et al. “Design and experimental evaluation of cooperative adaptive cruise
control”. In: 2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC). IEEE. 2011, pp. 260–265.

[43] J. Ploeg et al. “Guest editorial introduction to the special issue on the 2016 grand
cooperative driving challenge”. In: IEEE Transactions on Intelligent Transportation
Systems 19.4 (2018), pp. 1208–1212.

[44] J. Ploeg et al. “Introduction to the special issue on the 2011 grand cooperative driving
challenge”. In: IEEE Transactions on Intelligent Transportation Systems 13.3 (2012),
pp. 989–993.

BIBLIOGRAPHY 86

[45] A. Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium on Founda-
tions of Computer Science (sfcs 1977). IEEE. 1977, pp. 46–57.

[46] Police: The self-driving Uber in the Arizona crash was hit crossing an intersection on
yellow. https://www.businessinsider.com/uber-self-driving-car-accident-
arizona-police-report-2017-3. Accessed: 2021-05-16.

[47] V. Raman et al. “Model Predictive Control for Signal Temporal Logic Specification”.
In: CoRR abs/1703.09563 (2017). http://arxiv.org/abs/1703.09563.

[48] Red light, green light - no light: Tomorrow’s communicative cars could take turns at
intersections. https://doi.org/10.1109/MSPEC.2018.8482420. Accessed: 2018-10-
04.

[49] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks: A computationally efficient approach for linear system”. In: IFAC-PapersOnLine
50.1 (2017), pp. 3142–3147.

[50] M. Rungger and M. Zamani. “Compositional Construction of Approximate Abstrac-
tions of Interconnected Control Systems”. In: IEEE Transactions on Control of Net-
work Systems 5.1 (2016), pp. 116–127.

[51] A. Saoud, A. Girard, and L. Fribourg. “Contract-based Design of Symbolic Controllers
for Safety in Distributed Multiperiodic Sampled-Data Systems”. In: IEEE Transactions
on Automatic Control (2020). doi: 10.1109/TAC.2020.2992446.

[52] A. Saoud, E. Ivanova, and A. Girard. “Efficient synthesis for monotone transition
systems and directed safety specifications”. In: 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE. 2019, pp. 6255–6260.

[53] A. van der Schaft. “Equivalence of dynamical systems by bisimulation”. In: IEEE
Transactions on Automatic Control 49.12 (2004), pp. 2160–2172.

[54] J. Schindler et al. “MAVEN Deliverable 6.4: Integration Final Report”. In: (2020).

[55] S. Shalev-Shwartz, S. Shammah, and A. Shashua. “On a formal model of safe and
scalable self-driving cars”. In: arXiv preprint arXiv:1708.06374 (2017).

[56] S. E. Shladover. “PATH at 20 - History and major milestones”. In: IEEE Transactions
on intelligent transportation systems 8.4 (2007), pp. 584–592.

[57] S. E. Shladover, D. Su, and X. Y. Lu. “Impacts of cooperative adaptive cruise control
on freeway traffic flow”. In: Transportation Research Record 2324.1 (2012), pp. 63–70.

[58] J. van de Sluis et al. “D3. 2 Proposal for extended message set for supervised automated
driving”. In: Brussels, Belgium, Tech. Rep 4092490 (2015).

[59] S. W. Smith, M. Arcak, and M. Zamani. “Hierarchical control via an approximate
aggregate manifold”. In: American Control Conference, 2018. IEEE. 2018, pp. 2378–
2383.

https://www.businessinsider.com/uber-self-driving-car-accident-arizona-police-report-2017-3
https://www.businessinsider.com/uber-self-driving-car-accident-arizona-police-report-2017-3
https://doi.org/10.1109/MSPEC.2018.8482420
https://doi.org/10.1109/TAC.2020.2992446

BIBLIOGRAPHY 87

[60] S. W. Smith, P. Nilsson, and N. Ozay. “Interdependence quantification for composi-
tional control synthesis with an application in vehicle safety systems”. In: 2016 IEEE
55th Conference on Decision and Control (CDC). IEEE. 2016, pp. 5700–5707.

[61] S. W. Smith et al. “Balancing Safety and Traffic Throughput in Cooperative Vehicle
Platooning”. In: 2019 18th European Control Conference (ECC). IEEE. 2019, pp. 2197–
2202.

[62] S. W. Smith et al. “Improving Urban Traffic Throughput With Vehicle Platooning:
Theory and Experiments”. In: IEEE Access 8 (2020), pp. 141208–141223.

[63] Stanley W Smith, He Yin, and Murat Arcak. “Continuous abstraction of nonlinear sys-
tems using sum-of-squares programming”. In: 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE. 2019, pp. 8093–8098.

[64] E. D. Sontag. Mathematical control theory. 2nd. Vol. 6. New York: Springer-Verlag,
1998.

[65] D. V. A. H. G. Swaroop. “String stability of interconnected systems: An application
to platooning in automated highway systems”. PhD thesis. 1997.

[66] P. Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009.

[67] V. Turri. “Fuel-efficient and safe heavy-duty vehicle platooning through look-ahead
control”. PhD thesis. KTH Royal Institute of Technology, 2015.

[68] E. Uhlemann. “Platooning: connected vehicles for safety and efficiency [Connected
Vehicles]”. In: IEEE Vehicular Technology Magazine 11.3 (2016), pp. 13–18.

[69] V2V Safety Technology Now Standard on Cadillac CTS Sedans. https://media.

cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/

us/en/2017/mar/0309-v2v.html. Accessed: 2020-04-01.

[70] H. M. Wang et al. “Conflict Analysis for Cooperative Merging Using V2X Communi-
cation”. In: 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 1538–1543.

[71] Watch Cruise’s self-driving cars perform 1,400 unprotected left turns in 24 hours.
https://www.theverge.com/2019/5/23/18637358/cruise-gm-self-driving-

unprotected-left-turn. Accessed: 2021-05-16.

[72] H. Yin et al. “Optimization Based Planner Tracker Design for Safety Guarantees”. In:
arXiv preprint arXiv:1910.00782 (2019).

[73] W. H. Young. “On classes of summable functions and their Fourier series”. In: Proc.
R. Soc. Lond. A 87.594 (1912), pp. 225–229.

[74] M. Zamani and M. Arcak. “Compositional abstraction for networks of control systems:
A dissipativity approach”. In: IEEE Transactions on Control of Network Systems 5.3
(2018), pp. 1003–1015.

https://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
https://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
https://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
https://www.theverge.com/2019/5/23/18637358/cruise-gm-self-driving-unprotected-left-turn
https://www.theverge.com/2019/5/23/18637358/cruise-gm-self-driving-unprotected-left-turn

	Contents
	List of Figures
	List of Tables
	Introduction
	Control Synthesis for Large-Scale Systems
	Applications in Transportation
	Further Background and Summary of Contributions

	Approximate Abstractions of Control Systems
	Introduction
	Control Systems
	Abstraction Synthesis for Linear Systems
	Compositionality
	Aggregation
	Example
	Proofs of Main Results

	Vehicle Platooning
	Introduction
	Platoon Model and Management
	MPC Formulation
	Safety Constraints and MPC Solution
	Simulation Results
	Experimental Results

	Safety in Real Driving Scenarios
	Introduction
	Monotonicity Concepts
	Vehicle-Following Scenario
	Unprotected Left Turn Scenario

	Conclusion and Future Directions
	Bibliography

