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Abstract

Enabling Generalization of Human Models for Human-AI Collaboration to New Tasks

by

Xiaocheng (Mesut) Yang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anca Dragan, Chair

Human modeling is a crucial step for achieving good human-AI collaboration, and human
data provides us with information on human behavior and thus plays an important role in
the process. Even though existing methods work well on a single task with the help of plenty
of on-task human data, real-world human-AI collaborations usually involve a distribution of
disjoint tasks, and collecting human data on every single task is unrealistic. Consequently,
naive human modeling could fail in tasks without human data. However, as long as we know
the distribution of tasks, we can still use self-play to obtain a multi-task self-play policy. Since
this policy will need to learn robust representations of all tasks, it can serve as an effective
initialization for human models. We provide theoretical justification for this technique, and
show its benefits on a challenging multi-task setting: multi-layout Overcooked-AI.
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Chapter 1

Introduction

Even though AI systems have been able to solve increasingly complex games, competitive
games [10][14][3] have received a lot more attention than collaborative ones. One of the main
reasons is that building collaborative AI agents requires modeling the collaborator, which
poses a unique challenge especially when they are human.

Figure 1.1. A figure from previous work [4] that illustrate the challenge of collaborative games

One way to explicitly model a human collaborator (proposed in previous work[4]) is
to collect data on human-human collaboration and construct human models offline with
imitation learning. This method is proven to work well when we know the exact task that the
collaborative AI agents will be deployed in, and we can collect a large amount of human data
on that specific task. However, when we only have access to the distribution of deployment
tasks but cannot collect data on all of them, current human modeling techniques struggle to
produce satisfying results because of the challenging generalization required.

Generalization in machine learning is usually measured by performance in unseen situa-
tions. A human model that is good at generalization should be a good proxy for the human
not only on tasks for which we have human data for, but also those for which we do not
have human data for. Even though there have been significant advancements in improving
generalization for reinforcement learning (CURL, RAD), these have not been applied widely
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to the context of imitation learning. In this work, we are interested in investigating an
imitation-learning-specific technique for improving generalization.

Even though low-capacity human models, including but not limited to planning[11],
Boltzmann[1][13] and theory-of-mind[9][8], are popular techniques that have been extensively
studied, we focus on improving the alternative option: end-to-end high-capacity human
models that utilize neural networks. We investigate ways to improve training outcome when
using a high-capacity human models to obtain good generalization performance.

The rest of the thesis is organized as follows: In Chapter 2, we give the mathematical defi-
nitions for important background concepts in human modeling and multi-task generalization.
In Chapter 3, we formally introduce the human model generalization problem and specify
the objective. In Chapter 4, we investigate the challenges of optimizing for generalization
in human modeling, and provide theoretical justifications for why initializing with self-play
policies addresses the challenges. In Chapter 5, we introduce multi-layout Overcooked-AI,
the evaluation framework, and all the human modeling conditions. In Chapter 6, we show
that initializing with self-play policies indeed helps us obtain a better human model. Lastly,
in Chapter 7, we summarize our findings and discuss future directions. Overall, we describe
our contributions as:

• Formalizing the generalization problem in human modeling, and implementing multi-
layout Overcooked-AI, an experimental framework to evaluate methods attempting to
address this problem.

• Identifying multi-task self-play policy as a promising initialization for generalize human
models.

• Demonstrating that initializing with multi-task self-play policies helps improve human
model generalization capabilities to new tasks, providing better collaborative AI agents.
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Chapter 2

Background

2.1 Collaborative Games

We consider a symmetrical two-player collaborative game G given by tuple (S,A, T ,R, pinit),
where S is the set of all possible states in the game, A is the set of all possible actions for each
player, T : S ×A×A → [0, 1]|S| is the transition probability function that, given the initial
state, current actions of both players, outputs a transition probability over the destination
state, R : S × A × A → R is the reward function that outputs the joint reward for both
agents given the state and the joint action, and pinit specifies the initial state distribution.

Let Π : S → [0, 1]|A| be policies, the class of functions that given a state, output a
probability distribution over all legal actions. Let Ξ be a space of trajectories for a collection
of state, joint action ({(s, ajoint)})

Let C : G×Π×Π→ Ξ be stochastic operator for collecting trajectories from a particular
task with a specific pair of policies.

Last but not least, let ρ : [G]× Π× Π→ R be an operator that calculates the expected
cumulative shared reward for a specific pair of policies under a game. Mathematically:

ρ(G, πA, πB) = Eg∼G

 ∑
(s,ajoint,s′)∈C(g,πA,πB)

R(s, ajoint)

 (2.1)

Both players seek to maximize ρ, the expected cumulative shared reward.

2.2 Best Response

In a collaborative game G, the best response (BR) to a policy πx is defined as the policy that
maximizes the expected cumulative shared reward given a fixed policy for the other player:

BR(πx) = argmax
π∈Π

(ρ(G, π, πx)) (2.2)
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2.3 Multi-Task Setting: The Test Bed for

Generalization

A learning setting is considered multi-task if the overarching game that the agent is learning
in can be decomposed into disjoint sub-games. Mathematically, G = (S,A, T ,R, pinit) is a
multi-task learning setting with M tasks Gi = (Si,A, T ,R, pinit,i) for i = 1, ....,M if

S =
M⋃
i

Si

T (sa|sb, ajoint) = 0 ∀ajoint ∈ A×A ∀sa ∈ Si, sb ∈ Sj ∀Si 6= Sj

(2.3)

With this mathematical definition, it is not hard to see why multi-task is the ideal setup
to evaluate generalization: once an agent is initialized in a particular task, it is impossible
for it to enter states in a different task, making it possible to completely separate training
tasks and test tasks.
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Chapter 3

The Problem of Human Model
Multi-Task Generalization

In this chapter, we define the problem we aim to solve, explain why it is important, and why
it is challenging.

3.1 An Introduction to the Human Model

Generalization Problem

Consider the following scenario: you are playing a collaborative game with a stranger: first,
a random integer between 1 and 1012 is selected, and then the two of you vote on whether
that number is a prime. Here is how the rewards are distributed:

• +100 if the number is prime and both of you voted “prime”

• +21 if the number is not prime, and both of you voted “not prime”

• +0 otherwise

The best way to learn a good strategy is not immediately obvious, but most will agree
that the process involves figuring out how humans play this game, since very few people
memorize all prime numbers up to 1012.

But now the question becomes, how do we learn about human behavior? Well, let’s pair
random people up and collect some human-human data! We will expect to see that almost
all people recognize all even numbers are divisible by 2, most recognize that numbers end in 0
and 5 are divisible by 5. These are the more salient features that can usually get picked up by
a shallow pass of the human-human data, but what about more obscure ones like “numbers
whose sum of digits are divisible by 3 are divisible by 3” or “numbers whose alternating sum
of digits are divisible by 11 are divisible by 11”? More importantly, if someone classifies
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304538913 correctly as not prime (or misclassifies 64305217 as a prime), how do we know
what combination of features they used to reach that conclusion?

But why do we bother with learning these features when we can just collect more human-
human data? Indeed, if the size of the interval is relatively small (for example, instead of
numbers up to 1012, only consider numbers up to 100), one can collect enough data to
know exactly how humans will vote on every single number. However, when the game is
over a large interval, abstraction and feature learning become a necessary component, and
generalization is necessary to model human behavior and find the best strategies.

3.2 Problem Statement

Suppose we have a multi-task collaborative game G given by tuple (S,A, T ,R, pinit) where
G can be partitioned into disjoint tasks G1,G2...,GM .

Suppose we can collect human data on k << M tasks. Without loss of generality, let’s
assume that the k tasks are G1,G2...,Gk, and the obtained human-human dataset is denoted
as DHH,1:k.

We are interested in finding a generalized human proxy Hproxy that closely resembles the
real human H in unseen tasks. Equivalently, want to find πHproxy ∈ Π such that

πHproxy(s) ' πH(s) ∀s ∈ S\ ∩ki=1 Si (3.1)

To contextualize this mathematically, we define an abstract distance functional d : Π ×
Π→ R such that for any pairs of human proxy policies πHproxy,a and πHproxy,b

d(πHproxy,a , πH) < d(πHproxy,b , πH)⇔ πHproxy,a � πHproxy,b (3.2)

Since the real reason we want to find a good human model is that it helps the best
response optimizer solve the right question, and thus improve collaboration performance
with the real human, we can define a key property of d with the notion of Best Response in
section 2.2:

πHproxy,a � πHproxy,b ⇔ ρ(Gk+1:M , BR(πHproxy,a), πH) > ρ(Gk+1:M , BR(πHproxy,b), πH) (3.3)

Now the optimization objective for any human modeling technique τ (whose resulting
space of possible policy is Πτ ) can be mathematically defined as

π∗Hproxy,τ = argmax
π∈Πτ

ρ(Gk+1:M , BR(π), πH) = argmin
π∈Πτ

d(π, πH) (3.4)
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Figure 3.1. Abstract distance function d: the proxy policy b is more preferable than the proxy policy a
because d(πproxy,b, πreal) < d(πproxy,a, πreal).

Figure 3.2. Graphical Representation of the objective: given the real human policy πH (green star) in the
space of human policies (green oval), find a solution π (the black star) in the human model space (the black
oval) that minimizes d(π, πH) (the orange segment).
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Chapter 4

Multi-Task Self-Play Initialization as
an Inductive Bias

In this chapter, we introduce our approach towards improving generalization to unseen tasks
for high capacity human models: initializing behavior cloning agents with multi-task self-play
policies.

4.1 The Challenge of Optimizing for Multi-Task

Generalization

There is a problem with d, the optimization objective in section 3.2: the true form of this
function requires online access to πH , which makes it unrealistic to optimize over when we
are only given limited offline human data. But not all hope is lost, as cross-entropy loss
(denoted as CE), the objective function for behavior cloning [12], serves as a good proxy.
To formally introduce this:

dCE(π, πH) = Es∼S(CE(π(s), πH(s))) (4.1)

Given a human dataset DH
S = {(sD, aD)}, the empirical objective is:

d̂CE(π, πH) =
1

| DH
S |

∑
(a,s)∈DHS

(CE(π(s),1A(a))) (4.2)

Even though d̂CE(π, πH) is an unbiased estimator of dCE(π, πH) and a convex objective
that gradient descent can optimize, the function dCE has one fatal flaw:1

dCE(πHproxy,a , πH) < dCE(πHproxy,b , πH) ; d(πHproxy,a , πH) < d(πHproxy,b , πH) (4.3)

1One example of this is a policy π̄H identical to πH in all but 1 state in DH
S , but for that state, π̄H

predicts a wrong action with 1.0 confidence. This drives d̂CE(π̄H , πH) to ∞, even though π̄H should be
highly preferred, yielding extremely small d(π̄H , πH) compared with other policies in the space.
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This means that when we use dCE instead of d, the topology of the space is altered,
affecting where the optimizer will likely converge to. Figure 4.1 gives a graphical illustration.

Figure 4.1. When we use cross entropy, a proxy distance function, instead of the real distance function,
the topology of the space is changed. Consequently, drastically differently solutions under d (I � II � III �
IV � V) can appear indistinguishable under dCE (I ∼ II ∼ III ∼ IV ∼ V)

The trouble with solutions of indistinguishable quality mentioned above is compounded
by the existence of ambiguous solutions, another common issue with using high-capacity
models for human modeling. Even though this issue could be mitigated by collecting more
human data (as seen in figure 4.2), the generalization requirements force our human modeling
approach to operate in the left side of the spectrum, where there are a huge number of bad
solutions that the optimizer needs to dodge.

Figure 4.2. More information from human data can help reduce ambiguities among solutions (black stars),
and give us better chances at landing near the ground truth (the green star) when the optimizer converges.
However, unfortunately the generalization requirements forces us to work in the space towards the left of
this spectrum

4.2 Self-Play Policies

Even though a good solution in d appearing as a bad solution under dCE is indeed bad news,
it could also be a good news: policies that appear extremely undesirable under dCE (which
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is why they are normally not considered) could actually be quite desirable under d. Self-play
policies fall under this category.

In general, given a game composed of tasks [S], an optimal self-play policy π∗SP has the
following qualities

π∗SP = BR(π∗SP )

π∗SP = argmax
π∈Π

ρ(G, π, π) (4.4)

In most coordination situations, self-play policies suffer from a lot of problems: they
make too many assumptions about the collaborator, and most importantly, they move and
act in very un-human-like manners [4]. In general, if one is to use a self-play policy πSP
as a human model, and run counterfactual comparisons on any human trajectory between
πSP and an oracle πH , the expected mean cross entropy loss over the output probabilities
is likely to be very high because self-play policies are generally extremely confident about
making their actions, which incurs a huge cross entropy loss when the prediction is wrong.
Table 4.1 gives an example of this.

π π(2) π(121) π(5919) π(392471) d̂CE(π, πH)
πSP (0.9, 0.1) (0.1, 0.9) (0.99, 0.01) (0.55, 0.45) 1.901
πrandom (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) 1.741

πH (hypothetical) (0.9, 0.1) (0.2, 0.8) (0.02, 0.98) (0.65, 0.35) N/A

Table 4.1. Using the prime predictor game from section 3.1 as an example here: every tuple in the table
represents (P (voting prime | π, x), P (voting not prime | π, x)). Note that even though πSP is arguably
qualitatively better than πrandom, the one over-confident mistake it makes with 5919 drives up the empirical
mean cross entropy loss d̂CE and makes πSP appear a lot worse than how it actually is. In summary,
d(πSP , πH) < d(πrandom, πH) but dCE(πSP , πH) > dCE(πrandom, πH)

4.3 Initializing Behavioral Cloning Agents with

Self-Play Policies

It is no secret that initialization matters for high-capacity models, especially neural networks,
at various levels [7][5]. In this section, we introduce a slightly counter-intuitive initialization
technique for high-capacity human models and provide a theoretical justification on why it
mitigates the indistinguishable-solutions and ambiguous-solution problem.

To understand why πSP could be desirable, we need to first take a detour to representa-
tion learning [2]. Any deep reinforcement learning agent, when learning a policy, implicitly
learns latent representations. Theoretically, we can slice any policy into two parts: the rep-
resentation learner f : S → H, and the action learner g : H → A. We can write this as a
function decomposition:

π(s) = g(f(s)) = g ◦ f(s) (4.5)
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This may look familiar: if we freeze f , but continue to allow g to update, we have
equivalently reduced the capacity of our high-capacity model! You can see the effect in
figure 4.3.

Figure 4.3. By freezing the representation learner, the optimizer is now operating in the space of reduced-
capacity models surrounding the self-play policy, and it can continue to improve by updating the action
learner. Also note that the constrained region has fewer local optima.

As this point, we see that we can combine the benefits of both high-capacity and low-
capacity models. Even though self-play policies output vastly different actions, we can
use the learned representation to reduce the effective capacity, which in turn alleviates the
ambiguous-solution problem that plagues the high-capacity models.

But what if we go further and allow f to also update? Well that’s tricky, because
updating f is equivalent to reshaping the constrained region (as seen in figure 4.4, and doing
that together with g could possibly put the optimization problem back to the full policy space
and reintroduce the ambiguous-solutions problem. However, allowing f to update could be
beneficial for picking up latent features that are overlooked by the self-play policies.

Figure 4.4. Updating the representation learner is equivalent to reshaping the space of reduced-capacity
models.
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Chapter 5

Experimental Setup

In this chapter, we introduce the evaluation framework, how human data is collected, the
human modeling conditions, and the best response conditions

5.1 Framework: Multi-Layout Overcooked-AI

Overcooked-AI serves as a great starting point: it was designed to pose challenges on coor-
dination without posing challenges on deep reinforcement learning. But this is not enough,
as aside from evaluating methods for human modeling (or AI best responses) for a specific
layout, we would also like to see how they generalize to unseen layouts. To evaluate the
objective we are interested in, the multi-layout Overcooked-AI is constructed by augmenting
the Overcooked-AI environment with a multi-layout distribution.

The Base Environment: Overcooked-AI

Overcooked-AI is inspired from the popular video game Overcooked [6], in which players
control cooks in a shared kitchen space to cook and serve dishes according to a set of orders.
In Overcooked-AI, a simplified version of the game, a team of two cooks are expected to work
together to gather ingredients and utensils and coordinate pot operation and route serving
in order to accumulate rewards upon successful soup deliveries.

To evaluate the methods, we are particularly interested in the specific setup where one
cook is controlled by a human and the other is controlled by an AI.

The Multi-Layout Distribution

To simulate diverse situations in the real world, we define E as a wide distribution of layouts:
all layouts that are 7 in size, with approximately 75% empty space and 40% of all counters
occupied by an interactive object (onion dispenser, dish dispenser, pot, or serving station).
Figure 5.2 illustrates the diversity of layouts in this distribution.
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Figure 5.1. Example game-play snapshots from centre pots, one of the fixed layouts in the base Overcooked-
AI environment

Figure 5.2. 30 out of roughly 1013 layouts from the multi-layout distribution E.

The Evaluation Layouts

To evaluate, we sampled 5 layouts from E: e0, e1, e2, e3, e4, in increasing levels of difficulties
(measured by the the maximum achievable rewards in a single game). These evaluation lay-
outs provides the basis for insights into performance differentials in the general distribution.
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(a) e0 (b) e1 (c) e2 (d) e3 (e) e4

Figure 5.3. The five evaluation layouts: e0, e1, e2, e3, e4.

5.2 Human Data

Simulated Human

We use a planning-based greedy human model as the ground truth human model H in the
experiments to isolate confounding factors (including but not limited to shifts in human
behavioral patterns in response to a change in their partner’s behavior). A greedy human
model re-plans at every time-step and acts noisy-optimally based on an internal set of hidden
parameters.

Human-Human Data Collection

To obtain human-human data for human modeling, we divide 40 human participants into
pairs j = 0, 1, 2, ..., 20. Then each pair j will play 1 game of 400 time steps on each of the
10 layouts:

• 5 evaluation layouts e0, e1, e2, e3, e4 (same for all pairs), and

• 5 randomly sampled layouts from e′5j, e
′
5j+1, e

′
5j+2, e

′
5j+3, e

′
5j+4.

In the end, we work with two types of human data:

• Dense and layout-specific human data on all 5 evaluation layouts: DH
e0

, DH
e1

, DH
e2

, DH
e3

,
DH
e4

, and

• Sparse human data across the entire distribution (1 trajectory for each layout): DH
E .

5.3 Human Modeling: Conditions and Training Setup

All human modeling conditions

For each evaluation layout ei, the following conditions are considered:

• mlsp: multi-layout self-play agent trained on the full multi-layout distribution E only.
It is never exposed to human data.
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• mlbc: multi-layout behavior cloning agent randomly initialized, and only aims to clone
DH
E , the sparse human data across distribution.

• mlbc mlsp freeze: multi-layout behavior cloning agent initialized with weights from
multi-layout self-play. The representation learner is frozen, and the agent aims to
clone DH

E by updating the action leaner only.

• mlbc mlsp: multi-layout behavior cloning agent is initialized with weights from multi-
layout self-play. The agent aims to clone DH

E by allow updating both the representation
learner and the action leaner.

• slsp: single-layout self-play agent trained on the specific evaluation layout ei only. It
is never exposed to human data.

• sp: self-play similar to slsp, but trained with less attention towards state robustness,
so we denote this training distribution ēi.

1

• bc: single-layout behavior cloning agent randomly initialized, and only aims to clone
DH
ei

, the dense human data on layout ei.

• bc slsp freeze: single-layout behavior cloning agent initialized with weights from single-
layout self-play. The representation learner is frozen, and the agent aims to clone DH

ei

by updating the action leaner only.

• bc slsp: multi-layout behavior cloning agent initialized with weights from multi-layout
self-play. The agent aims to clone DH

ei
by updating both the representation learner

and the action learner.

Additional Details on Training Human Models

For the overall distribution E, the human data is equally divided into DH
E,train and DH

E,validation.
Similarly, for each evaluation layout ei, the human data is equally divided into DH

ei,train and
DH
ei,validation. All multi-layout BC agents are trained with DH

E,train, and early stopped when
the validation loss on DH

E,validation is minimized. Similarly, all single-layout BC agents are
trained with DH

ei,train, and early stopped when the validation loss on DH
ei,validation is minimized.

5.4 Best Responses: Conditions and Training Setup

Before proceeding, let’s define PPO BC[4], a term commonly used in the following discussion.

1slsp and mlsp are both trained with diverse-start, a random task initialization method to increase
self-play robustness. But sp does not get help from diverse-start.
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Method name Initialization f updates? g updates? Layouts Human data
mlsp random Yes Yes E None
mlbc random Yes Yes None DH

E

mlbc mlsp freeze mlsp No Yes None DH
E

mlbc mlsp mlsp Yes Yes None DH
E

sp random Yes Yes ēi None
slsp random Yes Yes ei None
bc random Yes Yes None DH

ei

bc slsp freeze slsp No Yes None DH
ei

bc slsp slsp Yes Yes None DH
ei

Table 5.1. All human modeling conditions in a nutshell. Note that all single-layout conditions only serve as
rough baselines because they have access to dense data directly and are only expected to work on 1 layout,
and thus do not need to generalize. The horizontal lines are drawn to separate out 4 groups in this list:
all methods in the same group have the same level of information about layouts and human data during
training.

When given a human model Hproxy, a PPO BC agent aims to solve the optimization
problem:

πPPO BC,Hproxy = argmax
π∈Π

ρ(G, π, πHproxy) (5.1)

All best response conditions

For each evaluation layout ei, the following conditions are considered:

• mlsp: multi-layout self-play agent trained on the full multi-layout distribution E only.
It is never paired with a human model.

• mlppobc-mlbc: multi-layout PPO BC agent randomly initialized, paired with mlbc,
and trained on the full multi-layout distribution E only.

• mlppobc mlsp-mlbc: multi-layout PPO BC agent initialized with weights from multi-
layout self-play, paired with mlbc, and trained on the full multi-layout distribution E
only.

• mlppobc mlsp-mlbc mlsp freeze: multi-layout PPO BC agent initialized with weights
from multi-layout self-play, paired with mlbc mlsp freeze, and trained on the full multi-
layout distribution E only.

• mlppobc mlsp-mlbc mlsp: multi-layout PPO BC agent initialized with weights from
multi-layout self-play, paired with mlbc mlsp, and trained on the full multi-layout
distribution E only.
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• slsp: single-layout self-play agent trained on the specific evaluation layout ei only. It
is never exposed to human data.

• sp: self-play similar to slsp, but trained with less attention towards state robustness,
so we denote this training distribution ēi.

2

• ppobc-bc: single-layout PPO BC agent randomly initialized, paired with bc, and
trained on the specific evaluation layout ei only.

• ppobc slsp-bc: single-layout PPO BC agent initialized with weights from single-layout
self-play, paired with bc, and trained on the specific evaluation layout ei only.

• ppobc slsp-bc slsp freeze: single-layout PPO BC agent initialized with weights from
single-layout self-play, paired with bc slsp freeze, and trained on the specific evaluation
layout ei only.

• ppobc slsp-bc slsp: single-layout PPO BC agent initialized with weights from single-
layout self-play, paired with bc slsp, and trained on the specific evaluation layout ei
only.

Method name Initialization Hproxy Layouts Human data
mlsp random mlsp E None
mlppobc-mlbc random mlbc E DH

E

mlppobc mlsp-mlbc mlsp mlbc E DH
E

mlppobc-mlbc mlsp freeze mlsp mlbc mlsp freeze E DH
E

mlppobc-mlbc mlsp mlsp mlbc mlsp E DH
E

sp random sp ēi None
slsp random slsp ei None
ppobc-bc random bc ei DH

ei

ppobc slsp-bc slsp bc ei DH
ei

ppobc slsp-bc slsp freeze slsp bc slsp freeze ei DH
ei

ppobc slsp-bc slsp slsp bc slsp ei DH
ei

Table 5.2. All best response conditions in a nutshell. The horizontal lines are drawn to separate out 4
groups in this list: all methods in the same group have the same level of information about layouts and
human data during training. Note that one condition is added to group 2 and group 4 to test the importance
of initializing best-response with self-play.

2slsp and mlsp are both trained with diverse-start, a random task initialization method to increase
self-play robustness. But sp does not get help from diverse-start.
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Chapter 6

Results

In this chapter, we compare all human modeling conditions using three different distance
functions: dCE, dreward, and d.

6.1 The Cross-Entropy Inspired Distance: dCE

First, let’s see how the multi-layout methods (which need to zero-shot generalize from sparse
off-task human data) stack up with single-layout methods (which have direct access to dense
on-task human data), when evaluated on DH

ei,validation, the validation human data. We plot

d̂CE(π, πH), the empirical estimate of dCE(π, πH) in figure 6.1, and observe a few patterns:

• Self-play policies indeed have huge dCE to the true human policy, regardless of whether
they are trained on the full distribution or that specific layout (indicated by big d̂CE
for all self-play conditions).

• Behavior cloning can help any type of initialization/freezing reach a point relatively
close to the human policy in the dCE space (indicated by similar d̂CE cross conditions
within the same group).

• Direct access to dense on-task data allows behavior cloning to reach solutions closer to
πH in the dCE space, if it is an option (indicated by the lower average d̂CE in group 4
compared with group 2).



CHAPTER 6. RESULTS 19

(a) e0 (b) e1

(c) e2 (d) e3

(e) e4

Figure 6.1. d̂CE(π, πH) for all conditions on all 5 evaluation layouts. For each layout, the histograms are
grouped by the information the condition has about layout and human data. Details about the groupings
can be seen in table 5.1.
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6.2 The Performance Inspired Distance: dreward

As previously mentioned in section 4.1, even though dCE is great for optimization purposes,
it suffers from the fatal flaw of warping the true distance space out of shape. To add another
angle to help us pick out the best human model, we again look into the space of distance
metrics and ask ourselves: aside from making the human models act like a human, what else
do we want them to?

One candidate jumps out to us: maybe we also want the human models to perform like
a human, and the human data has that information too! With the help of the trajectory
collector operator C, we can formally introduce the performance-based distance:

dreward(π, πH) = |ρ(Gk+1:M , π, π)− ρ(Gk+1:M , πH , πH)| (6.1)

Given a human dataset on l unseen validation tasks Gk+1:k+l, the empirically performance-
based distance is:

d̂reward(π, πH) = |ρ̂(Gk+1:k+l, π, π)− ρ̂(Gk+1:k+l, πH , πH)| (6.2)

We plot ρ̂(Gk+1:k+l, π, π), the intermediate quantity (also known as validation rewards)
that will help us get an empirical estimate of dreward(π, πH) in figure 6.2 and observe a few
patterns:

• Even though the multi-layout self-play policy was not trained on any of the evaluation
layouts directly, the broad distribution of layouts allow it to achieve similar performance
as single-layout self-play policies. This indicates that the multi-layout self-play policy
must have learned a generalizable latent representation that is capable of coping with
unseen tasks in the distribution.

• With either slsp or mlsp initialization, behavior cloning also happens to mini-
mize dreward, while not directly performing gradient updates on this particular
objective (indicated by the shrinked gap between ρ̂(Gk+1:k+l, πtrained, πtrained) and
ρ̂(Gk+1:k+l, πH , πH)).

• With random initialization, behavior cloning performs worse when it has multi-layout
sparse data and when it has single-layout dense data. But the random initialization
really hurts in the multi-layout case, indicated by the inability of the vanilla mlbc to
accumulate any rewards on all 5 evaluation layouts.
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(a) e0 (b) e1

(c) e2 (d) e3

(e) e4

Figure 6.2. ρ̂(Gk+1:k+l, π, π) for all conditions on all 5 evaluation layouts. For each layout, the histograms
are grouped by the information the condition has about layout and human data. Note that the average
human-human reward ρ̂(Gk+1:k+l, πH , πH) is plotted on the rightmost side. Details about the group can be
seen in table 5.1.
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6.3 The Coordination Rewards with the Ground

Truth Human: Information on the Real d

From section 3.2, we know that the true objective for a human model π is to minimize d,
which is inversely correlated with ρ(Gk+1:M , BR(π), πH). After obtaining the best responses
to human models in all conditions, we plot the empirical estimate of this quantity (also
known as test rewards) in figure 6.3 and observe a few patterns:

• Even though the self-play policies were never explicitly trained with a human model
(because their human proxy is another copy of themselves), they can achieve reasonable
test coordination reward.

• Best responses trained with self-play-initialized human models have higher test coor-
dination reward than those trained with a randomly initialized human models, in both
multi-layout and single layout situations (indicated by the comparison between the
second bar and third & fourth bar in group 2 and group 4).

• The effect of freezing the representation learner f for human models remains inconclu-
sive for now.

• Self-play initialization even improves test reward for the best response policy PPO BC
(indicated by the comparison between the first and second bar in group 2 and group
4).
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(a) e0 (b) e1

(c) e2 (d) e3

(e) e4

Figure 6.3. Test rewards ρ̂(Gk+1:M , BR(π), πH) for best responses learned with the different types of human
models. The average human-human reward ρ̂(Gk+1:M , πH , πH) is plotted on the rightmost side. In addition,
a golden dotted line is also added to group 4 of each figure: this is the test reward for a PPO BC agent with
direct access to πH throughout best-response training. Details about the group can be seen in table 5.2.
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Chapter 7

Conclusion

Obtaining a human model that can generalize to unseen tasks is an instrumental step towards
building an AI system that collaborates well with humans. In this thesis, we formalized the
challenge of multi-task generalization in human modeling. We then provided theoretical
justifications for why initializing with self-play policies could mitigate ambiguous-solutions
and indistinguishable-solutions problems that plague high-capacity human models. Last but
not least, we demonstrated the effectiveness of our approach on a collection of sampled
layouts in multi-layout Overcooked-AI.

There are many future directions one can expand on this thesis. The most promising
first step is to see if the results can be replicated with real human data. In addition, it will
be worthwhile to attempt self-play initialization for low-capacity models such as Theory of
Mind. Last but not least, it will be interesting to see if the results hold in collaborative
environments outside the Overcooked-AI universe, either on other simulation frameworks or
on real robots.
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