Empirical Evaluation of Adversarial Surprise

Samyak Parajuli

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-203
http://lwww2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-203.html

August 17, 2021




Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to all my friends and family who have supported me along the
way.

This thesis discusses material from an academic paper titled "Explore and
Control with Adversarial Surprise” prepared in collaboration with authors
Arnaud Fickinger, Natasha Jaques, Michael Chang, Nick Rhinehart, Glen
Berseth, and Sergey Levine.



Empirical Evaluation of Adversarial Surprise

by

Samyak Parajuli

A thesis submitted in partial satisfaction of the
requirements for the degree of
Masters of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Alexandre Bayen, Chair
Professor Sergey Levine

Spring 2021



The thesis of Samyak Parajuli, titled Empirical Evaluation of Adversarial Surprise, is ap-
proved:

Chair J)-—=2g Alexandre M. Bayen Date  8/16/2021
c ﬁﬂﬁ Sergey Levine Date  8/16/2021
v v
Date

University of California, Berkeley



Empirical Evaluation of Adversarial Surprise

Copyright 2021
by
Samyak Parajuli



Abstract
Empirical Evaluation of Adversarial Surprise
by
Samyak Parajuli
Masters of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Alexandre Bayen, Chair

In this report, we describe experiments supporting a new unsupervised reinforcement learning
method, Adversarial Surprise, which has two policies with opposite objectives take turns
controlling a single agent [12]. The Explore policy maximizes entropy, putting the agent
into surprising or unfamiliar situations. Then, the Control policy takes over and seeks to
recover from those situations by minimizing entropy. Through multi-agent competition, this
adversarial game between the two policies allows for the agent to both find increasingly
surprising parts of the environment as well as learn to gain mastery over them. We show
empirically that our method leads to more effective exploration of stochastic, partially-
observed environments, is able to perform meaningful control to minimize surprise in these
environments, and allows for the emergence of complex skills within these environments. We
show that Adversarial Surprise is able to outperform existing intrinsic motivation methods
based on active inference (SMiRL), novelty-seeking (Random Network Distillation (RND)),
and multi-agent unsupervised RL (Asymmetric Self-Play (ASP)) in MiniGrid, Atari and
VizDoom environments.
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Chapter 1

Introduction

As described in [34], reinforcement learning is learning what actions to perform in order to
maximize a numerical reward signal. Generally, this signal is extrinsic, meaning it comes
from an external source (reaching a goal state in the environment, killing an enemy, etc.)
Agents that are externally motivated have seen widely successful results in an assortment of
various tasks such as [25], [5], and [22]. However, designing rewards of this nature can be
difficult and inaccurate. For example, providing a dense reward requires not only specifying
what to do to but also what not to do - known as the “side effects problem” [1]. A sparser
reward is easier to specify, but can cause learning to be slow and difficult [36], [26]. As
a result, a class of unsupervised RL algorithms has been developed that do not depend
explicitly depend on task reward and instead focus on intrinsic motivation [8]. The purpose
of this intrinsic motivation is to develop a sense of “broad competence” through exploration
and general novelty seeking behavior as opposed to a more specific external goal [9].

This novelty seeking behavior can be helpful in exploring the underlying state space
at a faster rate, but it can also be prone to the “noisy TV problem” coined in [7]. The
essence of this problem is that if an agent is rewarded for seeking novel states, it could get
stuck at highly entropic elements within the environment (e.g. a “noisy” TV that produces
unpredictable noise and static.) The agent would continuously be rewarded for watching this
TV, but would not learn meaningful behavior or make any progress within the environment.

Conversely, there exists work based on the “free-energy principle”, which proposes that
all biological systems are driven to minimize “free energy” - calculated to be the difference
between an organism’s predictions about its sensory inputs and the sensations it actually
encounters [16]. This reasoning guides works such as [6] and [17], leading to their approaches
of “surprise minimization” and “active inference”, respectively. Although this strategy can
encourage the development of complex behavior, it can also suffer from the “dark room
problem”. By adopting the objective of minimizing surprise, an agent can enter an area that
maintains the least amount of sensory information (a “dark room”) and never leave.

Building upon both of these ideas, we present an empirical analysis on the recently pro-
posed Adversarial Surprise algorithm - an unsupervised multi-agent reinforcement learning
algorithm that balances exploration and control as an adversarial game between two poli-
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cies. [12]. The Explore policy is novelty-seeking, and attempts to maximize surprise over
the course of the episode, putting the agent into a diverse range of novel states. In turn, the
Control policy must minimize surprise by learning to manipulate its environment in order
to return to safe and predictable states.

This report is structured with the second chapter presenting background on relevant
works and topics, the third chapter presenting the novel Adversarial Surprise algorithm
and detailing implementation along with experiment analysis, and finally the fourth chapter
summarizing the results and postulating future directions for this work.

Masimize Enlropuﬂ Minimize Entropy

Control Agent

Figure 1.1: Personification of Adversarial Surprise Algorithm



Chapter 2

Background

2.1 Partially Observable Markov Decision Process

Standard Markov decision processes assume that the complete state of the world is visible to
the agent. This assumption becomes unrealistic when considering real-world agents. They
become limited by the particular sensors they use; for instance, a robot with only a front-
facing camera would not have the full information of the environment around it. In these
types of scenarios, it makes sense to map observations of states into actions in a frame-
work known as a partially observable Markov decision process (POMDP) [20]. Formally, A
POMDP is a tuple (S,A,7,0,r,v), where s € S are states, a € A are actions, r(a,s) is
the reward function, and v € [0, 1) is a discount factor. The environment is only partially
observable, so the agent cannot observe the true state s, but rather observes o ~ p(Ols). At
each timestep ¢, the agent selects an action a; according to its policy 7(a;|o;), receives reward
r(at, s¢), and the environment transitions to the next state according to T (s¢y1]S¢, ar). We
are interested in stochastic environments, in which the emission distribution distribution is
inherently entropic for some states, i.e. 3s: H(p(O|s)) > 0.

2.2 Multi-Agent Reinforcement Learning

Although we only employ one embodied agent, we have two policies that are optimized
sequentially. This is different from a typical multi-agent learning problem that has multiple
agents interacting simultaneously with their environment and potentially with each other,
but can utilize similar techniques to learn. One approach is using fully decentralized learners
[35] that directly apply single-agent algorithms to the multi-agent domain, where each agent
independently learns its own policy, treating other agents as part of the environment. These
methods are easier to implement, but can suffer from unstable convergence and may create
a non-stationary problem since the future transitions no longer depend on the current state,
violating the Markov property. [23]. In this work, we use an independent learning approach
with further details explained in section 3.2.
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On the other side, there are fully centralized policies that are modeled as standard Markov
decision processes consisting of a set of global states S and a set of joint actions A [39]. The
advantages are that these methods handle coordination better and avoid non-stationarity,
but they become impractical to implement with many agents due to exponential scaling.

In between these two approaches is a paradigm known as centralized training with de-
centralized execution, in which agents are trained in a centralized fashion (i.e. information
is shared between them), but operate in a decentralized manner during test time [24], [13].
These approaches can leverage additional information and are good for simulation settings,
but there is no obvious way to extract a policy.

Emergent Behaviors

Interaction between multiple policies can produce emergent behaviors, which are behaviors
that are not attributed to the behavior of an individual agent, but rather a global outcome
of the system. Previous works in this domain analyze different scenarios from cooperative to
competitive to a mix of both; in this work, we focus on the competitive case. The complexity
of behavior acquired by the trained agent is usually dependent on the complexity of the
environment. However, as pointed out by [2], a multi-agent system trained in a competitive
manner with self-play can produce behaviors that are far more complex than the environment
itself. Our method showcases a similar phenomenon wherein after each agent adapts, the
learning problem for the other agent becomes increasingly difficult, leading to the emergence
of an automatic curriculum of challenging learning tasks. This approach is most similar to
Asymmetric Self-Play (ASP) [33], [27]; however, our method is applicable in more scenarios
because, unlike ASP, it is formulated with general information theoretic quantities.

2.3 Intrinsic Motivation

Intrinsic motivation is based in human psychology, in which an intrinsically motivated be-
havior is defined as one “engaged for its own sake rather than as a step toward solving a
specific problem” [9]. The main way to integrate an intrinsic reward into a RL framework is
to consider it as a “bonus” term involving a weighted sum between the external reward and
intrinsic reward r = ot + Brex [18], [7], which is what we use for Adversarial Surprise. An
example model of this framework is shown in Figure 2.1.

Novelty Seeking

Typically, intrinsic motivation is incorporated into frameworks to encourage novelty-seeking
behaviors by maximizing uncertainty. One approach uses count-based exploration, deter-
mining the novelty of a particular state based on how many times it has been seen. This
approach doesn’t scale well in high-dimensional state space environments, so approaches
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Figure 2.1: Model of an organism with internal and external motivation

such as [4] use a density model to approximate the frequency of state visits and then derive
a pseudo-count from this model.

Another approach uses rewards that are based on an agent’s knowledge of the environment
estimated through a prediction framework. One example is the Intrinsic Curiosity Module
[29], which learns a state space encoding with a self-supervised inverse dynamics model.
These methods can suffer from the aforementioned “noisy TV problem”, in which agents
get stuck at highly-entropic elements [30]. However, we show that Adversarial Surprise can
break out of this behavior.

Surprise Minimization

Intrinsic motivation can also be used to incentivize an agent to minimize surprise over the
distribution of states generated by the policy, as described in SMiRL [6]. Specifically, SMiRL
uses a density model py(s) to keep track of the state history, and finds that the intrinsic
reward 7(s;) = log py(s) can be used as an upper bound on the entropy of the state marginal
density. This approach and others like it are based on the free-energy principle [17]. However,
agents trained in this why are vulnerable to the “dark room problem”, in which agents in
partially-observed or low-entropy environments learn to stay in a highly-predictable area of
the environment and never learn meaningful behavior [15]. Adversarial Surprise uses the
Explore policy, which is designed to seek out entropic areas of the environment, to avoid this
problem.
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Adversarial Surprise

3.1 Algorithm

Adversarial Surprise (AS) [12] aims to have a single embodied agent learn both a mean-
ingful exploration and control strategy. This process is learned through a two-player game
between, 77, an exploration policy and 7, a control policy. The Control policy uses a
learned model py to minimize its own surprise, or observation entropy. The Explore policy’s
goal is to maximize the surprise that the Control policy experiences. The policies take turns
taking actions for the agent, switching back and forth throughout the episode. The policy
controlling the RL agent changes every k steps, such that:

B .
atw{ w7 (ailo,) if In,t € [2nk, (2n + 1)k] (3.1)

7% (a)o;) otherwise

Each policy is given several steps to act. This enables it to reach states that will be chal-
lenging for the other policy to recover from, thus facilitating learning more complex and
long-term exploration and control behaviors.

To estimate surprise, we learn a density model which estimates the agent’s likelihood
of experiencing observation o, pp(0). Because the Control policy is surprise-minimizing, its
reward is r(s;) = log pg(o;), which resembles SMiRL [6], but using the observation in place
of the state. The goal of the Explore policy is to maximize the observation surprise of the
RL agent when the Control policy is in control. This creates an adversarial game in which
the Explore policy attempts to find surprising situations with which to expose the Control
policy, and the Control policy’s objective is to recover from them. Therefore, the Explore
policy’s reward is based on the surprise for the observations of the Control policy. Adver-
sarial Surprise thus defines the following adversarial game between the two policies:
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Algorithm 1: Adversarial Surprise
Randomly initialize ¢¥ and ¢¢;
for episode =0, ..., M do

Initialize 6, R* = 0, 8 < {}, explore_turn = True, t° = k,
so ~ P(80), 00 ~ p(Ools0);
fort < 0 to T do
if explore_turn then
| ay ~ 7 (o, hE) ; // Explore
else
| ay~ 7o, hY) ; // Control
end
Sta1 ~ T (Set1]st, ar)s 0p41 ~ P(Opga[Se41) 5 // Environment step
ry = logpg(0t41) ; // Compute intrinsic reward
if not explore_turn and t —t° > k/2 then
‘ R =R 41t ;
end
B =pU{oa, 041} ; // Update buffer
if t ==1t“ then
explore_turn = not explore_turn ; // Switch turns
t¢ =t 4 2k;
end
0,11 =MLE _update(S, 6;) ; // Fit density model
end
¢¥ =RL_update(8,—R'); // Train Explore policy 7% with reward —R’
#¢ =RL_update(3, RY) ; // Train Control policy 7% with reward R’
end
tC+k
max rfrucn —-F Z log po(oy) (3.2)

t=tC

[12] additionally provides a theoretical derivation on how the algorithm fully covers the
latent state space of a large family of POMDPs under some restrictions on their structure.
We present a high-level overview of the procedure in Algorithm 1 and then give specific
implementation details in Section 3.2.
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3.2 Implementation

All of our implementations are in PyTorch [28], a free and open-source machine learning
library which provides an intuitive framework for reinforcement learning. Below, we include
relevant implementation details unique to Adversarial Surprise.

Preprocessing

Most of our experiments use the Atari Learning Environment (ALE) [3], with preprocessing
wrappers implemented in [11]. We use the Vectorized Environment implementation from
[19], which allows for stacking multiple independent environments into a single environment.
Notably, the environments are automatically reset at the end of each episode with this im-
plementation, which is reflected in the policy section below. The MiniGrid environments are
trained with 16 parallel environments [12]. Although we ended up training with one envi-
ronment at a time for the non-MiniGrid experiments, the efficiency of this implementation
still reduced training time.

For Atari, we use the “NoFrameskip-v4” version of the environments, which has no action
repeat stochasticity. This contrasts with vO which has a “repeat action probability” of 0.25,
meaning that 25% of the time, the action that was used in the previous time step will be
used instead of the new action. It also does not use any frame skips which contrasts with
the deterministic and non-deterministic environments that use a fixed frameskip of 4 and
a frameskip uniformly sampled from (2,5). For the Take Cover scenario in VizDoom, we
enable only left and right actions, turn off god mode, and use a time limit of 1000.

Models and Surprise Wrapper

Listing 3.1: Explore Model

class ExploreModel (Module ):
def __init__(self, envs, frames=4):

super (ExploreModel , self ). __init__ ()

self .network = Sequential(
Scale(1/255),
layer_init (Conv2d(frames, 32, 8, stride=4)),
ReLU() ,
layer_init (Conv2d (32, 64, 4, stride=2)),
ReLU() ,
layer_init (Conv2d (64, 64, 3, stride=1)),
ReLU () ,
Flatten (),
layer_init (Linear (3136, 512)),
ReLU ()
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)

self.actor = layer_init (Linear (512, envs.action_space.n)
,std=0.01)
self.critic = layer_init (Linear (512, 1), std=1)

def forward(self, x):
x = self.network (x)
return x

Listing 3.2: Control Model
class ControlModel (Module):
def __init__(self , envs, frames=4, control_samps=None):
super (ControlModel , self ). __init__ ()
self .network = Sequential(
Scale (1/255),
layer_init (Conv2d(frames, 32, 8, stride=4)),

ReLU () ,
layer_init (Conv2d (32, 64, 2, stride=2)),
ReLU() ,
layer_init (Conv2d (64, 64, 2, stride=1)),
ReLU() ,
Flatten ())
self .network2 = Sequential(
layer_init (Linear (3585, 512)),
ReLU ()
)
self .actor = layer_init (Linear (512, envs.action_space.n)

,std=0.01)
self.critic = layer_init (Linear (512, 1), std=1)

def forward(self, x, batch=0):

x = self.network(x)

num_samples = self.envs.num_samples
x = cat ((x, num_samples), 1)

x = self . network2(x)

return x

Listing 3.3: Surprise Wrapper
class BaseSurpriseWrapper (gym. Wrapper ) :
def __init__(self, env, buffer, time_horizon
environment_weight =0.7, clip_smirl=0,
smirl_scale=0.001, obs_space_key=None):
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self . buffer = buffer
theta = self.buffer.get_params ()

self .env_obs_space = env.observation_space
obs_dic = {”obs”: deepcopy(self.env_obs_space)}
shape = list (self.env_obs_space.low.shape)

shape = [4, 20, 60]
obs_dic.update ({ augmented ’: Box(
zeros (shape),
ones (shape))
1)
self.observation_space = Dict(obs_dic)
def num_samples(self):
return self.buffer. buffer_size
def step(self, action):
obs, env_rew, envdone, info = self.env.step(action)
info [ external reward’]| = env_rew
encoded_obs = self.encode_obs(obs)
self.last_enc_obs = encoded_obs
self.last_enc_obs = resize (encoded_obs, (4, 20, 20))
encoded_obs_resized = resize (encoded-obs, (4, 20, 20))

rew = self.buffer.logprob(encoded_obs_resized)
if self.clip_smirl:
rew = clip (rew, —self.clip_smirl, self.clip_smirl)

rew = self.smirl_scale

encoded_obs_resized = resize (encoded-obs, (4, 20, 20))
self . buffer.add(encoded_obs_resized)

obs = self.augment_obs(obs, encoded_obs_resized)

obs = obs if self.dict_obs else obs[’augmented’|
return obs, rew, envdone, info

def augment_obs(self , obs, encoded_obs):
theta = self.buffer.get_params()
num_samples = ones (1) x self.buffer.buffer_size
shape = list (encoded_obs.shape)
shape = (4, 20, 40)
theta = theta.reshape(shape)
encoded_obs = resize (encoded_obs, (4, 20, 20))

augmented_obs = concatenate ((encoded_obs, theta), axis = 2)
obs = {"obs” :self.encode_obs(obs)}
obs [ ’augmented ’] = augmented_obs

return obs
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def

def

def

reset_buffer (self):

if self.last_enc_obs is None:
assert False

self . buffer.reset ()

self . buffer.add(self.last_enc_obs)

reset (self):

obs = self.env.reset ()

encoded_obs = self.encode_obs(obs)

self .encode_obs(obs)

self . buffer.reset ()

encoded_obs_resized = resize (encoded_obs, (4, 20, 20))
self . buffer.add(encoded_obs_resized)

obs = self.augment_obs(obs, encoded_obs_resized)

obs = obs if self.dict_obs else obs[’augmented’ ]
return obs

encode_obs(self , obs):
return obs.copy ()

class GaussianBuffer (BaseBuffer):

def

def

def

def

__init__(self, obs_dim):

super (). __init__ ()

self .buffer = zeros((1, obs_.dim))
self.buffer_size =1

self.obs_.dim = obs_dim
self.add(ones((1,0bs_.dim)))

self .add(—ones ((1,0bs_dim)))

add(self , obs):
self .buffer = concatenate (( self.buffer, obs.flatten ()))
self . buffer_size 4= 1

get_params(self):

means = mean(self.buffer, axis=0)
stds = std(self.buffer, axis=0)
params = concatenate ([means, stds])
return params

logprob (self , obs):
obs = obs.copy (). flatten ()

11
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means = mean(self.buffer, axis=0)

stds = std(self.buffer, axis=0)

stds = stds + thresh

logprob = —0.5 % sum(log(2 % pi % stds)) — sum(square(obs — means)
/ (2 % square(stds)))

return logprob

def reset(self):
self .buffer = zeros((1, self.obs.dim))
self . buffer_size =1

These are Explore and Control models for the Atari and VizDoom environments. As we can
compare, both the Explore model and Control model are virtually identical convolutional
models. The MiniGrid experiments use 3 convolutional layers with 16, 32 and 64 output
channels and a stride of 2 for every layer. The difference between the Explore and Control
models lies in the input and the additional parameter representing number of samples that
is concatenated to the flattened feature representation.

The input to the Control Model is an “augmented state”, which is the original state in
addition to sufficient statistics of the density model, pgi(0). To greatly reduce the number
of parameters # for this model, we found that reducing image size to 20 x 20 was helpful. In
the above case for Atari, we resize the original input from (4, 192, 160) to (4, 20, 20). We
also stack together the latest 4 images in VizDoom, resizing each image from a grayscale (48,
64) resolution to (20, 20). We found that adding a sample of positive and negative 1 after
resetting the density model’s buffer helped stabilize learning when taking the log probability.

Above we show the case for pyi(0) being a Gaussian distribution, which is used in Atari
and VizDoom. In this case, we use the mean of the sample and the standard deviation along
with the number of states seen so far representing a sufficient statistic. For the MiniGrid
experiments, we use 7 X 7 independent categorical distributions with 12 classes each for the
density model, with the sufficient statistic being the set of 7 x 7 x 12 probabilities. This
augmented MDP is based on [6]; however, instead of using states, we use observations. This
general technique has shown to be helpful empirically: [14] introduces a similar type of
“fingerprint” shown to stabilize experience replay for multi-agent learning.

Policy

Listing 3.4: Policy Update
explore_obs = zeros ((explore_num_steps))
+ envs.observation_space [”obs” |. shape)
explore_actions = zeros ((explore_num_steps)
+ envs.action_space.shape)
explore_logprobs = zeros ((explore_num_steps))
explore_rewards = zeros ((explore_num _steps)
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explore_dones = zeros ((explore_.num_steps)
explore_values = zeros((explore_num _steps)

control_obs = zeros((control_num _steps)
+ envs.observation_space [”augmented” | . shape)
control_actions = zeros ((control_num_steps)
+ envs.action_space.shape)
control_logprobs = zeros((control_num_steps))
control_rewards = zeros ((control_num_steps))
control_dones = zeros ((control_num_steps))
control_values = zeros ((control_num_steps))
control_samps = zeros ((control_num _steps))
while episode number < total_episodes:

#FEzxplore

lives = envs.unwrapped. ale.lives ()

for step in range(0, explore_num_steps):

global_step += 1

explore_obs[step]| = next_obs[”obs”|
explore_dones[step| = next_done
with no_grad ():
explore_values[step]| = explore_agent.get_value(explore_obs[step])
flatten ()
action , logprob, _ = explore_agent.get_action (explore_obs|[step])
explore_actions [step]| = action
explore_logprobs[step] = logproba
next_obs, rs, ds, infos = envs.step(action)
rs = zeros()
explore_rewards [step] = rs
next_done = ds
if envs.unwrapped.ale.lives () < lives:
lives = envs..unwrapped.ale.lives ()

envs.reset_buffer ()
with no_grad ():

last_value = explore_agent.get_value(next_obs|[”obs”])
#GAE for Fxplore policy

#Control

cum-_control = 0

for step in range(0, control_ num _steps):
global_step 4= 1
next_obs = next_obs[”augmented” |
control_obs [step]| = next_obs
control_samps[step]| = envs.num_samples
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bob_dones[step] = next_done
with no_grad ():
control_values[step]| = control_agent.get_value(control_obs[step])
flatten ()
action , logprob, _ = control_agent.get_action(control_obs[step])
control_actions [step] = action
control_logprobs[step] = logprob
next_obs, rs, ds, infos = envs.step(action)

if second_half:
if step >= control_num_steps // 2:
cum_control 4= rs

else:
cum_control 4= rs
if step = control_num_steps — 1:
explore_rewards [explore_num_steps —1] 4= —cum_control
cum_control = 0
if envs.unwrapped.ale.lives () < lives:
lives = envs.unwrapped. ale.lives ()

envs.reset_buffer ()
#GAE for Control policy
# Standard PPO Update for policy and value network
# First for explore policy then control

As explained in chapter 2, there are many different paradigms possible for multi-agent opti-
mization. We utilize recent empirical analysis from works such as [38] and [40] which state
that Proximal Policy Optimization (PPO) [32] utilized in an independent learning approach
is surprisingly effective in the multi-agent domain. Furthermore, we utilized Generalized
Advantage Estimation [31] which offers a good balance between bias and variance for our
advantage estimator.

As we can see, the Explore policy’s reward is based on the surprise for the observations
of the Control policy. If we assume the Control policy’s turn begins at timestep t¢, and it
receives a total reward of R = Zijck v¥r(as, s¢) for that turn, then, the Explore policy’s
reward is — R, and is applied to the last timestep of the Explore policy’s turn (i.e. timestep
t¢ —1). We have also found it helpful to only compute the surprise reward using observations
from the second half of the Control policy’s turn; this gives the agent greater ability to take
actions that may lead to initial surprise, but reduce entropy over the long term.

We also experimented with when to reset the buffer, in the MiniGrid experiments we we
find that resetting the buffer after each round (after the Explore policy and Control policy
each take one turn) can sometimes improve performance [12]. For the Atari and Vizdoom
experiments, we use the above code that resets the buffer whenever a life is lost. Furthermore,
we can see that the code allows the Explore and Control policies to act for a different number



CHAPTER 3. ADVERSARIAL SURPRISE 15

of timesteps, tuning the emphasis on exploration or control depending on the environment.
For Atari and Vizdoom we use 64 steps for the Explore policy and 128 steps for the Control
Policy. In the Minigird experiments, both the Explore and Control policies act for 2 rounds
with 32 steps per round for each episode.

3.3 Experimental Analysis

To determine how to evaluate our algorithm, we come with specific criterion that we are
looking to optimize for:

¢ Exploration and state coverage: One of the primary goals is that AS should be able
to thoroughly explore the state space of a stochastic, partially-observed environment.

e Control: In addition to exploration, we want to evaluate how well AS exhibits control
by taking actions that will decrease surprise in the environment.

e Emergence of complexity: Finally, we want to see the complex behaviors that the
interaction of these opposite objectives can result in.

Environment Selection

To evaluate these criteria we look for partially-observed environments that present an ex-
ploration challenge, have stochastic phenomena, and offer a degree of complexity that can
allow for interesting emergent behavior.

Figure 3.1: Minigrid: As shown in [12], we construct a custom family of environments
based on MiniGrid [10] that incorporate the above properties. These environments contain
rooms that are either empty (dark), or contain stochastic elements such as flashing lights
that randomly change color. They also contain elements such as doors that can be opened,
and switches that, when flipped, stop the stochastic elements from changing. The agent only
sees a bxH window of the true state, making the environment partially-observed.
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Figure 3.2: Space Invaders: The player controls a laser cannon by moving it horizontally
across the bottom of the screen and firing at descending aliens. The goal is to defeat all of
these aliens before they arrive at the bottom of the screen while avoiding their shots. They
start to speed up after every wave has been cleared. The laser cannon is protected by several
stationary defense bunkers, but these can get damaged by both the player and aliens. [37]

000126

Figure 3.3: Assault: The player controls a weapon and faces off with an alien mother ship,
which continually deploys three smaller ships during play. The mother ship and the smaller
vessels shoot at the player and the player’s aim is to eliminate them while preventing getting
destroyed. [37]
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Figure 3.4: Berzerk: The player controls a stick man with a weapon within a maze filled
with robots that fire lasers at the player. The player is killed by being shot, by running into
a robot, or coming into contact with the electrified walls of the maze, The player advances
by escaping from the maze through an opening in the wall. If the player destroys all the
robots in the current maze before escaping, they receive a per-maze bonus. [37]

Figure 3.5: Freeway: The player controls a chicken with the goal of running across a ten
lane highway with incoming traffic. The player is reward every time they get the chicken all
the way to the other side, if they are hit by. a car, they are forced back slightly. [37]
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Figure 3.6: VizDoom: We consider one VizDoom environment from [21]- Take Cover. The
player controls an agent that must learn to avoid fireballs shot by monsters from the other
side of the room. The Take Cover environment was also used in [6] because of the evolving
nature of new enemies that appear.
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Baselines

We compare AS to three competitive unsupervised RL baselines: Random Network Dis-
tillation (RND) [7] (a state-of-the-art exploration method), SMiRL [6](a recently proposed
method based on surprise minimization), and Asymmetric Self-Play [33] (a state-of-the-art
multi-agent curriculum method).

Results
Exploration

To evaluate thorough state-space exploration, we see how many rooms the agent learns
to visit within the MiniGrid environments [12]. Figure 3.7 shows the results across the
cumulative training procedure for the agent.

e RND becomes distracted by the stochasticity within the environment, leading to
higher prediction error, although it is tied with AS for most amount of rooms reached.

e SMiRL is not able to sufficiently explore, due to the partially observed nature of the
environment, it suffers from the dark room problem and does not venture into rooms
with stochastic elements.

e ASP is shown to handle the MiniGrid environments poorly, because their stochasticity
makes it difficult for Bob to replicate the goals that Alice produces.

e AS not only visits the most rooms compared to the other baselines, it also does so the
most quickly.

Number of rooms visited in life
— AS — RND — SMIRL — ASP

Samples

10M 20M 30M 40M 50M

Figure 3.7: Rooms Visited Plot
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Control

To see the effects of surprise-minimizing control, the average number of times the agent
presses switches that stop the stochastic elements in the environment from changing color is
measured [12].

e RND has no incentive to learn to control the environment, and thus never learns to
press the switch.

e SMiRL learns to take entropy-reducing actions, and performs comparably to AS as-is.

e ASP yields similar results, since reducing the entropy would make it easier for the
Bob agent to replicate the Alice agent’s final state. Thus, ASP will not always lead
the agent to learn all possible behaviors relevant to controlling the environment.

e When we train AS by resetting the buffer 8 used to fit the density model after each
round rather than each episode (i.e. after both policies have taken one turn), we see
that the number of entropy-reducing actions it takes increases to exceed SMiRL’s. This
is likely because resetting the buffer eliminates the incentive to return to previously-
seen states, therefore encouraging the agent to reduce entropy immediately.

Entropy reduced
— AS — RND — SMIRL — ASP

0.25
0.2
0.15
0.1

0.05

10M 20M 30M 40M 50M

Figure 3.8: Control Plot

Emergence

In the modified MiniGrid environment [12], we have one dark room and one noisy room
separated by a door whose position changes for every episode, with the agent beginning in
the noisy room. We see an emergence of behavior of increasing complexity through phases,
wherein the Control policy first learns to get to the dark room. Then, the Explore policy
learns to go back to the noisy room and reach a point where the Control policy can not



CHAPTER 3. ADVERSARIAL SURPRISE 21

Emergence of complex behaviors

— The door remains opened — Bob stays in the noisy room
0.8
0.6
0.4
0.2
0 Epoch
2k 4k 6k 8k

Figure 3.9: Emergence Plot

take the agent back to the dark room within its allocated amount of steps. This leads the
Control policy to take the agent into the dark room and close the door to make it harder for
the Explore policy to reach the noisy room in subsequent rounds. These actions show how
Adversarial Surprise can learn an auto-curricula of increasing difficulty through multi-agent
competition.

For the next set of experiments, we use only intrinsic reward, then assess the amount
of task reward obtained in the standard Atari benchmark [3] and Vizdoom environments
[21]. Many Atari games involve the concepts of both progress, which is tied to coverage
or portion completed, and ’'death’, an event where all progress is lost. Notably, in existing
literature, there are claims that both novelty-seeking exploration methods [7] and surprise-
minimization methods [6] achieve high scores in these settings. Thus, we hypothesize that
AS, a method designed to simultaneously maximize coverage and maintain control, may
adapt to and perform well in a variety of these games.

The plots below show game reward across several Atari environments and the VizDoom
Take Cover environment for Adversarial Surprise compared with RND, SmiRL, and ASP.
These environments reward a range of behaviors including avoiding obstacles, collecting
items, and attacking enemies.

e RND’s novelty-maximization strategy performs well in certain environments, but often
gradually degrades due to a shrinking bonus as it sees states more often. It also tends
to die frequently in high-risk environments like Doom, Freeway, and Space Invaders.

e SMiRL’s entropy minimization allows it to survive for longer in environments like
Freeway, but translates to hiding from enemies in ones like Assault and Space Invaders,
blocking it from achieving high rewards.
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e In ASP, Alice can reach particular states quickly which Bob cannot replicate, which
hinders learning.

e Finally, AS achieves high rewards in each of these environments, demonstrating the
efficacy of optimizing for both exploration and control when task reward is unknown.

400
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Figure 3.10: Space Invaders Plot
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Figure 3.11: Assault Plot
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Figure 3.12: Berzerk Plot
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Chapter 4

Conclusion and Future Work

We present an empirical analysis of Adversarial Surprise, a novel unsupervised multi-agent
strategy based on the simultaneous maximization and minimization of surprise. In this
report we show that AS is robust against issues faced by state-of-the-art prior works like
RND, ASP, and SMiRL and is able to explore stochastic, partially observed environments
more thoroughly and control them more effectively.

Our experiments on Atari and VizDoom focused on the “no external reward” setting to
see the emergence of behavior that could arise from just using intrinsic reward. For future
work, it would be interesting to compare to methods that use both intrinsic and extrinsic
reward to see the performance gain. In addition, further ablation on the effect of the step size
should be conducted as it was seen to make an impact on performance. We can additionally
explore ways of making this parameter learnable or even introduce a meta-controller trained
with a hierarchical policy that can automatically switch between Explore and Control policy.

4.1 Statement of Contributions

My contributions to the project involved adapting and implementing a version of the al-
gorithm for the Atari and VizDoom environments. Arnaud, Natasha, and Sergey designed
the core algorithm. Arnaud implemented the algorithm and ran the Minigrid experiments,
the ASP baseline, and along with Natasha worked on the primary theoretical and concep-
tual arguments. Michael, Nick, Glen, and Sergey provided valuable insights to solidify the
conceptual points and helped with directions to take for the experiments.
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