
Generalized Partitioning for Dataset Versions in

OrpheusDB

Vincent Truong

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-183

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-183.html

August 12, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Generalized Partitioning for Dataset Versions in OrpheusDB

by Vincent Truong

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Aditya Parameswaran
Research Advisor

(Date)

* * * * * * *

Professor Aaron Elmore
Second Reader

(Date)

1

08/04/2021

08/10/2021

Generalized Partitioning for Dataset Versions in OrpheusDB

by

Vincent Truong

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Aditya Parameswaran, Chair
Professor Aaron Elmore

Spring 2021

Generalized Partitioning for Dataset Versions in OrpheusDB

Copyright 2021
by

Vincent Truong

1

Abstract

Generalized Partitioning for Dataset Versions in OrpheusDB

by

Vincent Truong

Master of Science in Computer Science

University of California, Berkeley

Aditya Parameswaran, Chair

OrpheusDB is a lightweight dataset version management system designed to be integrated
into data science workflows, akin to standard code version control systems. By using a
relational database system as the backend, the Orpheus system leverages its querying and
storage capabilities while remaining agnostic to the particular database system used.

Previous work by Huang et al. [7] explored different designs for implementing versioned
storage effectively. However, in practice, the current implementation of OrpheusDB does
not support all of the features described that would improve performance, such as efficient
support for schema changes, which can occur often during data science. This report improves
on the original design by adjusting how OrpheusDB handles checkouts and commits. In
addition to some direct improvements to these operations, we implement the partitioning
algorithm, Lyresplit, to offer the same level of performance shown in the original paper, as
part of the open source version.

i

To my friends and family

ii

Contents

Contents ii

List of Figures iii

1 Introduction 1

2 Architecture and Implementation Details 3
2.1 Overview . 3
2.2 Data Representation . 3
2.3 Managers . 5

3 General Operation 6
3.1 Checkout . 6
3.2 Commit . 6

4 Partitioning 10
4.1 Version Representation . 10
4.2 Lyresplit . 11
4.3 Migration . 12
4.4 Incremental Partitioning . 12

5 Partitioning Schemes 14
5.1 Experimental Setup . 14
5.2 Evaluated Approaches . 14

6 Workflow 18

7 Conclusion and Future Work 21
7.1 Conclusion . 21
7.2 Future Work . 21

Bibliography 23

iii

List of Figures

2.1 Example CVD . 4

3.1 Pseudocode of the Checkout Process . 7
3.2 Pseudocode of the Commit Process . 8

4.1 Pseudocode of Lyresplit Implementation . 11
4.2 Pseudocode of Migration Algorithm . 12

5.1 Time (ms) taken on checkout (blue) and commit (orange) by the no partitioning
scheme . 15

5.2 Time (ms) taken on checkout (blue) and commit (orange) by the row partitioning
scheme . 16

5.3 Time (ms) taken on checkout (blue) and commit (orange) by the column parti-
tioning scheme . 16

6.1 Version Tree of the Difference Scenarios. Partitions are the different colored
circles surrounding version nodes . 19

6.2 CVDs of the different scenarios . 20

1

Chapter 1

Introduction

Currently, many tools exist for managing and iterating on datasets as part of a data science
workflow. This ranges from minimalist solutions that simply tie an ID to each dataset
version, which can be used for retrieval, to systems that capture an entire machine learning
workflow for reproducibility [2] [8] [9]. Thus, there are a variety of different approaches to
storing and representing datasets and how they change over time. For example, one could
save all iterations of the dataset in their entirety, allowing users to easily revisit and explore
previous versions. However, such a scheme could store redundant rows and potentially
duplicate entire dataset versions, leading to a large storage overhead that could have been
saved through tracking and removing duplicates. On the other end of the spectrum, one
could use a complex scheme to minimize the overall storage overhead and redundancy but
this approach might compromise on efficient retrieval and analytical ability.

One system under development that attempts to solve this problem is OrpheusDB, a ver-
sioning system that leverages traditional relational database management systems to track,
store, and retrieve versions of a dataset in an efficient manner while providing useful query-
ing capabilities across the version history [3]. OrpheusDB seeks to find a reasonable ”middle
ground” in the storage-retrieval trade off by using a partitioning scheme to separate groups
of related versions based on overlap in records. However, while introduced in the original
paper, these partitioning schemes have not been implemented in their entirety into the open
source system, and, before our work, the system lacked the performance as promised by the
original paper [7].

Determining such a partitioning scheme and associated algorithms for creating, main-
taining, and utilizing the partitions effectively is difficult. For example, we could partition
all of the versions separately, resulting in each version being a table. While having fast
retrieval times, this approach results in high storage overhead due to replicating data across
multiple tables. The other extreme would be to attempt to compress all of the versions
together into one table. Such a scheme would minimize the storage overhead but would
result in expensive updates. Any scheme used would additionally need to be maintainable
when new versions are being added; saving new versions should not require unnecessarily
expensive commit operations and future checkout operations should not be heavily impacted

CHAPTER 1. INTRODUCTION 2

by previously committed versions.
To this end, OrpheusDB implements a partitioning scheme which groups versions of

a dataset into partitions based on how similar the versions are to each other. It utilizes
Lyresplit, an algorithm introduced in the original paper to determine which versions should
be grouped together and how many partitions to create. This partitioning is automatically
done without any direct user specification and is maintained even when new versions are
added. Partitioning reduces the overall amount of data that the system has to access for
each operation, improving performance, allowing OrpheusDB to handle certain operations
more easily, particularly schema changes, compared to the previous implementation.

This report first starts with an overview of the OrpheusDB system at a high level and
relevant subsystems, as described in the original paper [7]. We highlight improvements to
the checkout and commit commands as well as the implementation of the partition and
migration subsystem. Finally, we conclude with an analysis of different partitioning schemes
and demonstrate different scenarios that can occur during a data science workflow with
OrpheusDB.

3

Chapter 2

Architecture and Implementation
Details

In this chapter, we present a brief overview of the OrpheusDB open source implementation.
The design philosophy, such as the particular table layout and choice of representation, is
discussed in the original OrpheusDB paper [7].

2.1 Overview

Internally, OrpheusDB acts as a translation layer between the user and the underlying re-
lational database. The user interfaces with this layer through git-style commands or via
a visual user interface [4] [3]. The translation layer communicates to the executor which
validates the arguments passed in and runs the associated logic to execute the requested
command. The functionality of OrpheusDB is split into different managers to handle each
of the various facets of storing versioned datasets. OrpheusDB allows the user to store and
revisit previous versions of their dataset efficiently, as well as provides a query interface to
perform more interesting analyses across different versions.

OrpheusDB is written in Python with the Click and psycopg2 libraries to manage the
command line interface and the database connection respectively [1] [5] [6]. It is backed by
PostgreSQL 12.6; however, the implementation of OrpheusDB is designed to be portable to
other database backends.

2.2 Data Representation

The key to OrpheusDB’s design is how each of the dataset versions are laid out in the
underlying relational database. Instead of storing each of the versions of the dataset as
individual tables, we store a collaborative versioned dataset (CVD) capturing information
across multiple tables. A CVD is comprised of four different types of tables: data, attribute,
index, and version tables. An example of the layout is shown in Figure 2.1.

CHAPTER 2. ARCHITECTURE AND IMPLEMENTATION DETAILS 4

Figure 2.1: Example CVD

Data Table(s)

The data tables is where the actual versioned data is stored. It is comprised of records with
unique record ids (rids) corresponding to the rows of data. The data in a particular dataset
is partitioned into many smaller tables to improve performance. This is elaborated further
in Chapter 4.

Attribute Table

The attribute table records the schema for each version in the CVD. This table stores in-
formation about the columns in a CVD such as the attribute name and typing. This allows
OrpheusDB to correctly associate column names to the attribute ids (aids) used to retrieve
and store versions of a dataset and track how columns evolve over time.

Index Table

The index table tracks which rids and aids are associated with which version in the CVD.
With the introduction of partitioning, the index table now also contains partitioning meta-

CHAPTER 2. ARCHITECTURE AND IMPLEMENTATION DETAILS 5

data such as which partition a version is stored in and how similar a version is to other
versions in the same partition. The partitioning metadata will be elaborated further in
Chapter 4 of the report.

Version Table

The version table stores associated metadata information about a particular version. This
table stores the vids with metadata such as commit user, commit message, and commit time,
similar to git.

2.3 Managers

In order to facilitate safe operation on the associated database tables, each table is created
by and updated by different managers. This section highlights some of the key managers in
general operation.

Relation Manager

The relation manager directly manipulates the datasets inside the relational database that
is backing OrpheusDB. This manager handles any updates to the data tables during the
checkout and commit phase as well as creates and maintains the partitioning scheme.

Index Manager

The index manager keeps track of the version history and how similar each version is to the
version from which it was derived. Additionally, it returns the associated metadata necessary
to the relation manager to perform the checkout and commit such as the rids and attributes
that a particular version contains.

Partition Manager

The partition manager monitors partition health and runs the partition decision boundary
algorithm, Lyresplit, described in Chapter 4, Section 4.2. While this manager does not write
any information directly back to the database, it reads from the index table to construct a
version history tree for partitioning purposes. After deciding on the partitions for the CVD,
it returns a plan to the relation and index manager to perform the partitioning operation
and update the metadata respectively.

6

Chapter 3

General Operation

In this chapter, we go into greater detail about how two of the main operations in OrpheusDB,
checkout and commit, work under the hood. While these commands existed in the previous
version of OrpheusDB, they have been modified to handle partitioning with potentially
multiple data tables per dataset. Users would primarily interact with their stored, versioned
datasets through the checkout and commit commands.

3.1 Checkout

In order to materialize and use a particular version of the CVD, the user invokes the checkout
command. OrpheusDB retrieves the associated rids, aids, and the name of the partition this
particular version is located within. After translating the aids to attribute names using
the CVD’s attribute manager and its corresponding table, we construct and execute a SQL
query that would fetch the requested version from the data table partition. OrpheusDB then
writes the query results to either a csv file or to an table inside PostgreSQL per the user’s
request.

From the example CVD in Figure 2.1, in order to checkout version 2, OrpheusDB would
execute the following SQL command to perform the checkout operation:

SELECT name, age, salary FROM dataset part 1 WHERE rid = ANY(ARRAY[4, 5,
6, 7, 8, 9, 10])

Pseudocode for the checkout operation is shown in Figure 3.1.

3.2 Commit

After the user has made changes to their exported version of the dataset, they can save these
changes to OrpheusDB with the commit command. Commit can be broadly broken down
into four stages: Schema Detection, Record Detection, Partition Scoring, and Storage.

CHAPTER 3. GENERAL OPERATION 7

Algorithm 1: Checkout

Input : Dataset Name, Vid, and Destination (D, V, dest)
Output: Destination (dest)

1 meta ← load meta()
2 aids, rids, part num ← index mgr.fetch(D, V)
3 attr ← attribute mgr.fetch(D, aids)
4 relation mgr.create table(D, rids, attr, part num)
5 relation mgr.copy(dest)
6 metadata mgr.write(D, V)
7 return dest

Figure 3.1: Pseudocode of the Checkout Process

Schema Detection

During this phase, we want to ensure that each attribute of the committed version is ac-
counted for. We denote attributes as either deleted, edited, added, or retained from the
parent version with the edited category specifically being reserved for type changes. If Or-
pheusDB detects a new column being added, we update the schema of all of the data tables
in the CVD with the new column in order to make the partitioning step — which could
require moving records from one partition to another — easier.

Currently, Orpheus allows for specification of a schema file that describes the name
and type of each column in the committed dataset. While this method is preferred due
to the explicit declaration, Orpheus is also equipped with a rudimentary schema parser,
allowing csv files with headers to be committed without an explicit schema file. However,
this parser only checks the names of the columns from the header, potentially resulting in
records already stored in the system to be recognized as new incoming records and becoming
duplicated when they otherwise should not have been. Robust schema support remains as
an interesting potential improvement which will be discussed further in Chapter 7.

Record Detection

To determine the overall changes in the dataset, we need to check which records are currently
in the parent version of the dataset and which ones are being added. We perform an inner
join on the attributes that are present in both the parent and child tables derived from
the schema detection step to get the intersection. This determines both the new records
and returning rids in this phase. Note that if there is more than one parent for the newly
committed version, we check all of the parents to find the one with the highest overlap and
prioritize the highest number of matched columns first.

Previously, record detection was implemented such that any schema changes resulted in

CHAPTER 3. GENERAL OPERATION 8

Algorithm 2: Commit

Input : Dataset Name, Data, Schema, Partition Paramter (D, d, s, δ)
Output: Partition P

1 P ← relation mgr.fetch part(D, head)
2 p vid ← relation mgr.checkout(D, head, P)
3 p aids ← index mgr.fetch (D,p vid)
4 if No schema file provided then
5 // Detecting Schema from header
6 s ← attr mgr.schema parse(data)

7 end
8 Copy data into temp table t using s → db
9 del, add, edit, same ← attr mgr.diff(s, p aids)

10 intersect ← relation mgr.get intersect(p vid, d)
11 same count ← count(intersect)
12 if same count ≤ δ—R— then
13 // Store in new partition
14 relation mgr.add part(intersect, D)
15 relation mgr.update rids(intersect)

16 else
17 // Store in same partition
18 relation mgr.update existing(D, intersect)
19 relation mgr.add new rows(D, data)
20 relation mgr.drop(intersect)

21 end
22 return P

Figure 3.2: Pseudocode of the Commit Process

all incoming records being appended to the large data table as new records. By adding
an additional scan over the smaller data table partition during the commit phase (during
the join to create the intersection table), we are able to reduce future checkout times and
decrease storage.

Partition Scoring

After we have determined the intersection between the parent table(s) and child table, we
score the incoming version using a partitioning metric. By default, this metric is the size of
the overlap between the closest parent and the child version but can be altered and specified
by the user through the partitioning command. Additionally, we determine if the incoming

CHAPTER 3. GENERAL OPERATION 9

version is better suited to be added to the parent partition or stored separately as a new
partition. This is further elaborated in Section 4.4 of the paper.

Storing

In the storing phase, we write the new records into the appropriate partition. In order to save
computation, we reuse the intersection table created during the Record Detection phase. If
we are creating a new partition, we simply rename the intersection table to the appropriate
partition name before adding and assigning the new rids for rows that do not have one
already. If we are appending to the current partition, we use the intersection table to update
the columns in the current partition and then drop the intersection table. Afterwards, we
update the CVD’s index table to record the addition of the new version, the new rids, and
which partition this version resides in.

Figure 3.2 details the modified commit algorithm.
In the example shown in Figure 2.1, if we were to commit a version into the same dataset

as a child to vid 4, the following SQL commands are run:

CREATE TABLE temp AS COPY FROM data.csv;

CREATE VIEW part view AS SELECT A, B, C FROM dataset part 2 WHERE rid
= ANY(ARRAY[1...3,11...15]);

CREATE TABLE intersect table AS SELECT * FROM part view INNER JOIN temp
USING (name, age, salary)

If a new partition is created:

ALTER TABLE intersect table RENAME TO dataset part 3

INSERT INTO dataset part 3 SELECT name, age, salary FROM temp EXCEPT
SELECT name, age, salary FROM part view

If we are updating a new partition:

INSERT INTO dataset part 2 SELECT name, age, salary FROM temp EXCEPT
SELECT name, age, salary FROM part view

How OrpheusDB chooses to update an existing partition or create a new partition is
discussed in the next chapter.

10

Chapter 4

Partitioning

If the data table becomes too large and encompasses too many distinct versions, the commit
and checkout performance is heavily impacted, even if we maintain an index on rid. Thus,
OrpheusDB has been designed to work on smaller subsets of the data table called data table
partitions. In the example CVD shown in Figure 2.1, the CVD contains two data table
partitions: data part 1 and data part 2. Each partition would contain all the records for a
group of similar partitions. For simplicity, we ensure that a version cannot be in multiple
partitions and cannot have records in multiple partitions. However, some of the data may be
duplicated due to this partitioning scheme: for some record ri that is shared across versions
v1, ..., vn with each version in its own partition, ri is duplicated n times for the n different
partitions.

To facilitate partitioning, we implement a partition manager that is closely linked to
the relation manager. While the relation manager is designated with creating and updating
tables in the database, the partition manager makes partitioning decisions based on a given
dataset’s version history.

OrpheusDB currently only considers row-wise partitioning (partitioning on rids). Con-
sideration for other partitioning strategies such as across attributes will be discussed in the
Future Work Chapter.

4.1 Version Representation

OrpheusDB stores all of the information necessary for partitioning a CVD in its index table.
The index table has been updated to contain two additional fields: the closest parent and
the score.

The closest parent denotes which parent vid, if there are multiple, is the most similar to
the child version. In order to assign the closest parent, we score each parent version using a
metric function. Users can specify which function to use when the dataset is initialized and
by invoking the partition command. By default, OrpheusDB counts the rid overlap between
the parent and child version as the metric.

CHAPTER 4. PARTITIONING 11

Algorithm 3: Lyresplit

Input : VersionNode Array (V)
Output: Partition Plan (P)

1 if size(P) = 1 —— partition check(P) then
2 return P
3 else
4 split node ← min(P , key=VersionNode.score)
5 P1 ← split node + all child nodes(split node)
6 P2 ← P / P1 // P2 = Rest of the nodes

7 return Lyresplit(P1) + Lyresplit(P2)

8 end

Figure 4.1: Pseudocode of Lyresplit Implementation

A VersionNode class has been implemented to allow the partition manager to represent
and manipulate a CVD’s version tree. The class is used primarily with the Lyresplit algo-
rithm from Huang et al. [7] with the whole version tree for a CVD being constructed when
the CVD requires a full repartitioning. While a version graph has been implemented for the
visual interface, the partition manager’s VersionNodes only keeps track of the closest parent
and the corresponding scores, represented by the weights of the edges in the graph.

4.2 Lyresplit

In order to decide where to partition, OrpheusDB uses Lyresplit, a lightweight recursive
partitioning algorithm, designed to find a middle ground in the storage-computation trade
off. After we construct the version tree as described in the Section 4.1, we begin by selecting
a VersionNode based on the lowest weighed score in the current partition which indicates the
smallest overlap between a parent and child version in the partition. The small overlap makes
it a good candidate for partitioning as it would minimize the amount of duplicated data in
the partitions. We split the version tree into two subtrees, representing two partitions, by
removing the edge with the smallest weight. We, then, recursively call Lyresplit on the two
smaller partitions, stopping when each partition either contains only one VersionNode or
if the partition is of the desired size. Isolated experiments on the validity of the Lyresplit
algorithm are shown in the original paper [7].

Figure 4.1 shows a rough sketch of the algorithm.

CHAPTER 4. PARTITIONING 12

Algorithm 4: Migration

Input : Array of Planned Partitions Pp, Array of Current Partitions Pc

Output: Updated Partitions
1 part pairing ← pair partitions(Pp, Pc)
2 for pair in part pairing do
3 additions, deletions ← diff(pair)
4 perform add(pair, Pc)

5 end
6 perform part drop(part pairing, Pc)
7 for pair in part pairing do
8 perform drop(pair, Pc)
9 end

Figure 4.2: Pseudocode of Migration Algorithm

4.3 Migration

After finding the partitions as described in the previous section, OrpheusDB will attempt to
migrate the existing partitions into the new partitions by moving rids from one data table
partition to another. We first attempt to match each of the existing partitions to the desired
partitions based on how similar they are. This reduces the number of operations required
to create the new partition from the old partition. If the number of operations required to
transform a partition to another exceeds the cost it would take to create a new table, or if
there is no existing tables to match to the planned partition, we elect to create a new table
instead.

For each planned partition, we mark the rids that need to be added or removed from the
existing partition to transform it into the new partition. We proceed to update the partitions
by adding the records that each partition requires. Afterwards, we delete all of the records
that are not required in each partition. This approach of processing the additions before
the deletions in all of the partitions allows the system to not use a temporary table to hold
deleted data that could be required in a future partition. Finally, after the rids have been
migrated to their desired partitions, the index table is updated to match the new partition
scheme.

A sketch of the migration algorithm can be found in Figure 4.2.

4.4 Incremental Partitioning

As the user commits more versions to the particular dataset, performance will degrade
over time until OrpheusDB repartitions the CVD. However, if the full partitioning and

CHAPTER 4. PARTITIONING 13

migration operations are run after every commit, we incur a large overhead of recreating
and manipulating the version tree. Thus, OrpheusDB uses an online partitioning algorithm
by only comparing the current partition and the incoming version. If the incoming version’s
overlap with its closest parent is high, we store the version in the current partition, otherwise
we store it as a new partition.

14

Chapter 5

Partitioning Schemes

For any particular dataset, there exists an exponential amount of different ways we can split
the dataset versions into multiple partitions. In addition to how we decide to partition the
data, factors such as the version history and the database used makes some partitioning
schemes perform better than others. This chapter highlights and compares some of the basic
schemes that are possible.

5.1 Experimental Setup

For each partitioning scheme, we performed two different experiments to simulate different
potential workloads. Combining both of these tests would lead to a more realistic workload,
but we isolated them to observe the performance of each scheme. The experiments were run
on an i5-4250U running Ubuntu 20.04.1 and PostgreSQL 12.6. Each experiment assumes
that OrpheusDB currently stores a CVD with exactly one version V with n = 10000 number
of records. We attempt to commit a new version vnew to the dataset with the appropriate
modification as discussed above. After the commit operation, we then attempt to retrieve the
first version committed. Additionally, we assume that if partitioning is used in the scheme,
the new version will sit in its own partition.

We evaluated two different scenarios: adding rows to the dataset or adding a new column
to the dataset. Any update to the dataset can be comprised of these two operations; deletions
can be done by simply updating the index table.

5.2 Evaluated Approaches

No Partitioning

In this scheme, we do not perform any partitioning and instead create one large data table
to store all of the data. Additionally, any changes to the schema results in all records
being considered as new regardless if it was derived from the previous versions. Before the

CHAPTER 5. PARTITIONING SCHEMES 15

changes described by this paper, OrpheusDB utilizes this scheme due to the simplicity of
implementation.

Horizontal Partitioning

In this scheme, we partition the data table across the rows of the dataset. A partition P
with versions v1...vn would contain the records for all of the versions in the partition. We
would duplicate overlapping records between partitions if necessary.

Vertical Partitioning

In this scheme, we focus on partitioning across columns. If a version adds a new column, we
create a smaller table containing the column and the rid. In order for the system to checkout
a version that spans multiple tables, we perform a join on the rids before outputting the
result. If no columns are being added or if columns are removed, this reduces to the same
scheme as having no partitioning at all.

Adding Rows Adding a Column

Figure 5.1: Time (ms) taken on checkout (blue) and commit (orange) by the no partitioning
scheme

CHAPTER 5. PARTITIONING SCHEMES 16

Adding Rows Adding a Column

Figure 5.2: Time (ms) taken on checkout (blue) and commit (orange) by the row partitioning
scheme

Adding Rows Adding a Column

Figure 5.3: Time (ms) taken on checkout (blue) and commit (orange) by the column parti-
tioning scheme

Performance

Graphs on performance (time taken for each operation) for each partitioning scheme are
shown in Figure 5.1, 5.2, and 5.3. We vary the amount of new data being added and see
how these schemes perform as the amount of data increases.

In the first scenario where we are adding rows to the dataset, there are no significant
differences between each of the schemes; when adding 90,000 new records to the table, the no
partitioning, row partitioning, and column partitioning scheme took 309.686ms, 308.621ms,
309.423ms respectively. However, when attempting to checkout the first version, the row

CHAPTER 5. PARTITIONING SCHEMES 17

partitioning scheme performs the best (89.877ms) with the other two schemes having about
the same performance (∼130ms). This difference is due to that scheme holding the first
version as its own partition, reducing the amount of data that the scheme has to search
through to checkout the first version.

In the second scenario where we are adding a column to the dataset with a different
amount of records changed, the difference between the partitioning schemes becomes more
apparent. With no partitioning, adding a new column is treated as adding in new records,
similar to the previous version of OrpheusDB. This results in duplicating the data but an
extremely fast commit time accordingly; for example, commiting a new column with 5000
records using the no partitioning scheme took ∼ 5.674ms compared to row partitioning
which took ∼ 14.542ms for the same operation. However, checkout times for the first
version increase as the system has to search through more data to fetch the version. The
row partitioning scheme performs similarly to the no partitioning scheme, however, due to
having to update the entire data partition, the time taken to perform the update has a higher
overhead when compared to no partitioning. This can be seen in the experiment, even if
the number of records are added is small in comparison to the size of the table, the commit
time hovers ∼12ms for when N < 2000 where N is the number of new records. The column
partitioning scheme performed the worst with the costly overhead of creating a new table
and arranging the rids appropriately as a join key. The scheme had similar performance to
row partitioning scheme at an average of ∼13ms when N < 2000 and increases to 28.94ms
at N = 10000.

For the OrpheusDB implementation, we chose to implement a horizontal partitioning
scheme. As shown in our experiements, this scheme has as short, if not shorter, commit
times and checkout times compared to no partitioning. This scheme is also easily maintained
when compared to the vertical partitioning.

18

Chapter 6

Workflow

In this section, we elaborate on the current implementation of horizontal partitioning in Or-
pheusDB. We depict different scenarios that can occur and highlight how the implementation
handles them, depicting the CVD and version tree after the update.

For each scenario, suppose we have three different versions V1, V2, V3 of dataset D. V1
has 10 records, V2 has 15 records and share 8 records with its parent, V1. V3 has 15 records
and share 5 of them with V1. V1 and V2 are in “data part 1” while V3 is in “data part 2”.
All three versions have the same attributes (A, B, C). The partitioning parameter is set to
the default value: δ = 0.5. Figure 6.1(a) shows the version tree with the associated weights.
Figure 6.2(a) shows the initial CVD layout. We assume that the user has currently exported
version V3 of the dataset and is in the process of committing another one as a child to V3.

Adding New Rows

Suppose the user attempts to commit V4 by adding three new records to V3 and retaining
the 15 records found in V3. OrpheusDB’s relation manager would create an intersection
table containing 15 records. Comparing V4 to its parent, we add it to the current partition
(Overlap > δ|Rparent|). After updating the data partition, the index manager updates the
index table associated with the dataset with the new version information with a score of 15.
The updated version tree is shown in Figure 6.1(b) with |R| = 18 in V3 instead of |R| = 15.
Figure 6.2(b) depicts the table layout.

Adding New Columns

Suppose the user has altered the schema of the table and added a new column to the
dataset. The previous implementation of OrpheusDB would have considered all of these
rows as new records, making the partition scheme ineffective. The current implementation
of OrpheusDB is able to correctly determine that the records are not entirely new and append
the new column accordingly. The relation manager performs an update operation on the

CHAPTER 6. WORKFLOW 19

(a) Initial State

(b) Adding New
Row or Columns
w/o Partitioning

(c) Adding Row w/
Incremental Parti-
tioning (d) Full Partition

Figure 6.1: Version Tree of the Difference Scenarios. Partitions are the different colored
circles surrounding version nodes

data partition and the index manager marks the new version being committed with a score
of 15. The updated version tree is shown in Figure 6.1(b) and the CVD is shown in 6.2(c).

Adding New Rows with Partitioning

Suppose the user attempts to commit a version that only inherits six records from V3 and
contains nine additional records for a total of 15 records. After creating the intersection
table containing the six records in common, OrpheusDB chooses to create a new partition:
“data part 3.” The relation manager inserts the nine new records into the intersection table
and assigns new rids to each of these records. Finally, the intersection table is renamed to
“data part 3” and the index manager updates its corresponding table with the new partition
and version information with a score of six. The update version tree with the partitions drawn
out is shown in Figure 6.1(c).

Note that using Lyresplit would have resulting in creating different partitions when com-
pared to the incremental partitioning used here. If the repartitioning command is invoked,
the CVD would be partitioned as follows: {V1, V2}, {V3, V4}. This removes from some dupli-
cated data and the overall number of partition tables used. The version tree if OrpheusDB
fully repartitions the CVD is shown in 6.1(d). The CVDs for both version trees are found
in Figure 6.2(d) and (e) respectively.

CHAPTER 6. WORKFLOW 20

(a) Initial State (b) Adding Rows without Partitioning

(c) Adding Columns
(d) Adding Rows With Incremental Parti-
tioning

(e) Adding Rows With Full Partitioning

Figure 6.2: CVDs of the different scenarios

Adding New Columns With Partitioning

Suppose the user attempts alter the schema of a table by adding a new column while adding
enough additional rows that OrpheusDB decides to create a new partition. OrpheusDB will
update the schema of all data table partitions inside the CVD. After the update, OrpheusDB
returns to adding the new rows as described in the previous section.

21

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this report, we have detailed the implementation of OrpheusDB, highlighting the changes
to the main operations. In particular, we adjusted the checkout and commit procedures to
leverage all of the benefits of partitioning. Additionally, OrpheusDB now utilizes horizontal
partitioning to operate on smaller data partitions instead of the entire table. The system also
maintains the partitions, partitioning it on the fly or migrating the data across partitions once
performance degrades with new data being added. We have also highlighted the performance
of the different partitioning schemes, showing that it is highly dependent on the particular
workload used.

7.2 Future Work

Weighted Partitioning Metric

In order to determine the partition boundaries in a CVD’s history, OrpheusDB uses a metric
function to score how similar each child version is to its closest parent version in the Lyresplit
algorithm. However, a weighted function could be used on a particular CVD’s history to
work towards improved partition boundaries, translating into better performance overall.
An example of a weighted function would be a popularity metric which would bias towards
versions that are used more often, increasing performance by considering and optimizing for
how often a version is used.

Modified Partitioning Schemes

Currently, OrpheusDB only considers partitioning horizontally across the rids, using the
Lyresplit algorithm to determine how to partition the versions into different tables. While
this partitioning scheme was shown to be more efficient in checkout operations, commit

CHAPTER 7. CONCLUSION AND FUTURE WORK 22

operations do not perform as well on certain workloads such as when many different columns
are added in a version. Introducing a dynamic, hybrid scheme would be one interesting
improvement to the partitioning scheme. This scheme would allow the system to adapt
more effectively to a dataset’s workload and consider more facets of how we can partition a
CVD such as column overlaps.

Schema Support

OrpheusDB has a built–in schema parser to help it identify which columns are being intro-
duced in a particular version. This is primarily used during the commit phase to determine
how to adjust the data partitions appropriately for proper operation. However, it is not ro-
bust to operations that modify the schema. While we addressed concerns about OrpheusDB
handling schema updates, it still requires the user to specify what the update is. Ideally, we
would want to implement a lightweight system that can detect how evolution of these columns
occur without requiring a pairwise comparison between all of the preexisting columns of the
dataset. This would allow OrpheusDB to track these changes and potentially store an vir-
tual column that can be recomputed on the fly. Some examples of operations that would
be interesting to support are normalization or combining two or more columns together to
create a derived column.

23

Bibliography

[1] Click. May 2021. url: https://click.palletsprojects.com/en/7.x/.

[2] Open-source Version Control System for Machine Learning Projects. May 2021. url:
https://dvc.org/.

[3] OrpheusDB Website. May 2021. url: https://orpheus-db.github.io/.

[4] “OrpheusDB: A Lightweight Approach to Relational Dataset Versioning”. en. In: 10
(2017). url: https://people.eecs.berkeley.edu/~adityagp/papers/orpheus-
tr.pdf.

[5] PostgreSQL: The World’s Most Advanced Open Source Relational Database. May 2021.
url: https://www.postgresql.org/.

[6] psycopg2. May 2021. url: https://pypi.org/project/psycopg2/.

[7] Huang Silu et al. “OrpheusDB: Bolt-on Versioning for Relational Databases”. en. In:
Proceedings of the VLDB Endowment 10.10 (2017), pp. 1427–1441. doi: 10.14778/
3342263.3342278. url: http://www.vldb.org/pvldb/vol10/p1130-huang.pdf.

[8] Splitgraph. May 2021. url: https://www.splitgraph.com/.

[9] Azari Sun and Turakhia. “Gallery: A Machine Learning Model Management System
at Uber”. In: Proceedings of the 22nd International Conference on Extending Database
Technology. 2020, pp. 474–485.

		2021-08-10T18:07:13+0000
	1014:Client Cert

