
Connected Quadratic Programs for Autonomy

Forrest Laine

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-182

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-182.html

August 12, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

To my advisor, Claire, thank you for all of your support over the years. You
took a chance when accepting me graduate school, and have since let me
run with my ideas, both the good and the bad. I surely would not have been
able to get where I am today without your guidance along the way.

To my industry mentors, Jur van den Berg and Sachin Patil, thank you for
welcoming me to work with you on trucks and cars over the years. The
practical experience I gained working with you has been invaluable to my
research and growth.

Finally, to Annie, thank you for supporting and being patient with me
throughout this entire journey. You keep me grounded and balanced, and
are a constant light in my life. I love you dearly.

Connected Quadratic Programs for Autonomy

by

Forrest J Laine

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire Tomlin, Chair
Professor S. Shankar Sastry
Professor Francesco Borrelli

Summer 2021

Connected Quadratic Programs for Autonomy

Copyright 2021
by

Forrest J Laine

1

Abstract

Connected Quadratic Programs for Autonomy

by

Forrest J Laine

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

This dissertation describes the work I have done on the subject of computing equilibrium
solutions of connected quadratic programs (QPs), particularly for the connected programs
arising in the context of autonomous system design. Reasoning about the interaction between
multiple mathematical programs enables the analysis and solution to a wealth of problems
inaccessible by standard optimization formulations.

One of the most commonly arising examples of connected optimization problems is the bilevel
program, comprised of an outer-level and inner-level program. The outer-level problem is
subject to a constraint that a subset of decision variables solve the inner-level problem.
Another class of connected optimization problems are those of Nash equilibrium problems,
in which optimization problems are solved simultaneously.

Beyond these and some other simple organizations of problem, general interactions among
optimization problems are not well studied, despite the potential for modeling many in-
teresting real-world problems. Presumably this is because with generalization in problem
organization comes increased complexity, both from an analysis and computation perspec-
tive.

To address this, it is claimed in this work that it is possible to compute equilibrium solutions
to a broad range of connected optimization problems, assuming those problems take the form
of convex quadratic programs. This claim is based off a result that equilibrium solutions
to a collection of QPs with piecewise linear constraints can be represented as a piecewise
linear mapping. Recursive application of this result leads to the results for generally nested
equilibrium problems. Theoretical results and computational approaches for this class of
problem are developed. The efficacy of the presented methodologies is demonstrated on
various problems faced by autonomous vehicles.

i

To Dad and Mom

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Outline . 2

2 Theory 3
2.1 Parametric Quadratic Programs . 3
2.2 Parametric Equilibrium Problems . 8
2.3 Equilibrium Problems with Equilibrium Constraints 14
2.4 Equilibrium Problems with Nested Equilibrium Constraints 19

3 General Computation 25
3.1 Equilibrium Problems with Piecewise Linear Constraints 26
3.2 Equilibrium Problems with Nested Equilibrium Constraints 31

4 Feedback Nash Equilibrium Problems 33
4.1 Introduction: Dynamic Games . 33
4.2 Formulation . 35
4.3 Equality-Constrained LQ Games . 46
4.4 Inequality-Constrained LQ Games . 52
4.5 Nonlinear Games . 55
4.6 Example . 59
4.7 Conclusion . 62

5 Uncertainty in Game-Theoretic Motion Planning 63
5.1 Introduction . 63
5.2 Related Work . 65
5.3 Preliminaries . 67
5.4 Methods . 69

iii

5.5 Results . 71
5.6 Conclusion . 76

6 Problems of Ordered Preference 77
6.1 Motivation . 77
6.2 General Formulation . 78
6.3 Example: Constrained Dynamic Programming 82

7 Conclusions and Future Work 96
7.1 Existence and Solvability . 96
7.2 Unconstrained Shared Variables . 97
7.3 Equilibrium Problems with Nested, Non-Isolated Equilibrium Constraints . . 98

Bibliography 99

iv

List of Figures

2.1 An example organization of a connected quadratic program that can be described
in the EPNEC framework. Decision variable scopes for the problems at each
layer are given in Tables 2.1 and 2.2. 22

4.1 The EPNEC interpretation of GFNE problems. Decision variable scopes for the
problems at each layer are given in the Table 4.1. 39

4.2 Snapshots of the resultant GFQNE solutions found to the example in Section 4.6,
when excluding (a) and including (b) the politeness term in player 1’s objective. 59

5.1 The fast-moving ego vehicle (blue) believes that the slow-moving (red) agent will
change lanes with probability p. Our method constructs and solves a dynamic
game involving both lane-changing and non-lane-changing versions of the red
agent. Depicted here are three different solutions to this game, corresponding to
different probabilities associated to the two hypotheses. When certain that the
red agent will change lanes (p ≈ 1), the ego agent takes full responsibility for
avoiding collision with the lane-changing version of the red agent, allowing it to
change lanes unimpeded. When certain the red agent will stay in-lane (p ≈ 0), the
lane-changing agent is required to take full responsibility for collision-avoidance
with ego, which allows ego to pass at its original speed. Probabilities in the range
0 < p < 1 result in trajectories which qualitatively interpolate between these two
behaviors. Note that the non-lane-changing version of the red agent is unaffected
by the actions of the ego agent for all values of p in this case. 64

5.2 The ego (blue) agent is attempting to change lanes in front of a fast-approaching
vehicle (red) in the target lane. The ego agent maintains two hypotheses about
the speed of the red agent. A belief probability p is placed on the hypothesis that
the red-vehicle is traveling very fast, as opposed to moderately fast. Varying the
probability p results in a spectrum of behaviors for both agents. 73

v

5.3 The ego (blue) agent is attempting to change lanes in front of the red agent. The
ego agent maintains two hypotheses about the speed of the red agent—(1) that
it is traveling fast (p1 ≈ 1) and (2) that it is traveling at the same speed as ego
(p1 ≈ 0). The ego agent additionally maintains two hypotheses about the green
agent—(1) that it may also change lanes into the middle lane (p2 ≈ 1), or (2)
may not (p2 ≈ 0). In both hypotheses, the green agent is assumed to travel at
the same speed as ego. By varying the belief associated with these independent
hypotheses, various behaviors emerge. 74

6.1 Organization of connected QPs arising in problems of ordered preference. Here,
the QPNECs depicted in red are named by the specific OPQP they correspond
to. In this case, wrapping each layer of this organization as an EPNEC is not
necessary, and only done to relate this particular organization to the general
organization introduced in Chapter 1. Variable scopes for this organization are
given in Table 6.1. 80

6.2 Limiting behavior of the penalty approach for problem (6.38). 92
6.3 Robust constraint satisfaction for problem (6.38) subject to additive input noise. 93

vi

List of Tables

2.1 Variable scopes for the EPNECs appearing in Fig. 2.1. 21
2.2 Variable scopes for some of the QPNECs appearing in example in Fig. 2.1. . . 23

4.1 Variable scopes for the EPNECs representing the GFNE appearing in Fig. 4.1 39
4.2 Algorithm iterate information when using Algorithm 6 (Major Iterations) and

Algorithm 5 (Minor Iterations) to compute a GFQNE to the example in Sec-
tion 4.6, when σpolite = 5 (Fig. 4.2b). Here M(Xk+1,Λk+1) is the merit function
value after performing a line search in the direction of Pk in Algorithm 6. In each
major iteration of this solve, αk = 1, meaning no backtracking was necessary
in the line search procedure. Here the minor iterations labeled “F�” indicate
equality-constrained LQ solves used in the search of a feasible initial solution to
the inequality-constrained LQ game associated with the major iteration. The
detection of a cycle indicates that the removal of a constraint associated with a
negative multiplier did not move the iterate associated with Algorithm 5 away
from the dropped constraint boundary (Line 19). In these cases the iterate is
accepted and the algorithm continues with the next major iteration. 60

5.1 Solve times and iterations for all examples. Example IDs are according to sub-
sections of Section 5.5. The information under “Total” refers to total solve time.
“Data” refers to the portion of total time spent evaluating problem data such
as function gradients and Hessians. “LQ Iters” refer to the number of solves of
equality-constrained LQ-games in minor iterations of the solver. Both instances
with exceptionally long solve-times had very-large numbers of active-constraints,
necessitating many iterations due to poor initializations. 76

6.1 Variable scopes for the EPNECs appearing in the general problem of ordered
preference presented in Section 6.2. Here, each layer is independent of all pre-
ceding layers, in that there are no parametric inputs. However, each layer can,
in general, affect the entire vector x, in effect, imposing constraints which the
preceding layers must satisfy. 81

6.2 Comparing computation times of constrained and unconstrained LQR problems
between our constrained LQR method (CLQR) and a method using LAPACK to
directly solve the KKT system of equations. 90

vii

List of Algorithms

1 Equilibrium Problems with Shared Piecewise Linear Equality Constraints . . 27
2 Equilibrium Problems with Shared Piecewise Linear Equality Constraints . . 29
3 FindFeasible . 30
4 Equilibrium Problems with Nested Equilibrium Constraints 31
5 Active Set Inequality Constrained LQ Game GFNE Solver 56
6 GFQNE Solver for Nonlinear Games . 58

viii

Acknowledgments

To my advisor, Claire, thank you for all of your support over the years. You took a chance
when accepting me graduate school, and have since let me run with my ideas, both the
good and the bad. I surely would not have been able to get where I am today without your
guidance along the way.

To my industry mentors, Jur van den Berg and Sachin Patil, thank you for welcoming
me to work with you on trucks and cars over the years. The practical experience I gained
working with you has been invaluable to my research and growth.

Finally, to Annie, thank you for supporting and being patient with me throughout this
entire journey. You keep me grounded and balanced, and are a constant light in my life. I
love you dearly.

1

Chapter 1

Introduction

Mathematical programming provides an extremely powerful tool for solving real-world prob-
lems arising in numerous contexts. The study of standard-form optimization problems allows
for the development of numerical methods and analytic tools which are broadly applicable
to any problem which can be modeled in that standard form. In a sense, mathematical
programming can be thought of as the study of problem templates. If any instantiation of a
problem fits the template, then the methodologies and analysis developed for the template
can be applied to that problem.

Often times engineers are trained (intentionally or not) to think about problems in the
context of these mathematical programming templates. The most common template is that
of convex optimization problems, for which a wealth of strong analysis is available, as well
as professional-grade solution techniques. Non-convex programs capture a broader class of
problem, but the added flexibility comes at the cost of increased complexity. Nevertheless,
extensive research and development into these (and other) standard formats has lead to the
availability of very mature solution approaches.

While the framing of common problems as mathematical programs is often a very fruit-
ful practice, there are many real-world problems which are fundamentally not optimization
problems. The standard form of optimization problem, stated as the minimization (or max-
imization) of some function, subject to feasible set constraints, cannot capture the intended
decision to be made in many applications. Game theory was introduced for this very reason
— when there are multiple agents each acting rationally according to their own best inter-
est, the resultant behavior cannot be characterized as the solution to a single optimization
problem, but rather the simultaneous solution to a collection of optimization problems.

Under the perspective that mathematical games are simply collections of optimization
problems which interact in a particular manner, then games are a strict generalization of
optimization problems. In this view, the game-theoretic template is one that is applicable
to a very broad class of problems. Even so, the particular structure of the games for which
most templates are designed seems relatively limited.

Classic game formulations, like Nash or Stackelberg equilibrium problems, exhibit a very
particular type of interaction among the multiple optimization problems making up the game.

CHAPTER 1. INTRODUCTION 2

Nash games consider lateral connections of problems, meaning all optimization problems are
treated equally, whereas Stackelberg formulations consider vertical connections, where one
optimization problem gets preference over the other. When understanding these two primary
classes of games as simply two different ways of organizing optimization problems, however,
it doesn’t take much to imagine more elaborate ways to connect problems.

With the freedom to chain, nest and group optimization problems in all sorts of configu-
rations, the possible modeling capacity of games seems endless. For example, entire graphs
of connected optimization problem could be envisioned. The only question, is whether for-
mulating problems as complicated organizations of optimization problems is useful at all.
Is the complexity of an elaborate connection pattern such that it makes any meaningful
analysis impossible? Are computational methods for finding solutions out of reach?

These questions have been the main driver for the work presented in this dissertation.
In what follows, I argue that a broad class of organized connected optimization problems
can be analyzed, and methods for computing solutions to such problems can be generated.
Namely, when each of the connected optimization problems takes the form of a quadratic
program, some appealing properties emerge which enable arbitrary nesting of equilibrium
problems to become possible. I will present theoretical results establishing this claim, and
then will apply those results to a handful of real-world problems.

1.1 Outline

In chapter 2, I will develop theory regarding the class of organized quadratic programs that
will be considered in this work. This class of problem is specifically that of Equilibrium
Problems with Nested Equilibrium Constraints (EPNECs). In chapter 3 I will then present
a proposed method for computing solutions to these EPNECs, which will be based on the the-
ory developed in chapter 2. In chapter 4 I will focus on an important subclass of EPNECs,
which are the class of Generalized Feedback Nash Equilibrium problems, which can be used
to model interesting phenomena like interactive driving. In chapter 5 I will extend that
work to discuss methods for making game-theoretic motion planning more practical for au-
tonomous vehicles. Finally in chapter 6 I will propose a framework for solving Problems of
Ordered Preferences, which are problems with multiple objectives in a prioritized hierarchy.
Finally, I will conclude with some remarks on proposed future work in this area.

3

Chapter 2

Theory

In this chapter, the theory of connected quadratic programs is developed, leading up to
the concept of equilibrium problems with nested equilibrium constraints, which is the most
general form of connected QP that will be considered in this dissertation. Development
will proceed by successively generalizing problem formulations, from parametric QPs, to
parametric equilibrium problems, to parametric equilibrium problems with equilibrium con-
straints, to finally, equilibrium problems with nested equilibrium constraints. Along the way,
various theorems on the existence of solutions and the properties of those solutions will be
given.

2.1 Parametric Quadratic Programs

The fundamental building block of most problems considered in this work are parametric
quadratic programs. These programs take the following form:

QP (y) := arg min
x ∈ Rn

xᵀ(
1

2
Qx+Ry + q) (2.1a)

subject to Ax+By + c ≥ 0, (2.1b)

Dx+ Ey + f = 0 (2.1c)

Here (2.1) is a parametric quadratic program, since it takes as input the parameter
y ∈ Rm. Let pi denote the number of inequality constraints and pe the number of equality
constraints, such that A ∈ Rpi×n, D ∈ Rpe×n, etc.

Theorem 2.1.1 (Necessary and Sufficient Conditions for Optimality). Assume that for every
y ∈ Rm, the following hold:

• There exist at least some x ∈ Rn such that Ax + By + c ≥ 0 and Dx + Ey + f = 0
(feasibility).

CHAPTER 2. THEORY 4

• ZᵀQZ � 0, where Z is a nullspace basis for the matrix D (strong convexity).

Then, there exists a unique x∗ ∈ Rn such that QP (y) = x∗, and for which there exist some
λ∗ ∈ Rpe and µ∗ ∈ Rpi satisfying the following:

Qx∗ − Aᵀµ∗ −Dᵀλ∗ +Ry + q = 0 (2.2a)

Ax∗ +By + c ≥ 0 (2.2b)

Dx∗ + Ey + f = 0 (2.2c)

µ∗ ≥ 0 (2.2d)

µ∗ᵀ(Ax∗ +By + c) = 0. (2.2e)

Proof. See [192], Theorem 12.6.

At some y, x∗, the active, inactive, degenerate, strictly-active, and strictly-inactive index
sets are defined as the following:

Ia := { j | (Ax∗ +By + c)j = 0}, (2.3a)

Ii := { j | λ∗j = 0}, (2.3b)

Id := Ia ∩ Ii, (2.3c)

Isa := Ia \ Id, (2.3d)

Isi := Ii \ Id. (2.3e)

When the set Id ≡ ∅, the pair y, x∗ are described as satisfying strict complementarity.
Using the definition of the above index sets, the constraint coefficients A, B, and c, and
multipliers µ are decomposed:

Asa := (A)Isa Bsa := (B)Isa csa := (c)Isa µsa := (µ)Isa
Asi := (A)Isi Bsi := (B)Isi csi := (c)Isi µsi := (µ)Isi
Ad := (A)Id Bd := (B)Id cd := (c)Id µd := (µ)Id

(2.4)

The notation used in Eq. (2.4) is used to indicate, for example, that Asa is the matrix
formed by stacking the rows of the matrix A specified by the index set Isa.

Theorem 2.1.2 (Piecewise Linearity of QP). Under the assumptions listed in Theorem 2.1.1,
the mapping QP (y) → x∗ is piecewise linear. Furthermore, for any y ∈ Rm, the directional
derivative of QP (y) in the direction of some vector δy ∈ Rm, denoted as DQP (y)[δy] is
given as the solution to the following program:

CHAPTER 2. THEORY 5

DQP (y)[δy] = arg min
δx ∈ Rn

δxᵀ(
1

2
Qδx+Rδy) (2.5a)

subject to Dδx+ Eδy = 0, (2.5b)

Asaδx+Bsaδy = 0, (2.5c)

Adδx+Bdδy ≥ 0 (2.5d)

Proof of Theorem 2.1.2. By the assumptions and result of Theorem 2.1.1, there always exists
a unique δx∗ which solves (2.5), and there additionally exist corresponding multipliers δλ∗,
δµ∗sa, and δµ∗d such that

Qδx∗ − Aᵀsaδµ∗sa −Dᵀδλ∗ − Adᵀδµ∗d +Rδy = 0 (2.6a)

Asδx
∗ +Bsδy = 0 (2.6b)

Dδx∗ + Eδy = 0 (2.6c)

Adδx
∗ +Bdδy ≥ 0 (2.6d)

δµ∗d ≥ 0 (2.6e)

δµ∗ᵀd (Adδx
∗ +Bδy) = 0. (2.6f)

It follows that for all δy and small enough α, the point x∗+αδx is the unique solution to
QP (y+αδy). To see this, let δµsi := 0, and δµ be the reconstruction of δµd, δµsa, and δµsi in
the original index ordering. It suffices to show that x∗+αδx, λ∗+αδλ, and µ∗+αδµ satisfy
the necessary and sufficient conditions for optimality of QP (y+αδy) listed in Theorem 2.1.1.

First note that from Eqs. (2.2) and (2.6),

Q(x∗ + αδx∗)− Aᵀsa(µ∗sa + αδµ∗sa)−Dᵀ(λ∗ + αδλ∗)− Adᵀδµ∗d +R(y + αδy) = 0, (2.7a)

D(x∗ + αδx∗) + E(y + αδy) + f = 0, (2.7b)

Asa(x
∗ + αδx∗) +Bsa(y + αδy) + cs = 0, (2.7c)

Ad(x
∗ + αδx∗) +Bd(y + αδy) + cd ≥ 0, (2.7d)

µ∗d + αδµ∗d ≥ 0. (2.7e)

Furthermore, by the definition of the set Id, both Adx
∗ +Bdy + cd = 0 and µ∗d = 0, so

(µ∗d + αδµd)
ᵀ(Ad(x

∗ + αδx∗) +Bd(y + αδy) + cd) =

(αδµd)
ᵀ(Ad(αδx

∗) +Bd(αδy)) = 0.
(2.8)

Therefore, it only remains to show that

Asi(x
∗ + αδx∗) +Bsi(y + αδy) + cs ≥ 0, (2.9)

since µ∗si + αδµsi = 0. From the definition of the index set Isi, it is known that

Asix
∗ +Bsiy + cs > 0. (2.10)

CHAPTER 2. THEORY 6

Therefore Eq. (2.9) must be satisfied for all α ∈ [0, αmax], where

αmax := min
1≤i≤|Isi|

(Asix
∗ +Bsiy + cs)i

max(0,−(Asiδx∗ +Bsiδy)i)
. (2.11)

Provided that δx∗ is finite, αmax is strictly positive for vectors δy. But by the existence and
uniqueness of δx∗, that must be true.

Therefore for any direction δy, it is concluded that QP (y + αδy) = x∗ + αδx∗ for all
α ∈ [0, αmax]. This implies the piecewise-linearity of QP and concludes the proof.

The implications of Theorem 2.1.2 are twofold. First, for any x∗ = QP (y) such that
strict complementarity holds, the set Id = ∅, and the conditions Eq. (2.6) are strictly linear.
This implies that δ∗x is a constant linear function of δy for all directions δy, and hence QP
is differentiable at y.

When strict complementarity does not hold, determining the directional derivative of
QP (y) in some direction δy requires solving an inequality constrained quadratic program,
however the number of inequality constraints to be resolved is limited to the size of the set
Id, which is potentially much smaller than the number of inequality constraints in QP (y)
itself.

LCP Formulation

The quadratic program Program 2.1 can be equivalently represented as a linear complemen-
tarity problem (LCP), as seen in the following. Program 2.1 can be rewritten as

QP (y) := arg min

x′ ∈ Rn′
x′ᵀ(

1

2
Q′x′ +R′y + q′) (2.12a)

subject to A′x′ +By + c ≥ 0, (2.12b)

x′ ≥ 0. (2.12c)

Note that it may be that the dimension n′ 6= n, and similarly the terms Q′, R′, q′, and A′

may be different than their counterparts in (2.1). Any equality constraints can be absorbed
into the inequality constraints (2.12b) by including both the constraint and the negation of
the constraint as inequalities. The existence of a transformation between (2.1) and (2.12)
can be seen by first introducing variables x+ ∈ Rn and x− ∈ Rn, such that n′ = 2n, and

x = x+ − x−, x′ :=
[
xᵀ+ xᵀ−

]ᵀ
,

Q′ :=

[
Q εI −Q

εI −Q Q

]
, R′ :=

[
R
−R

]
, q′ :=

[
q
−q

]
,

A′ :=
[
A −A

]
.

(2.13)

CHAPTER 2. THEORY 7

Substituting these values into (2.12) results in the objective

1

2
(x+ − x−)ᵀQ(x+ − x−) + (x+ − x−)ᵀ(Ry + q) + εxᵀ+x−, (2.14)

which is the objective in (2.1), with the addition of the term εxᵀ+x−. Notice that for any
unique value x∗ solving (2.1), there are infinite possibilities of x+, x− ∈ Rn

+ such that x∗ =
x+−x−. Therefore the term εxᵀ+x− is introduced into the objective to enforce the condition
that for each element of x+ and x−, only one can be non-zero, i.e. (x+)i ≥ 0 ⊥ (x−)i ≥ 0.
Since both x+ and x− are restricted to be positive, the optimal value of the added term
εxᵀ+x− is 0, and is attainable for every choice of x = x+− x−. Therefore the addition of this
term does not change the optimal value of the objective.

The value ε > 0 is included such as to guarantee that the matrix Q′ is positive definite if
the matrix Q is positive definite. The matrix Q′ can be seen to be

Q′ := Q̄+ E, Q̄ :=

[
Q −Q
−Q Q

]
, E :=

[
εI

εI

]
. (2.15)

Since the matrices Q̄ and E commute and are therefore simultaneously diagonalizable,
the eigenvalues of the symmetric matrix Q′ are the sum of the eigenvalues of Q̄ and E. From
this it is easy to show that the spectrum of Q′ is

σ(Q′) := {2σ(Q)− ε} ∪ {ε}. (2.16)

Therefore when Q is positive definite, for small enough ε, Q′ is also positive definite. When
Q is positive semi-definite, Q′ is also positive semi-definite for ε = 0.

It is possible that transformations other than Eq. (2.13) can bring QPs of the form 2.1 to
the form 2.12. However the guaranteed existence of this transformation serves to show that
general quadratic programs can be expressed in the form 2.12 without loss of generality, and
while preserving the properties of the quadratic objective.

Expressing the first-order necessary conditions for Program 2.12 (analogous to those in
Eq. (2.2)), gives rise to the following conditions:[

Q′ −A′ᵀ
A′

] [
x′

λ′

]
+

[
R′

B

]
y +

[
q′

c

]
≥ 0 ⊥

[
x′

λ′

]
≥ 0. (2.17)

The condition Eq. (2.17) takes the form of a linear complementarity problem. Therefore,
when the first-order necessary conditions are also sufficient for optimality (i.e. under a
convexity assumption), solving the QP (2.1) is equivalent to solving the LCP (2.17). Methods
for solving LCPs can be applied to solving QPs. As will be seen in the following sections,
more general problem formulations can also be cast as LCPs, implying that some of the same
techniques used for solving and analyzing QPs (via LCPs) can be used to solve and analyze
those more general problem formulations.

CHAPTER 2. THEORY 8

2.2 Parametric Equilibrium Problems

On the road to generalizing QPs to groups of QPs, the first natural extension to introduce
is the (Generalized Nash) equilibrium problem. An equilibrium problem, for the purposes
of this dissertation, is a collection of N QPs, each of which are to be solved simultaneously.
In particular, for each i ∈ {1, ..., N}, a parametric QP (using form of (2.12)) is defined as

QPi(y, x−i) := arg min
xi ∈ Rni

xᵀ(
1

2
Qix+Riy + qi) (2.18a)

subject to Aix+Biy + ci ≥ 0, (2.18b)

xi ≥ 0. (2.18c)

Here, x := [xᵀ1 . . . xᵀN]ᵀ, x−i := [xᵀ1 . . . xᵀi−1 x
ᵀ
i+1 . . . xᵀN]ᵀ, n =

∑N
i=1 ni, and as before,

the parameter y ∈ Rm.
An equilibrium solution to the collection of problems (2.18) is a vector x∗ belonging to

the following set:

EQP (y) :=
{
x∗ ∈ Rn | x∗i ∈ QPi(y, x∗−i), ∀i ∈ {1, ..., N}

}
. (2.19)

When the programs (2.18) are strongly convex, the corresponding sets QPi(y, x−i), i ∈
{1, ..., N} are singleton sets for every choice of y, x−i. Even when this is the case, it is
still possible that the set EQP (y) contains multiple elements for any given choice of the
parameter y.

In general, the set of equilibrium solutions is a set-valued mapping EQP : Rm ⇒ Rn. In
sections to follow, we will be interested in how the set EQP (y) responds to changes in the
parameter y, and under which conditions the set EQP (y) contains a single unique element
for each y. To analyze these questions, we equivalently cast the EQP problem as a LCP (as
was done in the preceding section).

Assuming each of the QPs (2.18) are convex in their decision variable, the set EQP (y)
can be equivalently represented as the set of vectors x∗ such that there exist multipliers λ∗

satisfying the concatenated first-order necessary conditions of optimality of all N QPs:

EQP (y) :=

x∗ ∈ Rn | ∃λ∗ : (Qi)(i,:)x

∗ + (Ri)(i,:)y + (qi)(i) − (Ai)
ᵀ
(:,i)λ

∗
i ≥ 0 ⊥ xi ≥ 0

Aix
∗ +Biy + ci ≥ 0 ⊥ λ∗i ≥ 0,

∀i ∈ {1, ..., N}

(2.20)

With a slight abuse in notation, the shorthand (Qi)(i,:), for example, is used to represent the∑i−1
j=1 ni+ 1 through

∑i
j=1 ni rows of Qi. From this, it can be seen that the conditions (2.20)

can be compactly represented as the following parametric LCP:

CHAPTER 2. THEORY 9

EQP (y) :=

{
x∗ ∈ Rn | ∃λ∗ :

[
Q −Āᵀ

A

] [
x∗

λ∗

]
+

[
R
B

]
y +

[
q
c

]
≥ 0 ⊥

[
x∗

λ∗

]
≥ 0

}
, (2.21)

where the block matrix terms introduced are defined as

Q :=

 (Q1)(1,:)
...

(QN)(N,:)

 , A :=

A1
...
AN

 , Ā :=

(A1)(:,1)
. . .

(AN)(:,N)

 ,
R :=

 (R1)(1,:)
...

(RN)(N,:)

 , B :=

B1
...
BN

 , q :=

 (q1)(1)
...

(qN)(N)

 , c :=

 c1...
cN

 .
(2.22)

Using the LCP form of EQP (y), we can establish results about the non-degeneracy of
the set for each value y — in other words, we can establish the existence of solutions to the
parametric equilibrium problem.

Existence of Solutions

The following theorem makes use of the concept of copositivity of a matrix. A matrix M is
said to be copositive, if x ≥ 0 =⇒ xᵀMx ≥ 0. The matrix M is said to be strictly copositive

if x ≥ 0, x 6= 0 =⇒ xᵀMx > 0. For ease of notation, denote the matrix M :=

[
Q −Āᵀ

A

]
.

Theorem 2.2.1. Let Q be strictly copositive. Let the positive cone formed by the columns of
(Ai)(:,−i) be a subset of the non-negative orthant, and let the intersection of the positive cone
formed by the columns of (Ai)(:,i) with the negative orthant be empty. Then the set EQP (y)
is non-empty for every choice of y ∈ Rm, meaning an equilibrium solution exists.

Proof of Theorem 2.2.1. Under the stated assumption, it can be seen that the matrix M is
copositive. [

x
λ

]ᵀ [
Q −Āᵀ

A

] [
x
λ

]
= xᵀQx+ λᵀǍx, (2.23)

where
Ǎ := A− Ā. (2.24)

When both x ≥ 0 and λ ≥ 0, Ǎx ≥ 0 and xᵀQx ≥ 0, therefore the right-hand side of
Eq. (2.23) must be non-negative, implying that M is indeed copositive.

Additionally, whenever[
x
λ

]ᵀ
M

[
x
λ

]
= 0, M

[
x
λ

]
≥ 0, and

[
x
λ

]
≥ 0, (2.25)

CHAPTER 2. THEORY 10

it must be that [
x
λ

]ᵀ([
R
B

]
y +

[
q
c

])
≥ 0. (2.26)

To see this, notice that by the strict copositivity of Q, the first condition in Eq. (2.25)
implies that x = 0. Furthermore, by the second condition in Eq. (2.25), Āᵀλ ≤ 0. However,
since λ ≥ 0 by the third condition, the value Āᵀλ lies in the positive cone formed by the
columns of Āᵀ, which by our assumption does not intersect the negative orthant. Therefore
it must be that λ = 0, implying Eq. (2.26).

Finally, by Theorem 3.8.6 in [48], the LCP in Eq. (2.21) must have a solution for all
values of y ∈ Rm.

The main restriction of Theorem 2.2.1 is the non-negativity of Ǎ. This requirement will
be violated, for example, if problems of the form (2.18)Note that this requirement is of course
satisfied when Ǎ = 0, which is the case when the constraints (2.18b) are independent of x−i.
Such problems arise in the classic Nash equilibrium problems (as opposed to the generalized
Nash equilibrium problem of consideration here).

Sometimes this restriction is too stringent though, and it is therefore fruitful to leverage
alternate existence theorems to guarantee solutions exist for EQP (y), namely using a fixed-
point argument.

Theorem 2.2.2. For each i ∈ {1, ..., N}, let the objective (2.18a) appearing in QPi 2.18
be convex with respect to xi. Furthermore, let the constraint set defined by Eqs. (2.18b)
and (2.18c) be non-empty and bounded for every value of y ∈ Rm, x−i ∈ Rn−ni. Then there
exists an equilibrium solution to the problem EQP (y) for every y.

Proof of Theorem 2.2.2. This follows from direct application of Theorem 3.1 in [66].

The requirement in Theorem 2.2.2 that the constraint set Eqs. (2.18b) and (2.18c) be
non-empty and bounded for every value of y ∈ Rm, x−i ∈ Rn−ni may in some cases be more
restrictive than the requirement that the positive cone of Ǎ is a subset of the non-negative
orthant, appearing in Theorem 2.2.1. Therefore, these two existence theorems provide al-
ternative conditions which are sufficient for the existence of solutions to the equilibrium
problem at hand, and therefore both useful.

Multiplicity and Differentiability of Solutions

Throughout this dissertation, it will be of importance to rely on the locally unique solution
of the EQP (and other related problems) at various points y. Therefore in this section,
some results on the multiplicity of solutions are presented. When solutions are indeed locally
unique, it will be seen that the the local solution is represented by a piecewise linear function
in the input y.

The concept of an R0 matrix is used in the following theorem. A matrix M is an R0

matrix, if for every vector x ≥ 0, if Mx ≥ 0 and xᵀMx = 0, it must be that x = 0.

CHAPTER 2. THEORY 11

Theorem 2.2.3. Let the assumptions made in Theorem 2.2.1 hold. Then if the matrix M
additionally has no negative principal minors (i.e. M is a P0 matrix), then the number of
solution to EQP (y) is finite, and each solution is locally unique.

Proof of Theorem 2.2.3. By Theorem 2.2.1, the set EQP (y) is non-empty for all y, implying
M is a Q matrix. Therefore, by Theorem 3.9.22 in [48], it follows that M is also an R0 matrix
(see reference), establishing the local uniqueness of solutions.

From this result, we can further establish that the set of solutions to this problem for
small changes of y in some direction d can be represented by a set of linear functions of y.
In order to establish this result, it is useful to return to an alternate, equivalent formulation
of Program 2.18:

Q̃P i(y, x−i) := arg min
xi ∈ Rni

xᵀ(
1

2
Q̃ix+ R̃iy + q̃i) (2.27a)

subject to Ãix+ B̃iy + c̃i ≥ 0 (2.27b)

Here, the bound constraints xi ≥ 0 appearing in Eq. (2.18c) are dropped, which can
always be done without loss of generality by simply absorbing them into the constraint
(2.27b). To distinguish this form of the QPs of consideration from those in (2.18), the tilde
notation is used. When each of the programs (2.27) are convex, the first-order necessary
conditions of optimality no longer give rise to a linear complementarity problem, but rather
a linear mixed complementarity problem (MCP). These conditions give rise to an alternate
definition of the set EQP (y):

EQP (y) :=

x∗ ∈ Rn | ∃λ∗ : (Q̃i)(i,:)x

∗ + (R̃i)(i,:)y + (q̃i)(i) − (Ãi)
ᵀ
(:,i)λ

∗
i = 0

Ãix
∗ + B̃iy + c̃i ≥ 0 ⊥ λ∗i ≥ 0,

∀i ∈ {1, ..., N}

 (2.28)

Similar to how was done in the preceding section, for some solution x∗ ∈ EQP (y), with
associated multiplier λ∗ define the following index sets, and associated coefficient terms:

I ia := { j | (Ãix
∗ + B̃iy + c̃i)j = 0},

I ii := { j | (λ∗i)j = 0},
I id := I ia ∩ I ii ,
I isa := I ia \ I id,
I isi := I ii \ I id.

(2.29)

(Ãi)sa := (Ãi)Iisa (B̃i)sa := (B̃i)Isa (c̃i)sa := (c̃i)Iisa (λi)sa := (λi)Iisa

(Ãi)si := (Ãi)Iisi (B̃i)si := (B̃i)Iisi (c̃i)si := (c̃i)Iisi (λi)si := (λi)Iisi
(Ãi)d := (Ãi)Iid (B̃i)d := (B̃i)Iid (c̃i)d := (c̃i)Iid (λi)d := (λi)Iid

(2.30)

CHAPTER 2. THEORY 12

Theorem 2.2.4. Let the assumptions made in Theorem 2.2.3 hold. Let x∗ ∈ EQP (y) with
associated multiplier vector λ∗. Define N (x∗) ⊂ Rn to be some local neighborhood around
x∗. Then for small enough ε, the set of solutions to the set EQP (y+ εδy)∩N (x∗) is the set
of x∗ + εδx, where δx is defined to be any solution to the equilibrium problem defined by the
following collection of quadratic programs:

DQPi(y, x
∗)[δy, δx−i] := arg min

δxi ∈ Rni

δxᵀ(
1

2
Q̃iδx+ R̃iδy) (2.31a)

subject to (Ãi)saδx+ (B̃i)saδy = 0, (2.31b)

(Ãi)dδx+ (B̃i)dδy ≥ 0 (2.31c)

DEQP (y, x∗)[δy] :=
{
δx∗ ∈ Rn | δx∗i ∈ DQPi(y, x

∗)[δy, δx∗i−1], ∀i ∈ {1, ..., N}
}
. (2.32)

Proof of Theorem 2.2.4. Expressing the first-order necessary conditions for the collection of
convex QPs (2.31) allows us to express the set DEQP (y, x∗)[δy] as the following:

DEQP (y, x∗)[δy] :=

δx∗ ∈ Rn | ∃ ((δλ)∗sa, (δλ)∗d) : (Q̃i)(i,:)δx
∗ + (R̃i)(i,:)δy−

((Ãi)d)
ᵀ
(:,i)(δλi)

∗
d−

((Ãi)sa)
ᵀ
(:,i)(δλi)

∗
sa = 0,

(Ãi)saδx
∗ + (B̃i)saδy = 0,

(Ãi)dδx
∗ + (B̃i)dδy ≥ 0 ⊥ (δλi)

∗
d ≥ 0,

∀i ∈ {1, ..., N}

(2.33)

Define (δλ)∗si := 0, and let δλ∗ be the reconstruction of (δλ)∗sa, (δλ)∗si, and (δλ)∗d, in the
original index ordering. Following the technique used in Theorem 2.1.2, it follows directly
that for small enough ε, the set of solutions EQP (y∗ + εδy) is represented by the set of
x∗ + εδx∗, λ∗ + εδλ∗, where δx∗ ∈ DEQP (y, x∗)[δy] and δλ∗ are associated multipliers. In
particular, define

εmax := arg max
ε > 0

ε (2.34a)

subject to (Ãi)si(x
∗ + εδx∗) + (B̃i)si(y + εδy) + (c̃i)si ≥ 0, ∀i, (2.34b)

(λi)sa + ε(δλi)
∗
sa ≥ 0, ∀i. (2.34c)

Then for all 0 ≤ ε ≤ εmax, x
∗ + εδx∗ is a solution to EQP (y + εδy).

CHAPTER 2. THEORY 13

The assumptions made in Theorem 2.2.4 are sufficient conditions for the solution set of
EQP (y∗ + εδy) ∩ N (x∗) to be represented by a collection of affine functions in the change
δy. If the equilibrium problem defined by (2.31) contains multiple solutions (the number
of solutions must be finite), then there exist multiple valid local affine representations of
solutions to the set EQP (y+ εδy) emanating from the point x∗. For example, if δx∗a and δx∗b
are two solutions to (2.31), then x∗+ εδx∗a and x∗+ εδx∗b are both solutions to EQP (y+ εδy).
This implies that the point (y, x∗) is a multifurcation point in the graph G(EQP).

Theorem 2.2.5. Let EQP (y) have a finite and non-zero number of solutions for every
y ∈ Rm. For some particular y∗, let x∗ ∈ EQP (y∗). Then there exists a piecewise-linear
mapping x̄ = K(ȳ), such that x̄ is a solution to EQP (ȳ) for all ȳ ∈ Rm, and with x∗ = K(y∗).

Proof. Consider x∗ as a solution in EQP (y), and any direction δy ∈ Rm. By the assumptions
in Theorem 2.2.3, because EQP (y) is non-empty for all y, DEQP (y, x∗)[δy] is non-empty for
all choice of δy as well. Furthermore, because EQP (y) contains a finite number of elements
for all y, so must DEQP (y, x∗)[δy].

Let ((δλ)∗sa, (δλ)∗d) be the multipliers associated with some solution δx∗ for the direction
δy. Define for this solution, the index sets

J i
a := { j |

(
(Ãi)dδx

∗ + (B̃i)dδy
)
j

= 0}

J i
i := { j |

(
(Ãi)dδx

∗ + (B̃i)dδy
)
j
> 0},

(2.35)

Consider the system of equations formed from Eq. (2.33) by replacing each row j of

the complementarity condition with
(

(Ãi)dδx
∗ + (B̃i)dδy

)
j

= 0 if j ∈ J i
a and the con-

straint is linearly independent from all other “active” constraints, else replacing it with
((δλi)d)j = 0 if j ∈ J i

i . This is now an equality-constrained system, which by the property
that DEQP (y, x∗)[δy] contains a finite number of elements, must be non-singular. This
system takes the form

M̄

[
δx∗

δλ∗

]
+ N̄δy = 0, (2.36)

which by the non-singularity of the system, implies linear relationships

δx∗ = Kδy, δλ∗ = Lδy. (2.37)

If (Liδy)d = (δλi)d, then these linear relationships must hold for all direction δy satisfying

((Liδy)d)j ≥ 0, j ∈ J i
a(

(Ãi)dK + (B̃i)d)δy
)
j
≥ 0, j ∈ J i

i

(2.38)

By Theorem 2.2.4, this implies that for small enough ε, x∗ + εKδy is a solution to
EQP (y + εδy) for all δy satisfying the conditions (2.38). From (2.34), the exact region for
which this linear mapping is valid can be established.

CHAPTER 2. THEORY 14

x∗ +Kδy is a solution to EQP (y + δy) for all δy ∈ R, defined as

R :=

δy ∈ Rm : ∀i,

((Liδy)d)j ≥ 0, j ∈ J i

a(
(Ãi)dK + (B̃i)d)δy

)
j
≥ 0, j ∈ J i

i

(Ãi)si(Kδy + x∗) + (B̃i)si(y + δy) + (c̃i)si ≥ 0

((Lδy + λ∗)i)sa ≥ 0

(2.39)

It is useful to represent the region defined by {y + δy, δy ∈ R} compactly as {y ∈ Rm :
Dy + d ≥ 0}, as will be seen in later sections.

Thus far it has been established that for any direction δy, there exists an affine mapping
relating solutions to EQP (y + δy) to y + δy, which passes through x∗, which is valid for
some polyhedral region containing the origin. Because the existence of this piecewise-affine
mapping must exist for every direction δy at every solution pair (y, x∗), this implies a globally
existent piecewise linear mapping from points ȳ ∈ Rm to solutions EQP (ȳ).

The conditions provided in this section are sufficient to ensure the existence of equilibrium
solutions to the equilibrium problem, the finite cardinality of solutions, and a piecewise linear
relationship between parameter and solutions. All of the conditions listed are not necessary
for these properties to hold. In general, each of these desirable properties may hold for other
equilibrium problems, even if they do not satisfy the sufficient conditions outlined.

2.3 Equilibrium Problems with Equilibrium

Constraints

We now consider a generalization of the equilibrium problem defined in the previous section,
as we move one step closer to introducing the general connected quadratic programs that
are the primary focus of this dissertation.

Let EQP (y) denote the solution to a parametric equilibrium problem defined as in (2.18),
(2.19). We denote an equilibrium problem with equilibrium constraints to be an equilibrium
solution of the following Ny quadratic programs, each which are subject to shared equilibrium
constraints involving the variable x:

QPECi(z, y−i) := arg min
yi ∈ Rmi , x ∈ Rn

[
yi
x

]ᵀ
(
1

2
Qy,i

[
yi
x

]
+Ry,i

[
y−i
z

]
+ qy,i) (2.40a)

subject to Ay,i

[
yi
x

]
+By,i

[
y−i
z

]
+ cy,i ≥ 0, (2.40b)

x ∈ EQP (y). (2.40c)

CHAPTER 2. THEORY 15

Here it is implied that
∑Ny

i=1mi = m. Each of the above programs take as parameter some
value z ∈ Rl, as well as the decision variables y−i. The problem of finding an equilibrium for
this set of parametric programs is called an equilibrium problem with equilibrium constraints,
or an EPEC:

EPEC(z) :=
{
x∗ ∈ Rn, y∗ ∈ Rm|(y∗i , x∗) ∈ QPECi(z, y∗−i),∀i ∈ {1, ..., Ny}

}
(2.41)

Here EPEC can be seen to be a set-valued mapping EPEC : Rl ⇒ Rn+m.

Theorem 2.3.1. Assume that the EQP appearing in Eq. (2.40c) has a finite and non-zero
number of isolated solutions for every value of y, and therefore the result of Theorem 2.2.5
applies. Then for some z ∈ Rl, if (y∗, x∗) are solutions to the equilibrium problem with
equilibrium constraints, i.e. (y∗, x∗) ∈ EPEC(z), then for every portion of the piecewise-
linear mapping(s) defined by {y = Kx+k, Dy+d ≥ 0} and satisfying x∗ = Ky∗+k, Dy∗+
d ≥ 0 as given in Theorem 2.2.5, (y∗, x∗) is also a solutions to the equilibrium problem
defined by the following programs:

QPEC
(K,k,D,d)
i (z, y−i) := arg min

yi ∈ Rmi , x ∈ Rn

[
yi
x

]ᵀ
(
1

2
Qy,i

[
yi
x

]
+Ry,i

[
y−i
z

]
+ qy,i) (2.42a)

subject to Ay,i

[
yi
x

]
+By,i

[
y−i
z

]
+ cy,i ≥ 0, (2.42b)

Dy + d ≥ 0, (2.42c)

x− (Ky + k) = 0. (2.42d)

EPEC(K,k,D,d)(z) :=
{

(x, y) | (yi, x) ∈ QPEC(K,k,D,d)
i (z, y−i), ∀i ∈ {1, ..., Ny}

}
(2.43)

In other words, (x∗, y∗) ∈ EPEC(K,k,D,d)(z) for all such (K, k,D, d).

Proof of Theorem 2.3.1. This proof follows directly from the fact that locally, the feasible
domain for the programs (2.40) is the union of the feasible domains for the programs (2.42).
Therefore if there exist two pieces of the piecewise linear representation of the set EQP (y),
denoted by (K1, k1, D1, d1) and (K2, k2, D2, d2), such that they are neighboring at (x∗, y∗),
i.e. D1y

∗ + d1 ≥ 0, D2y
∗ + d2 ≥ 0, and K1y

∗ + k1 = K2y
∗ + k2 = x∗. Let (x∗, y∗) ∈

EPEC(K1,k1,D1,d1)(z), but (x∗, y∗) 6∈ EPEC(K2,k2,D2,d2)(z). This immediately implies (x∗, y∗)
can’t be an equilibrium point of EPEC(z), since there must exist a point (x, y) in the
domain D2y + d2 ≥ 0, x = K2y + k2 which unilaterally decreases the objective value for
one of the programs (2.40 (by definition of equilibrium), and therefore a point (x, y) in the
domain x ∈ EQP (y) which decreases the objective value for one of the programs (2.42).

CHAPTER 2. THEORY 16

On the contrary, if there exist no points in any of the independent domains which uni-
laterally decreases the objective value for one of the programs (2.40, then there cannot exist
a point in the union of domains which unilaterally decreases the objective value for one of
the programs (2.42). This establishes the result.

Theorem 2.3.2. Let the matrices Qy,i appearing in Eq. (2.42a) be positive semi-definite
for all i ∈ {1, .., Ny}. Furthermore, for all i, and for the polyhedral region Dy + d ≥ 0
appearing in Eq. (2.42c), let the following region be a bounded and non-empty set for every
y−i ∈ Rm−mi , z ∈ Rl:

Ci(y−i, z) :=

yi ∈ Rmi :

Ay,i
[

yi
Ky + k

]
+By,i

[
y−i
z

]
+ cy,i ≥ 0,

Dy + d ≥ 0

 (2.44)

Then, there exists an equilibrium solution to the EPEC defined in terms of the quadratic
programs (2.42), i.e. the set EPEC(K,k,D,d)(z) (2.43) is non-empty.

Proof of Theorem 2.3.2. For each program (2.42), substitute x using the constraint x−(Ky+
k) = 0. We can then re-express each program as the following:

QPEC
(K,k,D,d)
i (z, y−i) := arg min

yi ∈ Rmi

yᵀi (
1

2
Q̃y,iyi + R̃y,i

[
y−i
z

]
+ q̃y,i) (2.45a)

subject to Ãy,iyi + B̃y,i

[
y−i
z

]
+ c̃y,i ≥ 0, (2.45b)

Dy + d ≥ 0. (2.45c)

Here, the new coefficients are given as

Q̃y,i :=

[
I
Ki

]ᵀ
Qy,i

[
I
Ki

]
, R̃y,i :=

[
I
Ki

]ᵀ(
Qy,i

[
0 0
K−i 0

]
+Ry,i

)
q̃y,i :=

[
I
Ki

]ᵀ
(Qy,i

[
0
k

]
+ qy,i), Ãy,i := Ay,i

[
I
Ki

]
,

B̃y,i := Ay,i

[
0 0
K−i 0

]
+By,i, c̃y,i := Ay,i

[
0
k

]
+ cy,i.

(2.46)

Here Ki refers to the
∑i−1

j=1mj + 1 through
∑i

j=1mj columns of K, and K−i refers to all
other columns. It can be seen that since Qy,i is positive semi-definite by assumption, and
the matrix

[
I Kᵀi

]ᵀ
is full rank, Q̃y,i is positive semi-definite, and the program is convex in

the variable yi.
The constraints (2.45b and 2.45c) give rise to the set Ci(y−i, z) in (2.44), which is non-

empty and bounded for all y−i and z by assumption. Therefore by Theorem 3.1 in [66], there
must exist an equilibrium point for this collection of problems.

CHAPTER 2. THEORY 17

Before introducing and proving another key theorem, it is useful to describe the set of
solutions to the equilibrium problem EPECK,k,D,d(z) in terms of the first-order necessary
conditions for the individual component programs. This gives:

EPEC(K,k,D,d)(z) :=

(x∗, y∗) | ∃λ∗, γ∗ : (Q̃y,i)(i,:)y
∗
i + (R̃y,i)(i,:)

[
y∗−i
z

]
+

(q̃y,i)(i) − (Ãy,i)
ᵀ
(:,i)λ

∗
i −D

ᵀ
(:,i)γ

∗ = 0,

Ãy,iy
∗
i + B̃y,i

[
y−i
z

]
+ c̃y,i ≥ 0 ⊥ λ∗i ≥ 0,

∀i ∈ {1, ..., Ny},
Dy + d ≥ 0 ⊥ γ∗ ≥ 0

(2.47)

Notice that since all QPEC
(K,k,D,d
i) share the constraints Dy+d ≥ 0, a shared multiplier

is used in the first-order necessary conditions of optimality.
Consider some solution (x∗, y∗) to EPECK,k,D,d(z), with associated multipliers λ∗ and

γ∗. As in previous sections, define the index sets and coefficients

I ia := { j | (Ãix
∗ + B̃iy + c̃i)j = 0}, IDa := { j | (Dy + d = 0},

I ii := { j | (λ∗i)j = 0}, IDi := { j | (γ∗)j = 0},
I id := I ia ∩ I ii , IDd := IDa ∩ IDi ,
I isa := I ia \ I id, IDsa := IDa \ IDd ,
I isi := I ii \ I id. IDsi := IDi \ IDd .

(2.48)

(Ãy,i)sa := (Ãy,i)Iisa (B̃y,i)sa := (B̃y,i)Isa (c̃y,i)sa := (c̃y,i)Iisa (λi)sa := (λi)Iisa

(Ãy,i)si := (Ãy,i)Iisi (B̃y,i)si := (B̃y,i)Iisi (c̃y,i)si := (c̃y,i)Iisi (λi)si := (λi)Iisi
(Ãy,i)d := (Ãy,i)Iid (B̃y,i)d := (B̃y,i)Iid (c̃y,i)d := (c̃y,i)Iid (λi)d := (λi)Iid
(D)sa := (D)IDsa (d)sa := (d)IDsa (γ)sa := (γ)IDsa
(D)si := (D)IDsi (d)si := (d)IDsi (γ)si := (γ)IDsi
(D)d := (D)IDd (d)d := (d)IDd (γ)d := (γ)IDd

(2.49)

Using this notation, we can introduce the following result on the local piecewise-linearity
of solutions to EPEC(z).

Theorem 2.3.3. Let the EPEC (2.41) have an isolated equilibrium solution for some z∗ ∈
Rl, denoted by (y∗, x∗). Then there exists a piecewise linear mapping (y, x) = K(z) such that
(y, x) are solutions to EPEC(z) for all z in some local region containing z∗.

CHAPTER 2. THEORY 18

Proof of Theorem 2.3.3. Denote the set of all non-trivial pieces of the piecewise linear map-
pings relating the set of local to EQP (y) in the vicinity of x∗ by

K(z∗, y∗, x∗) := {(K, k,D, d) | ∀y : Dy + d ≥ 0, (Ky + k) ∈ EQP (y)} , (2.50)

where the coefficients for each piece K, k,D, d are those defined in Theorem 2.2.5.
For each (K, k,D, d) ∈ K(z∗, y∗, x∗), let DEPEC(K,k,D,d)(z∗, y∗, x∗)[δz] be defined as the

set of equilibrium solutions to the following collection of problems:

DQPEC
(K,k,D,d)
i (z∗, y∗, x∗)

[
δz
δy−i

]
:= arg min

δyi ∈ Rmi

δyᵀi (
1

2
Q̃y,iδyi + R̃y,i

[
δy−i
δz

]
) (2.51a)

subject to (Ãy,i)dδyi + (B̃y,i)d

[
δy−i
δz

]
≥ 0,

(2.51b)

(Ãy,i)saδyi + (B̃y,i)sa

[
δy−i
δz

]
= 0,

(2.51c)

(D)dδy ≥ 0,
(2.51d)

(D)saδy = 0.
(2.51e)

DEPEC(K,k,D,d)(z∗, y∗, x∗)[δz] :=

{
δy :

[
δyi ∈ DQPEC

(K,k,D,d)
i (z∗, y∗, x∗)[δz, δy−i]

i ∈ {1, ..., Ny}

]}
(2.52)

It is easy to verify (as was done in earlier sections) that for sufficiently small ε, the pair

(y∗ + εδy,K(y∗ + εδy) + k) is a solution to EPEC
(K,k,D,d)
i (z + εδz), for any

δy ∈ DEPEC(K,k,D,d)(z∗, y∗, x∗)[δz].

Following a similar process as in Theorem 2.2.5, this result can be extended to show that
there exists a linear mapping defined by some coefficients K ′, k′, D′, d′, such that

∀z : D′z + d′ ≥ 0, (K ′z + k′) ∈ EPEC(K,k,D,d)(z). (2.53)

While the results so far establish the local piecewise-linearity of the equilibrium prob-
lems EPEC(K,k,D,d), the directional derivative associated with each piece (K, k,D, d) ∈
K(z∗, y∗, x∗) may not agree. The effect of this is that changes in some direction δz may
cause the equilibrium point in one piece to leave the boundary of its defining region, while

CHAPTER 2. THEORY 19

in other pieces the equilibrium point remains at the boundary of the bordering region. the
local equilibrium point of the original EPEC moves as well.

Specifically, by Theorem 2.3.1, a piece of the piecewise linear mapping (K ′, k′, D′, d′) for
EPEC(K,k,D,d)(z) as in (2.53) is a piece of the piecewise linear mapping for EPEC(z) if
either of the following conditions hold:

• for all other (K̃, k̃, D̃, d̃) ∈ K(z∗, y∗, x∗), if there exists a piece (K̃ ′, k̃′, D̃′, d̃′) of the

piecewise-linear representation of the local solution to EPEC(K̃,k̃,D̃,d̃) as in (2.53), and
D̃′z + d̃′ ≥ 0, then K̃ ′z + k̃′ = K ′z + k′.

• D(K ′z + k′) + d > 0.

The conditions above establish sufficient conditions for the existence of a linear mapping
of z which constitutes solutions to EPEC(z) for all z in some polyhedral region containing
z∗, but dot guarantee that the union of all such polyhedral regions contains an open ball
around z∗. This implies that for some changes in the parameter z, the set EPEC may fail
to have a solution. This is contrast to the results in section 2.2, in which the piecewise linear
mapping was shown to be globally existent for all choice of parameters y. Nevertheless,
whenever the above conditions do hold, they establish a local region around z∗ for which the
local linear representation is indeed a solution to EPEC(z), establishing the result of this
theorem.

In this section, some results have been developed for solutions to equilibrium problems
with equilibrium constraints. In particular, it was established that when the equilibrium
constraints can be represented locally as a piecewise linear mapping, then whenever an
equilibrium point to the EPEC is isolated, and solutions exist for neighboring values of z,
then those solutions can be represented (locally) by a piecewise linear function of z. This
fact will enable the development of a generalization presented in the next section.

2.4 Equilibrium Problems with Nested Equilibrium

Constraints

With the results established in previous sections, more general formulations of connected
quadratic programs can be introduced. In particular, layers of nested equilibrium problems
with equilibrium constraints will be considered. These organizations of programs effectively
form towers of QPs, made up of vertically nested layers of equilibrium problems. Each layer
in the vertical stack is made up of an equilibrium problem, with each quadratic program in the
layer subject to a shared constraint that the nested sub-tower of QPs satisfy an equilibrium.
The organization we consider is formally defined recursively in terms of parametric groups
of nested equilibrium problems.

The term parametric equilibrium problem with nested equilibrium constraints (EPNEC)
is used to define this organization, and is formalized in the recursive definitions below.

CHAPTER 2. THEORY 20

Definition 1 (QPNEC). A parametric quadratic program with nested equilibrium con-
straints (QPNEC) at layer index l for player index i is a set-valued mapping QPNECl,i :
Rml,i ⇒ Rnl,i+nl+1 defined as:

QPNECl,i(yl,i) := arg min

x̄l,i :=
[
xl,0

ᵀ xl,i
ᵀ
]ᵀ
,
xl,0∈Rnl+1

xl,i∈R
nl,i

x̄ᵀl,i(
1

2
Ql,ix̄l,i +Rl,iyl,i + ql,i) (2.54a)

subject to Al,ix̄l,i +Bl,iyl,i + cl,i ≥ 0,
(2.54b)

EPNECl+1(
[
yl,i
ᵀ xl,i

ᵀ
]ᵀ

) 3 xl,0
(2.54c)

Here, all variables, cost, and constraint coefficients are labeled by the tuple (l, i) to
indicate that in a connected organization of quadratic programs, each QPNEC is in general,
different. In the case that the constraint (2.54c) (defined below) is omitted, it is assumed
that the dimension of xl,0 is 0, and therefore the QPNEC at level l for player i is equivalent
to a QP .

Definition 2 (EPNEC). A parametric equilibrium problem with nested equilibrium con-
straints at level l is a set-valued mapping EPNECl : Rml ⇒ Rnl defined as:

EPNECl(yl) :=

xl,0
xl,1

...
xl,Nl

 ∈ Rnl

∣∣∣∣∣∣∣∣∣
[
xl,0
xl,i

]
∈ QPNECl,i

([
yl
xl,−i

])
,∀i ∈ {1, ..., Nl}

(2.55)

Above, Nl is the number of players at level l of the organization, and xl,−i is defined as:

xl,−i :=
[
xl,1

ᵀ . . . xl,i−1
ᵀ xl,i+1

ᵀ . . . xl,Nl

ᵀ
]

(2.56)

Similarly let
x1:Nl

:=
[
xl,1

ᵀ . . . xl,Nl

ᵀ
]ᵀ
. (2.57)

Notice that the parameter yl,i being passed to QPNECl,i is implicitly defined as yl,i :=[
yl
ᵀ xl,−i

ᵀ
]ᵀ

. Then, the stacking of variables
[
yl,i
ᵀ xl,i

ᵀ
]ᵀ

appearing in constraint (2.54c)

(via a slight abuse of notation) should be interpreted as
[
yl
ᵀ x1:Nl

ᵀ
]ᵀ

, which by the definition
of ECQPl+1 is equivalent to yl+1.

Therefore, the dimension of yl+1 is given by ml+1 = ml +
∑Nl

i=1 nl,i, and hence ml is the
dimension of all variables appearing in levels strictly before l. Conversely, it is seen that
nl = nl+1 +

∑Nl

i=1 nl,i, and is the dimension of all variables appearing in levels at or after l.

CHAPTER 2. THEORY 21

l Input to EPNECl

1 y1 = []

2 y2 =
[
x1,1 x1,2

]
3 y3 =

[
x1,1 x1,2 x2,1 x2,2 x2,3

]
4 y4 =

[
x1,1 x1,2 x2,1 x2,2 x2,3 x3,1

]
5 y5 =

[
x1,1 x1,2 x2,1 x2,2 x2,3 x3,1 x4,1 x4,2 x4,3

]
l Output of EPNECl

1 x1 =
[
x1,1 x1,2 x2,1 x2,2 x2,3 x3,1 x4,1 x4,2 x4,3

]
2 x2 =

[
x2,1 x2,2 x2,3 x3,1 x4,1 x4,2 x4,3

]
3 x3 =

[
x3,1 x4,1 x4,2 x4,3

]
4 x4 =

[
x4,1 x4,2 x4,3

]
5 x5 = []

Table 2.1: Variable scopes for the EPNECs appearing in Fig. 2.1.

The variable xl,0 appearing in EPNECl has dimension nl+1, and is a shared variable
among all Nl players at layer l. It represents all variables being determined at level l + 1
and after. This variable is constrained by the shared constraint xl,0 ∈ EPNECl+1(yl+1),
appearing in QPNECl,i for all i ∈ {1, ..., Nl}. It is through these variables that the nesting
of the connected quadratic programs is made explicit. This shared constraint (2.54c) enables
the optimization for player i ∈ {1, ..., Nl} at layer l to reason about the reaction of players
in successive layers to changes in player i’s decision variables.

In Fig. 2.1, an example organization of connected quadratic programs is outlined. In this
example there are 4 nested layers of EPNECs, with an empty EPNEC at the 5th level for
completeness. Each of the four EPNECs considered are comprised of a group of between
one and three QPNECs. Variable scopes for the various EPNECs and QPNECs in the
organization are listed in Tables 2.1 and 2.2.

Note that the equilibrium problems with equilibrium constraints considered in section
2.3 are simply EPNECs with two layers. The formulation here generalizes those problems
to arbitrary number of layers.

The form of connected quadratic programs considered here, which can be described by

CHAPTER 2. THEORY 22

Figure 2.1: An example organization of a connected quadratic program that can be described
in the EPNEC framework. Decision variable scopes for the problems at each layer are given
in Tables 2.1 and 2.2.

CHAPTER 2. THEORY 23

l i Input to QPNECl,i Output of QPNECl,i

1 1 y1,1 =
[
x1,2
]

x̄1,1 =
[
x1,1 x2

]
1 2 y1,2 =

[
x1,1
]

x̄2,1 =
[
x2,1 x2

]
2 1 y2,1 =

[
x1 x2,2 x2,3

]
x̄2,1 =

[
x2,1 x3

]
2 2 y2,2 =

[
x1 x2,1 x2,3

]
x̄2,2 =

[
x2,2 x3

]
2 3 y2,3 =

[
x1 x2,1 x2,2

]
x̄2,3 =

[
x2,3 x3

]
...

...

Table 2.2: Variable scopes for some of the QPNECs appearing in example in Fig. 2.1.

EPNECs, constitute a very general class of problems. It will be shown in later sections that
a variety of important and interesting real-world problems can be cast in this framework.
Hence, this framework is sufficiently general to encapsulate a broad swath of problems, but is
structured enough to be analyzed and enable the development of general solution techniques.
This is particularly important, since instead of designing customized solution methods which
are specialized for the particular organization of quadratic programs that arise in any given
problem, the same method designed for general EPNECs can be applied to that problem.
The study of such a computational method is the focus of the next chapter, which will make
use of the following theorem.

Theorem 2.4.1. Consider an EPNECl, at some layer 1 ≤ l ≤ L in a stack of nested
EPNECs. Then if solutions to xl,0 ∈ EPNECl+1(yl+1) can be locally represented as a
piecewise linear mapping, and x∗l−1,0 is an isolated solution to EPNECl(y

∗
l). Then there

exists a piecewise linear representation of local solutions to EPNECl(yl) for all yl in a
polyhedral region containing y∗l .

Proof. This proof follows from direct application of Theorem 2.3.3, since if the problem
EPNECl+1(yl+1) admits a piecewise linear representation, the problem EPNECl(yl) is
indistinguishable from the problem (2.41).

The result of Theorem 2.4.1 implies an inductive relationship between the piecewise
linearity of solutions at various layers in an EPNEC. Assuming an isolated solution exists
to the EPNEC at some layer l + 1, the piecewise linear representation of solutions can be
used to search for an isolated equilibrium point to the EPNEC at layer l. Assuming this can
be found, and is an isolated point, a piecewise linear representation of local solutions can be
generated for this problem, which can in turn be used to search for solutions to the EPNEC

CHAPTER 2. THEORY 24

at layer l−1, and so on. This core idea will be the foundation for the computational method
developed in the next chapter for computing solutions to these collections of connected
quadratic programs.

25

Chapter 3

General Computation

In this chapter, a method for computing solutions to the L-level EPNECs defined in section
2.4 is described, which builds on Theorem 2.4.1. We first present the proposed algorithm in
whole, and then discuss various properties of it in the section to follow. In later chapters,
example problems are described and some solutions of those problems are reported.

The basic premise of the presented method is the following. An initial iterate is found
which is simultaneously feasible for the constraints (2.54b) at every l ∈ {1, ..., L}, i ∈
{1, ..., Nl}. This can be done by solving a simple feasibility problem. If there is no such
point satisfying all of these constraints, then of course no equilibrium solution can exist.

Once the initial iterate is found, the decision variables yL are held fixed, while a solution is
found to EPNECL(yL). This equilibrium problem at level L is equivalent to the equilibrium
formulation described in section 2.2. Once a solution to the problem at level L is found, a
piecewise linear representation is formed for the local solutions to that level L problem, which
is then used to replace the equilibrium constraints appearing in the equilibrium problem at
level L− 1.

The decision variables xL−1 are now released (such that only yL−1 is fixed), and the
equilibrium problem at level L− 1 is solved using the piecewise linear representation of the
sub-level equilibrium constraints. Inspired by the results of Theorem 2.3.1, a method for
traversing pieces of the piecewise linear representation is used to find the solution of the
level L− 1 equilibrium problem. Once a solution is found, a piecewise linear representation
of the local solution set is found, and this representation is used to replace the equilibrium
constraints appearing in the equilibrium problem EPNECL−2.

This process is repeated until, ideally, a solution is found for EPNEC1, implying an
equilibrium solution for the entire set of connected quadratic programs has been found. If
at any point, a non-isolated solution is found to the EPNECl for some level 2 ≤ l ≤ L,
then the algorithm terminates with failure, as a suitable representation for the set of local
solutions is unable to be found. Furthermore, if an equilibrium is failed to be found at any
level l, then failure is also returned.

CHAPTER 3. GENERAL COMPUTATION 26

3.1 Equilibrium Problems with Piecewise Linear

Constraints

Since much of the method outlined above relies on the solution of equilibrium problems with
shared piecewise linear constraints, a specialized subroutine is developed for that problem.
Given the development of that subroutine, the method for computing L-level EPNECs can
be established.

Before stating the subroutine for solving equilibrium problems with shared piecewise
linear equality constraints, the problem formulation is stated with specificity.

Let K : Rm → Rn be some piecewise linear mapping. Specifically, let K be defined by
Nr regions, each region i ∈ {1, ..., Nr} defined as

Ri := {y ∈ Rm : Diy + di ≥ 0}. (3.1)

Let any two regions only overlap on their borders. This is indicated by stating that the
interior of the intersection of any two regions Ri and Rj for any i 6= j be empty:

∀ (i, j) ∈ {1, ..., Nr}, i 6= j : (Ri ∩Rj)
o = ∅ (3.2)

Assume further that the regions are all connected, i.e. there exists some simply-connected
region D ⊂ Rm, and that (

∪Nr
i=1Ri

)
= D. (3.3)

Finally the function K can be defined:

K(y) :=
{
Kiy + ki if yi ∈ Ri (3.4)

Notice that the definition of K implies that the mapping is continuous over the domain D.
With this definition of the form of piecewise-linear mappings we are concerned with, the

equilibrium problem of interest can be defined. We denote this an equilibrium problem with
piecewise linear constraints, or EPPWLC. This is an equilibrium problem among multiple
quadratic programs with piecewise linear constraints, or QPPWLCs.

QPPWLCi(z, y−i) := arg min
yi ∈ Rmi , x ∈ Rn

[
yi
x

]ᵀ
(
1

2
Qy,i

[
yi
x

]
+Ry,i

[
y−i
z

]
+ qy,i) (3.5a)

subject to Ay,i

[
yi
x

]
+By,i

[
y−i
z

]
+ cy,i ≥ 0, (3.5b)

x−K(y) = 0. (3.5c)

EPPWLC(z) :=
{
x∗ ∈ Rn, y∗ ∈ Rm|(y∗i , x∗) ∈ QPPWLCi(z, y

∗
−i),∀i ∈ {1, ..., Ny}

}
(3.6)

CHAPTER 3. GENERAL COMPUTATION 27

Algorithm 1 Equilibrium Problems with Shared Piecewise Linear Equality Constraints

Require:
• Piecewise linear function K, defined in (3.4)

• Parameter value z

• Collection of Ny QPPWLCs, defined in (3.5)

• Positive semi-definite coefficients Qy,i, for all i ∈ {1, ..., Ny}
• Positive definite submatrix (Qy,i)1:mi,1:mi

, for all i ∈ {1, ..., Ny}
for i = 1..Nr do

(x, y)← EPEC(Ki,ki,Di,di)(z) (Using LCP Solve)
if failure then

continue
end if
if Diy + di > 0 then return (x, y)
else

for j = 1..Nr do
if Djy + dj ≥ 0 and (x, y) 6∈ EPEC(Kj ,kj ,Dj ,dj)(z) (Using LCP check) then

break
end if

end for
return (x, y)

end if
end for
return ∅

The first algorithm presented for solving EPPWLC(z) is a simple enumeration-based ap-
proach. This approach is conceptually simple, but has some drawbacks which are addressed
in algorithm 3.

The premise of Algorithm 1 is to simply enumerate the solutions to the equilibrium
problems formed when restricted to each piece of the piecewise linear mapping K, and
check to see if they satisfy the requirements to be equilibrium points for (3.6) as stated in
Theorem 2.3.1.

The method for solving the EPEC associated with each piece is to use a method for
solving linear complementarity problems, such as Lemke’s method [48]. In order to convert
the EPEC into the form of a linear complementarity problem, first the equality constraints
x = Kiy+ ki can be used to eliminate the variable x from the programs as was done in The-
orem 2.3.2. At this point the programs are converted to bound-constrained problems via the
technique introduced in section 2.1 for converting general QPs into bound-constrained QPs.
Finally, expressing the joint first-order necessary conditions for these resultant problems
(analogous to (2.47)) result in a LCP which can be solved using known methods.

CHAPTER 3. GENERAL COMPUTATION 28

In Algorithm 1, it is also assumed that the solution to some EPECKi,ki,Di,di may not
exist or can not be found. The method is robust to such situations, in that it can still
attempt to find an equilibrium point for the problem at large.

The obvious drawback of using Algorithm 1 to solve EPPWLC problems, is that it
requires being able to enumerate every piece to the piecewise linear mapping K, not to
mention then solving the Nr corresponding LCPs. As we will see, in many cases the pieces
comprising K are not known in advance, but rather are generated on demand. Specifically,
when y leaves a region Ri, a new piece x = Kjy+ kj is formed, and the region Rj for which
the piece is a valid representation of K is computed.

These difficulties inspire an alternative approach to solving EPPWLC problems, which
is outlined in Algorithm 2. The basic idea of this approach is instead to search locally for
equilibrium solutions, transitioning from piece to neighboring piece as needed. The challenges
in such an approach are that if a particular piece does not warrant an equilibrium solution,
establishing which neighboring region to transition to requires care. Furthermore, it can
be difficult to find an initial feasible solution which satisfies both the inequality constraints
appearing in each QP, as well as the piecewise linear equality constraint. For this reason,
Algorithm 2 must have a higher rate of failure than Algorithm 1, yet nevertheless the loss
in robustness made in exchange for practicality is often worth it.

There are three subroutines introduced in Algorithm 2 that have not yet been discussed.
These are the routines FindFeasible, LCPCheck and EnumerateNeighbors. The method
FindFeasible is intended to locate an initial piece of the piecewise linear mapping K for
which there is a joint-feasible solution, meaning it simultaneously satisfies the conditions
(3.5b, 3.5c) for all i ∈ {1, ..., Ny}. In general, this is a non-convex problem and can warrant
difficulties depending on how the piecewise linear mapping K is represented. Presumably any
arbitrary piece of the mapping could be used to initialize the search for an equilibrium point,
but then it is unclear how to proceed when no solution exists to the problem EPEC(K,k,D,d).
It may even be that after finding a jointly-feasible solution, that an equilibrium still does
not exist. Nevertheless, initializing in a piece in which at least the feasible search region is
non-empty gives a strong guess which yields good performance empirically.

The method proposed for finding a feasible solution is given in Algorithm 3. The core
idea is to move along the piecewise linear mapping until a point satisfying the constraints
(3.5b) is found.

Now both Algorithm 2 and Algorithm 3 rely on the method EnumerateNeighbors as part
of their computation. The concept for finding neighbors of a piece is based on determining
which borders of the region Dy+d the point lies on, i.e. for which indices (Dy+d)i = 0, and
evaluating the form of the piece(s) sharing those boundaries. This process will in general
depend on the representation of the mapping K. When the piecewise linear mapping is
representing the relationship between local solutions to an equilibrium problem and the
input parameter, this will correspond to choosing a different representation of the active
constraints as outlined in Theorem 2.2.5.

The remaining subroutine appearing in Algorithm 2 (and in Algorithm 1) is the method
for verifying whether some point (x, y) is a solution to an equilibrium problemEPEC(K,k,D,d)(z).

CHAPTER 3. GENERAL COMPUTATION 29

Algorithm 2 Equilibrium Problems with Shared Piecewise Linear Equality Constraints

Require:
• Piecewise linear function K, defined in (3.4)

• Parameter value z

• Collection of Ny QPPWLCs, defined in (3.5)

• Positive semi-definite coefficients Qy,i, for all i ∈ {1, ..., Ny}
• Positive definite submatrix (Qy,i)1:mi,1:mi

, for all i ∈ {1, ..., Ny}

• Initialization point (x̂, ŷ) and piece of mapping K̂, k̂, D̂, d̂ such that D̂ŷ + d̂ ≥ 0.

• max iters (maximum number of pieces to search before declaring failure)
(success,K0, k0, D0, d0) = FindFeasible(x̂, ŷ, K̂, k̂, D̂, d̂)
if not success then return ∅
end if
j ← 0
while j < max iters do

(success, xj, yj)← EPEC(Kj ,kj ,Dj ,dj)(z) (using LCP solve)
if success then

if Djyj + dj > 0 then
return (xj, yj)

else
N ← EnumerateNeighbors(xj, yj, Kj, kj, Dj, dj)
for (K ′, k′, D′, d′) ∈ N do

if (xj, yj) 6∈ EPEC(K′,k′,D′,d′)(z) (using LCP check) then
(Kj+1, kj+1, Dj+1, dj+1)← (K ′, k′, D′, d′)
break

end if
end for
return (xj, yj)

end if
else

success,Kj+1, kj+1, Dj+1, dj+1 ← FindFeasible()
if not success then return ∅
end if

end if
j ← j + 1

end while
return ∅

CHAPTER 3. GENERAL COMPUTATION 30

Algorithm 3 FindFeasible

Require:
• Piecewise linear function K, defined in (3.4)

• Constraints: Ax+By + c ≥ 0

• (Optional) Initial point (x, y)

• (Optional) Initial piece (K, k,D, d)
if (x, y) not provided then

if (K, k,D, d) not provided then
Choose (x, y) satisfying Ax+By + c ≥ 0
if (y 6∈ Domain(K)) then

return failure,null,null,null,null
end if
(K, k,D, d)← FindLocalPiece(K,y)

else
Choose (x, y) satisfying Dy + d ≥ 0, x = Ky + k

end if
else

if (K, k,D, d) not provided then
if (y 6∈ Domain(K)) then

return failure,null,null,null,null
end if

else
Assert that Dy + d ≥ 0, x = Ky + k

end if
end if
while True do

Solve minx1,y1,x1,y1

∥∥∥∥x1 − x2y1 − y2
∥∥∥∥
2

s.t. {Dy1 + d ≥ 0, x1 = Ky1 + k, Ax2 +By2 + c ≥ 0}.

(x, y)← (x1, y1)
if x1 == x2 and y1 == y2 then return success,K, k,D, d
else
N =EnumerateNeighbors(x, y,K, k,D, d)
if N == ∅ then return failure,null,null,null,null
end if
(K, k,D, d)← ChooseFrom(N)

end if
end while

CHAPTER 3. GENERAL COMPUTATION 31

One way to attempt this is to find a solution to EPEC(K,k,D,d)(z) and check if that point
matches (x, y). However, when multiple solutions exist, any given method for computing so-
lutions may return a different solution than (x, y). In such a case, it cannot be said whether
or not (x, y) is indeed a solution to EPEC(K,k,D,d)(z). Therefore we propose a simplified
technique for checking whether (x, y) is indeed a solution to EPEC(K,k,D,d)(z), which in-
volves fixing (x, y), and attempting to find multipliers which satisfy the conditions (2.47).
When the set of active constraints are linearly independent, this is as simple as solving a
linear system of equations to solve for the constraint multipliers, and determining whether
or not they are non-negative.

3.2 Equilibrium Problems with Nested Equilibrium

Constraints

Given the methods so far described, we are ready to present the method for computing
solutions to equilibrium problems with nested equilibrium constraints.

Algorithm 4 Equilibrium Problems with Nested Equilibrium Constraints

Require:
• L-level EPNEC, defined by the equilibrium layers (2.55) and the QPNECs (2.54).

item Positive semi-definite coefficients Ql,i, for all l ∈ {1, .., L}, i ∈ {1, ..., Nl}
• Positive definite submatrix (Ql,i)nl,i:,nl,i:, for all l ∈ {1, .., L}, i ∈ {1, ..., Nl}
• Initialization x1 (x1 is the output variables of the 1st layer of the EPNEC, and

therefore comprises all decision variables in the EPNEC).

Decompose x1 :=

[
yL
xL

]
xL ← EPNECL(yL) using LCP solve (as in section 2.2)
if failure, or non-isolated solution then

return failure
end if
for l = (L− 1)..1 do

Kl+1 ←piecewise linear representation of xl+1 = EPNECl+1(yl+1)
EPPWLCl ← representation of EPNECl(yl) using Kl+1

xl ← EPPWLCl(yl) using Algorithm 2.
if no solution, or non-isolated solution then return failure
end if

end for
return x1

Algorithm 4 follows the basic idea put forth in the beginning of this section. For the very
reasons outlined in chapter 2, it is very difficult to guarantee the success of this method.

CHAPTER 3. GENERAL COMPUTATION 32

Nevertheless, by leveraging the local piecewise linearity of each equilibrium sub-problem,
equilibrium points for large-scale EPNECs can often be found using this approach.

It is important to point out a possible alternate approach for solving EPNEC problems.
Presumably, necessary conditions for equilibrium solutions could be inscribed in terms of
primal and dual variables for the entire problem. This would involve starting at layer L,
and representing the solution to the equilibrium problem at that level as a complementarity
problem. This formulation involves not only the primal variables at layer L, but also the dual
variables. Then, solutions to the equilibrium problem at layer L−1 are formed, now in terms
of necessary conditions of equilibrity for the resultant equilibrium problem with equilibrium
constraints. Now, additional dual variables are introduced to handle the constrained values
of the sub-level dual variables. Presuming such conditions can be succinctly represented,
they could be passed in as a constraint into the equilibrium problem at layer L − 2, and
so forth. It is seen that the total number of decision variables quickly grows very large
with the number of layers L. Furthermore, the form of the constraints becomes increasingly
complicated to represent. It is not hard to see why such an approach is not practical.

So, despite lacking guarantees of the ability to find a solution if one exists, the method
presented in Algorithm 4 is still very appealing for its ability to find solutions to previously
unsolvable problems. In the sections to follow, various interesting problems are cast as
EPNECs, and some results of applying Algorithm 4 to those problems are presented.

33

Chapter 4

Feedback Nash Equilibrium Problems

In this chapter, the concept of a generalized Feedback Nash equilibrium (GFNE) is in-
troduced, as it serves as an interesting example of an EPNEC, and in many ways was
my inspiration for studying connected optimization problems in general. The concept of
a GFNE will be formalized, and then some techniques for implementing the approach in
Algorithm 4 for this class of problem will be discussed. Finally some examples of solutions
will be presented. Much of this chapter is taken from [151], which is co-authored with David
Fridovich-Keil, Chih-Yuan Chiu, and Claire Tomlin.

4.1 Introduction: Dynamic Games

As discussed in earlier chapters, connected optimization problems, and EPNECs in partic-
ular, arise frequently in the context of game-theoretic problems. Recently there has been a
growing interest in the application of game-theoretic concepts to applications in automated
systems, as explored in [150, 263, 52, 47, 89, 86, 51, 78]. Indeed, numerous problems arising
in these domains can be modeled as games, and particularly as dynamic or repeated games.
Particularly in the context of discrete-time dynamic games, in which players have the abil-
ity to influence the state of the game over a finite set of game stages, these games can be
formulated in the EPNEC framework. Associated with dynamic/repeated game solutions
are game trajectories, which capture the evolution of the continuous game state and player
inputs over the sequence of stages.

Solutions to dynamic games have been studied extensively, as in [19]. Such studies are
largely complementary to the study of extended mathematical programming, such as the
study of general equilibrium problems or nested optimization problems. Within the theory
of dynamic games, the concept of an information pattern is used to represent the information
each player has access to at the point of making decision. Each of these patterns results in
a fundamentally different solution. The perspective taken here is that information patterns
correspond to connection organizations in the context of connected optimization problems.

Perhaps the simplest information pattern is the open-loop pattern, in which the repeated

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 34

nature of the game is ignored. In this pattern the stages of the game are combined into a
single static game, and the entire trajectory is chosen at once to satisfy a Nash, Stackelberg,
or other type of equilibrium. When constraints on the state variables are imposed upon the
players, a generalized equilibrium must be considered, meaning the constraints imposed on
each player depend on the decision variables of other players. Formulating games with an
open-loop information pattern has many advantages, as the resultant static game often then
admits known methods for analysis and computing solutions, as presented, for example, in
[70, 71]. However, by ignoring the dynamic nature of these games, the expressiveness of the
resultant solutions are significantly limited. Intelligent game play in repeated games often
involves observing the evolving game state and reacting accordingly.

Reactive game-play can emerge when associating a closed-loop information pattern to the
game of interest. Effectively, games with this information pattern are such that the players
choose control policies which define the control input as a function of the game state at
that stage. When those policies at each game stage are chosen to constitute an equilibrium
for the dynamic subgame played over the subsequent game stages, the resultant solution is
called a feedback equilibrium. This type of solution is capable of capturing strategies for a
player which anticipate and account for the reaction of other players. Some advantages of
this type of solution are explored in the autonomous driving context in, e.g., [150].

While feedback equilibrium solutions are often desirable over their open-loop counter-
parts, for all but simple cases, there do not exist well-developed numerical routines for
computing them. The unconstrained Linear-Quadratic (LQ) setting is perhaps the simplest
case, and methods for computing feedback equilibria for these games are well known, as
presented in [19]. The extension to the computation of a feedback Nash equilibrium for
a class of inequality-constrained LQ games is introduced in [212, 213], although restrictive
assumptions are made on the form of the dynamics, constraints and cost terms of the game.
Numerous other approaches have considered the computation of feedback equilibria under
various special cases, such as those in [248, 249, 138], among others. Methods for computing
feedback Nash equilibria have been recently developed in the unconstrained, nonlinear case
using a value-iteration based approach [109], and an iterative LQ game approach [89]. Nev-
ertheless, to the best of our knowledge, no methods exist for computing feedback equilibria
in games with constraints appearing on both the state and input dimensions, both in the
general LQ and nonlinear settings.

Since many emerging applications of dynamic games involve inequality constraints on the
game states and inputs, we have pursued the development of a robust and efficient method
for computing feedback equilibria in this setting. The result of that work is the topic of this
chapter. From the view that information patterns are associated with connection patterns
of optimization problems, a closed-loop information pattern can be cast as a EPNEC.
Therefore, the analysis and methods introduced in preceding chapters are used to address
to this type of problem.

The outline of the chapter is the following. In Section 4.2 we introduce the concept
of a Generalized Feedback Nash Equilibrium (GFNE), which formally defines the feedback
concept in the constrained setting. This formulation does not yet make any assumptions

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 35

on the objective or constraint forms presented to each player. We discuss pitfalls with a
parameterized approach to encoding GFNE problems as a means to motivate and introduce
a non-parametric alternative. We show that a GFNE can be cast in the framework of an
EPNEC, with some special properties. We then develop necessary and sufficient conditions
on game trajectories to satisfy a GFNE using this non-parametric formulation. Challenges
associated with the computation of arbitrary GFNE are highlighted, and a close approxima-
tion is introduced which is amenable to efficient computation. Finally, numerical methods
for the computation of such approximate solutions are developed in detail, for the equality-
constrained LQ setting (Section 4.3), inequality-constrained LQ setting (Section 4.4), and
ultimately, the general nonlinear setting (Section 4.5). We demonstrate our method on an
application to autonomous driving in Section 4.6 and conclude the chapter in Section 4.7.

4.2 Formulation

We focus our attention to the class of N -player discrete-time, deterministic, infinite, general-
sum dynamic games of discrete stage-length T . Let N denote the set {1, ..., N}, and similarly
T the set {1, ..., T}. We also make use of the sets T+ := T ∪ {T + 1}, Tt := {t, ..., T},
and T+

t := {t, ..., T + 1}. The game state at each discrete time-step t is represented by
xt ∈ X = Rn. The game is assumed to start at stage t = 1, from a pre-specified initial state
x̂1. Throughout this paper we refer to subgames starting at stage t, which refers to the game
played over a portion of the original game, on the stages {t, ..., T}.

The evolution of the game state is described by the dynamic equation:

xt+1 = ft(xt, u
1
t , ..., u

N
t), t ∈ T, (4.1)

where uit ∈ U it = Rmi
t are the control variables chosen by players i ∈ N at time t. Let

mt :=
∑N

i=1m
i
t, and m−it := mt −mi

t.
To simplify the notation in definitions and derivations, we make use of the following

shorthand to refer to various sets of state and control variables:

Notation reference:

x := (x1, x2, ..., xT+1),

ui := (ui1, u
i
2, ..., u

i
T),

u := (u1, ..., uN),

ut := (u1t , ..., u
N
t),

u−it := (u1t , ..., u
i−1
t , ui+1

t , ..., uNt),

(uit, u
−i
t) := (u1t , ..., u

N
t) = ut

Each player in the game is associated with time-separable cost-functionals:

Li(x, u1, ..., uN) :=
T∑
t=1

lit(xt, ut) + liT+1(xT+1) (4.2)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 36

Furthermore, each player is assigned stage-wise, non-dynamic, equality and inequality
constraints.

0 = hit(xt, ut), t ∈ T 0 = hiT+1(xT+1) (4.3a)

0 ≤ git(xt, ut) t ∈ T, 0 ≤ giT+1(xT+1) (4.3b)

Let the dimension of the constraints hit and git, for all t ∈ T+ and i ∈ N, be denoted as
ait ≥ 0 and bit ≥ 0, respectively. Define V i

t : X → (R ∪∞) as the Value-function for player
i ∈ N at stage t ∈ T+, and Zi

t : X × U it × ... × UNt → (R ∪∞) the Control-Value-function
for player i ∈ N at time t ∈ T.

A Generalized Feedback Nash Equilibrium is defined in terms of measurable maps πit :
X → U it , for i ∈ N, t ∈ T, which we refer to as feedback policies or strategies. The feedback
policies, Value-functions, and Control-Value-functions are together defined according to the
following recursive relationships Eq. (4.4)-Eq. (4.7):

V i
T+1(xT+1) :=

liT+1(xT+1),
0 = hiT+1(xT+1)
0 ≤ giT+1(xT+1)

∞, else
(4.4)

Given V i
t+1 for some t ∈ T and i ∈ N, we define Zi

t by

Zi
t(xt, u

1
t , ..., u

N
t) :=

lit(xt, ut) + V i
t+1(ft(xt, ut)),

0 = hit(xt, ut)
0 ≤ git(xt, ut)

∞, else
(4.5)

For a particular state xt at stage t, the feedback policies πt are defined to return a local Nash
equilibrium solution for the static game defined in terms of the N Control-Value-functions
evaluated at xt (one for each player).

ũt = πt(xt) =⇒
Z1
t (xt, ũ

1
t , ..., ũ

N
t) ≤ Z1

t (xt, u
1
t , ũ

2
t , ..., ũ

N
t), ∀u1t ∈ N (ũ1t),

...

ZN
t (xt, ũ

1
t , ..., ũ

N
t) ≤ ZN

t (xt, ũ
1
t , ..., ũ

N−1
t , uNt), ∀uNt ∈ N (ũNt),

(4.6)

The set N (ũit) is some neighborhood around ũit. There may exist multiple, potentially non-
isolated, local Nash equilibria. For the purposes considered here, we require only that for
any state xt, the policies evaluate to one arbitrarily chosen, yet particular, local equilibrium.
A more stringent definition for the policies πt could require that the inequalities in Eq. (4.6)
hold over the entire sets U it . In any case, the Value-functions for stages t ∈ T are defined as

V i
t (xt) := Zi

t(xt, π
1
t (xt), ..., π

N
t (xt)). (4.7)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 37

Definition 3 (GFNE). A Local Generalized Feedback Nash Equilibrium is defined by a set
of policies πit, t ∈ T, i ∈ N defined in Eq. (4.6), such that the value of V i

1 (x̂1), defined in
Eq. (4.7), is finite for all i ∈ N. Note that in this chapter we refer to local GFNE whenever
we write GFNE.

Consider a collection of policies constituting a GFNE. Let the corresponding equilibrium
trajectory be denoted by x∗t , u

∗
t such that

x∗1 := x̂1,

ui∗t := πit(x
∗
t), t ∈ T,

x∗t+1 := ft(x
∗
t , u

1∗
t , ..., u

N∗
t), t ∈ T.

(4.8)

Parametric Formulation

To encode a GFNE problem, one approach would be to use a parametric representation of
the policies πit, and reinterpret the decisions made by players as the parameters of these
policies. That is, we could restrict each player to choose from policies πit ≡ πi

t,θit
at each time

t, parameterized by a real vector θit of arbitrary finite dimension. For clarity we also define
θi := (θi1, ..., θ

i
T) and θt := (θ1t , ..., θ

N
t). A GFNE problem could then be expressed as the

following set of coupled optimization problems in which each player i minimizes over policy
parameters θi, and the trajectory x, u (including the controls of other players, u−i):

min
θi,x,u

Li(x, u) (4.9a)

s.t. 0 = xt+1 − ft(xt, ut), t ∈ T (4.9b)

0 = ut − πt,θt(xt), t ∈ T (4.9c)

0 = hit(xt, ut), t ∈ T (4.9d)

0 ≤ git(xt, ut), t ∈ T (4.9e)

0 = hiT+1(xT+1) (4.9f)

0 ≤ giT+1(xT+1) (4.9g)

Because the parameterized control policies are treated as constraints, and the controls
u−i are treated as decision variables, the reaction of other players to the decisions of player i
are explicitly accounted for in the optimization Eq. (4.9). Solutions to this encoding of the
game could be found by finding a Generalized Nash Equilibrium for the set of N optimization
problems (one corresponding to each player), using a method such as those described in [70].

Although this formulation is theoretically equivalent to a Generalized Nash Equilibrium
problem (as are trajectory games with an open-loop information pattern), there are several
important issues associated with it. Specifically, even if the parameterization of policies is a
simple stage-varying affine map, player i has mi×(n+1)×T degrees of freedom, many more

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 38

than the underlying control dimension mi. Furthermore, this over-parameterization leads
to an ambiguity in the choice of policy—for any single state xt and control ut, there exist
an infinite number of linear maps which relate the two. In general, any collection of policy
parameters which lead to the same equilibrium trajectory (i.e., equivalent representations of
one another, [19, Definition 5.12]), are indistinguishable in Eq. (4.9). Therefore, without ad-
ditional regularization, the optimization is under-specified, and this leads to ill-conditioning
of the problem.

Perhaps the most important problem that arises with the formulation Eq. (4.9) is that
despite relationships between the control variables ut and state xt being accounted for via
the policies πt,θt , the gradient of this policy is not necessarily meaningful. Specifically, if
the dynamics Eq. (4.9b) and policies Eq. (4.9c) are substituted into the cost functional
Eq. (4.9a), and the gradient is taken with respect to the parameters θit, the chain rule relates
the effect of the parameters on the cost through the policy gradients ∇xπt,θt . However, the
over-representation of the policies πt,θt implies that the gradient need not correspond to the
true gradient of the subgame-optimal policy. To illustrate this, consider a simple example,
describing the relationship between a scalar state xt, and player 1’s scalar control u1t . Let
πt,θt(xt) = θ1 · xt + θ2. If at the state xt = 2, the subgame-optimal value for u1t is 1, then
one possible parameterization is θ1 = 0.5, and θ2 = 0. However, if at the state xt = 2 + ε,
the subgame-optimal value for u1t is 1 − ε, then this implies that the original estimate of
∇xπt,θt = 0.5 is unrelated to the observed gradient of the subgame-optimal policy, which is
−1.

Non-parametric Formulation

As discussed above, while it is conceivable to express GFNE problems by use of parameterized
policies, the resulting formulation leads to significant numerical and theoretical challenges.
The remainder of this work is devoted to an “implicit,” non-parametric encoding of the
GFNE problem, which does not suffer the same problems associated with the parametric
formulation. We begin the presentation of this approach by first noting that the GFNE
problem can be expressed precisely as a EPNEC, as depicted in Fig. 4.1. Using this
interpretation, we can lean on the same ideas presented in chapters 2 and 3, and express the
policies at each stage t in terms of the subgame starting at that stage.

Theorem 4.2.1. The policies defined in Eq. (4.6) can equivalently be expressed in terms of
the nested Generalized Nash Equilibrium Problems Eq. (4.10).

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 39

Figure 4.1: The EPNEC interpretation of GFNE problems. Decision variable scopes for
the problems at each layer are given in the Table 4.1.

l Input to EPNECl

1 x1

2 x2
...

...

T xT

l Output of EPNECl

1
[
u1 x2 . . . uT xT+1

]
1

[
u2 x3 . . . uT xT+1

]
...

...

T
[
uT xT+1

]

Table 4.1: Variable scopes for the EPNECs representing the GFNE appearing in Fig. 4.1

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 40

πit(xt) := ũit ∈ arg
uit

min
uit:T ,

ũ−i
t+1:T ,

xt+1:T+1

T∑
s=t

lis(xs, u
i
s, ũ
−i
s) + liT+1(xT+1) (4.10a)

s.t. 0 = ũ−is − π−is (xs), s ∈ Tt+1 (4.10b)

0 = xs+1 − fs(xs, uis, ũ−is), s ∈ Tt (4.10c)

0 = his(xs, u
i
s, ũ
−i
s), s ∈ Tt (4.10d)

0 ≤ gis(xs, u
i
s, ũ
−i
s), s ∈ Tt (4.10e)

0 = hiT+1(xT+1) (4.10f)

0 ≤ giT+1(xT+1) (4.10g)

Here π−it (xt) := (π1
t (xt), ..., π

i−1
t (xt), π

i+1
t (xt), ..., π

N
t (xt)), and the notation arg

a
min
a,b

is

used to indicate that the minimum is taken over a and b, but only the value of a at the
minimum is returned. Furthermore, the value of the minimization appearing in Eq. (4.10)
is considered infinite for any combination of optimization variables violating the constraints.
Note that the set TT+1 is empty, so for stage t = T , the constraint Eq. (4.10b) vanishes.

Proof. Starting with stage T , and substituting xT+1 using the dynamics Eq. (4.10c), and
moving constraints Eqs. (4.10d) to (4.10g) into the objective by means of infinite-valued in-
dicator functions, observe that the objective of the minimization is equivalent to Zi

T Eq. (4.5)
as claimed.

Now, for some other stage t ∈ T, assuming πit(xt+1) can be expressed by Eq. (4.10), it
can be shown that πit(xt) must also be equivalently expressed by Eq. (4.10). Eq. (4.10) can
be re-written as the following:

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 41

πit(xt) := ũit ∈ arg
uit

min
uit,

ũ−i
t+1,
xt+1

{
lit(xt, u

i
t, ũ
−i
t)+ min

uit+1:T ,

ũ−i
t+2:T ,

xt+2:T+1

T∑
s=t+1

lis(xs, u
i
s, ũ
−i
s) + liT+1(xT+1)

}
(4.11a)

s.t. 0 = ũ−is − π−is (xs), s ∈ Tt+2 (4.11b)

0 = xs+1 − fs(xs, uis, ũ−is), s ∈ Tt+1 (4.11c)

0 = his(xs, u
i
s, ũ
−i
s), s ∈ Tt+1 (4.11d)

0 ≤ gis(xs, u
i
s, ũ
−i
s), s ∈ Tt+1 (4.11e)

0 = hiT+1(xT+1) (4.11f)

0 ≤ giT+1(xT+1) (4.11g)

s.t. 0 = ũ−it+1 − π−it+1(xt+1) (4.11h)

0 = xt+1 − f(xt, u
i
t, ũ
−i
t) (4.11i)

0 = hit(xt, u
i
t, ũ
−i
t) (4.11j)

0 ≤ git(xt, u
i
t, ũ
−i
t) (4.11k)

The nested minimum appearing in Eq. (4.11) is exactly that appearing in Eq. (4.10) for
stage t + 1 (ignoring Eq. (4.11b) if t + 1 = T). Because the controls ũ−it+1 (for t + 1 ≤ T)
are constrained by the policies π−it+1(xt+1), the value of this nested minimization must equal
the value function Vt+1(xt+1) as defined in Eq. (4.7) for any minimizer uit+1, regardless of
whether or not the minimizer corresponds to the particular one corresponding to πit+1(xt+1).
By substituting xt+1 using the constraint Eq. (4.11i), and using infinite-valued indicator
functions to move Eqs. (4.11j) and (4.11k) into the objective of Eq. (4.11), we see that the
objective of the minimization is equivalent to Eq. (4.5) for stage t. Thus, the alternate
definition of πit(xt) in Eq. (4.10) is equivalent to that in Eq. (4.6) for all stages t.

Here we have defined the GFNE policies in terms of the nested equilibrium problems with
equilibrium constraints Eq. (4.10). These equilibrium constraints arise in these problems
because the constraints Eq. (4.10b) are defined in terms of equilibrium problems. Critically
though, the set of players in all inner-level equilibrium problems are exactly those in the
outer-level problems, allowing for the removal of the redundant constraint that uis = πis(xs),
s ∈ Tt+1 from player i’s problem statement Eq. (4.10), as demonstrated in Theorem 4.2.1.
When the necessary conditions of all players are concatenated, the constraints uis = πis(xs),
s ∈ Tt+1 become redundant for all i, as we show in Theorem 4.2.2. This fact will allow for
a compact representation of necessary conditions associated with solutions of a GFNE, and
ultimately algorithms for finding such solutions.

Theorem 4.2.2 (Necessary Conditions). For some stage t ∈ T, consider any set of policies
πis, s ∈ Tt, i ∈ N, as defined in Eq. (4.10). Let the state x̂t be such that a solution exists to
equilibrium problem Eq. (4.10) at stage t. Denote the resultant sub-game solution trajectory

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 42

by {x∗s; s ∈ T+
t , x

∗
t = x̂t}, {u∗s; s ∈ Tt}. Furthermore, assume the policies πs(xs) are

differentiable at the point x∗s for s ∈ Tt+1, and a standard constraint qualification such as
the linear independence constraint qualification holds for the optimization problem appearing
in Eq. (4.10), for each i ∈ N. Then there exist multipliers {λis ∈ Rn; s ∈ Tt, i ∈ N},
{µis ∈ Rais ; s ∈ T+

t , i ∈ N}, {γis ∈ Rbis ; s ∈ T+
t , i ∈ N}, and {ψis ∈ Rm−i

; s ∈ Tt+1, i ∈ N}
which satisfy:

0 = ∇uis

[
lis + fᵀs λ

i
s − hiᵀs µis − gi

ᵀ

s γ
i
s

]
x∗s ,u

∗
s

, i ∈ N, s ∈ Tt (4.12a)

0 = ∇xs

[
lis − λis−1 + fᵀs λ

i
s − hi

ᵀ

s µ
i
s − giᵀs γis + π−iᵀs ψis

]
x∗s ,u

∗
s

, i ∈ N, s ∈ Tt+1, (4.12b)

0 = ∇u−i
s

[
lis + fᵀs λ

i
s − hi

ᵀ

s µ
i
s − giᵀs γis − ψis

]
x∗s ,u

∗
s

, i ∈ N, s ∈ Tt+1, (4.12c)

0 = ∇xT+1

[
liT+1 − λiT − hi

ᵀ

T+1µ
i
T+1 − g

iᵀ
T+1γ

i
T+1

]
x∗T+1

, i ∈ N, (4.12d)

0 = x∗s+1 − fs(x∗s, u∗s), s ∈ Tt, (4.12e)

0 = his(x
∗
s, u
∗
s), i ∈ N, s ∈ Tt, (4.12f)

0 ≤ gis(x
∗
s, u
∗
s) ⊥ γis ≥ 0, i ∈ N, s ∈ Tt, (4.12g)

0 = hiT+1(x
∗
T+1), i ∈ N, (4.12h)

0 ≤ giT+1(x
∗
T+1) ⊥ γiT+1 ≥ 0, i ∈ N. (4.12i)

Furthermore, let Lt(zt, x
∗
t) = 0 denote the entire set of conditions Eq. (4.12) formed by

treating active inequalities Eqs. (4.12g) and (4.12i) as equalities, and ignoring the inactive
inequalities. Here, zt is the set of all variables appearing in Eq. (4.12) other than x∗t and
all multipliers γis associated with inactive inequality constraints. If strict complementarity
holds, and the matrix ∇ztLt is non-singular, then the policy πt(xt) is also differentiable at
the point x̂t, and ∇xπt(xt) := −[[∇ztLt]

−1∇xtLt]ut.

The notation [·]ut implies that if ut appears in the j1 through j2 indices of zt, then the j1
through j2 rows of the matrix argument are selected. The notation in the first equation of
Eq. (4.12) is used to indicate that the gradients of the functions lis(xs, us), f(xs, us), h

i
s(xs, us),

and gis(xs, us) are evaluated at x∗s and u∗s. The symbol ⊥ is used to indicate complementarity
of the left- and right-hand-side conditions. For example, if the k-th element of gis(x

∗
s, u
∗
s) > 0

then the k-th element of γis must be 0, and vice-versa. As before, for the final stage t = T ,
the set of conditions Eqs. (4.12b) and (4.12c) is empty, as the set TT+1 = ∅.

Proof. By the assumption that the optimization problems Eq. (4.10) satisfy a standard con-
straint qualification, the Lagrange Multiplier theorem states that there must exist multipliers
associated with each player i ∈ N’s optimization problem at stage t, such that both the con-
ditions in Eq. (4.12) (evaluated for the particular i ∈ N) and the constraints u−i∗s = π−is (xs)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 43

hold. Concatenating these conditions for all of the N players gives rise to the conditions
Eq. (4.12), with the addition of the constraints Eq. (4.10b) for each i ∈ N. Since there must
exist multipliers satisfying those conditions, the conditions Eq. (4.12) must also be satisfied,
as Eq. (4.12) are formed by simply removing the constraints u∗s = πs(xs).

After removing all inactive inequality constraints and associated multipliers from Eq. (4.12),
it is straightforward to verify that the dimension of the system Lt(zt, x

∗
t) and zt are the same,

and therefore that ∇ztLt is a square matrix. If z∗t is comprised of x∗t+1:T+1, u
∗
t:T and multipli-

ers satisfying Eq. (4.12) such that Lt(z
∗
t , x

∗
t) = 0, then assuming this matrix is non-singular,

the Implicit Function Theorem states that there must exist a unique function Πt(xt) and
open set X ∗t ⊂ X containing x∗t such that Lt(Πt(xt), xt)) = 0 for all xt ∈ X ∗t . By the unique-
ness of this function, we must have that for all xt ∈ X ∗t , [Πt(xt)]ut = πt(xt), where [Πt(xt)]ut
selects the components of the function Πt corresponding to the subset of zt containing ut.
Therefore, for all xt ∈ X ∗t , ∇xtπt(xt) = ∇xt([Πt(xt)]ut) = −[[∇ztLt]

−1∇xtLt]ut .

Observe that the conditions Lt(zt, xt) = 0 contain as a subset the conditions Ls(zs, xs) =
0, s ∈ Tt+1. If the matrices ∇xsLs(zs, xs), s ∈ Tt+1 are also non-singular, then in some
neighborhood of z∗t , the constraints u∗s = πs(x

∗
s), s ∈ Tt+1 are equivalent to Ls(z

∗
s , x

∗
s) = 0,

motivating the removal of the constraints Eq. (4.10b) from the conditions Eq. (4.12).
For games and corresponding solutions satisfying the stated assumptions, Theorem 4.2.2

suggests a method for computing those solutions. Evaluating the conditions Eq. (4.12) only
requires the evaluation of the policy gradients ∇xsπs(xs), and not the policies themselves.
This is important for computational reasons, since while in general an explicit representation
of the policies is unavailable, it is possible to evaluate the policy gradients.

The procedure we propose for computing GFNE trajectories is to find a solution to the
conditions Eq. (4.12), which can then be checked against a sufficiency condition to ensure
that the solution indeed constitutes a GFNE.

Theorem 4.2.3 (Sufficient Conditions). Consider any set of states {x∗s, s ∈ T+
t } and

controls {u∗s, s ∈ Tt}, which together with multipliers {λis ∈ Rn; s ∈ Tt, i ∈ N},
{µis ∈ Rais ; s ∈ T+

t , i ∈ N}, {γis ∈ Rbis ; s ∈ T+
t , i ∈ N}, and {ψis ∈ Rm−i

; s ∈ Tt+1, i ∈ N}
satisfy the conditions Eq. (4.12), with the matrix ∇zsLs non-singular for all s ∈ T. If addi-
tionally, for all i ∈ N,

T∑
s=t

[
dx,s
du,s

]ᵀ
∇2lis(x

∗
s, u
∗
s)

[
dx,s
du,s

]
+ dᵀx,T+1∇

2liT+1(x
∗
T+1)dx,T+1 > 0, (4.13a)

∀{dx,s, du,s} s.t. 0 = dus −∇xπs(x
∗
s)dx,s, s ∈ Tt, (4.13b)

0 = dx,s+1 −∇xfs(x
∗
s, u
∗
s)dx,s −∇uf(x∗s, u

∗
s)dus , s ∈ Tt, (4.13c)

then the trajectory x∗s, u
∗
s constitutes a GFNE trajectory.

Proof. The set of dx,s, du,s satisfying Eqs. (4.13b) and (4.13c) is a super-set of the critical
constraint cone [192, Eq. 12.53], therefore the trajectory x∗s, u

∗
s must constitute a true local

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 44

minimum of the problems Eq. (4.10) for stage t and each player i ∈ N, as stated in [192,
Theorem 12.6].

The sufficiency condition outlined in Theorem 4.2.3 is stricter than necessary since it
ignores other active constraints which reduce the volume of the critical constraint cone, and
could be relaxed by considering the linearization of all active constraints.

Although Theorems 4.2.2 and 4.2.3 together outline a procedure for computing GFNE
trajectories, there remain some difficulties which must be addressed if such a procedure is to
be practical. It is important to note that while the conditions Eq. (4.12) do not require the
evaluation of the policies πs(xs), s ∈ Tt+1 explicitly, evaluating the policy gradients∇xπs(xs)
is required, and their evaluation involves inverting a matrix which depends on second-order
derivatives of all policies πr(xr), r ∈ Ts+1. Furthermore, evaluating second-order derivatives
of any policy requires evaluating third-order derivatives of all subsequent policies, and so
forth. The effect of this is that T th-order derivatives of dynamic and constraint functions
appearing at the late stages of the game must be computed to evaluate the conditions
Eq. (4.12) when t = 1. While technically possible, this requirement is impractical for many
games. We therefore introduce a reasonable approximation to the computation of policy
gradients ∇xπt(xt) which do not require the evaluation of any higher-order derivatives of
policies πs(xs), s ∈ Tt+1.

Definition 4 (Policy Quasi-Gradients). We approximate ∇xπt(xt) by what is termed the
policy quasi-gradient, Kt, defined implicitly by the following conditions:

0 = ∇uis

[
lis + fᵀs λ

i
s − hiᵀs µis − gi

ᵀ

s γ
i
s

]
x∗s ,u

∗
s

, i ∈ N, s ∈ Tt

0 = ∇xs

[
lis − λis−1 + fᵀs λ

i
s − hi

ᵀ

s µ
i
s − giᵀs γis

]
x∗s ,u

∗
s

+K−iᵀs ψis, i ∈ N, s ∈ Tt+1,

0 = ∇u−i
s

[
lis + fᵀs λ

i
s − hi

ᵀ

s µ
i
s − giᵀs γis − ψis

]
x∗s ,u

∗
s

, i ∈ N, s ∈ Tt+1,

0 = ∇xT+1

[
liT+1 − λiT − hi

ᵀ

T+1µ
i
T+1 − g

iᵀ
T+1γ

i
T+1

]
x∗T+1

, i ∈ N,

0 = x∗s+1 − fs(x∗s, u∗s), s ∈ Tt,

0 = his(x
∗
s, u
∗
s), i ∈ N, s ∈ Tt,

0 ≤ gis(x
∗
s, u
∗
s) ⊥ γis ≥ 0, i ∈ N, s ∈ Tt,

0 = hiT+1(x
∗
T+1), i ∈ N,

0 ≤ giT+1(x
∗
T+1) ⊥ γiT+1 ≥ 0, i ∈ N.

(4.14)

The conditions Eq. (4.14) are nearly the same as Eq. (4.12), although the actual pol-
icy gradients ∇xπs(xs) have been replaced with the quasi-gradients Ks. Letting L̂t(zt, x

∗
t)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 45

represent the concatenation of active conditions in Eq. (4.14) (analogous to Lt(zt, x
∗
t) in

Theorem 4.2.2), then
Kt := −[[∇ztL̂t]

−1∇xtL̂t]ut , (4.15)

where Ks, s ∈ Tt+1 are treated as constants (∇ztKs = 0, s ∈ Tt+1). If the matrix [∇ztL̂t] is
singular at some (zt, xt), we say that the policy quasi-gradient does not exist at that point.

The conditions Eq. (4.14) can be evaluated without the need for computing any third-
or higher-order derivatives of any constraint or objective terms of the game, and can also be
evaluated efficiently, as we will show. Solutions satisfying the conditions Eq. (4.14) will not
satisfy the conditions Eq. (4.12) in general. Rather, the solutions to Eq. (4.14) will be distinct
from solutions to Eq. (4.12), and therefore we introduce the notion of a Generalized Feedback
Quasi-Nash Equilibrium (GFQNE) to characterize these solutions. Empirical results indicate
that GFQNE solutions closely approximate GFNE solutions.

Definition 5 (GFQNE). Let {x∗s; s ∈ T+
t , x

∗
t = x̂t}, {u∗s; s ∈ Tt}, {λis ∈ Rn; s ∈ Tt, i ∈

N}, {µis ∈ Rais ; s ∈ T+
t , i ∈ N}, {γis ∈ Rbis ; s ∈ T+

t , i ∈ N}, and {ψis ∈ Rm−i
; s ∈ Tt+1, i ∈

N} be such that the conditions Eq. (4.14) are satisfied. Furthermore, let

T∑
s=t

[
dx,s
du,s

]ᵀ
∇2lis(x

∗
s, u
∗
s)

[
dx,s
du,s

]
+ dᵀx,T+1∇

2liT+1(x
∗
T+1)dx,T+1 > 0,

∀{dx,s, du,s} s.t. 0 = dus −Ksdx,s, s ∈ Tt,

0 = dx,s+1 −∇xfs(x
∗
s, u
∗
s)dx,s −∇uf(x∗s, u

∗
s)dus , s ∈ Tt,

(4.16)

then we say that the trajectory x∗s, u
∗
s constitutes a Generalized Feedback Quasi-Nash Equi-

librium (GFQNE) trajectory. Note that the condition Eq. (4.16) differs from the condition
in Theorem 4.2.3 in the definition of the critical cone.

If all cost functionals Eq. (4.2) in the game are quadratic, and all dynamic Eq. (4.1) and
non-dynamic Eqs. (4.3a) to (4.3b) constraints are linear, then the policy quasi-gradients are
equivalent to the policy gradients, and all GFQNE are therefore GFNE.

In the general setting, the policy quasi-gradients do not exactly match the policy gradi-
ents, which potentially introduces a different type of computational difficulty. Using Newton-
type methods to solve for solutions to Eq. (4.14), we will ideally be able to evaluate [∇z1L̂1]

−1

exactly, without treating Ks, s ∈ T2 as constants (since indeed, they depend on z1). If we
are unwilling or unable to compute derivatives of sub-game policy quasi-gradients, we will be
forced to use a quasi-Newton method at best. Because we are working in the game setting,
and the matrix ∇ztL̂t will, in general, be asymmetric, it is difficult to provide guarantees
that such a quasi-Newton method will converge. Nevertheless, we find that in practice, such
an approach does in fact converge and is useful in interesting settings.

So far we have also made an important, limiting assumption, which is that the matrices
∇ztLt and ∇ztL̂t are non-singular for all t ∈ T. For many common forms of constraints

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 46

Eq. (4.3a), Eq. (4.3b), this assumption cannot hold. This will occur, for example, when
there is a terminal constraint on the entire game state, such as hiT+1(xT+1) := xT+1. If

mi
t < n, then the matrices ∇ztL̂t necessarily must be singular. Since many games involve

constraints of this form, we handle them in the following way.
If at any stage t, the matrix ∇ztL̂t is found to be singular, and the game is otherwise

well-posed1, then this is likely due to an over-constrained sub-game. In this situation, we can
combine the stage t with the preceding stage t−1, and define new combined-stage dynamics
and constraint functions accordingly. For example, assume at stage t the matrix ∇ztL̂t is
singular. We then define ût−1 := [uᵀt−1 u

ᵀ
t]
ᵀ, Û it−1 := U it−1 × U it , and the updated dynamic,

constraint, and stage-wise cost functionals as

f̂t−1(xt−1, ût−1) := ft(ft−1(xt−1, ut−1), ut), (4.17a)

ĝit−1(xt−1, ût−1) := [git−1(xt−1, ut−1)
ᵀ git(f(xt−1, ut−1), ut)

ᵀ]ᵀ, (4.17b)

ĥit−1(xt−1, ût−1) := [hit−1(xt−1, ut−1)
ᵀ hit(f(xt−1, ut−1), ut)

ᵀ]ᵀ, (4.17c)

l̂it−1(xt−1, ût−1) := lit−1(xt−1, ut−1) + lit(f(xt−1, ut−1), ut). (4.17d)

In this procedure, we effectively reduce the number of stages of the game by 1, but the
dimension of all controls input to the game and the cost and constraints imposed upon each
player are unchanged.

Throughout the remainder of this chapter, we will assume that game stages are combined
as necessary to ensure the subgame policy quasi-gradients are well-defined, and the game
horizon T , dynamics, constraints, and cost-functionals all reflect any such modifications. In
what follows we focus on the derivation of numerical methods for computing Generalized
Feedback Quasi-Nash Equilibria. We begin our presentation by considering a special-case,
which will serve as a building block for more general methods.

4.3 Equality-Constrained LQ Games

We consider the case in which the dynamics equation describing the game evolution Eq. (4.1)
is linear in its arguments, the cost-functionals Eq. (4.2) for each player are quadratic func-
tions of the state and control variables, and each player is subject only to linear equality
constraints.

In particular, let

xt+1 = Atxt +B1
t u

1
t + ...+BN

t u
N
t + ct, t ∈ T, (4.18)

1For example, the quadratic cost functionals of every player have sufficient curvature in the tangent cone
of the game.

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 47

for (time-varying) matrices At ∈ Rn×n, Bi
t ∈ Rmi

t×n, and vectors ct ∈ Rn. Associated with
the dynamic constraints are multipliers λit for each player i ∈ N. Let

Bt :=
[
B1
t ... BN

t

]
, B̂t :=

B
1
t

. . .

BN
t

 , λt :=

λ
1
t
...
λNt

 ,
B̃t :=

B
2
t . . . BN

t
. . .

B1
t . . . BN−1

t

 .
(4.19)

In this setting, the cost functionals for each player can be expressed as:

lit(xt, ut) :=
1

2

([
xt
ut

]ᵀ [
Qi
t Siᵀt

Sit Ri
t

] [
xt
ut

]
+ 2

[
xt
ut

]ᵀ [
qit
rit

])
,

liT+1(xT+1) :=
1

2

(
xᵀT+1Q

i
T+1xT+1 + 2xᵀT+1q

i
T+1

)
,

(4.20)

for (time-varying) matrices Qi
t ∈ Rn×n, Sit ∈ Rmt×n, Ri

t ∈ Rmt×m, and vectors qit ∈ Rn,
rit ∈ Rmt . For notational purposes, let the terms Ri

t, S
i
t , and rit be comprised of sub-matrices,

Ri,j,k
t ∈ Rmj

t×mk
t , Si,jt ∈ Rmj

t×n, and sub-vectors ri,jt ∈ Rmj
t , for j, k ∈ N:

Ri
t :=

R
i,1,1
t . . . Ri,1,N

t
...

. . .
...

Ri,N,1
t . . . Ri,N,N

t

 , Sit :=

S
i,1
t
...

Si,Nt

 , rit :=

 r
i,1
t
...

ri,Nt

 (4.21)

We additionally make use of the following matrix terms for brevity, which combine compo-

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 48

nents from the cost functionals of all players:

Rt :=

R1,1,1
t . . . R1,1,N

t

R2,2,1
t . . . R2,2,N

t
...

. . .
...

RN,N,1
t . . . RN,N,N

t

 , Sxt :=

S1,1
t

S2,2
t
...

SN,Nt

 , rt :=

r1,1t
r2,2t

...

rN,Nt

 ,

Qt :=

Q
1
t

...
QN
t

 , Sut :=

S
1ᵀ
t
...

SNᵀt

 , qt :=

 q
1
t
...
qNt

 ,

R̃t :=

R1,2,1
t . . . R1,2,N

t
...

. . .
...

R1,N,1
t . . . R1,N,N

t
. . .

RN,1,1
t . . . RN,1,N

t
...

. . .
...

RN,N−1,1
t . . . RN,N−1,N

t

, S̃xt :=

S1,2
t
...

S1,N
t

S2,1
t

S2,3
t
...

S2,N
t
...

SN,N−1t

(4.22)

We impose the regularity assumptions

Ri,i,i
t � 0, Ri

t � 0, Qi
t � 0 (4.23)

to ensure that the objective of each player is strictly convex. These conditions are suf-
ficient for any solution to the conditions Eq. (4.12) to constitute a GFNE, as stated in
Theorem 4.2.3, but not necessary.

The constraints imposed upon each player take the form

0 = H i
xtxt +H i

u1t
u1t + ...+H i

uNt
uNt + hit, t ∈ T

0 = H i
xT+1

xT+1 + hiT+1,
(4.24)

for matrices H i
xt ∈ Rait×n, H i

ujt
∈ Rait×m

j
t , and vectors hit ∈ Rait , where ait is the dimension of

the equality constraint imposed on player i at stage t ∈ T+. As in Section 4.2, we associate

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 49

multipliers µit ∈ Rait , t ∈ T+ with these constraints for each player i ∈ N. Let

Hut :=

H
1
u1t

. . . H1
uNt

...
. . .

...
HN
u1t

. . . HN
uNt

 , Ĥut :=

H
1
u1t

. . .

HN
uNt

 ,
Hxt :=

H
1
xt
...

HN
xt

 , Ĥxt :=

H
1
xt

. . .

HN
xt

 ,
hᵀt :=

[
(h1t)

ᵀ . . . (hNt)ᵀ
]
, µᵀt :=

[
(µ1

t)
ᵀ . . . (µNt)ᵀ

]
,

H̃ut :=

H
1
u2t

. . . H1
uNt

. . .

HN
u1t

. . . HN
uN−1
t

(4.25)

Due to the linearity of all dynamic and non-dynamic constraint functions appearing in
the game, and the quadratic cost functionals, the solutions of the conditions Eq. (4.12) and
Eq. (4.14) will be identical, as stated in Section 4.2. Therefore we will use the terms Kt and
∇xtπt(xt) interchangeably in this section.

Using the above-defined dynamic, constraint and cost terms, we are able to proceed with
development of numerical methods for computing GFNE solutions to this game. Instead of
taking a dynamic programming perspective as is, for example, taken in the classic derivation
of Feedback Nash Equilibria for unconstrained LQ games in [19, Chapter 6], we derive
our method using what we refer to as a dynamic matrix factorization. The primary idea
behind this derivation is simply that the computation used to evaluate Kt+1 can be reused
to compute Kt efficiently.

To start, note that the conditions Eq. (4.14) for stage t = T can be expressed in terms
of the following matrix system:

RT −ĤᵀuT B̂ᵀT
HuT

−BT In
−IN∗n QT+1 ĤᵀxT+1

HxT+1

uT
µT
λT
xT+1

µT+1

+

Sxt
HxT

−AT
0
0

xT +

rt
hT
−cT
qT+1

hT+1

 = 0 (4.26)

In Eq. (4.26), the matrices I� denote the �×�-dimensional identity matrix. Letting the
system in Eq. (4.26) be denoted in shorthand as

MT zT +NTxT + nT = 0, (4.27)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 50

where zT := [uᵀT µ
ᵀ
T λ

ᵀ
T x

ᵀ
T+1 µ

ᵀ
T+1]

ᵀ, we have that

π(xT) := KTxT + kT ,

λT := KλTxT + kλT ,

µT := KµTxT + kµT ,

µT+1 := KµT+1
xT + kµT+1

,

KT := −[M−1
T NT]uT , kT := −[M−1

T nT]uT ,

KλT := −[M−1
T NT]λT , kλT := −[M−1

T nT]λT ,

KµT := −[M−1
T NT]µT , kµT := −[M−1

T nT]µT ,

KµT+1
:= −[M−1

T NT]µT+1
, kµT+1

:= −[M−1
T nT]µT+1

,

(4.28)

For any stage t, we also make use of the matrix

Πᵀt :=

K2ᵀ
t · · · KNᵀ

t

K1ᵀ
t K3ᵀ

t · · · KNᵀ
t

. . .

K1ᵀ
t · · · K

(N−1)ᵀ
t

ᵀ

(4.29)

Notice that if we denote the conditions Eq. (4.14) for some stage t+ 1 as

Mt+1zt+1 +Nt+1xt+1 + nt+1 = 0, (4.30)

as we did for t+ 1 = T , then we have also that the conditions Eq. (4.14) for stage t can be
denoted as

Mtzt +Ntxt + nt = 0, (4.31)

where zt := [uᵀt µ
ᵀ
t λ
ᵀ
t ψ

ᵀ
t+1 x

ᵀ
t+1 z

ᵀ
t+1]

ᵀ, and the matrices Mt, Nt, and nt are defined as follows:

Mt :=

[
D1
t D2

t[
0 Nt+1

]
Mt+1

]

D1
t :=

Rt −Ĥᵀut B̂ᵀt
Hut

−Bt In
−IN∗n Πᵀt Qt+1

−I(N−1)∗mt+1 S̃xt+1

 ,

D2
t :=

Sut+1 −Ĥᵀxt+1
Âᵀt+1

R̃t+1 −H̃ᵀut+1
B̃ᵀt+1

 ,
Nᵀt :=

[
Sᵀxt Hᵀxt −A

ᵀ
t

]
, nᵀt :=

[
rᵀt hᵀt −c

ᵀ
t 0 0 nᵀt+1

]
.

(4.32)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 51

From this form, we have as before, that

π(xt) := Ktxt + kt,

λt := Kλtxt + kλt ,

µt := Kµtxt + kµt ,

ψt+1 := Kψt+1xt + kψt+1 ,

Kt := −[M−1
t Nt]ut , kt := −[M−1

t nt]ut ,

Kλt := −[M−1
t Nt]λt , kλt := −[M−1

t nt]λt ,

Kψt+1 := −[M−1
t Nt]ψt+1 , kψt+1 := −[M−1

t nt]ψt+1 ,

Kµt := −[M−1
t Nt]µt , kµt := −[M−1

t nt]µt ,

(4.33)

The advantage of expressing our system in the form Eq. (4.32) is that the computation
performed to solve Kt+1 and kt+1 can be reused to solve Kt and kt. Using the block form of
Mt defined in Eq. (4.32), and presuming that Mt+1 is non-singular, we have from [165]:

[M−1
t [Nt nt]]ut,µt,λt,ψt,xt+1 =

[
P 1
t P 2

t

] [
Nt nt

]
,

=

P 1
t Nt, P 1

t

rt
ht
−ct

+ P 2
t nt+1

 (4.34)

where the matrices P 1
t and P 2

t are defined as

P 1
t :=

(
D1
t −D2

tM
−1
t+1[0 Nt+1]

)−1
P 2
t := −P 1

t D
2
tM

−1
t+1

(4.35)

Substituting in the form of the matrices in Eq. (4.32), we have that

P 1
t :=

Rt −Ĥᵀut B̂ᵀt
Hut

−Bt In
−IN∗n Πᵀt P̂ 1,a

t

−I(N−1)∗mt+1 P̂ 1,b
t

−1

,

P̂ 1,a
t := Qt+1 − Sut+1Kt+1 + Ĥᵀxt+1

Kµt+1 − Â
ᵀ
t+1Kλt+1 ,

P̂ 1,b
t := S̃xt+1 − R̃t+1Kt+1 + H̃ᵀut+1

Kµt+1 − B̃
ᵀ
t+1Kλt+1 ,

P 2
t nt+1 := −P 1

t

Sut+1kt+1 − Ĥᵀxt+1
kµt+1 + Âᵀt+1kµt+1

R̃t+1kt+1 − H̃ᵀut+1
kµt+1 + B̃ᵀt+1kλt+1

 .

(4.36)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 52

From the above, it can be seen that the entire matrix inverse M−1
t does not need to be

computed for any stage t (other than the terminal stage T), and the factorization pre-
sented here allows computation of the entire GFNE trajectory and associated multipliers
very efficiently. In particular, the overall computational complexity of solving this system
is O(T · ((N + 1) · (n + m))2 · (n + 1)) time due to the dominating cost of at each stage
solving the system of equations of the form P 1

t Wt, where (P 1
t)−1 is a square matrix of width

no greater than (N + 1) · (n+m), and Wt is some matrix with n+ 1 columns.
After computing the terms Eq. (4.33) for all stages t using the procedure above, the

resultant GFNE trajectory and associated multipliers can be extracted:

x∗1 := x̂1,

u∗s := Ksx
∗
s + ks, s ∈ T,

µs := Kµsx
∗
s + kµs , s ∈ T,

λs := Kλsx
∗
s + kλs , s ∈ T,

ψs := Kψsx
∗
s−1 + kψs , s ∈ T2,

x∗s+1 := Asx
∗
s +Bsu

∗
s + cs, s ∈ T,

µT+1 := KµT+1
xT + kµT+1

.

(4.37)

4.4 Inequality-Constrained LQ Games

We now extend the basic results presented in Section 4.3 on the computation of GFNE for
equality-constrained LQ games, to the computation of GFNE for inequality-constrained LQ
games. The approach we take here is that of an active-set method, analogous to active-set
methods for quadratic programming (see, e.g. [192]). This method is simply a particular im-
plementation of the approach presented in Algorithm 4, tailored for the structure of objective
and constraint functions appearing in these feedback Nash equilibrium games. Furthermore,
instead of using an LCP solver to solve each local equilibrium problem subject to a piece
of piecewise linear constraint, the proposed active-set method enables the decision variables
associated with multiple levels to change even if the decision variables at deeper levels of the
EPNEC have not yet satisfied their equilibrium conditions.

Consider a dynamic game among N players over T stages, with linear dynamics described
by Eq. (4.18), and quadratic cost functionals Eq. (4.20). Assume that each player is also
subject to linear equality constraints of the form Eq. (4.24), along with linear inequality
constraints of the form

0 ≤ Gi
xtxt +Gi

u1t
u1t + ...+Gi

uNt
uNt + git, t ∈ T

0 ≤ Gi
xT+1

xT+1 + giT+1,
(4.38)

for matrices Gi
xt ∈ Rbit×n, Gi

ujt
∈ Rbit×m

j
t , and vectors git ∈ Rbit , where bit is the dimension

of the inequality constraint imposed on player i at stage t ∈ T+. As in Section 4.2, we

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 53

associate multipliers γit ∈ Rbit , t ∈ T+ with these constraints for each player i ∈ N. Assume
that a solution to the system Eq. (4.12) exists for this game at stage t = 1, and that strict
complementarity holds for the conditions Eq. (4.12) for the subgame starting at every t ∈ T
along any solution.

The method we present for computing a GFNE of this game is an adaptation of Algorithm
16.3 in [192] to the current setting. Under the strict complementarity assumption (which
ensures differentiability of the policies πt along the solution), we have that at any GFNE
solution, some subset of the constraints Eq. (4.38) associated with strictly positive multipliers
hold with equality at the solution. If the set of active constraints along some solution were
known in advance, we could consider all active constraints as equality constraints, ignore all
inactive constraints, and solve for the resultant equality-constrained game using the method
presented in Section 4.3. In general the set of active constraints along a solution is obviously
unknown in advance. The active-set method we propose accounts for this by iteratively
solving for the unique GFNE solution for different guesses of the active constraint set, and
uses dual variable information to update the guess of the active set. In the remainder of
this section we describe the proposed method. The presentation of this section is based off
of section 16.5 in [192], with necessary modifications made to account for the multiplayer
feedback setting considered here.

The method begins with a feasible initialization for the game (defined by the linear
dynamics Eq. (4.18), equality constraints Eq. (4.24), and inequality constraints Eq. (4.38),
and the quadratic cost functionals Eq. (4.20)). We denote the set of all primal variables
associated with the game at the kth iteration of the method by Xk := [x(1:T+1),k, u(1:T),k].
Also associated with the kth iteration of the algorithm is the working set Wk which denotes
the set of constraints which are treated with equality at the kth iteration. Note that the
working set Wk always contains all of the equality constraints Eq. (4.24). The working set
W1 is taken to be a subset of the constraints active along the initialization X1.

Given an iterate Xk and working setWk, a step Pk := [px1:T+1
, pu1:T] is found which moves

Xk to the GFNE associated with the working set of equality constraints in Wk. Specifically,
the problem to be solved at each iteration is the GFNE problem for the equality-constrained
LQ game defined by the stage-wise cost functionals for each player

lit,k(pxt , put) :=
1

2

([
pxt
put

]ᵀ [
Qi
t Siᵀt

Sit Ri
t

] [
pxt
put

]
+ 2

[
pxt
put

]ᵀ [
qit,k
rit,k

])
, t ∈ T

qit,k := Qi
txt,k + Siᵀt ut,k + qit, t ∈ T,

rit,k := Sitxt,k +Ri
tut,k + rit, t ∈ T,

liT+1,k(pxT+1
) :=

1

2

(
pᵀxT+1

Qi
T+1pxT+1

+ 2pᵀxT+1
qiT+1,k

)
,

qiT+1,k := Qi
T+1xT+1,k + qiT+1,

(4.39)

the dynamics
pxt+1 = Atpxt +B1

t pu1t + ...+BN
t puNt , t ∈ T, (4.40)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 54

and the linear equality constraints

0 = H i
(xt,k)pxt +H i

(u1t ,k)
pu1t + ...+H i

(uNt ,k)
puNt , t ∈ T

0 = H i
(xT+1,k)

pxT+1
.

(4.41)

Above, the matrices H i
(xt,k)

and H i
(ujt ,k)

are defined to be the set of active equality con-

straint coefficients corresponding to Wk:

H i
(xt,k) :=

H i
xt
...

{Gi,j
xt }(t,i,j)∈Wk∩I

...

, H i
(ut,k) :=

H i
ut
...

{Gi,j
ut }(t,i,j)∈Wk∩I

...

. (4.42)

The set Wk ∩ I is the index set of all active inequality constraints, and Gi,j
xt is the jth row

of the matrix Gi
xt .

Associated with the constraints Eq. (4.41) are multipliers µi(t,k), defined as

µi(t,k) :=

µit
...

{γi,jt }(t,i,j)∈Wk∩I
...

 (4.43)

where γi,jt is the jth element of γit.
After solving for Pk, the GFNE of the resultant equality-constrained LQ game, Xk+Pk is

the GFNE for the equality-constrained LQ game defined by Eq. (4.18), Eq. (4.20), Eq. (4.24),
and the active constraints Eq. (4.38) inWk∩I. However, it may be that Xk+Pk is infeasible
with respect to the entire set of inequality constraints Eq. (4.38). Therefore we instead find
the point Xk + βkPk, where

βk := max
β∈[0,1]

β

s.t. Xk+βPk feasible w.r.t. Eq. (4.38).
(4.44)

The optimization in Eq. (4.44) is a linear program, and βk can be computed exactly and
efficiently. When βk < 1, it implies that there is an inequality constraint not considered in
the working set which must be accounted for. When this is the case, the iterate Xk+1 is
updated to the point Xk + βkPk, and the working set is updated to include the blocking
constraint. If instead, βk = 1, then the point Xk + Pk both is a GFNE solution for the
working set and is feasible with respect to all equality and inequality constraints. All that is
left to check is whether the constraints µi,j(t,k) > 0 for all j > ait, meaning the complementarity

conditions in Eq. (4.12) are satisfied, and therefore a solution satisfying the entire set of con-
ditions Eq. (4.12) for the inequality-constrained problem has been found. If some multiplier

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 55

associated with the inequality constraints in the working setWk is negative2, then the corre-
sponding constraint is to be dropped from the working set at the next iteration. Unlike the
the convex quadratic programming setting, where forming Wk+1 by dropping a constraint
associated with a negative multiplier in the set Wk ∩ I and setting Xk+1 = Xk + Pk, the
update Pk+1 does not necessarily move away from the dropped constraint boundary. In such
situations, the procedure fails to make progress, since the value of βk+1 in Eq. (4.44) will be
0. In practice these conditions can be treated by dropping a different constraint (also associ-
ated with a negative multiplier) from the working set. If no other constraints are associated
with negative multipliers, a GFNE does not exist in the vicinity of the iterate, and failure is
declared. The full procedure is stated in Algorithm 5.

4.5 Nonlinear Games

So far the focus of this dissertation has been on connected quadratic programs. In this
section we propose a method for extending some of the previous results to the nonlinear
setting, in which each connected optimization problem is a nonlinear optimization problem.

In particular, we outline a procedure for finding a solution to the conditions Eq. (4.14)
for games defined by the dynamics Eq. (4.1), cost functionals Eq. (4.2), and constraints
Eqs. (4.3a) and (4.3b). We assume that all functions appearing in the conditions Eq. (4.14)
are continuously twice differentiable, with the exception of the implicitly defined policies.
The procedure leverages the method for computing solutions to inequality-constrained LQ
games presented in Section 4.4 and Algorithm 5, and generally is inspired by Sequential
Quadratic Programming methods for non-convex numerical optimization (see e.g. [192],
Chapter 18).

The foundation of this approach is in the observation that a Newton-style method can
be used to finding a solutions to the conditions Eq. (4.14), where each iteration involves
solving for a GFNE for the locally approximate LQ game formed around the current iterate.
Considering first the case in which the game does not include any inequality constraints,
computing a search direction using Newton’s method on the conditions Eq. (4.14) at t = 1
can be seen to be equivalent to computing a search direction by solving an LQ approximation
of the game. In the inequality-constrained case, search directions can be found by solving
an inequality-constrained LQ approximation, analogous to the method in [192].

In particular, we propose an iterative method for finding solutions to the conditions
Eq. (4.14). Note that throughout this section, iterations are again indexed by k = 1, 2, 3, ...,
as they were in the method for computing inequality-constrained LQ games in Section 4.4.
Here, let the current iterate of the primal and dual game variables at iteration k be denoted
as

Xk := [x(1:T+1),k, u(1:T),k],

Λk := [λ(1:T),k, µ(1:T+1),k, γ(1:T+1),k, ψ(2:T),k]
(4.45)

2Note that the multipliers cannot be zero by the strict complementarity assumption made.

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 56

Algorithm 5 Active Set Inequality Constrained LQ Game GFNE Solver

1: Start with X1 feasible w.r.t. Eq. (4.18), Eq. (4.24), Eq. (4.38)
2: Initialize W1 to be subset of active inequality constraints along X1

3: for k=1,2,3,... do
4: Solve equality-constrained LQ GFNE defined by Eq. (4.39), Eq. (4.40), Eq. (4.41),

and denote the solution as Pk

5: if Pk == 0 then
6: Extract multipliers µi(t,k), ψ

i
t, λ

i
t, using Eq. (4.37)

7: if µi,j(t,k) > 0, ∀j > ait (Inequality constraint multipliers) then return Xk,
8: else
9: (tm, im, jm)← argmin

(t,i,j)∈Wk∩I
µi,j(t,k)

10: Xk+1 ← Xk

11: Wk+1 ←Wk \ {(tm, im, jm)}
12: end if
13: else
14: Find largest βk ∈ [0, 1] such that Xk + βkPk is feasible w.r.t. Eq. (4.38)
15: Xk+1 ← Xk + βkPk

16: if βk < 1 then
17: (tb, ib, jb)← index of blocking inequality constraint not already in Wk ∩ I
18: if (tb, ib, jb) == (tm, im, jm) (Blocking index is previously dropped index) then
19: Choose other blocking constraint or declare failure
20: else
21: Wk+1 ←Wk ∪ (tb, ib, jb)
22: end if
23: else
24: Wk+1 ←Wk

25: end if
26: end if
27: end for

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 57

Assume some initialization of all variables X1 and Λ1. Then for each iteration k, a search
direction Pk is found by solving the inequality-constrained LQ game formed in the following
way.

Let the dynamics Eq. (4.18) for the approximate game at the kth iteration be defined by
the terms

At,k := ∇xft(xt,k, ut,k),

Bi
t,k := ∇uift(xt,k, ut,k),

ct,k := ft(xt,k, ut,k)− xt+1,k.

(4.46)

Similarly, let the equality and inequality constraint terms in Eqs. (4.24) and (4.38) be defined
as

H i
xt,k := ∇xh

i
t(xt,k, ut,k), Gi

xt,k := ∇xg
i
t(xt,k, ut,k),

H i
uit,k

:= ∇uih
i
t(xt,k, ut,k), G

i
uit,k

:= ∇uig
i
t(xt,k, ut,k),

hit,k := hit(xt,k, ut,k), git,k := git(xt,k, ut,k).

(4.47)

Finally, let the cost functional coefficients in Eq. (4.20) for stages t ∈ T be defined as

Qi
t,k := ∇2

x,xl
i
t(xt,k, ut,k) + (∇2

x,xft)
ᵀλit,k − (∇2

x,xh
i
t)
ᵀµit,k − (∇2

x,xg
i
t)
ᵀγit,k,

Sit,k := ∇2
u,xl

i
t(xt,k, ut,k) + (∇2

u,xft)
ᵀλit,k − (∇2

u,xh
i
t)
ᵀµit,k − (∇2

u,xg
i
t)
ᵀγit,k,

Ri
t,k := ∇2

u,ul
i
t(xt,k, ut,k) + (∇2

u,uft)
ᵀλit,k − (∇2

u,uh
i
t)
ᵀµit,k − (∇2

u,ug
i
t)
ᵀγit,k,

qit,k := ∇xl
i
t(xt,k, ut,k),

rit,k := ∇ul
i
t(xt,k, ut,k).

(4.48)

The solution to this inequality-constrained LQ game at each iteration k yields the search
direction Pk and multipliers Λ̄k+1. To ensure progress towards a solution of the conditions
Eq. (4.14), a line-search procedure is invoked. We seek a parameter αk ∈ [0, 1] such that the
iterates

Xk+1 := Xk + αkPk,

Λk+1 := Λk + αk(Λ̄k+1 −Λk)
(4.49)

make maximal progress towards satisfying the conditions Eq. (4.14), with respect to an
appropriate merit function. Because the game setting involves multiple players, a decrease
in the objective of all players’ objectives cannot be guaranteed. Therefore the merit function
we consider is simply the residual squared norm of the conditions Eq. (4.14). In particular,

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 58

define the merit function to search over as the following:

M(X,Λ) :=
∑
i∈N

∑
s∈T

∥∥∥∥∇uis

[
lis + fᵀs λ

i
s − hiᵀs µis − gi

ᵀ

s γ
i
s

]∥∥∥∥2
2

+

∑
i∈N

∑
s∈T2

∥∥∥∥∇xs

[
lis − λis−1 + fᵀs λ

i
s − hi

ᵀ

s µ
i
s − giᵀs γis +K−iᵀs ψis

]∥∥∥∥2
2

+

∑
i∈N

∑
s∈T2

∥∥∥∥∇u−i
s

[
lis + fᵀs λ

i
s − hi

ᵀ

s µ
i
s − giᵀs γis − ψis

]∥∥∥∥2
2

+

∑
i∈N

∥∥∥∥∇xT+1

[
liT+1 − λiT − hi

ᵀ

T+1µ
i
T+1 − g

iᵀ
T+1γ

i
T+1

]∥∥∥∥2
2

+∑
s∈T

‖xs+1 − fs(xs, us)‖22 +∑
i∈N

(∑
s∈T

∥∥his(xs, us)∥∥22 +
∥∥hiT+1(xT+1)

∥∥2
2

)
+∑

i∈N

(∑
s∈T

∥∥min(gis(xs, us), 0)
∥∥2
2

+
∥∥min(giT+1(xT+1), 0)

∥∥2
2

)
+∑

i∈N

∑
s∈T+

∥∥min(µis, 0)
∥∥2
2

+ |(gis)ᵀµis|.

(4.50)

Recall that T2 := {2, ..., T}. Then αk is defined as:

αk := min
α∈[0,1]

M(Xk + αPk,Λk + α(Λ̄k+1 −Λk)). (4.51)

Algorithm 6 GFQNE Solver for Nonlinear Games

1: Set convergence tolerance ε > 0
2: Start with initial X1, Λ1

3: for k=1,2,3,... do
4: Solve inequality-constrained LQ GFNE defined by Eq. (4.46), Eq. (4.47), Eq. (4.48),

and denote the solution and corresponding multipliers as Pk, Λ̄k+1

5: Find αk according to Eq. (4.51) and Eq. (4.50) via backtracking line-search
6: Xk+1 ← Xk + αkPk

7: Λk+1 ← Λk + αk(Λ̄k+1 −Λk)
8: if M(Xk+1,Λk+1) < ε then
9: Return Xk+1,Λk+1 and break

10: end if
11: end for

The choice of merit function need not be as defined in Eq. (4.50). Any positive-valued
function which evaluates to 0 if and only if the arguments constitute a solution to Eq. (4.14) is

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 59

(a) σpolite = 0 (b) σpolite = 5

Figure 4.2: Snapshots of the resultant GFQNE solutions found to the example in Section 4.6,
when excluding (a) and including (b) the politeness term in player 1’s objective.

acceptable. Note that in the line-search procedure Eq. (4.51) using any such merit function,
it is necessary in general to evaluate the policy quasi-gradients Kt at the candidate point
Xk +αPk, Λk +α(Λ̄k+1−Λk)) for general α. However, recall that these terms are implicitly
defined, and in general require solving the approximate LQ game defined at the candidate
point to evaluate them. This makes the evaluation of Eq. (4.51) very expensive. There-
fore, in practice, we find it acceptable in most cases to replace the policy quasi-gradients
Kt appearing in Eq. (4.50) corresponding to the candidate point, with the quasi-gradients
corresponding to the point Xk,Λk, which are evaluated in the computation of the search
direction Pk.

Even with the reuse of the policy quasi-gradients, the minimization in Eq. (4.51) cannot
be carried out exactly. In practice, a backtracking line-search satisfying a sufficient decrease
condition is used instead.

The complete algorithm for computing solutions to Eq. (4.14) for nonlinear games is
given in Algorithm 6.

4.6 Example

We now demonstrate the methodologies so far presented on a practical example.
Consider a game describing a driving scenario involving an autonomous vehicle and two

other vehicles on a freeway. Here N = 3, and let T = 100 denote the number of discrete
time-points in the trajectory game. Let the game dynamics be defined as the concatenation
of the independent dynamics of each vehicle in the game. We assume that each vehicle

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 60

Major
Iteration

Minor
Iteration

Working Set
Indices

Comment αk M(Xk+1,Λk+1)

1 F1 {}
F2 {(101,2)}
F3 {(101,1),(101,2)}
1 {(101,1),(101,2)}
2 {(101,2)}
3 {(101,1),(101,2)} Cycle 1 96.25

2 F1 {(101,2)}
F2 {(101,1),(101,2)}
1 {(101,1),(101,2)}
2 {(101,2)}
3 {(101,1),(101,2)} Cycle 1 55.65

3 F1 {(101,2)}
1 {(101,2)} Solution 1 0.221

4 F1 {(101,2)}
1 {(101,2)} Solution 1 2.3e-5

Total
Time

Total
LQ Solves

Solve Time
Function

Eval Time

5.14 17 0.97 4.17

Table 4.2: Algorithm iterate information when using Algorithm 6 (Major Iterations) and
Algorithm 5 (Minor Iterations) to compute a GFQNE to the example in Section 4.6, when
σpolite = 5 (Fig. 4.2b). Here M(Xk+1,Λk+1) is the merit function value after performing
a line search in the direction of Pk in Algorithm 6. In each major iteration of this solve,
αk = 1, meaning no backtracking was necessary in the line search procedure. Here the
minor iterations labeled “F�” indicate equality-constrained LQ solves used in the search of
a feasible initial solution to the inequality-constrained LQ game associated with the major
iteration. The detection of a cycle indicates that the removal of a constraint associated
with a negative multiplier did not move the iterate associated with Algorithm 5 away from
the dropped constraint boundary (Line 19). In these cases the iterate is accepted and the
algorithm continues with the next major iteration.

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 61

follows simple unicycle dynamics. Specifically, for each i ∈ N, let

xit+1 =

xi,1t+1

xi,2t+1

xi,3t+1

xi,4t+1

 = f it (x
i
t, u

i
t) =

xi,1t + ∆ · xi,3t cos(xi,4t)

xi,2t + ∆ · xi,3t sin(xi,4t)

xi,3t + ∆ · ui,1t
xi,4t + ∆ · ui,2t

 . (4.52)

Here ∆ represents some small sampling time. The interpretation of the vehicles states and
controls are the following: the first dimension is the longitudinal (along-lane) position, the
second is the lateral (across-lane) position. The third dimension is the speed in the direction
of the vehicle heading, and the fourth dimension is the vehicle heading in radians. The
first control dimension is the vehicle acceleration, and the second dimension is the angular
velocity.

The dynamics for the entire game state are then given as

xt+1 :=

f 1
t (x1t , u

1
t)

f 2
t (x2t , u

2
t)

f 3
t (x3t , u

3
t)

 = ft(xt, ut), t ∈ T. (4.53)

The goal of player 2 is to minimize its acceleration, angular velocity, and deviation from
desired speed, while staying in-lane and avoiding collision with player 1. Similarly, the goal
of player 3 is to minimize its acceleration, angular velocity, and deviation from desired speed,
while staying in-lane.

The goal of player 1 is to complete a lateral lane change while minimizing its own accel-
eration, angular velocity, and deviation from its desired speed, and avoiding collision with
player 3. Player 1 also attempts to minimize the objective of player 2 in addition to its own
objective.

A depiction of this game is given in Fig. 4.2. The functions describing the objective and
constraints of each player are the following:

0 = h1T+1(xT+1) := x1,2T+1 + 2,

0 = h2T+1(xT+1) := x2,2T+1 + 2,

0 = h3T+1(xT+1) := x3,2T+1 − 2,

0 ≤ g1t (xt) :=

∥∥∥∥x1,1t − x3,1tx1,2t − x
3,2
t

∥∥∥∥
2

− dmin, t ∈ T+,

0 ≤ g2t (xt) :=

∥∥∥∥x2,1t − x1,1tx2,2t − x
1,2
t

∥∥∥∥
2

− dmin, t ∈ T+,

(4.54)

CHAPTER 4. FEEDBACK NASH EQUILIBRIUM PROBLEMS 62

L1(x, u) =
(T∑
t=1

σ1
∥∥u1t∥∥22 + σ2(x

1,2
t + 2)2 + σ3(x

1,3
t − v1goal)2

)
+ σpoliteL

2(x, u),

L2(x, u) =
T∑
t=1

σ1
∥∥u2t∥∥22 + σ2(x

2,2
t + 2)2 + σ3(x

2,3
t − v2goal)2,

L3(x, u) =
T∑
t=1

σ1
∥∥u3t∥∥22 + σ2(x

3,2
t − 2)2 + σ3(x

3,3
t − v3goal)2,

(4.55)

The initial state x̂1 is defined to be x̂1 := [0, 2, 1, 0,−10,−2, 1.5, 0, 30, 2, 0.75, 0]ᵀ. The lateral
center of the left lane is −2, and the lateral center of the right lane is 2. The constant dmin
is the minimum separation distance from vehicle centers needed to avoid collision, which
in this example is 3.3. The parameters σ{1,2,3} scale the relative weights between objective
terms, and are σ1 = 10, σ2 = 0.2, and σ3 = 10. The desired speeds of the three players
are v1goal = 1, v2goal = 1.5, and v3goal = 0.75. The term σpolite is the politeness coefficient and
weights how much player 1 cares about interfering with player 2’s objective. We consider
two variants, with σpolite = 0 and σpolite = 5. This example is similar to games explored
in [150]. Visualizations of the GFQNE solutions for the two variants are given in Fig. 4.2,
and computation details for the σpolite = 5 case are given in Table 4.2 (details for the case
σpolite = 0 are omitted for brevity).

4.7 Conclusion

In this chapter, we have presented a non-parametric, implicit policy formulation for gener-
alized feedback Nash equilibrium problems. We developed efficient solution methods for the
equality-constrained Linear-Quadratic (LQ) case, the inequality-constrained LQ case, and
the general nonlinear case. To the best of our knowledge, these constitute the first solution
methods for finding Feedback Nash Equilibria both LQ and nonlinear games with general
constraints. Dynamic games have numerous applications; we demonstrate the utility of our
method in a trajectory planning setting for a lane-changing autonomous vehicle.

Future work should consider other solution methods for the general game which build
upon our solution to the equality-constrained LQ game. In particular, penalty methods and
interior point methods may also be competitive. Furthermore, the results presented should
be extended to cases in which strict complementarity does not hold. Necessary conditions
based on sub-differentials could be used in such cases. It is also important to further de-
velop a deeper theoretical understanding of the “policy quasi-gradient” approximation and
its implications on convergence to local solutions. Finally, a high-performance, optimized
implementation of our method will facilitate its use in practical applications by other re-
searchers and practitioners.

63

Chapter 5

Uncertainty in Game-Theoretic
Motion Planning

In this chapter we consider some issues that arise from attempting to use game-theoretic
motion planning techniques for autonomous driving prediction and planning, and leverage
some benefits of the GFNE solutions (preseted in the previous chapter) to overcome them.
In particular, some properties of the GFNE solution is used to account for the uncertainty
present in assuming the underlying cost and constraint structure that other game players are
optimizing for. The results in this section build on the non-quadratic objective, non-linear
constraint formulation of the GFNE solutions, and therefore stray from the primary focus of
this dissertation, but are included as an application (via nonlinear extension) of connected
quadratic programs.

The contents of this chapter are primarily taken from [150], which is co-authored with
David Fridovich-Keil, Chih-Yuan Chiu, and Claire Tomlin.

5.1 Introduction

Trajectory planning for autonomous agents often proceeds in a model-predictive control fash-
ion, where trajectories are frequently re-planned as new information about the environment
is collected. When operating in the presence of other agents, as in autonomous driving,
motion plans must reason about predicted trajectories of those other agents. When those
predictions are assumed fixed, the resultant motion plans of the “ego” vehicle are incapable
of reasoning about the reactions of the other agents to the ego’s own decisions.

Game-theoretic motion planners instead model the interaction with other agents directly,
by handling planning and prediction jointly. That is, the intentions of all agents in the scene
are encoded as optimization problems that they are each trying to solve, and an equilibrium
solution for the collection of optimization problems is found. This equilibrium consists of a
set of interacting trajectories of all the agents, which can be used as predictions for non-ego
agents, and as a motion plan for the ego agent.

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 64

Figure 5.1: The fast-moving ego vehicle (blue) believes that the slow-moving (red) agent will
change lanes with probability p. Our method constructs and solves a dynamic game involving
both lane-changing and non-lane-changing versions of the red agent. Depicted here are three
different solutions to this game, corresponding to different probabilities associated to the
two hypotheses. When certain that the red agent will change lanes (p ≈ 1), the ego agent
takes full responsibility for avoiding collision with the lane-changing version of the red agent,
allowing it to change lanes unimpeded. When certain the red agent will stay in-lane (p ≈ 0),
the lane-changing agent is required to take full responsibility for collision-avoidance with
ego, which allows ego to pass at its original speed. Probabilities in the range 0 < p < 1
result in trajectories which qualitatively interpolate between these two behaviors. Note that
the non-lane-changing version of the red agent is unaffected by the actions of the ego agent
for all values of p in this case.

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 65

A serious drawback of game-theoretic planning is that it typically assumes that the
intentions of other agents are known to the ego, and that the agents act rationally with
respect to those intentions. In this chapter, we introduce a novel way of accounting for the
uncertainty an autonomous system has regarding the intentions of other agents in game-
theoretic planning contexts.

In particular, our approach assumes the ego agent maintains a probability distribution
over a discrete set of hypotheses regarding the intentions of other agents. These hypotheses
model uncertainties about intentions such as potential lane changes, nominal speeds, aversion
to acceleration, etc. These hypotheses could, for example, be generated by a predictor trained
from data. For the purposes of this work, we are not concerned with how these hypotheses
are generated, but rather how the system should process them. Our proposed approach is to
construct distinct optimization problems for each agent, which when optimized over, result in
trajectories which are qualitatively representative of the different hypotheses associated with
that agent. Replicas of each agent (one for each hypothesis) are created, and are assigned
to the corresponding optimization problem. We introduce a way of combining the replicated
versions of other agents into a dynamic game, which allows the ego agent to reason about
interactions with the other agents based on the probabilities of their hypothesized actions in
a principled manner. This is the main contribution of our work.

The remainder of this chapter is outlined as follows. We detail comparisons of our
method to prior approaches in Section 5.2. In Section 5.3, we review concepts related to
game-theoretic planning needed to formalize our method, which is then introduced in Sec-
tion 5.4. In Section 5.5, we present empirical results of our method on various realistic
driving scenarios, and finally, we make concluding remarks in Section 5.6.

5.2 Related Work

Motion planning for autonomous vehicles is a well-researched field, and many algorithms and
formulations exist. The method we present builds directly on some recent works which ex-
plore specialized game-theoretic planning algorithms and their use for autonomous systems,
so we primarily discuss those works here.

There are multiple equilibrium concepts which can be considered for trajectory games,
and therefore game-theoretic motion planning. The primary types of equilibria most often
considered are Open-Loop Nash Equilibria, Feedback Nash Equilibria, and Open-Loop Stack-
elberg Equilibria. For detailed description of these concepts, see, for example, [18]. Each
of these types of equilibria further offer a generalized variant, which are considered when
constraints are shared among players in the game, such as collision-avoidance constraints.
Different methods in the literature have considered the use of each of these equilibrium
concepts for the use of game-theoretic motion planning.

The works [47, 52, 51] present algorithms for computing (generalized) Open-Loop Nash
equilibria in trajectory games. Considering this type of equilibrium is equivalent to treat-
ing the trajectory game as a static Nash game. Hence, players have equal precedence in

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 66

determining their trajectories, and the players choose their entire trajectories at once. Gen-
eralized static Nash games are discussed in [71]. A study of Newton-type methods for solving
generalized Nash Equilibrium problems is given in [70].

The drawback of the Open-Loop Nash equilibrium formulation is that players cannot
directly reason about the reaction other agents will have to their own actions. To overcome
this challenge, Open-Loop Stackelberg equilibria can be found, which assign an ordered
precedence to the players in the game. Players with higher precedence can reason directly
about how players with lower precedence will reason about their trajectories. The works
[236] and [265] leverage this framework (by means of sensitivity analysis) to accomplish this
in the context of drone racing. In [103] a Stackelberg formulation is also used. In [160],
both Open-Loop Stackelberg and Nash Equilibria are considered. The authors in [128] use
a generalized Stackelberg formulation for use in tree-search planning methods.

Similar to Stackelberg equilibria, Feedback Nash equilibria can capture inter-agent re-
actions, by treating trajectory games as repeated games. These games are played over a
sequence of turns, corresponding to discrete time points in the trajectory. While very ex-
pressive, these equilibria are generally more complicated to compute exactly. Nevertheless,
[89] presents a method which efficiently computes approximate Feedback Nash equilibria.
The authors in [227] also present a method to solve for approximate Feedback Nash Equilib-
ria of trajectory games, although in the context of unconstrained belief-space games. In [151],
a method for computing approximate Generalized Feedback Nash Equilibria is introduced,
allowing for the computation of Feedback equilibria for games with shared constraints.

While many of the above-mentioned works assume the objective and constraint functions
of each player are known, some methods also reason about uncertainty in the underlying
game. In [227], uncertainty caused by partial and noisy observations is considered, but the
objective and constraints of the players are known. [103] consider different possible driver
social models, but these profiles are proposed by a decision making module and are assumed
fixed in the inner trajectory optimization. In [128], many possible discrete actions of other
agents are considered in the tree search process, but require a discretized space.

There are also a vast number of non game-theoretic works which have considered planning
under uncertainty regarding the behavior of other agents in an environment. For example,
regarding autonomous vehicle navigation, [274] describes planning in the context of uncertain
(yet static) predictions for other agents in the scene. [10] similarly present a real-time method
for chance-constrained collision avoidance problems, while [104] uses optimization-based path
planning to establish probabilistic collision avoidance guarantees for autonomous vehicles.
Meanwhile, [222, 223, 204, 286] describe methods for human activity prediction, in which
safety guarantees are established for autonomous vehicles by collecting information to infer
the intent of the human agents in the environment. Distributionally-robust optimal control
methods such as [256, 191] relax the common Gaussian uncertainty assumption in chance-
constrained optimization. These works are just a sample of the many in the literature, but
because we are focused on a game-theoretic context, we do not discuss them further.

To the best of our knowledge, the method we present is the only approach capable of
efficiently handling uncertainty in the intentions of non-ego agents, in a continuous state and

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 67

action, game-theoretic context.

5.3 Preliminaries

The method we present assumes that there is no ordering in the precedence of the players
in the game, and therefore considers Nash equilibrium formulations of the trajectory games
encountered by an autonomous vehicle. In order to properly account for the uncertainty the
ego agent has regarding the intention of other players in the game, we rely on a Generalized
Feedback Nash equilibrium formulation. Before introducing our method of accounting for
uncertainty in the game, we review this concept of equilibrium.

Consider a trajectory game comprised of N agents acting in a discrete-time, continuous-
space environment, for which the global state at some time-step t can be represented by the
variable xt ∈ X , where X defines the state-space for the environment (typically Rn for n-
dimensional state-spaces). Often, the state-space X is the product space of the state-spaces
for individual agents, i.e. X := X 1× ...×XN . When this is the case, xt = (x1t , . . . , x

N
t). The

agents influence the state of the environment by applying private control variables, denoted
as uit ∈ U i for agent i ∈ {1, . . . , N} at time-step t. We denote the dimension of U i by mi

(both U i and mi may differ across agents), and use the shorthand ut := (u1t , . . . , u
N
t) and

u−it := (u1t , . . . , u
i−1
t , ui+1

t , . . . , uNt). The state evolution of the system over discrete time-steps
is given by the dynamic update

xt+1 = f(xt, u
1
t , . . . , u

N
t) = f(xt, ut) (5.1)

We consider finite-horizon games of discrete time-step length T , and assume without loss
of generality that games start at t = 0 from a known state x̂0. The objective and constraints
imposed on the actions of the agents in the game are also assumed known. Uncertainty in
the initial state of the game, as well as in the objective and constraints imposed on other
agents, is accounted for in Section 5.4.

The task of computing a generalized Feedback Nash Equilibrium [151] for the game
of consideration is that of computing a generalized Nash equilibrium [70] of the following
collection of optimization problems for each player i, for s = 0:

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 68

V i
s (x̂s) := min

xs,...,xT
uis,us+1,...,uT−1

T−1∑
t=s

li(xt, ut) + liT (xT) (5.2a)

s.t. xs − x̂s = 0, (5.2b)

xt+1 − f(xt, ut) = 0, s ≤ t ≤ T − 1 (5.2c)

hit(xt, u
i
t) = 0, s ≤ t ≤ T − 1 (5.2d)

git(xt, u
i
t) ≥ 0, s ≤ t ≤ T − 1 (5.2e)

hiT (xT) = 0 (5.2f)

giT (xT) ≥ 0 (5.2g)

u−it − π−it (xt) = 0, s+ 1 ≤ t ≤ T − 1 (5.2h)

The cost functions li(·, ·) and liT (·) are assumed to be continuous and twice-differentiable,
and in general may depend on the control variables of other agents, u−it .

The equality and inequality constraints imposed on each agent are unique to that partic-
ular agent in general, but the dynamic constraints (and initial condition) are common to all
agents. The dimension of the constraints hit and git may vary at every time-step t, including
potentially having dimension 0 (representing no constraint). We assume these constraint
functions are twice-differentiable in their arguments. In the context of autonomous driving,
these terms often encode constraints such as collision avoidance or road boundary constraints.

Here, both the shared state variables and the control variables for agent i are treated as
decision variables in the optimization, as are the control variables of other players u−it for
time t > s, where they are constrained by a feedback policy π−it (xt). The polices π−it (xt) are
defined implicitly to yield the controls u−it which form a Generalized Nash Equilibrium for
the set of problems {V 1

t (xt), ..., V
N
t (xt)}.

Note that the computation of a generalized Feedback Nash equilibrium problem is actu-
ally a series of T nested equilibrium problems, due to the definition of the policy constraints
(5.2h).

The nested information pattern arising in the problems (5.2) is a fundamental aspect of
the method for accounting for uncertainty of the intentions of agents in the game presented
in Section 5.4. The nested structure allows for optimizing over cost-functions and constraints
directly on the control and state variables of other players in the game, which is otherwise
impossible in Open-Loop Nash equilibria. The required costs or constraints are also possible
in Stackelberg equilibria, although those formulations require assigning an order of prece-
dence to the players in the game, and pose the same computational challenges as Feedback
equilibria do. For a in-depth presentation of generalized Feedback Nash equilibria, see [151].

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 69

5.4 Methods

We now present a method which accounts for common forms of uncertainty arising in game-
theoretic planning frameworks.

The foundation of our method is based on the observation that interaction among agents
in a driving scenario can be attributed to some kind of collision-avoidance constraint. The
objective and other constraints imposed upon agents in the scene can often be expressed
solely as functions of the private state and control variables for independent agents. The
responsibility of collision-avoidance between two agents can be assigned in multiple ways,
resulting in qualitatively different behaviors. These constraints can be symmetrical, meaning
in a pair of agents, both are responsible, or asymmetrical, meaning only one of the two agents
bears more responsibility. Asymmetrical situations are useful from a modeling perspective
for situations such as when one agent approaches another from behind on the highway, and
the rear agent is responsible for avoiding collision.

Always assigning collision-avoidance responsibility to the ego agent is perhaps the safest
option, although this can result in overly-conservative behavior, such as being unable to
merge into dense traffic. However, assigning collision-avoidance responsibility to other agents
in the scene is risky, since assuming other agents will take responsibility can result in dan-
gerous driving behavior from the ego agent if this assumption is incorrect.

Our method uses asymmetrical constraints to account for uncertainty the ego vehicle has
about the other agents in the scene. In order to do this, we introduce a way to interpolate
constraint responsibility continuously between two agents.

Given multiple hypotheses regarding the intentions of each non-ego agent in the scene, we
propose introducing a copy of the corresponding agent for each hypothesis. These replicas
are endowed with objective and constraint terms of the form Eq. (5.2), which reflects the
hypothesized intentions. We associate a probability of occurrence with each hypothesis
replica. Then, for hypotheses with low probability, we shift collision-avoidance constraint
responsibility to the replica agent, allowing the ego to ignore the replica. For hypotheses with
high probability, we shift constraint responsibility to the ego vehicle, allowing the replica to
ignore the ego vehicle. A continuum of behaviors in between these two extremes is achieved
for intermediate probabilities.

Interpolating Responsibility of Collision-Avoidance

The interpolation between collision-avoidance constraint responsibility is made possible by
the properties of the Feedback Nash equilibrium introduced in Section 5.3.

Consider first the simple case of two agents in a trajectory game, one of them being the
ego agent. Let the other be an agent with a hypothesized objective and set of constraints.
Denote these two agents as P 1 (ego) and P 2. We denote the independent objective function
of both players to take the form in Eq. (5.2a), but only depend on the controls and state
variables associated with their self:

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 70

L1(x0, u0, ..., xT) :=
T−1∑
t=0

l1(x1t , u
1
t) + l1T (x1T). (5.3a)

L2(x0, u0, ..., xT) :=
T−1∑
t=0

l2(x2t , u
2
t) + l2T (x2T). (5.3b)

We add a copy of the objective of P 2 to the objective of P 1, weighted by the odds
(corresponding to probability p) of this hypothesis for P 2. Specifically, the complete objective
function for the ego agent is

L̄1(x0, u0, ..., xT ; p) :=

L1(x0, u0, ...,xT) +
p

1− p
L2(x0, u0, ..., xT).

(5.4)

We refer to the added term in Eq. (5.4) as a “politeness” term.
Because we have introduced the politeness term in the objective of P 1, we assign only P 2

the collision-avoidance constraints between P 1 and P 2. The other constraints imposed on P 1

in Eqs. (5.2d) to (5.2g) depend only on its own state and control variables. In other words,
we only explicitly require P 2 to account for the collision-avoidance constraints between P 1

and P 2.
Although P 1 does not account for the collision-avoidance constraints itself, P 1 can take

effective ownership of the constraints for large values of p. When p → 1, the right-hand
side of Eq. (5.4) dominates P 1’s independent objective. This places a very large penalty on
sub-optimal values of P 2’s objective. This can effectively be viewed as imposing a constraint
on P 1 that P 2’s objective term is minimized with respect to the decision variables of P 1.

In this limiting case, P 1 does its best to ensure that P 2 does not have to incur any
unnecessary cost to optimize its objective or satisfy its constraints, including the collision-
avoidance constraints it is responsible for satisfying. Therefore, P 1 prioritizes staying clear of
P 2’s desired trajectory, so that P 2 doesn’t have to exert effort to avoid P 1. In the other limit,
when p→ 0, the right-hand side of Eq. (5.4) vanishes, and P 1 ignores all notions of collision-
avoidance, leaving P 2 to be responsible. For intermediate values of p, the responsibility of
collision avoidance is shared between the two agents.

It is here that the dependence of our method on a nested equilibrium concept such as
the Feedback Nash equilibrium introduced in Section 5.3 is made clear. The loss function L1

includes terms that are functions only of the state and control variables of P 2, which would
be ignored in, for example, an Open-Loop Nash equilibrium.

Handling Unknown Intentions

Given the ability to interpolate between the collision-avoidance constraint ownership between
agents, we propose using the probability of existence associated with multiple hypothesized
agents as the interpolating factor appearing in Eq. (5.4).

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 71

In particular, assume again that the ego-vehicle is indexed as agent 1, and all other agents
in the scene correspond to indices 2 through N . For each of the other agents, there are Ki

hypotheses for the potential intentions of each agent i. Again, assume there is a known
categorical belief distribution Qi over these Ki hypotheses. Qi is comprised of probabilities

{pi,1, ..., pi,Ki}, where 0 < pi,k < 1 and
∑Ki

k=1 p
i,k = 1.

We construct a trajectory game from the set of hypotheses in the following way. For
each hypothesis k regarding agent i, we form a replica agent, denoted P i,k. Let the in-
dependent state of agent P i,k at time-step t be denoted by xi,kt , and the corresponding
control variable by ui,kt . The total number of agents (including replicas) is now given by
N̂ = 1 +

∑N
i=2K

i. Let xt and ut denote the vector of states and controls for all N̂ agents,

i.e. xt := (x1t , x
2,1
t , . . . , x2,K

2

t , . . . , xN,K
N

t), and ut is defined analogously.
Each replica agent P i,k is assigned an objective Li,k of the form in Eq. (5.3), which only

depends on the states xi,kt and controls ui,kt . The constraints associated with each agent
include collision-avoidance constraints with the ego agent.

The complete objective for the ego agent is then given by

L̄1(x0, u0, ..., xT) := L1(x0, u0, ..., xT)

+
N∑
i=2

Ki∑
k=1

pi,k

1− pi,k
Li,k(x0, u0, ..., xT),

(5.5)

and is subject only to dynamic and constraints only on its own state and control variables.
When considering the objectives and constraints of the ego agent and all replica agents in

a generalized Feedback Nash equilibrium, the same notions of constraint ownership described
in Section 5.4 apply. If any given hypothesis associated with a particular agent has high
probability, the politeness term associated with that hypothesis will force the ego agent to
take constraint ownership.

In general, non-ego agents can also interact with each other, meaning the hypotheses
regarding those agents are coupled. In such a setting, replicas of each agent should be
made for every global hypothesis, and collision avoidance responsibility can be assumed to
be shared among all non-ego agents associated with the same global hypothesis. In most
situations, however, we find that it is not necessary to consider the interaction of non-ego
agents, as demonstrated in Section 5.5.

5.5 Results

We demonstrate our proposed approach on several different traffic scenario examples. In
each, the ego agent maintains multiple hypotheses about one or more other agents in the
scene. By varying its belief about which version of the various agents will realize, the ego
generates a spectrum of maneuvers, all of which are game-theoretic equilibria of the game
posed in Section 5.4. For simplicity, we presume that all agents follow a linear driving model

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 72

with independent lateral and longitudinal accelerations. Nothing in our method precludes
the use of more expressive dynamics models, however.

Passing Slow-Moving Traffic

Consider a common situation occurring on highways or roads with two or more lanes in each
direction, in which there is slow-moving traffic in one lane, and the ego vehicle alone occupies
the other lane. This is the situation depicted in Fig. 5.1. Although there are no vehicles
in front of the ego vehicle forcing it to slow down, it is unsafe to travel at high speeds past
slow-moving traffic. Our method allows a natural way to achieve safe driving behavior that
is reflective of the probability that one of the slow-moving vehicles will turn into the lane of
the ego vehicle.

Specifically, the two hypotheses considered in this example correspond to P 2 lane chang-
ing vs. staying to the right. In terms of the Dynamic Feedback Game, we represent these
hypotheses with the terminal constraints on the lateral position of the red agent. Associated
with these two hypotheses is the distribution

Q := {p, 1− p}, (5.6)

where p represents the probability of the lane-change hypothesis. The independent objec-
tives for all agents are the sums of quadratic costs on their private control inputs (accel-
erations) and quadratic costs on desired speed. The ego agent additionally minimizes the
odds-weighted independent objective of the two red agent replicas, as described in Sec-
tion 5.4. Because the non-lane-changing version of the red agent does not interact with the
ego agent, the independent objective corresponding to that hypothesis can be ignored.

As demonstrated in Fig. 5.1, varying the probability p naturally produces a range of
behaviors of the ego agent, ranging from slowing down in full-anticipation of a lane change,
to speeding by, as if the ego vehicle is ignoring the possibility of a lane change.

Lane Change: Coupled Predictions

Consider a similar situation, except now the ego vehicle is on the right and attempting to
change lanes, and it is uncertain about the speed of an agent approaching in the left lane.
This situation is depicted in Fig. 5.2. The ego agent again considers two hypotheses regarding
the approaching agent, associated with different speeds, with p denoting the probability of
that the red agent approaches at the higher speed. Unlike the example in Section 5.5,
the hypothesis associated with a lower speed of the approaching agent still requires the
ego vehicle to apply some otherwise-non-optimal acceleration. As in the previous example,
interpolating p from 0 to 1 results in behaviors ranging from respecting the slower-moving
hypothesis to respecting the faster-moving hypothesis.

For intermediate values of p, although the odds factor for the slower-moving hypothesis
does not vanish, the independent objective of the corresponding replica is not affected by

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 73

Figure 5.2: The ego (blue) agent is attempting to change lanes in front of a fast-approaching
vehicle (red) in the target lane. The ego agent maintains two hypotheses about the speed
of the red agent. A belief probability p is placed on the hypothesis that the red-vehicle is
traveling very fast, as opposed to moderately fast. Varying the probability p results in a
spectrum of behaviors for both agents.

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 74

Figure 5.3: The ego (blue) agent is attempting to change lanes in front of the red agent. The
ego agent maintains two hypotheses about the speed of the red agent—(1) that it is traveling
fast (p1 ≈ 1) and (2) that it is traveling at the same speed as ego (p1 ≈ 0). The ego agent
additionally maintains two hypotheses about the green agent—(1) that it may also change
lanes into the middle lane (p2 ≈ 1), or (2) may not (p2 ≈ 0). In both hypotheses, the green
agent is assumed to travel at the same speed as ego. By varying the belief associated with
these independent hypotheses, various behaviors emerge.

the ego agent’s decision variables. This is because since the ego agent is also considering the
fast-moving hypothesis, it does not obstruct the agent in the slower-moving hypothesis. The
result of this is that the equilibria associated with intermediate values of p will not linearly
interpolate between the behaviors associated with p ≈ 0 and p ≈ 1. This is seen in Fig. 5.2,
in which p = 0.66 is roughly associated with a linear interpolation between the two other
behaviors, as opposed to p = 0.5 as one might expect.

Double Lane-Change: Multiple Independent Hypotheses

This situation demonstrates the ability of our method to handle hypotheses associated with
multiple agents in the scene. As depicted in Fig. 5.3, the ego agent is attempting to lane-

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 75

change in front of the red agent. There is another (green) vehicle which may also change
lanes into the target lane. The ego agent maintains two hypotheses about the speed of the
red agent, one being that it is traveling at the same speed as ego, and the other that it
is traveling much faster. The ego agent also maintains two hypotheses regarding the green
agent, one in which it changes lane and one in which it doesn’t. We associate a probability
p1 with the hypothesis that the red agent is traveling fast, and p2 with the hypothesis that
the green agent will change lanes.

The behaviors generated for various values of probabilities p1 and p2 are shown in Fig. 5.3.
As in previous examples, when the probability of a hypothesis is high, the ego agent takes
ownership of collision-avoidance with the corresponding replica, and when the probability is
low, the hypothesis is effectively ignored. An interesting aspect of this example is the case in
which both p1 → 1 and p2 → 1. In this case, the ego agent is conflicted between traveling fast
to be polite with respect to the approaching red agent, and traveling slow to allow the green
agent to also change lanes. The compromise is to travel at a moderate speed, trading off the
preference of both agents. From a practical perspective, this can be problematic. Even if the
ego agent is certain that the red agent is moving fast, taking ownership of collision-avoidance
with respect to the green agent should take precedence over avoiding collision with the red
agent. This behavior can be achieved by simply requiring p1 < p2 by a sufficient margin.
In this perspective, the values p1 and p2 would not be interpreted directly as probability of
hypothesis, but simply as “politeness” parameters.

Computation

The method we used to compute solutions in the above examples is presented in [151].
In particular, we implemented a method analogous to Sequential Quadratic Programming
to jointly solve the first-order necessary conditions corresponding to the game. Linear-
Quadratic (LQ) problems formed at each major iteration are solved using an Active-Set
(AS) approach. The equality-constrained LQ games to be solved in each minor iteration of
the AS approach are solved using a method analogous to [149], adapted to the game setting.

Run-time was not a major concern for the purposes of this work. For ease of prototyping,
we implemented our method in MATLAB®. All examples were solved with 50 discrete knot
points, with solve times listed in Table 5.1. We strongly believe that the method presented
in this work is amenable to real-time computation ((0.5s)), if implemented efficiently. For
example, proper initializations of the solver can avoid unnecessary iterations, especially when
using an active-set method as we do here. Exploiting linearity can further avoid unnecessary
computations of gradients or Hessians, and utilizing parallelization to compute problem
data could result in large savings. Parallelization could also be utilized in LQ solves as
demonstrated in [147]. Finally, implementation in a strongly typed, compiled language such
as C++ or Julia would result in major speedups as well.

CHAPTER 5. UNCERTAINTY IN GAME-THEORETIC MOTION PLANNING 76

Example p Total (s) Data (s) LQ Iters
A p =0.01 2.15 0.77 7
A p =0.50 1.99 0.73 7
A p =0.99 3.12 2.03 11
B p =0.01 2.26 0.73 8
B p =0.66 19.08 5.24 70
B p =0.99 2.35 0.71 9
C p1 =0.99, p2 =0.01 1.92 0.70 7
C p1 =0.01, p2 =0.99 3.43 1.04 13
C p1 =0.99, p2 =0.99 30.76 6.62 113

Table 5.1: Solve times and iterations for all examples. Example IDs are according to subsec-
tions of Section 5.5. The information under “Total” refers to total solve time. “Data” refers
to the portion of total time spent evaluating problem data such as function gradients and
Hessians. “LQ Iters” refer to the number of solves of equality-constrained LQ-games in minor
iterations of the solver. Both instances with exceptionally long solve-times had very-large
numbers of active-constraints, necessitating many iterations due to poor initializations.

5.6 Conclusion

This chapter accounts for categorical uncertainty in the intentions of other players by forming
replicas of those players, and assigning collision-avoidance responsibility according to the
probability associated to each replica. We show several examples of its expressive ability to
handle uncertain intentions in the context of autonomous driving.

Future work will focus on a real-time implementation of our method, and will investigate
the application of this method to receding horizon, model-predictive control settings. It may
also be important to study our method in more depth for contexts where interactions among
non-ego agents cannot be ignored. Finally, methods to estimate agents’ constraints should
be investigated. Preliminary work in the context of optimal control is ongoing, e.g., [228,
258, 44], but should be extended to the game setting.

77

Chapter 6

Problems of Ordered Preference

In this chapter, problems of ordered preference (POPs) are introduced, and it is demon-
strated that these problems are naturally cast as connected quadratic programs, and in the
framework of EPNECs. The particular structure of the resultant connected programs are
studied. In the general case, the problems of interest will not satisfy some of the requirements
assumed in Chapter 2, motivating further development so the methodologies presented there
can be extended to this important problem class. However, a special case is presented which
does admit solutions, namely the over-constrained dynamic programming problem.

6.1 Motivation

Many engineering disciplines involve the art of crafting optimization problems, such that
when solved, a particular desired result is returned. One such example is that of motion
planning engineers working on robotic or autonomous driving projects. Motion planning
is naturally cast as an optimization problem: find a trajectory which minimizes energy
expenditure, subject to satisfying collision avoidance constraints, obeying the speed limit,
etc.

While it might be simple in theory to conjure up a reasonable set of cost and constraint
functions for this purpose, practitioners often encounter difficult decisions when making these
modeling choices. For an autonomous vehicle, should trajectories be absolutely constrained
to obey the speed limit? What about staying within the lane lines? While in nominal
situations, these restrictions should be treated as constraints, in some cases these rules should
be broken. If collision is otherwise unavoidable, a planned trajectory should absolutely exit
the lane boundaries.

A sensible way of encoding this type of desired behavior might be the following:

1. Minimize collision violations.

2. With remaining degrees of freedom, minimize road boundary violations.

3. With remaining degrees of freedom, minimize speed limit violations.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 78

4. With remaining degrees of freedom, minimize discomfort.

This type of ordered preference of objectives is not possible in a standard optimization
framework. There, every term would have to be considered either a constraint or be lumped
into the cost function. If a system is expected to violate one of these “constraints” at some
time or another, an engineer will likely prefer to absorb them into the cost function to avoid
infeasible problem instances. This imposes the difficult challenge of choosing weightings
which trade off the various penalized constraint terms such that the desired result is achieved
in a variety of situations.

Alternatively, one could formulate this problem of ordered preferences as a connected
quadratic program, and enable the automatic generation of trajectories which obey those
preferences. In general, connected quadratic programs can be used to solve any problem
which involves a quadratic objective and considers an ordered preference on violations of
linear constraints (equality or inequality), as shown in the sections to follow.

6.2 General Formulation

Consider a problem which is to optimize over some decision variable x ∈ Rn, according to
the following ordered preferences:

1. min
x

min(0, (am
ᵀx+ bm))2

2. min
x

min(0, (am−1
ᵀx+ bm−1))

2

...
...

m. min
x

min(0, (a1
ᵀx+ b1))

2

m+ 1. min
x

xᵀ(
1

2
Qx+ q)

(6.1)

Here, the first m preferences (with 1 being top priority) are to minimize the violation of the
m inequalities given by the term

Ax+ b ≥ 0. (6.2)

In other words, ai
ᵀ corresponds to the ith row of the matrix A, and the last inequality in

(6.2) is the top priority. The lowest priority, which is only considered if the first m violations
can be avoided, is to minimize the quadratic objective.

It is straightforward to generalize this framework to allow for other types or orders of
preferences, such as violations of equality constraints, groups of terms with equal preference,
or weakly convex cost terms. However, for simplicity, only the ordering in (6.1) is considered
here.

To see how this problem can be viewed as connected quadratic programs, helper variables
c ∈ Rm and v ∈ Rm are introduced. Let cl:m :=

[
cl . . . cm

]ᵀ
, and define vl:m analogously.

The following connected QPs define the problem:

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 79

OPQP a
m := arg min

x, cm, vm
v2m (6.3a)

subject to x, cm, vm ∈ OPQP b
m (6.3b)

OPQP b
m := arg min

x, cm, vm
(vm − cm)2 (6.4a)

subject to vm ≤ 0, (6.4b)

aᵀmx+ bm − cm = 0 (6.4c)

The set of minimizers of OPQP a
m are all x such that aᵀmx + bm ≥ 0. Hence these

two problems encode, in an elaborate way, the first preference in (6.1). The remaining
ordered preferences are encoded through the remainder of the connected QPs, defined for
1 ≤ l ≤ m− 1:

OPQP a
l := arg min

x, cl:m, vl:m
v2l (6.5a)

subject to x, cl:m, vl:m ∈ OPQP b
l (6.5b)

OPQP b
l := arg min

x, cl:m, vl:m
(vl − cl)2 (6.6a)

subject to vl ≤ 0, (6.6b)

aᵀl x+ bl − cl = 0, (6.6c)

x, cl+1:m, vl+1:m ∈ OPQP a
l+1 (6.6d)

At each level 1 ≤ l ≤ m, the set of minimizers of OPQP a
l are all x such that the

preferences 1 through m+ 1− l are optimized, in order. The lowest priority preference, the
quadratic objective, is minimized in the final connected QP:

OPQP0 := arg min
x, c1:m, v1:m

xᵀ(
1

2
Qx+ q) (6.7a)

subject to x, c1:m, v1:m ∈ OPQP a
1 (6.7b)

Jointly solving the set of QPs given by (6.3), (6.4), (6.5), (6.6), and (6.7) can be accom-
plished by finding a solution to the equilibrium problem with nested equilibrium constraints
as formalized in Section 2.4. In the framework of connected optimization problems, there are
2m + 1 levels of EPNECs, each comprised of a single QPNEC, corresponding to exactly

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 80

Figure 6.1: Organization of connected QPs arising in problems of ordered preference. Here,
the QPNECs depicted in red are named by the specific OPQP they correspond to. In this
case, wrapping each layer of this organization as an EPNEC is not necessary, and only done
to relate this particular organization to the general organization introduced in Chapter 1.
Variable scopes for this organization are given in Table 6.1.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 81

l Input to ECQPl

1 y1 = []

2 y2 = []

3 y3 = []

...
...

2m y4 = []

2m+1 y5 = []

l Output of ECQPl

1 x1 =
[
x v1:m c1:m

]
2 x2 =

[
x v1:m c1:m

]
3 x3 =

[
x v1:m c1:m

]
4 x4 =

[
x v2:m c2:m

]
5 x5 =

[
x v2:m c2:m

]
...

...

2m x2m =
[
x vm cm

]
2m+1 x2m+1 =

[
x vm cm

]
Table 6.1: Variable scopes for the EPNECs appearing in the general problem of ordered
preference presented in Section 6.2. Here, each layer is independent of all preceding layers,
in that there are no parametric inputs. However, each layer can, in general, affect the entire
vector x, in effect, imposing constraints which the preceding layers must satisfy.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 82

one of the 2m + 1 QPs. A diagram of the organization characteristic of these problems of
ordered preference is shown in Fig. 6.1.

Unfortunately, the properties of the EPNEC arising in this context violate some of the
key assumptions made on problems which enable computation via, for example, Algorithm 4.
Namely, for a given parameter value yl to any EPNECl(yl), any given solution will in general
not be isolated. This prohibits generating a piecewise linear representation of local solutions
to EPNECl. On the contrary, the set of solutions form some convex subset of Rnl for every
choice of yl ∈ Rml . An explicit representation of this convex region can be generated for any
solution (y∗l , x

∗
l). For any local region of the resultant solution set, this set of solutions can

be represented by

R := {x ∈ Rn, y ∈ Rm : Dy + d ≥ 0, Hx+Gy + g = 0}, (6.8)

with rank(H) ≤ n, as opposed to the regions assumed in Chapters 2 and 3,

R := {x, y : Dy + d ≥ 0, x = Ky + k}. (6.9)

The result of this is that the shared variable x is under-specified within this region, and it
is unclear which of the various programs collectively optimizing over x own the unconstrained
degrees of freedom.

Although the general formulation of these problems of ordered preference remain inac-
cessible by the methodologies presented in this dissertation, they serve to motivate future
work to extend those methodologies to be able to handle such types of problem. More on
this topic is discussed in the following chapter.

6.3 Example: Constrained Dynamic Programming

Here, our focus is turned to a special case of a problem with ordered preference, which
arises in the context of constrained dynamic programming for optimal control, wherein at
each stage of the control problem, a potentially over-constrained optimization problem is
encountered. The controlling agent is required to prioritize residual constraint satisfaction,
if possible. Only with any remaining degrees of freedom does the agent optimize for its
objective. Clearly this problem takes the form of a problem of ordered preference. The
context in which this problem arises, and methods for computing solutions are given in what
follows. This section is taken from [149], which is co-authored with Claire Tomlin.

Introduction

Due to its mathematical elegance and wide-ranging usefulness, the Linear Quadratic Reg-
ulator has become perhaps the most widely studied problem in the field of control theory.
Referring to both continuous and discrete-time systems, the LQR problem is that of finding
an infinite or finite-length control sequence for a linear dynamical system that is optimal

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 83

with respect to a quadratic cost function. Either as a stand-alone means for computing tra-
jectories and controllers for linear systems, or as a method for solving successive approximate
trajectories for nonlinear systems, it shows up in one way or another in the computation of
nearly all finite-length trajectory optimization problems.

Because of the importance of trajectory optimization in controlling robotic systems, and
because of the prevalence of the LQR problem in those optimizations, devoting time to highly
efficient methods capable of solving LQR-type problems is an important endeavor. The focus
of this section is on a particular instance of the discrete-time, finite-horizon variant of the
LQR problem, which is subject to linear equality constraints. These constrained problems
are important in their own right, and arise in relatively common situations.

As an example, imagine we want to plan a trajectory that minimizes the amount of energy
needed to get a robot to some desired configuration. If the dynamics of the robot can be
modeled as a linear system, this problem takes the form of linear-equality-constrained LQR.
We can also imagine constraints appearing at multiple stages in the trajectory and having
varying dimensions. Perhaps we require that the center of mass of the robot is constrained
to not move in the first half of the trajectory. Again, this type of constraints typically take
the form of linear equality constraints.

Of course, many robots are many robots have nonlinear dynamics. But even when plan-
ning constrained trajectories for such systems, iterative solution methods such as Sequential
Quadratic Programming make successive local approximations of the trajectory optimization
problem which result in a series of constrained LQR problems to be solved. We will discuss
this relationship in more detail in a later section.

In order to motivate the need for better solutions to this problem, first note that this
type of problem are quadratic programs (QPs). Since the dynamic constraints are linear,
and all auxiliary constraints we consider are also linear, these problems result in QPs just as
unconstrained LQR problems are QPs [32]. Under standard assumptions, the constrained
problems are also strictly convex and each has a unique solution. Unlike unconstrained LQR,
however, the presence of additional constraints cause some computational difficulties.

From a pure optimization standpoint, all of the approaches to solving convex QPs can be
applied to the constrained LQR problem without problem. However, using general methods
in a naive way fails to exploit the unique structure of the optimal control problem, and suffers
a computational complexity which grows cubicly with the time horizon being considered in
the control problem (trajectory length). Due to the sparsity of the problem data in the
time domain, the KKT conditions of optimality for optimal control problems have a banded
nature, and linear algebra packages designed for such systems can be used to solve the
problem in a linear complexity with respect to the trajectory length [269]. However, these
approaches result in what we will call open-loop trajectories, producing only numerical values
of the state and control vectors making up the trajectory.

It is well-known that the unconstrained LQR problem offers a solution based on dynamic
programming which is sometimes referred to as the discrete-time Riccati recursion. This
method can also solve unconstrained LQR problems in linear time complexity while also
providing an affine relationship between the state and control variables. This relationship

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 84

provides a feedback policy which can be used in control, and offers many advantages over
the open-loop variants.

It is because we would like to derive these policies for the constrained case that the
aforementioned computational difficulties show up. The presence of auxiliary constraints
have made it so that up until now, a completely general method for the equality-constrained
LQR problem that is analogous in computation time and solution type (feedback vs. open-
loop) to the Riccati recursion method has not been developed. It is important to note
that many approaches have been developed, but as we will discuss in Section 6.3, they all
have important limitations. The key difficulty of this problem is due to the fact that linear
constraints (of dimension exceeding that of the control input) can not always be thought of
as time-separable. This means that the choice of control at a particular time-point may not
always be able to satisfy a constraint appearing at that time-point (for arbitrary values of
the corresponding state at that time). We will see that this complication requires satisfying
portions of such a constraint at points in time before it actually appears, making dynamic
programming solutions non-trivial. This is why existing methods either make restrictive
assumptions on the dimension of constraints, or require a higher order of computational
complexity to compute solutions than one might expect.

If the problem to be solved does not satisfy the restricting assumptions made by those
methods, solution approaches are therefore limited to QP solvers and only offer open-loop
trajectories, or suffer cubic time-complexity with respect to the trajectory length if control
policies are desired. Given this context, we can now state the contribution of this work:

We present a method for computing constraint-aware feedback control policies for discrete-
time, time-varying, linear-dynamical systems which are optimal with respect to a quadratic
cost function and subject to auxiliary linear equality constraints. This is done by handling
the constraints in a novel way such that a dynamic programming solution can be formulated.
We make no assumptions about the dimension of the constraints, with effective handling of
over-constrained or redundantly constrained problems.

In section 6.3 we discuss in more detail the existing methods which have addressed
the same problem and the corresponding limitations of those works. In section 6.3 we
formally define the problem and present our method. In section 6.3 we discuss computational
complexity, and present an alternative approach to solving the problem. We also demonstrate
some of the advantages of the control policies derived from our method when compared to
the open-loop solutions, and discuss applicability to SQP methods.

Prior Work

Consideration of the constrained linear-quadratic optimal control problem extends back to
the early days in the field of control. Many authors have presented methods for constraining
control systems to a time-invariant linear subspace. The author in [122] studied this issue
for continuous systems under the name subspace stabilization. In the works [107] and [279]
the same problem is addressed by designing pole-assignment controllers. More recently, [207]
utilizes a very similar method to generate a time-varying controller for tracking existing tra-

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 85

jectories. This method is also derived in continuous-time, and hence requires the constraint
dimension to be constant.

The authors in [133] developed a more comprehensive method for computing optimal
control policies for discrete-time, time-varying objective functions, but only consider a single
time-invariant constraint of constant dimension. In [199] a method is presented for solving
continuous- and discrete-time LQR problems with fixed terminal states. This method is
able to reason about a constraint only appearing at the end of the trajectory, but does not
account for additional constraints appearing at other times.

Perhaps the most general method for computing linearly constrained LQR control policies
is presented in [231]. However, this method suffers a computational complexity which scales
cubicly in the worst-case, i.e. when many constraints which have dimension exceeding the
control dimension are present. As a part of the method presented in [273], a technique
for satisfying linear constraints at arbitrary times in the trajectory is presented, but that
method assumes that the constraint dimension does not exceed that of the control. Most
recently, [94] presents a method for solving problems with time-varying constraints, but still
requires that the relative degree of these constraints does not exceed 1. This is a slightly
less restrictive condition than requiring the dimension of the constraints be less than that of
the control, but still limits the applicability of this method.

As mentioned above, the problem can also be solved using numerical linear algebra tech-
niques, as discussed for example in [268] and particularly for the optimal control problem
in [269]. Again, these methods are very general and efficient but fail to produce the desired
feedback control policies.

The method we present combines the desirable properties of all these methods into one.
The contribution of this method is that it is capable of generating optimal feedback control
policies for general, discrete-time, linearly-constrained LQR problems while maintaining a
linear computational complexity with respect to control horizon. To the best of our knowl-
edge, the approach we present is the only method in existence that is capable of this.

Problem and Method

The method we present here is a means of deriving optimal feedback control policies for the
following problem:

min
x0,u0,...,uT−1,xT

costT (xT) +
T−1∑
t=0

costt(xt, ut) (6.10a)

s.t. dynamicst(xt+1, xt, ut) = 0 ∀t ∈ {0, ..., T − 1} (6.10b)

x0 = xinit (6.10c)

constraintt(xt, ut) = 0, ∀t ∈ {0, ..., T − 1} (6.10d)

constraintT (xT) = 0 (6.10e)

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 86

Where xt ∈ Rn, ut ∈ Rm, and the functions

costt : Rn × Rm → R costT : Rn → R
constraintt : Rn × Rm → Rlt constraintT : Rn → RlT

dynamicst : Rn × Rn × Rm → Rn

are defined as:

costt(x, u) =
1

2

1
x
u

ᵀ 0 qᵀx1t qᵀu1t
qx1t Qxxt Qᵀuxt
qu1t Quxt Quut

1
x
u

 (6.11)

costT (x) =
1

2

(
1
x

)ᵀ(
0 qᵀx1T
qx1T QxxT

)(
1
x

)
(6.12)

dynamicst(xt+1, xt, ut) = xt+1 − (Fxtxt + Futut + f1t) (6.13)

constraintt(xt, ut) = Gxtxt +Gutut + g1t (6.14)

constraintT (xT) = GxTxT + g1T , (6.15)

where lt (for 0 ≤ t < T) and lT are the dimensions of the constraints at the corresponding
times.

In the above expressions, and in the rest of this chapter, coefficients are assumed to have
dimension such that the expression makes sense. We assume for now that the coefficient
matrix Quut of the quadratic functions costt is positive-definite, and that Qxxt−QuxtQ

−1
uutQ

ᵀ
uxt

is positive semi-definite. This assumption is possible to relax, and we will discuss this below.

Constrained LQR

The method for computing the constrained control policies will follow a dynamic program-
ming approach. Starting from the end of the trajectory and working towards the beginning,
a given control input ut will be chosen such that for any value of the resulting state xt, the
control will satisfy all constraints imposed at time t, as well as any constraints remaining to
be satisfied in the remainder of the trajectory, if possible.

If the constraint is unable to be satisfied by the control for arbitrary states, the control will
minimize the sum of squared residuals of the constraints. This has the effect of eliminating
r dimensions of the constraint, where r is the rank of the constraint coefficient multiplying
ut. For a trajectory to satisfy the constraint in this case, the state xt must therefore be such
that the constraint residuals will be zero. This can be enforced by passing on a residual
linear constraint to the choice of control at the preceding time, ut−1 (and controls preceding
that, if necessary). If there are degrees of freedom in the control input that do not affect the
constraint, the portion of the control lying in the null-space of the constraint will be chosen
such as to minimize the cost in the remainder of the trajectory. Following this procedure
will result in solutions to problem (6.10), when one exists.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 87

To formalize this procedure, we introduce a time-varying quadratic function, cost to got :
Rn → R, representing the minimum possible cost remaining in the trajectory from stage t
onward as a function of state. Additionally, we introduce a linear function constraint to got :
Rn → Rpt , which defines, through a constraint on xt, the subspace of admissible states such
that the control ut will be able to satisfy the constraints in the remainder of the trajectory.
Here pt is the dimension of constraints needed to enforce this condition. These functions are
defined as follows:

cost to got(x) =
1

2

(
1
x

)ᵀ(
0 vᵀx1t
vx1t Vxxt

)(
1
x

)
(6.16)

constraint to got(x) = Hxtx+ h1t . (6.17)

We initialize these terms at time T :

VxxT = QxxT vx1T = qx1T
HxT = GxT h1T = g1T .

(6.18)

Note that in the value function (6.16) we do not include any constant terms (which would
appear in the top-left block of (6.16)). This is because the calculations we will derive do not
depend on them, and so we omit them for clarity.

Given the above definitions, starting at T − 1 and working backwards to 0, we solve the
following optimization problem for each time t:

u∗t (xt) = arg min
ut

costt(xt, ut) + cost to got+1(xt+1) (6.19a)

s.t. 0 = dynamicst(xt+1, xt, ut) (6.19b)

ut ∈ arg min
u
‖
[

constraintt(xt, u)
constraint to got+1(xt+1)

]
‖2 (6.19c)

To see how a solution to this problem can be found, we first simplify it by using the form
of (6.19b) to eliminate xt+1, and plug in coefficients:

u∗t (xt) = arg min
ut

1

2

 1
xt
ut

ᵀ 0 mᵀx1t mᵀu1t
mx1t Mxxt Mᵀ

uxt

mu1t Muxt Muut

 1
xt
ut

 (6.20a)

s.t. ut ∈ arg min
u
‖Nxtxt +Nutu+ n1t‖2. (6.20b)

Where the above terms are defined as:

mx1t = qx1t + F ᵀxtvx1t+1 mu1t = qu1t + F ᵀutvx1t+1

Mxxt = Qxxt + F ᵀxtVxxt+1Fxt Muut = Quut + F ᵀutVxxt+1Fut

Muxt = Quxt + F ᵀutVxxt+1Fxt Nxt =

(
Gxt

Hxt+1Fxt

)
Nut =

(
Gut

Hxt+1Fut

)
n1t =

(
g1t

Hxt+1f1t + h1t+1

)
.

(6.21)

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 88

Given this form, we can again re-write the problem as an unconstrained optimization
problem, which admits a closed-form solution to u∗t (xt):

y∗t , w
∗
t = arg min

yt,wt

1

2
‖Nxtxt +NutPytyt + n1t‖2+

1

2

 1
xt

Zwtwt

ᵀ 0 mᵀx1t mᵀu1t
mx1t Mxxt Mᵀ

uxt

mu1t Muxt Muut

 1
xt

Zwtwt

 (6.22a)

u∗t = Pyty
∗
t + Zwtw

∗
t (6.22b)

Here, Zwt is chosen such that the columns form an orthonormal basis for the null space of
Nut , and Pyt is chosen such that its columns form a orthonormal basis for the range space of
Nᵀut . Hence Nut and Pyt are also orthogonal and their columns together span Rm [34]. We
can interpret yt as the constrained dimensions of the control, and wt as the free dimensions
of the control. One simple way of computing Pyt and Zwt is to compute the singular-value
decomposition of Nut , and take Pyt to be the first r and Zwt the last (m− r) columns of the
“V” matrix from the SVD of Nut (Nut = USV ᵀ), where r is the rank of Nut .

The solution to (6.22) can now easily be expressed:

y∗t = −(NutPyt)
†(Nxtxt + n1t) (6.23)

w∗t = −(Zᵀwt
MuutZwt)

−1Zᵀwt
(Muxtxt +mu1t). (6.24)

The symbol † in (6.23) indicates the pseudo-inverse. Note that the pseudo-inverse can
always be computed efficiently in this usage1. In the case that Pyt is a zero matrix (i.e.
rank(Nut) = 0), then Zwt = Im (Identity matrix ∈ Rm×m), and yt has dimension 0. Corre-
spondingly, when the nullity of Zwt is 0, we have Pyt = Im and wt has dimension 0. Therefore,
in these cases, we ignore the update that is of size 0, i.e. (6.23) or (6.24). With this in mind,
and combining terms, we can express the control ut in closed-form as an affine function of
the state xt:

u∗t = Kxtxt + k1t (6.25)

Kxt = −
(
Pyt(NutPyt)

†Nxt + Zwt(Z
ᵀ
wt
MuutZwt)

−1Zᵀwt
Muxt

)
(6.26)

k1t = −
(
Pyt(NutPyt)

†n1t + Zwt(Z
ᵀ
wt
MuutZwt)

−1Zᵀwt
mu1t

)
(6.27)

Since the control is a function of the state, we can also express the value of the constraint
residual (6.19c) as a function of the state. We define the function constraint to got to be
this constraint residual. We substitute (6.25, 6.26, 6.27) into (6.20b) to obtain:

constraint to got(xt) =

Nxtxt −NutPyt(NutPyt)
†(Nxtxt + n1t) + n1t

(6.28)

1NutPyt will always be full column rank, so (NutPyt)
† = ((NutPyt)

ᵀ(NutPyt))
−1(NutPyt)

ᵀ.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 89

This results in the update for the terms Hxt and h1t :

Hxt = (I −NutPyt(NutPyt)
†)Nxt (6.29)

h1t = (I −NutPyt(NutPyt)
†)n1t . (6.30)

Here I is the identity matrix having the same leading dimension as Nxt . By observing
these updates, we see that the terms in (6.28) are computed by projecting Nxtxt + n1t into
the kernel of (NutPyt)

ᵀ. Hence, the residual constraint will lie in a subspace of dimension
no larger than the nullity of (NutPyt)

ᵀ. We can therefore remove redundant constraints by
removing linearly-dependent rows of the matrix

[
h1t Hxt

]
, in order to maintain a mini-

mal representation and keep computations small. In general, we will be able to remove r
constraints, where r is the rank of Nut . This can be done by multiplying

[
h1t Hxt

]
by

Uᵀ and deleting the last r rows of the resulting matrix, where U comes from the SVD
USV ᵀ =

[
h1t Hxt

]
.

Note that if h1t is not in the range space of Hxt at any time, then there exists no xt that
can satisfy the constraints, and we have detected that the trajectory optimization problem
(6.10) is infeasible. Otherwise, by enforcing that xt satisfy the constraint Hxtxt + h1t = 0,
the control u∗t will be such that all remaining constraints in the trajectory are satisfied.

We also plug the expression for the control into the objective function of our optimization
problem (6.20a) to obtain an update on our cost to go function as a function of the state
(again, omitting constant terms):

cost to got(xt) =
1

2

 1
xt
u∗t

ᵀ 0 mᵀx1t mᵀu1t
mx1t Mxxt Mᵀ

uxt

mu1t Muxt Muut

 1
xt
u∗t

 (6.31)

=
1

2

(
1
xt

)ᵀ(
0 vᵀx1t
vx1t Vxxt

)(
1
xt

)
, (6.32)

where terms are defined as

Vxxt = Mxxt + 2Mᵀ
uxtKxt +KᵀxtMuutKxt (6.33)

vx1t = mx1t +Kᵀxtmu1t + (Mᵀ
uxt +KᵀxtMuut)k1t . (6.34)

We have now presented updates for the terms Vxxt , vx1t , Hxt , and h1t , and computed
control policy terms Kxt and k1t in the process. Assuming the initial state xinit satisfies
constraint to go0(xinit) = 0, then the sequence of control policies {Kxt , k1t}t∈{0,...,T−1} will
produce, by construction, a sequence of states and controls that are feasible and optimal for
our original problem (6.10).

Analysis

In the preceding section, we have presented a method for computing control policies for the
equality-constrained LQR problem (6.10). In this section we will analyze the method and the
resulting policies by evaluating the computational complexity of the method and by relating
the policies to those that are produced in standard, unconstrained LQR.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 90

Table 6.2: Comparing computation times of constrained and unconstrained LQR problems
between our constrained LQR method (CLQR) and a method using LAPACK to directly
solve the KKT system of equations.

n m T % Constrained LAPACK (s) CLQR (s)
40 10 250 0 0.089 0.031
40 10 250 90 0.095 0.040
40 10 125 90 0.046 0.021
9 2 250 0 0.002 0.004
9 2 250 50 0.002 0.007
9 2 125 50 0.001 0.003

Computation

We mentioned that one of the contributions of this method is its computational efficiency
compared to existing results. Due to the dynamic-programming nature of this method, the
computational time-dependence on trajectory length is linear, irrespective of the dimension
of auxiliary constraints.

In each iteration of the dynamic programming backups, the heavy computations involve
computing the null and range space representations of Nut and Nᵀut , respectively, and then
computing the pseudo-inverse of NutPyt . These operations can all be done by making use of
one singular-value decomposition. The dimension ofNut is no greater than (2n+m)×m where
n is the dimension of the state and m is the dimension of the control signal. Computation
complexity of the SVD is thusO((2n+m)2m+m3) [100]. We also make use of a decomposition
on the terms

[
h1t Hxt

]
to remove redundant constraints, which requires computations on

the order of O(n3). The remaining computations are numerous matrix-matrix products
and matrix-inversions with terms having dimension no larger than 2n + m × n. Thus, the
overall order of the method presented here is O(T (κ1n

3 + κ2n
2m + κ3m

2n + κ4m
3)), where

κ1, κ2, κ3, κ4 are some positive scalars.
Therefore, the method we present here has computational complexity which is roughly

equivalent to known solutions based on using a banded-matrix solver on the system of KKT
conditions [50] [270]. This is not surprising, since our method can be thought of as performing
a specialized block-substitution method on the system of KKT conditions, and hence a spe-
cialized block-substitution solver for the particular structure arising in constrained optimal
control problems.

In Table 6.2 we show a comparison of computation times between our method and the
method ‘DGBTRS’ from the well-known linear algebra package LAPACK [9]. All times
are taken as the minimum over 10 trials, run on a laptop with 2-core 1.7GHz Intel Core
i7-4650U processor. The LAPACK method performs Gaussian elimination on the banded
KKT system of equations, using a standard BLAS library [155]. We make this comparison

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 91

for varying problem sizes and percentage of the number of independent constraints relative
to the total number of degrees of freedom in the problem. For problems of relatively small
size, we see that LAPACK offers superior speed, even in the standard unconstrained LQR
case. However, as the problem size grows, we see that our method quickly becomes more
efficient than the LAPACK solution.

Infinite Penalty Perspective

We here consider an alternative way to solve (6.10), the quadratic penalty approach. It
is known that we can solve equality-constrained quadratic programs by solving an uncon-
strained problem, where the linear constraint terms are penalized in the objective as an
infinitely weighted cost on the sum of squared constraint residuals [28]. Therefore, in light
of our original problem (6.10), we could penalize the constraints (6.10d) and (6.10e) in this
way, which would result in a standard (from a structural standpoint) LQR problem, where
some of the cost terms are weighted infinitely high. The resulting problem would appear as

min
u0,...,uT−1

constraint penalized costT (xT) + (6.35a)

T−1∑
t=0

constraint penalized costt(xt, ut) (6.35b)

s.t. dynamicst(xt+1, xt, ut) = 0 ∀t ∈ {0, ..., T − 1} (6.35c)

x0 = xinit. (6.35d)

Here the modified cost functions are defined as

constraint penalized costt(x, u) =

costt(x, u) +
1

ε
‖constraintt(x, u)‖22

(6.36)

constraint penalized costT (x) =

costT (x) +
1

ε
‖constraintT (x)‖22.

(6.37)

Reiterating, if ε→ 0+, problem (6.35) converges to problem (6.10) [28]. However in practice,
we cannot penalize the constraint terms by infinity (by letting ε→ 0+), but it may suffice to
penalize the constraints by some very large constant. Because the optimal control problems
we typically solve are based on approximate models of systems, solving an ‘approximately’
constrained system may sometimes be adequate. In these cases, one could consider solving
the unconstrained penalized problem (6.35). The necessary computation for its solution is
slightly less than the approach developed in section 6.3, as was shown in Table 6.2.

We illustrate this relationship between the two methods using a very simple example.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
1

Epsilon:2
-32

Epsilon:2
-33

Epsilon:2
-34

Epsilon:2
-35

Epsilon:2
-36

Epsilon:2
-37

Constrained

Figure 6.2: Limiting behavior of the penalty approach for problem (6.38).

Consider the constrained LQR problem for a discrete-time double integrator below:

min
u0,...,uT−1

T−1∑
t=0

‖ut‖22 (6.38a)

s.t. xt+1 =

[
1 dt
0 1

]
xt +

[
0
dt

]
ut (6.38b)

x0 =
[
1 1

]ᵀ
(6.38c)

xT/2 =
[
−1 −1

]ᵀ
(6.38d)

xT =
[
0 0

]ᵀ
(6.38e)

For this example, we let dt = 0.01 and T = 100 to simulate a one second trajectory. In
Figure 6.2, trajectories of the first element of xt can be seen for the solution to the explicitly
constrained formulation as well as solutions computed using the penalty formulation (6.35)
for varying values of ε. As can be seen, as ε → 0+, the solutions of the penalty method
converge to that of the explicitly constrained method.

While this simpler approach might seem an enticing alternative to the approach outlined
in section 6.3, we maintain that our method which handles constraints explicitly is still
important. Our method ensures the optimal solution without guessing a sufficient value of ε.
In applications where correct solutions are needed, such as using this method in the context
of an SQP approach (discussed more below), iteratively updating the penalty parameter

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-2

-1

0

1

2

3

4

5

6

7

x
1

Penalty (2
32

) Closed Loop
Constrained Closed Loop

Constrained Open Loop

Constrained No Disturbance

Figure 6.3: Robust constraint satisfaction for problem (6.38) subject to additive input noise.

until acceptable constraint satisfaction might be much slower than computing the analytic
solution from the start.

Disturbance Rejection

Another benefit of the control policies we have generated is in robustly satisfying constraints.
Consider again the example (6.38). Let us compare the performance of executing the open-
loop control signal as would be generated when using a Gaussian elimination technique as
discussed above, compared to executing the constrained feedback policies, in the presence of
unforeseen disturbances. In Figure 6.3, we see the comparison of the open loop control policy
compared to the feedback policy when executed on a ‘true’ system with dynamics when the
input ut is corrupted by unit Gaussian noise (ut ∼ N (0, 1)). We see (as would be expected)
that the open loop signal strays far from satisfying either of the equality constraints (6.38d)
and (6.38e), where as by using the constrained feedback policies, they are still nearly satisfied.
This is a purely empirical argument, but demonstrates a simple case in which the benefits of
the generated control policies are seen. More in-depth analysis of the robustness properties
of constraint-aware feedback policies can be seen in [133] for a time-invariant constraint, and
a similar analysis could be done for the general constraint policies presented here, but is left
for future work.

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 94

Application to Sequential Quadratic Programming

Due to the generality and computational efficiency of our method, we believe it is well-suited
for algorithms for solving more complicated optimal control problems. In particular, consider
the more general version of problem (6.10) where the cost functions might be non-quadratic
or even non-convex, and the dynamic and auxiliary constraints might be non-linear. In
this general form, computing solutions requires a non-convex optimization method. One
prominent method for solving these types of problem is Sequential Quadratic Programming
(SQP). A in-depth overview SQP methods can be found in [28] or [268].

When using an SQP approach to solving a non-convex version of (6.10), Newton’s method
is used to solve the KKT conditions of the problem [268]. Each iteration of Newton’s method
results in a linearly-constrained LQR problem, of which the solution provides an update to
the solution of the non-convex problem. Therefore, because this procedure requires solving
many constrained LQR problems, having an efficient means of computing the solutions to
those subproblems is critical for an efficient solution to the non-convex problem.

If the solutions of constrained LQR subproblems generated in an SQP are only used as
updates in an iterative procedure for generating a trajectory, it may seem unnecessary to
generate feedback policies and an open-loop solution based approach might suffice. However,
there has been much research into the advantages of shooting type methods for unconstrained
variants of the nonlinear optimal control problem, such as in Differential Dynamic Program-
ming [117]. These methods generate iterates by applying the open-loop controls updates on
the nonlinear system dynamics, in effect projecting the iterate onto the manifold of dynami-
cally feasible trajectories. A recent exploration into the benefits of these type of methods [95]
has shown that generating iterates in this way can lead to improved rate of convergence of
trajectories to solutions of the non-convex problem, but sometimes suffer instabilities when
the underlying system dynamics are unstable. Using the feedback control policies to update
the control signal as the nonlinear system trajectory diverges from the linear system tra-
jectory such as in [230] and [157] can mitigate this instability while maintaining enhanced
convergence properties.

Because our method is highly efficient, and because it can handle arbitrary constraints
without making any assumptions about linear dependence or dimension, it is an excellent
candidate for use in SQP algorithms for trajectory optimization. Therefore, using our method
to compute solutions to sub-problems would be no worse than using a direct method in terms
of versatility and computation time, and the feedback policies could potentially improve
convergence as discussed in [95] and [94]. An in-depth analysis of how and when these
policies can aid in convergence would be interesting, but is left for future work.

Conclusion

In summary, we have presented a method for computing feedback control policies for the
general equality-constrained LQR problem. The method presented has a computational
complexity that scales linearly with respect to the trajectory length. We demonstrated that

CHAPTER 6. PROBLEMS OF ORDERED PREFERENCE 95

in practice the computation of such policies is on the order of the fastest existing methods.
We also showed that the control policies generated are useful in contexts of robustly satisfying
constraints, and offered perspective on the use of our method in contexts of solving general
trajectory optimization problems.

96

Chapter 7

Conclusions and Future Work

The contents of this dissertation have introduced a class of connected optimization problems
(EPNECs), for which analysis and computational methods were developed. These results
were applied to the context of a handful of problems arising in the context of autonomous
system design, namely that of game-theoretic motion planing for autonomous vehicles, and
solving optimization problems with ordered preferences.

The methodologies presented here apply more broadly to many other problems which
could not be covered in this work. For example, problems ranging from motion planning
through contact, to mechanism design and inverse game theory problems, to geometric prob-
lems with set-based constraints, all can be cast as EPNECs. Going forward, it will be of
great interest to apply these techniques to those problems. Already, the work that has
been developed here has enabled the computation to a wide range of problems which were
previously inaccessible by existing approaches.

Regarding the methodologies themselves, in preceding chapters, particularly in Chapter 6,
reference was made to some avenues for future work in this area. In what follows, three such
avenues of future research are proposed and discussed.

7.1 Existence and Solvability

In chapters 2 and 3, some sufficient conditions were laid out for equilibrium problems with
nested equilibrium constraints to have solutions. These conditions relied on a local piecewise
linear representation of the equilibrium constraints, and then leveraged standard methods
for determining whether solutions are guaranteed to exist to equilibrium problems with a
local linear representation of the equilibrium constraints. Two approaches for establishing
the guaranteed existence were proposed, one based on formulating the problem as a LCP
and using corresponding existence theorems, or using general fixed-point arguments.

The problem with the LCP approach is that often existence theorems in the LCP liter-
ature covered in the references here focus on proving existence for any “q”. In the case of
the equilibrium problems of concern in this dissertation, we often do not care about proving

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 97

existence for any q vector, but those lying in particular subspaces. Therefore often the LCP
existence theorems are too general and therefore restrictive for our purposes.

On the contrary, the fixed point arguments are also often more general than needed
for our purposes. Those arguments fail to exploit the linear structure of the equilibrium
problems considered here.

It would be of strong interest to develop both non-trivial necessary conditions, as well
as less restrictive sufficient conditions, for an equilibrium solution to exist to the EPNECs
presented in this work. For most practical problems, it cannot be predicted with the current
tools whether or not equilibrium solutions exist. Solutions can only be attempted to found
using computational search procedures such as Algorithm 4.

On that note, it would be of great interest to be able to characterize the class of EPNECs
such that Algorithm 4 is guaranteed to find solutions, if one exists. This would bestow greater
confidence in the method by practitioners and widen its reach.

7.2 Unconstrained Shared Variables

One particular problem of great importance is that of shared control of decision variables.
Consider as an example, a simple two-player game in which both players attempt to optimize
over some shared variable x ∈ Rn :

QP1 := arg min
x ∈ Rn

xᵀ(
1

2
Q1x+ q1) (7.1a)

subject to A1x+ b1 ≥ 0 (7.1b)

QP2 := arg min
x ∈ Rn

xᵀ(
1

2
Q2x+ q2) (7.2a)

subject to A2x+ b2 ≥ 0 (7.2b)

In the programs (7.1, 7.2), the entire variable x is optimized over by both players. When
both programs are strictly convex, there exists a unique solution for both programs, which in
general will be different. Therefore the concatenated necessary conditions of optimality for
both players forms an over-constrained system, and it is not possible to find a solution which
is optimal for both players. Instead, some kind of fairness constraint must be imposed upon
the players, such that the loss each player experiences for having to play fair is equivalent.

One possible approach to this type of problem could be to have the deviation of cost for
each player from their optimal value be equivalent:

(x∗s − x∗1)ᵀ(
1

2
Q1(x

∗
s − x∗1) + q1) = (x∗s − x∗2)ᵀ(

1

2
Q2(x

∗
s − x∗2) + q2), (7.3)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 98

where x∗1 solves QP1, x
∗
2 solves QP2, and x∗s satisfies (7.1b,7.2b). Finding x∗s results

in a feasibility problem with quadratic equality constraints, and therefore is a non-convex
problem. There are other reasons this formulation is not ideal, such as that it requires
handling a quadratic equality constraint, which is something not required by either of the
problems QP1 or QP2.

The development of a formulation which warrants both intuitive meaning for real-world
problems (i.e. the solution does in fact constitute some notion of fairness), and also is
amenable to computational solution approaches would have wide-ranging applicability. One
such case in which such a development would be advantageous is described in the next
section.

7.3 Equilibrium Problems with Nested, Non-Isolated

Equilibrium Constraints

In Chapter 6, it was discussed that Algorithm 4 (and Algorithm 5) are not meaningful if
the equilibrium points satisfying any of the equilibrium constraints in an L-layer EPNEC
are non-isolated, meaning there exist a continuum of solutions satisfying the constraint at
some input parameter. The major problem associated with non-isolated solutions is that a
piecewise linear representation of the mapping is no longer possible — in fact, the solution is
impossible to represent as a function because the solution space of the equilibrium problem is
locally a set-valued mapping. In the context of Problems of Ordered Preference, where each
layer of the EPNEC is only a single optimization problem, presumably Algorithm 4 could
be extended to allow the variables xl+1 at layer l to be under specified. However, when each
layer of the EPNEC contains multiple optimization problems, this issue of under-specified
shared variables discussed in the preceding section arises.

Resolving this issue and using it to extend Algorithm 4 to handle these under-constrained
shared variables arising in the presence of non-isolated equilibria would greatly expand the
applicability of the method. Specifically, some of the strict requirements on equilibria be-
ing isolated would no longer be necessary. This would apply to, for example, each of the
connected optimization problems to be linear programs instead of quadratic programs.

99

Bibliography

[1] Joshua Achiam et al. “Constrained Policy Optimization”. In: International Confer-
ence on Machine Learning. 2017, pp. 22–31.

[2] Ali Ahmadzadeh et al. “Multi-vehicle path planning in dynamically changing envi-
ronments”. In: International Conference on Robotics and Automation. IEEE. 2009,
pp. 2449–2454.

[3] Anayo K Akametalu et al. “A minimum discounted reward hamilton-jacobi formula-
tion for computing reachable sets”. In: arXiv preprint arXiv:1809.00706 (2018).

[4] Anayo K Akametalu et al. “Reachability-based safe learning with Gaussian processes.”
In: 53rd Conference on Decision and Control (CDC). Citeseer. 2014, pp. 1424–1431.

[5] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control. Vol. 26. Birkhäuser,
2012.

[6] Matthias Althoff and John M Dolan. “Set-based computation of vehicle behaviors for
the online verification of autonomous vehicles”. In: Intelligent Transportation Systems
(ITSC). IEEE. 2011, pp. 1162–1167.

[7] Matthias Althoff and Bruce H Krogh. “Zonotope bundles for the efficient computa-
tion of reachable sets”. In: 2011 50th IEEE conference on decision and control and
European control conference. IEEE. 2011, pp. 6814–6821.

[8] Heni Ben Amor et al. “Interaction primitives for human-robot cooperation tasks”. In:
International Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 2831–
2837.

[9] E. Anderson et al. LAPACK Users’ Guide. Third. Philadelphia, PA: Society for In-
dustrial and Applied Mathematics, 1999. isbn: 0-89871-447-8 (paperback).

[10] Georges S Aoude et al. “Probabilistically safe motion planning to avoid dynamic ob-
stacles with uncertain motion patterns”. In: Autonomous Robots 35.1 (2013), pp. 51–
76.

[11] Peter Arbenz et al. “A comparison of parallel solvers for diagonally dominant and gen-
eral narrow-banded linear systems”. In: Parallel and Distributed Computing Practices
(PCDP) 2000. Citeseer. 1999.

BIBLIOGRAPHY 100

[12] Haoyu Bai et al. “Intention-aware online POMDP planning for autonomous driving in
a crowd”. In: International Conference on Robotics and Automation (ICRA). IEEE.
2015, pp. 454–460.

[13] Andrea Bajcsy et al. “A Scalable Framework For Real-Time Multi-Robot, Multi-
Human Collision Avoidance”. In: arXiv preprint arXiv:1811.05929 (2018).

[14] Chris L Baker, Joshua B Tenenbaum, and Rebecca R Saxe. “Goal inference as inverse
planning”. In: Proceedings of the Annual Meeting of the Cognitive Science Society.
Vol. 29. 2007.

[15] Tirthankar Bandyopadhyay et al. “Intention-aware motion planning”. In: Algorithmic
Foundations of Robotics X. Springer, 2013, pp. 475–491.

[16] Somil Bansal et al. “Hamilton-Jacobi Reachability: A Brief Overview and Recent
Advances”. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE. 2017, pp. 2242–2253.

[17] Somil Bansal et al. “Safe sequential path planning of multi-vehicle systems under
presence of disturbances and imperfect information”. In: Proc. Amer. Control Conf.
2017, pp. 1–8.

[18] Tamer Başar and Geert Jan Olsder. Dynamic Noncooperative Game Theory. 2nd.
Vol. 23. SIAM, 1999.

[19] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM,
1998.

[20] Randal W Beard and Timothy W McLain. “Multiple UAV cooperative search under
collision avoidance and limited range communication constraints”. In: 42nd Confer-
ence on Decision and Control (CDC). Vol. 1. IEEE. 2003, pp. 25–30.

[21] Kostas E Bekris and Lydia E Kavraki. “Greedy but safe replanning under kinody-
namic constraints”. In: Robotics and Automation, 2007 IEEE International Confer-
ence on. IEEE. 2007, pp. 704–710.

[22] Fethi Belkhouche. “Reactive path planning in a dynamic environment”. In: IEEE
Transactions on Robotics 25.4 (2009), pp. 902–911.

[23] Richard Bellman. Dynamic programming. Tech. rep. RAND CORP SANTA MONICA
CA, 1956.

[24] John S Bellmgham et al. “Cooperative path planning for multiple UAVs in dynamic
and uncertain environments”. In: Proc. of IEEE (2002), pp. 2816–2822.

[25] Peter Benner, Enrique S Quintana-Orti, and Gregorio Quintana-Orti. “Solving linear-
quadratic optimal control problems on parallel computers”. In: Optimisation Methods
& Software 23.6 (2008), pp. 879–909.

[26] Jur van den Berg. “Iterated LQR smoothing for locally-optimal feedback control of
systems with non-linear dynamics and non-quadratic cost”. In: American Control
Conference (ACC). IEEE. 2014, pp. 1912–1918.

BIBLIOGRAPHY 101

[27] Felix Berkenkamp et al. “Safe model-based reinforcement learning with stability guar-
antees”. In: Advances in Neural Information Processing Systems. 2017, pp. 908–918.

[28] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[29] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Vol. 5.
Athena Scientific Belmont, MA, 1996.

[30] L Susan Blackford et al. ScaLAPACK users’ guide. SIAM, 1997.

[31] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[32] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[33] Cynthia Breazeal, Jesse Gray, and Matt Berlin. “An embodied cognition approach
to mindreading skills for socially intelligent robots”. In: The International Journal of
Robotics Research 28.5 (2009), pp. 656–680.

[34] Frank M Callier and Charles A Desoer. Linear system theory. Springer Science &
Business Media, 2012.

[35] Mark Cannon, Weiheng Liao, and Basil Kouvaritakis. “Efficient MPC optimization
using Pontryagin’s minimum principle”. In: International Journal of Robust and Non-
linear Control 18.8 (2008), pp. 831–844.

[36] Nilanjan Chakraborty et al. “An Implicit Time-Stepping Method for Multibody Sys-
tems with Intermittent Contact.” In: Robotics: Science and Systems. 2007.

[37] Georgios C Chasparis and Jeff S Shamma. “Linear-programming-based multi-vehicle
path planning with adversaries”. In: American Control Conference (ACC). IEEE.
2005, pp. 1072–1077.

[38] Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. “Constrained iterative LQR for
on-road autonomous driving motion planning”. In: International Conference on In-
telligent Transportation Systems (ITSC). IEEE. 2017, pp. 1–7.

[39] Mo Chen, Sylvia Herbert, and Claire J Tomlin. “Fast reachable set approximations
via state decoupling disturbances”. In: 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE. 2016, pp. 191–196.

[40] Mo Chen, Jennifer C Shih, and Claire J Tomlin. “Multi-vehicle collision avoidance via
hamilton-jacobi reachability and mixed integer programming”. In: 55th Conference
on Decision and Control (CDC). IEEE. 2016, pp. 1695–1700.

[41] Mo Chen et al. “Decomposition of reachable sets and tubes for a class of nonlinear
systems”. In: Transactions on Automatic Control 63.11 (2018), pp. 3675–3688.

[42] Mo Chen et al. “Robust sequential path planning under disturbances and adversarial
intruder”. In: arXiv preprint arXiv:1611.08364 (2016).

BIBLIOGRAPHY 102

[43] Mo Chen et al. “Safe sequential path planning of multi-vehicle systems via double-
obstacle Hamilton-Jacobi-Isaacs variational inequality”. In: 2015 European Control
Conference (ECC). IEEE. 2015, pp. 3304–3309.

[44] Glen Chou, Necmiye Ozay, and Dmitry Berenson. “Learning constraints from locally-
optimal demonstrations under cost function uncertainty”. In: IEEE Robotics and Au-
tomation Letters 5.2 (2020), pp. 3682–3690.

[45] Yinlam Chow et al. “A Lyapunov-based Approach to Safe Reinforcement Learning”.
In: Advances in neural information processing systems. 2018.

[46] Yao-Li Chuang et al. “Multi-vehicle flocking: scalability of cooperative control algo-
rithms using pairwise potentials”. In: Robotics and Automation, 2007 IEEE Interna-
tional Conference on. IEEE. 2007, pp. 2292–2299.

[47] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “ALGAMES: A fast
solver for constrained dynamic games”. In: arXiv preprint arXiv:1910.09713 (2019).

[48] Richard W Cottle, Jong-Shi Pang, and Richard E Stone. The linear complementarity
problem. SIAM, 2009.

[49] Navid Dadkhah and Bérénice Mettler. “Survey of motion planning literature in the
presence of uncertainty: Considerations for UAV guidance”. In: Journal of Intelligent
& Robotic Systems 65.1-4 (2012), pp. 233–246.

[50] James W Demmel. Applied numerical linear algebra. Vol. 56. Siam, 1997.

[51] Bolei Di and Andrew Lamperski. “Local First-Order Algorithms for Constrained Non-
linear Dynamic Games”. In: 2020 American Control Conference (ACC). IEEE. 2020,
pp. 5358–5363.

[52] Bolei Di and Andrew Lamperski. “Newton’s Method and Differential Dynamic Pro-
gramming for Unconstrained Nonlinear Dynamic Games”. In: 2019 IEEE 58th Con-
ference on Decision and Control (CDC). IEEE. 2019, pp. 4073–4078.

[53] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. “Efficient numerical meth-
ods for nonlinear MPC and moving horizon estimation”. In: Nonlinear model predic-
tive control. Springer, 2009, pp. 391–417.

[54] Moritz Diehl et al. “Fast direct multiple shooting algorithms for optimal robot con-
trol”. In: Fast motions in biomechanics and robotics. Springer, 2006, pp. 65–93.

[55] Hao Ding et al. “Human arm motion modeling and long-term prediction for safe
and efficient human-robot-interaction”. In: International Conference on Robotics and
Automation (ICRA). IEEE. 2011, pp. 5875–5880.

[56] Jerry Ding et al. “Reachability calculations for automated aerial refueling”. In: 47th
Conference on Decision and Control (CDC). IEEE. 2008, pp. 3706–3712.

[57] Steven P Dirkse and Michael C Ferris. “The path solver: a nommonotone stabilization
scheme for mixed complementarity problems”. In: Optimization methods and software
5.2 (1995), pp. 123–156.

BIBLIOGRAPHY 103

[58] Badis Djeridane and John Lygeros. “Neural approximation of PDE solutions: An ap-
plication to reachability computations”. In: 45th Conference on Decision and Control
(CDC). IEEE. 2006, pp. 3034–3039.

[59] Engelbert Dockner, Gustav Feichtinger, and Steffen Jørgensen. “Tractable classes of
nonzero-sum open-loop Nash differential games: theory and examples”. In: Journal
of Optimization Theory and Applications 45.2 (1985), pp. 179–197.

[60] Jack J Dongarra and Lennart Johnsson. “Solving banded systems on a parallel pro-
cessor”. In: Parallel Computing 5.1-2 (1987), pp. 219–246.

[61] Anca D Dragan and Siddhartha S Srinivasa. Formalizing assistive teleoperation. MIT
Press, July, 2012.

[62] Axel Dreves et al. “On the solution of the KKT conditions of generalized Nash equi-
librium problems”. In: SIAM Journal on Optimization 21.3 (2011), pp. 1082–1108.

[63] Noel E Du Toit and Joel W Burdick. “Robot motion planning in dynamic, uncertain
environments”. In: Transactions on Robotics 28.1 (2012), pp. 101–115.

[64] Noel E Du Toit and Joel W Burdick. “Robot motion planning in dynamic, uncertain
environments”. In: IEEE Transactions on Robotics 28.1 (2012), pp. 101–115.

[65] Joseph C Dunn and Dimitri P Bertsekas. “Efficient dynamic programming implemen-
tations of Newton’s method for unconstrained optimal control problems”. In: Journal
of Optimization Theory and Applications 63.1 (1989), pp. 23–38.

[66] Christophe Dutang. “Existence theorems for generalized Nash equilibrium problems:
An analysis of assumptions”. In: Journal of Nonlinear Analysis and Optimization 4.2
(2013), pp. 115–126.

[67] L. C. Evans and P. E. Souganidis. “Differential games and representation formulas for
solutions of Hamilton-Jacobi-Isaacs equations”. In: Indiana University mathematics
journal 33.5 (1984), pp. 773–797.

[68] L. C. Evans and P. E. Souganidis. “Differential games and representation formulas for
solutions of Hamilton-Jacobi-Isaacs equations”. In: Indiana University mathematics
journal 33.5 (1984), pp. 773–797.

[69] Lawrence C Evans and Panagiotis E Souganidis. Differential Games and Representa-
tion Formulas for Solutions of Hamilton-Jacobi-Isaacs Equations. Tech. rep. Wiscon-
sin University Mathematics Research Center, 1983.

[70] Francisco Facchinei, Andreas Fischer, and Veronica Piccialli. “Generalized Nash equi-
librium problems and Newton methods”. In: Mathematical Programming 117.1-2
(2009), pp. 163–194.

[71] Francisco Facchinei and Christian Kanzow. “Generalized Nash equilibrium problems”.
In: Annals of Operations Research 175.1 (2010), pp. 177–211.

[72] Farbod Farshidian and J. Buchli. “Chance-Constrained Optimal Covariance Steering
with Iterative Risk Allocation”. In: ArXiv abs/1512.07173 (2015).

BIBLIOGRAPHY 104

[73] Farbod Farshidian and J. Buchli. “Risk Sensitive, Nonlinear Optimal Control: Itera-
tive Linear Exponential-Quadratic Optimal Control with Gaussian Noise”. In: ArXiv
abs/1512.07173 (2015).

[74] Farbod Farshidian et al. “Real-time motion planning of legged robots: A model pre-
dictive control approach”. In: arXiv preprint arXiv:1710.04029 (2017).

[75] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep inverse
optimal control via policy optimization”. In: International Conference on Machine
Learning. 2016, pp. 49–58.

[76] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using ve-
locity obstacles”. In: The International Journal of Robotics Research 17.7 (1998),
pp. 760–772.

[77] Jaime F Fisac and S Shankar Sastry. “The pursuit-evasion-defense differential game
in dynamic constrained environments”. In: 54th Conference on Decision and Control
(CDC). IEEE. 2015, pp. 4549–4556.

[78] Jaime F Fisac et al. “Hierarchical game-theoretic planning for autonomous vehi-
cles”. In: International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp. 9590–9596.

[79] Jaime F Fisac et al. “Probabilistically Safe Robot Planning with Confidence-Based
Human Predictions”. In: Robotics: Science & Systems. 2018.

[80] Jaime F Fisac et al. “Reach-avoid problems with time-varying dynamics, targets and
constraints”. In: Proceedings of the 18th international conference on hybrid systems:
computation and control. 2015, pp. 11–20.

[81] Jaime F. Fisac* et al. “A general safety framework for learning-based control in
uncertain robotic systems”. In: IEEE Transactions on Automatic Control (2018).

[82] Thierry Fraichard and Hajime Asama. “Inevitable collision states: A step towards
safer robots?” In: Advanced Robotics 18.10 (2004), pp. 1001–1024.

[83] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Real-time motion planning
for agile autonomous vehicles”. In: Journal of guidance, control, and dynamics 25.1
(2002), pp. 116–129.

[84] Goran Frehse et al. “SpaceEx: Scalable verification of hybrid systems”. In: Interna-
tional Conference on Computer Aided Verification. Springer. 2011, pp. 379–395.

[85] David Fridovich-Keil, Jaime F Fisac, and Claire J Tomlin. “Safely probabilistically
complete real-time planning and exploration in unknown environments”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 7470–
7476.

BIBLIOGRAPHY 105

[86] David Fridovich-Keil, Vicenc Rubies-Royo, and Claire J Tomlin. “An iterative quadratic
method for general-sum differential games with feedback linearizable dynamics”. In:
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 2216–2222.

[87] David Fridovich-Keil et al. “Confidence-aware motion prediction for real-time collision
avoidance”. In: The International Journal of Robotics Research 39.2-3 (2019), pp. 250–
265.

[88] David Fridovich-Keil et al. “Efficient iterative linear-quadratic approximations for
nonlinear multi-player general-sum differential games”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 1475–1481.

[89] David Fridovich-Keil et al. “Efficient iterative linear-quadratic approximations for
nonlinear multi-player general-sum differential games”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 1475–1481.

[90] David Fridovich-Keil* et al. “Planning, Fast and Slow: A Framework for Adaptive
Real-Time Safe Trajectory Planning.” In: International Conference on Robotics and
Automation (ICRA) (2018).

[91] Gianluca Frison and John Bagterp Jørgensen. “Algorithms and methods for high-
performance model predictive control”. In: (2016).

[92] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. “Batch in-
formed trees (BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs”. In: International Conference on Robotics
and Automation (ICRA). IEEE. 2015, pp. 3067–3074.

[93] Eloy Garcia, David W Casbeer, and Meir Pachter. “Design and analysis of state-
feedback optimal strategies for the differential game of active defense”. In: IEEE
Transactions on Automatic Control 64.2 (2019), pp. 553–568.

[94] Markus Giftthaler and Jonas Buchli. “A projection approach to equality constrained
iterative linear quadratic optimal control”. In: Humanoid Robotics (Humanoids), 2017
IEEE-RAS 17th International Conference on. IEEE. 2017, pp. 61–66.

[95] Markus Giftthaler et al. “A Family of Iterative Gauss-Newton Shooting Methods for
Nonlinear Optimal Control”. In: arXiv preprint arXiv:1711.11006 (2017).

[96] Philip E. Gill, Walter Murray, and Michael A. Saunders. “SNOPT: An SQP algorithm
for large-scale constrained optimization”. In: SIAM Rev. 47 (2005), pp. 99–131.

[97] Philip E. Gill et al. User’s Guide for SNOPT 7.6: Software for Large-Scale Nonlinear
Programming. Center for Computational Mathematics Report CCoM 17-1. La Jolla,
CA: Department of Mathematics, University of California, San Diego, 2017.

[98] Philip E. Gill et al. User’s Guide for SNOPT 7.7: Software for Large-Scale Nonlinear
Programming. Center for Computational Mathematics Report CCoM 18-1. La Jolla,
CA: Department of Mathematics, University of California, San Diego, 2018.

BIBLIOGRAPHY 106

[99] Rafal Goebel and Maxim Subbotin. “Continuous time constrained linear quadratic
regulator-convex duality approach”. In: American Control Conference, 2005. Proceed-
ings of the 2005. IEEE. 2005, pp. 1401–1406.

[100] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins Series
in the Mathematical Sciences 3. The Johns Hopkins University Press, 1989.

[101] Michael Green and David JN Limebeer. Linear robust control. Courier Corporation,
2012.

[102] Mark R Greenstreet and Ian Mitchell. “Reachability analysis using polygonal pro-
jections”. In: International Workshop on Hybrid Systems: Computation and Control.
Springer. 1999, pp. 103–116.

[103] Peng Hang et al. “An Integrated Framework of Decision Making and Motion Planning
for Autonomous Vehicles Considering Social Behaviors”. In: IEEE Transactions on
Vehicular Technology (2020).

[104] Jason Hardy and Mark Campbell. “Contingency planning over probabilistic obstacle
predictions for autonomous road vehicles”. In: IEEE Transactions on Robotics 29.4
(2013), pp. 913–929.

[105] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic
determination of minimum cost paths”. In: Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107.

[106] Kelsey P Hawkins et al. “Probabilistic human action prediction and wait-sensitive
planning for responsive human-robot collaboration”. In: Humanoid Robots (Humanoids),
2013 13th IEEE-RAS International Conference on. IEEE. 2013, pp. 499–506.

[107] Hooshang Hemami and B t Wyman. “Modeling and control of constrained dynamic
systems with application to biped locomotion in the frontal plane”. In: IEEE Trans-
actions on Automatic Control 24.4 (1979), pp. 526–535.

[108] Sylvia L. Herbert* et al. “FaSTrack: a Modular Framework for Fast and Guaranteed
Safe Motion Planning”. In: 56th Conference on Decision and Control (CDC) (2017).

[109] Jorge Herrera de la Cruz, Benjamin Ivorra, and Ángel M Ramos. “An Algorithm for
Solving a Class of Multiplayer Feedback-Nash Differential Games”. In: Mathematical
Problems in Engineering 2019 (2019).

[110] Saif A Al-Hiddabi. “Quadrotor control using feedback linearization with dynamic ex-
tension”. In: 2009 6th International Symposium on Mechatronics and its Applications.
IEEE. 2009, pp. 1–3.

[111] John R Hoare and Lynne E Parker. “Using on-line conditional random fields to de-
termine human intent for peer-to-peer human robot teaming”. In: Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE. 2010,
pp. 4914–4921.

BIBLIOGRAPHY 107

[112] Gabriel M Hoffmann and Claire J Tomlin. “Decentralized cooperative collision avoid-
ance for acceleration constrained vehicles”. In: 47th Conference on Decision and Con-
trol (CDC). IEEE. 2008, pp. 4357–4363.

[113] Maxime Hubert et al. “Bouncing dynamics of a spring”. In: Physica D: Nonlinear
Phenomena 272 (2014), pp. 1–7.

[114] Rufus Isaacs. Differential games: a mathematical theory with applications to warfare
and pursuit, control and optimization. Courier Corporation, 1999.

[115] Rufus Isaacs. Games of pursuit. Tech. rep. Rand Corporation, 1951.

[116] Boris Ivanovic and Marco Pavone. “The Trajectron: Probabilistic multi-agent tra-
jectory modeling with dynamic spatiotemporal graphs”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 2375–2384.

[117] David H Jacobson and David Q Mayne. “Differential dynamic programming”. In:
(1970).

[118] J Ye Jane. “Constraint qualifications and optimality conditions in bilevel optimiza-
tion”. In: Bilevel Optimization. Springer, 2020, pp. 227–251.

[119] Lucas Janson, Tommy Hu, and Marco Pavone. “Safe Motion Planning in Unknown
Environments: Optimality Benchmarks and Tractable Policies”. In: Robotics: Science
& Systems. 2018.

[120] Shervin Javdani, Siddhartha S Srinivasa, and J Andrew Bagnell. “Shared autonomy
via hindsight optimization”. In: arXiv preprint arXiv:1503.07619 (2015).

[121] Houyuan Jiang and Daniel Ralph. “QPECgen, a MATLAB generator for mathemati-
cal programs with quadratic objectives and affine variational inequality constraints”.
In: Computational Optimization and Applications 13.1-3 (1999), pp. 25–59.

[122] CD Johnson. “Stabilization of linear dynamical systems with respect to arbitrary
linear subspaces”. In: Journal of Mathematical Analysis and Applications 44.1 (1973),
pp. 175–186.

[123] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforcement
learning: A survey”. In: Journal of Artificial Intelligence Research 4 (1996), pp. 237–
285.

[124] Rudolf Emil Kalman et al. “Contributions to the theory of optimal control”. In: Bol.
Soc. Mat. Mexicana 5.2 (1960), pp. 102–119.

[125] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: International Journal of Robotics Research 30.7 (2011), pp. 846–894.

[126] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: The international journal of robotics research 30.7 (2011), pp. 846–894.

[127] Sertac Karaman and Emilio Frazzoli. “Sampling-based optimal motion planning for
non-holonomic dynamical systems”. In: International Conference on Robotics and
Automation (ICRA. IEEE. 2013, pp. 5041–5047.

BIBLIOGRAPHY 108

[128] Shahab Karimi and Ardalan Vahidi. “Receding Horizon Motion Planning for Auto-
mated Lane Change and Merge Using Monte Carlo Tree Search and Level-K Game
Theory”. In: 2020 American Control Conference (ACC). IEEE. 2020, pp. 1223–1228.

[129] Hassan K Khalil. Nonlinear systems; 3rd ed. Upper Saddle River, NJ: Prentice-Hall,
2002.

[130] Youngdae Kim and Michael C Ferris. “Solving equilibrium problems using extended
mathematical programming”. In: Mathematical programming computation 11.3 (2019),
pp. 457–501.

[131] Youngdae Kim, Sven Leyffer, and Todd Munson. “Mpec methods for bilevel opti-
mization problems”. In: Bilevel Optimization. Springer, 2020, pp. 335–360.

[132] Nikita Kitaev et al. “Physics-based trajectory optimization for grasping in cluttered
environments”. In: International Conference on Robotics and Automation (ICRA).
IEEE. 2015, pp. 3102–3109.

[133] Sangho Ko and Robert R Bitmead. “Optimal control for linear systems with state
equality constraints”. In: Automatica 43.9 (2007), pp. 1573–1582.

[134] Jonas Koenemann et al. “Whole-body model-predictive control applied to the HRP-2
humanoid”. In: International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2015, pp. 3346–3351.

[135] Sven Koenig and Maxim Likhachev. “Fast replanning for navigation in unknown
terrain”. In: Transactions on Robotics 21.3 (2005), pp. 354–363.

[136] Hema Swetha Koppula and Ashutosh Saxena. “Anticipating human activities for
reactive robotic response.” In: International Conference on Intelligent Robots and
Systems (IROS). 2013, p. 2071.

[137] Markus Koschi et al. “Set-Based Prediction of Pedestrians in Urban Environments
Considering Formalized Traffic Rules”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) (2018), pp. 2704–2711.

[138] G Kossioris et al. “Feedback Nash equilibria for non-linear differential games in pollu-
tion control”. In: Journal of Economic Dynamics and Control 32.4 (2008), pp. 1312–
1331.

[139] Henrik Kretzschmar et al. “Socially compliant mobile robot navigation via inverse
reinforcement learning”. In: International Journal of Robotics Research 35.11 (2016),
pp. 1289–1307.

[140] Scott Kuindersma, Frank Permenter, and Russ Tedrake. “An efficiently solvable quadratic
program for stabilizing dynamic locomotion”. In: Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE. 2014, pp. 2589–2594.

[141] Ankur A Kulkarni. Generalized Nash games with shared constraints: existence, ef-
ficiency, refinement and equilibrium constraints. University of Illinois at Urbana-
Champaign, 2010.

BIBLIOGRAPHY 109

[142] Alexander B Kurzhanski and Pravin Varaiya. “Ellipsoidal techniques for reachability
analysis: internal approximation”. In: Systems & Control Letters 41.3 (2000), pp. 201–
211.

[143] Alexander B Kurzhanski and Pravin Varaiya. “Ellipsoidal techniques for reachability
analysis: internal approximation”. In: Systems & control letters 41.3 (2000), pp. 201–
211.

[144] Alexander B Kurzhanski and Pravin Varaiya. “On ellipsoidal techniques for reachabil-
ity analysis. part ii: Internal approximations box-valued constraints”. In: Optimization
Methods and Software 17.2 (2002), pp. 207–237.

[145] Alexander B Kurzhanski and Pravin Varaiya. “On ellipsoidal techniques for reachabil-
ity analysis. part ii: Internal approximations box-valued constraints”. In: Optimization
methods and software 17.2 (2002), pp. 207–237.

[146] Huibert Kwakernaak and Raphael Sivan. Linear optimal control systems. Vol. 1.
Wiley-Interscience New York, 1972.

[147] F. Laine and C. Tomlin. “Parallelizing LQR Computation Through Endpoint-Explicit
Riccati Recursion”. In: 2019 IEEE 58th Conference on Decision and Control (CDC).
2019, pp. 1395–1402. doi: 10.1109/CDC40024.2019.9029974.

[148] Forrest Laine and Claire Tomlin. “Efficient Computation of Feedback Control for
Constrained Systems”. In: arXiv preprint arXiv:1807.00794 (2018).

[149] Forrest Laine and Claire Tomlin. “Efficient computation of feedback control for equality-
constrained LQR”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 6748–6754.

[150] Forrest Laine et al. Multi-Hypothesis Interactions in Game-Theoretic Motion Plan-
ning. 2020. arXiv: 2011.06047 [cs.RO].

[151] Forrest Laine et al. “The Computation of Approximate Generalized Feedback Nash
Equilibria”. In: arXiv preprint arXiv:2101.02900 (2021).

[152] Emmett Lalish, Kristi A Morgansen, and Takashi Tsukamaki. “Decentralized reac-
tive collision avoidance for multiple unicycle-type vehicles”. In: American Control
Conference (ACC). IEEE. 2008, pp. 5055–5061.

[153] Joseph P LaSalle. “The time optimal control problem”. In: Contributions to the theory
of nonlinear oscillations 5 (1960), pp. 1–24.

[154] Przemyslaw A Lasota and Julie A Shah. “Analyzing the effects of human-aware mo-
tion planning on close-proximity human–robot collaboration”. In: Human factors 57.1
(2015), pp. 21–33.

[155] Chuck L Lawson et al. “Basic linear algebra subprograms for Fortran usage”. In:
(1977).

https://doi.org/10.1109/CDC40024.2019.9029974
https://arxiv.org/abs/2011.06047

BIBLIOGRAPHY 110

[156] TY Li and Z Gajic. “Lyapunov iterations for solving coupled algebraic Riccati equa-
tions of Nash differential games and algebraic Riccati equations of zero-sum games”.
In: New trends in dynamic games and applications. Springer, 1995, pp. 333–351.

[157] Weiwei Li and Emanuel Todorov. “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” In: ICINCO. 2004, pp. 222–229.

[158] Feng-Li Lian and Richard Murray. “Real-time trajectory generation for the cooper-
ative path planning of multi-vehicle systems”. In: 41st Conference on Decision and
Control (CDC). Vol. 4. IEEE. 2002, pp. 3766–3769.

[159] Yucong Lin and Srikanth Saripalli. “Collision avoidance for UAVs using reachable
sets”. In: International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
2015, pp. 226–235.

[160] Alexander Liniger and John Lygeros. “A noncooperative game approach to autonomous
racing”. In: IEEE Transactions on Control Systems Technology 28.3 (2019), pp. 884–
897.

[161] P-L Lions and Panagiotis E Souganidis. “Differential games, optimal control and
directional derivatives of viscosity solutions of Bellman’s and Isaacs’ equations”. In:
Journal on Control and Optimization 23.4 (1985), pp. 566–583.

[162] Chang Liu et al. “Goal inference improves objective and perceived performance in
human-robot collaboration”. In: Proceedings of the 2016 international conference on
autonomous agents & multiagent systems. International Foundation for Autonomous
Agents and Multiagent Systems. 2016, pp. 940–948.

[163] Shih-Yuan Liu et al. “Evasion of a team of dubins vehicles from a hidden pursuer”. In:
International Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 6771–
6776.

[164] J. Löfberg. “YALMIP : A Toolbox for Modeling and Optimization in MATLAB”. In:
In Proceedings of the CACSD Conference. Taipei, Taiwan, 2004.

[165] Tzon-Tzer Lu and Sheng-Hua Shiou. “Inverses of 2× 2 block matrices”. In: Computers
& Mathematics with Applications 43.1-2 (2002), pp. 119–129.

[166] R. Duncan Luce. Individual choice behavior: A theoretical analysis. Wiley, 1959.

[167] John N Maidens et al. “Lagrangian methods for approximating the viability kernel
in high-dimensional systems”. In: Automatica 49.7 (2013), pp. 2017–2029.

[168] Jim Mainprice and Dmitry Berenson. “Human-robot collaborative manipulation plan-
ning using early prediction of human motion”. In: International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2013, pp. 299–306.

[169] Jim Mainprice, Rafi Hayne, and Dmitry Berenson. “Predicting human reaching mo-
tion in collaborative tasks using inverse optimal control and iterative re-planning”. In:
International Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 885–
892.

BIBLIOGRAPHY 111

[170] Anirudha Majumdar et al. “Convex optimization of nonlinear feedback controllers
via occupation measures”. In: The International Journal of Robotics Research 33.9
(2014), pp. 1209–1230.

[171] Zachary Manchester and Scott Kuindersma. “Variational Contact-Implicit Trajectory
Optimization”. In: Proceedings of the International Symposium on Robotics Research
(ISRR), Puerto Varas, Chile. 2017.

[172] José B Mare and José A De Doná. “Solution of the input-constrained LQR problem
using dynamic programming”. In: Systems & control letters 56.5 (2007), pp. 342–348.

[173] Kostas Margellos and John Lygeros. “Hamilton–Jacobi formulation for reach–avoid
differential games”. In: Transactions on Automatic Control 56.8 (2011), pp. 1849–
1861.

[174] Mieke Massink and Nicoletta De Francesco. “Modelling free flight with collision avoid-
ance”. In: International Conference on Engineering of Complex Computer Systems.
IEEE. 2001, pp. 270–279.

[175] David Mayne. “A second-order gradient method for determining optimal trajectories
of non-linear discrete-time systems”. In: International Journal of Control 3.1 (1966),
pp. 85–95.

[176] Eric Mazumdar and Lillian J Ratliff. “On the convergence of gradient-based learning
in continuous games”. In: ArXiv e-prints (2018).

[177] Eric Mazumdar et al. “Policy-Gradient Algorithms Have No Guarantees of Conver-
gence in Linear Quadratic Games”. In: Proceedings of the 19th International Confer-
ence on Autonomous Agents and MultiAgent Systems. 2020, pp. 860–868.

[178] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. “On finding local nash
equilibria (and only local nash equilibria) in zero-sum games”. In: arXiv preprint
arXiv:1901.00838 (2019).

[179] N Harris McClamroch and Danwei Wang. “Feedback stabilization and tracking of con-
strained robots”. In: IEEE Transactions on Automatic Control 33.5 (1988), pp. 419–
426.

[180] Ian Mitchell. A Toolbox of Level Set Methods. http://people.cs.ubc.ca/~mitchell/
ToolboxLS/index.html. 2009.

[181] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games”. In: IEEE Trans-
actions on automatic control 50.7 (2005), pp. 947–957.

[182] Ian M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-Jacobi
formulation of reachable sets for continuous dynamic games”. In: Transactions on
Automatic Control 50.7 (2005), pp. 947–957. doi: 10.1109/TAC.2005.851439. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463302.

http://people.cs.ubc.ca/~mitchell/ToolboxLS/index.html
http://people.cs.ubc.ca/~mitchell/ToolboxLS/index.html
https://doi.org/10.1109/TAC.2005.851439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463302

BIBLIOGRAPHY 112

[183] Teodor M Moldovan and Pieter Abbeel. “Risk aversion in Markov decision processes
via near optimal Chernoff bounds”. In: Advances in neural information processing
systems. 2012, pp. 3131–3139.

[184] Teodor Mihai Moldovan and Pieter Abbeel. “Safe exploration in Markov decision
processes”. In: Proceedings of the 29th International Coference on International Con-
ference on Machine Learning. Omnipress. 2012, pp. 1451–1458.

[185] H Mukai et al. “Sequential linear quadratic method for differential games”. In: Proc.
2nd DARPA-JFACC Symposium on Advances in Enterprise Control. Citeseer. 2000,
pp. 159–168.

[186] Katta G Murty and Feng-Tien Yu. Linear complementarity, linear and nonlinear
programming. Vol. 3. Citeseer, 1988.

[187] John F Nash et al. “Equilibrium points in n-person games”. In: Proceedings of the
national academy of sciences 36.1 (1950), pp. 48–49.

[188] Andrew Y Ng, Stuart J Russell, et al. “Algorithms for inverse reinforcement learning.”
In: Icml. 2000, pp. 663–670.

[189] Truong-Huy Dinh Nguyen et al. “CAPIR: Collaborative Action Planning with Inten-
tion Recognition.” In: AIIDE. 2011.

[190] Stefanos Nikolaidis et al. “Efficient model learning from joint-action demonstrations
for human-robot collaborative tasks”. In: Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction. ACM. 2015, pp. 189–196.

[191] Haruki Nishimura et al. “RAT iLQR: A Risk Auto-Tuning Controller to Optimally
Account for Stochastic Model Mismatch”. In: arXiv preprint arXiv:2010.08174 (2020).

[192] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[193] Jorge Nocedal and Stephen J Wright. Sequential quadratic programming. Springer,
2006.

[194] Reza Olfati-Saber and Richard M Murray. “Distributed cooperative control of multi-
ple vehicle formations using structural potential functions”. In: IFAC world congress.
Vol. 15. 1. Citeseer. 2002, pp. 242–248.

[195] M. Ono, L. Blackmore, and B. C. Williams. “Chance constrained finite horizon op-
timal control with nonconvex constraints”. In: Proceedings of the 2010 American
Control Conference. 2010, pp. 1145–1152.

[196] Jong-Shi Pang and Gesualdo Scutari. “Nonconvex Games with Side Constraints”.
In: SIAM J. on Optimization 21.4 (Dec. 2011), pp. 1491–1522. issn: 1052-6234. doi:
10.1137/100811787. url: https://doi.org/10.1137/100811787.

[197] Jong-Shi Pang and Gesualdo Scutari. “Nonconvex Games with Side Constraints”.
In: SIAM J. on Optimization 21.4 (Dec. 2011), pp. 1491–1522. issn: 1052-6234. doi:
10.1137/100811787. url: https://doi.org/10.1137/100811787.

https://doi.org/10.1137/100811787
https://doi.org/10.1137/100811787
https://doi.org/10.1137/100811787
https://doi.org/10.1137/100811787

BIBLIOGRAPHY 113

[198] Christos H Papadimitriou. “The complexity of finding Nash equilibria”. In: Algorith-
mic game theory 2 (2007), p. 30.

[199] Jung Hun Park, Soohee Han, and Wook Hyun Kwon. “LQ tracking controls with
fixed terminal states and their application to receding horizon controls”. In: Systems
& Control Letters 57.9 (2008), pp. 772–777.

[200] C. Pek and M. Althoff. “Computationally Efficient Fail-safe Trajectory Planning for
Self-driving Vehicles Using Convex Optimization”. In: 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC) (2018), pp. 1447–1454.

[201] C. Pek and M. Althoff. “Computationally Efficient Fail-safe Trajectory Planning for
Self-driving Vehicles Using Convex Optimization”. In: 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC). 2018, pp. 1447–1454.

[202] Stefania Pellegrinelli et al. “Human-robot shared workspace collaboration via hind-
sight optimization”. In: International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2016, pp. 831–838.

[203] Claudia Pérez-D’Arpino and Julie A Shah. “Fast target prediction of human reaching
motion for cooperative human-robot manipulation tasks using time series classifica-
tion”. In: International Conference on Robotics and Automation (ICRA). IEEE. 2015,
pp. 6175–6182.

[204] Lasse Peters et al. “Inference-Based Strategy Alignment for General-Sum Differential
Games”. In: arXiv preprint arXiv:2002.04354 (2020).

[205] Ovanes Petrosian and Anna Tur. “Hamilton-Jacobi-Bellman Equations for Non-cooperative
Differential Games with Continuous Updating”. In: International Conference on Math-
ematical Optimization Theory and Operations Research. Springer. 2019, pp. 178–191.

[206] Michael Posa, Cecilia Cantu, and Russ Tedrake. “A direct method for trajectory op-
timization of rigid bodies through contact”. In: The International Journal of Robotics
Research 33.1 (2014), pp. 69–81.

[207] Michael Posa, Scott Kuindersma, and Russ Tedrake. “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems”. In: Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE. 2016, pp. 1366–1373.

[208] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality. Vol. 703. John Wiley & Sons, 2007.

[209] Morgan Quigley et al. “ROS: an Open-Source Robot Operating System”. In: ICRA
Workshop on Open Source Software. 2009.

[210] Deepak Ramachandran and Eyal Amir. “Bayesian inverse reinforcement learning”.
In: Urbana 51.61801 (2007), pp. 1–4.

[211] Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. “On the characterization
of local Nash equilibria in continuous games”. In: Transactions on Automatic Control
61.8 (2016), pp. 2301–2307.

BIBLIOGRAPHY 114

[212] P. V. Reddy and G. Zaccour. “Feedback Nash Equilibria in Linear-Quadratic Differ-
ence Games With Constraints”. In: IEEE Transactions on Automatic Control 62.2
(2017), pp. 590–604. doi: 10.1109/TAC.2016.2555879.

[213] Puduru Viswanadha Reddy and Georges Zaccour. “Open-loop and feedback Nash
equilibria in constrained linear–quadratic dynamic games played over event trees”.
In: Automatica 107 (2019), pp. 162–174.

[214] Arthur Richards and Jonathan P How. “Model predictive control of vehicle maneu-
vers with guaranteed completion time and robust feasibility”. In: American Control
Conference (ACC). Vol. 5. IEEE. 2003, pp. 4034–4040.

[215] Stefan Richter, Colin Neil Jones, and Manfred Morari. “Computational complexity
certification for real-time MPC with input constraints based on the fast gradient
method”. In: Transactions on Automatic Control 57.6 (2012), pp. 1391–1403.

[216] Stefan Richter, Colin Neil Jones, and Manfred Morari. “Computational complexity
certification for real-time MPC with input constraints based on the fast gradient
method”. In: IEEE Transactions on Automatic Control 57.6 (2012), pp. 1391–1403.

[217] D Reed Robinson et al. “An Efficient Algorithm for Optimal Trajectory Generation
for Heterogeneous Multi-Agent Systems in Non-Convex Environments”. In: IEEE
Robotics and Automation Letters 3.2 (2018), pp. 1215–1222.

[218] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks. a data-driven control framework”. In: Transactions on Automatic Control 63.7
(2018), pp. 1883–1896.

[219] Vicenc Rubies Royo et al. “Classification-based Approximate Reachability with Guar-
antees Applied to Safe Trajectory Tracking”. In: arXiv preprint arXiv:1803.03237
(2018).

[220] Vicenç Rubies-Royo et al. “A Classification-based Approach for Approximate Reach-
ability”. In: International Conference on Robotics and Automation (ICRA). IEEE.
2019, pp. 7697–7704.

[221] Vicenç Rubies-Royo et al. “A Classification-based Approach for Approximate Reach-
ability”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 7697–7704.

[222] Dorsa Sadigh et al. “Information Gathering Actions over Human Internal State”. In:
International Conference on Intelligent Robots and Systems (IROS) (2016).

[223] Dorsa Sadigh et al. “Planning for autonomous cars that leverage effects on human
actions.” In: Robotics: Science & Systems. Vol. 2. Ann Arbor, MI, USA. 2016.

[224] Edward Schmerling et al. “Multimodal Probabilistic Model-Based Planning for Human-
Robot Interaction”. In: arXiv preprint arXiv:1710.09483 (2017).

https://doi.org/10.1109/TAC.2016.2555879

BIBLIOGRAPHY 115

[225] Edward Schmerling et al. “Multimodal probabilistic model-based planning for human-
robot interaction”. In: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2018, pp. 1–9.

[226] Tom Schouwenaars, Jonathan How, and Eric Feron. “Decentralized cooperative tra-
jectory planning of multiple aircraft with hard safety guarantees”. In: AIAA Guidance,
Navigation, and Control Conference and Exhibit. 2004, p. 5141.

[227] Wilko Schwarting et al. “Stochastic Dynamic Games in Belief Space”. In: arXiv
preprint arXiv:1909.06963 (2019).

[228] Dexter RR Scobee and S Shankar Sastry. “Maximum likelihood constraint inference
for inverse reinforcement learning”. In: arXiv preprint arXiv:1909.05477 (2019).

[229] Pierre OM Scokaert and James B Rawlings. “Constrained linear quadratic regula-
tion”. In: IEEE Transactions on automatic control 43.8 (1998), pp. 1163–1169.

[230] Athanasios Sideris and James E Bobrow. “An efficient sequential linear quadratic
algorithm for solving nonlinear optimal control problems”. In: IEEE Transactions on
Automatic Control 50.12 (2005), pp. 2043–2047.

[231] Athanasios Sideris and Luis A Rodriguez. “A Riccati approach for constrained linear
quadratic optimal control”. In: International Journal of Control 84.2 (2011), pp. 370–
380.

[232] Alp Simsek, Asuman Ozdaglar, and Daron Acemoglu. “On the uniqueness of solutions
for nonlinear and mixed complementarity problems”. In: Working Paper (2005).

[233] Sumeet Singh et al. “Robust online motion planning via contraction theory and convex
optimization”. In: International Conference on Robotics and Automation (ICRA).
IEEE. 2017.

[234] Sumeet Singh et al. “Robust online motion planning via contraction theory and convex
optimization”. In: Proc. IEEE Int. Conf. Robotics and Automation. 2017.

[235] Sumeet Singh et al. “Robust Tracking with Model Mismatch for Fast and Safe Plan-
ning: an SOS Optimization Approach”. In: arXiv preprint arXiv:1808.00649 (2018).

[236] Riccardo Spica et al. “A real-time game theoretic planner for autonomous two-player
drone racing”. In: IEEE Transactions on Robotics 36.5 (2020), pp. 1389–1403.

[237] Alan W Starr and Yu-Chi Ho. “Further properties of nonzero-sum differential games”.
In: Journal of Optimization Theory and Applications 3.4 (1969), pp. 207–219.

[238] Alan W Starr and Yu-Chi Ho. “Nonzero-sum differential games”. In: Journal of Op-
timization Theory and Applications 3.3 (1969), pp. 184–206.

[239] Anthony Stentz. “Optimal and efficient path planning for partially-known environ-
ments”. In: International Conference on Robotics and Automation (ICRA). Vol. 94.
1994, pp. 3310–3317.

BIBLIOGRAPHY 116

[240] David Stewart and Jeffrey C Trinkle. “An implicit time-stepping scheme for rigid body
dynamics with coulomb friction”. In: Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on. Vol. 1. IEEE. 2000, pp. 162–169.

[241] Dušan M Stipanović et al. “Cooperative avoidance control for multiagent systems”.
In: Journal of Dynamic Systems, Measurement, and Control 129.5 (2007), pp. 699–
707.

[242] Che-Lin Su. Equilibrium problems with equilibrium constraints: Stationarities, algo-
rithms, and applications. Stanford University, 2005.

[243] Ioan A Şucan, Mark Moll, and Lydia E Kavraki. “The open motion planning library”.
In: IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–82.

[244] Zachary N Sunberg and Mykel J Kochenderfer. “Online algorithms for POMDPs with
continuous state, action, and observation spaces”. In: Twenty-Eighth International
Conference on Automated Planning and Scheduling. 2018.

[245] P Svestka, JC Latombe, and LE Overmars Kavraki. “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces”. In: Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580.

[246] Ryo Takei et al. “Time-optimal multi-stage motion planning with guaranteed col-
lision avoidance via an open-loop game formulation”. In: 2012 IEEE International
Conference on Robotics and Automation. IEEE. 2012, pp. 323–329.

[247] Akio Tanikawa, Hiro Mukai, and Min Xu. “Local Convergence of the Sequential
Quadratic Method for Differential Games”. In: Transactions of the Institute of Sys-
tems, Control and Information Engineers 25.12 (2012), pp. 349–357.

[248] A. Tanwani and Q. Zhu. “Feedback Nash Equilibrium for Markov Jump Games
under Differential-Algebraic Constraints with Application to Robust Control”. In:
2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 1124–1129. doi:
10.1109/CDC.2018.8619628.

[249] Aneel Tanwani and Quanyan Zhu. “Feedback Nash equilibrium for randomly switch-
ing differential-algebraic games”. In: IEEE Transactions on Automatic Control (2019).

[250] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization”. In: Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012, pp. 4906–
4913.

[251] Yuval Tassa, Nicolas Mansard, and Emo Todorov. “Control-limited differential dy-
namic programming”. In: International Conference on Robotics and Automation (ICRA).
IEEE. 2014, pp. 1168–1175.

[252] Emanuel Todorov and Weiwei Li. “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems”. In: American
Control Conference (ACC). IEEE. 2005, pp. 300–306.

https://doi.org/10.1109/CDC.2018.8619628

BIBLIOGRAPHY 117

[253] Peter Trautman and Andreas Krause. “Unfreezing the robot: Navigation in dense,
interacting crowds”. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ In-
ternational Conference on. IEEE. 2010, pp. 797–803.

[254] Vladimir Turetsky, Valery Y Glizer, and Josef Shinar. “Robust trajectory tracking:
differential game/cheap control approach”. In: International Journal of Systems Sci-
ence 45.11 (2014), pp. 2260–2274.

[255] Jur Van den Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity obstacles
for real-time multi-agent navigation”. In: International Conference on Robotics and
Automation (ICRA). IEEE. 2008, pp. 1928–1935.

[256] Bart PG Van Parys et al. “Distributionally robust control of constrained stochastic
systems”. In: IEEE Transactions on Automatic Control 61.2 (2015), pp. 430–442.

[257] S. Vaskov et al. “Not-at-Fault Driving in Traffic: A Reachability-Based Approach”. In:
2019 IEEE Intelligent Transportation Systems Conference (ITSC). 2019, pp. 2785–
2790.

[258] Marcell Vazquez-Chanlatte and Sanjit A Seshia. “Maximum Causal Entropy Speci-
fication Inference from Demonstrations”. In: International Conference on Computer
Aided Verification. Springer. 2020, pp. 255–278.

[259] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior.
Princeton University Press Princeton, NJ, 1945.

[260] A Wächter and L T Biegler. “On the Implementation of a Primal-Dual Interior Point
Filter Line Search Algorithm for Large-Scale Nonlinear Programming”. In: Mathe-
matical Programming 106.1 (2006), pp. 25–57.

[261] Rahee Walambe et al. “Optimal trajectory generation for car-type mobile robot using
spline interpolation”. In: IFAC-PapersOnLine 49.1 (2016), pp. 601–606.

[262] Mingyu Wang et al. “Game Theoretic Planning for Self-Driving Cars in Competitive
Scenarios”. In: Robotics: Science & Systems. 2019.

[263] Zijian Wang, Riccardo Spica, and Mac Schwager. “Game Theoretic Motion Planning
for Multi-Robot Racing”. In: (2018).

[264] Zijian Wang, Riccardo Spica, and Mac Schwager. “Game Theoretic Motion Planning
for Multi-robot Racing”. In: Distributed Autonomous Robotic Systems. Springer, 2019,
pp. 225–238.

[265] Zijian Wang, Tim Taubner, and Mac Schwager. “Multi-agent sensitivity enhanced
iterative best response: A real-time game theoretic planner for drone racing in 3D
environments”. In: Robotics and Autonomous Systems 125 (2020), p. 103410.

[266] Tyler Westenbroek et al. “Feedback Linearization for Unknown Systems via Rein-
forcement Learning”. In: arXiv preprint arXiv:1910.13272 (2019).

BIBLIOGRAPHY 118

[267] Tyler Westenbroek et al. “Technical Report: Adaptive Control for Linearizable Sys-
tems Using On-Policy Reinforcement Learning”. In: arXiv preprint arXiv:2004.02766
(2020).

[268] Stephen Wright and Jorge Nocedal. “Numerical optimization”. In: Springer Science
35.67-68 (1999), p. 7.

[269] Stephen J Wright. Applying new optimization algorithms to more predictive control.
Tech. rep. Argonne National Lab., IL (United States), 1996.

[270] Stephen J Wright. “Interior point methods for optimal control of discrete time sys-
tems”. In: Journal of Optimization Theory and Applications 77.1 (1993), pp. 161–
187.

[271] Stephen J Wright. “Solution of discrete-time optimal control problems on parallel
computers”. In: Parallel Computing 16.2-3 (1990), pp. 221–237.

[272] Albert Wu and Jonathan P How. “Guaranteed infinite horizon avoidance of un-
predictable, dynamically constrained obstacles”. In: Autonomous robots 32.3 (2012),
pp. 227–242.

[273] Zhaoming Xie, C Karen Liu, and Kris Hauser. “Differential dynamic programming
with nonlinear constraints”. In: Robotics and Automation (ICRA), 2017 IEEE Inter-
national Conference on. IEEE. 2017, pp. 695–702.

[274] Wenda Xu et al. “Motion planning under uncertainty for on-road autonomous driv-
ing”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2014, pp. 2507–2512.

[275] Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In: Com-
putational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings.,
1997 IEEE International Symposium on. IEEE. 1997, pp. 146–151.

[276] Brian Yamauchi. “Frontier-based exploration using multiple robots”. In: Proceedings
of the second international conference on Autonomous agents. ACM. 1998, pp. 47–53.

[277] Luke Yoder and Sebastian Scherer. “Autonomous exploration for infrastructure mod-
eling with a micro aerial vehicle”. In: Field and service robotics. Springer. 2016,
pp. 427–440.

[278] Ming-Yuan Yu, R. Vasudevan, and Matthew Johnson-Roberson. “Risk Assessment
and Planning with Bidirectional Reachability for Autonomous Driving”. In: 2020
IEEE International Conference on Robotics and Automation (ICRA) (2020), pp. 5363–
5369.

[279] Tie-Jun Yu, Ching-Fang Lin, and PC Muller. “Design of LQ regulator for linear
systems with algebraic-equation constraints”. In: Decision and Control, 1996., Pro-
ceedings of the 35th IEEE Conference on. Vol. 4. IEEE. 1996, pp. 4146–4151.

BIBLIOGRAPHY 119

[280] Hao-jie Zhang et al. “An iterative linear quadratic regulator based trajectory tracking
controller for wheeled mobile robot”. In: Journal of Zhejiang University SCIENCE C
13.8 (2012), pp. 593–600.

[281] Dingjiang Zhou et al. “Fast, On-line Collision Avoidance for Dynamic Vehicles us-
ing Buffered Voronoi Cells”. In: Robotics and Automation Letters (RA-L) 2 (2017),
pp. 1047–1054. doi: 10.1109/LRA.2017.2656241.

[282] Zhengyuan Zhou et al. “A general, open-loop formulation for reach-avoid games”. In:
51st Conference on Decision and Control (CDC). IEEE. 2012, pp. 6501–6506.

[283] Zhengyuan Zhou et al. “Cooperative pursuit with Voronoi partitions”. In: Automatica
72 (2016), pp. 64–72.

[284] Brian Ziebart et al. “Planning-based Prediction for Pedestrians”. In: Dec. 2009,
pp. 3931–3936. doi: 10.1109/IROS.2009.5354147.

[285] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In: AAAI.
Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

[286] Brian D. Ziebart et al. “Planning-based prediction for pedestrians”. In: International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2009, pp. 3931–3936.

https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/IROS.2009.5354147

	Contents
	List of Figures
	List of Tables
	Introduction
	Outline

	Theory
	Parametric Quadratic Programs
	Parametric Equilibrium Problems
	Equilibrium Problems with Equilibrium Constraints
	Equilibrium Problems with Nested Equilibrium Constraints

	General Computation
	Equilibrium Problems with Piecewise Linear Constraints
	Equilibrium Problems with Nested Equilibrium Constraints

	Feedback Nash Equilibrium Problems
	Introduction: Dynamic Games
	Formulation
	Equality-Constrained LQ Games
	Inequality-Constrained LQ Games
	Nonlinear Games
	Example
	Conclusion

	Uncertainty in Game-Theoretic Motion Planning
	Introduction
	Related Work
	Preliminaries
	Methods
	Results
	Conclusion

	Problems of Ordered Preference
	Motivation
	General Formulation
	Example: Constrained Dynamic Programming

	Conclusions and Future Work
	Existence and Solvability
	Unconstrained Shared Variables
	Equilibrium Problems with Nested, Non-Isolated Equilibrium Constraints

	Bibliography

