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Abstract

RayLEAF: Benchmarking Compressed Federated Models

by

Ryan Panwar

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor James Demmel, Chair

Privacy and communication cost concerns have led to interest in federated learning (FL) for
edge machine learning applications. While standard machine learning has a rich ecosystem
of distributed training libraries, federated learning’s novelty means researchers lack the nec-
essary frameworks to efficiently explore the large design space unique to FL. In this work
we propose, build, and evaluate a benchmarking framework for FL algorithms. Our system,
RayLEAF, allows users to train FL algorithms in parallel while testing model compression
approaches in a simulated federated setting.
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Chapter 1

Introduction

1.1 Learning at the Edge

Every year more and more problems are attacked with machine learning. Advances in com-
puter vision and natural language processing, among others, have yielded many interesting
applications [27] [7]. However, increasingly the problems we are interested in applying ma-
chine learning to reside on the edge. Devices like smartphones, smartwatches, cars, and
sensors take in large volumes of data that we would like to analyze. The standard approach
for such edge learning applications is to upload the data to a centralized server and perform
machine learning in the cloud. However, this solution runs into two key challenges.

First, the large volumes of data at the edge can present a challenge for network con-
straints. Computer vision applications may require recording HD video that is infeasible to
upload to a central server. Applications like self driving cars may record many hours of video
a day across several cameras, all while on a wireless connection [3]. As the volume of data
collection grows, this will increasingly become a bottleneck for applying machine learning at
the edge.

However, even for applications where the volume of data is small, like text-based tasks,
privacy concerns may arise due to the sensitive nature of much data collected on edge devices.
Consumers are increasingly aware of the privacy risks of uploading their pictures, videos,
texts, and more to the cloud. Being able to deliver intelligent user experiences without
compromising privacy is a major challenge for edge software providers.

To deal with these issues, researchers have proposed a new model of machine learning,
termed federated learning.
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1.2 Federated Learning

Overview of Federated Learning

To avoid uploading data to central servers, federated learning works by performing all train-
ing locally on-device, and only sending model updates to the server. Thus all user data is
kept local to the device, and the only communication between client and server involves the
model parameters. Ideally, model parameters are both less voluminous than the data they
are trained on, and contain less private information.

More formally, let Wt ∈ Rd1×d2 be a weight matrix encoding the global model parameters
after t iterations. Then each local model i computes an updated weight matrix W i

t based on
its local dataset Si. To compute the next global model, we average across the local updates
weighting by the size of their local datasets ni = |Si| as follows:

Wt+1 = Wt +
∑
i

ni

n
(W i

t −Wt) (1.1)

Here n =
∑

i ni, the total number of data points across all clients. Typically W i
t is

computed by performing E epochs of stochastic gradient descent on the data Si, with mini-
batches of size B. This processes is known as federated averaging or FedAvg [19]. In the
case where a single gradient update is performed encompassing all the data in Si, which
is effectively E = 1 and B = ∞, this is called Federated Stochastic Gradient Descent, or
FedSGD. Other techniques for updating Wt and W i

t have been explored, such as FedProx
[16] and FedSplit [23].

Model Compression

Although federated learning removes the necessity to upload large amounts of training data,
it does not completely eliminate network constraints as a concern. As machine learning
models grow larger and larger, model sizes themselves can become a potential issue for both
network and device memory capacity constraints. With state of the art NLP models like
GPT-3 requiring hundreds of billions of parameters [4], finding ways to compress models is
key to reducing the amount of data communicated between sever and client.

Several approaches have been tried for model compression, as catalogued by Konecny
et. al [14]. These techniques include low rank learning, random masks, subsampling, and
quantization. Other approaches like ternary encoding [26] and deep gradient compression
[17] offer additional directions for compression algorithms. These algorithms all attempt to
reduce the communication overhead while preserving as much model accuracy as possible.
Since reducing the size of a model update invariably drops important information, ensur-
ing the model accuracy remains high while compressing the model update is a challenging
problem.
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1.3 Contribution

There is a large design space for federated learning algorithms. From choosing the averaging
algorithm, to the model architecture and hyperparameters, to the compression algorithm, to
privacy algorithms [1] [2], federated learning research and design is a many-step process that
requires researchers and developers to run many federated learning experiments to test their
hypotheses and identify optimal configurations. Unfortunately, the existing frameworks for
distributed machine learning are poor fits for federated learning. Existing frameworks such
as Tensorflow [18] or Pytorch’s [22] native distributed libraries, or external libraries such
as Horovod [24] assume a single homogeneous dataset. Since a key challenge of federated
learning involves learning on heterogeneous data across clients and averaging the results,
a framework that does not allow users to simulate this does not expose users to the full
complexity of the federated setting.

Thus, federated learning-specific training frameworks are essential for proper benchmark-
ing and evaluation of federated learning models. Recent interest in such frameworks has led
to the development of frameworks like FedML [11] and LEAF [5], allowing users to train a
variety of models on federated datasets with different hyperparameter settings. LEAF is an
important advance for federated learning research, but it lacks scalability and compression
support. While FedML allows for distributed training, it too lacks compression support.

We set out to build an extended version of LEAF, termed RayLEAF, that scales the basic
LEAF framework by parallelizing it using the Ray distributed computing library [21]. As
part of RayLEAF, we also built support for testing multiple compression algorithms, with
an easy interface to add new compression algorithms for benchmarking. RayLEAF thus
takes all the great features of LEAF and adds on scalability and compression support for a
powerful federated learning research tool.

The rest of this thesis is organized as follows: in Chapter 2 we first present an overview
of the architecture of LEAF and RayLEAF. This is followed with experimental data bench-
marking the performance and scaling of RayLEAF. In Chapter 3 we take a look at vari-
ous compression approaches used in federated learning and show data from testing them
on RayLEAF. Finally we end with a summary and overview of some future directions for
RayLEAF and federated learning algorithms built on it.
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Chapter 2

Parallel Training System Design

2.1 The LEAF Architecture

Our work builds on top of the LEAF system and its client-server architecture that simulates
a federated learning system. LEAF simulates the training of federated models by train-
ing clients separately and aggregating them together at the server. LEAF also computes
statistics about the distribution of test and train performance across clients, as well as the
communication usage. This makes LEAF a useful benchmarking tool for understanding how
accuracy trades off against communication across clients. Because LEAF already has these
major features necessary for measuring the performance of federated learning algorithms, we
decided that the best approach to build a scalable benchmarking framework was to build on
top of LEAF’s flexible system.

As shown in Fig. 2.1, in LEAF the federated learning problem is split into one server
and m clients, as determined by the dataset configuration. Each client i has its own subset
of the data Si. At each round, a certain percentage of the clients are randomly sampled to
participate in training. These clients sequentially train a single Tensorflow model on their
datasets Si, and each report their updated model back to the server which averages across
the client updates to update the global model. Thus, the single Tensorflow model forms a
bottleneck for training, significantly slowing down large-scale training of many clients.

2.2 Adding Ray

We extended LEAF using Ray to make RayLEAF, allowing for parallel training of many
clients at once. Ray is a distributed computing framework that uses an actor model for
programming stateful distributed systems. Ray’s backend handles cluster management, al-
lowing us to run seamlessly on either a cloud environment or an HPC system. Because of
its scalability and actor programming model Ray is a natural fit for distributed learning
systems such as LEAF.
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Figure 2.1: The client-server architecture of LEAF

Figure 2.2: Updated architecture of RayLEAF.
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To allow users to scale the amount of parallelism based on their needs and resources, we
created a ClientServer abstraction that serves as the Ray remote actor and contains many
Clients with their training data. Each ClientServer has its own TensorFlow model, allowing
us to train clients in parallel by spreading the computation across many ClientServers. By
increasing or decreasing the number of ClientServers the user can adjust the parallelism to
their needs and resources. This architecture is shown in Fig. 2.2, where the server sends
training commands to multiple ClientServers, which in turn select from their subset of clients
to train. Since we do not require each client to be its own actor, this hierarchical approach
allows for training on datasets involving large numbers of clients even with limited resources.

2.3 Scalability Results

Experiment Setup

We tested RayLEAF on the NERSC Cori KNL (Intel Knights Landing) cluster [6]. Cori
is a Cray XC40 supercomputer with 9,688 KNL nodes and 68 physical cores and 112 GB
memory per node. Our dataset was the standard Federated Extended MNIST (FEMNIST)
dataset [8] used by LEAF and other popular benchmarks. We used a simple convolutional
neural network similar to the ImageNet model [15]. This model consists of two convolutional
layers with pooling, two fully connected layers, and a softmax output layer.

Results

Varying the number of clients involved in parallel training in 2.3, we found that RayLEAF
scales imperfectly. However, a large part of this is due to the dataset load imbalance, as
seen in Fig. 2.5. Comparing against the largest ClientServer, we find that RayLEAF has a
relatively small overhead. We are still able to achieve substantial overall speedups in training
time despite this load imbalance.

If we expand the number of clients being trained per round while we increase the number
of ClientServers to benchmark the system’s weak scaling, we find that it scales to run on 32x
the data with only a 3x slowdown, as shown in Fig. 2.4. Again, we see very low overhead
with most of the slowdown caused by the uneven data distribution - as seen in Fig. 2.5
some clients have significantly more data to train, and thus the max training time per client
increases when we sample more clients. This load imbalance is an inherent feature of the
federated learning problem, as real-world federated systems train on the data of devices that
may have very different size datasets.

We also tracked the model training and test loss across different ClientServer setups to
verify that the amount of parallelism used has no effect on overall model accuracy. Fig.
2.6 confirms that, excluding minor differences due to randomization in the client sampling,
the model performs consistently regardless of the number of ClientServers used. Overall,
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Figure 2.3: Strong Scaling

Figure 2.4: Weak Scaling
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Figure 2.5: Number of samples varies significantly across clients

Figure 2.6: Test and training accuracy are consistent as we scale parallelism

our experimental results demonstrate that we are able to maintain model correctness while
achieving substantial speedups to training.
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Chapter 3

Compression Experiment Results

3.1 Introduction

The RayLEAF API allows for users to easily add their own compression plugins in between
the client and server. When each client finishes training, it computes the delta between
the new weights and the server’s weights, and compresses that delta with the user-specified
compression algorithm. The compressed weights are then sent to the server, where they are
decompressed, averaged, and finally added to the server weights to update the global model.
Formally, if c is the compression function and d is the corresponding decompression function
then we update the global model as follows:

Wt+1 = Wt +
∑
i

ni

n
d(c(W i

t −Wt)) (3.1)

We perform compression on the delta W i
t−Wt in order to better take advantage of sparsity

in the training process, as not all values in W i
t will be updated from Wt. RayLEAF measures

the overall amount of communication between client and server, the number of bytes f(W i
t −

Wt) takes up, in order to benchmark compression performance. RayLEAF thus enables
compression algorithm developers to minimize communication costs while maintaining model
accuracy.

3.2 Models and Datasets

We evaluated compression algorithms on two very different datasets to demonstrate the
ability of RayLEAF to test compression approaches across different domains. One dataset is
the FEMNIST dataset used for general scaling experiments, with the same ImageNet model.
Since this is a vision dataset, we also tested on the Reddit natural language dataset [5]
with a stacked LSTM model [12]. The Reddit dataset involves next-work prediction on up
to 50 million Reddit comments. This large scale provides a good example of the problems
RayLEAF is well-suited for.
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Layer Dimensions Memory
Conv. 1 25× 32 6.4 KB
Conv. 2 800× 64 409.6 KB
Dense 1 3136× 2048 51.4 MB
Dense 2 2048× 62 1.01 MB

Table 3.1: The FEMNIST CNN Model

Layer Dimensions Memory
Embedding 10000× 256 20.48 MB

LSTM 1 512× 1024 4.2 MB
LSTM 2 512× 2024 4.2 MB
Dense 10000× 256 20.48 MB

Table 3.2: The Reddit LSTM Model

For the FEMNIST CNN the largest layer is the first dense layer, which involves a 3136×
2048 weight matrix taking a total of 51.4 MB assuming double precision, which is 97% of
the overall model memory footprint. Since this layer is the clear communication bottleneck,
we focus on just compressing it instead of the entire model.

The stacked LSTM model embeds from a 10000 word vocabulary to a 256 dimensional
space, passes through two LSTM cells, and then goes through a fully connected layer to
project back to the vocabulary size. Due to the large vocabulary size the LSTM cells take
up less than 20% of the overall model size, and as such much of the memory cost of the
stacked LSTM model is roughly evenly split between the embedding layer and the dense
layer, each involving a 10000× 256 matrix taking up 20 MB. For simplicity we mainly look
at compressing the final dense layer.

In all experiments we use the federated averaging algorithm [19].

3.3 Subsampling

One compression approach we test is subsampling. Subsampling involves randomly sampling
values from the update matrix W i

t −Wt to send back. This can yield substantial communica-
tion savings by zeroing out many values from the update matrix. The values we do send back
are corrected so that we send the correct value for all matrix entries in expectation. Thus
by averaging across a large number of clients we expect to recover accurate approximations
of the updates we are learning. In other words, if we are compressing by a factor of r, such
that the compressed data is 1

r
times as large as the original where r ≥ 1, for matrix entry

wjk and a randomly generated float q ∈ [0, 1) we send:
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Figure 3.1: Subsampling test accuracy for FEMNIST

c(wjk) =

{
rwjk q ≤ 1

r

0 q > 1
r

(3.2)

Thus E[d(c(wjk))] = wjk if the decompression function d is simply the identity function,
meaning there is no need for additional decompression.

We find that this approach allows us to compress matrices significantly, while still re-
taining most of the model performance. Fig. 3.1 demonstrates this, as it plots the test
accuracy for various compression levels and shows that 10x compression on FEMNIST is
possible with essentially no accuracy loss. In fact, even 100x compression is possible with
accuracy degradation within a few percent. However, we find that this does not hold when
transferred to Reddit. Fig. 3.2 shows a model applying 10% subsampling to the final dense
layer of the stacked LSTM has a difficult time learning anything at all, with its loss declin-
ing only slightly from the start and showing significant variability round to round. Clearly,
subsampling as a compression technique does not offer universal value, and thus RayLEAF’s
ability to easily benchmark compression algorithms across datasets and models allows for
developers to match the right compression with the right problem.

3.4 Singular Value Decomposition

Another compression approach we evaluated using RayLEAF was the Singular Value Decom-
position (SVD). The SVD is a standard dimensionality reduction technique in linear algebra.
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Figure 3.2: Subsampling test loss for Reddit

The SVD works by decomposing the matrix W i
t into a matrix product UΣV T where Σ is

diagonal. By truncating the bottom singular values and leaving only the k largest, we get:

W i
t ≈ UkΣkV

T
k (3.3)

Here Uk is the k leftmost columns of U , Σk is the upper left k × k submatrix of Σ, and
Vk is the upper k rows of V . Effectively we are dropping the lowest information parts of W i

t .
Thus by sending Uk, Σk, and V T

k we are able to achieve substantial communication savings
versus sending the full size W i

t .
Fig. 3.3 shows the trade off between accuracy and compression as we increase the rank

used by the SVD algorithm. It contains data for two SVD algorithms we have tested on
RayLEAF, both a standard deterministic algorithm and a faster randomized approximate
algorithm [10]. Due to the long-tale nature of the singular values, much of the information
from the weight update is associated with the first few singular values, and we can truncate
later singular values for large compression savings with relatively little impact on the model
accuracy. For example, truncating after rank 64 yields a 2056

64
= 16x communication saving

while maintaining accuracy within 2 percent of the 80% baseline.
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Figure 3.3: Accuracy attained for different SVD rank values for FEMNIST
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Chapter 4

Future Work and Conclusion

Additional support for other areas of the federated learning design space are natural next
steps for RayLEAF. Privacy in particular is a major area, as researchers applying differ-
ential privacy [9] to federated learning seek ways to add noise [25] [1] [2] to create privacy
guarantees. Another area RayLEAF currently lacks support is for multiple precision types.
Experiments with integer precision [28], mixed precision [20], and even newly proposed pre-
cision types such as bfloat16 [13] show promise for training ML models with lower compute
and communication costs while maintaining performance. Expanding beyond FedAvg and
FedSGD to other optimization algorithms such as FedProx [16] and FedSplit [23] are also
good future directions.

Overall, RayLEAF provides a scalable framework for training and benchmarking feder-
ated learning algorithms and compression approaches. RayLEAF combines the federated
design of LEAF with Ray’s scalability to enable federated learning researchers to explore the
large federated design space and profile the performance of different approaches in terms of
both accuracy and communication. As an increasing number of machine learning models run
at the edge, understanding the accuracy and communication tradeoffs are essential to devel-
oping the right architectures. RayLEAF’s compression framework, as demonstrated by our
experiments with subsampling and singular value decompositions, helps researchers under-
stand how different compression algorithms affect model performance. We hope this system
will be a valuable tool in making edge machine learning smarter and less bandwidth-hungry
while protecting user privacy.
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