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Abstract

Real World Robot Learning: Learned Rewards, Offline Datasets and Skill Re-Use

by

Avi Singh

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Sergey Levine, Chair

Robots that can operate in an open, unstructured environment and perform a wide range
of tasks have been a long-standing goal of artificial intelligence. For such robots to operate
effectively, they need the ability to a) perceive the world around them through general-purpose
on-board sensors like cameras b) generalize to new situations c) improve their performance
as they collect more data. In this thesis, we posit that deep reinforcement learning (deep
RL) methods are well-positioned to overcome the aforementioned challenges, but are difficult
to apply to real world domains like robotics. The central conjecture that we study in this
work is the following: while dominant robot learning pipelines often rely on hand-engineering
certain components (such as reward functions and physics simulators), we can overcome
many bottlenecks of these pipelines via the adoption of a more data-driven perspective. We
argue that, instead of hand-engineering reward functions, we should instead learn reward
functions from data. Instead of learning mostly in a hand-designed simulation and then
transferring learned policies to the real world, we should learn using real data, and re-use
all past experience (as much as possible) to maintain sample efficiency. We show how this
perspective change greatly simplifies robot learning, and demonstrate results on a variety of
real world object manipulation tasks.
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Chapter 1

Introduction

The last decade witnessed an unprecedented explosion in AI-powered applications: our phones
unlock via face recognition, can recognize our speech with near-perfection, and are often
uncannily good at suggesting email responses. However, a lot of these applications have been
restricted to the digital realm: while we have AI systems that are adept at processing real
world sensory data (from cameras and microphones), and agents that are adept at making
decisions in the purely digital world (such as trading bots or chess bots), we don’t yet have
as many intelligent systems acting in the real, physical world. Even with billions of dollars
invested in specific application domains (such as autonomous driving), we don’t yet have
clarity as to when such autonomous systems will become ubiquitous in the open, unstructured
physical world.

Recent progress in areas such as computer vision and natural language processing relies on
supervised (and self-supervised) deep learning. On the other hand, sequential decision-making
problems such as robotics are more suited to a different mathematical framework: that of
reinforcement learning (RL). Works such as Minh et al [108], Schulman et al [143], and
Levine et al [94] saw the emergence of deep reinforcement learning methods: the fusion of
reinforcement learning principals with powerful neural network-based function approximation.
Scaled-up implementation of deep reinforcement learning methods have resulted in several
compelling results, such as achieving super-human performance in the board game Go [147]
and extremely competitive agents for the multi-player game Dota 2 [119]

The success of deep RL in simulated domains such as Go and Dota 2 is encouraging, but
it hasn’t yet translated into equally impressive results in real world domains like robotics. We
posit that the reason for this gap in performance is two-fold. First, it is often straightforward
to specify an objective in simulated settings. For a game like Go, the reward function is simply
whether you won the game or not. On the other hand, for an agent attempting to achieve an
objective in the real world, measuring whether you succeeded or not is a challenging problem
in and of itself. Second, simulated settings make it easier to collect (and re-collect) large
amounts of experience, as long as the data collection can be parallelized. The only limiting
factor is the computational cost, which goes down every year. In the rest of this chapter,
we will present a broad overview of how these limitations can be overcome in the context of
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robotic learning.

1.1 End-to-End Data-Driven Robotics
The central conjecture of this thesis is the following: robot learning can be made more
effective by making it more data-driven. While robot learning has a long history, work in
this area has often focused on learning just one or two components of the overall robotics
pipeline, in order to make the learning problem easier to tackle. This is not too different from
the role that machine learning had in other AI areas such as computer vision and natural
language understanding: there was some learning involved, but a significant part of the
overall pipeline for tasks such as object detection was hand-engineered using heuristics and
domain knowledge. The success of end-to-end data-driven methods in domains like computer
vision and natural language processing naturally led to an increase in interest in end-to-end
learned robotics, with works such as Levine et al [95] and Gu et al [45] being some of early
adopters of deep RL for robotics. This thesis is another step towards end-to-end data-driven
robot learning, and our goal is to remove hand-engineering from even more components of
the robotic pipeline, and to introduce learned systems in their place.

When it comes to specifying rewards, instead of engaging in task-specific engineering or
soliciting frequent human feedback (as has been done in prior deep RL for robotics work [141,
72, 8]), we propose learning reward functions from data. The benefits of a data-driven reward
specification framework are several. First, it substantially reduces the time needed to specify
a new task to the robot. While building a system for computing rewards for a particular task
might require hours of engineering effort, the techniques we present for reward learning in
this work reduce that time to a few minutes. Second, it allows non-expert users to specify
objectives to a robot, making it possible to deploy robots that can be trained by their users.
Finally, as we in show in subsequent chapters, the reward learning framework allows us to
learn robotics skills that would have been nearly impossible to specify manually.

When it comes to utilizing experience for robotic RL, we argue that there is a need to
move to a data-driven view of deep RL, instead of the prevailing simulation-driven paradigm.
Developing and maintaining simulated environments for robotics requires substantial engi-
neering effort, and if we rely solely on simulation, we need to put in additional effort every
time the robot encounters a new scenario (such as a new object), or if there is a change in
the environment (such as changing the lighting setup). While simulation is an excellent tool
for domains that can be simulated perfectly (such as games), or those that can be simulated
with near perfection (such as for aerospace applications), it cannot entirely remove the need
for real data in robotics. Robots performing object manipulation need to precisely reason
about contact dynamics and impact of physical forces on entities such as deformable objects,
all of which are non-trivial with current simulation tools. More advanced robotic systems,
such as those that need to interact with humans on a regular basis, are in even more need of
real world experience, as simulating human behavior accurately will likely remain an open
problem for the years to come (after all, simulating human intelligence is the central goal of
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artificial intelligence research).
Now that we have established the importance of real world experience for robot learning,

we need to acknowledge the the fact that collecting data in the real world is slow and
expensive. To best utilize the experience collected in the real world, we propose the following:
instead of collecting experience from scratch for any task we wish to learn, we should re-use
past experience (from a variety of different scenarios) as much as possible, and never train
from scratch (as is often the case for simulated RL experiments). The recent emergence of
algorithms for offline RL [97] (also known as batch RL) is at least partially motivated by the
reasons we mention above (which apply to many real world domains, not just robotics), and
in this work we both build on the work in the offline RL literature and also take inspiration
from generative pre-training in adjacent areas such as natural language processing.

In the remainder of this chapter, we discuss these issues in more detail, and provide a
brief overview of the thesis.

1.2 Contributions and Related Work
Learning rewards from examples When applying reinforcement learning to a video
game such as Breakout, the reward function is easy to specify: we can just pass in the game
score. However, when applying reinforcement learning to a robot manipulation problem such
as folding a shirt, a clear reward signal is now substantially harder to provide. In order
to compute rewards for problems such as this one, real world robotic RL systems often
involve substantial task-specific engineering effort, such as using thermal cameras for tracking
fluids [141] or mocap sensors for tracking objects [80].

Inverse reinforcement learning methods [175, 163, 33, 59, 38] seek to automate reward
definition by learning a reward function from expert demonstrations. However, these methods
have limitations of their own: collecting expert demonstrations puts a significant data
collection burden on the user, and demonstrations are usually non-intuitive for a person to
provide (often involving kinesthetically moving a robot [33] or teleoperating it [158]). More
importantly, demonstrating how a task is done defeats a central goal of reinforcement learning:
autonomously discovering how to perform skills through trial and error.

In Chapter 2, we present an alternative view of task specification for RL: we can specify
the objective for a task using visual examples of what we would like the robot to achieve. In
the case of folding a shirt, we can present the robot with a few images of how we would like
the folded shirt to look like. In Chapter 2, we present a theoretically grounded framework
for robotic skill learning when the task objective is specified in this fashion. This work was
published at Neural Information Processing Systems (NeurIPS) in 2018.

Learning rewards with active learning In Chapter 3, we continue to build on the
example-driven task specification framework introduced in Chapter 2, and introduce a number
of improvements that makes it possible to learn vision-based policies with learned reward
functions for real robots. While the reward learning framework introduced in Chapter 2
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was in the on-policy setting, here we develop an off-policy variant, allowing us to utilize
sample efficient actor-critic methods for skill learning. In addition to specifying the task
via user-provided outcome examples, we also allow the agent to make occasional queries to
a human user to further improve its understanding of the user’s intention, leading to fast
and stable learning on a number of real world robotic manipulation tasks. This work was
published at Robotics: Science and Systems (RSS) in 2019.

Incorporating multi-task demonstrations to pre-train RL agents RL agents typi-
cally explore their environment in a purely random fashion (as they assume no prior knowledge
about the task at hand), which results in long exploration periods before the agent collects
any useful experience at all. While this naïve approach is still effective in domains where data
collection is cheap and can be sped up (such as games), it becomes a major bottleneck in
robotics, where data collection is both time consuming and expensive. While demonstrations
can be used to speed up RL [140, 127, 81, 56, 160, 113, 130, 148, 124, 70, 47], this usually
requires collecting demonstrations for the specific task that is being learned. In Chapter
4, we present a method for pre-training RL agents using demonstrations from a wide range
of previously seen tasks, to speed up learning on new tasks. Our work takes inspiration
from the success of generative modeling-based pre-training in other deep learning areas such
as computer vision [21] and natural language processing [18], and presents a method for
pre-training in the RL setting. Prior works such as IntentionGAN [54] and InfoGAIL [98]
learn multi-modal policies via interaction with an environment using an adversarial imitation
approach [59], but we learn these distributions only from data. Other works learn these
distributions from data [165, 136] and utilize them for planning at test time to optimize a
user-provided cost function. In contrast, we use the behavioral prior to augment model-free
RL of a new task. This allows us to learn policies for new tasks that may be substantially
different from prior tasks, since we can collect data specific to the new task at hand, and we do
not explicitly need to model the environment, which can be complicated for high-dimensional
state and action spaces, such as when performing continuous control from images observations.
This work was published at the International Conference on Representation Learning (ICLR)
in 2021.

Incorporating unstructured/unlabeled prior datasets in RL. While Chapter 4 fo-
cuses on utilizing previously collected expert demonstrations to bootstrap reinforcement
learning, how can we best utilize sub-optimal prior datasets, such as data from previous RL
experiments or from unsupervised or undirected environment interaction? In Chapter 5,
we propose an approach to incorporate such prior data to extend and generalize new skills.
Incorporating prior datasets has emerged as an important technique to scale up robotic RL
through works such as Kalashnikov et al [72], Julian et al [71], and Cabi et al [8]. However,
these prior works focus on generalization to new objects, as well as fine-tuning to handle
greater variability (e.g., more object types, changes in lighting, etc.). Our work instead
focuses on changes in initial conditions that require entirely different skills than those learned
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as part of the current task.For example, if a robot was trained to take an object out of an
open drawer, and encounters a closed drawer at some point of time in its deployment, it
should realize that it must open the drawer before it can achieve its objective. We build on
recent advances in offline reinforcement learning, and our hardest experimental setting allows
the trained agent to perform “common-sense” reasoning to compose four vision-based robotic
skills in a row: picking, placing, drawer opening, and grasping, and a +1/0 sparse reward
is provided only on task completion. This work was published at the Conference on Robot
Learning (CoRL) in 2020.

Finally, in Chapter 6, we discuss some of the limitations of the solutions presented in this
thesis, and point out some promising directions for future research.
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Chapter 2

Variational Inverse Control with Events

2.1 Introduction

Figure 2.1: Standard IRL requires full expert
demonstrations and aims to produce an agent
that mimics the expert. VICE generalizes IRL to
cases where we only observe final desired outcomes,
which does not require the expert to actually know
how to perform the task.

Reinforcement learning (RL) has shown re-
markable promise in recent years, with results
on a range of complex tasks such as robotic
control [95] and playing video games [108]
from raw sensory input. RL algorithms solve
these problems by learning a policy that max-
imizes a reward function that is considered as
part of the problem formulation, and there is
little practical guidance on how these rewards
should be designed. However, the design of
the reward function is in practice critical for
good results, and reward misspecification can
easily cause unintended behavior [3]. For ex-
ample, a vacuum cleaner robot rewarded to
pick up dirt could exploit the reward by re-
peatedly dumping dirt on the ground and
picking it up again [137]. Additionally, it is
often difficult to write down a reward func-
tion at all. For example, when learning poli-
cies from high-dimensional visual observations, practitioners often resort to using motion
capture [126] or specialized computer vision systems [138] to obtain rewards.

As an alternative to reward specification, imitation learning [5] and inverse reinforcement
learning [115] instead seek to mimic expert behavior. However, such approaches require
an expert to show how to solve a task. We instead propose a novel problem formulation,
variational inverse control with events (VICE), which generalizes inverse reinforcement
learning to alternative forms of expert supervision. In particular, we consider cases when
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we have examples of a desired final outcome, rather than full demonstrations, so the expert
only needs to show what the desired outcome of a task is (see Figure 2.1). A straightforward
way to make use of these desired outcomes is to train a classifier [128, 157] to distinguish
desired and undesired states. However, it is unclear if using this classifier as a reward will
result in the intended behavior, since an RL agent can learn to exploit the classifier, in the
same way it can exploit human-designed rewards. Our framework provides a more principled
approach, where a particular form of classifier training corresponds to learning the parameters
of a probabilistic graphical model (see Figure 2.2), and policy optimization corresponds to
inferring the optimal actions in the same graphical model. By selecting an inference query
which corresponds to our intentions, we can mitigate reward hacking scenarios similar to
those previously described, and also specify the task with examples rather than manual
engineering. This makes it practical to base rewards on raw observations, such as images.

conv layers fc layers

Figure 2.2: Our framework learns event prob-
abilities from data. We use neural networks as
function approximators to model this distribution,
which allows us to work with high dimensional
observations like images.

Our inverse formulation is based on a cor-
responding forward control framework which
reframes control as inference in a graphi-
cal model. Our framework resembles prior
work [74, 156, 135], but we extend this con-
nection by replacing the conventional notion
of rewards with event occurence variables.
Rewards correspond to log-probabilities of
events, and value functions can be interpreted
as backward messages that represent log-
probabilities of those events occurring. This
framework retains the full expressivity of RL,
since any rewards can be expressed as log-
probabilities, while providing more intuitive
guidance on task specification. It further al-
lows us to express various intentions, such as for an event to happen at least once, exactly
once at any time step, or once at a specific timestep. Crucially, our framework does not
require the agent to observe the event happening, but only to know the probability that it
occurred. While this may seem unusual, it is more practical in the real world, where success
may be determined by probabilistic models that themselves carry uncertainty. For example,
the previously mentioned vacuum cleaner robot needs to estimate from its observations
whether its task has been accomplished and would never receive direct feedback from the
real world whether a room is clean.

Our contributions are as follows. We first introduce the event-based control framework by
extending previous control as inference work to alternative queries which we believe to be
useful in practice. This view on control can ease the process of reward engineering by mapping
a user’s intention to a corresponding inference query in a probabilistic graphical model. Our
experiments demonstrate how different queries can result in different behaviors which align
with the corresponding intentions. We then propose methods to learn event probabilities from
data, in a manner analogous to inverse reinforcement learning. This corresponds to the use
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case where designing event probabilities by hand is difficult, but observations (e.g., images)
of successful task completion are easier to provide. This approach is substantially easier to
apply in practical situations, since full demonstrations are not required. Our experiments
demonstrate that our framework can be used in this fashion for policy learning from high
dimensional visual observations where rewards are hard to specify. Moreover, our method
substantially outperforms baselines such as sparse reward RL, indicating that our framework
provides an automated shaping effect when learning events, making it feasible to solve
otherwise hard tasks.

2.2 Relation to prior work
Our reformulation of RL is based on the connection between control and inference [74, 174,
135]. The resulting problem is sometimes referred to as maximum entropy reinforcement
learning, or KL control. Duality between control and inference in the case of linear dynamical
systems has been studied in Kalman [73] and Todorov [154]. Maximum entropy objectives
can be optimized efficiently and exactly in linearly solvable MDPs [155] and environments
with discrete states. In linear-quadratic systems, control as inference techniques have been
applied to solve path planning problems for robotics [156]. In the context of deep RL,
maximum entropy objectives have been used to derive soft variants of Q-learning and policy
gradient algorithms [49, 142, 117, 110]. These methods embed the standard RL objective,
formulated in terms of rewards, into the framework of probabilistic inference. In contrast,
we aim specifically to reformulate RL in a way that does not require specifying arbitrary
scalar-valued reward functions.

In addition to studying inference problems in a control setting, we also study the problem
of learning event probabilities in these models. This is related to prior work on inverse
reinforcement learning (IRL), which has also sought to cast learning of objectives into
the framework of probabilistic models [175, 174]. As explained in Section 2.5, our work
generalizes IRL to cases where we only provide examples of a desired outcome or goal, which
is significantly easier to provide in practice since we do not need to know how to achieve the
goal.

Reward design is crucial for obtaining the desired behavior from RL agents [3]. Ng [115]
showed that rewards can be modified, or shaped, to speed up learning without changing the
optimal policy. Singh et al [150] study the problem of optimal reward design, and introduce
the concept of a fitness function. They observe that a proxy reward that is distinct from
the fitness function might be optimal under certain settings, and Sorg et al [151] study
the problem of how this optimal proxy reward can be selected. Hadfield-Menell et al [52]
introduce the problem of inferring the true objective based on the given reward and MDP.
Our framework aids task specification by introducing two decisions: the selection of the
inference query that is of interest (i.e., when and how many times should the agent cause the
event?), and the specification of the event of interest. Moreover, as discussed in Section 5.6,
we observe that our method automatically provides a reward shaping effect, allowing us to
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solve otherwise hard tasks.

2.3 Preliminaries
In this section we introduce our notation and summarize how control can be framed as
inference. Reinforcement learning operates on Markov decision processes (MDP), defined by
the tuple (S,A, T , r, γ, ρ0). S,A are the state and action spaces, respectively, r is a reward
function, which is typically taken to be a scalar field on S ×A, and γ ∈ (0, 1) is the discount
factor. T and ρ0 represent the dynamics and initial state distributions, respectively.

Control as inference

s1 s2 s3

a1 a2 a3

e1 e2 e3

. . .

. . .

. . .

sT

aT

eT

Figure 2.3: A graphical model framework for
control. In maximum entropy reinforcement learn-
ing, we observe e1:T = 1 and can perform inference
on the trajectory to obtain a policy.

In order to cast control as an inference prob-
lem, we begin with the standard graphical
model for an MDP, which consists of states
and actions. We incorporate the notion of
a goal with an additional variable et that
depends on the state (and possibly also the
action) at time step t, according to p(et|st, at).
If the goal is specified with a reward func-
tion, we can define p(et = 1|st, at) = er(s,a)

which, as we discuss below, leads to a max-
imum entropy version of the standard RL
framework. This requires the rewards to be
negative, which is not restrictive in practice,
since if the rewards are bounded we can re-
center them so that the maximum value is 0.
The structure of this model is presented in Figure 2.3, and is also considered in prior work,
as discussed in the previous section.

The maximum entropy reinforcement learning objective emerges when we condition on
e1:T = 1. Consider computing a backward message β(st, at) = p(et:T = 1|st, at). Letting
Q(st, at) = log β(st, at), notice that the backward messages encode the backup equations

Q(st, at) = r(st, at) + logEst+1 [e
V (st+1)] V (st) = log

∫
a∈A

eQ(st,a)da .

We include the full derivation in Appendix A.1, which resembles derivations discussed in prior
work [175, 93]. This backup equation corresponds to maximum entropy RL, and is equivalent
to soft Q-learning and causal entropy RL formulations in the special case of deterministic
dynamics [49, 142]. For the case of stochastic dynamics, maximum-entropy RL is optimistic
with respect to the dynamics and produces risk-seeking behavior, and we refer the reader to
Appendix A.2, which covers a variational derivation of the policy objective which properly
handles stochastic dynamics.
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2.4 Event-based control
In control as inference, we chose log p(et = 1|st, at) = r(s, a) so that the resulting inference
problem matches the maximum entropy reinforcement learning objective. However, we might
also ask: what does the variable et, and its probability, represent? The connection to graphical
models lets us interpret rewards as the log-probability that an event occurs, and the standard
approach to reward design can also be viewed as specifying the probability of some binary
event, that we might call an optimality event. This provides us with an alternative way to
think about task specification: rather than using arbitrary scalar fields as rewards, we can
specify the events for which we would like to maximize the probability of occurrence.

We now outline inference procedures for different types of problems of interest in the
graphical model depicted in Figure 2.3. In Section 2.5, we will discuss learning procedures in
this graphical model which allow us to specify objectives from data. The strength of the events
framework for task specification lies in both its intuitive interpretation and flexibility: though
we can obtain similar behavior in standard reinforcement learning, it may require considerable
reward tuning and changes to the overall problem statement, including the dynamics. In
contrast, events provides a single unified framework where the problem parameters remain
unchanged, and we simply ask the appropriate queries. We will discuss:

• ALL query: p(τ |e1:T = 1), meaning the event should happen at each time step.

• AT query: p(τ |et∗ = 1), meaning the event should happen at a specific time t∗.

• ANY query: p(τ |e1 = 1 or e2 = 1 or ... eT = 1) meaning the event should happen on
at least one time step during each trial.

We present two derivations for each query: a conceptually simple one based on maximum
entropy and message passing (see Section 2.3), and one based on variational inference, (see
Appendix A.2), which is more appropriate for stochastic dynamics. The resulting variational
objective is of the form:

J(π) = Es1:T ,a1:T∼q[Q̂(s1:T , a1:T ) +Hπ(·|s1:T )],

where Q̂ is an empirical Q-value estimator for a trajectory andHπ(·|s1:T ) = −
∑T

t=0 log π(at|st)
represents the entropy of the policy. This form of the objective can be used in policy gradient
algorithms, and in special cases can also be written as a recursive backup equation for dynamic
programming algorithms. We directly present our results here, and present more detailed
derivations (including extensions to discounted cases) in Appendices A.3 and A.4.

ALL and AT queries

We begin by reviewing the ALL query, when we wish for an agent to trigger an event at
every timestep. This can be useful, for example, when expressing some continuous task such
as maintaining some sort of configuration (such as balancing on a unicycle) or avoiding an
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adverse outcome, such as not causing an autonomous car to collide. As covered in Section 2.3,
conditioning on the event at all time steps mathematically corresponds to the same problem
as entropy maximizing RL, with the reward given by log p(et = 1|st, at).

Theorem 2.4.1 (ALL query). In the ALL query, the message passing update for the Q-value
can be written as:

Q(st, at) = log p(et = 1|st, at) + logEst+1 [e
V (st+1)],

where Q(st, at) represents the log-message log p(et:T = 1|st, at). The corresponding empirical
Q-value can be written recursively as:

Q̂(st:T , at:T ) = log p(et = 1|st, at) + Q̂(st+1:T , at+1:T ).

Proof. See Appendices A.3 and A.4

The AT query, or querying for the event at a specific time step, results in the same
equations, except log p(e = 1|st, at), is only given at the specified time t∗. While we generally
believe that the ANY query presented in the following section will be more broadly applicable,
there may be scenarios where an agent needs to be in a particular configuration or location
at the end of an episode. In these cases, the AT query would be the most appropriate.

ANY query

The ANY query specifies that an event should happen at least once before the end of an
episode, without regard for when in particular it takes place. Unlike the ALL and AT queries,
the ANY query does not correspond to entropy maximizing RL and requires a new backup
equation. It is also in many cases more appropriate: if we would like an agent to accomplish
some goal, we might not care when in particular that goal is accomplished, and we likely
don’t need it to accomplish it more than once. This query can be useful for specifying
behaviors such as reaching a goal state, completion of a task, etc. Let the stopping time
t∗ = min{t ≥ 0|et = 1} denote the first time that the event occurs.

Theorem 2.4.2 (ANY query). In the ANY query, the message passing update for the Q-value
can be written as:

Q(st, at) = log
(
p(et = 1|st, at) + p(et = 0|st, at)Est+1 [e

V (st+1)]
)

where Q(st, at) represents the log-message log p(t ≤ t∗ ≤ T |st, at). The corresponding empiri-
cal Q-value can be written recursively as:

Q̂(st:T , at:T ) = log
(
p(et = 1|st, at) + p(et = 0|st, at)eQ̂(st+1:T ,at+1:T )

)
.

Proof. See Appendices A.3 and A.4
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This query is related to first-exit RL problems, where an agent receives a reward of 1 when
a specified goal is reached and is immediately moved to an absorbing state but it does not
require the event to actually be observed, which makes it applicable to a variety of real-world
situations that have uncertainty over the goal. The backup equations of the ANY query
are equivalent to the first-exit problem when p(e|s, a) is deterministic. This can be seen by
setting p(e = 1|s, a) = rF (s, a), where rF (s, a) is an goal indicator function that denotes the
reward of the first-exit problem. In this case, we have Q(s, a) = 0 if the goal is reachable,
and Q(s, a) = −∞ if not. In the first-exit case, we have Q(s, a) = 1 if the goal is reachable
and Q(s, a) = 0 if not - both cases result in the same policy.

Sample-based optimization using policy gradients

In small, discrete settings with known dynamics, we can use the backup equations in the
previous section to solve for optimal policies with dynamic programming. For large problems
with unknown dynamics, we can also derive model-free analogues to these methods, and
apply them to complex tasks with high-dimensional function approximators. We can adapt
the policy gradient to obtain an unbiased estimator for our variational objective:

∇θJ(θ) = Es1:T ,a1:T∼πθ

[
T∑
t=1

∇ log πθ(at|st)(Q̂(s1:T , a1:T ) +Hπ(·|st:T ))

]

See Appendix A.5 for further explanation. Under certain simplifications we can replace
Q̂(s1:T , a1:T ) with Q̂(st:T , at:T ) to obtain an estimator which only depends on future returns.
This estimator can be integrated into standard policy gradient algorithms, such as TRPO [144],
to train expressive inference models using neural networks. In the next chapter, we will also
discuss how we can integrate actor-critic methods such as Soft Actor-Critic [51] with the
VICE framework.

2.5 Learning event probabilities from data
In the previous section, we presented a control framework that operates on events rather
than reward functions, and discussed how the user can choose from among a variety of
inference queries to obtain a desired outcome. However, the event probabilities must still be
obtained in some way, and may be difficult to hand-engineer in many practical situations -
for example, an image-based deep RL system may need an image classifier to determine if it
has accomplished its goal. In such situations, we can ask the user to instead supply examples
of states or observations where the event has happened, and learn the event probabilities
pθ(e = 1|s, a). Inverse reinforcement learning corresponds to the case when we assume the
expert triggers an event at all timesteps (the ALL query), in which case we require full
demonstrations. However, if we assume the expert is optimal under an ANY or AT query,
full demonstrations are not required because the event is not assumed to be triggered at each
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timestep. This means our supervision can be of the form of a desired set of states rather
than full trajectories. For example, in the vision-based robotics case, this means that we can
specify goals using images of a desired goal state, which are much easier to obtain than full
demonstrations.

Formally, we assume that the user supplies the algorithm with a dataset of examples
where the event happens. We derive variational inverse control with events (VICE) for the
AT query in this section as it is conceptually the simplest, and include further derivations
for the ALL and ANY queries in Appendix A.6. For the AT query, we assume examples are
drawn from the distribution p̂data(st, at|et = 1) ∝ p̂(et = 1|st, at)p̂(st, at). , where p̂(st, at) is
the state-action marginal of a reference policy.

We can use this data to train the factor pθ(et = 1|st, at) in our graphical model, where
θ corresponds to the parameters of this factor. For example, if we would like to use a
neural network to predict the probability of the event, θ corresponds to the weights in this
network. Our event model is accordingly of the form pθ(st, at) ∝ pθ(et = 1|st, at)p(st, at).
The normalizing factor is pθ(et = 1) =

∫
S,A pθ(et = 1|st, at)p(st, at)dsda

We fit the model using the following maximum likelihood objective:

L(θ) = Ep̂data [log pθ(st, at)] = Ep̂data [log pθ(et = 1|st, at)]− log pθ(et = 1) (2.1)

The gradient of this objective with respect to θ is given by

∇θL(θ) = Ep̂data [∇θ log pθ(et = 1|st, at)]− Epθ(st,at)[∇θ log pθ(et = 1|st, at)].

A tractable way to compute this gradient is to use the previously mentioned variational
inference procedure (Appendix A.2) to compute the distribution q(s, a) to approximate
pθ(s, a), and then use it to evaluate the expectations for the gradient. This corresponds to an
EM-like iterative algorithm, where we alternate training our event probability pθ(et = 1|st, at)
given the current q and training a policy q(a|s) to draw samples from the distribution pθ(st, at)
in order to estimate the second term of the gradient. This procedure is analogous to MaxEnt
IRL [175], except that, depending on the type of query we use, the event may not necessarily
happen at every time step, and the data consists only of individual states rather than entire
demonstrations. In high-dimensional settings, we can adapt the method of Fu et al [39], which
alternates between training pθ(s, a) by fitting a discriminator to distinguish policy samples
from dataset samples, and training a policy by performing inference on the corresponding
graphical model (which corresponds to trying to fool the discriminator). We present our
algorithm pseudocode in Algorithm 1. In our experiments, we use a variant of TRPO [144]
(as discussed in Section 2.4) to update the policy with respect to the event probabilities (line
7).

Interestingly, as we will discuss in the experimental evaluation, we’ve found in many cases
that learning the event probabilities using VICE actually resulted in better performance than
reinforcement learning directly from binary event indicators even when these indicators are
available. Part of the explanation for this phenomenon is that the learned probabilities are
smoother than binary event indicators, and therefore can provide a better shaped reward
function for RL.
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Algorithm 1 VICE: Variational Inverse Control with Events
1: Obtain examples of expert states and actions sEi , aEi
2: Initialize policy π and binary discriminator Dθ.
3: for step n in {1, . . . , N} do
4: Collect states and actions si = (s1, ..., sT ), ai = (a1, ..., aT ) by executing π.
5: Train Dθ via logistic regression to classify expert data sEi , aEi from samples si, ai.
6: Update log p̂(e = 1|s, a)← logDθ(s, a)− log(1−Dθ(s, a))
7: Update π with respect to log p̂(e = 1|s, a) using the appropriate inference objective.
8: end for

2.6 Experimental evaluation

Figure 2.4: HalfCheetah and Lobber
tasks.

Our experimental evaluation aims to answer the fol-
lowing questions: (1) How does the behavior of an
agent change depending on the choice of query? We
study this question in the case where the event proba-
bilities are already specified. (2) Does our event learn-
ing framework (VICE) outperform simple alternatives,
such as offline classifier training, when learning event
probabilities from data? We study this question in set-
tings where it is difficult to manually specify a reward
function, such as when the agent receives raw image observations. (3) Does learning event
probabilities provide better shaped rewards than the ground truth event indicators?

Inference with pre-specified event probabilities

Query Avg. Dist Min. Dist
HalfCheetah-ANY 1.35 (0.20) 0.97 (0.46)
HalfCheetah-ALL 1.33 (0.16) 2.01 (0.48)

HalfCheetah-Random 8.95 (5.37) 5.41 (2.67)
Lobber-ANY 0.61 (0.12) 0.25 (0.20)
Lobber-ALL 0.59 (0.11) 0.36 (0.21)

Lobber-Random 0.93 (0.01) 0.91 (0.01)

Table 2.1: Results on HalfCheetah and Lobber
tasks (5 trials). The ALL query generally results
in superior returns, but the ANY query results
in the agent reaching the target more accurately.
Random refers to a random gaussian policy.

We first demonstrate how the ANY and ALL
queries in our framework result in different
behaviors. We adapt TRPO [144], a natu-
ral policy gradient algorithm, to train poli-
cies using our query procedures derived in
Section 2.4. Our examples involve two goal-
reaching domains, HalfCheetah and Lobber,
shown in Figure 2.4. The goal of HalfCheetah
is to navigate a 6-DoF agent to a goal position,
and in Lobber, a robotic arm must throw an
block to a goal position. To study the infer-
ence process in isolation, we manually design
the event probabilities as e−||xagent−xtarget||2 for
the HalfCheetah and e−‖xblock−xgoal‖

2 for the
Lobber.
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The experimental results are shown in Table 2.1. While the average distance to the goal
for both queries was roughly the same, the ANY query results in a much closer minimum
distance. This makes sense, since in the ALL query the agent is punished for every time step
it is not near the goal. The ANY query can afford to receive lower cumulative returns and
instead has max-seeking behavior which more accurately reaches the target. Here, the ANY
query better expresses our intention of reaching a target.

Learning event probabilities

Table 2.2: Results on Maze, Ant and Pusher environments
(5 trials). The metric reported is the final distance to the
goal state (lower is better). VICE performs better than the
classifier-based setup on all the tasks, and the performance
is substantially better for the Ant and Pusher task.

Query type Classifier VICE (ours) True Binary

M
az
e ALL 0.35 (0.29) 0.20 (0.19) 0.11 (0.01)ANY 0.37 (0.21) 0.23 (0.15)

A
nt ALL 2.71 (0.75) 0.64 (0.32) 1.61 (1.35)ANY 3.93 (1.56) 0.62 (0.55)

P
us
h ALL 0.25 (0.01) 0.09 (0.01) 0.17 (0.03)ANY 0.25 (0.01) 0.11 (0.01)

We now compare our event prob-
ability learning framework, which
we call variational inverse control
with events (VICE), against an of-
fline classifier training baseline. We
also compare our method to learn-
ing from true binary event indica-
tors, to see if our method can pro-
vide some reward shaping benefits
to speed up the learning process.
The data for learning event prob-
abilities comes from success states.
That is, we have access to a set of
states {sEi }i=1...n, which may have been provided by the user, for which we know the event
took place. This setting generalizes IRL, where instead of entire expert demonstrations,
we simply have examples of successful states. The offline classifier baseline trains a neural
network to distinguish success state ("positives") from states collected by a random policy.
The number of positives and negatives in this procedure is kept balanced. This baseline is a
reasonable and straightforward method to specify rewards in the standard RL framework,
and provides a natural point of comparison to our approach, which can also be viewed as
learning a classifier, but within the principled framework of control as inference. We evaluate
these methods on the following tasks:

Maze from pixels. In this task, a point mass needs to navigate to a goal location
through a small maze, depicted in Figure 4.3. The observations consist of 64x64 RGB images
that correspond to an overhead view of the maze. The action space consists of X and Y forces
on the robot. We use CNNs to represent the policy and the event distributions, training with
1000 success states as supervision.

Ant. In this task, a quadrupedal “ant” (shown in Figure 4.3) needs to crawl to a goal
location, placed 3m away from its starting position. The state space contains joint angles
and XYZ-coordinates of the ant. The action space corresponds to joint torques. We use 500
success states as supervision.

Pusher from pixels. In this task, a 7-DoF robotic arm (shown in Figure 4.3) must push
a cylinder object to a goal location. The state space contains joint angles, joint velocities and
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64x64 RGB images, and the action space corresponds to joint torques. We use 10K success
states as supervision.

Figure 2.5: Visualizations of the Pusher, Maze,
and Ant tasks. In the Maze and Ant tasks, the
agent seeks to reach a pre-specified goal position.
In the Pusher task, the agent seeks to place a block
at the goal position.

Training details and neural net architec-
tures can be found in Appendix A.7. We
also compare our method against a reinforce-
ment learning baseline that has access to the
true binary event indicator. For all the tasks,
we define a “goal region”, and give the agent
a +1 reward when it is in the goal region,
and 0 otherwise. Note that this RL baseline,
which is similar to vanilla RL from sparse
rewards, “observes” the event, providing it
with additional information, while our model
only uses the event probabilities learned from
the success examples and receives no other
supervision. It is included to provide a reference point on the difficulty of the tasks. Results
are summarized in Table 2.2, and detailed learning curves can be seen in Figure 2.6. We note
the following salient points from these experiments.
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Figure 2.6: Results on the Pusher task (lower is
better), averaged across five random seeds. VICE
significantly outperforms the naïve classifier and
true binary event indicators. Further, the perfor-
mance is comparable to learning from an oracle
hand-engineered reward (denoted in dashed lines).
Curves for the Ant and Maze tasks can be seen in
Appendix A.7.

VICE outperforms naïve classifier.
We observe that for Maze, both the simple
classifier and our method (VICE) perform
well, though VICE achieves lower final dis-
tance. In the Ant environment, VICE is
crucial for obtaining good performance, and
the simple classifier fails to solve the task.
Similarly, for the Pusher task, VICE signifi-
cantly outperforms the classifier (which fails
to solve the task). Unlike the naïve classifier
approach, VICE actively integrates negative
examples from the current policy into the
learning process, and appropriately models
the event probabilities together with the dy-
namical properties of the task, analogously
to IRL.

Shaping effect of VICE. For the more
difficult ant and pusher domains, VICE ac-
tually outperforms RL with the true event
indicators. We analyze this shaping effect further in Figure 2.6: our framework obtains
performance that is superior to learning with true event indicators, while requiring much
weaker supervision. This indicates that the event probability distribution learned by our
method has a reward-shaping effect, which greatly simplifies the policy search process. We
further compare our method against a hand-engineered shaped reward, depicted in dashed
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lines in Figure 2.6. The engineered reward is given by −0.2 ∗ ‖xblock−xarm‖−‖xblock−xgoal‖,
and is impossible to compute when we don’t have access to xblock, which is usually the case
when learning in the real world. We observe that our method achieves performance that
is comparable to this engineered reward, indicating that our automated shaping effect is
comparable to hand-engineered shaped rewards.

2.7 Conclusion
In this chapter, we described how the connection between control and inference can be
extended to derive a reinforcement learning framework that dispenses with the conventional
notion of rewards, and replaces them with events. Events have associated probabilities. which
can either be provided by the user, or learned from data. Recasting reinforcement learning
into the event-based framework allows us to express various goals as different inference queries
in the corresponding graphical model. The case where we learn event probabilities corresponds
to a generalization of IRL where rather than assuming access to expert demonstrations, we
assume access to states and actions where an event occurs. IRL corresponds to the case
where we assume the event happens at every timestep, and we extend this notion to alternate
graphical model queries where events may happen at a single timestep.
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Chapter 3

End-to-End Robotic Reinforcement
Learning without Reward Engineering

3.1 Introduction

Figure 3.1: Illustration of our approach.
During the reward learning process, the robot pe-
riodically queries a user with images, and the user
provides a binary label indicating whether or not
this image corresponds to a successful outcome.

In the previous chapter, we introduced varia-
tional inverse control with events (VICE) [41],
a framework for specifying objectives for a
task using user-provided goal (or outcome)
examples. As explained in Section 2.5, VICE
involves training a classifier to distinguish be-
tween user-provided goal examples and data
collected by the RL policy, and the success
probabilities from this classifier can then be
used as a reward for training reinforcement
learning agents to achieve the specified goal.
However, VICE relies entirely on the positive
outcome examples provided at the beginning
of training to understand the task, which in
practice means that a large number of exam-
ples is needed. Further, because VICE relies
on on-policy RL for training the policy and
for gathering negative examples for the clas-
sifier, it requires millions of samples, which
may be impractical in the real world. In this
chapter, we address both of these issues to
enable end-to-end reinforcement learning on
real robots from pixel observations, and with-
out any task-specific engineering for obtaining rewards. To remove the reliance on a large
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amount of positive examples provided up front, we elicit a small number of additional queries
from a human user as the robot collects additional experience. These active queries are
selected based on uncertainty estimates from the classifier that is being used as a reward
function, and allow us to learn effective rewards from a small number of initial examples.
Further, we extend both the policy learning and the classifier training procedure in VICE to
the off-policy setting, which allows us to learn robotic skills in the real world with only 1-4
hours of interaction time, entirely from image observations.

Our primary contribution in this chapter is a method for learning robotic skills from
high-dimensional observations, such as images, without hand-designing reward functions.
Our method uses a small number of examples of positive outcomes (without demonstrations),
followed by a modest number of additional binary active queries, where the robot asks the
user if a particular outcome is successful or not. Our approach is based on efficient off-
policy reinforcement learning, making it well-suited for real-world learning. Our experiments
demonstrate that our method can learn a variety of real-world robotic manipulation skills,
directly from images, and directly in the real world. Results include draping cloth over an
object, placing books on a bookshelf, and pushing mugs onto a coaster. Learning requires
minimal user supervision and only 1-4 hours of interaction time, which is substantially less
than that of prior work [50, 72, 129, 96, 24].

3.2 Relation To Prior Work
Reinforcement learning has been applied to a wide variety of robotic manipulation tasks,
including grasping objects [72], in-hand object manipulation [120, 61, 131, 89], manipulating
fluids [141], door opening [167, 11], and cloth folding [105]. However, applications of RL in
the real world require considerable effort to design and evaluate the reward function. For
example, using thermal cameras for tracking fluids [141], mocap sensors [80] or computer
vision systems [138] for tracking objects, and accelerometers for determining the state of a
door [167]. Since such instrumentation needs to be done for any new task that we may wish
to learn, it poses a significant bottleneck to widespread adoption of reinforcement learning
for robotics, and precludes the use of these methods directly in open-world environments that
lack this instrumentation.

Data-driven approaches for reward specification [116, 1, 33, 59, 38, 176, 134, 26, 102, 12,
67] seek to overcome this issue, but typically require demonstration data to acquire rewards.
Such data can be onerous and time-consuming for users to provide. Recent work on active
learning for inverse RL has sought to reduce the required number of demonstrations [7, 15, 99,
13], but still requires some number of demonstrations to be provided manually. Our method
only requires a modest number of examples of successful outcomes, followed by binary queries
where the user indicates whether a particular outcome that the robot achieved is successful or
not. Both of these can be provided easily, without any teleoperation or kinesthetic teaching.
Related to our method, Daniel et al [16] propose to learn rewards from active queries that
elicit numerical scores. In contrast to this approach, our method uses only binary success
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queries, which are easier to provide, and can be readily combined with deep networks for
learning skills from image observations. Another line of research that queries binary feedback
from humans is that of learning from human preferences [67, 12], but these techniques have so
far proven to be quite expensive in the deep reinforcement learning setting in terms of both
the supervision needed from humans, and the overall sample complexity. Even in simulation
with low-dimensional observations, Christiano et al [12] make about one thousand queries
from humans (we make 50-75 such queries in the real world), and require tens of millions of
timesteps of interaction with the environment (we require around tens of thousands of such
interactions). Furthermore, comparing trajectories is often a harder form of feedback to elicit
from humans, especially towards the start of training where all trajectories might be equally
undesirable.

Classifier training serves as an alternative to inverse reinforcement learning for data-driven
reward specification [159, 164, 129]. However, using classifier-based rewards for reinforcement
learning is prone to exploitation by RL agents, as such agents quickly capitalize on any
imperfections in the learned classifier [41, 164]. VICE (discussed in the previous chapter)
overcomes this issue by adversarially mining negatives form the learned policy, but usually
requires a large number of samples to learn due to using an on-policy algorithm [144] for
policy improvement and classifier updates. Furthermore, it usually utilizes a large number of
goal examples (on the order of 50K for image observations) for successfully learning the task.
Our approach overcomes both of these issues, and we demonstrate that it can be used for
practical real-world reinforcement learning.

3.3 Preliminaries
While we derived the VICE algorithm in a control as inference framework in the previous
chapter, in this section we take a look at the same algorithm through a different lens: that
of goal classifier training. We first describe a naïve classifier training procedure for reward
inference, in which all positive and negative examples for training the classifier are provided
up front, and then describe the VICE version, where data collected during RL is added to
the set of negative examples.

Classifier-Based Rewards Engineering reward functions for object manipulation is dif-
ficult, especially when using image observations, because it requires identifying the state
of the objects in the world and formulating a reliable success condition programmatically.
Indeed, it is often easier for users to state whether a given outcome is successful or not than
to write a program that will do so automatically. However, current RL algorithms require
so many episodes that labeling the reward in each one manually would be impractical. A
reasonable alternative is to use a goal classifier [164, 159], where the user provides a dataset
of example states (e.g., images) before training the policy, denoted D := {(sn, yn)}, and a
binary classifier g(s) is trained to predict whether a given state is a success or failure. Once
trained, the classifier can be used to provide a reward during reinforcement learning. If the
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classifier provides a distribution pg(y|s), then a particularly convenient form for the reward
is given by log pg(y|s). As discussed in the last chapter, this has an appealing theoretical
interpretation based on a connection to control as inference [93], and in practice can provide
some degree of shaping, as log-probabilities often increase smoothly as the agent approaches
the goal.

Prior work generally requires both successful and failed examples to be part of D [164,
159]. When a policy is trained with this classifier, the policy can learn to exploit the classifier,
reaching states that are different from those that the classifier was trained on and fool it into
outputting a success label erroneously [41]. The degree of exploitation is strongly dependent
on how the negative examples are provided, and can only be avoided if a comprehensive set
of negative examples covering the entire state space is supplied.

VICE VICE overcomes this exploitation by alternating between training a discriminator to
discriminate between the positive examples and the current policy’s rollouts, and optimizing
the policy with respect to a maximum entropy objective, using log p(yt = 1|st, at) as the
reward. The discriminator in VICE is parameterized by ψ and given by the following equation:

Dψ(s, a) =
exp(fψ(s, a))

exp(fψ(s, a)) + π(a|s)
. (3.1)

As shown in the last chapter, fψ(s, a) recovers log p(e = 1|s, a) at convergence of this
adversarial learning procedure. In the next section, we will describe an approach that instead
uses a modest number of active queries from the user to address the exploitation problem.

3.4 Reinforcement Learning with Active Queries
The goal of our method, which we call reinforcement learning with active queries (RAQ), is
to learn robotic skills via reinforcement learning without requiring hand-engineered reward
functions, using data that can be easily obtained from the user. More specifically, we train
classifiers to distinguish between goal and non-goal observations, and use them to compute
rewards. Instead of learning this classifier from a pre-specified static dataset alone (as done
in prior work [159, 164]), we introduce an active learning framework that queries a user for
binary success labels for states that it would like to obtain ground truth labels for. This
addresses two major challenges with classifier-based rewards: it removes the need for the user
to provide a comprehensive set of negative examples up front, and it mitigates the classifier
exploitation problem. Let {sn}tn=1 denote the set of states that the agent encounters over
the learning process, where t is the total number of environment steps that the agent has
taken so far. At any given step t, our algorithm decides which states from {sn}tn=1 (if any) it
should query a label for. We first introduce and motivate our query mechanism, and we then
show how it can be combined with a classifier-based reward learning technique to obtain a
practical algorithm for reinforcement learning in the real world.
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Active Queries

If the robot requests user labels for every single state it sees, it will have a very accurate reward.
However, a typical RL run will collect tens or even hundreds of thousands of states worth of
data, as discussed in Section 3.8, and labeling all of these states is impractical. Minimizing
the required number of queries depends critically on the mechanism that decides which state
should be labeled. The active learning literature provides a few potential mechanisms based
on uncertainty, such as the maximum entropy heuristic. In practice, we found that the
maximum entropy heuristic does not actually produce very good results, since the goal is
not so much to obtain accurate goal classification everywhere, but rather to eliminate the
“exploitation” problem, such that the classifier does not output false positives. To that end,
we found that the most effective mechanism to select which states to label was to select the
previously-unlabeled states with the highest probability of success according to the classifier.
Recall that our reward is provided by a binary classifier, which specifies a distribution pg(y|s),
where y is a binary variable indicating success. Following VICE (Chapter 2), the reward
is given by log pg(y|s). We can select the state sk to label from the set of observed states
according to

k = arg max
t

log pg(y = 1|st) ∀ t since last query.

For most practical tasks, this query mechanism is also much more selective than the maximum
entropy rule. First, negative examples are much easier to obtain than positive examples for
most tasks, so requesting labels for only the potential positive examples avoids superfluous
queries for high-entropy states that are unlikely to be informative of success. Second, because
the policy is explicitly trying to visit states with high pg(y|s), classifier exploitation is due to
false positives rather than negatives [41]. Since only states with positive predictions can be
false positives, querying for labels for these states is an effective mechanism for mitigating
classifier exploitation.

Aside from selecting which states to label, we must also choose how often to request labels.
We adopt a simple scheme where labels are queried at fixed intervals. We found that simply
choosing a query frequency based on the expected training length and a query budget was
sufficient. For the real-world robot experiments presented this paper, we adjust the frequency
so that we make between 25 to 75 active queries for a single run of a reinforcement learning
experiment. Details on this can be found in Section 3.8.

Classifier-Based RL with Active Queries

We now explain how we combine our active query framework with classifier-based rewards
for reinforcement learning. Our approach is summarized in Algorithm 2. Similar to standard
classifier reward-based RL, we first train a classifier g on an initial dataset D. The RL
algorithm then uses log pg(y|s) as the reward, and runs for a predefined number of time steps,
at which point we select a new state to query by selecting the state with the largest value for
log pg(y|s). This labeled state is added to the dataset D, and the classifier is then fine-tuned.
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Algorithm 2 Reinforcement learning with active queries (RAQ)
Require: initial D := {(sn, yn)}
1: Update the parameters of g to minimize

∑
n L(g(sn), yn)

2: Initialize policy π, critic Q, replay buffer R
3: for each iteration do
4: for each environment step do
5: at ∼ πθ(at|st)
6: st+1 ∼ p(st+1|st, at)
7: R ← R∪ {(st, at, st+1)}
8: end for
9: for each gradient step do
10: Sample from R
11: Compute rewards: r(st)← log pg(yt|st)
12: Update π and Q according to Haarnoja et al [51]
13: end for
14: if active query then
15: k → arg max log pg(yt|st) for all t since the last query
16: if sk is a successful outcome then
17: D ← D ∪ {(sk, 1)}
18: else
19: D ← D ∪ {(sk, 0)}
20: end if
21: Update g to minimize

∑
n L(g(sn), yn)

22: end if
23: end for

We then continue training with RL, and repeat the process. This procedure is repeated until
convergence or until a fixed budget of samples or queries is exceeded.

3.5 Off-Policy VICE with Active Queries
While standard RAQ, as described in Section 4.4, is effective in mitigating the classifier
exploitation problem and can enable reinforcement learning with classifier-based rewards,
it only utilizes a very small fraction of the data that is collected when running RL. RL
algorithms typically collect tens or hundreds of thousands of transitions when learning to
solve a robotic task in the real world, but RAQ only makes tens of queries, barely using
0.1% of the data collected. Ideally, we would like to make use of all the data collected
during RL. However, as discussed in the previous chapter, VICE can effectively overcome
the classifier exploitation problem, and does so by using all of the data collected during RL
without making any active queries. In this section, we first show how VICE can be extended
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into the off-policy setting, providing a practical method for robotic RL. We then discuss
how RAQ can be combined with VICE. The resulting method, which we call VICE-RAQ,
combines the best properties of both techniques.

Off-Policy VICE

As discussed in the previous chapter, the VICE algorithm is implemented as an on-policy
reinforcement learning procedure, typically using policy gradient methods such as TRPO [144].
This makes it difficult to use for real-world robotic learning. Furthermore, VICE requires the
success examples to include both the state s and action a, which is unnatural for a user to
provide. In the following sections, we describe an extension of VICE that lifts both of these
limitations, and then present our complete VICE-RAQ algorithm, which combines VICE
with active queries.

In order to make VICE practical to use for real-world robotic learning, we must extend it
so as to make it compatible with efficient off-policy deep reinforcement learning methods, and
remove the need to obtain ground truth action labels for the positive examples, so that the
user can readily specify examples simply by showing the robot example images of successful
outcomes. Extending VICE to the off-policy setting first requires an off-policy reinforcement
learning algorithm, and the soft actor-critic algorithm [51] provides one such method. Next,
we need a way to train the discriminator (shown in Equation 3.1). While in principle this
would require importance sampling if using off-policy data from the replay buffer R, prior
work has observed that adversarial IRL can drop the importance weights both in theory [34]
and in practice [82]. We adopt the same approach, and sample negative examples for the
discriminator directly from R without importance weighting.

The standard VICE algorithm also requires the user-specified success examples to consist
of state-action tuples (s, a), since both s and a are required to update the discriminator
Dθ(s, a) when it has the form in Equation 3.1. Even when fψ(s) does not depend on the
action, the term π(a|s) in the denominator does. Providing the actions is unnatural to the
user, since the examples consist of isolated individual states showing successful outcomes (e.g.,
images of successful outcomes). Therefore, we remove the need for the user to specify actions
by integrating out the actions for the positive examples in the VICE discriminator update,
by using the current policy π(a|s). This amounts to sampling the actions for the positives,
denoted aEi , from π(a|sEi ) as shown on line 10 in Algorithm 3. At convergence, since π(a|s)
approaches the expert’s policy, this simplification produces the same action distribution, and
therefore this update has the same fixed point as when the user supplies ground truth actions.

Off-Policy VICE-RAQ

Since the set of positives in VICE is fixed at the start of the algorithm, it typically requires
a large set of positive examples provided by the user to begin with in order to prevent
overfitting, sometimes as many as several thousand. By integrating VICE with our active
query framework, we can substantially decrease the number of examples that are required,
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Algorithm 3 Off-Policy VICE-RAQ with soft actor-critic
Require: : Di := {(sn, 1)}
1: Initialize fψ (described in Equation 3.1), policy π, critic Q, replay buffer R
2: for each iteration do
3: for each environment step do
4: at ∼ πθ(at|st)
5: st+1 ∼ p(st+1|st, at)
6: R ← R∪ {(st, at, st+1)}
7: end for
8: for each gradient step for fψ do
9: Sample positives from D and negatives from R
10: Sample action labels aEi ∼ π(a|sEi )
11: Update fψ using Equation 3.1 as discriminator
12: end for
13: for each gradient step for the policy π do
14: Sample from R
15: Compute rewards: r(st)← fψ(st)
16: Update π and Q according to Haarnoja et al [51]
17: end for
18: if active query then
19: k → arg max fψ(st) for all t since the last query
20: if sk is a successful outcome then
21: D ← D ∪ {(sk, 1)}
22: end if
23: end if
24: end for

at the cost of several tens of binary queries, as in standard RAQ. To integrate RAQ with
VICE, we simply add the active queries, as in Algorithm 2, and append the labeled state to
the example set if the label is positive. If the label is negative, there is no need to append
the state, since VICE already uses all sampled states as negatives. The full VICE-RAQ
algorithm is summarized in Algorithm 3. We start out with a dataset D consisting of positive
examples. Every iteration, we collect data from the environment and use it to update fψ,
the policy, and the Q-function. At fixed intervals, we query the user using our active query
mechanism discussed in Section 3.4, and update our dataset D if the queried state is labeled
as a successful outcome. We continue running RL and updating the event probabilities fψ,
utilizing both our initial dataset and any positives that we obtained from successful queries.
This procedure continues until the policy converges, or after a specific period of time.

3.6 VICE-RAQ for Image-based Manipulation
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Figure 3.2: Our convolutional neural network
architecture. The same architecture is used for the
policy, critic, and the learned reward function.

We implemented our methods on top of a
standard open-source implementation of the
soft actor-critic algorithm [50]. We use stan-
dard hyperparameter values used for con-
tinuous control problems in this implemen-
tation, details of which can be found in Ap-
pendix B.1. The policy and the critic for each
task are represented using convolutional neu-
ral networks, shown in Figure 3.2. It consists
of two convolutional layers, each of which is
followed by a max-pooling layer, with 8 filters
in each of the convolutional layers for simulated tasks, and 32 filters per layer for real world
tasks. The flattened output of the convolutional layers is followed by two fully-connected
hidden layers with 256 units each. The ReLU non-linearity is applied after each of the
convolutional and fully-connected layers. The reward function fψ(s) is also represented using
a convolutional neural network with the same architecture.

We use log-probabilities from a neural network-based classifier as reward for reinforcement
learning. However, neural networks are known to drastically change their outputs even with
small changes to the input [153]. Thus, they provide a hard decision boundary between
different classes, which in our case is similar to running RL with sparse rewards. On the other
hand, if the output probabilities of the classifier smoothly transition between positive and
negative labels, this would provide a more shaped reward, increasing both the stability and
efficiency of the reinforcement learning process. To this end, we found mixup regularization to
be particularly well-suited for smoothing the classifier predictions [171]. We briefly summarize
this technique here. Let si, sj be any two inputs to the classifier—either from the replay
buffer, or from the set of human-provided goal examples—and let yi, yj be the corresponding
labels. Mixup regularization takes these input/output pairs, and generates the following
virtual training distribution:

s̃ = λsi + (1− λ)sj
ỹ = λyi + (1− λ)yj,

(3.2)

where λ ∼ Beta(α, α). The mixup hyperparameter α controls the extent of mixup, and
higher α corresponds to a higher level of mixup (i.e., the sampled λ are closer to 0.5 than
to 0). Zhang et al [171] showed that mixup enables smoother transitions between different
classes by encouraging linear behavior, and our experiments indicate that it indeed makes
the learned reward function smoother and more amenable to reinforcement learning. For
details, see Appendix B.1.

3.7 Simulated Experiments
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Figure 3.3: Simulated tasks. The left and right
columns depict possible starting states and goal states for
each task. In the Visual Pusher task (top), the goal is to push
a mug onto a coaster, with a randomized initial position of the
mug. The middle row shows the Visual Door Opening task,
where the goal is to open a door of a cabinet by 45 degrees.
Initially, the door is either completely closed with probabil-
ity 0.5, or open up to 15 degrees. In the Visual Picker task
(bottom), the goal is to pick up a tennis ball from a table and
hold it at a particular spot 20cm above the table. The initial
position of the tennis ball on the table is randomized.

Our simulated experiments are aimed
at providing a rigorous comparison
between RAQ (Section 3.4), our off-
policy extension of VICE (Section 3.5),
VICE-RAQ (Section 3.5), and stan-
dard classifier-based rewards [164,
159], as well as a comparison to RL
with sparse rewards. The ability to
run multiple trials for every method
on multiple tasks allows us to provide
a detailed comparison, and we have
made an open source release of our
code to reproduce all experiments in
this section1. The simulated experi-
ments are conducted on three different
tasks, illustrated in Figure 3.3. Each
of the tasks is performed using end-
effector position control with a 7-DoF
robotic arm modeled on the Rethink
Sawyer. For the picking task, the
policy can also continuously control
the opening and closing of the gripper.
The observation space of the robot is
a 48x48 RGB image. No other obser-
vations (such as joint angles or end-
effector position) are provided to the
policy. The goal is specified using a
set of goal images, as depicted in Fig-
ure 3.3. We start with 10 goal ex-
amples for each of the task, and per-
form an active query once every 25K
timesteps for the Visual Pusher task,
once every 10K timesteps for Visual
Door Opening task, and once every 1K
timesteps for the Visual Picker task.
More details about the tasks can be
found in Appendix B.1.

1https://github.com/avisingh599/reward-learning-rl

https://github.com/avisingh599/reward-learning-rl
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Figure 3.4: Results on simulated tasks. Each method is
run with five different random seeds for each task. The lines
in bold indicate the mean across five runs, while the faint
lines depict the individual random seeds for each method.
We observe that VICE-RAQ achieve the best performance
on all tasks, with RAQ being comparable to VICE-RAQ on
the Visual Pusher task. We also notice that both RAQ and
VICE have significant variance among runs, while VICE-
RAQ achieves relatively low variance towards the end of the
learning process.

We perform runs with five differ-
ent random seeds for every method
and task. The results of our ex-
periments are shown in Figure 3.4,
and videos can be found on our
project website2. Separate learn-
ing curves for all random seeds
for each method can be found in
Appendix B.1. For the pushing
task, we observe that both off-policy
VICE and VICE-RAQ perform well,
and solve the task for all random
seeds, while RAQ, the naïve clas-
sifier and the ground truth sparse
reward baselines only succeed for
some of the runs. For the harder
door opening task, we observe that
VICE-RAQ outperforms all other
methods, and is able to achieve a
success rate of nearly 100% across
random seeds. The performance of
off-policy VICE and RAQ is compa-
rable for this task, with some runs
failing and others succeeding for
both the methods. The naiïve clas-
sifier and the sparse reward base-
lines completely fail for all seeds but
one. We see a similar pattern for
the Visual Picker task, with VICE-
RAQ strongly outperforming all
other methods, and naïve classifier-
based reward and sparse rewards
failing to solve the task for most
seeds. Our off-policy extension of
VICE slightly outperforms RAQ for this task.

3.8 Real-World Experiments

2https://sites.google.com/view/reward-learning-rl/home

https://sites.google.com/view/reward-learning-rl/home
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Figure 3.5: Real-world tasks. The left column de-
picts possible starting states of the task, while the right
column depicts possible goal states. The top row shows
the Visual Pusher task, in which the goal is to push a
mug onto a coaster, and the initial position of the mug is
randomized. The middle row presents the Visual Draping
task, where the goal is to drape a cloth over an object.
The bottom row depicts the Visual Bookshelf task, where
the goal is to inset a book in one of the multiple empty
slots in the bookshelf.

Our real world experiments aim to
study end-to-end reinforcement learn-
ing from pixels without manually engi-
neered rewards nor instrumentation of
the environment to measure rewards.
We evaluate all of our methods, RAQ,
off-policy VICE, and VICE-RAQ, on
three complex tasks from vision: push-
ing a mug onto a coaster, draping a
cloth over a box, and a task that re-
quires the robot to insert a book onto
a shelf between other books. We also
provide a naïve classifier-based base-
line as a comparison for all of the
tasks. The goal of these experiments
is to verify that VICE-RAQ can suc-
cessfully learn complex tasks, includ-
ing non-prehensile manipulation (push-
ing), tasks with multiple success con-
ditions (where the book can be placed
in one of several locations), and tasks
with deformable objects (cloth drap-
ing). For all our experiments, we use
end-effector position control on a 7
DoF Sawyer robotic manipulator, and
our observations consist of an RGB
image of size 84 × 84. We do not
make use of robot joint angles or end
effector-positions. The final success
rates of the trained policies for each
of these tasks are shown in Figure 3.1.
We first discuss the individual tasks,

and then the experimental results.

Visual Pushing This non-prehensile manipulation task (depicted in Figure 3.5) requires
the robot to push a mug onto a coaster. The position of the mug and coaster must be inferred
from the images, and the initial position of the mug varies between different trials. In order
to succeed, the robot should push the mug such that is gets placed completely within the
coaster. Here, the robot must make use of the images to determine whether it has achieved
the goal successfully, and the increased challenge of non-prehensile manipulation allows to
better differentiate the performance of the different methods.
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Figure 3.6: In this figure, we demonstrate
why learning a reward function on pixels is
necessary for solving complex tasks in the
real world. The task here is to drape a cloth
over a box. The top row shows a rollout
from the final policy trained by our method,
while the bottom row shows a rollout from a
policy trained on a hand-defined reward on
robot state alone. Our policy is able to suc-
cessfully drape the cloth over the box, while
the policy trained without vision only sees
the end-effector position, which it succeeds in
moving to the right place, but fails to drape
the cloth on the box.

Figure 3.7: In this figure, we demonstrate how
classifiers are more expressive than goal images for
describing a task. The goal for this task is place
a book in any empty slot in a bookshelf, and the
initial position of the robot arm holding the book
is randomized. The top row shows a rollout when
the book starts on the right, while the bottom row
shows a rollout when the book starts on the left.
Here, we see that our method learns a policy to
insert the book in different slots in the bookshelf
depending on where the book is at the start of a
trajectory. The robot usually prefers to put the
book in the nearest slot, since this maximizes the
reward that it can obtain from the classifier. On
the other hand, if we were using goal images to
specify the task, the robot would always place
the book in one of the two slots, regardless of the
starting position of the book.

Visual Draping This task requires draping a cloth over a box – essentially a miniaturized
version of a tablecloth draping task. This task is depicted in Figures 3.5 and 3.6. The robot
starts with holding the cloth in its gripper over the box. In order to succeed, it must drape
the cloth smoothly, without crumpling it and without creating any wrinkles. In order to
demonstrate the challenges associated with this task, we ran a baseline that only used the
robot’s end effector position as observation and a hand-defined a reward function on this
observation (Euclidean distance to goal). We observed that this baseline failed to achieve the
objective of this task, as it simply moved the end effector in a straight line motion to the
goal, while this task cannot be solved using any straight line trajectory. See Figure 3.6 for
more details.

Visual Bookshelf In this task, the goal is to insert a book into an empty slot on a
bookshelf. The task is depicted in Figures 3.5 and 3.7. The initial position of the arm holding
the book is randomized, requiring the robot to succeed from any starting position. Crucially,
the bookshelf has several open slots, which means that, from different starting positions,
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different slots may be preferred. We chose this task to emphasize that a goal classifier is
fundamentally different from a goal state: there is not a single “goal image” that represents
success at the task, but rather a condition on the position of the book that can be fulfilled in
different ways (see Figure 3.7). The successful outcome examples correspondingly illustrate
successful placements in both positions.

We provide 80 success examples each for the pushing, draping and book placing tasks. We
query once every 250 timesteps for the pushing and book placing task, while querying once
every 500 timesteps for the draping task. The Visual Pusher experiments are run for 6.2K
timesteps (about 90 minutes of real world time), the Visual Draping experiments are run for
25K timesteps (about 4 hours), and the Visual Bookshelf experiment is run for 19K timesteps
(about 3 hours). We therefore make 25 queries for the pushing experiment, 50 queries for
the draping experiment, and 75 queries for the book placing experiment. Note that all of
these tasks are learned directly from raw images, making these training times very efficient as
compared to prior methods, including methods that use ground truth rewards [72, 50, 96, 129].
We hypothesize that the regularized classifiers learned by our method provide favorable reward
shaping that makes image-based RL not only more practical, by not requiring engineered
rewards, but also substantially more efficient.

VICE-RAQ RAQ VICE Naïve
(ours) (ours) (ours) Classifier

visual pushing 100% 60% 0% 0%
visual draping 100% 100% 100% 0%
visual bookshelf 100% 0% 60% 0%

Table 3.1: Results on the real world robot experiments. For all
tasks, the reported numbers are success rates, indicating whether or
not the object was successfully pushed to the goal, whether the cloth
was successfully draped over the able, and whether the book was placed
correctly on the shelf, averaged across 10 trials. In all cases, VICE-RAQ
succeeds at learning the task, while VICE and RAQ succeed at some
tasks while failing at others.

The results of our exper-
iments are provided in Fig-
ure 3.1, and videos of the tasks
are provided on the project
website3. All the tasks are eval-
uated in terms of success rates.

The Visual Pushing task
requires the robot to inter-
pret the RGB camera images
and deal with variability in
the mug placement. For this
task, VICE-RAQ obtains a suc-
cess rate of 100%, while RAQ
only obtains a success rate of
60%. Both off-policy VICE
and naïve classifier fail to solve
this task. This indicates that including active queries in the classifier training process is
helpful for obtaining good rewards, both with and without VICE. These experiments further
show that VICE-RAQ can improve upon RAQ via leveraging the data collected by the policy
during the reinforcement learning process.

For the Visual Draping task, we observe that all of our reward-learning methods (off-policy
VICE, VICE-RAQ and RAQ) are able to solve the task, and only the naïve classifier baseline
fails. We also compare to a baseline that is based on a reward defined on the robot state

3https://sites.google.com/view/reward-learning-rl/home

https://sites.google.com/view/reward-learning-rl/home
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alone, in this case, the 3D position of the end-effector (the reward being the Euclidean
distance to a goal end-effector position). We observe that this baseline fails to solve the
task (see Figure 3.6). This indicates that performing this task requires the robot to actually
pay attention, visually, to the deformations in the cloth, in order to perform the draping
successfully. Manually designing reward functions for such deformable object manipulation
tasks is generally extremely difficult, but all variants of our method are able to handle it
successfully.

For the Visual Bookshelf task, where success corresponds to whether the book was
successfully placed in an empty slot on the bookshelf or not), we see that RAQ alone is unable
to solve this task, while off-policy VICE learns a policy that only succeeds sporadically. The
policy learned with VICE-RAQ solves this task consistently, indicating that the combination
of query labels and negative labels from all visited states from VICE provide improved
classifier training.

3.9 Conclusion
In this chapter, we proposed an approach to reinforcement learning without hand-programmed
reward functions. Our method, which we call VICE-RAQ, builds on the method introduced in
the previous chapter and constructs a reward function from a modest number of user-provided
examples of successful outcomes, which in practice might consist simply of pictures of the scene
where the task has been successfully completed. Such examples are often substantially easier
for a user to provide than either hand-programmed reward functions or full demonstrations.
The initial reward is constructed out of a classifier trained on these examples and adversarially
mined negatives. Beyond the initially provided success examples, our method uses a modest
number of active queries, where the user is asked to label outcomes achieved by the robot
as either successful or not. These additional queries are also simple to provide, and roughly
correspond to the user directly reinforcing the robot’s behavior. However, the user does not
need to label all of the robot’s experience – only about 50 queries are used in our experiments,
out of tens of thousands of transitions.

By enabling robotic reinforcement learning without user-programmed reward functions or
demonstrations, we believe that our approach represents a significant step towards making
reinforcement learning a practical, automated, and readily usable tool for enabling versatile
and capable robotic manipulation. By making it possible for robots to improve their skills
directly in real-world environments, without any instrumentation or manual reward design,
we believe that our method also represents a step toward enabling lifelong learning for robotic
systems that learn directly “in the wild.” This capability can make it feasible in the future for
robots to acquire broad and highly generalizable skill repertoires directly through interaction
with the real world.
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Chapter 4

Parrot: Data-Driven Behavioral Priors
for Reinforcement Learning

4.1 Introduction
Reinforcement Learning (RL) is an attractive paradigm for robotic learning because of its
flexibility in being able to learn a diverse range of skills and its capacity to continuously
improve. However, RL algorithms typically require a large amount of data to solve each
individual task, including simple ones. Since an RL agent is generally initialized without
any prior knowledge, it must try many largely unproductive behaviors before it discovers a
high-reward outcome. In contrast, humans rarely attempt to solve new tasks in this way:
they draw on their prior experience of what is useful when they attempt a new task, which
substantially shrinks the task search space. For example, faced with a new task involving
objects on a table, a person might grasp an object, stack multiple objects, or explore other
object rearrangements, rather than re-learning how to move their arms and fingers.

Can we endow RL agents with a similar sort of behavioral prior from past experience? In
other fields of machine learning, the use of large prior datasets to bootstrap acquisition of
new capabilities has been studied extensively to good effect. For example, language models
trained on large, diverse datasets offer representations that drastically improve the efficiency
of learning downstream tasks [18]. What would be the analogue of this kind of pre-training
in robotics and RL? One way we can approach this problem is to leverage successful trials
from a wide range of previously seen tasks to improve learning for new tasks. The data could
come from previously learned policies, from human demonstrations, or even unstructured
teleoperation of robots [100]. In this paper, we show that behavioral priors can be obtained
through representation learning, and the representation in question must not only be a
representation of inputs, but actually a representation of input-output relationships – a space
of possible and likely mappings from states to actions among which the learning process can
interpolate when confronted with a new task.

What makes for a good representation for RL? Given a new task, a good representation
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Figure 4.1: Our problem setting. Our training dataset consists of near-optimal state-action trajectories
(without reward labels) from a wide range of tasks. Each task might involve interacting with a different set of
objects. Even for the same set of objects, the task can be different depending on our objective. For example,
in the upper right corner, the objective could be picking up a cup, or it could be to place the bottle on the
yellow cube. We learn a behavioral prior from this multi-task dataset capable of trying many different useful
behaviors when placed in a new environment, and can aid an RL agent to quickly learn a specific task in this
new environment.

must (a) provide an effective exploration strategy, (b) simplify the policy learning problem
for the RL algorithm, and (c) allow the RL agent to retain full control over the environment.
In this paper, we address all of these challenges through learning an invertible function that
maps noise vectors to complex, high-dimensional environment actions. Building on prior work
in normalizing flows [20], we train this mapping to maximize the (conditional) log-likelihood
of actions observed in successful trials from past tasks. When dropped into a new MDP, the
RL agent can now sample from a unit Gaussian, and use the learned mapping (which we refer
to as the behavioral prior) to generate likely environment actions, conditional on the current
observation. This learned mapping essentially transforms the original MDP into a simpler
one for the RL agent, as long as the original MDP shares (partial) structure with previously
seen MDPs (see Section 4.3). Furthermore, since this mapping is invertible, the RL agent
still retains full control over the original MDP: for every possible environment action, there
exists a point within the support of the Gaussian distribution that maps to that action. This
allows the RL agent to still try out new behaviors that are distinct from what was previously
observed.

Our main contribution is a framework for pre-training in RL from a diverse multi-
task dataset, which produces a behavioral prior that accelerates acquisition of new skills.
We present an instantiation of this framework in robotic manipulation, where we utilize
manipulation data from a diverse range of prior tasks to train our behavioral prior, and
then use it to bootstrap exploration for new tasks. By making it possible to pre-train action
representations on large prior datasets for robotics and RL, we hope that our method provides
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a path toward leveraging large datasets in the RL and robotics settings, much like language
models can leverage large text corpora in NLP and unsupervised pre-training can leverage
large image datasets in computer vision. Our method, which we call Prior AcceleRated
ReinfOrcemenT (or PARROT), is able to quickly learn tasks that involve manipulating
previously unseen objects, from image observations and sparse rewards, in settings where
RL from scratch fails to learn a policy at all. We also compare against prior works that
incorporate prior data for RL, and show that PARROT substantially outperforms these prior
works.

4.2 Relation to Prior Work
Generative modeling and RL. There is another line of work [44, 53, 43] that explores using
generative models for RL, using a variational autoencoder [78] to model entire trajectories
in an observation-independent manner, and then learning an open-loop, single-step policy
using RL to solve the downstream task. Our approach differs in several key aspects: (1) our
model is observation-conditioned, allowing it to prioritize actions that are relevant to the
current scene or environment, (2) our model allows for closed-loop feedback control, and (3)
our model is invertible, allowing the high-level policy to retain full control over the action
space. Our experiments demonstrate these aspects are crucial for solving harder tasks.

Hierarchical learning. Our method can be interpreted as training a hierarchical model:
the low-level policy is the behavioral prior trained on prior data, while the high-level policy
is trained using RL and controls the low-level policy. This structure is similar to prior work
in hierarchical RL [17, 122, 19, 152, 84]. We divide prior work in hierarchical learning into
two categories: methods that seek to learn both the low-level and high-level policies through
active interaction with an environment [90, 55, 6, 36, 48, 111, 9, 125], and methods that
learn temporally extended actions, also known as options, from demonstrations, and then
recompose them to perform long-horizon tasks through RL or planning [37, 83, 79, 146, 145].
Our work shares similarities with the data-driven approach of the latter methods, but work
on options focuses on modeling the temporal structure in demonstrations for a small number
of long-horizon tasks, while our behavioral prior is not concerned with temporally-extended
abstractions, but rather with transforming the original MDP into one where potentially useful
behaviors are more likely, and useless behaviors are less likely.

Meta-learning. Our goal in this paper is to utilize data from previously seen tasks
to speed up RL for new tasks. Meta-RL [23, 161, 31, 107, 132, 106, 177, 28] and meta-
imitation methods [22, 35, 64, 68, 121, 169, 63, 172] also seek to speed up learning for new
tasks by leveraging experience from previously seen tasks. While meta-learning provides an
appealing and principled framework to accelerate acquisition of future tasks, we focus on a
more lightweight approach with relaxed assumptions that make our method more practically
applicable, and we discuss these assumptions in detail in the next section.
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4.3 Problem Setup
Our goal is to improve an agent’s ability to learn new tasks by incorporating a behavioral
prior, which it can acquire from previously seen tasks. Each task can be considered a Markov
decision process (MDP), which is defined by a tuple (S,A,T, r, γ), where S and A represent
state and action spaces, T(s′|s, a) and r(s, a) represent the dynamics and reward functions,
and γ ∈ (0, 1) represents the discount factor. Let p(M) denote a distribution over such
MDPs, with the constraint that the state and action spaces are fixed. In our experiments, we
treat high-dimensional images as s, which means that this constraint is not very restrictive
in practice. In order for the behavioral prior to be able to accelerate the acquisition of new
skills, we assume the behavioral prior is trained on data that structurally resembles potential
optimal policies for all or part of the new task. For example, if the new task requires placing
a bottle in a tray, the prior data might include some behaviors that involve picking up objects.
There are many ways to formalize this assumption. One way to state this formally is to
assume that prior data consists of executions of near-optimal policies [] for MDPs drawn
according to M ∼ p(M), and the new task M? is likewise drawn from p(M). In this case,
the generative process for the prior data can be expressed as:

M ∼ p(M), πM(τ) = arg max
π

Eπ,M [RM ], τM ∼ πM(τ), (4.1)

where τM = (s1, a1, s2, a2, . . . , sT , aT ) is a sequence of state and actions, πM(τ) denotes a
near-optimal policy [76] for MDP M and RM =

∑∞
t=0 γ

trt.
When incorporating the behavioral prior for learning a new task M?, our goal is the same

as standard RL: to find a policy π that maximizes the expected return arg maxπ Eπ,M? [RM? ].
Our assumption on tasks being drawn from a distribution p(M) shares similarities with the
meta-RL problem [161, 23], but our setup is different: it does not require accessing any
task in p(M) except the new task we are learning, M?. Meta-RL methods need to interact
with the tasks in p(M) during meta-training, with access to rewards and additional samples,
whereas we learn our behavioral prior simply from data, without even requiring this data
to be labeled with rewards. This is of particular importance for real-world problem settings
such as robotics: it is much easier to store data from prior tasks (e.g., different environments)
than to have a robot physically revisit those prior settings and retry those tasks, and not
requiring known rewards makes it possible to use data from a variety of sources, including
human-provided demonstrations. In our setting, RL is performed in only one environment,
while the prior data can come from many environments.

Our setting is related to meta-imitation learning [22, 35], as we speed up learning
new tasks using data collected from past tasks. However, meta-imitation learning methods
require at least one demonstration for each new task, whereas our method can learn new
tasks without any demonstrations. Further, our data requirements are less stringent: meta-
imitation learning methods require all demonstrations to be optimal, require all trajectories
in the dataset to have a task label, and requires “paired demonstrations", i.e. at least two
demonstrations for each task (since meta-imitation methods maximize the likelihood of
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Figure 4.2: PARROT. Using successful trials from a large variety of tasks, we learn an invertible mapping
fφ that maps noise z to useful actions a. This mapping is conditioned on the current observation, which in
our case is an RGB image. The image is passed through a stack of convolutional layers and flattened to obtain
an image encoding ψ(s), and this image encoding is then used to condition each individual transformation fi
of our overall mapping function fφ. The parameters of the mapping (including the convolutional encoder)
are learned through maximizing the conditional log-likelihood of state-action pairs observed in the dataset.
When learning a new task, this mapping can simplify the MDP for an RL agent by mapping actions sampled
from a randomly initialized policy to actions that are likely to lead to useful behavior in the current scene.
Since the mapping is invertible, the RL agent still retains full control over the action space of the original
MDP, simply the likelihood of executing a useful action is increased through use of the pre-trained mapping.

actions from one demonstration after conditioning the policy on another demonstration from
the same task). Relaxing these requirements increases the scalability of our method: we can
incorporate data from a wider range of sources, and we do not need to explicitly organize it
into specific tasks.

4.4 Behavioral Priors For Reinforcement Learning
Our method learns a behavioral prior for downstream RL by utilizing a dataset D of
(near-optimal) state-action pairs from previously seen tasks. We do so by learning a state-
conditioned mapping fφ:Z ×S → A (where φ denotes learnable parameters) that transforms
a noise vector z into an action a that is likely to be useful in the current state s. This removes
the need for exploring via “meaningless” random behavior, and instead enables an exploration
process where the agent attempts behaviors that have been shown to be useful in previously
seen domains. For example, if a robotic arm is placed in front of several objects, randomly
sampling z (from a simple distribution, such as the unit Gaussian) and applying the mapping
a = fφ(z; s) should result in actions that, when executed, result in meaningful interactions
with the objects. This learned mapping essentially transforms the MDP experienced by the
RL agent into a simpler one, where every random action executed in this transformed MDP
is much more likely to lead to a useful behavior.

How can we learn such a mapping? In this paper, we propose to learn this mapping
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through state-conditioned generative modeling of the actions observed in the original dataset
D, and we refer to this state-conditioned distribution over actions as the behavioral prior
pprior(a|s). A deep generative model takes noise as input, and outputs a plausible sample from
the target distribution, i.e. it can represent pprior(a|s) as a distribution over noise z using a
deterministic mapping fφ : Z × S 7→ A When learning a new task, we can use this mapping
to reparametrize the action space of the RL agent: if the action chosen by the randomly
initialized neural network policy is z, then we execute the action a = fφ(z; s) in the original
MDP, and learn a policy π(z|s) that maximizes the task reward through learning to control
the inputs to the mapping fφ. The training of the behavioral prior and the task-specific
policy is decoupled, allowing us to mix and match RL algorithms and generative models to
best suit the application of interest. An overview of our overall architecture is depicted in
Figure 4.2. In the next subsection, we discuss what properties we would like the behavioral
prior to satisfy, and present one particular choice for learning a prior that satisfies all of these
properties.

Learning a Behavioral Prior With Normalizing Flows

For the behavioral prior to be effective, it needs to satisfy certain properties. Since we
learn the prior from a multi-task dataset, containing several different behaviors even for the
same initial state, the learned prior should be capable of representing complex, multi-modal
distributions. Second, it should provide a mapping for generating “useful" actions from noise
samples when learning a new task. Third, the prior should be state-conditioned, so that
only actions that are relevant to the current state are sampled. And finally, the learned
mapping should allow easier learning in the reparameterized action space without hindering
the RL agent’s ability to attempt novel behaviors, including actions that might not have
been observed in the dataset D. Generative models based on normalizing flows [20] satisfy all
of these properties well: they allow maximizing the model’s exact log-likelihood of observed
examples, and learn a deterministic, invertible mapping that transforms samples from a simple
distribution pz to examples observed in the training dataset. In particular, the real-valued
non-volume preserving (real NVP) architecture introduced by Dinh et al [20] allows using
deep neural networks to parameterize this mapping (making it expressive) While the original
real NVP work modelled unconditional distributions, follow-up work has found that it can
be easily extended to incorporate conditioning information [4]. We refer the reader to prior
work [20] for a complete description of real NVPs, and summarize its key features here. Given
an invertible mapping a = fφ(z; s), the change of variable formula allows expressing the
likelihood of the observed actions using samples from D in the following way:

pprior(a|s) = pz
(
f−1
φ (a; s)

) ∣∣det
(
∂f−1
φ (a;s)/∂a

)∣∣ (4.2)

Dinh et al [20] propose a particular (unconditioned) form of the invertible mapping fφ, called
an affine coupling layer, that maintains tractability of the likelihood term above, while still
allowing the mapping fφ to be expressive. Several coupling layers can be composed together



CHAPTER 4. PARROT: DATA-DRIVEN BEHAVIORAL PRIORS FOR
REINFORCEMENT LEARNING 39

to transform simple noise vectors into samples from complex distributions, and each layer
can be conditioned on other variables, as shown in Figure 4.2.

Accelerated Reinforcement Learning via Behavioral Priors

After we obtain the mapping fφ(z; s) from the behavioral prior learned by maximizing the
likelihood term in Equation 4.2, we would like to use it to accelerate RL when solving a new
task. Instead of learning a policy πθ(a|s) that directly executes its actions in the original
MDP, we learn a policy πθ(z|s), and execute an action in the environment according to
a = fφ(z; s). As shown in Figure 4.2, this essentially transforms the MDP experienced for
the RL agent into one where random actions z ∼ pz (where pz is the base distribution used
for training the mapping fφ) are much more likely to result in useful behaviors. To enable
effective exploration at the start of the learning period, we initialize the RL policy to the base
distribution used for training the prior, so that at the beginning of training, πθ(z|s) := pz(z).
Since the mapping fφ is invertible, the RL agent still retains full control over the action space:
for any given a, it can always find a z that generates z = f−1

φ (a; s) in the original MDP. The
learned mapping increases the likelihood of useful actions without crippling the RL agent,
making it ideal for fine-tuning from task-specific data. Our complete method is described in
Algorithm 4 in Appendix C.1. Note that we need to learn the mapping fφ only once, and it
can be used for accelerated learning of any new task.

Implementation Details

We use real NVP to learn fφ, and as shown in Figure 4.2, each coupling layer in the real NVP
takes as input the the output of the previous coupling layer, and the conditioning information.
The conditioning information in our case corresponds to RGB image observations, which
allows us to train a single behavioral prior across a wide variety of tasks, even when the
tasks might have different underlying states (for example, different objects). We train a real
NVP model with four coupling layers; the exact architecture, and other hyperparameters,
are detailed in Appendix C.2. The behavioral prior can be combined with any RL algorithm
that is suitable for continuous action spaces, and we chose to use the soft actor-critic [50] due
to its stability and ease of use.

4.5 Experiments
Our experiments seek to answer: (1) Can the behavioral prior accelerate learning of new tasks?
(2) How does PARROT compare to prior works that accelerate RL with demonstrations? (3)
How does PARROT compare to prior methods that combine hierarchical imitation with RL?

Domains. We evaluate our method on a suite of challenging robotic manipulation tasks,
a subset of which are depicted in Figure 4.3. Each task involves controlling a 6-DoF robotic
arm and its gripper, with a 7D action space. The observation is a 48 × 48 RGB image,
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which allows us to use the same observation representation across tasks, even though each
underlying task might have a different underlying state (e.g., different objects). No other
observations (such as joint angles or end-effector positions) are provided. In each task, the
robot needs to interact with one or two objects in the scene to achieve its objective, and there
are three objects in each scene. Note that all of the objects in the test scenes are novel – the
dataset D contains no interactions with these objects. The object positions at the start of
each trial are randomized, and the policy must infer these positions from image observations
in order to successfully solve the task. A reward of +1 is provided when the objective for the
task is achieved, and the reward is zero otherwise. Detailed information on the objective for
each task and example rollouts are provided in Appendix C.3, and on our anonymous project
website1.

Figure 4.3: Tasks. A subset of our evaluation
tasks, with one task shown in each row. In the
first task (first row), the objective is to pick up a
can and place it in the pan. In the second task,
the robot must pick up the vase and put it in the
basket. In the third task, the goal is to place the
chair on top of the checkerboard. In the fourth
task, the robot must pick up the mug and hold
it above a certain height. Initial positions of all
objects are randomized, and must be inferred from
visual observations. Not all objects in the scene
are relevant to the current task.

Data collection. Our behavioral prior is
trained on a diverse dataset of trajectories from
a wide range of tasks, and then utilized to ac-
celerate reinforcement learning of new tasks. As
discussed in Section 4.3, for the prior to be ef-
fective, it needs to be trained on a dataset that
structurally resembles the behaviors that might
be optimal for the new tasks. In our case, all of
the behaviors involve repositioning objects (i.e.,
picking up objects and moving them to new lo-
cations), which represents a very general class
of tasks that might be performed by a robotic
arm. While the dataset can be collected in many
ways, such as from human demonstrations or
prior tasks solved by the robot, we collect it
using a set of randomized scripted policies, see
Appendix C.3 for details. Since the policies are
randomized, not every execution of such a policy
results in a useful behavior, and we decide to
keep or discard a collected trajectory based on a
simple predefined rule: if the trajectory collected
ends with a successful grasp or rearrangement of
any one of the objects in the scene, we add this
trajectory to our dataset. We collect a dataset
of 50K trajectories, where each trajectory is of
length 25 timesteps (≈5-6 seconds), for a total of
1.25m observation-action pairs. The observation
is a 48×48 RGB image, while the actions are continuous 7D vectors. Data collection involves
interactions with over 50 everyday objects (see Appendix C.3); the diversity of this dataset

1https://sites.google.com/view/parrot-rl

https://sites.google.com/view/parrot-rl
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enables learning priors that can produce useful behavior when interacting with a new object.

Results, Comparisons and Analysis

To answer the questions posed at the start of this section, we compare PARROT against a
number of prior works, as well as ablations of our method. Additional implementation details
and hyperparameters can be found in Appendix C.2.

Soft-Actor Critic (SAC). For a basic RL comparison, we compare against the vanilla
soft-actor critic algorithm [50], which does not incorporate any previously collected data.

SAC with demonstrations (BC-SAC). We compare against a method that incorpo-
rates demonstrations to speed up learning of new tasks. In particular, we initialize the SAC
policy by performing behavioral cloning on the entire dataset D, and then fine-tune it using
SAC. This approach is similar to what has been used in prior work [130], except we use SAC
as our RL algorithm. While we did test other methods that are designed to use demonstration
data with RL such as DDPGfD [160] and AWAC [112], we found that our simple BC + SAC
variant performed better. This somewhat contradicts the results reported in prior work [112],
but we believe that this is because the prior data is not labeled with rewards (all transitions
are assigned a reward of 0), and more powerful demonstration + RL methods require access
to these rewards, and subsequently struggle due to the reward misspecification.

Figure 4.4: We plot trajectories from executing
a random policy, with and without the behav-
ioral prior. We see that the behavioral prior
substantially increases the likelihood of executing
an action that is likely to lead to a meaningful
interaction with an object, while still exploring a
diverse set of actions.

Transfer Learning via Feature Learning
(VAE-features). We compare against prior
methods for transfer learning (in RL) that involve
learning a robust representation of the input ob-
servation. Similar to Higgins et al [58], we train a
β-VAE using the observations in our training set,
and train a policy on top of the features learned
by this VAE when learning downstream tasks.

Trajectory modeling and RL (TrajRL).
Ghadirzadeh et al [43] model entire trajectories
using a VAE, and learn a one-step policy on top of
the VAE to solve tasks using RL. Our implemen-
tation of this method uses a VAE architecture
identical to the original paper’s, and we then
train a policy using SAC to solve new tasks with
the action space induced by the VAE. We per-
formed additional hyperparameter tuning for this
comparison, the details of which can be found in
Appendix C.2.

Hierarchical imitation and RL (HIRL). Prior works in hierarchical imitation learn-
ing [37, 145] train latent variable models over expert demonstrations to discover options, and
later utilize these options to learn long-horizon tasks using RL. While PARROT can also be
extended to model the temporal structure in trajectories through conditioning on past states
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Figure 4.5: Results. The lines represent average performance across multiple random seeds, and the
shaded areas represent the standard deviation. PARROT is able to learn much faster than prior methods on
a majority of the tasks, and shows little variance across runs (all experiments were run with three random
seeds, computational constraints of image-based RL make it difficult to run more seeds). Note that some
methods that failed to make any progress on certain tasks (such as “Place Sculpture in Basket") overlap each
other with a success rate of zero. SAC and VAE-features fail to make progress on any of the tasks.

and actions, by modeling pprior(at, |st, st−1, ..., at−1, ..., a0) instead of pprior(at|st), we focus on
a simpler version of the model in this paper that does not condition on the past. In order to
provide a fair comparison, we modify the model proposed by Shankar et al [145] to remove
the past conditioning, which then reduces to training a conditional VAE, and performing RL
on the action space induced by the latent space of this VAE. This comparison is similar to our
proposed approach, but with one crucial difference: the mapping we learn is invertible, and
allows the RL agent to retain full control over the final actions in the environment (since for
every a ∈ A, there exist some z = f−1

φ (a; s), while a latent space learned by a VAE provides
no such guarantee).

Exploration via behavioral prior (Prior-explore). We also run experiments with
an ablation of our method: instead of using a behavioral prior to transform the MDP being
experienced by the RL agent, we use it to simply aid the exploration process. While collecting
data, an action is executed from the prior with probability ε, else an action is executed from
the learned policy. We experimented with ε = 0.1, 0.3, 0.7, 0.9, and found 0.9 to perform best.

Main results. Our results are summarised in Figure 4.5. We see that PARROT is able
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Figure 4.6: Impact of dataset size on performance. We observe that training on 10K, 25K or 50K
trajectories yields similar performance.

to solve all of the tasks substantially faster and achieve substantially higher final returns than
other methods. The SAC baseline (which does not use any prior data) fails to make progress
on any of the tasks, which we suspect is due to the challenge of exploring in sparse reward
settings with a randomly initialized policy. Figure 4.4 illustrates a comparison between using
a behavioral prior and a random policy for exploration. The VAE-features baseline similarly
fails to make any progress, and due to the same reason: the difficulty of exploration in a
sparse reward setting. Initializing the SAC policy with behavior cloning allows it to make
progress on only two of the tasks, which is not surprising: a Gaussian policy learned through
a behavior cloning loss is not expressive enough to represent the complex, multi-modal action
distributions observed in dataset D. Both TrajRL and HIRL perform much better than
any of the other baselines, but their performance plateaus a lot earlier than PARROT. While
the initial exploration performance of our learned behavioral prior is not substantially better
from these methods (denoted by the initial success rate in the learning curves), the flexibility
of the representation it offers (through learning an invertible mapping) allows the RL agent
to improve far beyond its initial performance. Prior-explore, an ablation of our method, is
able to make progress on most tasks, but is unable to learn as fast as our method, and also
demonstrates unstable learning on some of the tasks. We suspect this is due to the following
reason: while off-policy RL methods like SAC aim to learn from data collected by any policy,
they are in practice quite sensitive to the data distribution, and can run into issues if the
data collection policy differs substantially from the policy being learned [87].

Impact of dataset size on performance. We conducted additional experiments on
a subset of our tasks to evaluate how final performance is impacted as a result of dataset
size, results from which are shown in Figure 4.6. As one might expect, the size of the
dataset positively correlates with performance, but about 10K trajectories are sufficient for
obtaining good performance, and collecting additional data yields diminishing returns. Note
that initializing with even a smaller dataset size (like 5K trajectories) yields much better
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performance than learning from scratch.

Figure 4.7: Impact of train/test mismatch on
performance. Each plot shows results for four tasks.
Note that for the pick and place tasks, the performance
is close to zero, and the curves mostly overlap each
other on the x-axis.

Mismatch between train and test
tasks. We ran experiments in which we de-
liberately bias the training dataset so that
the training tasks and test tasks are func-
tionally different (i.e. involve substantially
different actions), the results from which are
shown in Figure 4.7. We observe that if the
prior is trained on pick and place tasks alone,
it can still solve downstream grasping tasks
well. However, if the prior is trained only on
grasping, it is unable to perform well when
solving pick and place tasks. We suspect
this is due to the fact that pick and place
tasks involve a completely new action (that of
opening the gripper), which is never observed
by the prior if it is trained only on grasping,
making it difficult to learn this behavior from
scratch for downstream tasks.

4.6 Conclusion
We presented PARROT, a method for learning behavioral priors using successful trials
from a wide range of tasks. Learning from priors accelerates RL on new tasks–including
manipulating previously unseen objects from high-dimensional image observations–which RL
from scratch often fails to learn. Our method also compares favorably to other prior works
that use prior data to bootstrap learning for new tasks. While our method learns faster and
performs better than prior work in learning novel tasks, it still requires thousands of trials to
attain high success rates. Improving this efficiency even further, perhaps inspired by ideas in
meta-learning, could be a promising direction for future work. Our work opens the possibility
for several exciting future directions. PARROT provides a mapping for executing actions in
new environments structurally similar to those of prior tasks. While we primarily utilized this
mapping to accelerate learning of new tasks, future work could investigate how it can also
enable safe exploration of new environments [65, 136]. While the invertibility of our learned
mapping ensures that it is theoretically possible for the RL policy to execute any action in
the original MDP, the probability of executing an action can become very low if this action
was never seen in the training set. This can be an issue if there is a significant mismatch
between the training dataset and the downstream task (as shown in our experiments), and
tackling this issue would make for an interesting problem.
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Chapter 5

COG: Connecting New Skills to Past
Experience with Offline Reinforcement
Learning

5.1 Introduction
Consider a robot that has been trained using reinforcement learning (RL) to take an object
out of an open drawer. It learns to grasp the object and pull it out of the drawer. If the
robot is then placed in a scene where the drawer is instead closed, it will likely fail to take the
object out, since it has not seen this scenario or initial condition before. How can we enable
learning-based robotic systems to reason effectively about such scenarios? Conventionally,
we might expect that complex methods based on hierarchies or explicit skill decomposition
would be needed to integrate a drawer opening skill with the grasping behavior. But what if
simply combining previously collected (and unlabeled) robot interaction data, which might
include drawer opening and other behaviors, together with offline RL methods [97], can allow
these behaviors to be combined automatically, without any explicit separation into individual
skills? In this paper, we study how model-free RL algorithms can utilize prior data to extend
and generalize learned behaviors, incorporating segments of experience from this prior data
as needed at test-time.

Standard online RL algorithms typically require a tight interaction loop between data
collection and policy learning. There has been a significant amount of recent interest in
devising methods for offline RL [97, 42, 86, 88, 2, 69], which can leverage previously collected
datasets without environment interaction. In this paper, we build on recent advances in
offline RL, and show that a “data-driven” RL paradigm allows us to build real-world robotic
learning systems that can learn increasingly flexible and general skills. We will show that
collecting a large dataset that covers a large repertoire of skills provides a useful foundation
for learning new tasks, enabling learned policies to perform multi-stage tasks from previously
unseen conditions, despite never having seen all of the stages together in a single episode.
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Prior data Task data

Figure 5.1: Incorporating unlabeled prior data into the process of learning a new skill. We
present a system that allows us to extend and generalize robotic skills by using unlabeled prior datasets.
Learning a new skill requires collecting some task-specific data (right), which may not contain all the necessary
behaviors needed to set up the initial conditions for this skill in a new setting (e.g., opening a drawer before
taking something out of it). The prior data (left) can be used by the robot to automatically figure out that,
when it encounters a closed drawer at test time, it can first open it, and then remove the object. The task
data does not contain drawer opening, and the prior data does not contain any examples of lifting the new
object.

Consider the drawer example from before: if the robot can draw on its prior experience of
drawer opening, it can take an object out of the drawer even if the drawer is initially closed,
by figuring out that opening the drawer will place it into a state from which the grasping skill
can succeed. Furthermore, even if there is an obstruction in front of the drawer, the robot
can once again draw on the prior data, which might also include pick and place behaviors, to
remove the obstruction. Crucially, this does not require the robot to practice drawer opening
again when learning a new task – it can collect data for the new task in isolation, and combine
it with past data to compose novel behaviors. We illustrate this idea in Figure 5.1.

How can this prior data from different tasks be utilized for learning a new task? If the
prior data contains successful behavior for the new task, this would be easy. However, we
will show that even prior data that is unsuccessful at the new task can be useful for solving
it, since it provides the policy with a deeper understanding of the mechanics of the world. In
contrast to prior works that approach this problem from a hierarchical skill learning [29, 114]
or planning perspective [24, 27], we show that this “understanding” can be acquired without
any explicit predictive model or planning, simply via model-free RL. Our method builds on a
recently proposed model-free offline RL method called conservative Q-learning (CQL) [86].
We extend CQL to our problem setting as following: we initialize the replay buffer with our
prior dataset, and assign zero reward to every transition in this dataset, since the new task is
different from the prior executed behavior. We then run CQL on both this prior dataset and
data collected specifically for the new task, and evaluate the policy on a variety of initial
conditions which were not seen in the task-specific data. We can further fine-tune the policy
resulting from offline training with limited online data collection, which further improves the
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performance of the new skill while retaining the aforementioned generalization benefits.
Our main contribution is to demonstrate that model-free offline RL can learn to combine

task data with prior data, producing previously unseen combinations of skills to meet the
pre-conditions of the task of interest, and effectively generalizing to new initial conditions.
We call our approach COG: Connecting skills via Offline RL for Generalization. We describe
a robotic learning system that builds on this idea to learn a variety of manipulation behaviors,
directly from images. We evaluate our system on several manipulation tasks, where we collect
prior datasets consisting of imperfect scripted behaviors, such as grasping, pulling, pushing,
and placing a variety of objects. We use this prior data to learn several downstream skills:
opening and closing drawers, taking objects out of drawers, putting objects in a tray, and so
on. We train neural network-based policies on raw, high-dimensional image observations, and
only use sparse binary rewards as supervision. We demonstrate the effectiveness of COG in
both simulated domains and on a real world low-cost robotic arm.

5.2 Relation To Prior Work
Robotic RL. RL has been applied to a wide variety of robotic manipulation tasks, including
grasping objects [72, 170], in-hand object manipulation [120, 61, 131, 89], pouring fluids [141],
door opening [167, 11], and manipulating cloth [105, 149]. Most of these works use online RL
methods, relying on a well-tuned interaction loop between data collection and policy training,
instead of leveraging prior datasets. Our paper is more closely related to Kalashnikov et
al [72], Julian et al [71], and Cabi et al [8], which also use offline RL and large prior datasets.
However, these prior works focus on generalization to new objects, as well as fine-tuning
to handle greater variability (e.g., more object types, changes in lighting, etc.). Our work
instead focuses on changes in initial conditions that require entirely different skills than those
learned as part of the current task, such as opening a drawer before grasping an object.

Data-driven robotic learning. In addition to RL-based robotics, data-driven robotics
in general has become increasingly popular in recent years, and several works have investigated
using large-scale datasets to tackle long-standing challenges in robotics, such as grasping novel
objects. However, most prior work in this category focuses on executing the same actions
on novel objects [75, 129, 96, 101, 46]. In contrast, we explicitly target problems where new
behavior needs to be learned to perform the task in a new scenario, and use prior interaction
datasets to achieve this ability via model-free RL. Visual foresight [32] and its followups [25,
24, 165, 62] also address temporally extended tasks with large datasets by learning video
prediction models, but with significantly shorter time horizons than demonstrated in our
work, due to the difficulty of long-horizon video prediction. Mandlekar et al [103] use an
alternate approach of explicitly learning hierarchical policies for control, and Mandlekar et
al [104] utilizes offline imitation learning to compose different demonstration trajectories
together.

Offline deep RL. While offline (or “batch”) RL is a well-studied area [92, 91, 109, 97],
there has been a significant amount of recent interest in offline deep RL, where deep RL agents
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are trained on a static, previously collected dataset without any environment interaction [97,
86, 42, 88, 2, 162, 123, 168]. These works largely focuses on developing more effective offline
deep RL algorithms by correcting for distribution shift [40, 86, 88, 162, 123, 168] which
renders standard off-policy RL algorithms inadmissible in purely offline settings [88, 97]. In
contrast, our work does not propose a new algorithm, but rather adapts existing offline RL
methods to the setting where prior data from a different domain must be integrated into
learning a new task such that it succeeds under a variety of conditions.

5.3 Incorporating Prior Data into Robotic
Reinforcement Learning

Our goal is to develop a system that can learn new robotic skills with RL, while incorporating
diverse previously collected data to provide greater generalization. We hypothesize that, even
if a subset of this prior data illustrates useful behaviors that are in support of the new skill,
including this data into the training process via offline RL can endow the robot with the
ability to reason, such that when the conditions at test-time do not match those seen in the
data for the specific new skill, the robot might still generalize because other transitions in
the prior data have allowed it to learn how to react intelligently. For instance, when a robot
trained to perform object grasping is faced with a closed or obstructed drawer at test time,
without any prior experience, the robot would have no way to know how to react. Humans
generally handle such situations gracefully, by drawing on their past experience. We use the
term “common sense” to refer to this ability to handle small test-time variations in the task,
such as the need to open a drawer before taking something out of it. How can we endow
learned policies with this sort of “common sense”? If the prior training data illustrates opening
of drawers and removing obstructions, then even without being told that such behaviors are
useful for grasping an object from an obstructed drawer, model-free offline RL methods can
learn to reason and utilize such behaviors at test time. Crucially, we will show how these
“common sense” behaviors emerge entirely from combining rich prior data and offline RL,
without any explicit reasoning about preconditions or hierarchical higher-level planning.

We formalize our problem in the standard RL framework. The goal in RL is to optimize
the infinite horizon discounted return Rt =

∑∞
t=0 γ

trt in a Markov decision process (MDP),
which is defined by a tuple (S,A,T, r, γ), where S and A represent state and action spaces,
T(s′|s, a) and r(s, a) represent the dynamics and reward function, and γ ∈ (0, 1) represents
the discount factor. We operate in the offline RL setting as opposed to the standard online
regime since we are interested in leveraging most out of prior datasets.

In most prior works on offline RL [88, 42, 2], the method is typically provided with data
for the specific task that we wish to train a policy for, and the entire dataset is annotated
with rewards that defines our objective for that task. In contrast, there are two distinct
sources of data in our problem setting: task-agnostic, unlabeled prior data, which we denote
as Dprior, and task-specific data, which we denote as DT, where T represents our task. The
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Figure 5.2: Connecting new skills to past experience. Q-learning propagates information backwards
in a trajectory (middle) and by stitching together trajectories via Bellman backups from the task-agnostic
prior data (left), it can learn optimal actions from initial conditions appearing in the prior data (right).

datapoints in Dprior simply consist of (s, a, s′) transitions, and do not have any associated
reward labels. While we cannot train a policy to achieve any particular objective from this
data alone, it is informative about the dynamics of the MDP where the data was collected.
On the other hand, the datapoints in DT consist of (s, a, s′, r) tuples, and can be used for
learning a policy that maximizes the observed reward. To summarize, the input and output
of our problem setting are as follows:

Input: Datasets Dprior (with no reward annotations), DT (with sparse rewards for
task T).
Return: Policy π trained to execute task T, which should be able to generalize
broadly to new initial conditions. We would like to leverage Dprior for the latter.

5.4 Connecting New Skills to Past Experience via
Dynamic Programming

Our approach is conceptually very simple: use offline RL to incorporate prior data into the
training for the new skill. However, the reasons why this approach should be effective in
our problem setting are somewhat nuanced. In this section, we will discuss how model-free
dynamic programming methods based on Q-learning can be used to connect new tasks to past
experience. Before presenting COG, let’s first briefly revisit off-policy deep RL algorithms.

Standard off-policy deep RL methods, such as SAC [50], maintain a parametric action-
value or Q-function, Qθ(s, a), and optionally a parametric policy, πφ(a|s), with parameters θ
and φ, respectively. These methods typically train Qθ(s, a) to predict the return under πφ in
the policy evaluation step, and then update πφ in the direction of increasing Q-values in the
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policy improvement step:

θk+1 ← arg min
θ

Es,a,s′∼DT

[(
(r(s,a) + γEa′∼π̂k(a′|s′)[Q̂

k(s′,a′)])−Qθ(s,a)
)2
]

(policy evaluation)

φk+1 ← arg max
φ

Es∼DT,a∼πkφ(a|s)

[
Q̂k+1
θ (s,a)

]
(policy improvement)

In order to see how this model-free procedure can help us stitch together different behaviors
(which we will define shortly), we start with some intuition about the Q-learning process.
Q-learning propagates information backwards through a trajectory. State-action pairs at the
end of a trajectory with a high reward are assigned higher values, and these values propagate
to states that are further back in time, all the way to the beginning of the trajectory. Recall
the example from Section 5.1, where the goal is to take an object out of a drawer. Assume
that a reward of +1 is obtained when the object has been taken out of the drawer, and
otherwise the reward is 0. Under this reward, the state where the object has been taken
out will have the highest value, and the state where the robot has grasped the object (but
not yet lifted it) will have a slightly lower value, since it is farther away from the successful
completion of the task. The initial state, where the robot gripper is far away from the object,
will have very low value. See Figure 5.2 (right) for an illustration of such states. However,
the initial state will still have a non-zero value, since the Q-function “understands” that it is
possible to reach high-reward states. Any state for which there does not exist a valid path
to a high-reward state will have a value that is equal to zero, and all other states will have
non-zero values, decreasing exponentially (in the discount) with distance to the state where
object is out of the drawer.

We may now ask, what happens if at test-time, the robot is asked to perform the task
from some new state that was not seen in DT, such as a state where the drawer is closed?
Such a state would either have a value of zero or, even worse, an arbitrary value, since it
is outside of the training distribution. Therefore, the robot would likely not succeed at the
task from this situation. Of course, we could train the new skill from a wider range of initial
states, but if each skill must be learned from every possible starting state, it will quickly
become prohibitively costly to train large skill repertoires.

What if the Q-learning method was now augmented with an additional large dataset
that contains a wide variety of other behaviors, but does not contain any data for the new
task? Such a dataset can still help us learn a much more useful policy, even in the absence of
reward annotation: it can provide us with trajectories that (approximately) connect states
not observed in DT (e.g., a closed drawer) to states appearing in successful executions in DT
(e.g., open drawer), as shown in Figure 5.2. If the prior dataset Dprior is large enough, it can
inform the policy of different ways of reaching states from which the new task is solvable. For
example, if an object obstructs the drawer, and the prior dataset contains pick and place
trajectories, then the policy can reason that it can unobstruct the drawer before opening it.
Model-free Q-learning alone, without any skill decomposition or planning, can propagate
values from DT into Dprior, allowing us to learn a policy that can execute the task from a
much broader distribution of initial states without actually seeing full executions of the task
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from these states. Even without a single trajectory that both opens the drawer and takes the
object out, as long as there is a non-zero overlap between Dprior and DT, Q-learning can still
learn from Dprior.

Offline RL via conservative Q-learning (CQL). In order to incorporate the prior
data Dprior into the RL process, we require an algorithm that can effectively utilize such prior
data without actually interacting with the environment from the same initial states. Standard
off-policy Q-learning and actor-critic algorithms are susceptible to out-of-distribution actions
in this setting [97, 88, 85]. We instead utilize the conservative Q-learning (CQL) [86] algorithm
that additionally penalizes Q-values on out-of-distribution actions during training. CQL
learns Q-functions, Qθ(s, a), such that the expected policy value under Qθ lower-bounds
the true policy value πφ, by minimizing the log-sum-exp of the Q-values at each state s,
while maximizing the expected Q-value on the dataset action distribution, in addition to
standard Bellman error training as shown in Equation 5.1. The training objective shown in
Equation 5.1 is the variant of CQL used in this paper:

min
Q

αEs∼Dprior∪DT

[
log
∑
a

exp(Q(s,a))− Ea∼Dprior∪DT [Q(s,a)]

]
+

1

2
Es,a,s′∼DT∪Dprior

[(
Q− BπkQ̄

)2]
.

(5.1)
We instantiate CQL as an actor-critic algorithm. The policy improvement step remains
unchanged as compared to a standard off-policy RL method, as discussed previously.

Online fine-tuning. In addition to the completely offline phase that utilizes the con-
servative Q-learning algorithm, we can further fine-tune the resulting policy using a small
amount of online interaction with the environment. In order to do so, we train completely
offline using CQL for 1m gradient steps, and then perform online training by periodically
unrolling the policy in the environment and training on this additional data, starting from
the solution obtained in the purely offline phase. We still utilize the CQL algorithm in this
phase, except we only utilize the data collected via online interaction for fine-tuning purposes.

5.5 End-to-End Robotic Learning with Prior Datasets
In this section, we discuss how our method can be instantiated in a practical robotic learning
system.

MDP for robotic skills. The state observation s ∈ S consists of the robot’s current
camera observation, which is an RGB image of size 48 × 48 for simulated experiments, and
64 × 64 for real robot experiments, and the current robot state. The robot state consists
of the end-effector pose (Cartesian coordinates and Euler angles), and the extent to which
the gripper is open (represented using a continuous value). The action space A consists of
six continuous actions and two discrete actions. The six continuous actions correspond to
controlling the end-effector’s 3D coordinates and its orientation. The first discrete action
corresponds to opening or closing the gripper, while the second discrete action executes a
return to the robot’s starting configuration. We use sparse reward functions for all of our
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tasks: a reward of +1 is provided when a task has been executed successfully, while a zero
reward is provided for all other states. We do not have any terminal states in our MDP.

Data collection. Our prior data collection takes place before any task-specific learning
has happened. Since a completely random policy will seldom execute behaviors of interest,
we bias our data collection policy towards executing more interesting behavior through the
use of weak scripted policies: these policies typically have a success rate of 30-50% depending
on the complexity of the task they are performing. More details on the scripted policies can
be found in Appendix D.1.

Neural network architectures. Since we learn to stitch together behaviors directly
from raw, visual observation inputs, we utilize convolutional neural networks (ConvNets)
to represent our policy πφ and the Q-function Qθ. For both simulated and real world
experiments, we use a 8-layer network: the first five layers consist of alternating convolutional
and max-pooling layers (starting with a convolution), with a stride of 1 and kernel size of
3 for convolutional layers, and a stride of two for max-pooling layers. Each convolutional
layer has 16 filters. We then pass the flattened output of the convolutional layer to three
fully connected layers, of size 1024, 512 and 256. We use the ReLU non-linearity for all
convolutional and fully-connected layers. A pictorial block diagram of these architectures is
provided in Appendix D.1.

5.6 Experiments

Figure 5.3: Picking and placing. Example execu-
tions from our learned policy. The first row shows the
training condition, where the robot starts out already
holding the object, and it only needs to place it in the
tray. In the second condition (shown in second row),
the robot must first grasp the object before placing it
into the tray.

We aim to answer the following questions
through our experiments: (1) Can model-
free RL algorithms effectively leverage prior,
task-agnostic robotic datasets for learning
new skills? (2) Can our learned policies solve
new tasks, especially from novel initial condi-
tions, by stitching together behavior observed
during training? (3) How does our approach
compare to alternative methods for incorpo-
rating prior data (such as behavior cloning)?
(4) Is the addition of prior data essential
for learning to solve the new task? To this
end, we evaluate our approach on a number
of long-horizon, multi-step reasoning robotic
tasks with different choices of DT and Dprior

and then perform an ablation study to under-
stand the benefits of incorporating unlabeled
offline datasets into robotic learning systems via offline reinforcement learning methods.
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Experimental Setup

We evaluate our approach in simulation (see Figures 5.3 and 5.4) and on a real-robot task
with a WidowX low-cost arm (see Figure 5.6).

Pick and place. Our first simulated environment is shown in Figure 5.3. It consists of a
6-DoF WidowX robot in front of a tray containing a small object and a tray. The objective
is to put the object inside the tray. The reward is +1 when the object has been placed in the
box, and zero otherwise. A simple initial condition for this task involves the robot already
holding the object at the start of the episode, while a harder initial condition is when the
robot has to first pick up the object. For this simplified experimental setting, the prior data
consists of 10K grasping attempts from a randomized scripted policy (that has a success
rate of about 40%, details of this policy are in Appendix D.1). Note that we do not provide
any labels for which attempts were successful, and which were not. The task-agnostic prior
dataset also consists of behaviors that may be irrelevant for the task. The task-specific data
consists of 5K placing attempts from a different scripted policy (with a high success rate
of over 90%, since the tray position is unchanged across trials), and these trajectories are
labeled with rewards. Note that there is no single trajectory in our dataset that solves the
complete pick and place task, but the prior and task-specific datasets have a non-zero overlap
in their state distribution.

Figure 5.4: Grasping from the drawer with our
learned policy. The first row shows the training condition,
which requires grasping from an open drawer. The robot only
needs to grasp the object and take it out of the drawer to get
a reward. The subsequent rows show the harder test-time
initial conditions which require, respectively: opening the
drawer before taking out the object, closing the top drawer
before opening the bottom one and taking out the object,
and removing an obstruction (red) bottle before opening the
drawer.

Grasping from a drawer. Our
second and more complex simulated en-
vironment is shown in Figure 5.4. It
consists of a 6-DoF WidowX robot and
a larger variety of objects. The robot
can open or close a drawer, grasp objects
from inside the drawer or on the table,
and place them anywhere in the scene.
Some of these behaviors require vari-
ous pre-conditions. For example, grasp-
ing an object from the drawer might
require opening that drawer, which in
turn might require moving an obstruc-
tion out of the way. The task here con-
sists of taking an object out of a drawer
(Figure 5.4). A reward of +1 is obtained
when the object has been taken out, and
zero otherwise. When learning the new
task, the drawer always starts out open.
The more difficult test conditions include
ones where the drawer starts out closed,
the top drawer starts out open (which
blocks the handle for the lower drawer),



CHAPTER 5. COG: CONNECTING NEW SKILLS TO PAST EXPERIENCE WITH
OFFLINE REINFORCEMENT LEARNING 54

Task & Initial No prior BC COG
Condition data init all oracle
place in box

object in gripper 1.00 (0.00) 1.00 (0.00) 0.94 (0.01) 0.95 (0.01) 1.00 (0.00)
object in tray 0.00 (0.00) 0.00 (0.00) 0.02 (0.00) 0.02 (0.01) 0.96 (0.04)

grasp from drawer
open drawer 0.98 (0.01) 0.99 (0.00) 0.63 (0.01) 0.82 (0.01) 0.98 (0.02)
closed drawer 0.00 (0.00) 0.00 (0.00) 0.23 (0.01) 0.27 (0.03) 0.68 (0.07)
blocked drawer 1 0.00 (0.00) 0.00 (0.00) 0.34 (0.03) 0.35 (0.03) 0.78 (0.07)
blocked drawer 2 0.00 (0.00) 0.00 (0.00) 0.22 (0.03) 0.25 (0.01) 0.76 (0.09)

Table 5.1: Results for simulated experiments. Mean (Standard Deviation) success rate of the learned
policies for our method (COG), its ablations and prior work. For the grasping from drawer task, blocked
drawer 1 and 2 are initial conditions corresponding to the third and fourth rows of Figure 5.4. Note that
COG successfully performs both tasks in the majority of cases, from all initial conditions. SAC (–) diverged
in our runs.

and an object starts out in front of the closed drawer, which must be moved out of the
way before opening. These settings are illustrated in Figure 5.4. The prior data for this
environment is collected from a collection of scripted randomized policies. These policies are
capable of opening and closing both drawers with 40-50% success rates, can grasp objects in
the scene with about a 70% success rate, and place those objects at random places in the
scene (with a slight bias for putting them in the tray). The prior data does not contain any
interactions with the object inside the drawer and also contains data irrelevant to solving the
task, such as behavior that blocks the drawer by placing objects in front of it. There are
1.5m datapoints (transitions) in the prior dataset, and 300K datapoints in the task-specific
dataset.

Baselines and comparisons. We compare COG to: (1) pre-training a policy via
behavioral cloning on the prior data and then fine-tuning with offline RL on the new task,
denoted as BC-init, (2) a naïve behavioral cloning baseline, denoted as BC, which trains
with BC on all data, (3) an “oracle” version of behavioral cloning that is provided with
handpicked successful trajectories on the new task, denoted as BC-oracle that is indicative
of an upper bound on performance of selective cloning methods on a task, (4) a standard
baseline off-policy RL method, SAC [50], and finally (5) an ablation of our method without
any prior data, indicated as no prior data.

Empirical Results
Simulation results. The results for our simulation experiments are summarized in Ta-
ble 5.1. For all methods, we train the policy via offline RL until the success rate converges,
and evaluate the final policy on 250 trials, after training has converged. We then average these
success rates across three random seeds for each experiment. Detailed learning curves can
be found in Appendix D.3. We first note that our data-driven approach generally performs
well for all initial conditions on both tasks. The policy is able to leverage the prior data
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to automatically determine that a closed drawer should be opened before grasping, and
obstructions should be moved out of the way prior to drawer opening, despite never having
seen complete episodes that involve both opening the drawer and taking out the object, and
not having any reward or success labels in the prior data.

COG also significantly outperforms the behavioral cloning baselines, ablations, and a
standard off-policy SAC algorithm for all novel initial conditions. Since we use an entropy-
regularized stochastic policy for the behavioral cloning variants (BC in Table 5.1), they are able
to achieve a non-zero success rate, but the performance is far below what is achieved by COG.
This is likely due to their inability to distinguish between behavior that supports the new task
and behavior that is meaningful but not useful at the current time (for example, grasping an
arbitrary object in the drawer task is not useful if that object is not blocking the drawer). Even
when a behavioral cloning method is provided with handpicked successful trajectories for the
new task, shown as BC-oracle in Table 5.1), we find that it is unable to complete the new task.
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Figure 5.5: Results from online fine-
tuning. We see that online fine-tuning further
improves the performance of the learned policy,
bringing it to over 90% success rates for all
possible initial conditions for the drawer task,
and only requires a small amount of additional
data.

Unsurprisingly, an ablation of our method that does
not make use of prior data is only able to solve the
task from states that were previously seen in the
task-specific dataset. BC-init, which pre-trains the
policy on the prior data via cloning followed by
RL on the task data, is unable to solve the task
for unseen initial conditions. We believe this is
due to catastrophic forgetting of behavior learned
during pre-training, and this adversely affects the
policy’s performance when evaluated on new initial
conditions.

Online fine-tuning. While our method is able
to obtain high success rates from offline learning
alone, we also evaluated if the learned policies can
be further improved via online fine-tuning. The
results from these online fine-tuning experiments
are shown in Figure 5.5. We see that for all of the

novel initial conditions for the drawer task, the policy is able to achieve a success rate of
over 90% from collecting only a small amount of additional episodes (500-4000, depending on
the task). In our real world experimental setup (which we describe below), we are able to
collect 3K episodes in a single day (autonomously), making this requirement quite feasible
for real world problems. We compared this fine-tuning experiment against fine-tuning with
SAC (starting from a behavior cloned policy), which performed substantially worse (see
Figure D.3 in Appendix D.2), likely due to the low initial performance of the BC policy, and
since the Q-function for SAC needs to be learned from scratch in this setting. Prior work
has also observed that fine-tuning a behavior-cloned policy with SAC typically leads to some
unlearning at the start, which further reduces the performance of this policy [112]. More
details can be found in Appendix D.2.
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Figure 5.6: Real world drawer opening and grasping. The top
row shows the training condition, which requires grasping an object
from an open drawer. The bottom row shows the behavior of the
learned policy in the test condition, where the drawer starts closed, and
shows a rollout from the learned policy, which never saw a complete
trajectory of opening a drawer and grasping together at training time.

Real-world evaluation.
Our real world setup (see Fig-
ure 5.6) consists of a Wid-
owX robotic arm in front of
a drawer, and an object in-
side the drawer. The task is
to take the object out of the
drawer. As before, the reward
is +1 on completion, zero oth-
erwise. During training for the
new task, the drawer starts
open. The prior dataset con-
sists of drawer opening and
closing from a scripted ran-
domized policy (details in Ap-
pendix D.1). As before, the
prior dataset has no reward
labels, and no instances of
the new task (object grasping).
The task-specific data is col-
lected using a scripted grasp-
ing policy, which has a success
rate of about 50%. The prior
dataset consists of 80K transitions collected over 20 hours, and the new task dataset has
80K transitions (4K grasp attempts) collected over 34 hours. Our learned policy succeeds in
7/8 trials when the drawer starts out closed, and substantially outperforms the BC-oracle
baseline, which never succeeds on this real-world task.

5.7 Discussion
We showed how model-free reinforcement learning can utilize prior data to improve the
generalization of learned skills, effectively stitching together behaviors so that, when the
initial conditions at test time differ from those under which a new task was learned, the agent
can still perform the task by stitching together appropriate behaviors seen in the prior data.
For instance, a robot that learned to grasp an object from an open drawer can automatically
learn to open the drawer at test time when it starts closed, without ever having seen a
complete opening and grasping trajectory. This sort of composition of skills is typically seen
as the domain of model-based planning, and often approached in learning-based control from
the standpoint of hierarchy. Our approach suggests that such seemingly complex multi-stage
behaviors could emerge automatically as a consequence of model-free reinforcement learning
with the right training data. In effect, we show that model-free RL can use prior data to learn
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the “mechanics” of the world, without any explicit hierarchy or model representation. Our
initial instantiation of this idea does leave considerable room for future research. COG also
employs a very naïve approach for labeling rewards in the prior data, and more sophisticated
reward inference methods could also improve performance. More broadly, we believe that
further exploration into the ways that model-free RL methods can enable acquisition of
implicit mechanical models of the world is a promising direction for data-driven robotics.
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Chapter 6

Conclusion

We started this thesis with the following conjecture: robot learning can be made more effective
by making the entire process more data-driven. Our work built on recent advances in deep
reinforcement learning, and introduced new problem settings and algorithms that enabled
transferring these advances to real world robotic learning. While we believe the contributions
made in thesis strongly support this conjecture, there are still numerous open questions that
need to be resolved. We discuss some of the these challenges and potential directions for
future research in the rest of this chapter.

Chapters 2 and 3 focused on the problem of specifying rewards for robotic tasks in a simple,
intuitive and efficient fashion. We presented techniques for learning the reward function
from goal examples and occasional human feedback, and were able to end-to-end train both
policies and reward functions on image observations, in the real world. The problem setting
we introduced (learning from goal examples) substantially improved upon prior problem
settings for data-driven reward specification (such as inverse RL or learning from preferences)
by significantly reducing the data requirements for learning an accurate reward function.

While our methods improve upon prior work in this area, they do have some limitations.
First, providing visual goal examples to specify a task limits the type of tasks we can learn
using the proposed methods, since some tasks cannot be described via static images. For
examples, the task of juggling a set of balls. Second, the number of active queries required per
task in VICE-RAQ—around 50 per training run—is still non-trivial. It is quite possible that
a more intelligent query criterion could reduce this number further, and a promising direction
for future work is to incorporate techniques for quantifying model uncertainty in the classifier,
such as Bayesian neural networks. Lastly, our method does not benefit from any shared
structure between tasks. In reality, tasks have considerable shared structure, and a classifier
that incorporates data from multiple tasks, analogously to prior work on meta-learning [164,
166], could in principle further reduce the number of queries and examples that is needed.

Chapters 4 and 5 focused on incorporating previously collected datasets for robotic RL.
While using demonstrations to speed up reinforcement learning is a popular strategy, this
typically requires collecting demonstrations for the specific task of interest. In Chapter 4, we
presented PARROT, a generative pre-training approach that allowed us to speed up learning
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on a task by transferring knowledge from related, but distinct tasks. One key limitation of
this work is that it requires a large prior dataset of near-expert trajectories to work well,
and collecting such a dataset can difficult, especially on real robots. One way that future
work can overcome this limitation is by building the prior dataset incrementally. We can do
so by adopting a lifelong learning approach: we start out with a prior trained on N tasks,
use it to speed up learning on the N+1 task, and expand the prior to incorporate the newly
solved tasks. Overcoming the technical challenges in adapting PARROT to a lifelong learning
setting would make an exciting direction of research.

In Chapter 5, we presented COG, method for incorporating prior data into RL from a
more diverse set of sources (not just expert trajectories). We showed that unlabeled prior
datasets can enable RL agents to stitch together relevant behaviors from such prior datasets,
allowing robots to perform a type of “common-sense” reasoning when they encounter new
scenarios. While COG employed a simple technique for labeling past experiences, future
work could utilize more sophisticated reward inference approaches for this purpose. While
the current method treats all prior data as equally important, it would be interesting to
investigate approaches that allow prioritizing the different datapoints in the prior data for
faster learning.

In addition to the problems discussed above, there are parts of our central conjecture that
remain open. While we are convinced that learning-based approaches for task specification
provide much more flexibility when compared to hand-engineered reward functions, it remains
to be seen if learning from real world experience alone will be enough for learning more
complex tasks. While the presented algorithms are able to learn efficiently, most robotic
tasks in this work involve performing simple object re-arrangements using a parallel jaw
gripper. One potential direction for pushing the envelope on task complexity is to re-think the
relationship between real world data and simulation. While this thesis focused on effectively
utilizing real world data (as opposed to simulation) for robotic learning, it would be interesting
to explore how real data could be used to learn more realistic simulators, and how we can
utilize these data-driven simulators for effective robotic learning.

Works in visual model-based reinforcement learning (typically referred to as visual fore-
sight [25]) are one interesting line of work in data-driven simulation, but suffer from the
challenge of making pixel-perfect predictions several seconds into the future. Another promis-
ing line of research utilizes cyclic generative adversarial networks (CycleGANs [173]) to
generate realistic images from simulated images, but rely on having access to an accurate
underlying physics engine [133]. Recently, graph neural networks have emerged as a promising
tool for learning simulators from data [139], and future work could look into combining them
with GAN-based approaches for rendering realistic images and deep reinforcement learning
for learning control policies. For tasks that are particularly difficult to learn from real world
data alone (such as dexterous in-hand manipulation with a five-fingered robot hand [120]),
efforts to combine real world data with simulation could be particularly fruitful. This could
help overcome a critical limitation discussed above: limited task complexity.

We hope this thesis can serve as a useful step towards building robots that can operate
autonomously in open, unstructured environments, and the methods presented here can serve
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as useful building blocks for future work.
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Appendix A

Variational Inverse Control with Events

A.1 Message Passing Updates for Reinforcement
Learning

In this section, we derive message passing updates that can be used to obtain an optimal
policy in the graphical model for control (visualized below).

s1 s2 s3

a1 a2 a3

e1 e2 e3

. . .

. . .

. . .

sT

aT

eT

We define two backward messages, a state-action message β(st, at) = p(et:T = 1|st, at) and
a state message β(st) = p(et:T = 1|st). The state message can be expanded in terms of the
state-action message as:

β(st) = p(et:T = 1|st) =

∫
A
β(st, at)p(at|st)dat

We can then write a recursive form for the state-action message in terms of the state
message:

β(st, at) = p(et:T = 1|st, at) = p(et = 1|st, at)p(et+1:T = 1|st, at)

= p(et = 1|st, at)
∫
S,A

β(st+1, at+1)p(at+1|st+1)p(st+1|st, at)dst+1dat+1

= p(et = 1|st, at)Est+1 [β(st+1)]
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Next, we define log p(et = 1|st, at) = r(st, at) as the reward factor and set the reference
policy p(at|st) = C to the uniform distribution as before. Non-uniform reference policies
correspond to policy optimization with a modified reward function rnew(s, a) = rold(s, a) +
logC − log p(at|st) and with a uniform reference policy. We can now assign familiar names to
these messages, by defining Q(s, a) = log β(s, a) and V (s) = log β(s)− logC. Our message
passing updates now resemble soft variants of Bellman backup equations:

V (st) = log

∫
A

exp{Q(st, at)}dat

Q(st, at) = [r(st, at) + logC] + logEst+1 [exp{V (st+1)}]
The constant logC term can be absorbed into the reward function to exactly match the
equations we presented in Section 2.3, but we leave the term explicit for clarity of explanation.
For the fixed horizon task we presented, adding a constant offset to the reward cannot change
the optimal policy. As previously mentioned in Section A.2, under deterministic dynamics,
Q(st, at) = r(st, at) + V (st+1), which aligns with MaxCausalEnt [174] and soft Q-learning [49,
110].

From these value functions, we can easily obtain the optimal policy p(at|st, e1:T = 1). First
note that due to conditional independence, p(at|st, e1:T = 1) = p(at|st, et:T = 1). Applying
Bayes’ rule, we now have:

p(at|st, et:T = 1) =
p(et:T = 1|st, at)p(at|st)

p(et:T = 1|st)
=
β(st, at)C

β(st)
= exp{Q(st, at)− V (st)}

A.2 Control as Variational Inference
Performing inference directly in the graphical model for control produces solutions that are
optimistic with respect to stochastic dynamics, and produces risk-seeking behavior. This
is because posterior inference is not constrained to force p(st+1|st, at, e1:T ) = p(st+1|st, at):
that is, it assumes that, like the action distribution, the next state distribution will “conspire”
to make positive outcomes more likely. Prior work has sought to address this issue via the
framework of causal entropy [174]. To provide a more unified treatment of control as inference,
we instead present a variational inference derivation that also addresses this problem. f When
conditioning the graphical model in Figure 2.3 on e1:T = 1 as before, the optimal trajectory
distribution is

p(τ |e1:T ) ∝ p(s1)
T−1∏
t=1

p(st+1|st, at)p(at|st)er(s,a).

We will assume that the action prior p(at|st) is uniform without loss of generality, since
non-uniform distributions can be absorbed into the reward term er(s,a), as discussed in
Appendix A.1.

The correct maximum entropy reinforcement learning objective emerges when per-
forming variational inference in this model, with a variational distribution of the form
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qθ(τ) = p(s1)
∏T−1

t=1 p(st+1|st, at)qθ(at|st). In this distribution, the initial state distribution
and dynamics are forced to be equal to the true dynamics, and only the action conditional
qθ(at|st), which corresponds to the policy, is allowed to vary. Writing out the variational
objective and simplifying, we get

−DKL(qθ(τ)||p(τ |e1:T )) = Eτ∼q(τ)

[
T∑
t=1

r(st, at)− log qθ(a|s)

]
.

We see that we obtain the same problem as (undiscounted) entropy-regularized reinforcement
learning, where qθ(a|s) serves as the policy. For more in-depth discussion, see Appendix A.4.
We can recover the discounted objective by modifying the dynamics such that the agent has
a (1− γ) probability of transitioning into an absorbing state with 0 reward.

We have thus derived how maximum entropy reinforcement learning can be recovered by
applying variational inference with a specific choice of variational distribution to the graphical
model for control.

A.3 Derivations for Event-based Message Passing
Updates

ALL query

The goal of the ALL query is to trigger an event at every timestep. Mathematically, we want
trajectories such that e1:T = 1. As the ALL query is mathematically identical to MaxEnt RL,
we redirect the reader to Appendix A.1 for the derivation.

ANY query

The goal of the ANY query is to trigger an event at least once. Mathematically, we want
trajectories such that e1 = 1 or e2 = 1 ... eT = 1.

First, we introduce a more concise notation by introducing a stopping time t∗ =
argmint≥0{et = 1} which denotes the first time that an event happens. Asking for the
stopping time to be within a certain interval is the same as asking the event to happen at
least once within that interval:

p(t∗ ∈ [t, T ]) = p(et = 1 or et+1 = 1 ... eT = 1)

We can now derive the message passing updates. We derive the state messages as:

β(st) = p(t∗ ∈ [t, T ]|st) =

∫
A
p(t∗ ∈ [t, T ]|st, at)p(at|st)dat
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The state-action message can be derived as:

β(st, at) = p(t∗ ∈ [t, T ]|st, at)
= p(et = 1|st, at) + p(t∗ ∈ [t+ 1, T ]|st, at)− p(et = 1|st, at)p(t∗ ∈ [t+ 1, T ]|st, at)
= p(et = 1|st, at) + p(et = 0|st, at)p(t∗ ∈ [t+ 1, T ]|st, at)

= p(et = 1|st, at) + p(et = 0|st, at)
∫
S,A

p(t∗ ∈ [t+ 1, T ], st+1, at+1|st, at)dst+1dat+1

= p(et = 1|st, at) + p(et = 0|st, at)Est+1

[∫
A
p(t∗ ∈ [t+ 1, T ]|st+1, at+1)p(at+1|st+1)dat+1

]
= p(et = 1|st, at) + p(et = 0|st, at)Est+1 [β(st+1)]

We can now define our Q and value functions as log-messages as done in Appendix A.1 to
obtain the following backup rules:

V (st) = log

∫
A

exp{Q(st, at)}dat

Q(st, at) = log
(
p(et = 1|st, at) + p(et = 0|st, at)Est+1 [exp{V (st)}]

)
One caveat here is that the policy, p(at|st, t∗ ∈ [t, T ]), always seeks to make the event

happening in the future, which we refer to as the seeking policy. The correct non-seeking
policy would be indifferent to actions after the event has happened. However, in terms of
achieving the objective, both policies will behave exactly the same until the event is triggered,
after which the behavior of the policy will no longer matter. For example, if we operate in
the first exit scenario, and consider the episode terminated after the goal event is achieved,
then we never encounter the scenario when the event occurs in the past.

If we would like to compute the non-seeking policy, we can compute a forward pass which
keeps track of the probability that the event has happened:

p(t∗ ∈ [1, t]|s1:t, a1:t) = p(et = 1|st, at) + p(et = 0|st, at)p(t∗ ∈ [1, t− 1]|s1:t−1, a1:t−1)

We can then use this forward message in conjunction with our backward messages to obtain
a non-seeking policy as:

p(at|s1:t, a1:t−1, t
∗ ∈ [1, T ]) =

p(at|s1:t, a1:t, t
∗ ∈ [1, T ])p(at|st)

p(at|s1:t, a1:t−1, t∗ ∈ [1, T ])

Where

p(t∗ ∈ [1, T ]|s1:t, a1:t) = p(t∗ ∈ [1, t− 1]|s1:t−1, a1:t−1) + p(t∗ /∈ [1, t− 1]|s1:t−1, a1:t−1)p(t ∈ [t, T ]|st, at)

p(t∗ ∈ [1, T ]|s1:t, a1:t−1) =

∫
A
p(t∗ ∈ [1, T ]|s1:t, a1:t)p(at|st)dat

Note that while the policy is conditioned on all past states and actions, it only depends
on them through the forward message, or the cumulative probability that the event has
happened.
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A.4 Derivations for Variational Objectives

ALL query

We briefly reviewed the variational derivation for standard RL in Section A.2. In this section,
we present a more thorough derivation under the events framework and additionally discuss
extensions to discounted formulations.

First, we write down the joint trajectory-event distribution, which is simply the product
of all factors in the graphical model:

p(τ, e1:T = 1) = p(s1)
T−1∏
t=1

p(st+1|st, at)p(at|st)p(et = 1|st, at)

We can obtain the optimal trajectory distribution by conditioning and setting the reference
policy p(at|st) as the uniform distribution:

p(τ |e1:T = 1) ∝ p(s1)
T−1∏
t=1

p(st+1|st, at)p(et = 1|st, at)

We now perform variational inference with a distribution of the following form, where the
dynamics have been forced to equal the true dynamics of the MDP:

qθ(τ) = p(s1)
T−1∏
t=1

p(st+1|st, at)qθ(at|st)

Here, qθ(at|st) is the only term that is allowed to vary, and represents the learned policy.
When we minimize the KL divergence between q and p, the dynamics terms cancel and we
recover the following entropy-regularized policy objective:

−DKL(qθ(τ)||p(τ |e1:T = 1)) = −Eqθ [
T∑
t=0

log qθ(at|st)−
T∑
t=0

log p(et = 1|st, at)] + C

= Eqθ [
T∑
t=0

log p(et = 1|st, at) +H(π(·|st))] + C

The constant C is due to proportionality in the optimal trajectory distribution, and can be
ignored in the optimization process.

If we define the empirical returns Q̂ as Q̂(st, at) =
∑T

t′=t log p(et′ = 1|st′ , at′), we can write
the returns recursively as:

Q̂(st, at) = log p(et = 1|st, at) + Q̂(st+1, at+1)

In this discounted case, we consider the case when the dynamics has a (1− γ) chance of
transitioning into an absorbing state with reward or log p(et = 1|st, at) = 0. This means we
now adjust the recursion as:

Q̂(st, at) = log p(et = 1|st, at) + γQ̂(st+1, at+1)
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ANY query

As with our derivation in the RL case, we begin by writing down our trajectory distribution.
Our target trajectory distribution is going to be p(τ |t∗ ∈ [1, T ]), which are trajectories where
the event happens at least once.

First, we can use Bayes’ rule to obtain:

log p(τ |t∗ ∈ [1, T ]) = log p(t∗ ∈ [1, T ]|τ) + log p(τ)− log p(t∗ ∈ [1, T ])

The last term is a proportionality constant with respect to the trajectories. The second
term is the trajectory distribution induced by the reference policy. The first term can be
simplified further.

Note that the probability that the event first happens at t∗ is p(t∗ = t|τ) = p(et =
1|st, at)

∏t−1
t′=1 p(et′ = 0|st′ , at′) (i.e. the event happens at t∗ but not before). Now we can

write:

p(t∗ ∈ [1, T ]|τ) =
T∑
t=1

p(t∗ = t|τ) =
T∑
t=1

p(et = 1|st, at)
t−1∏
t′=1

p(et′ = 0|st′ , at′)

To write down a recursion, we now define the quantity β̂(st:T , at:T ) = p(t∗ ∈ [t, T ]|st:T , at:T ).
We can now express the above term recursively as:

T∑
t=1

p(et = 1|st, at)
t−1∏
t′=1

p(et′ = 0|st′ , at′) = p(e1 = 1|s1, a1) + p(e1 = 0|s1, a1)β̂(s2:T , a2:T )

= β̂(s1:T , a1:T )

Thus, if we define our empirical Q-function Q̂(st, at) = log β̂(s1:T , a1:T ), our recursion now
becomes:

Q̂(st, at) = log(p(et = 1|st, at) + p(et = 0|st, at)eQ̂(st+1,at+1))

Using the same variational distribution qθ(τ) = p(s1)
∏T

t=1 p(st+1|st, at)qθ(at|st) as before,
we can write our optimization objective as:

−DKL(qθ(τ)||p(τ |t∗ ∈ [1, T ])) = Eq[Q̂(s1:T , a1:T )−
T∑
t=1

log qθ(at|st)] + C

Where the constant C absorbs terms from the reference policy p(at|st) which we set to
uniform, and the proportionality constant log p(t∗ ∈ [1, T ]).

To achieve a discounted objective case, we consider the case when the dynamics has a
(1 − γ) chance of transitioning into an absorbing state where the event can never happen
p(et = 1|st, at) = 0. Note that this is different from the all query. This means we now adjust
the recursion as:

Q̂(st, at) = γ log
(
p(et = 1|st, at) + p(et = 0|st, at)eQ̂(st+1,at+1)

)
+ (1− γ) log p(et = 1|st, at)
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A.5 Policy Gradients for Events
Because the ALL query is mathematically identical to standard RL, we do not derive the
policy gradient estimator here.

For the ANY query, we consider the objective

J(π) = Eπ[Q̂(s1:T , a1:T )−
T∑
t=1

log π(at|st)]

. For simplicity we disregard the entropy term as that portion remains unchanged from
standard RL.

Applying logarithmic differentiation, and simplifying, we can obtain the gradient estimator.

Eπ[
T∑
t=1

∇ log π(at|st)Q̂(s1:T , a1:T )]

The next step is that we wish to only consider future returns, i.e. we wish to replace
Q̂(s1:T , a1:T ) with Q̂(st:T , at:T ). First, note that before the event happens before t, then
Q̂(s1:T , a1:T ) and Q̂(st:T , at:T ) are identical, but if t is after then event then the returns
estimator should be 0. Thus, we need to keep track of the cumulative probability that an
event occurs and rewrite the estimator as:

Eπ[
T∑
t=1

∇ log π(at|st)p(t ≤ t∗|s1:t, a1:t)Q̂(st:T , at:T )]

To obtain an estimator that only depends on future returns, we assume that the event
always happens in the future and set p(t ≤ t∗|s1:t, a1:t) = 1. The justification is that after
the event happens, we no longer care about the behavior of the policy. We also discuss this
point towards the end of Appendix A.3 - it is exactly correct in a first-exit scenario where
the episode terminates upon triggering the event so that the case when the event happened
in the past is impossible, and otherwise still provides reasonable behavior.

A.6 Variational Inverse Control with Events (VICE)
In this section, we derive the update rules for performing inverse event-based control. We
present one derivation for each query type, and follow the following steps. For each query,
we assume our dataset of states and actions (s, a) ∼ pdata(s, a|evidence) is generated given
evidence corresponding to the query type. We then wish to learn the parameters of the
graphical model pθ(s, a|evidence), where θ parametrizes the event probability arc pθ(et =
1|st, at).

We can train this model with the maximum likelihood objective:

L(θ) = −Epdata [log pθ(s, a|evidence)]
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which can be trained by optimizing the cross-entropy loss of the discriminator.
We also train a sampling distribution q(s, a) to match pθ(s, a|evidence). This is to

approximate the gradient of this model as we typically do not know the partition function of
pθ(et = 1|st, at). To that end, we use variational inference to obtain a sampling distribution
q by minimizing D(q(s, a)||pθ(s, a|evidence)). Rather than directly minimizing this KL-
divergence, we instead minimize the trajectory divergence D(q(τ)||pθ(τ |evidence)), which we
show is an upper bound to the original KL-divergence in each case. The resulting objective
D(q(τ)||pθ(τ |evidence)) corresponds to the inference procedures derived in Appendix A.4.

AT query VICE

In the AT query, we assume we observe states and actions where the event occurred at a specific
timestep, denoted as t. We assume our data comes from the distribution pdata(st, at|et = 1) ∝
pdata(et = 1|st, at)p(st, at), and likewise we fit a model of the form pθ(st, at|et = 1) ∝ pθ(et =
1|st, at)p(st, at), and a variational sampling distribution of the form q(st, at).

The maximum likelihood objective is:

L(θ) = −Epdata [log pθ(st, at|et = 1)]

which as the corresponding gradient:

∇θL(θ) = Epdata [pθ(et = 1|st, at)]− Epθ [pθ(et = 1|st, at)]

We now derive the objective for training our sampler q(st, at) so that it matches pθ(st, at).
By the chain rule for KL divergence, we have the upper-bound DKL(q(st, at)||pθ(st, at|et =
1)) ≤ DKL(q(τ)||pθ(τ |et = 1)). After obtaining q(τ), we can sample by executing full
trajectories and picking the states and actions that correspond to timestep t.

ALL query VICE

In the ALL query, we assume our data comes from the distribution of states and actions
along trajectories where the event happens at all timesteps (averaged over timesteps):

pdata(s, a|e1:T = 1) =
1

T

∑
t

pdata(st, at|e1:T = 1)

This corresponds to matching the occupancy measure of a policy, which is equivalent to
inverse reinforcement learning as shown by [60].
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We can upper-bound the KL-divergence of interest between the sampler and the model
with a KL-divergence on trajectories as:

D(
1

T

∑
t

q(st, at)||
1

T

∑
t

pθ(st, at|e1:T = 1))

≤ 1

T

∑
t

D(q(st, at)||pθ(st, at|e1:T = 1))

≤ 1

T

∑
t

D(q(τ)||pθ(τ |e1:T = 1))

= D(q(τ)||pθ(τ |e1:T = 1))

The first inequality comes from the log-sum inequality, and the second inequality comes from
the chain rule for KL divergence.

ANY query VICE

In the ANY query formulation, we assume our data comes from the distribution of states
and actions at the first timestep an event happens.

pdata(st∗ , at∗ |t∗ ∈ [1, T ]) = pdata(t
∗ ∈ [1, T ]|s, a)ρ(s, a) = [

∑
t

pdata(t
∗ = t|St = s, At = a)]ρ(s, a)

We have substituted pdata(t
∗ ∈ [1, T ]|s, a) =

∑
t pdata(t

∗ = t|St = s, At = a) because
each t∗ = t is a disjoint event. We can further simplify this as

∑
t pdata(t

∗ = t|St = s, At =
a) = pdata(e1 = 1|S1 = s, A1 = s) + pdata(e1 = 0|S1 = s, A1 = s)[pdata(e2 = 1|S2 = s, A2 =
s) + ...] = Qdata(s, a). Thus, assuming our model pθ takes the same form, we obtain the
maximum likelihood objective:

L(θ) = −Epdata [log pθ(s, a|t∗ ∈ [1, T ])]

and the corresponding gradient

L(θ) = −Epdata [log pθ(s, a|t∗ ∈ [1, T ])]− Epθ [log pθ(s, a|t∗ ∈ [1, T ])]

Where pθ(s, a|t∗ ∈ [1, T ]) = pθ(e1 = 1|S1 = s, A1 = s) + pθ(e1 = 0|S1 = s, A1 = s)[pθ(e2 =
1|S2 = s, A2 = s) + ...].

Lemma A.6.1. Let X = (x1, x2, ...), Y = (y1, y2, ...). Let µ̄ denote a set of weights which
sum to one, and denote p̄(X) = Eµ̄[pi(xi)], and p̄(X,Y) = Eµ̄[pi(xi, yi)] denote convex
combinations of the individual distributions pi. Then,

D(p̄(X,Y)||q̄(X,Y)) ≥ D(p̄(X)||q̄(X))
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Proof. This statement directly follows from the chain rule for KL divergences, which implies:

D(p̄(X,Y)||q̄(X,Y)) = D(p̄(X)||q̄(X)) +D(p̄(X|Y)||q̄(X|Y)) ≥ D(p̄(X)||q̄(X))

Now, we can apply Lemma A.6.1 to derive the upper-bound:

D(
∑
t

q(st, at)p(t
∗ = t)||

∑
t

pθ(st, at|t∗ = t)p(t∗ = t))

≤ D(
∑
t

q(τ)p(t∗ = t)||
∑
t

pθ(τ |t∗ = t)p(t∗ = t))

= D(q(τ)||pθ(τ |t∗ ∈ [1, T ]))

We can obtain samples from q(st∗ , at∗) by executing full trajectories and using the first state
when an event is triggered.
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A.7 Experiments

Experimental details for prespecified events

On the Lobber task, we use a diagonal gaussian policy where the mean is parametrized by a
32x32 neural network. We use a TRPO batch size of 40000 and train for 1000 iterations.

On the HalfCheetah task, we use a diagonal gaussian policy where the mean is parametrized
by a 32x32 neural network. We use a TRPO batch size of 10000 and train for 1000 iterations.

Experimental details for learning event probabilities

We evaluate the performance of VICE in learning event probabilities on the Ant,Maze,
and Pusher tasks, providing comparisons to classifier-based methods. Although the binary
indicator baseline is not comparable to VICE (since it observes the event while the other
methods do not), we present comparisons to provide a general idea of the difficulty of the
task. All experiments are run with five random seeds, and mean results are presented.

We use Gaussian policies, where the mean is parametrized by a neural network, and
the covariance a learned diagonal matrix. The event distribution is represented by a neural
network as well. Further hyperparameters are presented in Table A.1.

On the Ant task, both the policy mean network and event distribution network have two
hidden layers with 200 units and ReLu activations.

On the Maze task, the mean network has two convolutional layers, with filter size 5× 5,
followed by two fully connected layers with 32 units each with ReLu activations. The event
distribution is represented using a convolutional neural network with two convolutional layers
with 5× 5 filters, and a final fully-connected layer with 16 units.

On the Pusher task, the policy is represented by a convolutional neural network with three
convolutional layers, with a stride of 2 in the first layer, and a stride of 1 in the subsequent
layers. We use a filter size of 3x3 in all the layers, and the number of filters are 64, 32 and
16. In line with prior work [30], we pre-train the convolutional layers using an auto-encoder
loss on data collected from random policies. The fully connected part of the neural network
consists of two layers, each having 200 units and ReLu activations to represent the policy.
The event distribution is also represented by the same architecture.

Ant Maze Pusher
Batch Size 10000 5000 10000
Iterations 1000 150 1000
Discount 0.99 0.99 0.99
Entropy 0.1 0.1 0.01

# Demonstrations 500 1000 10000

Table A.1: Hyperparameters used for VICE on the Ant,Maze, and Pusher tasks
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Appendix B

End-to-End Robotic Reinforcement
Learning without Reward Engineering

B.1 Experimental details

Simulated tasks

Detailed descriptions of our simulated tasks are provided here.

Visual Pusher The goal of this task is to push a mug onto a coaster. The robot end
effector is constrained to move in a 2D XY plane, and the initial position of the mug is
randomized over a 20cm x 15cm region. A success is when the final position of the mug is
within 3cm of the goal.

Visual Door The goal of this task is to open a door by 45 degrees. Initially, the door is
either completely closed (with probability 0.5), or open up to an angle of 15 degrees. The
robot end effector is equipped with a hook, and the robot needs needs to trap the handle of
the door in its hook and pull it open. The robot end effector is allowed to move in the full
3D XYZ space.

Visual Picker The goal of this task is to pick up a tennis ball from a table. The robot end
effector is free to move in the 3D XYZ space, and the initial position of the ball is randomized
over a 10cm x 10cm square region over the table. Along with the robot end-effector, we also
control the opening and closing of a parallel jaw gripper. The robot needs to pick up the ball
and move it to a fixed location that is 20 cm above the table. A success is when the final
position of the ball is within 3cm of the goal.
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Hyperparameter details

Parameters for Soft Actor-Critic We did not tune any hyperparameter of the soft
actor-critic algorithm, and used default values provided in the authors’ open-source imple-
mentation [50]. These value are a learning rate of 3e-4 on the Adam optimizer [77], a batch
size of 256, τ = 0.05, a discount factor of 0.99, a target update frequency of 1, and a target
entropy of 1

da
, where da is the action dimension for the environment.

Parameters for Discriminator Training We train the discriminator also using Adam
with a learning rate of 3e-4 and a batch size of 256. We take N update steps on the
discriminator at the end of every epoch of RL updates (where each epoch consists of 1000
timesteps). We sweeped over the value of N individually for each of our methods and all
the simulated tasks. We sweeped over N=[5,10,100] and found that N=10 works well for all
task/method combinations, except the Visual Door Opening task with VICE-RAQ, where
N=5 performs slightly better. We also sweeped over using mixup (with parameter α = 1)
and not using mixup, and found that mixup greatly helped for the Visual Door Opening
and the Visual Picker task, but slightly decreased the performance for the Visual Pushing
task. After the hyperparameter sweep, fresh runs were made for all tasks and methods for
reporting the final results.

Detailed learning curves
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Figure B.1: This plot shows the results on all of our simulated tasks for all of our methods
and baselines. Each plots shows results from each of the five random seeds run for that task
and method.

Figure B.2: Example evaluation rollouts for the simulated Visual Pusher task from a policy
learned using VICE-RAQ.
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Figure B.3: Example evaluation rollouts for the simulated Visual Door Opening task from a
policy learned using VICE-RAQ.
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Figure B.4: Example evaluation rollouts for the simulated Visual Picker task from a policy
learned using VICE-RAQ.
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Appendix C

Parrot: Data-Driven Behavioral Priors
for Reinforcement Learning

C.1 Algorithm
Algorithm 4 RL with Behavioral Priors
1: Input: Dataset D of state-action pairs (s, a) from previous tasks, new task M?

2: Learn fφ by maximizing the likelihood term in Equation 4.2
3: for step k in {1, . . . , N} do
4: s← current observation
5: Sample z ∼ πθ(z|s)
6: a← fφ(z; s)
7: s′, r ← Execute a in M?

8: Update πθ(z|s) with (s, z, s′, r)
9: end for
10: Return: Policy πθ(z|s) for task M?.

C.2 Implementation Details and Hyperparameter
Tuning

We now provide details of the neural network architectures and other hyperparameters used
in our experiments.

Behavioral prior. We use a conditional real NVP with four affine coupling layers as
our behavioral prior. The architecture for a single coupling layer is shown in Figure C.1. We
use a learning rate of 1e−4 and the Adam [77] optimizer to train the behavioral prior for
500K steps.

TrajVAE. For this comparison, we use the same architecture as Ghadirzadeh et al [43].
The decoder consists of three fully connected layers with 128, 256, and 512 units respectively.
BatchNorm [66] and ReLU nonlinearity are applied after each layer. The encoder is symmetric:
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Figure C.1: Coupling layer architecture. A computation graph for a single affine coupling layer is
shown in (a). Given an input noise z, the coupling layers transform it into z′ through the following operations:
z′1:d = z1:d and z′d+1:D = zd+1:D � exp(v(z1:d;φ(s))) + t(z1:d;φ(s)), where the v, t and ψ are functions
implemented using neural networks whose architectures are shown in (b) and (c). Since v and t have the
same input, they are implemented using a single fully connected neural network (shown in (b)), and the
output of this network is split into two. The image encoder, ψ(s) is implemented using a convolutional neural
network with parameters shown in (c).

512, 256, and 128 layers, respectively. The size of the latent space is 8 (same as the behavioral
prior). We sweep the following values for the β parameter [57]: 0.1, 0.01, 0.005, 0.001, 0.0005,
and find 0.001 to be optimal. We initialize β to zero at the start of training, and anneal it to
the target β value using a logistic function, achieving half of the target value in 25K steps.
We use a learning rate of 1e−4 and the Adam [77] optimizer to train this model for 500K
steps.

HIRL. This comparison is implemented using a conditional variational autoencoder, and
uses an architecture that is similar to the one used by the TrajVAE, but with two differences:
since this comparison uses image conditioning, we use the same convolutional network ψ as
the behavioral prior to encode the image (shown in Figure C.1), and pass it as conditioning
information to both the encoder and decoder networks. Second, instead of modeling the
entire trajectory in a single forward pass, it instead models individual actions, allowing the
high-level policy to perform closed-loop control, similar to the behavioral prior model. We
sweep the following values for the β parameter: 0.1, 0.01, 0.005, 0.001, 0.0005, and find
0.001 to be optimal. We found the annealing process to be essential for obtaining good RL
performance using this method. We use a learning rate of 1e−4 and the Adam [77] optimizer
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to train this model for 500K steps.
Behavior cloning (BC). We implement behavior cloning via maximum likelihood with

a Gaussian policy (and entropy regularization [49]). For both behavior cloning and RL with
SAC, we used the same policy network architecture as shown in Figure C.2. We train this
model for 2M steps, using Adam with a learning rate of 3e−4.

VAE-features. For this comparison, we use the standard VAE architecture used for
CIFAR-10 experiments [118]. The encoder consists of two strided convolutional layers (stride
2, window size 4× 4), which is followed by two residual 3× 3 blocks, all of which have 256
hidden units. Each residual block is implemented as ReLU, 3x3 conv, ReLU, 1x1 conv. The
decoder is symmetric to the encoder. We train this model for 1.5M steps, using Adam with a
learning rate of 1e−3 and a batch size of 128.

Soft Actor Critic (SAC). We use the soft actor critic method [50] as our RL algorithm,
with the hyperparameters shown in Table 1. We use the same hyperparameters for all of our
RL experiments (our method, HIRL, TrajRL, BC+SAC, SAC).

Table C.1: Hyperparameters for soft-actor critic (SAC)

Hyperparameter value used

Target network update period 1000 steps
discount factor γ 0.99
policy learning rate 3e−4

Q-function learning rate 3e−4

reward scale 1.0
automatic entropy tuning enabled
number of update steps per env step 1
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Figure C.2: Policy and Q-function network architectures. We use a convolutional neural network to
represent the Q-function for SAC, shown in this figure. The policy network is identical, except it does not
take in an action as an input and outputs a 7D action instead of a scalar Q-value.



APPENDIX C. PARROT: DATA-DRIVEN BEHAVIORAL PRIORS FOR
REINFORCEMENT LEARNING 91

C.3 Experimental setup

Tasks

We provided a visual depiction of 4 of our 8 evaluations tasks in Figure 4.3, and the remaining
tasks are shown here in Figure C.3.

Figure C.3: In the first row, the objective is to grasp a can and lift it above a certain height. Rows two
and three are similar, except the objective is to grasp a vase and a baseball cap, respectively. The final row
depicts a task where the goal is to pick the baseball cap and place it on the marble cube.
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Data collection

We collected our dataset using scripted policies detailed in Algorithms 7 and 8.

Algorithm 5 Scripted Grasping
1: threshold← 0.02
2: numTimesteps ← 25
3: targetPoint ← object position
4: for t in (0, numTimesteps) do
5: eePos ← end effector position
6: targetEEDist ← distance(targetPoint, eePos)
7: if targetEEDist > threshold then
8: action ← targetPoint − eePos
9: else if gripperOpened then
10: action ← close gripper
11: else if object not raised high enough then
12: action ← lift upward
13: else
14: action ← 0
15: end if
16: noise ∼ N (0, 0.1)
17: action ← action + noise
18: s′ ← env.step(action)
19: end for
20:

Algorithm 6 Scripted Pick and Place
1: threshold← 0.02
2: numTimesteps ← 25
3: placeAttempted ← False
4: dropPos ← point above container
5: for t in (0, numTimesteps) do
6: eePos ← end effector position
7: objectDropDist ← distance(eePos, dropPos)
8: if placeAttempted then
9: action ← 0
10: else if object not graspedAND objectDropDist

> threshold then
11: Execute grasp using Algorithm 7
12: else if objectDropDist > threshold then
13: action ← dropPos − eePos
14: else
15: action ← open gripper
16: placeAttempted ← True
17: else
18: action ← 0
19: end if
20: noise ∼ N (0, 0.1)
21: action ← action + noise
22: s′ ← env.step(action)
23: end for
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Simulation Objects

To collect data in diverse environments, we used 3D object models from the ShapeNet
dataset [10] and the PyBullet [14] object libraries.

Figure C.4: Train objects.
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Figure C.5: Test objects
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Appendix D

COG: Connecting New Skills to Past
Experience with Offline Reinforcement
Learning

D.1 Experimental Setup Details
Both our real and simulated environments use the following 8-dimensional control scheme:

[x,y,z,alpha,beta,gamma,gripperOpen,moveToNeutral]

where the x,y,z dimensions command changes in the end-effector’s position in 3D space,
alpha,beta,gamma command changes in the end-effector’s orientation, gripperOpen is a
continuous value from [−1, 1] that triggers the gripper to close completely when less than
−0.5 and open completely when greater than 0.5, and moveToNeutral is also a continuous
value from [−1, 1] that triggers the robot to move to its starting joint position when greater
than 0.5. The code for our environments can be found on our project website: https:
//sites.google.com/view/cog-rl.

Data Collection Policies

We describe our scripted data collection policies in this section. More details can be found in
Algorithms 1-3.

Scripted grasping. Our scripted grasping policy is supplied with the object’s (approximate)
coordinates. In simulation, this information is readily available, while in the real world we
use background subtraction and a calibrated monocular camera to approximately localize
the object. Note that this information does not need to be perfect, as we add a significant
amount of noise to the scripted policy’s action at each timestep. After the object has been
localized, the scripted policy takes actions that move the gripper toward the object (i.e

https://sites.google.com/view/cog-rl
https://sites.google.com/view/cog-rl
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action← object_position − gripper_position). Once the gripper is within some pre-specified
distance of the object, it closes the gripper (which is a discrete action). Note that this
distance threshold is also randomized – sampled from a Gaussian distribution with a mean
of 0.04 and a standard deviation of 0.01 (in meters). It then raised the object until it is
above a certain height threshold. For the simulated pick and place environment, the scripted
policy for grasping obtains a success rate of 50%, while the success rate is 70% for the drawer
environment. For the real world drawer environment, the scripted success rate is 30%.

Scripted pick and place. The pick part of the pick and place scripted policy is identical
to the grasping policy described above. After the grasp has been attempted, the scripted
policy uniformly randomly selects a point in the workspace to place the object on, and
then takes actions to move the gripper above that point. Once within a pre-specified (and
randomized) distance to that point, it opens the gripper. The policy is biased to sample
more drop points that lie inside the tray to ensure we see enough successful pick and place
attempts. Once the object has been dropped, the robot returns to its starting configuration
(using the moveToNeutral action).

Scripted place. This policy is used in scenes where the robot is already holding the object
at the start of the episode. The placing policy is identical to the place component of the pick
and place policy described above.

Drawer opening and closing. The scripted drawer opening policy moves the gripper to
grasp the drawer handle, then pulls on it to open the drawer. The drawer closing policy is
similar, except it pushes on the drawer instead of pulling it. Even if the correct action for a
particular task might involve only opening the drawer, we collect data (without reward labels)
that involves both opening and closing the drawer during prior data collection. Gaussian
noise is added to the policy actions at every timestep. After the opening/closing is completed,
the robot returns to its starting configuration.

Ending scripted trajectories with return to starting configuration We ended the
scripted trajectories with a return to the robot’s starting configuration. We believe that this
return to starting configuration increases the state-distribution overlap of the various datasets
collected from scripted policies, making it possible to stitch together relevant trajectories
from the prior dataset to extend the skill learned for the downstream task.
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Algorithm 7 Scripted Grasping
1: threshold ∼ N (0.04, 0.01)
2: numTimesteps ← 30
3: for t in (0, numTimesteps) do
4: objPos ← object position
5: eePos ← end effector position
6: objGripperDist ← distance(objPos, eePos)
7: if objGripperDist > threshold then
8: action ← objPos − eePos
9: else if gripperOpened then
10: action ← close gripper
11: else if object not raised high enough then
12: action ← lift upward
13: else
14: action ← 0
15: end if
16: noise ∼ N (0, 0.2)
17: action ← action + noise
18: (s, r, s′)← env.step(action)
19: end for
20:

Algorithm 8 Scripted Pick and Place
1: threshold, dropDistThreshold ∼ N (0.04, 0.01)
2: numTimesteps ← 30
3: for t in (0, numTimesteps) do
4: eePos ← end effector position

5: dropPos ←

{
point above box w/ prob. 0.5
point outside box w/ prob. 0.5

6: objectDropDist ← distance(eePos, dropPos)
7: if object not grasped AND objectDropDist >

dropDistThreshold then
8: Execute grasp using Algorithm 7
9: else if objectDropDist > boxDistThreshold

then
10: action ← dropPos − eePos
11: action ← lift upward
12: else if object not dropped then
13: action ← open gripper
14: else
15: action ← 0
16: end if
17: noise ∼ N (0, 0.2)
18: action ← action + noise
19: (s, r, s′)← env.step(action)
20: end for

Algorithm 9 Scripted Drawer Open-
ing/Closing
1: threshold ∼ N (0.04, 0.01)
2: numTimesteps ← 30
3: for t in (0, numTimesteps) do
4: handlePos ← handle center position
5: eePos ← end effector position
6: targetGripperDist ← dist(targetPos, eePos)
7: if targetGripperDist > threshold AND not

drawerOpened then
8: action ← targetPos − eePos
9: else if not drawerOpened (or closed) then
10: action ← move left to open drawer, or right

to close drawer
11: else if gripper not above drawer then
12: action ← lift upward
13: else
14: action ← moveToNeutral
15: End scripted trajectory
16: end if
17: noise ∼ N (0, 0.2)
18: action ← action + noise
19: (s, r, s′)← env.step(action)
20: end for
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Neural Network Architectures

Figure D.1: Neural network architecture for real robot experiments. Here we show the architecture
for the policy network for real robot experiments. The Q-function architecture is identical, except it also has
the action as an input that is passed in after the flattening step. We map high dimensional image observations
to low level robot commands, i.e. desired position of the end-effector, and gripper opening/closing.
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Figure D.2: Neural network architecture for simulated experiments. Here we show the architecture
for the Q-function in our simulated experiments. The policy architecture is identical, except no action is
passed to the network. Note that we omit the information about the gripper position and orientation, since
including this information did not seem to make a difference in our simulated experiments.

Figures D.1 and D.2 show the neural network architectures used in our real world and
simulated experiments, respectively. We experimented with several different architectures
(varying the number of convolutional layers from 2 to 4, and varying the number of filters in
each layer from 4 to 16), and found these two architectures to perform the best.
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Hyperparameters for Reinforcement Learning

We used the conservative Q-learning (CQL) [86] algorithm in our method. Source code can be
found on our project website: https://sites.google.com/view/cog-rl We now present
the hyperparameters used by our method below:

• Discount factor: 0.99 (identical to SAC, CQL),

• Learning rates: Q-function: 3e-4, Policy: 3e-5 (identical to CQL),

• Batch size: 256 (identical to SAC, CQL),

• Target network update rate: 0.005 (identical to SAC, CQL),

• Ratio of policy to Q-function updates: 1:1 (identical to SAC, CQL),

• Number of Q-functions: 2 Q-functions, min(Q1, Q2) used for Q-function backup and
policy update (identical to SAC, CQL),

• Automatic entropy tuning: True, with target entropy set to − log |A| (identical to
SAC, CQL),

• CQL version: CQL(H) (note that this doesn’t contain an additional −α log π(a|s) term
in the Q-function backup),

• α in CQL: 1.0 (we used the non-Lagrange version of CQL(H)),

• Number of negative samples used for estimating logsumexp: 1 (instead of the
default of 10 used in CQL; reduces training wall-clock time substantially when learning
from image observations)

• Initial BC warmstart period: 10K gradient steps

• Evaluation maximum trajectory length: 80 timesteps for simulated drawer environ-
ment, 40 timesteps for simulated pick and place. For real world drawer environment, this
value is equal to 35 timesteps.

D.2 Comparison to BC + SAC for online fine-tuning
We compared our CQL fine-tuning results to fine-tuning a behavior-cloned policy with SAC,
and observed that fine-tuning with CQL yields substantially better results. The comparison
between between CQL fine-tuning, and this BC+SAC baselines is shown in Figure D.3 for
the grasping from a drawer task (see Figure 5.4), for the initial condition where the drawer
starts out closed. We see that the initial SAC performance is low, which is partly due to the
low success rate of the BC policy, and also because SAC typically undergoes some unlearning
at the start of the fine-tuning process. This unlearning when fine-tuning with SAC has been

https://sites.google.com/view/cog-rl
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observed in prior work [112], and is due to the fact that a randomly initialized critic is used
to update the policy. For harder (i.e. long-horizon) tasks with more complicated initial
conditions (such as blocked drawer 1 and blocked drawer 2), we were unable to get SAC to
perform well from a BC initialization, even after we collecting over 5K new episodes.
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Figure D.3: Fine-tuning with CQL vs BC+SAC We compared fine-tuning with CQL to fine-tuning a
BC policy with SAC. SAC experiences some unlearning at the start (resulting in a success rate of zero at the
start of training), and needs to collect a somewhat large number of samples before it can recover. Further,
the variance across three random seeds was quite high for BC+SAC.

D.3 Learning Curves
Here are detailed learning curves for the experiments we summarized in Table 1. Note that
the x-axis here denotes number of update steps made to the policy and Q-function, and not
the amount of data available to the method. Since we operate in an offline reinforcement
learning setting, all data is available to the methods at the start of training. We see that
COG is able to achieve a high performance across all initial conditions for both the tasks. We
substantially outperform comparisons to prior approaches that are based on pretraining using
behavior cloning, including an oracle version that only uses trajectories with a high reward.
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Figure D.4: Learning curves for simulated experiments by method and initial condition. Here
we compare the success rate curves of our method (COG) to the three behavioral cloning baselines in the
four settings of Table 5.1 where prior data is essential for solving the task: the place in tray task with the
object starting in the tray (upper left), as well as the grasp from drawer task with a closed drawer (upper
right), blocked drawer 1 (lower left), and blocked drawer 2 (lower right).
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