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Abstract

HASTE: Serverless DAG Execution Optimizer

by

Avinash Arjavalingam

Masters of Science in Computer Science

University of California, Berkeley

Professor Aditya Parameswaran, Chair

Before the broad availability of cloud computing, algorithms were developed to generate
low latency schedules for processors given an input DAG of computational tasks. These
algorithms often relied on a number of simplifications, including assuming an unlimited
number of processors, as well as an unlimited amount of memory per processor. With the
recent explosion of cloud computing, the setting of unbounded processors is now practically
viable. Our project, the HASTE execution optimizer, takes as input workloads consisting of
sets of task DAGs, a style of workload that is fairly common with data-driven applications,
especially machine learning. HASTE employs the Lower Bound (LWB) scheduling algorithm,
a task DAG scheduling algorithm that assumes an unbounded number of processors to
create schedules for DAG execution that run each task node in the DAG at its earliest
possible time. HASTE utilizes the merging of common prefixes between DAGs to create a
single merged DAG, eliminating duplicated execution of equivalent nodes. After passing this
merged DAG through LWB to generate a schedule, HASTE determines the memory costs
of the schedule, and groups scheduled task executions into VMs in order to minimize total
compute time, aggregated across allocated VMs. This report outlines the ILP that groups
these components together to minimize the aggregated compute time, and therefore financial
cost, of HASTE. Using public Azure Function invocation data, this report also shows how
the heuristics employed by HASTE deliver the low latency of LWB while staying within
reasonable financial cost relative to standard DAG execution algorithms.
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Chapter 1

Introduction

Data processing, especially for machine learning, is becoming increasingly popular across a
wide variety of domains and industries. Anecdotally, many companies in the past few years
have begun to dramatically increase their use of data analysis pipelines in order to discover
actionable insights or build models from the data they produce. Data analysts or scientists
are given access to commercial data that is often large in volume and complex. To gain
insights or build models from the data, they apply data cleaning and pre-processing steps,
often in cells in an Jupyter notebook [11]. They then use this cleaned data to train machine
learning models, often by trying, in parallel, many di↵erent hyperparameter settings for the
same model, as well as di↵erent machine learning model classes, which may provide di↵erent
accuracy levels and behaviors. While not explicitly stated, the data analyst is constructing
a directed acyclic graph of computational tasks, henceforth referred to as a DAG. The initial
pre-processing cells in the notebook are the initial chain of nodes, with the training and
validation of various model types and configurations representing branches of the DAG.

Many modern data-driven problems can be represented as the execution of a set of
DAGs. This includes complex tasks, such as automated hyperparameter tuning [18], predic-
tion serving [22], and neural architecture search [23, 15], as well as the most basic of data
manipulation tasks, such as preprocessing data and training a simple machine learning model
in a notebook as described earlier. While the latter example can usually be run quickly on
a personal computer, the former examples are often run at a scale where they need large
quantities of resources to run in a reasonable time frame. As a real-world example, a study
of 3000 ML pipelines at Google by Xin et al. [25] uncovered pipelines with as many as 6900
nodes. Of these machine learning pipelines, over 80% contained data pre-processing nodes,
and over 50% contained data and/or model analysis nodes. Production machine learning
jobs of this scale and complexity are becoming increasing common, as evidenced by analysis
by companies on their methods for handling their large data analysis pipelines [13, 3], as well
as by the proliferation of end-to-end ML systems that handle the execution and deployment
of said pipelines in the cloud [7, 9, 5].

A naive execution of a set of DAGs would sort the nodes of each DAG in topological
order and then execute the nodes one in the DAG at a time, each DAG at a time, with
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a single thread of compute. This is the case when executing a group of cells to conduct
data analysis in a Jupyter Notebook [11]. While this approach yields correct results, it
misses some useful optimizations. Firstly, running the DAGs on a single thread of compute
means every node will be run in sequence, a time consuming process that does not utilize the
parallelism possible when executing the DAG across multiple processors. Furthermore, there
are often many common nodes between the DAGs in such a set. For example, to conduct
hyperparameter tuning of an ML pipeline, one must test the ML pipeline with a wide variety
of hyperparameter configurations. Many of the steps, such as early data pre-processing and
cleaning, will be shared or equivalent between many configurations, representing identical
computation. The user will likely waste compute time, and therefore financial cost, executing
equivalent nodes multiple times. Research exploring this topic by Li et al. [18] supports the
prevalence of this issue. Finally, even if the user executes each DAG individually on a
separate cloud instance, they will not e↵ectively utilize the multiple processors available on
many cloud instances.

To remedy these issues, we present HASTE, an execution optimizer for workloads con-
taining sets of DAGs running in a serverless compute model. HASTE utilizes the concept of
equivalent nodes and the merged DAG [18], discussed in Section 3.2, to eliminate duplicate
nodes across DAGs. HASTE then uses the task graph scheduling algorithm Lower Bound
(LWB) by Colin and Chretienne [14] to generate a schedule for executing the merged DAG
on multiple processors. HASTE then determines the amount of on-machine memory that
will be needed to execute the schedule between independent VMs. HASTE lowers the needed
on-machine memory by storing intermediate results in remote storage when possible. Finally,
with the execution schedules and memory allocation plans, HASTE uses simple heuristics
to pack the components of schedule, called execution sequences, into multi-vCPU VMs with
the goal of minimizing the aggregate compute time used in the processing of the workload
across all allocated VMs. This in turn lowers the financial cost to the resource provider while
still providing minimal latency when executing the workload.

In Chapter 2, we discuss the algorithms and concepts used by HASTE, such as merged
DAGs and LWB, as well as other similar work. Then, in Chapter 3, we state our definitions of
the problem and the system model we assume. In Chapter 4, we formalize the ILP associated
with this optimization problem, and prove that the problem is bounded by reasonable size
constraints, proofs that we use to define and explain the HASTE optimizer in Chapter 5.
Finally, in Chapter 6 we show that HASTE both outpaces comparable approaches and uses a
reasonable amount of compute resources by testing HASTE on microbenchmarks constructed
from Microsoft Azure Functions invocation traces [8].
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Chapter 2

Background and Related Work

2.1 DAG Representation and Assumptions

The input to HASTE is a workload W = (G), where gt 2 G is one of the task execution
directed acyclic graphs (DAG) that make up the set W . Every node in each DAG represents
an atomic computational task to be executed, and every edge in the DAG represents a
dependency between tasks. More concretely, the DAG gt is specified by (N t, Et), where
node n

t
i 2 N t is a computational task in gt, and edge e

t
ij 2 Et is an edge from n

t
i to n

t
j

where the output of nt
i is an input of nt

j. In the case where we are only considering a single
DAG, including the case of applying LWB to the merged DAG of all input DAGS in W , we
will omit the t.

Figure 2.1: Example execution DAG, with the numbers inside nodes being the node ID i,
the numbers adjacent to nodes being execution times ri, and the numbers adjacent to edges
being communication time cij
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The node ni has the properties: [ri, xi], and the edge eij has properties: [sij, cij]. The
property ri is the processing time of the task corresponding to node ni, and xi is the maximum
allocation of memory necessary in bytes during processing. Here, we make the simplifying
assumption that these quantities are known to us. The property sij is the size in bytes of
the output of ni that is an input of nj, henceforth referred to as the message associated with
eij. The property cij is the communication time of sending eij between two VMs. We assume
that for all ni 2 N , xi is less than the amount of main memory for VMs. Because all nodes
will require at least enough memory to hold their inputs, we know that for all ni 2 N :

xi �
X

ski 8k : eki 2 E

An example of such a DAG can be seen in Figure 2.1. The numbers inside the nodes are
the Node IDs i. The numbers adjacent to the nodes are the ri, or task processing time, of
each node, and the numbers adjacent to the edges are the cij, or communication times, of
each edge. We omit ni and si in this diagram.

2.2 Lower Bound Scheduling Algorithm

The Lower Bound algorithm (LWB) is a DAG scheduling algorithm developed by J. Y. Colin
and P. Chrétienne [14]. The input to LWB is a task execution DAG as previously defined.
LWB assumes infinite memory per processor, and as such, when generating a schedule with
LWB, we can ignore the parameters xi (node maximum memory allocation) and sij (edge
message memory size). The output of LWB comes in the form of a set of execution sequences.
Each execution sequence consists of a linear sequence of a subset of the input DAG nodes
with execution start times assigned to each node. Since each execution sequence is to be run
on a single processor, none of the execution times of the nodes in any individual execution
sequence overlap.

LWB is able to generate schedules with a minimal makespan. Minimal makespan is the
shortest possible execution time of the work, with execution time being measured from the
beginning of processing until no more computation is required. Schedules with a minimal
makespan are henceforth referred to as optimal schedules. To do so, LWB, when creating
a schedule, sometimes employs task duplication, which is when multiple copies of the same
task are scheduled to be run independently. Also, a restriction on the input DAGs is that
the DAG must have small communication times relative to task computation times. More
concretely:

min(ra|na 2 parents(ni)) � max(cai|na 2 parents(ni))8ni 2 N

An explanation of why this assumption is necessary can be found in Colin and Chrétienne
[14]. LWB consists of two parts: computing the lower bound of the start times of each node,
and then building a schedule of execution sequences where all copies of nodes are scheduled
to start at their lower bound start times. As an example to help follow along, we will use
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Figure 2.1 as an example input to LWB. The following explanation is heavily inspired by
the explanation of LWB in Colin and Chrétienne [14].

Part 1: Computing the lower bound of the node start times

The first step of LWB takes the input DAG and calculates the lower bound of the start times
of each node. The lower bound of the start times is the earliest time that any given node
can begin execution. This depends on when all of the nodes that the given node depends on
complete. As a shorthand, we will use PRED(ni) to refer to all of the immediate predecessors
of node ni. To start, LWB takes all of the “root” nodes, which have no predecessors, and
assigns them a lower bound start time of 0, as they can all start immediately. Then, LWB
enters a loop that exits only when all nodes have been assigned a lower bound start time. At
every iteration, this loop selects a node ni which has not been assigned a lower bound start
time but all of whose PRED(ni) have been assigned lower bound start times. At this step,
LWB uses the lower bound start times of these predecessors, as well as the execution times
of the predecessor tasks and the communication times of predecessor outputs which input
to ni to determine and assign the lower bound start time of ni. We first find the predecessor
of ni that will end the latest of all the predecessors, including communication time in our
calculations. The LWB algorithm then assumes all copies of ni will be run on a processor
that has run a copy of the aforementioned latest predecessor. With this assumption, the
LWB algorithm then determines the earliest time that ni can be scheduled, given that the
latest predecessor will not need to incur communication time, but the other predecessors
will. More concretely, the algorithm is as such, with bi being defined as the lower bound
start time for ni:

Calculate lower bound start times for N in G

for ni 2 N do
bi = �1

end for
for ni 2 N do
if PRED(ni) = Ø then
bi = 0

end if
end for
while 9ni 2 N | (bi = �1 and (bk � 0 8nk 2 PRED(ni))) do
C = max(bk + rk + cki | k 2 PRED(ni))
Define s such that: bs + rs + csi = C

bi = max(bs + rs,max(bk + rk + cki | k 2 PRED(ni)� (s)))
end while

We see in Figure 2.2 the application of this first step to Figure 2.1, where the top row are
the Node IDs, and the bottom row is the lower bound start time corresponding to each node.
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Figure 2.2: Node IDs (top row) to Lower Bound time (bottom row) for the graph in Figure
2.1

We can see that the “roots” of Figure 2.1 are assigned lower bound start times of 0. As an
example, Node 3 is assigned a lower bound start time of 4, because its only dependency is
Node 1, which means its lower bound start time is bs + rs, which is 0 + 4 = 4. Node 4’s
latest predecessor is Node 1, whose bk + rk + cki is 0 + 4 + 2 = 6. The algorithm assumes
all copies of Node 4 will be run on the same processor as a copy of Node 1, meaning we can
eliminate the communication time of 2, bringing the time Node 4 needs to wait for Node 1
to complete to 4. The only other predecessor to Node 4 is Node 2, whose bk + rk + cki is
0 + 3 + 1 = 4, so the lower bound start time of Node 4 is 4.

Part 2: Building the Schedule of Execution Sequences

Once the lower bound start times are calculated, LWB constructs execution sequences to
build the minimal makespan schedule of the DAG. To do so, LWB must determine the
critical paths in the DAG and create an execution sequence out of each critical path.

A critical path is a path in the task execution DAG that contains exclusively critical
edges and is not a proper subpath of another critical path. A critical edge is any edge eij

where bi+ri+cij > bj. That is to say, any edge is critical if the time in which the predecessor
node completes, including communication time, is greater than the lower bound start time
of the descendant node. All critical edges of the DAG in Figure 2.1 are highlighted red in
Figure 2.3. Intuitively, a critical edge means that we cannot have communication between
VMs for that edge if we are to generate a schedule with minimal makespan. This means all
critical edges must occur on the same VM.

Because of how we calculated lower bounds in the first part of the algorithm, at most one
predecessor in PRED(ni) can satisfy bk+ rk+ cki > bi. Because of this, we know the critical
graph of critical path is a spanning forest of out-trees, with out-trees being trees where there
is only one path between the root of the tree and any other vertex in the tree. This means
each critical path corresponds to a single “leaf” node in the task execution DAG. This allows
us to convert each critical path into an execution sequence, each of which is assigned its own
processor. A proof that this process finds a minimal makespan schedule can be found in
Colin and Chrétienne [14].

We can see in Figure 2.4, each row is a single execution sequence corresponding to a
critical path as shown by the highlighted edges in Figure 2.3. Each box is a copy of a node,
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Figure 2.3: The DAG in Figure 2.1 with the critical edges highlighted red

Figure 2.4: Parallel execution plan for the graph, with each row representing an execution
sequence

with the number within being the Node ID. We can see that each node is scheduled at its
lower bound start time as seen in Figure 2.2.

Related Task Execution DAG Scheduling Algorithms

While we chose the LWB scheduling algorithm, there are numerous DAG scheduling algo-
rithms that have been developed over the years. Yu-Kwong Kwok and Ishfaq Ahmad [17]
have compiled a list of many of them, and have formalized categories for the di↵erent types
of task DAG algorithms based on their properties. This includes algorithms that require a
restricted graph structure, ones that assume unit computational costs for nodes, ones that
assume no communication costs, and ones that assume an unbounded number of proces-
sors. Others still will duplicate task executions in their schedules. All of these algorithms
have di↵erent time complexity bounds in terms of creating the schedule, as well as disparate
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performance on varying types of task DAGs.
We chose LWB because its properties fit well with our problem space. LWB can handle

DAGs with arbitrary structure and arbitrary computational costs for every node, although
it does require perfect knowledge of node processing times in order to generate an optimal
schedule. LWB can also handle arbitrary communication costs between nodes on di↵erent
processors, but assumes 0 communication cost between nodes on the same processor, assumes
low communication costs relative to compute costs, and again must have perfect knowledge
of all communication costs in order to generate an optimal schedule. All of these assumptions
to the problem space are ones we assume for the inputs to HASTE as well. The exact bounds
on communication and computational cost are laid out in Section 3.1, and an example of a
DAG which meets these requirements is Figure 2.1.

Importantly, LWB allows for task duplication and an unbounded number of available
processors, and low communication costs. Task duplication means that two di↵erent exe-
cution sequences in a schedule generated by LWB can be assigned to both run the same
node independently. This means nodes with multiple dependencies can be run in parallel on
di↵erent processors so as to eliminate communication time and reduce overall latency. The
assumption of unlimited processors means that LWB does not take as an input the number
of processors it must schedule for, and instead can generate as many execution sequences as
it needs, with each given its own processor. LWB leverages this flexibility in order to achieve
optimal lower bound latency for low communication overhead DAGs [14], something most
other DAG scheduling algorithms cannot.

2.3 Merged DAG

HASTE takes its definition of equivalent nodes and merged DAGs from work by Liam Li et
al. [18] on optimizing the execution of hyperparameter tuning. Briefly, equivalent nodes are
task execution nodes in di↵erent DAGs that perform the same operation on the same set
of inputs, and a merged DAG is created by combining these di↵erent DAGs into a single
DAG by assigning a common sink to the DAGs, and then eliminating duplicate equivalent
nodes, sending the output of one copy to all the nodes that have it as a dependency. An
example merging of DAGs can be found in Section 3.1. As explored in Liam Li et al. [18],
hyperparamenter tuning of a single model tends to use similar preprocessing steps between
di↵erent tunings, and as such there are many opportunities to merge equivalent nodes to
reduce compute. HASTE exists in the same vein of work based around minimizing the
compute necessary to complete a workload by reusing previously computed results. Helix,
by Xin et al. similarly leverages reuse by storing the intermediate results of DAG executions
across iterations in order to minimize execution time of iteratively chanaged DAGs [24].
HASTE, in contrast, utilizes reuse for a single execution of a workload of a general set of
DAGs.

As we will show in Section 4, merging a set of DAGs and creating a schedule via LWB
will yield the same latency for every node as creating a schedule via LWB for each DAG
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individually. This allows us to eliminate the duplicate computation between the schedules of
di↵erent DAGs that might be present with the latter scheduling strategy. As a consequence,
HASTE can potentially save financial cost by using less compute time than applying LWB
to individual DAGs, while also not sacrificing the optimal latency of LWB.

2.4 Serverless

As discussed earlier, LWB and many other task execution DAG scheduling algorithms rely
on the assuming of an unbounded number of available processor. Decades ago, at the time
LWB and other similar algorithms were developed, available compute resources could not
possibly fulfill this assumption. However, with the relatively modern computing model
of serverless, we can approximate this assumption, allowing us to use LWB and similar
algorithms in practice. Serverless computing is a cloud computing model that pushes the
burden of allocating compute and storage resources from the application developer (as is the
case with manually allocated VMs with o↵erings such as EC2 [21]) to the cloud provider.
Serverless function-as-a-service (FaaS) o↵erings such as AWS Lambda and Cloudburst [22]
fulfill this role by manually allocating and de-allocating containers when functions are invoked
to match load. However, serverless is not limited to the FaaS model. Our system model is
serverless in that it supports any workload that does not include specifications on how to
allocate compute / storage resources, and instead leaves it up to the HASTE system.

Since many serverless o↵erings are Function-as-a-Service systems, much e↵ort has gone
into optimizing DAG executions for serverless settings. Systems such as Wukong by Carver
et al. [2] and CloudFlow by Subbaraj et al. [22] focus on optimizing single DAG execution
via techniques such as data locality, operator fusion, and batching inputs. Numpywren,
by Shankar et al. [12], focuses on the use case of linear algebra, and constructs a DSL to
optimize matrix operations by maximizing locality. HASTE takes a slightly di↵erent path
from these systems by targeting the use case of sets of DAGs with equivalent nodes between
them as supposed to single DAGs. Furthermore, HASTE takes schedules generated by LWB
and places them on VMs (and remote storage when possible), using heuristics to minimize
the financial cost of running the workload, which is di↵erent from the latency minimizing
strategies of most other serverless DAG execution systems.

For the purposes of this report, we assume the HASTE execution optimizer is used by
the cloud provider and not the user running the workload. We assume theoretically infinite
available compute and remote storage resources that can be brought up and shut down at
any time. In terms of the calculated financial cost of a workload, we assume the spin-up
and shutdown times of resources cost as much as uptime, as those clusters cannot be used
elsewhere. Also, we assume the financial cost per unit time includes when a machine is idling
or processing I/O and not running programs. We do not tackle questions such as periodic
invocations of serverless functions to keep containers warm. If adopted in practice, we see
HASTE as an o↵ering cloud providers give to users wishing to run workloads, similar to AWS
Sagemaker [7], where the cloud provider applies HASTE to the workload, allocates and runs
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the workload based on the output of HASTE, and charges the user for the resources that
HASTE calculates to be necessary. This procedure of letting the compute provider handle
resource allocation is how HASTE fits into the serverless model.
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Chapter 3

Problem Definition

In this Chapter, we define what constitutes an equivalent node between DAGs in a workload.
We also state our representations of the output of LWB as well as associated concepts that
are used in HASTE. Finally, we define the system model we assume.

3.1 Equivalent Nodes and Merging

Figure 3.1: Example merged DAG from a set of DAGs

In workload W, the nodes n
t
i 2 N t and n

u
j 2 Nu (u 6= t) are equivalent, denoted as

n
t
i ⌘ n

u
j if the operators corresponding to n

t
i and n

u
j compute identical results on the

same inputs, and all the immediate predecessors of nt
i are equivalent to all the immediate

predecessors of nu
j. That is, there is a 1-1 equivalence mapping between the predecessors of

n
t
i and n

u
j.
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Figure 3.1 below illustrates how equivalent nodes and merging work in practice, with a
few linear DAGs on the left side, and a merged DAG on the right. The color of the node
corresponds to the operation performed at that node, but is unrelated to the exact inputs to
that node. For both the unmerged and merged DAGs, the grey node performs no operation,
as it acts as a sink for all outputs. All red nodes are equivalent among the set of DAGs,
as they perform the same operation and have no input. Similarly, the yellow nodes are
both equivalent, as they all perform the same operation and take the same input, the red
nodes. If these DAGs are part of the same HASTE workload, the red and yellow nodes are
merged. However, the blue nodes are not equivalent, since even though they perform the
same operation, one takes a red-yellow subtree as an input, and one takes a red-green subtree
as an input. Since the input subtrees are di↵erent, it is not guaranteed that applying the
blue operation on these two inputs yields the same result for both, and it is in fact likely
they give di↵erent results. As such, the blues nodes in Figure 3.1 are not equivalent, and we
cannot combine them into a single blue node in the merged DAG.

3.2 LWB Scheduling Algorithm Output

The application of LWB on a task dependence DAG will then output a set, Y , of execution
sequences, where yi 2 Y is represented as a linked list. Each element in the linked list contains
the node ni and its associated properties, as well as all its incoming and outgoing edges and
their associated properties. Every edge is associated with the additional information of which
execution sequence yj 2 Y that the output of ni will be sent. For some edges this will be
the same execution sequence as ni, for others it will be a di↵erent execution sequence, and
for others still it will be no execution sequence, as with LWB’s task duplication, another
instance of ni may satisfy that dependency. Each execution sequence also contains a start
time and end time of execution for the vertex, as well as a pointer to the next element.

Each execution sequence yi 2 Y corresponds to exactly one memory sequence ri. A
memory sequence ri represents the memory requirements for the execution of yi. Thememory
sequences are also represented as linked lists, with each node having an associated start
time, as well an integer value of the amount of memory needed for that chunk of time. The
execution sequence yi and its corresponding memory sequence ri do not necessarily contain
the same amount of nodes, as yi needs to account for the communication between execution
sequences and the memory needed to accommodate that. An in depth explanation of how
memory sequences are constructed from execution sequences can be found in Section 4.2,
and an example memory sequence can be seen in Figure 4.1.

3.3 System Model

The atomic unit of compute in our system model is a VM . Every VM V i has the same
number of vCPU P , amount of RAM M , cost per cycle D, startup time U , and teardown
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time W . While nearly all cloud providers allow the allocation of VMs with varying amounts
of vCPU, RAM, and other characteristics, for the scope of our project we will only assume
the ability to allocate the same single type of VM. Since local reads from RAM are so quick,
we will assume they incur a negligible latency, and do not consider them when scheduling.
When determining the cost of allocating a VM, we assume startup time and teardown time
cost the cloud provider the same as uptime, as the VM is still unable to service other requests
during those times. Therefore, the cost, Ct to allocate a VM with uptime t is:

Ct = D(t+ U +W )

For our project, time is measured in discrete CPU cycles, and all processors are perfectly
synchronized to the same time 0 when execution begins. As such, all lengths of time are
natural integers.

Every node ni runs on exactly one vCPU for the processing time ri and is allocated its
maximum allocation xi for the time it runs. If a VM has already allocated M � xi to other
processes, ni cannot run until enough memory is available.

For communication edges between VMs, we assume we are not I/O bound, and as such,
that all I/O occurs exactly when it is scheduled to occur. However, although we know the
communication time for the entire edge eij is cij, we don’t know exactly when each packet will
arrive at the receiving VM. Therefore, we must make some pessimistic assumptions when
determining the allocated memory at communicating VMs. The sending VM allocates sij

for cij for all edges eij, representing the sending node being required to allocate the necessary
memory for eij for the entire communication time of the edge. This is necessary because the
rate at which the data is sent is unknown, only the total communication time is known. The
receiving node will have to allocate sij for the time represented as aij:

aij = (bj + ri)� bi

In this case, ni is the sending node and nj is the receiving node. This time represents
the time between when ni ends and nj begins. This is to ensure whatever order the packets
come, and when they come, there will be enough memory allocated to allow them to be
written to the receiving VM. Because of the definition of the LWB algorithm we state in
Section 2.2, we know that aij � cij. This means there is always enough time to communicate
an edge across VMs.

When an execution sequence contains two nodes ni and nj which have an edge eij, we will
allocate sij for aij as the memory for eij for both nodes. This is because, according to the
definition of the LWB algorithm [14], all of the critical paths from which the nodes of the
execution sequences are assigned comes from a spanning forest of out-graphs of the DAG.
In practice, this means that any node ni will only have to send eij to one copy of nj, and if
that copy is on the same execution sequence, then we only need to allocate sij for the time
between the end of ni and start of nj. For the sake of constructing the memory sequence,
when this case occurs, we assume the sending node ni allocates memory for 0 time. If the
time between the executions of ni and nj with edge eij is 0, and they both reside on the same
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execution sequence, we will not have to allocate any memory for eij for either node, as none
is necessary.

Our system model also considers serverless remote storage, which we designate R. R is
assumed to have infinite capacity, and is defined by M , the coe�cient that multiplies cij to
get the time to read or write eij to R. Because remote storage is slower to access, the time
to communicate an edge to and from R is always larger than the time to communicate an
edge between VMs, and therefore M > 1. Formally, the time it takes to read or write eij to
R, represented as mij, is:

mij = dM ⇤ cije

If the VM is reading from R, it must keep at least eij memory allocated for mij from
when the read begins. However, if the VM is writing to R, it only needs to keep the memory
allocated for cij, as it does not need to keep the memory around when R receiving the data
and writing to itself. We choose this option whenever cost memory cost at the receiving VM
would be lower when using R as supposed to allocating the memory necessary to receive the
input directly from another VM, which occurs when mij  aij.

This storage abstraction is derived from o↵erings such as Amazon S3, a highly scalable
object-store with near infinite storage potential, but with much higher read latencies by a
VM relative to the equivalent read from RAM or communication between VMs. Because
most scalable storage o↵erings such as S3 are so cheap per unit time relative to compute
resources, we will assume storing any amount of memory in R incurs negligible financial cost.
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Chapter 4

Problem Bounds and Formalization

In this Chapter, we prove that given a workload, the schedule created by LWB is bounded by
the size of said workload, even though LWB allows for task duplication and assumes an un-
bounded number of processors. We also prove that calculating the memory sequence of every
execution sequence occurs in polynomial time. Finally, we lay out the ILP for minimizing
the financial cost incurred from the aggregated VM time of executing the schedule.

4.1 LWB bounds

LWB schedules the nodes in a DAG by first determining the earliest time possible it can
schedule each node, known as the lower bound of the node. A rundown of the steps of the
algorithm can be found in Section 2.2.

We know from Section 2.2 that the maximum number of execution sequences generated,
and therefore the maximum number of VMs needed, is bounded by the number of nodes in
the DAG [14].

Theorem 1: The maximum number of nodes that can be assigned to an
execution sequence for DAG g is the size of N , or the number of nodes in the
DAG.

Proof by Contradiction: Assume there exists an execution sequence yi that has L nodes,
where L has more nodes than exist in N . Because the execution sequence can only contain
nodes from the DAG, there must be at least one node ni that occurs more than once in the
execution sequence. We know that execution sequences are assigned their nodes from the
critical graph, as described in Section 2.2. From Section 2.2, we also know that that the
critical graph is a spanning forest of out-trees derived from paths in the original DAG. The
LWB algorithm states that each execution sequence is given exactly one path from the critical
graph, with each path being given out exactly once. This means the execution sequence must
have been assigned a single path in the original DAG that contains at least one copy of a
node. This path must therefore contain a cycle, breaking the definition of a directed acyclic
graph, and is therefore not possible.
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Theorem 2: The maximum amount of memory that could be required at any
time in any memory sequence made from DAG g is less than or equal to the
sum of the memory requirements for all edges in g added to the memory for
the largest max allocation of all the nodes in g. Mathematically, this would be:
(
P

sij8eij 2 E) + (max(xi)8ni 2 N).
Proof : We know from our definition of an execution sequence that only one node can run

at a time. Therefore, in order to handle any node execution, we will need at most enough
memory to handle the largest max allocation of all nodes in N . However, communication
of edges can occur parallel to execution and other communication of edges. Our procedure
of allocating memory for edge communication defined in Section 3.4 dictates that if the two
nodes ni and nj of an edge eij reside on the same execution sequence, we will allocate sij once
at the memory sequence corresponding to that execution sequence. This will be allocated
for the duration between their executions. Otherwise, we allocate sij for a period of time
either before nj starts or after ni finishes. This means that, because we only see each node
at most once at every execution sequence, we will only have to allocate sij at most once per
memory sequence as well. Because of this, the maximum memory needed at any time for an
execution sequence can never exceed the sum of the memory required for all edges in E and
the largest max allocation of all nodes in N , which is what Theorem 2 states.

4.2 Memory Sequence Generation Time

The memory sequence generation algorithm takes in as input its execution sequence. The
execution sequence input takes the form of a linked list of the chronologically ordered nodes
to be executed as well as their execution start and end times, and the output memory
sequence takes the form of a linked list of chronologically ordered allocation vertices. Each
allocation contains a start time and an integer value of memory necessary at that start time
we will label size. The start time of the next allocation determines the implied end time of
the previous allocation. More details on the contents of memory sequences and execution
sequences can be found in Section 3.3.

There are three sectionss of memory necessary for a node ni on a memory sequence:
the max allocation, the inputs and the outputs. As described earlier, the max allocation
is the memory needed to run the node. Specifically, node ni needs xi memory during the
run time of length ri. The input and output memory is the memory needed to handle the
incoming and outgoing communication edges for ni on this particular memory sequence. We
use the procedure for determining memory requirements of communicating edges explained
in Section 3.4.

Because the memory requirements of all sections of the node is fixed for a given period
of time we can treat them all identically. To generate the memory sequence, we start at
the beginning of the execution sequence, and iterate through every node. At every node, we
determine the memory requirements for the inputs, outputs, and execution of the node as
well as the start and end times of these requirements. For each section of every node, we
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Figure 4.1: Example memory sequence

construct a component, which is a data structure composed of the start and end time of that
section of the node, as well as the memory requirement needed for that duration. Time is
measured in integer cycles, and the memory requirement is measured to the nearest larger
integer. We then place an independent copy of each component in two min-priority queues,
startpq and endpq. The startpq minpq is ordered by the start time of the component, and
the endpq minpq is ordered by the end time of the component.

Once we have iterated through all vertices and constructed all components, we begin to
build the memory sequence, starting with an empty linked list. To start, we compare the
heads of both priority queues, and pop the head with the lower time (using the start time
for startpq and end time for endpq). We then create an allocation, setting its start time
to the component’s time. We then determine the size of the previous allocation, using 0 if
there are no previous allocations. If the component we just popped comes from startpq, we
set the size of the current allocation to: (size of previous allocation + component’s required
memory). If the component we just popped comes from endpq, we set the size of the current
allocation to: (size of previous allocation - component’s required memory). We then add this
allocation to the memory sequence linked list. We do this process until both min priority
queues are empty. Because the start time of each component comes before its end time, we
will never create an allocation will below 0 memory and our memory sequence have its last
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node require 0 memory which corresponds to the last component is processed. An example
of creating a memory sequence can be seen in Figure 4.1.

For each individual execution sequence yi, the number of nodes is at most the size of N as
per Theorem 1. Because we can’t have duplicate nodes, we see the same edge eij at most twice
in yi, once for node ni and once for node nj. Therefore, the sum of the number of edges all
nodes in yi have is at most the size of (2E). Running the insertions and removal of all nodes
from the priority queues per execution sequence will therefore take O((N + E)log(N + E))
time complexity. Running the algorithm on all execution sequences, of which we know there
can be at most the size of N , will have O(N(N + E)log(N + E)) time complexity.

4.3 Cost minimization ILP

In this Section, we will define the ILP that minimizes the financial cost to allocate the
VMs necessary to run the generated schedule. For the purposes of the ILP, we consider an
environment of discrete time measured in cycles.

Inputs

The inputs to the ILP are the memory sequences generated as described in Section 4.2, as
well as the potential VMs that they can be run on. The set of memory sequences R contain
I memory sequences. Each memory sequence ri 2 R corresponds to exactly one start time
for the memory sequence, hi, and exactly one end time for the memory sequence, f i. The
memory sequence ri 2 R contains an integer vector of length T , �i. T is a constant which
is the same for every, ri, and equals the maximum completion time among all ri 2 R. Each
value xit 2 �i corresponds to the memory required at time t for �i. As was proven Theorem 2,
the values of xit are in the range [0, K], where K = (

P
sij)8eij 2 E +max(xi)8ni 2 N . This

vector representation is slightly di↵erent than the linked list representation we describe in
Section 4.2, but both hold the same information of the memory required for the corresponding
execution sequence. For an example of how these formats are related to each other, see Figure
4.2.

We use the vectors of the memory sequences in R to create a TxI matrix ⌦ which contains
the vectors in of R, where the ith column in the matrix corresponds to the vector of ri. They
take this form:

2

4 r0 r1 . . . rI-1

3

5

As inputs, we also have a set of VMs V, where the size of V is I, and vn 2 V is a single
VM. We select I VMs because we will use at most I VMs to run the executions sequences.
The index of VMs is not related to the index of memory sequences. As laid out in Section
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Figure 4.2: A linked list and vector representation of the same memory sequence

3.4, each VM vn has the same number of vCPU P , amount of RAM M , cost per cycle D,
startup time U , and teardown time W .

Setup

In order to assign each ri to a VM, we will create an I⇥ I matrix �. The nth column vector
in �, �n, corresponds to vn. We define � as the following:

�ij =

(
1 if we assign ri to vj
0 otherwise

Each rn must be assigned to at least one VM to ensure that it is run. Also, each V j can
be assigned no more than P memory sequences to ensure there are enough processors to run
every assigned memory sequences. We will let A be defined as:

A = ⌦ ·�

As such, A have dimensions T ⇥ I, and Aij represents the memory needed at VM vi at
time step j. A will be used to ensure that no VM is allocated memory sequences which it
cannot hold in memory.

Once we construct �, for each vn we define a set µn. µn contains: [m|(�nm = 1) 2
�n]8�nm 2 �m. In other words, the set contains the indexes of all of the memory sequences
to be assigned to vn. Once each µn is constructed, it will have a size in the range [0, I]. We
will denote this size per µn as yn. Once yn is determined, we will assign an indicator variable,
zn, for each vn. zn will have values in the range [0, 1], and will indicate whether or not there
are any memory sequences assigned to vn. Specifically, we define zn to be:
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zn =

(
1 if yn � 1

0 if yn = 0

Each VM vn is given a VM start time �n and VM end time ✏n. �n must be less than or
equal to hn for every rn assigned to vn, and similarly, ✏n must be greater than or equal to
fn for every rn assigned to vn. Both all �n and ✏n are within the range [0, T ], as no VM can
start before time step 0, and no VM will still be executing after all memory sequences are
completed at T .

Execution Sequence Placement Problem

Definition 1: Execution Sequence Placement
The goal is to find the execution assignment policy �, as well as start times �n and end

times ✏n for every VM vn that minimize the following expression:

min
✏,�,z

IX

n=1

(✏n � �n) + zn ⇤ (U +W )

subject to:

�ij 2 Z 8�ij 2 �

0  �ij  1 8�ij 2 �

IX

k=0

�kl = 1 8k 2 [0, I)

0  yn  P 8yn

zn =

(
1 if yn � 1

0 if yn = 0

A = ⌦ ·�

0  Aij  M 8Aij 2 A

�n, ✏n 2 Z 8n 2 [0, I)

0  �n  hi 8i 2 µn, 8n 2 [0, I)
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f i  ✏n  T 8i 2 µn, 8n 2 [0, I)

In other words, we want to minimize the sum of all the time VMs are allocated, including
startup and teardown time if a VM vi is ever assigned a memory sequence. This is subject to
the constraints that every memory sequence has to be assigned to exactly one VM and each
VM can hold no more than P memory sequences. Also, at no time step should the combined
memory needed for all memory sequences exceed M , the amount of memory that every VM
has. Furthermore, for VMs assigned at least one memory sequence, we assign them times it
begins executing its assigned memory sequences, and a time after that it stops executing its
assigned memory sequences. That range of time for every VM must be able to fit the start
and end times of all memory sequences assigned to it.
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Chapter 5

HASTE overview

The HASTE execution optimizer takes in as an input workload W , which contains a set
of task DAGs to be executed. It outputs a set of tuples I, with tuples (bi, f i, Y ) 2 I each
representing the responsibilities of a single VM V i. The variable (bi represents the time
when V i is instructed to be brought up, and f i represents the time when V i is instructed to
be torn down. Notably, the time these instructions are sent precedes the completion of the
instruction by startup time U and teardown time W , respectively. Y is the set of execution
sequences yi that are assigned to run on V i. The size of Y is within the range [1, P ], and
each execution sequence is assigned to run on exactly one V i.

The procedure by which HASTE maps inputs to outputs can be divided into four com-
ponents:

1. Merging the individual DAGs into a merged DAG to eliminate equivalent nodes

2. Applying the Lower Bound (LWB) scheduling algorithm to the merged DAG, getting
the set E of execution sequences

3. Using communication and execution times, generating the memory sequence ri for
every execution sequence yi

4. Grouping the execution sequences together to be executed the groups in parallel on
the same VM and determining the uptime of each VM assigned to a group so as to
minimize the total compute time / cost for all VMs

In this Section, we describe the components of the HASTE execution optimizer and the
reasoning behind the why each component was chosen.

5.1 Merging the DAGs

Using our definition of equivalence in Section 3.2, we can define our DAG merging algorithm.
We will use the simple merging algorithm used in Liam Li et al. [18]. We take our set of
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DAGs, and iterate through the every pair of nodes, merging two nodes if they are equivalent.
Then, we create an edge from the sinks of each of the individual DAGs to a universal sink
we create. This sink has no computational time, and simply returns the values of all of its
inputs. After merging all equivalent nodes and connecting the sinks, we are left with our
merged DAG. This has O(N2) time complexity, with N being the total number of nodes
across all DAGs in W , trivially. Figure 3.1 shows the conversion of a few simple DAGs into
a merged DAG.

5.2 Applying LWB

Once the merged DAG is constructed, it can be processed using LWB. LWB will then output
the set E of execution sequences, the properties of which are described in Section 3.3. The
time complexity of this algorithm is O(N2) [17].

5.3 Creating memory sequences

Once the execution sequences are created by LWB, we must determine how much memory
each execution sequence will need. We use the algorithm described in Section 4.2. Creating
memory sequences for every execution sequence, of which we know there can be at most size
of N , will have O(N(N + E) log(N + E)) time complexity.

5.4 Grouping executions

Once the memory sequence for every execution sequence is finished, HASTE groups execu-
tions together on VMs. We define the ILP for minimizing financial cost of allocating VMs
to run the schedule produced by HASTE in Section 4.3. While HASTE is still bound by the
ILP’s restrictions on placing memory sequences on VMs in terms of the maximum memory
and available vCPUs of the VM, we cannot directly solve the ILP, as it is well known that
solving the ILP is NP-Hard [20]. In order to approximate the solution to the ILP, we use
some intuitions about the properties of memory sequences and the VMs. First, if there exist
b memory sequences where b  P , where every memory sequence has a maximum amount
of memory needed at any time below: M/b, then all of these memory sequences can be
scheduled on the same VM without any chance of running out of memory. Secondly, if a
set of memory sequences all end (meaning they all require 0 memory) at similar times, then
assigning them all to the same VM means that, when the VM is torn down after the last
memory sequence finishes, there will be little wasted time for the processors running the
other execution sequences.

Using these intuitions, we formulate our heuristic to pack execution sequences into VMs.
We first initialize an array of P arrays, with each subarray initially containing no elements.
Then, for every memory sequence, we determine its maximum memory needed at any time,
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Figure 5.1: VM packing

which we will denote as F . We then iterate through the P arrays, and, at every array P i, we
determine if: F  (M/(P � i)). When we find an array that meets this criteria, we append
the memory sequence to that subarray. We assume that every VM has at least enough
memory handle the largest F among all memory sequences, so every memory sequence will
be placed in a subarray. Then, for each subarray, we sort its memory sequences by their
time they end. Finally, for each sorted subarray, we pop P � i memory sequences from the
front. We then allocate a single VM, give it a startup time of 0 and a teardown time of the
maximum end time of the P � i popped memory sequences, and place each corresponding
execution sequence on that VM. Because the number of memory sequences never exceeded
the number of vCPU for that VM, and the total memory needed will never exceed the total
available memory for that VM, all placements are correct. Figure 5.1 shows what this could
result in in practice, with each blue column representing the maximum allocation required
by memory sequences. Because we are sorting all memory sequences, of which there can be
at most size of N items via Theorem 1, the time complexity of this stage is O(N log(N)).
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Chapter 6

Empirical Evalution

In order to demonstrate that HASTE achieves the low latency of LWB without an undue
financial cost burden from allocating VMs, we created some microbenchmarks by generating
workloads of DAGs from sample Azure Function traces. These Azure Function traces come
from work by Cortez et al. [8] that documented a subset of all invocations of Azure functions
in July of 2019. This data includes logs of function execution time and memory allocations.
We sample this data to create the nodes of the DAGs in our workloads. We simulate running
each generated workload with HASTE, and compare this to simulated executions of other
algorithms. We sample our functions from these Azure traces to ensure that the DAGs we
construct have a basis in production function executions. However, determine the size and
“shape” of the DAGs ourselves in order to be able to finely control certain DAG parameters,
such as number of nodes or edges, so that we can determine how HASTE performs relative
to comparable algorithms for a variety of workload types.

6.1 Algorithms and Baselines for Comparison

We consider a few baseline algorithms to compare HASTE to when running workloads. We
chose these algorithms because they are execution strategies that we have decided would be
common for users running data-driven applications without specific optimizations. These
algorithms include:

• Single Threaded Execution (STE): Single threaded execution is what occurs when
a user runs a set of DAGs naively, likely on their own personal computer, e.g., executing
all cells in a Jupyter Notebook from top to bottom on your personal computer. This
entails running each DAG serially and running each node in the DAG in topological
order. This has the benefit of requiring only a single machine and no communication,
but will likely have very high latency.

• Naive Parallel Execution (NPE): Naive parallel execution occurs when each DAG
runs, single threaded, on its own VM, with each DAG executing in parallel with all
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other DAGs. This is a likely option if a user has access to a large cluster but does not
use any algorithm to analyze and schedule the nodes in the DAG onto the cluster.

6.2 Workload Generation

When creating the population of Azure Function traces to sample from for our workloads,
we take each invoked function, its average execution time, and its average allocated memory
to be our node ni, its processing time ri, and its max allocation xi, respectively. We only
sample from Azure Functions that have over 1000 ms of runtime in order to meet our low
relative communication cost requirement for LWB valid DAGs. To this end, because the
Azure Function traces do not come with communication times of the results of the functions,
we use the intuition that they are likely to be proportional to the max allocations of the
functions. We construct artificial communication times by scaling the max allocations of each
function in order to be compliant with the low communication cost, the exact requirements
of which are described in Section 3.1. We use this method to determine the node and edge
properties of all nodes and edges in all DAGs.

For every workload, we manually determine certain key variables. Those are the number
of DAGs in the workload, the percent of total nodes in the workload that are duplicates, the
number of edges per DAG, and the number of “layers” per DAG. The percent of duplicate
nodes in the workloads use a total number of nodes that counts replicas across DAGs for
every time they appear, and uses a number of duplicate nodes that does not count the first
encountered replica of that node. For example, if there are 4 replicas of node A, this will
only add 3 to the count of replicas, as without the extra 3, node A would not be considered a
replica. Layers of a DAG is defined in depth in Iverson et al. [19].Briefly, Iverson states that
the nodes in DAGs can be arranged into discrete layers. At the index 0, all nodes have no
parents, and at each subsequent layer, all the nodes in said layer only have ancestors in lower
index layers, and only have descendants in higher index layers. The number of layers a DAG
roughly determines the amount of parallelism that is achievable when execution the DAG,
and is an important variable to control when testing the scalability of a parallel scheduler
like LWB. In order to enforce the number of edges, each DAG gt has at least size of N t edges,
or at least as many edges as nodes, and so any number of edges input is always greater than
or equal to the number of nodes.

6.3 Latency Testing

In order to achieve its low latency execution, HASTE leverages the optimal scheduling of
LWB. It also removes equivalent nodes via merging, which prevents duplicated execution.
This provides a great deal of speedup relative to STE, as STE executes all nodes in sequence.
Since NPE executes every DAG in parallel, the speedup of HASTE relative to NPE is slightly
less than compared to STE. Still, NPE does not allow for task duplication, and every VM
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running an individual DAG is limited by its finite processors, so NPE will still be slow
relative to HASTE.

Figure 6.1: Latency comparison of 100 samples of HASTE, STE, and NPE on 100 node
DAGs

Figure 6.2: Latency comparison of 100 samples of HASTE and NPE on 100 node DAGs

For Figures 6.1 and 6.2, we sampled the Azure Functions dataset 100 times, constructed
workloads with 10 DAGs, each with 100 nodes, 5 layers, 150 edges, and 10% of all workload
nodes having an equivalent node with at least one other DAG. Figure 6.2 uses the same data
as Figure 6.1, but excludes the STE executions for the sake of readability. These figures
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make it clear that HASTE vastly outperforms both STE in terms of latency, averaging a 25x
speedup on this configuration. This is to be expected, as STE runs every individual node
serially, while HASTE utilizes LWB to maximally parallelize execution. Compared to NPE,
HASTE achieves an average 4x speedup for this configuration. While NPE has increased
parallelism relative to STE, HASTE parallelizes execution at the level of the node, which
contributes to its higher performance.

Figure 6.3: Latency comparison of 100 samples of HASTE, STE, and NPE on DAG sizes
ranging from 100 to 1000 nodes

For Figure 6.3, we tested the scaling capabilities of each algorithm using total number
of workload nodes ranging from 1000 to 10000. Similarly to Figures 6.1 and 6.2, at each
datapoint, we used 100 samples from the dataset, constructed 10 equally sized DAGs per
workload, and kept the percent of workload nodes which had an equivalent at 10%. However,
we scaled the number of edges and layers proportionally to the number of nodes, so as to
simulate an increase in overall DAG size. Figure 6.3 show how HASTE, and more specifically
LWB, scales very well as the number of nodes in the workload scales. At 10000 nodes,
HASTE experiences an average speedup over 188x versus STE, as well as a speedup of over
24x relative to NPE.

6.4 Cost Testing

As is made clear in the previous Section, HASTE generates schedules that are much faster
than both STE and NPE by leveraging theminimal makespan schedules that LWB generates.
As we will explore in this Section, HASTE also generally outperforms STE and NPE when
it comes to financial cost, measured as the sum of VM time of all allocated VMs. This is
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because neither STE nor NPE utilize the multiple vCPUs that exist on a single VM, with
STE executing everything on a single processor of a single VM, and NPE executing each
DAG on a single processor of each DAG’s dedicated VM. HASTE, on the other hand, is
able to reduce the total amount of compute through equivalent node merging, and is able to
utilize the multiple vCPUs in a single VM through its execution grouping. Equivalent node
merging is described in Section 3.1, and execution grouping is described in Section 5.4.

Because both STE and NPE execute all DAGs on a single processor, and neither STE
nor NPE utilize equivalent node merging, they will both take the same amount of summed
VM time for any input or system configuration. As such, in this Section, we will refer to
them together as STE/NPE.

Figure 6.4: Summed VM time comparison of 100 samples of HASTE and STE/NPE on 100
node DAGs

For Figure 6.4, we again sampled the Azure Functions dataset 100 times, constructed
workloads with 10 DAGs, each with 100 nodes, 5 layers, 150 edges, and 10% of all workload
nodes having an equivalent node with at least one other DAG. The simulated VMs had
4vCPU and 2500MB memory. For reference, the average node has a max allocation of
175MB, with the maximum among all nodes being 1227MB. While not nearly as stark a
contrast as the HASTE speedup , we can see in Figure 6.4 that HASTE does incur lower
summed VM time compared to STE/NPE through the utilization of multiple vCPUs per
VM. With this configuration, HASTE incurred on average roughly half the financial cost of
STE/NPE.

For Figure 6.5, we tested the ability of HASTE to leverage intra-VM parallelism by
running simulations with VMs that contained between 1 and 9 vCPUs. We used the same
input and system parameters as the tests shown in Figure 6.4, except with 4000MB memory
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Figure 6.5: Summed VM time comparison of 100 samples of HASTE and STE/NPE on 100
node DAGs, with vCPUs per VM ranging from 1 to 9

per VM. For the simulation configuration where VMs had 1 vCPU, we see that HASTE
performs drastically worse than STE/NPE. Because with 1 vCPU there is no intra-VM
parallelism to exploit, HASTE must run all of its execution sequences on individual VMs.
The task duplication of LWB means that HASTE must complete more total computation
than STE/NPE and therefore use more summed VM time than STE/NPE. However, with 2
vCPU onward, the gains in intra-VM parallelism eclipse this extra computation, and HASTE
performs better than STE/NPE from 2 to 10 vCPUs per VM. HASTE also performs generally
better as the number of vCPUs increase while STE/NPE stays the same.
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Chapter 7

Future Work

While this report works out a formalization of handling the memory requirements of exe-
cuting DAGs on cloud computing resources and provides some heuristics to achieve low cost
and low latency executions in practice, there is still much that can be done to iterate on the
HASTE project. This includes testing the use of other task dependence graph scheduling
algorithms. Also, di↵erent heuristics and strategies could yield even better performance than
we recorded through our testing. Finally, integrating this work with other systems research,
particularly research concerning automated machine learning, could be of great benefit to
the computer science community.

7.1 Other DAG scheduling algorithms

While we chose LWB because of its simplicity and optimality guarantees, other task DAG
scheduling algorithms exist, including others that assume an unbounded number of proces-
sors [17]. Each algorithm has its own set advantages and disadvantages.

Critical Path Fast Duplication Algorithm

The Critical Path Fast Duplication (CPFD) Algorithm, creating by Ahmad and Kwok in
1998 [1], is an iteration on previous task duplication and unlimited processor algorithms
such as LWB. While CPFD does not have the same optimality guarantees as LWB, it is
not restricted to low communication DAGs as LWB is, and, for most DAGs, outperforms
LWB and most other scheduling algorithms. CPFD first groups nodes in the DAG into
three distinct groups: Critical Path Nodes, which are nodes which reside directly on the
critical path of the DAG, In Branch Nodes, which are nodes on paths that connect to the
critical paht, and Out Branch Nodes, which are nodes which don’t fit either of the previous
groups. CPFD then constructs a Critical Path Node dominant sequence which prioritizes the
execution of Critical Path Nodes first, then In Branch Nodes, and lastly Out Branch Nodes.
CPFD has O(N4) time complexity [17], and produces schedules, which, according to testing
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by Ahmad and Kwok, are lower latency than most other task DAG scheduling algorithms.
As in LWB, CPFD does not account for memory needs for either function execution or
communication, so the HASTE method of constructing memory sequences and placing them
on VMs could be applied to CPFD to generalize HASTE for many di↵erent DAG types.

Dynamic Critical Path (DCP) Algorithm

The Dynamic Critical Path Algorithm, created in 1996 also by Ahmad and Kwok [16], is
a task DAG scheduling algorithm which unlike LWB and CPFD, does not allow for task
duplication. However, it does still assume an unbounded number of processors. The DCP
algorithm operates by heavily prioritizing nodes which have the least di↵erence between the
latest possible time they can be scheduled and the earliest possible they can be scheduled
relative to the critical, known as “mobility”. The time complexity of DCP is O(N3). Because
DCP is not task duplicating, it is likely to produce higher latency schedules compared to task
duplicating algorithms such as CPFD and LWB, but is also likely to create fewer execution
sequences. This means that, if used as a replacement for LWB in HASTE, it can produce
cheaper VM allocations. Furthermore, this can maximize the benefits of equivalent node
removal via the merged DAG that HASTE creates.

7.2 Potential Optimizations of HASTE

HASTE’s performance, both in terms of latency and total compute cost, could be improved
by utilizing more sophisticated heuristics, as well as by leveraging certain properties of the
problem space.

LogP Communication for Distributed Computing

HASTE assumes a relatively simple model of communication, as well as the memory needed
to handle said communication, for the purpose of constructing memory sequences, which is
laid out in detail in Section 5.3. However, this simple model relies on a number of opti-
mistic assumptions which are not necessarily true of real networks in the cloud. A potential
avenue to increase the robustness of HASTE memory sequences, while also potentially help-
ing increase performance, would be to incorporate the LogP model [4]. The LogP Model
of communication for distributed computing very closely resembles production distributed
machines. Accounting for the finite capacity of the network, as well as the per processor
communication bandwidth, among other LogP Model parameters, would improve calculation
of the communication time between nodes in the DAGs. Also, because HASTE now allocates
the memory required for communication pessimistically, utilizing LogP assumptions could
reduce the amount of time communication-related memory is allocated by either the sender
or receiver. This could potentially allowing HASTE to minimize the amount of VM time
required to run its created schedules even further.
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Optimizations for VM packing

There are a number of smaller optimizations that could be considered when fitting the
execution sequences onto VMs. Firstly, if multiple execution sequences that run duplicated
tasks are placed on the same VM, only one of them needs to run, freeing the memory used
by the others. Furthermore, if execution sequences that communicate to each other are
placed on the same VM, they would only needed to allocate the space necessary for the
intermediate results once, unlike communication between VMs, which requires allocation
for the intermediate results in both the sender and receiver. Finally, while we assume that
intermediate results sent between DAG nodes are placed as soon as possible on the reciever’s
VM, these results could be shu✏ed around VMs as long as they had enough time to be
communicated around, leaving room to “cache” these results intelligently and further reduce
the amount of aggregate VM time used.

7.3 Integration with other AutoML o↵erings

Our work on HASTE, while general to any DAG execution, is very closely related to work
in the space of automated machine learning, or AutoML. AutoML work seeks to create
tools and processes for aiding data scientists in creating machine learning models/pipelines.
AutoML tools target steps in the ML lifecycle from data visualization [6] to automated
hyperparameter tuning [18] to logging of checkpoints in model training [10]. One system
in particular which we believe could be used in conjunction with HASTE to great e↵ect
is HELIX, by Xin et al. [24]. HELIX is an ML system that optimizes execution across
iterations of an ML pipeline by storing intermediate results that are frequently used in each
iteration. HASTE could leverage HELIX’s stored intermediate results to eliminate Sections
of computation in the HASTE merged DAG, which would create even lower latency schedules
and use less VM time.
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Chapter 8

Conclusion

In this report, we demonstrate that DAG scheduling algorithms that produce fast schedules
but require an unbounded number of processors have viability with modern cloud comput-
ing o↵erings. We presented HASTE, an execution optimizer for workloads of sets of DAGs
being run on serverless VMs. HASTE utilizes the concept of a merged DAG to eliminate
equivalent nodes between DAGs in the workload, thereby preventing unnecessary duplicated
computation of the same output. HASTE then schedules the merged DAG using the Lower
Bound (LWB) algorithm, an unbounded processor, task duplication algorithm, which, as
we proved, produces schedules for merged DAGs have equivalent latency to scheduling each
DAG individually with LWB and waiting for all of them to complete. The LWB algorithm
produces schedules for individual processors we label execution sequences. HASTE takes
these execution sequences and creates timelines of how much VM memory is necessary to
run them, timelines we denote as memory sequences. When determining the necessary mem-
ory, HASTE leverages S3 style cloud storage to store function outputs when the schedule
permits in order to minimize the amount of VM memory needed. Finally, with a the memory
sequences constructed, HASTE assigns execution sequences to VMs with the goal of mini-
mizing VM time across all allocated VMs, and thereby financial cost to the user, across all
VMs, without violating the memory requirements of each sequence.

With this outline for the HASTE system established, we formalize the ILP that packs
the execution sequences into VMs to minimize VM time. We then describe our heuristics
that approximate the solution to the ILP, and, using DAGs constructed from Azure Function
invocation traces, we show that our algorithm produces low latency schedules compared to
similar algorithms while also incurring reasonable VM time.
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