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Abstract

Privacy and Scalability for Decentralized Cryptographic Systems

by

Pratyush Mishra

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Alessandro Chiesa, Co-chair

Associate Professor Raluca Ada Popa, Co-chair

The past few years have seen growing interest in decentralized systems owing to their improved
censorship-resistance, fault tolerance, and auditability compared to their centralized counterparts.
For example, ideas popularized in decentralized protocols like Bitcoin and Ethereum have seen
widespread adoption and publicity. However, the benefits of these systems often come at the expense
of privacy and scalability: to ensure the correctness of computations, decentralized systems like
Ethereum require that parties publish their entire computational state, which is then checked by
re-executing the computation. From the privacy perspective, this reveals which computation was
performed, the data that was input to the computation, and the identity of the involved users. From
the scalability perspective, re-execution means that the cost of expensive computations is borne by
every party in the system, as opposed to just the party invoking the computation.

In this dissertation, we show how to overcome these shortcomings and obtain decentralized systems
that achieve strong privacy and scalability properties. We do so by providing new constructions
and applications of a powerful cryptographic primitive: zero-knowledge succinct non-interactive
argument systems, or zkSNARKs. We design new methodologies for constructing zkSNARKs that
have lower deployment overhead and improved efficiency compared to the prior state-of-the-art.
Finally, we go on to construct a system for decentralized private computation that takes advantage
of these advances to make all transactions indistinguishable, thus ensuring privacy (transactions
reveal no information about the computation) and scalability (transactions can be verified in time
independent of the computation).
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Chapter 1

Introduction

Today, the vast majority of digital services are provided via centralized systems which concentrate
decision-making power and ability in the hands of a few parties. This centralization brings potential
benefits such as lower implementation complexity and better efficiency. However, centralization also
brings drawbacks, such as poor censorship-resistance, poor fault tolerance, a lack of transparency and
auditability. Due to these shortcomings, the last few years have seen growing interest in developing
decentralized applications atop decentralized ledger systems that allow a set of heterogeneous parties
to come to consensus on the validity of general computations over arbitrary data. Such systems
include Bitcoin [Nak09], Ethereum [Woo17], Polkadot [Woo16], Solana [Yak18], and more. These
systems collectively validate thousands of program executions each day without relying on a central
party.

However, these benefits often come at the expense of two key properties: privacy and scalability.
In more detail, to ensure the correctness of computations, existing decentralized ledger systems
require that parties publish their entire computational state, which is then checked by re-executing
the computation. From the privacy perspective, this reveals (a) the computation that was performed,
(b) the data that was input to the computation, and (c) the identity of the users involved in the
computation. From the scalability perspective, this means that the cost of expensive computations
is borne by every party in the system, as opposed to just the party invoking the computation.
Counteracting this requires metering mechanisms, but these can themselves lead to inconsistencies
and attacks [Bit15; Eth16].

In this dissertation, we show how to resolve this dilemma and obtain permissionless, censorship-
resistant, and auditable decentralized systems that do not compromise on privacy and scalability.
We do this by providing new constructions and applications of a powerful cryptographic primitive:
succinct zero-knowledge non-interactive argument systems, or zkSNARKs.
Primer on zkSNARKs. Informally, a zkSNARK for an NP relationR is a type of zero knowledge
proof system [GMR89] that allows a prover to quickly convince a verifier, by means of a short proof
string π, that it knows a witness w corresponding to an instance x, so that (x,w) ∈ R. The proof π
achieves zero-knowledge, which means it hides all information about w, and succinctness, which
means that it is much shorter than w. (Optionally, the verifier’s run time can additionally be much
shorter than the time required to check membership inR.)
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zkSNARKs in decentralized ledgers. The zero-knowledge and succinctness properties of
zkSNARKs have made them an attractive tool for developers of decentralized ledger systems.
Indeed, zkSNARKs have already been used to improve the privacy [Ben+14; KMSWP16] as well
as scalability [Eth21; Whi18; Mina; KB20; BMRS20; CCDW20] of these systems. However,
limitations of existing zkSNARKs, in terms of both efficiency and operational concerns, have
constrained their deployment of these applications.

In the rest of this thesis, we first construct novel protocols (Chapters 2 and 3) that avoid these
limitations, and then construct a system (Chapter 4) that can leverage these protocols to provide
better privacy and scalability guarantees than existing decentralized ledger systems. Below we
provide a high-level overview of each of these.

1.1 Marlin: zkSNARKs with universal and updatable SRS
Among the various constructions of zkSNARKs, preprocessing SNARKs [Gro10; Lip12; GGPR13;
BCIOP13] have attracted the attention of researchers and practitioners due to their ability to
achieve succinct verification for arbitrary (non-uniform) computations. However, most efficient
preprocessing SNARKs rely on sampling a structured reference string (SRS) that is circuit-dependent:
it changes with the circuit. This means that each new circuit requires a separate SRS. In applications
to decentralized systems, there is no single party that can be trusted with sampling the SRS. (Indeed,
the point of such systems is to eliminate such parties). Hence, real-world deployments have had
to rely on cryptographic “ceremonies” [ZcashMPC; BCGTV15; BGG17; BGM17; ABLSZ19;
KMSV21] to generate the SRS in a distributed manner. These ceremonies require a non-trivial
implementation and deployment effort which must be repeated for each distinct circuit.

To solve this problem, in Chapter 2, we develop a novel methodology to construct SNARKs that
have a universal, or circuit-independent SRS. This latter can be specialized into a circuit-specific
SRS in a publicly auditable manner by anyone, thus reducing the trust requirements on the SRS
generation process. We then develop novel ingredients that we plug into our methodology to
obtain Marlin, a universal SRS SNARK that is competitive with the state-of-the-art circuit-specific
zkSNARK [Gro16] in all relevant metrics.

1.2 Proof-carrying data without succinct arguments
zkSNARKs enable a single party to prove the correctness of a single step of computation. However,
many usecases in decentralized systems require mutually distrustful parties to each perform different
steps of a distributed computation. Proving the correctness of these computations requires proof-
carrying data (PCD) [CT10], a more powerful primitive that enables these parties to perform the
distributed computation in a manner that ensures the correctness of each step. While prior work
[CT10; BCCT13; BCTV17; COS20; BCMS20] has provided a number of PCD constructions,
all of these impose significant overhead due to their reliance on relatively heavy algebraic and
cryptographic objects.



CHAPTER 1. INTRODUCTION 3

In Chapter 3, we propose a new methodology of constructing PCD that relies only on relatively
lightweight cryptographic objects: non-succinct arguments. We then construct efficient ingredients
for our methodology from simple cryptographic assumptions, and plug these in to obtain a concretely
efficient PCD scheme that achieves the lowest PCD overhead compared to all prior schemes.

1.3 Zexe: Enabling decentralized private computation
In Chapter 4, we design, implement, and evaluate Zexe (Zero knowledge EXEcution), a ledger-based
system that enables users to execute offline computations and subsequently produce publicly-
verifiable transactions that attest to the correctness of these offline executions. Zexe simultaneously
provides privacy and succinctness for these executions: a transaction reveals no information about
the offline computation whose correctness it attests to, and, furthermore, can be validated in time
that is independent of the cost of the computation.

Zexe achieves these strong privacy and scalability propertieswithout sacrificing rich functionality.
We illustrate this by using Zexe to construct privacy-preserving analogues of popular applications:
private user-defined assets, private decentralized or non-custodial exchanges (DEXs), and private
stablecoins.

To achieve an efficient implementation of Zexe, we draw upon advances in zkSNARKs and in
recursive proof composition of these. Overall, transactions in Zexe with two input records and two
output records are 968 bytes and can be verified in tens of milliseconds, regardless of the offline
computation; generating these transactions takes less than a minute plus a time that grows with the
offline computation (inevitably so). This implementation is achieved in a modular fashion via a
collection of Rust libraries; see Section 1.4 for more details.

1.4 Impact and adoption
All theworks in this thesis are seeing promising industrial adoption. Herewe provide a short summary,
and defer a complete discussion to Chapter 5. First, we developed our initial implementation of Zexe
into arkworks [con], a state-of-the-art open source Rust ecosystem for zkSNARK development.
arkworks has seen adoption across a number of industrial projects, and has attracted over fifty
contributors that have collectively written over 120, 000 lines of Rust code. Next, Marlin is seeing
deployment in existing projects [Aleo; HGD21], and has spurred novel academic research on
universal SNARKs [COS20; SZ20; BCMS20; CFFQR20; HGD21; BCLMS21; RZ21; ABCGOT21;
ZZWG21] as well as their applications [CCDW20; KZGM21]. Finally, the ideas behind Zexe are
in the process of being adopted by a number of decentralized ledger projects [Aleo; Aztec; Mir;
Anoma].
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Chapter 2

Marlin: zkSNARKs with Universal and
Updatable SRS

In this chapter, we present a methodology to construct preprocessing zkSNARKswhere the structured
reference string (SRS) is universal and updatable. This exploits a novel use of holography [BFLS91],
where fast verification is achieved provided the statement being checked is given in encoded form.

We use our methodology to obtain Marlin, a preprocessing zkSNARKwhere the SRS has linear
size and arguments have constant size. Our construction improves on Sonic [MBKM19], the prior
state of the art in this setting, in all efficiency parameters: proving is an order of magnitude faster
and verification is thrice as fast, even with smaller SRS size and argument size. Our construction
is most efficient when instantiated in the algebraic group model (also used by Sonic), but we also
demonstrate how to realize it under concrete knowledge assumptions. We implement and evaluate
our construction.

The core of our preprocessing zkSNARK is an efficient algebraic holographic proof (AHP)
for rank-1 constraint satisfiability (R1CS) that achieves linear proof length and constant query
complexity.

This work was previously published in [CHMMVW20].



CHAPTER 2. MARLIN: ZKSNARKS WITH UNIVERSAL AND UPDATABLE SRS 5

2.1 Introduction
Succinct non-interactive arguments (SNARGs) are efficient certificates of membership in non-
deterministic languages. Recent years have seen a surge of interest in zero-knowledge SNARGs
of knowledge (zkSNARKs), with researchers studying constructions under different cryptographic
assumptions, improvements in asymptotic efficiency, concrete performance of implementations, and
numerous applications. The focus of this work is SNARGs in the preprocessing setting, a notion that
we motivate next.
When is fast verification possible? The size of a SNARG must be, as a minimum condition,
sublinear in the size of the non-deterministic witness, and often is required to be even smaller
(e.g., logarithmic in the size of the non-deterministic computation). The time to verify a SNARG
would be, ideally, as fast as reading the SNARG. This is in general too much to hope for, however.
The verification procedure must also read the description of the computation, in order know what
statement is being verified. While there are natural computations that have succinct descriptions
(e.g., machine computations), in general the description of a computation could be as large as
the computation itself, which means that the time to verify the SNARG could be asymptotically
comparable to the size of the computation. This is unfortunate because there is a very useful class
of computations for which we cannot expect fast verification: general circuit computations.
The preprocessing setting. An approach to avoid the above limitation is to design a verification
procedure that has two phases: an offline phase that produces a short summary for a given circuit;
and an online phase that uses this short summary to verify SNARGs that attest to the satisfiability
of the circuit with different partial assignments to its input wires. Crucially, now the online phase
could in principle be as fast as reading the SNARG (and the partial assignment), and thus sublinear
in the circuit size. This goal was captured by preprocessing SNARGs [Gro10; Lip12; GGPR13;
BCIOP13], which have been studied in an influential line of works that has led to highly-efficient
constructions that fulfill this goal (e.g., [Gro16]) and large-scale deployments in the real world that
benefit from the online fast verification (e.g., [Zcash]).
The problem: circuit-specific SRS. The offline phase in efficient constructions of preprocessing
SNARGs consists of sampling a structured reference string (SRS) that depends on the circuit that is
being preprocessed. This implies that producing/validating proofs with respect to different circuits
requires different SRSs. In many applications of interest, there is no single party that can be
entrusted with sampling the SRS, and so real-world deployments have had to rely on cryptographic
“ceremonies” [ZcashMPC] that use secure multi-party sampling protocols [BCGTV15; BGG17;
BGM17; ABLSZ19; KMSV21]. However, any modification in the circuit used in an application
requires another cryptographic ceremony, which is unsustainable for many applications.
A solution: universal SRS. The above motivates preprocessing SNARGs where the SRS is
universal, which means that the SRS supports any circuit up to a given size bound by enabling anyone,
in an offline phase after the SRS is sampled, to publicly derive a circuit-specific SRS.1 Known
techniques to obtain a universal SRS from circuit-specific SRS introduce expensive overheads due

1Even better than a universal SRS would be a URS (uniform reference string). However, achieving preprocessing
SNARGs in the URS model with small argument size remains an open problem; see Section 2.1.2.
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to universal simulation [BCTV14; BCTV17]. Also, these techniques lead to universal SRSs that are
not updatable, a property introduced in [GKMMM18] that significantly simplifies cryptographic
ceremonies. The recent work of Maller et al. [MBKM19] overcomes these shortcomings, obtaining
the first efficient construction of a preprocessing SNARG with universal (and updatable) SRS. Even
so, the construction in [MBKM19] is considerably more expensive than the state of the art for
circuit-specific SRS [Gro16]. In this work we ask: can the efficiency gap between universal SRS
and circuit-specific SRS be closed, or at least significantly reduced?
Concurrent work. A concurrent work [GWC19] studies the same question as this work. See
Section 2.1.2 for a brief discussion that compares the two works.

construction argument size over BN-256 (bytes) argument size over BLS12-381 (bytes)

Sonic [MBKM19] 1152 1472
Marlin [this work] 704 880
Groth16 [Gro16] 128 192

zkSNARK
construction

sizes time complexity

|ipk| |ivk| |π| generator indexer prover verifier

Sonic
[MBKM19]

G1 8m — 20 8 f-MSM(M) 4 v-MSM(3m) 273 v-MSM(m)
7 pairingsG2 8m 3 — 8 f-MSM(M) — —

Fq — — 16 — O(m logm) O(m logm) O(|x|+ logm)

Marlin
[this work]

G1 4m 2 13 1 f-MSM(3M) 12 v-MSM(m) 22 v-MSM(m)
2 pairingsG2 — 2 — — — —

Fq — — 8 — O(m logm) O(m logm) O(|x|+ logm)

Groth16
[Gro16]

G1 4n O(|x|) 2 4 f-MSM(n)
N/A

4 v-MSM(n) 1 v-MSM(|x|)
G2 n O(1) 1 1 f-MSM(n) 1 v-MSM(n) 3 pairings
Fq — — — O(m+ n logn) O(m+ n logn) —

n: number of multiplication gates in the circuit
m: total number of (addition or multiplication) gates in the circuit
M : maximum supported circuit size (maximum number of addition and multiplication gates)

Figure 2.1: Comparison of two preprocessing zkSNARKs with universal (and updatable) SRS: the prior state of
the art and our construction. We include the current state of the art for circuit-specific SRS (in gray), for reference.
HereG1/G2/Fq denote the number of elements or operations over the respective group/field; also, f-MSM(m) and
v-MSM(m) denote fixed-base and variable-base multi-scalar multiplications (MSM) each of sizem, respectively.
The number of pairings that we report for Sonic’s verifier is lower than that reported in [MBKM19] because we
account for standard batching techniques for pairing equations.
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Figure 2.2: Measured performance of Marlin and [Gro16] over the BLS12-381 curve. We could not include measurements
for [MBKM19, Sonic] because at the time of writing there is no working implementation of its unhelped variant.

2.1.1 Our results
In this work we present Marlin, a new preprocessing zkSNARK with universal (and updatable)
SRS that improves on the prior state of the art [MBKM19, Sonic] in essentially all relevant efficiency
parameters.2 In addition to reducing argument size by several group and field elements and reducing
time complexity of the verifier by over 3×, our construction overcomes the main efficiency drawback
of [MBKM19, Sonic]: the cost of producing proofs. Indeed, our construction improves time
complexity of the prover by over 10×, achieving prover efficiency comparable to the case of
preprocessing zkSNARKs with circuit-specific SRS. In Fig. 2.1 we provide a comparison of our
construction and [MBKM19, Sonic], including argument sizes for two popular elliptic curves; the
table also includes the state of the art for circuit-specific SRS. We have implemented Marlin in a
Rust library,3 and report evaluation results in Fig. 2.2.

Our zkSNARK is the result of several contributions that we deem of independent interest, summarized
below.
(1) A new methodology. We present a general methodology to construct preprocessing SNARGs
(and also zkSNARKs) where the SRS is universal (and updatable). The methodology in fact produces
succinct interactive arguments that can be made non-interactive via the Fiat–Shamir transformation
[FS86]. Hence below we focus on preprocessing arguments with universal and updatable SRS (see
Section 2.7 for the definition).

Our key observation is that the ability to preprocess a circuit in an offline phase is closely related
to constructing “holographic proofs” [BFLS91], which means that the verifier does not receive
the circuit description as an input but, rather, makes a small number of queries to an encoding
of it. These queries are in addition to queries that the verifier makes to proofs sent by the prover.
Moreover, in this work we focus on the setting where the encoding of the circuit description consists
of low-degree polynomials and also where proofs are themselves low-degree polynomials — this

2Maller et al. [MBKM19] discuss two variants of their protocol, a cheaper one for the “helped setting” and a costlier
one for the “unhelped setting”. The variant that is relevant to this work is the latter one, because it is a preprocessing
zkSNARK. (The former variant does not achieve succinct verification, and instead achieves a weaker guarantee that
applies to proof batches.)

3https://github.com/arkworks-rs/marlin

https://github.com/arkworks-rs/marlin
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can be viewed as a requirement that honest and malicious provers are “algebraic”. We call these
algebraic holographic proofs (AHPs); see Section 2.4 for definitions.

We present a transformation that “compiles” any public-coin AHP into a corresponding prepro-
cessing argument with universal (and updatable) SRS by using suitable polynomial commitments.

Theorem 1 (informal version of Theorem 2.8.1). There is an efficient transformation that combines
any public-coin AHP for a relationR and an extractable polynomial commitment scheme to obtain
a public-coin preprocessing argument with universal SRS for the relationR. The transformation
preserves zero knowledge and proof of knowledge of the underlying AHP. The SRS is updatable
provided the SRS of the polynomial commitment scheme is.

The above transformation provides us with amethodology to construct preprocessing zkSNARKs
with universal SRS (see Fig. 2.3). Namely, to improve the efficiency of preprocessing zkSNARKs
with universal SRS it suffices to improve the efficiency of simpler building blocks: AHPs (an
information-theoretic primitive) and polynomial commitments (a cryptographic primitive).4

The improvements achieved by our preprocessing zkSNARK (see Fig. 2.1) were obtained by
following this methodology: we designed efficient constructions for each of these two building
blocks (which we discuss shortly), combined them via Theorem 1, and then applied the Fiat–Shamir
transformation [FS86].

Methodologies that combine information-theoretic probabilistic proofs and cryptographic tools
have played a fundamental role in the construction of efficient argument systems. In the particular
setting of preprocessing SNARGs, for example, the compiler introduced in [BCIOP13] for circuit-
specific SRS has paved the way towards current state-of-the-art constructions [Gro16], and also
led to constructions that are plausibly post-quantum [BISW17; BISW18]. We believe that our
methodology for universal SRS will also be useful in future work, and may lead to further efficiency
improvements.

public-coin
AHP

extractable
polynomial commitments

Theorem 1
(our compiler)

public-coin
preprocessing argument
with universal SRS

Fiat–Shamir
transformation

preprocessing SNARK
with universal SRS

Figure 2.3: Diagram of our methodology to construct preprocessing SNARGs with universal SRS.

(2) An efficient AHP for R1CS. We design an algebraic holographic proof (AHP) that achieves
linear proof length and constant query complexity, among other useful efficiency features. The
protocol is for rank-1 constraint satisfiability (R1CS), a well-known generalization of arithmetic
circuits where the “circuit description” is given by coefficient matrices (see definition below). Note
that the relations that we consider consist of triples rather than pairs, because we need to split the

4The methodology also captures as a special case various folklore approaches used in prior works to construct
non-preprocessing zkSNARKs via polynomial commitment schemes (see Section 2.1.2), thereby providing the first
formal statement that clarifies what properties of algebraic proofs and polynomial commitment schemes are essential for
these folklore approaches.
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verifier’s input into a part for the offline phase and a part for the online phase. The offline input is
called the index, and it consists of the coefficient matrices; the online input is called the instance, and
it consists of a partial assignment to the variables. The algorithm that encodes the index (coefficient
matrices) in the offline phase is called the indexer.

Definition 1 (informal). The indexed relation RR1CS is the set of triples (i,x,w) =
(
(F, n,m,

A,B,C), x, w
)
where F is a finite field, A,B,C are n× n matrices over F, each containing at most

m non-zero entries, and z := (x,w) is a vector in Fn such that Az ◦Bz = Cz. (Here “◦” denotes
the entry-wise product.)

Theorem 2 (informal). There exists a constant-round AHP for the indexed relation RR1CS with
linear proof length and constant query complexity. The soundness error is O(m/|F|), and the
construction is a zero knowledge proof of knowledge. The arithmetic complexity of the indexer is
O(m logm), of the prover is O(m logm), and of the verifier is O(|x|+ logm).

The literature on probabilistic proofs contains algebraic protocols that are holographic (e.g.,
[BFLS91] and [GKR15]) but none achieve constant query complexity, and so applying our
methodology (Theorem 1) to these would lead to large argument sizes (many tens of kilobytes).
These prior algebraic protocols rely on the multivariate sumcheck protocol applied to certain
multivariate polynomials, which means that they incur sizable communication costs due to (a) the
many rounds of the sumcheck protocol, and (b) the fact that applying the methodology would
involve using multivariate polynomial commitment schemes that (for known constructions) lead to
communication costs that are linear in the number of variables.

In contrast, our algebraic protocol relies on univariate polynomials and achieves constant query
complexity, incurring small communication costs. Our algebraic protocol can be viewed as a
“holographic variant” of the algebraic protocol for R1CS used in Aurora [BCRSVW19], because
it achieves an exponential improvement in verification time when the verifier is given a suitable
encoding of the coefficient matrices; see Table 2.1.

construction holographic? indexer prover verifier messages proof length queries

[BCRSVW19] NO N/A O(m+ n logn) O(|x|+ n) 3 O(n) O(1)

this work YES O(m logm) O(m logm) O(|x|+ logm) 7 O(m) O(1)

Table 2.1: Comparison of the non-holographic protocol for R1CS in [BCRSVW19], and the AHP for R1CS that
we construct. Here n denotes the number of variables andm the number of non-zero coefficients in the matrices.

(3) Extractable polynomial commitments. Polynomial commitment schemes, introduced in
[KZG10], are commitment schemes specialized to work with univariate polynomials. The security
properties in [KZG10], while sufficient for the applications therein, do not appear sufficient for
standalone use, or even just for the transformation in Theorem 1. We propose a definition for
polynomial commitment schemes that incorporates the functionality and security that we believe to
suffice for standalone use (and in particular suffices for Theorem 1). Moreover, we show how to
extend the construction of [KZG10] to fulfill this definition in the plain model under non-falsifiable
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knowledge assumptions, or via a more efficient construction in the algebraic group model [FKL18]
under falsifiable assumptions. These constructions are of independent interest, and when combined
with our transformation, lead to the first efficient preprocessing arguments with universal SRS under
concrete knowledge assumptions, and also to the efficiency reported in Fig. 2.1.

We have implemented in a Rust library5 the polynomial commitment schemes, and our
implementation of Marlin relies on this library. We deem this library of independent interest for
other projects.

2.1.2 Related work
In this work we study the goal of constructing preprocessing SNARGs with universal SRS, which
achieve succinct verification regardless of the structure of the non-deterministic computation being
checked. The most relevant prior work is Sonic [MBKM19], on which we improve as already
discussed (see Fig. 2.1). The notion of updatable SRS was defined and achieved in [GKMMM18],
but with a less efficient construction.
Concurrent work. A concurrent work [GWC19] studies the same question as this work, and also
obtains efficiency improvements over Sonic [MBKM19]. Below is a brief comparison.

• Similarly to our work, [GWC19] extends the polynomial commitment in [KZG10] to support
batching, and proves the extension secure in the algebraic group model. We additionally show how
to prove security in the plain model under non-falsifiable knowledge assumptions, and consider
the problem of enforcing different degrees for different polynomials (a feature that is not needed
in [GWC19]).

• We show how to compile any algebraic holographic proof into a preprocessing argument with
universal SRS, while [GWC19] focus on compiling a more restricted notion that they call
“polynomial protocols”.

• Our protocol natively supports R1CS, and can be viewed as a holographic variant of the algebraic
protocol in [BCRSVW19]. The protocol in [GWC19] natively supports a different constraint
system, and involves a protocol that, similar to [Gro10], uses a permutation argument to attest that
all variables in the same cycle of a permutation are equal (e.g., (1)(2, 3)(4) would require that the
second and third entries are equal).

Preprocessing SNARGs with a URS. Concurrent with this work, Chiesa, Ojha, and Spooner
[COS20] proposed Fractal, a preprocessing SNARK for R1CS that relies only on a URS. Compared
to this work, Fractal achieves larger proof sizes, asymptotically similar but concretely worse prover
time, and similar verifier time, but relies only on simple symmetric cryptography.

Subsequent to this work, Setty [Set20] also proposed a preprocessing SNARG for R1CS that
uses only a URS (uniform reference string). For an R1CS instance containingm non-zero entries,
Setty’s protocol achieves proving time Oλ(m), argument size Oλ(m

1/c), and verification time
5https://github.com/scipr-lab/poly-commit

https://github.com/scipr-lab/poly-commit
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Oλ(m
1−1/c), for a chosen constant c. The protocol in [Set20] offers a tradeoff compared to our

work: preprocessing with a URS instead of an SRS, at the cost of asymptotically larger argument
size and verification time. The question of achieving processing with a URS while also achieving
asymptotically small argument size and verification time remains open.
Non-preprocessing SNARGs for arbitrary computations. Checking arbitrary circuits without
preprocessing them requires the verifier to read the circuit, so the main goal is to obtain small
argument size. In this setting of non-preprocessing SNARGs for arbitrary circuits, constructions
with a URS (uniform reference string) are based on discrete logarithms [BCCGP16; BBBPWM18]
or hash functions [AHIV17; BCRSVW19], while constructions with a universal SRS (structured
reference string) combine polynomial commitments and non-holographic algebraic proofs [Gab19];
all use random oracles to obtain non-interactive arguments.6

We find it interesting to remark that our methodology from Theorem 1 generalizes protocols
such as [Gab19] in two ways. First, it formalizes the folklore approach of combining polynomial
commitments and algebraic proofs to obtain arguments, identifying the security properties required
to make this approach work. Second, it demonstrates how for algebraic holographic proofs the
resulting argument enables preprocessing.
Non-preprocessing SNARGs for structured computations. Several works study SNARGs for
structured computations. This structure enables fast verification without preprocessing. A line of
works [Ben+17; BBHR19; BCGGRS19] combines hash functions and various interactive oracle
proofs. Another line of works [ZGKPP17b; ZGKPP18; ZGKPP17a; WTSTW18; XZZPS19]
combines multivariate polynomial commitments [PST13] and doubly-efficient interactive proofs
[GKR15].

While in this work we study a different setting (preprocessing SNARGs for arbitrary computa-
tions), there are similarities, and notable differences, in the polynomial commitments used in our
work and prior works. We begin by noting that the notion of “multivariate polynomial commitments”
varies considerably across prior works, despite the fact that most of those commitments are based
on the protocol introduced in [PST13].

• The commitments used in [ZGKPP17b; ZGKPP18] are required to satisfy extractability (a stronger
notion than binding) because the security proof of the argument system involves extracting a
polynomial encoding a witness. The commitment is a modification of [PST13] that uses knowledge
commitments, a standard ingredient to achieve extractability under non-falsifiable assumptions in
the plain model. Neither of these works consider hiding commitments as zero knowledge is not a
goal for them.

• The commitments used in [ZGKPP17a; WTSTW18] must be compatible with the Cramer–
Damgård transform [CD98] used in constructing the argument system. They consider a modified
setting where the sender does not reveal the value of the commitment polynomial at a desired
point but, instead, reveals a commitment to this value, along with a proof attesting that the

6The linear verification time in most of the cited constructions can typically be partially mitigated via techniques
that enable an untrusted party to help the verifier to check a batch of proofs for the same circuit faster than checking each
proof individually (the linear cost in the circuit is paid only once per batch rather than once for each proof in the batch).
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committed value is correct. For this modified setting, they consider commitments that satisfy
natural notions of extractability and hiding (achieving zero knowledge arguments is a goal in
both papers). The commitments constructed in the two papers offer different tradeoffs. The
commitment in [ZGKPP17a] is based on [PST13]: it relies on an SRS (structured reference string);
it uses pairings; and for `-variate polynomials achieves Oλ(`)-size arguments that can be checked
in Oλ(`) time. The commitment in [WTSTW18] is inspired from [BG12] and [BBBPWM18]: it
relies on a URS (uniform reference string); it does not use pairings; and for `-variate multilinear
polynomials and a given constant c ≥ 2 achieves Oλ(2

`/c)-size arguments that can be checked in
Oλ(2

`−`/c) time.

• The commitments used in [XZZPS19] are intended for the regular (unmodified) setting of
commitment schemes where the sender reveals the value of the polynomial, because zero
knowledge is later achieved by building on the algebraic techniques described in [CFS17].
The commitment definition in [XZZPS19] considers binding and hiding, but not extractability.
However, the given security analysis for the argument system does not seem to go through for this
definition (there is no explanation of where the witness encoded in the committed polynomial
comes from). Also, no commitment construction is provided in [XZZPS19], and instead the
reader is referred to [ZGKPP17a], which considers the modified setting described above.

In sum there are multiple notions of commitment and one must be precise about the functionality and
security needed to construct an argument system. We now compare prior notions of commitments
to the one that we use.

First, since in this work we do not use the Cramer–Damgård transform for zero knowledge,
commitments in the modified setting are not relevant. Instead, we achieve zero knowledge via
bounded independence [BCGV16], and in particular we consider the familiar setting where the
sender reveals evaluations to the committed polynomial. Second, prior works consider protocols
where the sender commits to a polynomial in a single round, while we consider protocols where
the sender commits to multiple polynomials of different degrees in each of several rounds. This
multi-polynomial multi-round setting requires suitable extensions in terms of functionality (to enable
batching techniques to save on argument size) and security (extractability and hiding need to be
strengthened), which means that prior definitions do not suffice for us.

The above discrepancies have led us to formulate new definitions of functionality and security
for polynomial commitments (as summarized in Section 2.2.2). We conclude by noting that, since
in this work we construct arguments that use univariate polynomials, our definitions are specialized
to commitments for univariate polynomials. Corresponding definitions for multivariate polynomials
can be obtained with straightforward modifications, and would strengthen definitions appearing
in some prior works. Similarly, we fulfill the required definitions via natural adaptations of the
univariate scheme of [KZG10], and analogous adaptations of the multivariate scheme of [PST13]
would fulfill the multivariate analogues of these definitions.
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2.2 Techniques
We discuss the main ideas behind our results. First we describe the two building blocks used in
Theorem 1: AHPs and polynomial commitment schemes (described in Sections 2.2.1 and 2.2.2
respectively). We describe how to combine these to obtain preprocessing arguments with universal
SRS in Section 2.2.3. Next, we discuss constructions for these building blocks: in Section 2.2.4 we
describe our AHP (underlying Theorem 2), and in Section 2.2.5 we describe our construction of
polynomial commitments.

Throughout, instead of considering the usual notion of relations that consist of instance-witness
pairs, we consider indexed relations, which consist of triples (i,x,w) where i is the index, x is
the instance, and w is the witness. This is because i represents the part of the verifier input that
is preprocessed in the offline phase (e.g., the circuit description) and x represents the part of the
verifier input that comes in the online phase (e.g., a partial assignment to the circuit’s input wires).
The indexed language corresponding to an indexed relation R, denoted L(R), is the set of pairs
(i,x) for which there exists a witness w such that (i,x,w) ∈ R.

2.2.1 Building block: algebraic holographic proofs
Interactive oracle proofs (IOPs) [BCS16; RRR16] are multi-round protocols where in each round
the verifier sends a challenge and the prover sends an oracle (which the verifier can query). IOPs
combine features of interactive proofs [Bab85; GMR89]and probabilistically checkable proofs
[BFLS91; AS98; ALMSS98]. Algebraic holographic proofs (AHPs) modify the notion of an IOP in
two ways.

• Holographic: the verifier does not receive its input explicitly but, rather, has oracle access to a
prescribed encoding of it. This potentially enables the verifier to run in time that is much faster
than the time to read its input in full. (Our constructions will achieve this fast verification.)

• Algebraic: the honest prover must produce oracles that are low-degree polynomials (this restricts
the completeness property), and all malicious provers must produce oracles that are low-degree
polynomials (this relaxes the soundness property). The encoded input to the verifier must also be
a low-degree polynomial.

Since in this work we only work with univariate polynomials, our definitions focus on this case, but
they can be modified in a straightforward way to be more general.

Informally, a (public-coin) AHP over a field F for an indexed relationR is specified by an indexer
I, prover P, and verifier V that work as follows.

• Offline phase. The indexer I receives as input the index i to be preprocessed, and outputs one or
more univariate polynomials over F encoding i.

• Online phase. For some instance x and witness w, the prover P receives (i,x,w) and the verifier
V receives x; P and V interact over some (in this work, constant) number of rounds, where in
each round V sends a challenge and P sends one or more polynomials; after the interaction, V(x)
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probabilistically queries the polynomials output by the indexer and the polynomials output by the
prover, and then accepts or rejects. Crucially, V does not receive i as input, but instead queries
the polynomials output by I that encode i. This enables the construction of verifiers V that run in
time that is sublinear in |i|.

The completeness property states that for every (i,x,w) ∈ R the probability that P(i,x,w)

convinces VI(i)(x) to accept is 1. The soundness property states that for every (i,x) /∈ L(R) and
admissible prover P̃ the probability that P̃ convinces VI(i)(x) to accept is at most a given soundness
error ε. A prover is “admissible” if the degrees of the polynomials it outputs fit within prescribed
degree bounds of the protocol. See Section 2.4 for details on AHPs, including definitions of proof
of knowledge and zero knowledge.

Remark 2.2.1 (prior holographic proofs). Various definitions of “holographic proofs” have been
studied in the literature on probabilistic proofs, starting with the seminal work of Babai, Fortnow,
Levin, and Szegedy [BFLS91]. Recent examples include the IPs in [GKR15], whose verifier runs in
sublinear time when given (multivariate low-degree) encodings of the circuit’s wiring predicates
and of the circuit’s input; and also the IOPs in [RRR16], where encoded provers and encoded inputs
play a role in amortizing interactive proofs.

2.2.2 Building block: polynomial commitments
Informally, a polynomial commitment scheme [KZG10] allows a prover to produce a commitment
c to a univariate polynomial p ∈ F[X], and later “open” p(X) at any point z ∈ F, producing an
evaluation proof π showing that the opened value is consistent with the polynomial “inside” c at z.
Turning this informal goal into a useful definition requires some care, however, as we explain below.
In this work we propose a set of definitions for polynomial commitment schemes that we believe are
useful for standalone use, and in particular suffice as a building block for our compiler described
in Sections 2.2.3 and 2.8.

First, we consider constructions with strong efficiency requirements: the commitment c is much
smaller than the polynomial p (e.g., c consists of a constant number of group elements), and the
proof π can be validated very fast (e.g., in a constant number of cryptographic operations). These
requirements not only rule out natural constructions, 7but also imply that the usual binding property,
which states that an efficient adversary cannot open the same commitment to two different values,
does not capture the desired security. Indeed, even if the adversary were to be bound to opening
values of some function f : F→ F, it may be that the function f is consistent with a polynomial

7A natural construction would be to use a standard commitment scheme to commit to each coefficient of p, and
then open to a value by revealing the committed coefficients. However, this construction is inefficient, because the
commitment c and evaluation proof π are “long” (linear in the degree of p). An alternative construction would be to use
a Merkle tree on the coefficients of p. While c now becomes short, the evaluation proof π remains long because the
receiver would need to see all coefficients to validate a claimed evaluation. Crucially, both constructions enable the
receiver to check the degree of the committed polynomial.
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whose degree is higher than what was claimed. This means that a security definition needs to
incorporate guarantees about the degree of the committed function.8

Second, in many applications of polynomial commitments, an adversary produces multiple
commitments to polynomials within a round of interaction and across rounds of interaction. After
this interaction, the adversary reveals values of all of these polynomials at one or more locations.
This setting motivates a number of considerations. First, it is desirable to rely on a single set of
public parameters for committing to multiple polynomials, even if the polynomials differ in degree.
A construction such as that of [KZG10] can be modified in a natural way to achieve this is by
committing both to the polynomial and its shift to the maximum degree, similarly to techniques
used to bundle multiple low-degree tests into a single one [BCRSVW19]. This modification needs
to be addressed in any proof of security. Second, it would be desirable to batch evaluation proofs
across different polynomials for the same location. Again the construction in [KZG10] can support
this, but one must argue that security still holds in this more general case.

The preceding considerations require an extension of previous definitions and motivate our
re-formulation of the primitive. Informally, a polynomial commitment scheme PC is a tuple
of algorithms PC = (Setup,Trim,Commit,Open,Check). The setup algorithm PC.Setup takes
as input a security parameter and maximum supported degree bound D, and outputs public
parameters pp that contain the description of a finite field F. The “trimming” algorithm PC.Trim
then deterministically specializes these parameters for a given set of degree bounds and outputs
a committer key ck and a receiver key rk. The sender can then invoke PC.Commit with input ck
and a list of polynomials p with respective degree bounds d to generate a set of commitments c.
Subsequently, the sender can use PC.Open to produce a proof π that convinces the receiver that the
polynomials “inside” c respect the degree bounds d and, moreover, evaluate to the claimed set of
values v at a given query set Q that specifies any number of evaluation points for each polynomial.
The receiver can invoke PC.Check to check this proof.

The scheme PC is required to satisfy extractability and efficiency properties, and also, optionally,
a hiding property. We outline these properties below (see Section 2.6.1 for the details).
Extractability. Consider an efficient sender adversary A that can produce a commitment c and
degree bound d ≤ D such that, when asked for an evaluation at some point z ∈ F, can produce a
supposed evaluation v and proof π such that PC.Check accepts. Then PC is extractable if for every
maximum degree bound D and every sender adversary A who can produce such commitments,
there exists a corresponding efficient extractor EA that outputs a polynomial p of degree at most d
that “explains” c so that p(z) = v. While for simplicity we have described the most basic case here,
our definition considers adversaries and extractors who interact over multiple rounds, wherein the
adversary may produce multiple commitments in each round and the extractor is required to output
corresponding polynomials on a per-round basis (before seeing the query set, proof, or supposed
evaluations).

8This consideration motivates the strong correctness property in [KZG10], which states that if the adversary knows
a polynomial that leads to the claimed commitment c then this polynomial has bounded degree. This notion, while
sufficient for the application in [KZG10], does not seem to suffice for standalone use because there is no a priori
guarantee that an adversary that can open values to a commitment knows a polynomial inside the commitment. In some
sense, a knowledge assumption is hidden in this hypothesis.
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In this work we rely on extractability to prove the security of our compiler (see Section 2.2.3);
we do not know if weaker security notions studied in prior works, such as evaluation binding, suffice.
More generally, we believe that extractability is a useful property that may be required across a
range of other applications.
Efficiency. We require two notions of efficiency for PC. First, the time required to commit to a
polynomial p and then to create an evaluation proof must be proportional to the degree of p, and not
to the maximum degree D. (This ensures that the argument prover runs in time proportional to the
size of the index.)

On the receiver’s side, the commitment size, proof size, and time to verify an opening must be
independent of the claimed degrees for the polynomials. (This ensures that the argument produced
by our compiler is succinct.)
Hiding. The hiding property of PC states that commitments and proofs of evaluation reveal
no information about the committed polynomial beyond the publicly stated degree bound and
the evaluation itself. Namely, PC is hiding if there exists an efficient simulator that outputs
simulated commitments and simulated evaluation proofs that cannot be distinguished from their real
counterparts by any malicious distinguisher that only knows the degree bound and the evaluation.

Analogously to the case of extractability, we actually consider a more general definition that
considers commitments to multiple polynomials within and across multiple rounds; moreover, the
definition considers the case where some polynomials are designated as not hidden (and thus given
to the simulator) because in our application we sometimes prefer to commit to a polynomial in a
non-hiding way (for efficiency reasons).

2.2.3 Compiler: from AHPs to preprocessing arguments with universal SRS
We describe the main ideas behind Theorem 1, which uses polynomial commitment schemes to
compile any (public-coin) AHP into a corresponding (public-coin) preprocessing argument with
universal SRS. In a subsequent step, the argument can be made non-interactive via the Fiat–Shamir
transformation, and thereby obtain a preprocessing SNARG with universal SRS.

The basic intuition of the compiler follows the well-known framework of “commit to oracles and
then open query answers” pioneered by Kilian [Kil92]. However, the commitment scheme used in
our compiler leverages and enforces the algebraic structure of these oracles. While several works in
the literature already take advantage of algebraic commitment schemes applied to algebraic oracles,
our contribution is to observe that if we apply this framework to a holographic proof then we obtain
a preprocessing argument.

Informally, first the argument indexer invokes the AHP indexer to generate polynomials, and
then deterministically commits to these using the polynomial commitment scheme. Subsequently,
the argument prover and argument verifier interact, each respectively simulating the AHP prover and
AHP verifier. In each round, the argument prover sends succinct commitments to the polynomials
output by the AHP prover in that round. After the interaction, the argument verifier declares its
queries to the polynomials (of the prover and of the indexer). The argument prover replies with
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the desired evaluations along with an evaluation proof attesting to their correctness relative to the
commitments.

This approach, while intuitive, must be proven secure. In particular, in the proof of soundness,
we need to show that if the argument prover convinces the argument verifier with a certain probability,
then we can find an AHP prover that convinces the AHP verifier with similar probability. This
step is non-trivial: the AHP prover outputs polynomials, while the argument prover merely outputs
succinct commitments and a few evaluations, which is much less information. In order to deduce
the former from the latter requires extraction. This motivates considering polynomial commitment
schemes that are extractable, in the sense described in Section 2.2.2. We do not know whether
weaker security properties, such as the evaluation binding property studied in some prior works,
suffice for proving the compiler secure.

The compiler outlined above is compatible with the properties of argument of knowledge and
zero knowledge. Specifically, we prove that if the AHP is a proof of knowledge, then the compiler
produces an argument of knowledge; also, if the AHP is (bounded-query) zero knowledge and the
polynomial commitment scheme is hiding, then the compiler produces a zero knowledge argument.

See Section 2.8 for more details on the compiler.

2.2.4 Construction: an AHP for constraint systems
In prior sections we have described how we can use polynomial commitment schemes to compile
AHPs into corresponding preprocessing SNARGs. In this section we discuss the main ideas behind
Theorem 2, which provides an efficient AHP for the indexed relation corresponding to R1CS (see
Definition 1). The preprocessing zkSNARK that we achieve in this work (see Fig. 2.1) is based on
this AHP.

Our protocol can be viewed as a “holographic variant” of the non-holographic algebraic proof for
R1CS constructed in [BCRSVW19]. Achieving holography involves designing a new sub-protocol
that enables the verifier to evaluate low-degree extensions of the coefficient matrices at a random
location. While in [BCRSVW19] the verifier performed this computation in time poly(|i|) on its
own, in our protocol the verifier performs it exponentially faster, in time O(log |i|), by receiving
help from the prover and having oracle access to the polynomials produced by the indexer. We
introduce notation and then discuss the protocol.
Some notation. Consider an index i = (F, n,m,A,B,C) specifying coefficient matrices, an
instance x = x ∈ F∗ specifying a partial assignment to the variables, and a witness w = w ∈ F∗
specifying an assignment to the other variables such that the R1CS equation holds. The R1CS
equation holds if and only if Az ◦ Bz = Cz for z := (x,w) ∈ Fn. Below, we let H and K be
prescribed subsets of F of sizes n andm respectively; we also let vH(X) and vK(X) be the vanishing
polynomials of these two sets. (The vanishing polynomial of a set S is the monic polynomial of
degree |S| that vanishes on S, i.e.,

∏
γ∈S(X − γ).) We assume that both H and K are smooth

multiplicative subgroups. This allows interpolation/evaluation over H in O(n log n) operations and
also makes vH(X) computable in O(log n) operations (and similarly forK). Given an n× n matrix
M with rows/columns indexed by elements of H , we denote by M̂(X, Y ) the low-degree extension
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ofM , i.e., the polynomial of individual degree less than n such that M̂(κ, ι) is the (κ, ι)-th entry of
M for every κ, ι ∈ H .
A non-holographic starting point. We sketch a non-holographic protocol for R1CS with linear
proof length and constant query complexity, inspired from [BCRSVW19], that forms the starting
point of our work. In this case the prover receives as input (i,x,w) and the verifier receives as input
(i,x). (The verifier reads the non-encoded index i because we are describing a non-holographic
protocol.)

In the first message the prover P sends the univariate polynomial ẑ(X) of degree less than
n that agrees with the variable assignment z on H , and also sends the univariate polynomials
ẑA(X), ẑB(X), ẑC(X) of degree less than n that agree with the linear combinations zA := Az,
zB := Bz, and zC := Cz on H . The prover is left to convince the verifier that the following two
conditions hold:

(1) Entry-wise product: ∀κ ∈ H , ẑA(κ)ẑB(κ)− ẑC(κ) = 0 .

(2) Linear relation: ∀M ∈ {A,B,C} , ∀κ ∈ H , ẑM(κ) =
∑
ι∈H

M [κ, ι]ẑ(ι) .

(The prover also needs to convince the verifier that ẑ(X) encodes a full assignment z that is consistent
with the partial assignment x, but we for simplicity we ignore this in this informal discussion.)

In order to convince the verifier of the first (entry-wise product) condition, the prover sends the
polynomial h0(X) such that ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X). This polynomial equation is
equivalent to the first condition (the left-hand side equals zero everywhere on H if and only if it is
a multiple of H’s vanishing polynomial). The verifier will check the equation at a random point
β ∈ F: it queries ẑA(X), ẑB(X), ẑC(X), h0(X) at β, evaluates vH(X) at β on its own, and checks
that ẑA(β)ẑB(β) − ẑC(β) = h0(β)vH(β). The soundness error is the maximum degree over the
field size, which is at most 2n/|F|.

In order to convince the verifier of the second (linear relation) condition, the prover expects
a random challenge α ∈ F from the verifier, and then replies in a second message. For each
M ∈ {A,B,C}, the prover sends polynomials hM(X) and gM(X) such that

r(α,X)ẑM (X)−rM (α,X)ẑ(X) = hM (X)vH(X)+XgM (X) for rM (Z,X) :=
∑
κ∈H

r(Z, κ)M̂(κ,X)

where r(Z,X) is a prescribed polynomial of individual degree less than n such that (r(Z, κ))κ∈H
are n linearly independent polynomials. Prior work [BCRSVW19] on checking linear relations
via univariate sumchecks shows that this polynomial equation is equivalent, up to a soundness
error of n/|F| over α, to the second condition.9 The verifier will check this polynomial equation at
the random point β ∈ F: it queries ẑ(X), ẑA(X), ẑB(X), ẑC(X), hM(X), gM(X) at β, evaluates
vH(X) at β on its own, evaluates r(Z,X) and rM(Z,X) at (α, β) on its own, and checks that

9In particular, we are using the fact from [BCRSVW19] that, given a multiplicative subgroup S of F, a polynomial
f(X) sums to σ over S if and only if f(X) can be written as h(X)vS(X) +Xg(X) + σ/|S| for some h(X) and g(X)
with deg(g) < |S| − 1.
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r(α, β)ẑM(β) − rM(α, β)ẑ(β) = hM(β)vH(β) + βgM(β). The additional soundness error is
2n/|F|.

The above is a simple 3-message protocol for R1CSwith soundness errormax{2n/|F|, 3n/|F|} =
3n/|F| in the setting where the honest prover and malicious provers send polynomials of prescribed
degrees, which the verifier can query at any location. The proof length (sum of all degrees) is linear
in n and the query complexity is constant.
Barrier to holography. The verifier in the above protocol runs in time that is Ω(|i|) = Ω(n+m).
While this is inherent in the non-holographic setting (because the verifier must read i), we now
discuss how exactly the verifier’s computation depends on i. We shall later use this understanding to
achieve an exponential improvement in the verifier’s time when given a suitable encoding of i.

The verifier’s check for the entry-wise product is ẑA(β)ẑB(β)− ẑC(β) = h0(β)vH(β), and can
be carried out in O(log n) operations regardless of the coefficient matrices contained in the index i.
In other words, this check is efficient even in the non-holographic setting. However, the verifier’s
check for the linear relation is r(α, β)ẑM(β) − rM(α, β)ẑ(β) = hM(β)vH(β) + βgM(β), which
has a linear cost. Concretely, evaluating the polynomial rM(Z,X) at (α, β) requires Ω(n + m)
operations.

In the holographic setting, a natural idea to reduce this cost would be to grant the verifier oracle
access to the low-degree extension M̂ forM ∈ {A,B,C}. This idea has two problems: the verifier
still needs Ω(n) operations to evaluate rM(Z,X) at (α, β) and, moreover, the size of M̂ is quadratic
in n, which means that the encoding of the index i is Ω(n2). We cannot afford such an expensive
encoding in the offline preprocessing phase. We now describe how we overcome both of these
problems, and obtain a holographic protocol.
Achieving holography. To overcome the above problems and obtain a holographic protocol,
we rely yet again on the univariate sumcheck protocol. We introduce two additional rounds of
interaction, and in each round the verifier learns that their verification equation holds provided the
sumcheck from the next round holds. The last sumcheck will rely on polynomials output by the
indexer, which the verifier knows are correct.

We address the first problem by letting the prover and verifier interact in an additional round,
where we rely on an additional univariate sumcheck to reduce the problem of evaluating rM(Z,X)
at (α, β) to the problem of evaluating M̂ at (β2, β) for a random β2 ∈ F. Namely, the verifier sends
β to the prover, who computes

σ2 := rM(α, β) =
∑
κ∈H

r(α, κ)M̂(κ, β).

Then the prover replies with σ2 and the polynomials h2(X) and g2(X) such that

r(α,X)M̂(X, β) = h2(X)vH(X) +Xg2(X) + σ2/n .

Prior techniques on univariate sumcheck [BCRSVW19] tell us that this equation is equivalent to the
polynomial r(α,X)M̂(X, β) summing to σ2 onH . Thus the verifier needs to check this equation at
a random β2 ∈ F: r(α, β2)M̂(β2, β) = h2(β2)vH(β2) + β2g2(β2) + σ2/n. The only expensive part
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of this equation for the verifier is computing the value M̂(β2, β), which is problematic. Indeed, we
have already noted that we cannot afford to simply let the verifier have oracle access to M̂ , because
this polynomial has quadratic size (it contains a quadratic number of terms).

We address this second problem as follows. Let uH(X, Y ) := vH(X)−vH(Y )
X−Y be the formal

derivative of the vanishing polynomial vH(X), and note that uH(X, Y ) vanishes on the square
H ×H except for on the diagonal, where it takes on the (non-zero) values (uH(a, a))a∈H . Moreover,
uH(X, Y ) can be evaluated at any point in F× F in O(log n) operations. Using this polynomial, we
can write M̂ as a sum ofm = |K| terms instead of n2 = |H|2 terms:

M̂(X, Y ) :=
∑
κ∈K

uH(X, ˆrowM(κ)) · uH(Y, ĉolM(κ)) · v̂alM(κ) ,

where ˆrowM , ĉolM , v̂alM are the low-degree extensions of the row, column, and value of the non-zero
entries inM according to some canonical order over K.10

This method of representing the low-degree extension ofM suggests an idea: let the verifier
have oracle access to the polynomials ˆrowM , ĉolM , v̂alM and do yet another univariate sumcheck,
but this time over the set K. The verifier sends β2 to the prover, who computes

σ3 := M̂(β2, β) =
∑
κ∈K

uH(β2, ˆrowM(κ)) · uH(β, ĉolM(κ)) · v̂alM(κ) .

Then the prover replies with σ3 and the polynomials h3(X) and g3(X) such that

uH(β2, ˆrowM(X))uH(β, ĉolM(X))v̂alM(X) = h3(X)vK(X) +Xg3(X) + σ3/m .

The verifier can then check this equation at a random β3 ∈ F, which only requires O(logm)
operations.

The above idea almost works; the one remaining problem is that h3(X) has degree Ω(nm)
(because the left-hand size of the equation has quadratic degree), which is too expensive for our
target of a quasilinear-time prover. We overcome this problem by letting the prover run the univariate
sumcheck protocol on the unique low-degree extension f̂(X) of the function f : K → F defined
as f(κ) := uH(β2, ˆrowM(κ))uH(β, ĉolM(κ))v̂alM(κ). Observe that f̂(X) has degree less than m.
The verifier checks that f̂(X) and uH(β2, ˆrowM(X))uH(β, ĉolM(X))v̂alM(X) agree on K.
From sketch to protocol. In the above discussion we have ignored a number of technical aspects,
such as proof of knowledge and zero knowledge (which are ultimately needed in the compiler if we
want to construct a preprocessing zkSNARK). We have also not discussed time complexities of
many algebraic steps, and we omitted discussion of how to batch multiple sumchecks into fewer
ones, which brings important savings in argument size. For details, see our detailed construction in
Section 2.5.

10Technicality: v̂al(κ) actually equals the value divided by uH( ˆrowM (κ), ˆrowM (κ))uH(ĉolM (κ), ĉolM (κ)).
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2.2.5 Construction: extractable polynomial commitments
We now sketch how to construct a polynomial commitment scheme that achieves the strong
functionality and security requirements of our definition in Section 2.2.2. Our starting point is
the PolyCommitDL construction of Kate et al. [KZG10], and then describe a sequence of natural
and generic transformations that extend this construction to enable extractability, commitments to
multiple polynomials, and the enforcement of per-polynomial degree bounds. In fact, once we arrive
at a scheme that supports extractability for committed polynomials at a single point (Section 2.11),
our transformations build on this construction in a black box way to first support per-polynomial
degree bounds (Section 2.12), and then query sets that may request multiple evaluation points per
polynomial (Section 2.13). Indeed, it is sufficient to produce a polynomial commitment scheme that
satisfies the much more simple interface and definitions in Section 2.11.1, and apply these black
box transformations to obtain a polynomial commitment scheme that satisfies the interface of and
provides the properties described in Section 2.6.1 ultimately needed by our compiler.
Starting point: PolyCommitDL. The setup phase samples a cryptographically secure bilinear
group (G1,G2,GT , q, G,H, e) and then samples a committer key ck and receiver key rk for a given
degree bound D. The committer key consists of group elements encoding powers of a random
field element β, namely, ck := {G, βG, . . . , βDG} ∈ GD+1

1 . The receiver key consists of the
group elements rk := (G,H, βH) ∈ G1 × G2

2. Note that the SRS, which consists of the keys ck
and rk, is updatable because the coefficients of group elements in the SRS are all monomials (see
Remark 2.7.1).

To commit to a polynomial p ∈ Fq[X], the sender computes c := p(β)G. To subsequently prove
that the committed polynomial evaluates to v at a point z, the sender computes a witness polynomial
w(X) := (p(X)− p(z))/(X − z), and provides as proof a commitment to w: π := w(β)G. The
idea is that the witness function w is a polynomial if and only if p(z) = v; otherwise, it is a rational
function, and cannot be committed to using ck.

Finally, to verify a proof of evaluation, the receiver checks that the commitment and proof of
evaluation are consistent. That is, it checks that the proof commits to a polynomial of the form
(p(X)− p(z))/(X − z) by checking the equality e(c− vG,H) = e(π, βH − zH).
Achieving extractability. While the foregoing construction guarantees correctness of evaluations,
it does not by itself guarantee that a commitment actually “contains” a suitable polynomial of degree
at most D. We study two methods to address this issue, and thereby achieve extractability. One
method is to modify the construction to use knowledge commitments [Gro10], and rely on a concrete
knowledge assumption. The main disadvantage of this approach is that each commitment doubles in
size. The other method is to move away from the plain model, and instead conduct the security
analysis in the algebraic group model (AGM) [FKL18]. This latter method is more efficient because
each commitment remains a single group element.
Committing to multiple polynomials at once. We enable the sender to simultaneously open
multiple polynomials [pi]

n
i=1 at the same point z as follows. Before generating a proof of evaluation

for [pi]
n
i=1, the sender requests from the receiver a random field element ξ, which he uses to take a

random linear combination of the polynomials: p :=
∑n

i=1 ξ
ipi, and generates a proof of evaluation

π for this polynomial p.
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The receiver verifies π by using the fact that the commitments are additively homomorphic.
The receiver takes a linear combination of the commitments and claimed evaluations, obtaining the
combined commitment c =

∑n
i=1 ξ

ici and evaluation v =
∑n

i=1 ξ
ivi. Finally, it checks the pairing

equations for c, π, and v.
Completeness of this check is straightforward, while soundness follows from the fact that if

any polynomial does not match its evaluation, then the combined polynomial will not match its
evaluation with high probability.
Enforcing multiple degree bounds. The construction so far enforces a single bound D on the
degrees of all the polynomials pi. To enforce a different degree bound di for each pi, we require the
sender to commit not only to each pi, but also to “shifted polynomials” p′i(X) := XD−dipi(X). The
proof of evaluation proves that, if pi evaluates to vi at z, then p

′
i evaluates to z

D−divi.
The receiver checks that the commitment for each p′i corresponds to an evaluation z

D−divi so
that, if z is sampled from a super-polynomial subset of Fq, the probability that deg(pi) 6= di is
negligible. This trick is similar to the one used in [BS08; BCRSVW19] to derive low-degree tests
for specific degree bounds.

However, while sound, this approach is inefficient in our setting: the witness polynomial for p′i
has Ω(D) non-zero coefficients (instead of O(di)), and so constructing an evaluation proof for it
requires Ω(D) scalar multiplications (instead of O(di)). To work around this, we instead produce a
proof that the related polynomial p?i (X) := p′i(X)− pi(z)XD−di evaluates to 0 at z. As we show
in Lemma 2.12.2, the witness polynomial for this claim has O(di) non-zero coefficients, and so
constructing the evaluation proof can be done in O(di) scalar multiplications. Completeness is
preserved because the receiver can check the correct evaluation of p?i by subtracting pi(z)(βD−diG)
from the commitment to the shifted polynomial p′i, thereby obtaining a commitment to p?i , while
security is preserved because p′i(z) = zD−divi ⇐⇒ p?i (z) = 0.
Evaluating at a query set instead of a single point. To support the case where the polynomials
[pi]

n
i=1 are evaluated at a set of pointsQ, the sender proceeds as follows. Say that there are k different

points [zi]
k
i=1 in Q. The sender partitions the polynomials [pi]

n
i=1 into different groups such that

every polynomial in a group is to be evaluated at the same point zi. The sender runs PC.Open on
each group, and outputs the resulting list of evaluation proofs.
Achieving hiding. To additionally achieve hiding, we follow the above blueprint, replacing
PolyCommitDL with the hiding scheme PolyCommitPed described in [KZG10].
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2.3 Preliminaries
Wedenote by [n] the set {1, . . . , n} ⊆ N. We usea = [ai]

n
i=1 as a short-hand for the tuple (a1, . . . , an),

and [ai]
n
i=1 = [[ai,j]

m
j=1]ni=1 as a short-hand for the tuple (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a|

denotes the number of entries in a. If x is a binary string then |x| denotes its bit length. IfM is a
matrix then ‖M‖ denotes the number of nonzero entries inM . If S is a finite set then |S| denotes its
cardinality and x← S denotes that x is an element sampled at random from S. We denote by F a
finite field, and whenever F is an input to an algorithm we implicitly assume that F is represented in
a way that allows efficient field arithmetic. Given a finite set S, we denote by FS the set of vectors
indexed by elements in S. We denote by F[X] the ring of univariate polynomials over F in X , and
by F<d[X] the set of polynomials in F[X] with degree less than d.

We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable n,
we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function that is
negligible in λ (namely, a function that vanishes faster than the inverse of any polynomial in λ).
When a function can be expressed in the form 1 − negl(λ), we say that it is overwhelming in λ.
When we say that A is an efficient adversary we mean that A is a family {Aλ}λ∈N of non-uniform
polynomial-size circuits. If the adversary consists of multiple circuit families A1,A2, . . . then we
write A = (A1,A2, . . . ).

Given two interactive algorithms A and B, we denote by 〈A(x), B(y)〉(z) the output of B(y, z)
when interacting with A(x, z). Note that this output could be a random variable. If we use this
notation when A or B is a circuit, we mean that we are considering a circuit that implements a
suitable next-message function to interact with the other party of the interaction.

2.3.1 Indexed relations
An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance, andw is the
witness; the corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a
witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits
consists of triples where i is the description of a boolean circuit, x is a partial assignment to its
input wires, and w is an assignment to the remaining wires that makes the circuit to output 0. Given
a size bound N ∈ N, we denote byRN the restriction ofR to triples (i,x,w) with |i| ≤ N.
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2.4 Algebraic holographic proofs
We define algebraic holographic proofs (AHPs), the notion of proofs that we use. For simplicity,
the formal definition below is tailored to univariate polynomials, because our AHP construction is
in this setting. The definition can be modified in a straightforward way to consider the general case
of multivariate polynomials.

We represent polynomials through the coefficients that define them, as opposed to through their
evaluation over a sufficiently large domain (as is typically the case in probabilistic proofs). This
definitional choice is due to the fact that we will consider verifiers that may query the polynomials
at any location in the field of definition. Moreover, the field of definition itself can be chosen from a
given field family, and so we make the field an additional input to all algorithms; this degree of
freedom is necessary when combining this component with polynomial commitment schemes (see
Section 2.8). Finally, we consider the setting of indexed relations (see Section 2.3.1), where the
verifier’s input has two parts, the index and the instance; in the definition below, the verifier receives
the index encoded and the instance explicitly.

Formally, an algebraic holographic proof (AHP) over a field family F for an indexed relation
R is specified by a tuple

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three
algorithms known as the indexer, prover, and verifier. The parameter k specifies the number of
interaction rounds, s specifies the number of polynomials in each round, and d specifies degree
bounds on these polynomials.

In the offline phase (“0-th round”), the indexer I receives as input a fieldF ∈ F and an index i forR,
and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0))
respectively. Note that the offline phase does not depend on any particular instance or witness, and
merely considers the task of encoding the given index i.

In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P
receives (F, i,x,w) and the verifier V receives (F,x) and oracle access to the polynomials output
by I(F, i). The prover P and the verifier V interact over k = k(|i|) rounds.

For i ∈ [k], in the i-th round of interaction, the verifier V sends a message ρi ∈ F∗ to the prover
P; then the prover P replies with s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. The verifier may
query any of the polynomials it has received any number of times. A query consists of a location
z ∈ F for an oracle pi,j , and its corresponding answer is pi,j(z) ∈ F. After the interaction, the
verifier accepts or rejects.

The function d determines which provers to consider for the completeness and soundness
properties of the proof system. In more detail, we say that a (possibly malicious) prover P̃ is
admissible for AHP if, on every interaction with the verifier V, it holds that for every round i ∈ [k]
and oracle index j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be
admissible under this definition.

We say that AHP has perfect completeness and soundness error ε if the following holds.
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• Completeness. For every field F ∈ F and index-instance-witness tuple (i,x,w) ∈ R, the
probability that P(F, i,x,w) convinces VI(F,i)(F,x) to accept in the interactive oracle protocol
is 1.

• Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and admissible prover P̃,
the probability that P̃ convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is at most
ε.

The proof length l is the sum of all degree bounds in the offline and online phases, l(|i|) :=∑k(|i|)
i=0

∑s(i)
j=1 d(|i|, i, j). The intuition for this definition is that in a probabilistic proof each oracle

would consist of the evaluation of a polynomial over a domain whose size (in field elements) is
linearly related to its degree bound, so that the resulting proof length would be linearly related to the
sum of all degree bounds.

The query complexity q is the total number of queries made by the verifier to the polynomials.
This includes queries to the polynomials output by the indexer and those sent by the prover.

All AHPs that we construct achieve the stronger property of knowledge soundness (against
admissible provers), and optionally also zero knowledge. We define both of these properties below.
Knowledge soundness. We say that AHP has knowledge error ε if there exists a probabilistic
polynomial-time extractor E for which the following holds. For every field F ∈ F , index i, instance
x, and admissible prover P̃, the probability that EP̃(F, i,x, 1l(|i|)) outputsw such that (i,x,w) ∈ R
is at least the probability that P̃ convinces VI(F,i)(F,x) to accept minus ε. Here the notation EP̃

means that the extractor E has black-box access to each of the next-message functions that define
the interactive algorithm P̃. (In particular, the extractor E can “rewind” the prover P̃.) Note that
since E receives the proof length l(|i|) in unary, E has enough time to receive, and perform efficient
computations on, polynomials output by P̃.
Zero knowledge. We say that AHP has (perfect) zero knowledge with query bound b and query
checker C if there exists a probabilistic polynomial-time simulator S such that for every field
F ∈ F , index-instance-witness tuple (i,x,w) ∈ R, and (b,C)-query algorithm Ṽ the random
variables View(P(F, i,x,w), Ṽ) and SṼ(F, i,x), defined below, are identical. Here, we say that
an algorithm is (b,C)-query if it makes at most b queries to oracles it has access to, and each query
individually leads the checker C to output “ok”.

• View(P(F, i,x,w), Ṽ) is the view of Ṽ, namely, is the random variable (r, a1, . . . , aq) where r
is Ṽ’s randomness and a1, . . . , aq are the responses to Ṽ’s queries determined by the oracles sent
by P(F, i,x,w).

• SṼ(F, i,x) is the output of S(F, i,x) when given straightline access to Ṽ (S may interact with
Ṽ, without rewinding, by exchanging messages with Ṽ and answering any oracle queries along
the way), prepended with Ṽ’s randomness r. Note that r could be of super-polynomial size, so S
cannot sample r on Ṽ’s behalf and then output it; instead, as in prior work, we restrict S to not
see r, and prepend r to S’s output.
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A special case of interest. We only consider AHPs that satisfy the following properties.

– Public coins: AHP is public-coin if each verifier message to the prover is a uniformly random
string of some prescribed length (or an empty string). Hence the verifier’s randomness is its
messages ρ1, . . . , ρk ∈ F∗ and possibly additional randomness ρk+1 ∈ F∗ used after the interaction.
All verifier queries can be postponed, without loss of generality, to a query phase that occurs after
the interactive phase with the prover.

– Non-adaptive queries: AHP is non-adaptive if all of the verifier’s query locations are solely
determined by the verifier’s randomness and inputs (the field F and the instance x).

Given these properties, we can view the verifier as two subroutines that execute in the query phase:
a query algorithm QV that produces query locations based on the verifier’s randomness, and a
decision algorithm DV that accepts or rejects based on the answers to the queries (and the verifier’s
randomness). In more detail, QV receives as input the field F, the instance x, and randomness
ρ1, . . . , ρk, ρk+1, and outputs a query set Q consisting of tuples ((i, j), z) to be interpreted as “query
pi,j at z ∈ F”; and DV receives as input the field F, the instance x, answers (v((i,j),z))((i,j),z)∈Q, and
randomness ρ1, . . . , ρk, ρk+1, and outputs the decision bit.

While the above properties are not strictly necessary for the compiler that we describe in
Section 2.8, all “natural” protocols that we are aware of (including those that we construct in this
work) satisfy these properties, and so we restrict our attention to public-coin non-adaptive protocols
for simplicity.
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2.5 AHP for constraint systems
We construct an AHP for rank-1 constraint satisfiability (R1CS) that has linear proof length and
constant query complexity. Below we define the indexed relation that represents this problem, and
then state our result.

Definition 2.5.1 (R1CS indexed relation). The indexed relationRR1CS is the set of all triples

(i,x,w) =
(
(F, H,K,A,B,C), x, w

)
where F is a finite field, H and K are subsets of F, A,B,C are H × H matrices over F with
|K| ≥ max{‖A‖, ‖B‖, ‖C‖}, and z := (x,w) is a vector in FH such that Az ◦Bz = Cz.

Theorem 2.5.2. There exists an AHP for the indexed relationRR1CS that is a zero knowledge proof
of knowledge with the following features. The indexer uses O(|K| log |K|) field operations and
outputs O(|K|) field elements. The prover and verifier exchange 7 messages. To achieve zero
knowledge against b queries (with a query checker C that rejects queries in H), the prover uses
O((|K|+ b) log(|K|+ b)) field operations and outputs a total of O(|H|+ b) field elements. The
verifier makes O(1) queries to the encoded index and to the prover’s messages, has soundness error
O((|K|+ b)/|F|), and uses O(|x|+ log |K|) field operations.

Remark 2.5.3 (restrictions on domains). Our protocol uses the univariate sumcheck of [BCRSVW19]
as a subroutine, and in particular inherits the requirement that the domainsH andK must be additive
or multiplicative subgroups of the field F. For simplicity, in our descriptions we use multiplicative
subgroups because we use this case in our implementation; the case of additive subgroups involves
only minor modifications. Moreover, the arithmetic complexities for the indexer and prover stated in
Theorem 2.5.2 assume that the domains H and K are “FFT-friendly” (e.g., they have smooth sizes);
this is not a requirement, since in general the arithmetic complexities will be that of an FFT over
the domains H and K. Note that we can assume without loss of generality that |H| = O(|K|), for
otherwise (if |K| < |H|/3) then are empty rows or columns across the matrices that we can drop
and reduce their size. Finally, we assume that |H| ≤ |F|/2.

This section is organized as follows: in Section 2.5.1 we introduce algebraic notations and facts
used in this section; in Section 2.5.2 we describe an AHP for checking linear relations; and in
Section 2.5.3 we build on this latter to obtain an AHP for R1CS.

Throughout we assume that H and K come equipped with bijections φ
H

: H → [|H|] and
φ
K

: K → [|K|] that are computable in linear time. Moreover, we define the two sets H[≤ k] :=
{κ ∈ H : 1 ≤ φ

H
(κ) ≤ k} and H[> k] := {κ ∈ H : φ

H
(κ) > k} to denote the first k elements in

H and the remaining elements, respectively. We can then write that x ∈ FH[≤|x|] and w ∈ FH[>|x|].

2.5.1 Algebraic preliminaries

Polynomial encodings. For a finite field F, subset S ⊆ F, and function f : S → F we denote by f̂
the (unique) univariate polynomial over F with degree less than |S| such that f̂(a) = f(a) for every
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a ∈ S. We sometimes abuse notation and write f̂ to denote some polynomial that agrees with f on
S, which need not equal the (unique) such polynomial of smallest degree.
Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote by vS the unique
non-zero monic polynomial of degree at most |S| that is zero everywhere on S; vS is called
the vanishing polynomial of S. If S is an additive or multiplicative coset in F then vS can be
evaluated in polylog(|S|) field operations. For example, if S is a multiplicative subgroup of F
then vS(X) = X |S| − 1 and, more generally, if S is a ξ-coset of a multiplicative subgroup S0

(namely, S = ξS0) then vS(X) = ξ|S|vS0
(X/ξ) = X |S|− ξ|S|; in either case, vS can be evaluated in

O(log |S|) field operations.
Derivative of vanishing polynomials. We rely on various properties of a bivariate polynomial uS
introduced in [BCGGRS19]. For a finite field F and subset S ⊆ F, we define

uS(X, Y ) :=
vS(X)− vS(Y )

X − Y
,

which is a polynomial of individual degree |S| − 1 because X − Y divides X i − Y i for any
positive integer i. Note that uS(X,X) is the formal derivative of the vanishing polynomial vS(X).
The bivariate polynomial uS(X, Y ) satisfies two useful algebraic properties. First, the univariate
polynomials (uS(X, a))a∈S are linearly independent, and uS(X, Y ) is their (unique) low-degree
extension. Second, uS(X, Y ) vanishes on the square S × S except for on the diagonal, where it
takes on the (non-zero) values (uS(a, a))a∈S .

If S is an additive or multiplicative coset in F, uS(X, Y ) can be evaluated at any (α, β) ∈ F2

in polylog(|S|) field operations because in this case both vS (and its derivative) can be evaluated
in polylog(|S|) field operations. For example, if S is a multiplicative subgroup then uS(X, Y ) =

(X |S| − Y |S|)/(X − Y ) and uS(X,X) = |S|X |S|−1, so both can be evaluated in O(log |S|) field
operations.
Univariate sumcheck for subgroups. Prior work [BCRSVW19] shows that, given a multiplicative
subgroup S of F, a polynomial f(X) sums to σ over S if and only if f(X) can be written as
h(X)vS(X) + Xg(X) + σ/|S| for some h(X) and g(X) with deg(g) < |S| − 1. This can be
viewed as a univariate sumcheck protocol, and we shall rely on it throughout this section.

2.5.2 AHP for the lincheck problem
The lincheck problem for univariate polynomials considers the task of deciding whether two
polynomials encode vectors that are linearly related in a prescribed way. In more detail, the
problem is parametrized by a field F, two subsets H and K of F, and a matrixM ∈ FH×H with
|K| ≥ ‖M‖ > 0. Given oracle access to two low-degree polynomials f1, f2 ∈ F<d[X], the problem
asks to decide whether for every a ∈ H it holds that f1(a) =

∑
b∈HMa,b · f2(b), by asking a small

number of queries to f1 and f2. The matrixM thus prescribes the linear relations that relate the
values of f1 and f2 on H .

Ben-Sasson et al. [BCRSVW19] solve this problem by reducing the lincheck problem to a
sumcheck problem, and then reducing the sumcheck problem to low-degree testing (of univariate
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polynomials). In particular, this prior work achieves a 2-message algebraic non-holographic protocol
that solves the lincheck problem with linear proof length and constant query complexity. In this
section we show how to achieve a 6-message algebraic holographic protocol, again with linear proof
length and constant query complexity. In Section 2.5.2.1 we describe the indexer algorithm, in
Section 2.5.2.2 we describe the prover and verifier algorithms, and in Section 2.5.2.3 we analyze the
protocol. Fig. 2.4 summarizes the protocol.

2.5.2.1 Offline phase: encoding the linear relation

The indexer I for the lincheck problem receives as input a field F, two subsets H and K of F, and
a matrixM ∈ FH×H with |K| ≥ ‖M‖. The non-zero entries ofM are assumed to be presented
in some canonical order (e.g., row-wise or column-wise). The output of I is three univariate
polynomials ˆrow, ĉol, v̂al over F of degree less than |K| such that the following polynomial is a
low-degree extension ofM :

M̂(X, Y ) :=
∑
κ∈K

uH(X, ˆrow(κ))uH(Y, ĉol(κ))v̂al(κ) . (2.1)

The three aforementioned polynomials are the (unique) low-degree extensions of the three functions
row, col, val : K → F that respectively represent the row index, column index, and value of the
non-zero entries of the matrixM . In more detail, for every κ ∈ K with 1 ≤ φ

K
(κ) ≤ ‖M‖:

• row(κ) := φ−1
H

([(]κ) where [(]κ is the row index of the φ
K

(κ)-th nonzero entry inM ;
• col(κ) := φ−1

H
([(]κ) where [(]κ is the column index of the φ

K
(κ)-th nonzero entry inM ;

• val(κ) is the value of the φ
K

(κ)-th nonzero entry in M , divided by uH(row(κ), row(κ)) ·
uH(col(κ), col(κ)).

Also, val(κ) returns the element 0 for every κ ∈ K with φ
K

(κ) > ‖M‖, while row(κ) and col(κ)
return an arbitrary element in H for such κ. The evaluation tables of these functions can be
found in O(|K| log |H|) operations, from which interpolation yields the desired polynomials in
O(|K| log |K|) operations.

Recall from Section 2.5.1 that the bivariate polynomial uH(X, Y ) vanishes on the squareH ×H
except for on the diagonal, where it takes on the (non-zero) values (uH(a, a))a∈H . By construction
of the polynomials ˆrow, ĉol, v̂al, the polynomial M̂(X, Y ) agrees with the matrixM everywhere on
the domain H ×H . The individual degree of M̂(X, Y ) is less than |H|. Thus, M̂ is the unique
low-degree extension ofM .

We rewrite the polynomial M̂(X, Y ) in a form that will be useful later:

Claim 2.5.4.
M̂(X, Y ) =

∑
κ∈K

vH(X)

(X − ˆrow(κ))
· vH(Y )

(Y − ĉol(κ))
· v̂al(κ) . (2.2)
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Proof. Note that vH( ˆrow(κ)) = vH(ĉol(κ)) = 0 for every κ ∈ K because ˆrow(X) and ĉol(X) map
K to H and vH vanishes on H . Therefore:

M̂(X, Y ) =
∑
κ∈K

uH(X, ˆrow(κ)) · uH(Y, ĉol(κ)) · v̂al(κ)

=
∑
κ∈K

vH(X)− vH( ˆrow(κ))

X − ˆrow(κ)
· vH(Y )− vH(ĉol(κ))

Y − ĉol(κ)
· v̂al(κ)

=
∑
κ∈K

vH(X)

(X − ˆrow(κ))
· vH(Y )

(Y − ĉol(κ))
· v̂al(κ) .

2.5.2.2 Online phase: proving and verifying the linear relation

The prover P for the lincheck problem receives as input a field F, two subsets H and K of F, a
matrixM ∈ FH×H with |K| ≥ ‖M‖, and two polynomials f1, f2 ∈ F<d[X]. The verifier V for the
lincheck problem receives as input the field F and two subsets H and K of F; V also has oracle
access to the polynomials ˆrow, ĉol, v̂al output by the indexer I invoked on appropriate inputs.

The protocol begins with a reduction from a lincheck problem to a sumcheck problem: V
samples a random element α ∈ F and sends it to P. Indeed, letting r(X, Y ) denote the polynomial
uH(X, Y ), P is left to convince V that the following univariate polynomial sums to 0 on H:

q1(X) := r(α,X)f1(X)− rM(α,X)f2(X) where rM(X, Y ) :=
∑
κ∈H

r(X, κ)M̂(κ, Y ) .

(2.3)
We rely on the univariate sumcheck protocol for this step: P sends to V the polynomials g1(X)

and h1(X) such that q1(X) = h1(X)vH(X) +Xg1(X). In order to check this polynomial identity,
V samples a random element β1 ∈ F with the intention of checking the identity at X := β1. For
the right-hand side, V queries g1 and h1 at β1, and then evaluates h1(β1)vH(β1) + β1g1(β1) in
O(log |H|) operations. For the left-hand side, V queries f1 and f2 at β1 and then needs to ask
help from P to evaluate r(α, β1)f1(β1) − rM(α, β1)f2(β1). The reason is that while r(α, β1) is
easy to evaluate (it requiresO(log |H|) operations), rM(α, β1) =

∑
κ∈H r(α, κ)M̂(κ, β1) in general

requires Ω(|H||K|) operations.
We thus rely on the univariate sumcheck protocol again. We define

q2(X) := r(α,X)M̂(X, β1) (2.4)

V sends β1 toP, and thenP replies with the sum σ2 :=
∑

κ∈H r(α, κ)M̂(κ, β1) and the polynomials
g2(X) and h2(X) such that q2(X) = h2(X)vH(X) + Xg2(X) + σ2/|H|. In order to check this
polynomial identity, V samples a random element β2 ∈ F with the intention of checking the
identity at X := β2. For the right-hand side, V queries g2 and h2 at β2, and then evaluates
h2(β2)vH(β2) + β2g2(β2) + σ2/|H| in O(log |H|) operations. To evaluate the left-hand side,
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however, V needs to ask help from P. The reason is that while r(α, β2) is easy to evaluate (it
requires O(log |H|) operations), M̂(β2, β1) in general requires Ω(|K|) operations.

We thus rely on the univariate sumcheck protocol (yet) again: V sends β2 to P, and then P
replies with the value σ3 := M̂(β2, β1), which the verifier must check. Note though that we cannot
use the sumcheck protocol directly to compute the sum obtained from Eq. (2.1):

M̂(β2, β1) =
∑
κ∈K

uH(β2, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

This is because the degree of the above addend, if we replace κ with an indeterminate, is Ω(|H||K|),
which means that the degree of the polynomial h3 sent as part of a sumcheck protocol also has
degree Ω(|H||K|), which is not within our budget of an AHP with proof length O(|H| + |K|).
Instead, we make the minor modification that in the earlier rounds β1 and β2 are sampled from F \H
instead of F, and we will leverage the sumcheck protocol to verify the equivalent (well-defined)
expression from Eq. (2.2):

M̂(β2, β1) =
∑
κ∈K

vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
.

This may appear to be an odd choice, because if we replace κwith an indeterminate in the sum above,
we obtain a rational function that is (in general) not a polynomial, and so does not immediately fit
the sumcheck protocol. Nevertheless, we are still able to use the sumcheck protocol with it, as we
now explain.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) =
vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
. (2.5)

The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| ,
vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))f3(X) = h3(X)vK(X) .

The first equation demonstrates that f3 sums to σ3 overK, and the second equation demonstrates
that f3 agrees with the correct addends over K. These two equations can be combined in a single
equation that involves only g3(X) and h3(X):

vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|) = h3(X)vK(X) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order to check this
polynomial identity, V samples a random element β3 ∈ F with the intention of checking the identity
at X := β3. Then V queries g3, h3, ˆrow, ĉol, v̂al at β3, and then evaluates vH(β2)vH(β1)v̂al(β3)−
(β2 − ˆrow(β3))(β1 − ĉol(β3))(β3g3(β3) + σ3/|K|) = h3(β3)vK(β3) in O(log |K|) operations.

If this third test passes then V can use the value σ3 in place of M̂(β2, β1) to finish the second
test. If this latter passes, V can in turn use the value σ2 in place of rM(α, β1) to finish the first test.
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2.5.2.3 Analysis

Soundness. We argue that the soundness error is at most

|H|+ 3|K|
|F|

+
d+ 3|H|
|F \H|

.

There are four ways in which the verifier could still accept if the lincheck statement is false: if the
randomized reduction to the first sumcheck produces a polynomial that sums to zero; or if any one
of the three sumchecks accepts despite the claimed sum being incorrect. The probability that the
randomized reduction to sumcheck fails is at most the individual degree in X of r(X, Y ) divided
by |F|, which is less than |H|/|F|. The probability that any one of the sumchecks fail to detect an
incorrectly declared sum is at most the maximum degree of the polynomial equation tested in the
respective sumcheck divided by the size from which the test element is sampled. The innermost
sumcheck has maximum degree less than 3|K|, the intermediate sumcheck has maximum degree
less than 2|H|, and the outermost sumcheck has maximum degree less than |H|+ d. These errors
add up to the soundness error claimed above.
Efficiency. The protocol consists of 6 messages, with the verifier moving first. The verifier makes
a constant number of queries, evaluates vH and vK at a constant number of locations, and then
performs a constant number of field operations. In particular, the arithmetic complexity of the
verifier is O(log |H|+ log |K|). The prover sends a constant number of polynomials with degrees
linearly related to d (the bound on the degrees of f1 and f2), |H|, and |K|. We now argue that prover
time is O((|H|+ d) log(|H|+ d) + |K| log |K|). In the first round, the prover sends the coefficients
of the polynomials g1(X) and h1(X), which can be found in time O(|K|+ (|H|+ d) log(|H|+ d)),
as we argue in Lemma 2.5.5. In the second round, the prover sends the field element σ2 and the
polynomials g2(X) and h2(X), which can be found in time O(|K|+ |H| log |H|), as we argue in
Lemma 2.5.6. In the third round, the prover sends the field element σ3 and the polynomials g3(X)
and h3(X), which can be found in time O(|K| log |K|), as we argue in Lemma 2.5.7.

Lemma 2.5.5 (first round). The coefficients of the polynomials g1(X) and h1(X) can be found in
O(|K|+ (|H|+ d) log(|H|+ d)) field operations, when given coefficients of the polynomials f1(X)
and f2(X), the subsets H and K, and the matrixM (in sparse form).

Proof. It suffices to find the coefficients of the polynomial q1(X) from Eq. (2.3), which has degree
at most |H|+ d− 2, because the polynomials g1(X) and h1(X) can be found via polynomial long
division of q1(X) by vH in time O((|H| + d) log |H|). In turn, q1(X) can be computed from the
coefficients of f1(X), f2(X), r(α,X), and rM(α,X) in time O((|H| + d) log(|H| + d)) via fast
polynomial multiplication and polynomial addition. The first two are given to us in coefficient form;
to find the coefficients of the latter two polynomials, we can evaluate each of them over H and then
interpolate.

The values of r(α,X) onH can be obtained inO(|H| log |H|) operations via direct computation
of formulas described in Section 2.5.1. The problem is now reduced to finding the values of
rM(α,X) on H — this is the “hard part” that motivates the present proof.
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Observe that, by definition of rM (see Eq. (2.3)) and M̂ (see Eq. (2.1)), the following holds:

rM(α,X) =
∑
κ1∈H

r(α, κ1)
∑
κ2∈K

uH(κ1, ˆrow(κ2))uH(X, ĉol(κ2))v̂al(κ2)

=
∑
κ2∈K

uH(X, ĉol(κ2))v̂al(κ2)
∑
κ1∈H

r(α, κ1)uH(κ1, ˆrow(κ2))

=
∑
κ2∈K

uH(X, ĉol(κ2))v̂al(κ2)r(α, ˆrow(κ2))uH( ˆrow(κ2), ˆrow(κ2)) .

The last equality uses the fact that for every κ2 ∈ K, the sum
∑

κ1∈H r(α, κ1)uH(κ1, ˆrow(κ2))
collapses to a single term corresponding to κ1 = ˆrow(κ2); the other terms, which correspond to
κ1 6= ˆrow(κ2), are zero due to the fact that the polynomial uH vanishes on the squareH ×H except
for on its diagonal.

Next, again using the fact that uH vanishes on the square H ×H except for on its diagonal, we
note that for every κ1 ∈ H

rM(α, κ1) =
∑

κ2∈K s.t. ĉol(κ2)=κ1

uH(κ1, ĉol(κ2))v̂al(κ2) · r(α, ˆrow(κ2))uH( ˆrow(κ2), ˆrow(κ2)) .

In other words, as κ1 ranges over H , each element of the sum in rM(α, κ1) contributes a nonzero
value precisely when κ1 equals a particular element of H , namely, when κ1 = ĉol(κ2). Also, since
κ2 ranges only in K, ˆrow(κ2) = row(κ2), ĉol(κ2) = col(κ2), and v̂al(κ2) = val(κ2) are just the row
index, column index, and value of the κ2-th entry ofM (or zero).

This immediately leads to the following strategy to finding the values of rM(α,X) onH . Initialize
for each κ1 ∈ H a variable for rM(α, κ1) that is initially set to 0. Then, for each κ2 ∈ K, compute
the term uH(col(κ2), col(κ2))val(κ2)r(α, row(κ2))uH(row(κ2), row(κ2)) and add it to the variable
for rM(α, col(κ2)). Since the values (uH(κ1, κ1))κ1∈H and (r(α, κ1))κ1∈H can be precomputed
in O(|H| log |H|) operations, the foregoing strategy can be carried out in O(|K| + |H| log |H|)
operations.

Lemma 2.5.6 (second round). The field element σ2 and the coefficients of the polynomials g2(X)
and h2(X) can be found in O(|K|+ |H| log |H|) field operations, when given the subsetsH andK
and the matrixM (in sparse form).

Proof. It suffices to find the coefficients of the polynomial q2(X) from Eq. (2.4), which has degree
at most 2|H| − 2, because the polynomials g2(X) and h2(X) can be found via polynomial long
division of q2(X) by vH in time O(|H| log |H|), and the sum σ2 can be found by evaluating q2(X)
over H in time O(|H| log |H|) and summing in time O(|H|). In turn, q2(X) can be computed
from the coefficients of r(α,X) and of M̂(X, β1) in time O(|H| log |H|) using fast polynomial
multiplication. To find the coefficients of these two polynomials, we can evaluate each of them over
H and then interpolate. The values of r(α,X) on H can be obtained in O(|H| log |H|) operations.
We now need to find the values of M̂(X, β1) on H .
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Recall that
M̂(X, β1) =

∑
κ∈K

uH(X, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

Using the fact that uH vanishes on the square H ×H except for the diagonal, we note that for
every κ1 ∈ H

M̂(κ1, β1) =
∑

κ2∈K s.t. ˆrow(κ2)=κ1

uH(κ1, ˆrow(κ2))uH(β1, ĉol(κ2))v̂al(κ2) .

Thus, to find the values of M̂(X, β1) onH , we initialize for each κ1 ∈ H a variable for M̂(κ1, β1) that
is initially 0. Then, ∀κ2 ∈ K, we compute the term uH( ˆrow(κ2), ˆrow(κ2))uH(β1, ĉol(κ2))v̂al(κ2)
and add it to the variable for M̂( ˆrow(κ2), β1). Since the values (uH(κ, κ))κ∈H and (uH(β1, κ))κ∈H
can be precomputed in O(|H| log |H|) operations, the foregoing strategy can be carried out in
O(|K|+ |H| log |H|) operations.

Lemma 2.5.7 (third round). The field element σ3 and the coefficients of the polynomials g3(X) and
h3(X) can be found in O(|K| log |K|) field operations, when given the subsets H and K and the
matrixM (in sparse form).

Proof. First, we find the coefficients of the polynomial f3(X) from Eq. (2.5), which has degree at
most |K|−1. We traverse the matrixM to find the values of ˆrow(κ) = row(κ), ĉol(κ) = col(κ), and
v̂al(κ) = val(κ), for every κ ∈ K. Then, for each κ ∈ K, we calculate f3(κ) = vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ))
,

and interpolate those |K| values, in time O(|K| log |K|). Those values can also be summed, in
time O(|K|), to obtain σ3. Then g3(X) can be found easily, by subtracting σ3/|K| from f3(X) and
dividing by X .

Next, the prover interpolates the values from M to find the three polynomials ˆrow, ĉol, and
v̂al. Using fast polynomial multiplication, the prover calculates vH(β2)vH(β1)v̂al(X) − (β2 −
ˆrow(X))(β1 − ĉol(X))f3(X), and divides this polynomial by vK(X) to find h3(X). This too can
be done in time O(|K| log |K|).

2.5.3 AHP for R1CS
We prove Theorem 2.5.2. In Section 2.5.3.1 we describe the indexer algorithm, in Section 2.5.3.2 we
describe the prover and verifier algorithms, and in Section 2.5.3.3 we analyze the protocol. Fig. 2.5
summarizes the protocol.

The AHP for R1CS directly builds on the AHP for the lincheck problem, analogously to how
in [BCRSVW19] the non-holographic protocol for R1CS builds on the non-holographic lincheck
protocol. The three lincheck problems associated to the three matrices in the index are bundled
together via random coefficients, while the entry-wise product is checked with a polynomial identity.
Zero knowledge is achieved via bounded independence and random masks [BCGV16; BCRSVW19].
Consistency with the instance is achieved by having the verifier combine a low-degree extension of
the instance and the low-degree extension of the (alleged) witness sent by the prover, in order to
create a low-degree extension of the full assignment.
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2.5.3.1 Offline phase: encoding the constraint system

The indexer I for R1CS receives as input a field F, two subsets H andK of F, and three matrices
A,B,C ∈ FH×H with |K| ≥ max{‖A‖, ‖B‖, ‖C‖}. The non-zero entries of A,B,C are assumed
to be presented in some common canonical order. The output of I consists of the output of
the lincheck indexer separately invoked on A,B,C. This produces nine univariate polynomials
{ ˆrowM , ĉolM , v̂alM}M∈{A,B,C} over F of degree less than |K| that can be used to compute the
low-degree extensions of A,B,C.

2.5.3.2 Online phase: proving and verifying satisfiability

The prover P for R1CS receives as input a field F, two subsets H and K of F, three matrices
A,B,C ∈ FH×H with |K| ≥ max{‖A‖, ‖B‖, ‖C‖}, input x ∈ FH[≤|x|], and witness w ∈ FH[>|x|].
The verifier V for R1CS receives as input the field F, two subsets H and K of F, and input
x ∈ FH[≤|x|]; V also has oracle access to the polynomials { ˆrowM , ĉolM , v̂alM}M∈{A,B,C} output by
the indexer I invoked on appropriate inputs.

The protocol begins with the prover sending randomized encodings for (a certain shift of) the
assignment and its linear combinations. Define x̂(X) to be the polynomial of degree less than |x|
that agrees with the instance x in H[≤ |x|]. Define the shifted witness w̄ : H[> |x|]→ F according
to the equation

∀ γ , w̄(γ) :=
w(γ)− x̂(γ)

vH[≤|x|](γ)
.

The prover P sends to V a random ŵ(X) ∈ F<|w|+b[X] that agrees with w̄ on H[> |x|]; P also
sets z := (x,w) ∈ FH to be the full assignment, computes the three linear combinations zA := Az,
zB := Bz, and zC := Cz, and sends to V random ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b[X] that agree
with zA, zB, zC onH . Note that the values of up to b locations in each of ŵ(X), ẑA(X), ẑB(X), ẑC(X)
reveal no information about the witness w, provided the locations are in F \ H . Note also
that ẑ(X) := ŵ(X)vH[≤|x|](X) + x̂(X) agrees with z on H; moreover, V can evaluate ẑ(X)
at any location γ with O(|x|) operations by querying ŵ at γ and computing the expression
ŵ(γ)vH[≤|x|](γ) + x̂(γ) by using x.

The rest of the protocol is for P to convince V that zA ◦ zB = zC and also that zA, zB, zC are
obtained as linear combinations from z.

In the same message as above, P also sends toV the polynomial h0(X) such that ẑA(X)ẑB(X)−
ẑC(X) = h0(X)vH(X). In addition, P sends to V a (fully) random s(X) ∈ F<2|H|+b−1[X] and
its sum σ1 :=

∑
κ∈H s(κ) over H . This random polynomial will be used as a “mask” to make the

univariate sumcheck zero knowledge.
Next, V samples random elements α, ηA, ηB, ηC ∈ F and sends them to P. The element α is

used to reduce lincheck problems to sumcheck, while the elements ηA, ηB, ηC are used to bundle the
three sumcheck problems into one. Indeed, P is left to convince V that the following univariate



CHAPTER 2. MARLIN: ZKSNARKS WITH UNIVERSAL AND UPDATABLE SRS 36

polynomial sums to σ1 on H:

q1(X) := s(X) + r(α,X)

 ∑
M∈{A,B,C}

ηM ẑM(X)

−
 ∑
M∈{A,B,C}

ηMrM(α,X)

 ẑ(X) (2.6)

where rM(X, Y ) :=
∑

κ∈H r(X, κ)M̂(κ, Y ).
We now rely on the univariate sumcheck protocol: P sends to V the polynomials g1(X) and

h1(X) such that q1(X) = h1(X)vH(X) +Xg1(X). In order to check this polynomial identity, V
samples a random element β1 ∈ F\H with the intention of checking the identity atX := β1. For the
right-hand side, V queries g1 and h1 at β1 and then evaluates h1(β1)vH(β1)+β1g1(β1) inO(log |H|)
operations. For the left-hand side, V queries s, ẑA, ẑB, ẑC , ŵ at β1 and then needs to ask help from
P to evaluate q1(β1). The reason is that the term ηArA(α, β1) + ηBrB(α, β1) + ηCrC(α, β1) in
general requires Ω(|H||K|) operations to compute.

Observe that

ηArA(α, β1) + ηBrB(α, β1) + ηCrC(α, β1)

= ηA
∑
κ∈H

r(α, κ)Â(κ, β1) + ηB
∑
κ∈H

r(α, κ)B̂(κ, β1) + ηC
∑
κ∈H

r(α, κ)Ĉ(κ, β1)

=
∑
κ∈H

r(α, κ)(ηAÂ(κ, β1) + ηBB̂(κ, β1) + ηCĈ(κ, β1)) .

We define the polynomial

q2(X) := r(α,X)(ηAÂ(X, β1) + ηBB̂(X, β1) + ηCĈ(X, β1)) (2.7)

and rely on the univariate sumcheck protocol again: V sends β1 to P, and then P replies
with the sum σ2 :=

∑
κ∈H q2(κ) and the polynomials g2(X) and h2(X) such that q2(X) =

h2(X)vH(X) +Xg2(X) + σ2/|H|. In order to check this polynomial identity, V samples a random
element β2 ∈ F \H with the intention of checking the identity atX := β2. (ExcludingH is needed
later in the protocol, as discussed below.) For the right-hand side, V queries g2 and h2 at β2, and then
evaluates h2(β2)vH(β2) + β2g2(β2) + σ2/|H| in O(log |H|) operations. To evaluate the left-hand
side, however, V needs to ask help from P. The reason is that while r(α, β2) is easy to evaluate (it
requires O(log |H|) operations), each term M̂(β2, β1) in general requires Ω(|K|) operations.

We thus rely on the univariate sumcheck protocol (yet) again: V sends β2 to P, and then P
replies with the value σ3 := ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1), which the verifier much
check. Observe that

ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1) =
∑
κ∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM(κ)

(β2 − ˆrowM(κ))(β1 − ĉolM(κ))
.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) =
∑

M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM(κ)

(β2 − ˆrowM(κ))(β1 − ĉolM(κ))
. (2.8)
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The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| and a(X)− b(X)f3(X) = h3(X)vK(X)

where

a(X) :=
∑

M∈{A,B,C}

ηMvH(β2)vH(β1)v̂alM(X)
∏

N∈{A,B,C}\{M}

(β2 − ˆrowN(X))(β1 − ĉolN(X)) ,

b(X) :=
∏

M∈{A,B,C}

(β2 − ˆrowM(X))(β1 − ĉolM(X)) .

The first equation demonstrates that f3 sums to σ3 overK, and the second equation demonstrates
that f3 agrees with the correct addends over K. These two equations can be combined in a single
equation that involves only g3(X) and h3(X):

a(X)− b(X)(Xg3(X) + σ3/|K|) = h3(X)vK(X) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order to check this polynomial
identity, V samples a random element β3 ∈ F with the intention of checking the identity atX := β3.
Then V queries g3, h3, { ˆrowM , ĉolM , v̂alM}M∈{A,B,C} at β3, and checks the identity in O(log |H|)
operations.

If this third test passes then V can use the value σ3 in place of
∑

M∈{A,B,C} ηMM̂(β2, β1)
to finish the second test. If this latter passes, V can in turn use the value σ2 in place of∑

M∈{A,B,C} ηMrM(α, β1) to finish the first test.

2.5.3.3 Analysis

Soundness. We argue that the soundness error is at most

max

{
2|H|+ 2b

|F|
,

3|K|+ |H|+ 1

|F|
+

4|H|+ b

|F \H|

}
.

Suppose that for the given index i = (F, H,K,A,B,C) and instance x = x there is no witness
w = w such that Az ◦Bz = Cz for z := (x,w) is a vector in FH . In particular, this holds for the
witness w that is encoded in the polynomial ŵ(X) sent by the prover. Let zA, zB, zC be the vectors
encoded in the polynomials ẑA(X), ẑB(X), ẑC(X) sent by the prover, respectively. We know that
either zA ◦ zB 6= zC or one of zA, zB, zC is not the correct linear combination of z. In the first case,
the polynomial identity ẑAẑB − ẑC = h0vH does not hold, so the probability that the verifier still
accepts is at most (2|H| + 2b)/|F|. In the second case, we rely on the randomized reduction to
sumcheck, which fails with probability at most (|H| + 1)/|F|. Next we have to account for the
soundness errors of the three sequential sumchecks, which are bounded by the maximum degree in
the respective polynomial equation divided by the size of the set from which the test point is chosen.
Thus, the innermost sumcheck has soundness error at most 3|K|/|F|; the intermediate sumcheck
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has soundness error at most 2|H|/(|F \H|); the outermost sumcheck has soundness error at most
(2|H|+ b)/(|F \H|).
Proof of knowledge. If the verifier accepts with probability greater than the soundness error argued
above, then the prover’s polynomial ŵ must encode a valid witness w.
Zero knowledge. We only sketch the intuition because a full proof (which includes constructing a
simulator) is similar to the non-holographic setting described in [BCRSVW19]. The first message
of the prover includes an encoding of the witness and encodings of its linear combinations. These
encodings are protected against up to b queries outside H because the encodings are b-wise
independent over F \H . The first message also includes the polynomial h0(X), which in fact is
b-wise independent everywhere on F. Subsequent messages from the prover do not reveal any
further information because they are produced for a sumcheck instance that is shifted by a random
polynomial (the polynomial s(X)). This leads to (perfect) zero knowledge with query bound b and
a query checker C that rejects any query to any of ŵ(X), ẑA(X), ẑB(X), ẑC(X) that lies in H .
Efficiency. The indexer computes and outputs a constant number of polynomials of degree less
than |K|, using time O(|K| log |K|). The subsequent protocol between the prover and verifier
consists of 7 messages, with the prover moving first. The verifier makes a constant number of
queries, evaluates x̂, vH , vK at a constant number of locations, and then performs a constant number
of field operations. Thus, verifier time is O(|x|+ log |H|+ log |K|). The prover sends a constant
number of polynomials whose degree is linearly related to |H|+ b or |K|. In the first round, the
prover computes the linear combinations Az,Bz, Cz and interpolates them, which can be done in
time O(|K|+ (|H|+ b) log(|H|+ b)); in the second round, the prover finds the coefficients of the
polynomials g1(X) and h1(X) in time O(|K|+ (|H|+ b) log(|H|+ b)), similarly to the proof of
Lemma 2.5.5; in the third round, the prover finds the sum σ2 and the coefficients of g2(X) and h2(X)
in time O(|K| + |H| log |H|), similarly to the proof of Lemma 2.5.6; and in the final round, the
prover finds the sum σ3 and the coefficients of g3(X) and h3(X) in time O(|K| log |K|), similarly
to the proof of Lemma 2.5.7. Thus, prover time is O((|H|+ b) log(|H|+ b) + |K| log |K|), which
is O((|K|+ b) log(|K|+ b)) since |H| = O(|K|) (see Remark 2.5.3).
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P(F, H,K,M, f1, f2) Vf1,f2, ˆrow,ĉol,v̂al(F, H,K)

α← Fα ∈ F

sumcheck for r(α,X)f1(X)− rM (α,X)f2(X) over H
to evaluate

∑
κ∈H

r(α, κ)f1(κ)− rM (α, κ)f2(κ)

find g1(X) and h1(X) such that
r(α,X)f1(X)− rM (α,X)f2(X)
= h1(X)vH(X) +Xg1(X)

g1 ∈ F<|H|−1[X], h1 ∈ F<d−1[X]

β1 ← F \Hβ1 ∈ F

sumcheck for r(α,X)M̂(X,β1) over H
to evaluate rM (α, β1) =

∑
κ∈H

r(α, κ)M̂(κ, β1)

compute sum σ2 :=
∑
κ∈H r(α, κ)M̂(κ, β1)

and find g2(X) and h2(X) such that
r(α,X)M̂(X,β1)
= h2(X)vH(X) +Xg2(X) + σ2/|H|

σ2 ∈ F, g2, h2 ∈ F<|H|−1[X]

β2 ← F \Hβ2 ∈ F

sumcheck for vH(β2)vH(β1)v̂al(X)

(β2− ˆrow(X))(β1−ĉol(X))
overK

to evaluate M̂(β2, β1) =
∑
κ∈K

vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ))

compute sum σ3 :=
∑
κ∈K

vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ))

and find g3(X) and h3(X) such that
vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|)
= h3(X)vK(X)

σ3 ∈ F, g3 ∈ F<|K|−1[X], h3 ∈ F<2|K|−2[X]

β3 ← F
vH(β2)vH(β1)v̂al(β3)− (β2 − ˆrow(β3))(β1 − ĉol(β3))(β3g3(β3) + σ3/|K|)

?
= h3(β3)vK(β3)

r(α, β2)σ3
?
= h2(β2)vH(β2) + β2g2(β2) + σ2/|H|

r(α, β1)f1(β1)− σ2f2(β1)
?
= h1(β1)vH(β1) + β1g1(β1)

Figure 2.4: AHP for the lincheck problem.
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P(F, H,K,A,B,C, x, w) V ˆrow{A,B,C},ĉol{A,B,C},v̂al{A,B,C}(F, H,K, x)

z := (x,w) zA := Az zB := Bz zC := Cz

sample ŵ(X) ∈ F<|w|+b
[X] and ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b

[X]
find h0(X) s.t. ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X)

sample s(X) ∈ F<2|H|+b−1
[X] and compute sum σ1 :=

∑
κ∈H s(κ)

σ1 ∈ F,ŵ ∈ F<|w|+b
[X], ẑA, ẑB , ẑC ∈ F<|H|+b

[X],

h0 ∈ F<|H|+2b−1
[X], s ∈ F<2|H|+b−1

[X]
α, ηA, ηB , ηC ← F

α, ηA, ηB , ηC ∈ F

sumcheck for s(X) + r(α,X)(
∑
M ηM ˆzM (X))− (

∑
M ηMrM (α,X))ẑ(X) overH

find g1(X) and h1(X) such that
s(X) + r(α,X)(

∑
M ηM ˆzM (X))− (

∑
M ηMrM (α,X))ẑ(X)

= h1(X)vH(X) +Xg1(X) + σ1/|H|

g1 ∈ F<|H|−1
[X], h1 ∈ F<|H|+b−1

[X]
β1 ← F \H

β1 ∈ F

sumcheck for r(α,X)(ηAÂ(X,β1) + ηBB̂(X,β1) + ηCĈ(X,β1)) overH

σ2 :=
∑
κ∈H r(α, κ)

∑
M∈{A,B,C} ηMM̂(κ, β1)

and find g2(X) and h2(X) such that
r(α,X)

∑
M∈{A,B,C} ηMM̂(X,β1)

= h2(X)vH(X) +Xg2(X) + σ2/|H|

σ2 ∈ F, g2, h2 ∈ F<|H|−1
[X]

β2 ← F \H
β2 ∈ F

sumcheck for
∑

M∈{A,B,C}
ηM

vH (β2)vH (β1)v̂alM (X)

(β2− ˆrowM (X))(β1−ĉolM (X))
overK

to evaluate ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1)

σ3 :=
∑
κ∈K

∑
M∈{A,B,C} ηM

vH (β2)vH (β1)v̂alM (κ)

(β2− ˆrowM (κ))(β1−ĉolM (κ))

and find g3(X) and h3(X) such that
h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)

σ3 ∈ F, g3 ∈ F<|K|−1
[X], h3 ∈ F<6|K|−6

[X] β3 ← F
h3(β3)vK(β3)

?
= a(β3)− b(β3)(β3g3(β3) + σ3/|K|)

The polynomials a(X), b(X) are defined as follows:
a(X) :=

∑
M∈{A,B,C}

ηMvH(β2)vH(β1)v̂alM (X)
∏

N∈{A,B,C}\{M}
(β2 − ˆrowN (X))(β1 − ĉolN (X))

b(X) :=
∏
M∈{A,B,C}(β2 − ˆrowM (X))(β1 − ĉolM (X))

r(α, β2)σ3
?
= h2(β2)vH(β2) + β2g2(β2) + σ2/|H|

s(β1) + r(α, β1)(
∑
M ηM ˆzM (β1))− σ2ẑ(β1)

?
= h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

ẑA(β1)ẑB(β1)− ẑC(β1)
?
= h0(β1)vH(β1)

Figure 2.5: AHP for R1CS.
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2.6 Polynomial commitment schemes with extractability
We use polynomial commitment schemes, a class of commitment schemes specialized to work with
univariate polynomials. This notion was introduced by Kate, Zaverucha, and Goldberg [KZG10],
who gave an elegant construction using bilinear groups. The security properties in [KZG10],
however, do not appear sufficient for standalone use (nor for use in this work). This limitation was
recently noted in [MBKM19], which relies on a different construction for which certain properties
are proved in the algebraic group model [FKL18]. However, [MBKM19] stops short of formulating
a cryptographic primitive that captures the features of the construction.

In this section we propose definitions for polynomial commitment schemes that incorporate the
functionality and security that we believe to be a bare minimum for standalone use. (In particular, in
Section 2.8 we generically rely on these definitions to build preprocessing arguments with universal
SRS.) We also describe a “knowledge” variant of the construction in [KZG10], which we prove
secure under knowledge of exponent assumptions. To learn more about the insights motivating our
definitions, we refer the reader back to Section 2.2.2.

The rest of this section is organized as follows. In Section 2.6.1 we present the definitions that
we propose. In Section 2.6.2 we provide a theorem statement for constructions that realize the
definitions, and then sketch these constructions. We formal descriptions of the constructions are in
Sections 2.11 to 2.12.

2.6.1 Definition
A polynomial commitment scheme over a field family F is a tuple of algorithms PC = (Setup,
Trim,Commit,Open,Check) with the following syntax.

• PC.Setup(1λ, D) → pp. On input a security parameter λ (in unary), and a maximum degree
bound D ∈ N, PC.Setup samples public parameters pp. The parameters contain the description
of a finite field F ∈ F .

• PC.Trimpp(1λ,d)→ (ck, rk). Given oracle access to public parameters pp, and on input a security
parameter λ (in unary), and degree bounds d, PC.Trim deterministically computes a key pair
(ck, rk) that is specialized to d.

• PC.Commit(ck,p,d;ω) → c. On input ck, univariate polynomials p = [pi]
n
i=1 over the field

F, and degree bounds d = [di]
n
i=1 with deg(pi) ≤ di ≤ D, PC.Commit outputs commitments

c = [ci]
n
i=1 to the polynomialsp = [pi]

n
i=1. The randomnessω = [ωi]

n
i=1 is used if the commitments

c = [ci]
n
i=1 are hiding.

• PC.Open(ck,p,d, Q, ξ;ω)→ π. On input ck, univariate polynomials p = [pi]
n
i=1, degree bounds

d = [di]
n
i=1, a query set Q consisting of tuples (i, z) ∈ [n] × F, and opening challenge ξ,

PC.Open outputs an evaluation proof π. The randomness ω must equal the one previously used
in PC.Commit.
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• PC.Check(rk, c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c = [ci]
n
i=1, degree bounds

d = [di]
n
i=1, query setQ consisting of tuples (i, z) ∈ [n]×F, alleged evaluations v = (v(i,z))(i,z)∈Q,

evaluation proof π, and opening challenge ξ, PC.Check outputs 1 if π attests that, for every
(i, z) ∈ Q, the polynomial pi committed in ci has degree at most di and evaluates to v(i,z) at z.

A polynomial commitment scheme PC must satisfy the completeness and extractability properties
defined below. We also consider two additional properties, efficiency and hiding, also defined below.
To simplify notation, we denote by deg(p) the degrees [deg(pi)]

n
i=1 of polynomials p = [pi]

n
i=1,

and denote by p(Q) the evaluations (pi(z))(i,z)∈Q of the polynomials p = [pi]
n
i=1 at a query set

Q ⊆ [n]× F.

Definition 2.6.1 (Completeness). For every maximum degree boundD ∈ N and efficient adversary
A,

Pr


deg(p) ≤ d ≤ D

⇓
PC.Check(rk, c,d, Q,v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
(p,d, Q, ξ,ω)← A(pp)

(ck, rk)← PC.Trimpp(1λ,d)
c← PC.Commit(ck,p,d;ω)

v ← p(Q)
π ← PC.Open(ck,p,d, Q, ξ;ω)

 = 1 .

Definition 2.6.2 (Extractability). For every maximum degree boundD ∈ N and efficient adversary
A there exists an efficient extractor E such that for every round bound r ∈ N, efficient public-coin
challenger C (each of its messages is a uniformly random string of prescribed length, or an empty
string), efficient query sampler Q, and efficient adversary B = (B1,B2) the probability below is
negligibly close to 1 (as a function of λ):

Pr



PC.Check(rk, c,d, Q,v, π, ξ) = 1

⇓

deg(p) ≤ d ≤ D and v = p(Q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)

For i = 1, . . . , r:
ρi ← C(pp, i)

(ci,di)← A(pp, [ρj ]
i
j=1)

pi ← E(pp, [ρj ]
i
j=1)

Q← Q(pp, [ρj ]
r
j=1)

(v, st)← B1(pp, [ρj ]
r
j=1, Q)

Sample opening challenge ξ
π ← B2(st, ξ)

Set [ci]
n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, [di]

n
i=1 := [di]

r
i=1

(ck, rk)← PC.Trimpp(1λ, [di]
n
i=1)

Define the set of queried polynomials T := {i ∈ [n] | (i, z) ∈ Q}
Set c := [ci]i∈T ,p := [pi]i∈T ,d := [di]i∈T



.

(The above definition captures the case where A,Q,B share the same random string to win the
game.)

Definition 2.6.3 (Efficiency). We say that a polynomial commitment scheme PC is:



CHAPTER 2. MARLIN: ZKSNARKS WITH UNIVERSAL AND UPDATABLE SRS 43

• degree-efficient if the time to run PC.Commit and PC.Open is proportional to the maximum
degree max(d) (as opposed to the maximum supported degree D). In particular this implies that
|ck| = Oλ(max(d)).

• succinct if the size of commitments, the size of evaluation proofs, and the time to check an opening
are all independent of the degree of the committed polynomials. That is, |c| = n · poly(λ),
|π| = |Q| · poly(λ), |rk| = Oλ(n), and time(Check) = (n+ |Q|) · poly(λ).

Definition 2.6.4 (Hiding). There exists a polynomial-time simulator S = (Setup,Commit,Open)
such that, for every maximum degree bound D ∈ N, and efficient adversary A = (A1,A2,A3), the
probability that b = 1 in the following two experiments is identical:

Real(1
λ
, D,A):

1. pp← PC.Setup(1
λ
, D).

2. Letting c0 := ⊥, for i = 1, . . . , r:
a) (pi,di, hi)← A1(pp, c0, c1, . . . , ci−1).
b) (cki, rki)← PC.Trim

pp
(1
λ
,di).

c) If hi = 0: sample commitment randomness ωi.
d) If hi = 1: set randomness ωi to ⊥.
e) ci ← PC.Commit(cki,pi,di;ωi).

3. c := [ci]
r
i=1,p := [pi]

r
i=1,d := [di]

r
i=1,ω := [ωi]

r
i=1.

4. (ck, rk)← PC.Trim
pp

(1
λ
,d).

5. ([Qj ]
τ
j=1, [ξj ]

τ
j=1, st)← A2(pp, c).

6. For j ∈ [τ ]:
πj ← PC.Open(ck,p,d, Qj , ξj ;ω).

7. b← A3(st, [π]
τ
j=1).

Ideal(1
λ
, D,A):

1. (pp, trap)← S.Setup(1
λ
, D).

2. Letting c0 := ⊥, for i = 1, . . . , r:
a) (pi,di, hi)← A1(pp, c0, c1, . . . , ci−1).
b) (cki, rki)← PC.Trim

pp
(1
λ
,di).

c) If hi = 0: sample randomnessωi and compute simulated
commitments ci ← S.Commit(trap,di;ωi).

d) If hi = 1: set ωi := ⊥ and compute (real) commitments
ci ← PC.Commit(cki,pi,di;ωi).

3. c := [ci]
r
i=1,p := [pi]

r
i=1,d := [di]

r
i=1,ω := [ωi]

r
i=1.

4. (ck, rk)← PC.Trim
pp

(1
λ
,d).

5. ([Qj ]
τ
j=1, [ξj ]

τ
j=1, st)← A2(pp, c).

6. Zero out hidden polynomials: p′ := [hipi]
r
i=1.

7. For j ∈ [τ ]:
πj ← S.Open(trap,p

′
,p(Qj),d, Qj , ξj ;ω).

8. b← A3(st, [π]
τ
j=1).

(We implicitly assume thatA1 outputs poly(λ) polynomials overall and thatA2 outputs poly(λ) query
sets each consisting of poly(λ) points, ensuring that PCs.Commit,PCs.Open,S.Commit,S.Open
are efficient.)

2.6.2 Construction
The theorem below states the properties of our constructions. For simplicity, our construction are
restricted to work with respect to “admissible” query samplers.

Definition 2.6.5. A query samplerQ is admissible if it outputs query sets such that each polynomial
to be evaluated is evaluated at a point sampled uniformly at random from a super-polynomially
large subset of the field, and possibly also at other points that can be arbitrarily chosen.

Theorem 2.6.6. There exist succinct polynomial commitment schemes that: (a) achieve extractability
against admissible query samplers under knowledge assumptions, or in the algebraic group model;
(b) achieve hiding; and (c) have an updatable SRS. See Table 2.2 for the efficiency of these schemes
under these assumptions.

We note that the restriction to admissible query samplers is minor because one can transform an
arbitrary query samplerQ into an admissible query samplerQ′ as follows: Q′ invokesQ to obtain a
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query set Q, and then outputs Q′ := Q ∪ {(i, t)}i∈[n], where t ∈ F is a random field element and
n is the number of polynomials. This transformation yields evaluation proofs that are twice as a
large, a minor cost. That said, this transformation is often not even needed because “natural” query
samplers are often already admissible, as is the case for those that we consider in this work.

assumption hiding communication complexity time complexity

|ck| |rk| |[ci]ni=1| |π| Setup Commit Open Check

PKE no 2d G1 2 G2 4n G1 1 G1 2 f-MSM(D) 4n v-MSM(d) 1 v-MSM(d)
2 v-MSM(2n)
+ 4 pairings

dPKE yes 4d G1 2 G2 4n G1

1G1 +
1 Fq

4 f-MSM(D) 8n v-MSM(d) 2 v-MSM(d)
2 v-MSM(2n)
+ 4 pairings

AGM no d G1 1 G2 2n G1 1 G1 1 f-MSM(D) 2n v-MSM(d) 1 v-MSM(d)
1 v-MSM(2n)
+ 2 pairings

AGM yes 2d G1 1 G2 2n G1

1G1 +
1 Fq

2 f-MSM(D) 4n v-MSM(d) 2 v-MSM(d)
1 v-MSM(2n)
+ 2 pairings

Table 2.2: Efficiency of our polynomial commitment schemes. Here f-MSM(m) and v-MSM(m) denote
fixed-base and variable-base multi-scalar multiplications (MSM) each of sizem, respectively. All MSMs
are carried out over G1. For simplicity, we assume above that the query set evaluates each polynomial at
the same point. If there are multiple points in the set, then proof size and time for checking proofs scales
linearly with the number of points. Furthermore, we assume above that the n committed polynomials all
have degree d.

single-bound single-query
polynomial commitment

(Section 2.11)

multiple-bound single-query
polynomial commitment

(Section 2.12)

multiple-bound multiple-query
polynomial commitment

(Section 2.13)

Figure 2.6: Our approach to construct polynomial commitment schemes.

The constructions behind Theorem 2.6.6 are achieved in three steps, as summarized in Fig. 2.6.
The rest of this section is organized in three parts sketching these three steps respectively: (1) opening
multiple polynomials with the same degree bound at a single point; (2) opening multiple polynomials
with multiple degree bounds at a single point; (3) opening multiple polynomials with multiple
degree bounds at multiple points. Detailed descriptions, along with security proofs, are provided in
the corresponding appendices.

2.6.2.1 Single-bound single-query (see Section 2.11 for details)

We begin by discussing the case of opening multiple polynomials with the same degree bound at a
single point. We describe a non-hiding construction based on PolyCommitDL from [KZG10] (see
Section 2.2.5) and a hiding construction based on PolyCommitPed from [KZG10], using “knowledge
commitments” [Gro10] or the algebraic group model [FKL18] to achieve extractability for a single
degree bound D chosen at setup.
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Extractability with knowledge commitments. While PolyCommitDL guarantees correctness of
evaluations, it does not ensure extractability: there is no guarantee that a commitment actually
“contains” a polynomial. To achieve extraction, we modify the construction in such a way that the
PKE assumption [Gro10] forces the sender to demonstrate knowledge of the committed polynomial.
In more detail, we extend ck to encode of powers of β with respect to a different generator αG:
ck := {(G, βG, . . . , βDG), (G,αβG, . . . , αβDG)} ∈ G2(D+1)

1 . (Note that this modification does
not affect the updatability of the SRS.) To commit to a polynomial p of degree at mostD, the sender
now provides a “knowledge commitment”: c := (U, V ) := (p(β)G,αp(β)G). Proving correctness
of evaluations proceeds unchanged, while verification additionally requires checking extractability
of the commitment by checking the pairing equation e(U, αH) = e(V,H).
Extractability in the AGM. Knowledge commitments require, unfortunately, two group elements
instead of one. Alternatively, we could keep each commitment as one group element, by relying
on the algebraic group model (AGM) [FKL18]. Informally, whenever an adversary in the AGM
outputs a group element Gn, it is required to additionally output scalar coefficients a1, . . . , an−1

which “explain” Gn as a linear combination of any group elements G1, . . . , Gn−1 that it has seen
previously. In our setting, this means that whenever the adversarial sender outputs a group element
c representing a commitment, it must additionally output scalar coefficients that explain c in terms
of the group elements in ck. An extractor can use these coefficients to reconstruct the underlying
polynomial, thus achieving extractability.
Efficiently openingmultiple polynomials at the samepoint. To enable the sender to simultaneously
commit to multiple polynomials [pi]

n
i=1 of degree at most D and then open these at the same point

z, we rely on the fact that the commitments for both variants above are additively homomorphic.
That is, if commitments [ci]

n
i=1 commit to [pi]

n
i=1, then

∑n
i=1 ci commits to

∑n
i=1 pi (where c1 + c2

is defined as (U1 + U2, V1 + V2)).
We take advantage of this by simultaneously verifying the evaluations of each polynomial

pi ∈ [pi]
n
i=1 as follows. Before generating a proof of evaluation for [pi]

n
i=1, the sender requests from

the receiver a random field element ξ. The sender then uses this to take a random linear combination
of the polynomials: p :=

∑n
i=1 ξ

ipi, and generates a single evaluation proof π for this derived
polynomial p.

To verify π, the receiver uses the additive homomorphism of the input commitments to derive
the linear combination c =

∑n
i=1 ξ

ici induced by ξ. It does the same with the claimed evaluations,
thus deriving the evaluation v =

∑n
i=1 ξ

ivi. Finally, it checks that the pairing equations are satisfied
for c, π, and v.

This works because if the sender is honest, then c is a commitment to p :=
∑n

i=1 ξ
ipi, and π is a

proof of evaluation of p at z. On the other hand, if the sender is dishonest, then with high probability
over the choice of ξ, c is not a commitment to p, and the pairing equations would fail.
Hiding. To additionally achieve hiding, we follow the above blueprint, replacing PolyCommitDL
with the hiding scheme PolyCommitPed. Extraction now follows from an assumption related to PKE
called dPKE (see Section 2.11.2.3 for details). Our constructions in Section 2.11 in fact use both
variants to provide optional hiding on a per-polynomial basis. Further, the near-identical form of the
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commitment variants makes it possible to open a combination of hiding and non-hiding polynomials
at the same point.

2.6.2.2 Multiple-bound single-query (see Section 2.12 for details)

Thus far, we have focused on commitment schemes for polynomials of degree D where the cost
of committing and providing evaluation proofs grows as Ω(D). However, when working with
polynomials of degree d < D, we would like to pay a cost that instead grows as O(d). Furthermore,
the foregoing schemes only guarantee that committed polynomials have degree at most D, whereas
in many cases it is desirable to enforce more specific degree bounds. Below we show how to adapt
the foregoing construction to achieve these desirable properties.

To achieve extractability with respect to a different degree bound di for each polynomial pi,
we require the sender to commit not only to each pi, but also to “shifted polynomials” p′i(X) :=
XD−dipi(X). During PC.Open, one could then produce an evaluation proofs that attests that if pi
evaluates to vi at z then p

′
i evaluates to z

D−divi at z.
The receiver checks that the commitment for each p′i corresponds to an evaluation z

D−divi so
that, if z is sampled from a super-polynomial subset of Fq, the probability that deg(pi) 6= di is
negligible. This trick is similar to the one used in [BS08; BCRSVW19] to enforce derive low-degree
tests for specific degree bounds.

However, while sound, this approach is inefficient in our setting: the witness polynomial for p′i
has Ω(D) non-zero coefficients (instead of O(di)), and so constructing an evaluation proof for it
requires Ω(D) scalar multiplications (instead of O(di)). To work around this, we instead produce a
proof that the related polynomial p?i (X) := p′i(X)− pi(z)XD−di evaluates to 0 at z. As we show
in Lemma 2.12.2, the witness polynomial for this claim has O(di) non-zero coefficients, and so
constructing the evaluation proof can be done in O(di) scalar multiplications. Completeness is
preserved because the receiver can check the correct evaluation of p?i by subtracting pi(z)(βD−diG)
from the commitment to the shifted polynomial p′i, thereby obtaining a commitment to p?i , while
security is preserved because p′i(z) = zD−divi ⇐⇒ p?i (z) = 0.

Note that to commit to the shifted polynomial p′i, the committer must obtain {βD−diG, . . . , βDG}
from ck, while to adjust the shifted commitment, the receiver must obtain βD−diG from rk. Thus
PC.Trim must produce (ck, rk) containing these group elements.

2.6.2.3 Multiple-bound multiple-query (see Section 2.13 for details)

Assume that we have any construction that achieves extractability with respect to individual degree
bounds, and evaluation of multiple polynomials p = [pi]

n
i=1 at the same point z.

We extend this construction to support query sets Q consisting of multiple evaluation points
(as required in Section 2.6.1). If there are k distinct points [zi]

k
i=1 in the query set Q, the sender

partitions the polynomials p into different (possibly overlapping) groups [pi]
k
i=1 such that every

polynomial in pi is to be evaluated at the same point zi. It then runs PC.Open on each pi, and
outputs the resulting list of k evaluation proofs.
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We note that [KZG10] describe how one can enable the sender to produce a single evaluation
proof attesting to the correct evaluation of the same polynomial at multiple points. While we could
use this to enable batch evaluation of p at multiple points, we avoid doing so for efficiency reasons
in our setting.
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2.7 Preprocessing arguments with universal SRS
An argument system [BCC88] is an interactive proof where the soundness property is only required
to hold against all efficient adversaries, as opposed to all (possibly computationally unbounded)
adversaries. In this work we consider argument systems for indexed relations (see Section 2.3.1)
that have the following features.

• Security is proved, under cryptographic assumptions, in a model where all parties have access to a
“long” structured reference string (SRS) that is universal. (In fact, the SRS in our constructions
will also be updatable [GKMMM18] but for simplicity we do not formally discuss this property;
see Remark 2.7.1.)

• Anyone can publicly preprocess a given index (e.g., a circuit) in an offline phase, in order to
avoid incurring costs related to the index in (any number of) subsequent online phases that check
different instances.

We refer to argument systems with the above properties as preprocessing arguments with universal
SRS. All interactive constructions in this work are public-coin zero-knowledge succinct arguments
of knowledge so that, via the Fiat–Shamir transformation [FS86], we obtain their non-interactive
analogues: preprocessing zkSNARKs with universal SRS. See Section 2.9 for an efficient
construction of such a zkSNARK.

A preprocessing argument with universal SRS is a tuple of four algorithms ARG = (G, I,P ,V).
The probabilistic polynomial-time generator G, given a size bound N ∈ N, samples an SRS srs that
supports indices of size up to N. The indexer I is a deterministic polynomial-time algorithm that,
given oracle access to srs and an index i of size at most N, outputs an index proving key ipk used by
the prover P in place of i and an index verification key ivk used by the verifier V in place of i; the
verifier V will be able to use ivk for significant efficiency gains compared to just using i directly.
The prover P and verifier V are probabilistic polynomial-time interactive algorithms.

Formally, ARG = (G, I,P ,V) is a preprocessing argument with universal SRS for an indexed
relationR if the following properties hold.

• Completeness. For all size bounds N ∈ N and efficient A,

Pr

 (i,x,w) 6∈ RN

∨
〈P(ipk,x,w),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x,w)← A(srs)
(ipk, ivk)← Isrs(i)

 = 1 .

• Soundness. For all size bounds N ∈ N and efficient P̃ = (P̃1, P̃2),

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

 = negl(λ) .
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Our definition of completeness allows (i,x,w) to depend on srs, while our formulation of soundness
allows (i,x) to depend on srs.

All constructions in this work achieve the stronger property of knowledge soundness, and
optionally also the property of (perfect) zero knowledge. We define these properties below.
Knowledge soundness. We say that ARG = (G, I,P ,V) has knowledge soundness if for every
size bound N ∈ N and efficient adversary P̃ = (P̃1, P̃2) there exists an efficient extractor E such that

Pr

 (i,x,w) 6∈ RN

∧
〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
w← E(srs)

(ipk, ivk)← Isrs(i)

 = negl(λ) .

Zero knowledge. We say that ARG = (G, I,P ,V) has (perfect) zero knowledge if there exists an
efficient simulator S = (Setup,Prove) such that for every efficient adversary Ṽ = (Ṽ1, Ṽ2) it holds
that

Pr

 (i,x,w) ∈ RN

∧
〈P(ipk,x,w), Ṽ2(st)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x,w, st)← Ṽ1(srs)
(ipk, ivk)← Isrs(i)


= Pr

 (i,x,w) ∈ RN

∧
〈S.Prove(trap, i,x), Ṽ2(st)〉 = 1

∣∣∣∣∣∣ (srs, trap)← S.Setup(1λ,N)

(i,x,w, st)← Ṽ1(srs)

 .

Efficiency. We say that ARG = (G, I,P ,V) is:
• index efficient if the running time of the prover P(ipk,x,w) is polyλ(|i|), i.e., it does not depend
on the size of the universal structured reference string srs;

• proof succinct if the size of the communication transcript between the prover P(ipk,x,w) and
verifier V(ivk,x) is poly(λ), i.e., the size is bounded by a universal polynomial in the security
parameter λ;

• verifier succinct if the running time of V(ivk,x) is poly(λ + |x|), i.e., the time is bounded by
a universal polynomial in the security parameter λ and the size of the instance x and does not
depend on the size of the index i that led to ivk.

Index efficiency implies that ipk output by I is of size polyλ(|i|), while verifier succinctness implies
that ivk output by I is of size poly(λ). All constructions in this work are index efficient, proof
succinct, and verifier succinct.
Public coins. We say that ARG = (G, I,P ,V) is public-coin if every message output by the
verifier V is a uniform random string of some prescribed length. All constructions in this work are
public-coin, and have a (small) constant number of rounds; in particular, they can be “squashed” to
non-interactive arguments that are publicly verifiable by additionally using random oracles via the
Fiat–Shamir transformation [FS86]. Hence, due to their succinctness, our constructions directly
lead to preprocessing zkSNARKs with universal SRS.
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Remark 2.7.1 (updatable SRS). An SRS is updatable [GKMMM18] if there exists an update
algorithm that can be run at any time by anyone to update the SRS, with the guarantee that security
holds as long as there is at least one honest updater since the beginning of time. This property
significantly simplifies cryptographic ceremonies to sample the SRS. All preprocessing arguments
that we construct in this work have updatable SRS because they only contain “monomial terms”,
and thus fall within the framework of [GKMMM18].

Remark 2.7.2 (auxiliary inputs). The definition of knowledge soundness above does not consider
auxiliary inputs, for simplicity. One could consider a stronger definition, where the adversary and
extractor additionally receive an auxiliary input z sampled from a fixed distribution Z(1λ), or even
sampled from any distribution Z(1λ) that belongs to a given class. Such stronger definitions are
useful when using argument systems as subroutines within other protocols. When relying on auxiliary
inputs, however, one must be careful to ensure that they come from “benign” distributions, or else
extraction is impossible, as discussed in [BP15; BCPR16]. We stress that all of our constructions
of argument systems directly extend to hold with respect to an auxiliary-input distribution Z(1λ)
under the assumption that the relevant underlying knowledge assumptions are extended to hold with
respect to the auxiliary-input distribution Z(1λ) concatenated with some randomness. (In other
words, our security reduction adds to the auxiliary input some random strings.)
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2.8 From AHPs to preprocessing arguments with universal SRS
The following theorems capture key properties of our compiler.

Theorem 2.8.1. Let F be a field family and letR be an indexed relation. Consider the following
components:
– AHP = (k, s, d, I,P,V) is an AHP overF forRwith negligible soundness error (see Section 2.4);
– PC = (Setup,Trim,Commit,Open,Check) is a polynomial commitment scheme over F (see
Section 2.6).

Then ARG = (G, I,P ,V) described in Section 2.8.1 is a preprocessing argument with universal
SRS forR (see Section 2.7). Moreover, if q is the query complexity of AHP, ARG has the following
efficiency:
• round complexity is k + 2;
• communication complexity is Oλ(q) bits if PC is additionally succinct (see Definition 2.6.3);
• indexer time is the sum of the indexer time in AHP and the time to commit to s(0) polynomials in

PC;
• prover time is the sum of the prover time in AHP, the time to commit to

∑k
i=1 s(i) polynomials in

PC, the time to produce evaluations that answer the q queries along with a batch evaluation proof
for them in PC;

• verifier time is the sum of the verifier time in AHP and the time to batch verify q evaluations in
PC.

Remark 2.8.2 (updatable SRS). If the SRS for PC is updatable then so is the SRS for ARG. All
constructions of polynomial commitments in this work satisfy this property, including the one used
in Section 2.9.

The construction underlying the above theorem preserves knowledge soundness and, if the
polynomial commitment scheme is also hiding, preserves zero knowledge.

Theorem 2.8.3. In Theorem 2.8.1, if AHP has a negligible knowledge soundness error, then ARG
has knowledge soundness.

Theorem 2.8.4. In Theorem 2.8.1, if PC is hiding and if AHP is zero knowledge with query bound q
(the query complexity of AHP) and some polynomial-time query checker C, then ARG is (perfect)
zero knowledge.

Remark 2.8.5 (the multivariate case). In this work we give definitions for algebraic holographic
proofs and polynomial commitment schemes that are restricted to the case of univariate polynomials,
because the constructions that we consider are univariate. Theorems 2.8.1, 2.8.3 and 2.8.4, however,
directly extend to the multivariate case when considering an AHP in the general case of multivariate
polynomials and a polynomial commitment scheme for multivariate polynomials. This provides
a proof of security for several prior works that considered constructions that are special cases of
this paradigm but did not prove security (because the polynomial commitment schemes were only
assumed to satisfy evaluation binding as discussed in Section 2.1.2).
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2.8.1 Construction
We describe the construction behind Theorem 2.8.1, and then discuss its efficiency features.
Generator G. The generator G, on input a security parameter λ ∈ N and size bound N ∈ N, uses
N to compute a maximum degree boundD ∈ N, samples public parameters pp← PC.Setup(1λ, D)
for the polynomial commitment scheme PC, and then outputs srs := pp. The integer D is computed
to be the maximum degree bound in AHP for indices of size N. In other words,

D := max
{

d(N, i, j)
∣∣∣ i ∈ {0, 1, . . . , k(N)} , j ∈ {1, . . . , s(i)}

}
. (2.9)

Indexer I . The indexer I upon input i and given oracle access to srs, deduces the field
F ∈ F contained in srs = pp, runs the AHP indexer I on (F, i) to obtain s(0) polynomials
p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)), computes the degree
bounds for the index and prover polynomials, invokes PC.Trim on these bounds to compute (ck, rk)
that are specialized for these degree bounds, and computes commitments to all of the index
polynomials.

Namely, I calculates the bounds d := {d(|i|, i, s(i))}k(|i|)
i=0 , invokes (ck, rk) := PC.Trimsrs(d),

and then computes [c0,j]
s(0)
j=1 := PC.Commit(ck, [p0,j]

s(0)
j=1, [d(|i|, 0, j)]s(0)

j=1; [ω0,j]
s(0)
j=1) for “empty ran-

domness” [ω0,j]
s(0)
j=1 := ⊥. The indexer I outputs ipk := (ck, i, [p0,j]

s(0)
j=1, [c0,j]

s(0)
j=1) and ivk :=

(rk, [c0,j]
s(0)
j=1). (Note that [c0,j]

s(0)
j=1 are commitments to non-secret information, and so no randomness

is used in producing them. In particular, I is a deterministic polynomial-time algorithm, as
required. Also see Remark 2.8.6 below for additional considerations.)
Prover P and verifier V . The prover P receives (ipk,x,w) and the verifier V receives (ivk,x),
where (ipk, ivk) is the index key pair output by Isrs(i), and (i,x,w) is in the indexed relationR. By
construction of I , ipk contains a trimmed committer key ck and ivk contains a trimmed receiver key
rk for the polynomial commitment scheme PC. Let F ∈ F be the field described by (ck, rk) (each
of ck and rk individually contain a description of F), and let k := k(|i|) be the number of rounds
in AHP. For i ∈ {1, . . . , k}, P and V simulate the i-th round of the interaction between the AHP
prover P(F, i,x,w) and the AHP verifier V(F,x).

1. V receives ρi ∈ F∗ from V, and forwards it to P .
2. P forwards ρi to P, which replies with polynomials pi,1, . . . , pi,s(i) ∈ F[X] with deg(pi,j) ≤

d(|i|, i, j).
3. P samples commitment randomness [ωi,j]

s(i)
j=1 and sends to V the polynomial commitments below

[ci,j]
s(i)
j=1 := PC.Commit(ck, [pi,j]

s(i)
j=1, [d(|i|, i, j)]s(i)j=1; [ωi,j]

s(i)
j=1) .

4. V notifies V that the i-th round has finished.

The prover P and verifier V are done simulating the interactive phase of AHP, and in the remaining
two rounds simulate the (non-adaptive) query phase of AHP. Below we use c to denote the
commitments [[ci,j]

s(i)
j=1]ki=0, p to denote the polynomials [[pi,j]

s(i)
j=1]ki=0, d to denote the degree bounds
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[[d(|i|, i, j)]s(i)j=1]ki=0, and ω to denote the randomness [[ωi,j]
s(i)
j=1]ki=0 with [ω0,j]

s(0)
j=1 := ⊥. Note that

these three vectors include the commitments, polynomials, degrees, and randomness of the “0-th
round”.

• V sends a message ρk+1 ∈ F∗ that represents randomness for the query phase of V(F,x) to P .
• P uses the query algorithm of V to compute the query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1).
• P replies with answers v := p(Q).
• V samples and sends an opening challenge ξ ∈ F to P .
• P replies with an evaluation proof to demonstrate correctness of all claimed evaluations:

π := PC.Open(ck,p,d, Q, ξ;ω) .

• V accepts if and only if the following conditions hold:
– the decision algorithm of V accepts the answers, i.e., DV(F,x,v; ρ1, . . . , ρk, ρk+1) = 1;
– the alleged answers pass the test, i.e., PC.Check(rk, c,d, Q,v, π, ξ) = 1.

Completeness of the preprocessing argument ARG follows in a straightforward way from
completeness of the AHP AHP and completeness of the polynomial commitment scheme PC.

We now discuss the efficiency features of the construction above.

• Round complexity. The first k rounds simulate the interactive phase of AHP, with polynomials
sent as commitments; one round is to answer the desired queries; and one round is to certify the
queries’ answers.

• Communication complexity. The argument prover P sends
∑k

i=1 s(i) commitments, q field
elements representing query answers, and an evaluation proof that certifies the q answers. The
argument verifier V sends |ρ1|+ · · ·+ |ρk|+ |ρk+1|+ 1 field elements. In Theorem 2.8.1 we state
that the communication complexity is Oλ(q) because typically it holds that

∑k
i=0 s(i) ≤ q (each

polynomial is queried at least once) and |ρ1|+ · · ·+ |ρk|+ |ρk+1| is a small constant (each verifier
message is a few field elements).

• Indexer time. The time complexity of I equals the time complexity of the AHP indexer I plus the
time to trim the PC public parameters pp, and then to commit to the s(0) polynomials output by I.

• Prover time. The time complexity of P equals the time complexity of the AHP prover P plus the
time to commit to the

∑k
i=1 s(i) polynomials output by P, evaluate

∑k
i=0 s(i) polynomials at the

query set Q, and produce an evaluation proof that certifies the correctness of these evaluations.
• Verifier time. The time complexity of V equals the time complexity of the AHP verifier V plus the
time to verify the batch evaluation proof for the q evaluations that provide answers to the query set
Q.

Remark 2.8.6 (commitments to index polynomials). The construction described above uses the
same polynomial commitment scheme PC for committing to polynomials output by the AHP indexer
and to polynomials output by the AHP prover. This simplifies exposition, and allows for a single
evaluation proof to certify all query answers. For security, however, it would suffice (even for
Theorem 2.8.4) to commit to index polynomials via a commitment scheme that merely satisfies
“evaluation binding” (Definition 2.11.8), which is strictly weaker than the notion of extractability
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that we use for the other commitments. This is because the commitments in the index verification
key are honestly produced in the preprocessing phase. Moreover, for Theorem 2.8.3 to hold we do
not need the commitments to index polynomials to be hiding.

2.8.2 Proof of Theorem 2.8.1
Suppose that P̃ = (P̃1, P̃2) is an efficient adversarial prover for ARG that wins with probability at
least ε, that is,

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

 ≥ ε(λ) .

We assume without loss of generality that st output by P̃1 contains the public parameters srs = pp.
Also note that P̃2 can be represented via its k + 2 next-message functions:

P̃2(st; ρ1) , P̃2(st; ρ1, ρ2) , . . . , P̃2(st; ρ1, . . . , ρk) , P̃2(st; ρ1, . . . , ρk, Q) , P̃2(st; ρ1, . . . , ρk, Q, ξ) .

We describe how to construct a prover P̃, which is admissible for AHP, and an efficient adversary
APC against the extractability of PC such that

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃(st),VI(F,i)(F,x)〉 = 1

∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)

(i,x, st)← P̃1(pp)

+ Pr

[
APC wins the

extractability game

]
≥ ε(λ) ,

Above, D is computed according to Eq. (2.9) and F is the field described in pp. This concludes
the proof because if ε(λ) were to be non-negligible then either: (i) by averaging there would
exist a choice of public parameters pp that yields a state st, field F ∈ F , and (i,x) 6∈ L(R)

for which Pr[〈P̃(st),VI(F,i)(F,x)〉 = 1] is non-negligible, contradicting our hypothesis AHP has
negligible soundness error; or (ii) there would exist an efficient adversary APC that, for any given
efficient extractor, succeeds in the extractability game for PC (Definition 2.6.2) with non-negligible
probability, contradicting our hypothesis PC is extractable.
ConstructingAPC. The adversary APC is built from the argument prover P̃ (and the argument
indexer I and degree bounds d) as follows. For round i ∈ {0, . . . , k} and verifier messages
ρ0, . . . , ρi:

APC(ck, rk, ρ0, ρ1, . . . , ρi):
1. Set srs := pp and compute (i,x, st)← P̃1(srs).
2. If i = 0, ignore ρ0, compute index keys (ipk, ivk) ← Isrs(i), and parse ivk as

polynomial commitments [c0,j]
s(0)
j=1. If i > 0, compute polynomial commitments

[ci,j]
s(i)
j=1 ← P̃2(st; ρ1, . . . , ρi).

3. For each j ∈ {1, . . . , s(i)}, compute the degree di,j := d(|i|, i, j).
4. Output ([ci,j]

s(i)
j=1, [di,j]

s(i)
j=1).
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Since P̃ , I, d are all efficient, so is APC. Let EPC be the extractor for APC. Note that in the “0-th
round”,APC outputs the commitments generated by the indexer I . To capture that these “0-th round”
commitments need only satisfy evaluation binding (unlike the commitments in all other rounds), we
consider an extractor E ′PC that works as follows. For round i ∈ {0, . . . , k} and verifier messages
ρ0, . . . , ρi:

E ′PC(pp, ρ0, ρ1, . . . , ρi):
1. Set srs := pp and compute (i,x, st)← P̃1(srs).

Obtain the field description F← field(pp).
2. If i = 0, output polynomials [p0,j]

s(0)
j=1 ← I(F, i).

If i > 0, output polynomials [pi,j]
s(i)
j=1 ← EPC(st; ρ1, . . . , ρi).

Observe that the probability that E ′PC succeeds for APC is at least the probability that EPC succeeds
for APC.
Constructing P̃. We define P̃ via its k next-message functions, by relying on the polynomial
commitment extractor E ′PC defined above. For round number i ∈ {1, . . . , k} and verifier messages
ρ1, . . . , ρi:

P̃(st; ρ1, . . . , ρi):
1. Set ρ0 := ⊥ and run E ′PC(pp, ρ0, ρ1, . . . , ρi) to obtain polynomials pi,1, pi,2, . . . , pi,s(i) ∈

F[X].
2. Check that for every j ∈ [s(i)] it holds that deg(pi,j) ≤ d(|i|, i, j). (If not, output ⊥.)
3. Output the polynomials pi,1, pi,2, . . . , pi,s(i).

Observe that, by construction, P̃ is an admissible prover for AHP.
Analyzing P̃ and APC. Define εPC(λ) := Pr [APC wins the extractability game]. We want to
argue that

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)


≤Pr

 (i,x) 6∈ L(RN)
∧

〈P̃(st),VI(F,i)(F,x)〉 = 1

∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)

(i,x, st)← P̃1(pp)

+ εPC(λ) .

First recall that by construction it holds that G(1λ,N) = PC.Setup(1λ, D). It follows that the
distributions of srs/pp, i,x, st, as well as the underlying field F, are identical in the two probability
expressions above.

Next recall that we have constructed P̃ in such a way that, in round i ∈ {1, . . . , k}, P̃ outputs
polynomials that (provided E ′PC has succeeded) correspond to the commitments output in round i
by P̃2. At the same time, we have constructed V in such a way that in the first k rounds V behaves
exactly as V, and in the remaining two rounds V uses the polynomial commitment scheme to
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validate, against commitments received from the prover and contained in ivk, the answers claimed
by P̃2 in response to V’s query set Q, and then checks that V accepts these answers.

Hence, as long as P̃ provides correct evaluations for polynomials committed to in ivk, and as
long as P̃ outputs polynomials that correspond to the commitments output by P̃2, it holds that V
accepts whenever V accepts. Since P̃ relies on the extractor E ′PC for the polynomial commitment
to find such polynomials (if they exist) and to correctly answer queries to polynomials in ivk, P̃
“works” whenever E ′PC and P̃ do.

We now argue that, whenever V accepts, E ′PC has succeeded, up to the error εPC(λ). This is
because the interaction between P̃2 and V can be re-cast as an extractability game for PC, as we now
explain. Define a public-coin challenger C to output randomness ρ0 := ⊥ in the 0-th round, and to
equal the interactive phase of V(F,x) in the remaining rounds. This means that in the i-th round (for
i ∈ {1, . . . , k}) the challenger C will output the randomness ρi output by V(F,x) in round i. Also,
define a query sampler Q to equal the query phase of V(F,x): given all challenger outputs [ρj]

k
j=1

so far and auxiliary input ρk+1, compute the query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1). Finally, let
B = (B1,B2) be the adversary defined below.

B1(pp, [ρj ]
k
j=0, Q):

1. Set srs := pp.
2. Compute (i,x, st)← P̃1(srs).
3. Compute v ← P̃2(st; ρ1, . . . , ρk, Q).
4. Set stPC := (st, ρ1, . . . , ρk, Q).
5. Output (v, stPC).

B2(stPC, ξ):
1. Parse stPC as (st, ρ1, . . . , ρk, Q)
2. Compute π ← P̃2(st; ρ1, . . . , ρk, Q, ξ).
3. Output π.

Using the above definitions of C,Q,B, and E ′PC we obtain the following inequality:

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)



≤ Pr



(i,x) 6∈ L(RN)
∧

PC.Check(rk, c,d, Q,v, π, ξ) = 1
∧

deg(p) ≤ d ≤ D and v = p(Q)
∧

〈P̃(st),VI(F,i)(F,x; ρ1, . . . , ρk, ρk+1)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(rk)

(i,x, st)← P̃1(pp)

For i = 0, . . . , k:
ρi ← C(pp, i)

([ci,j ]
s(i)
j=1, [di,j ]

s(i)
j=1)← APC(pp, [ρj ]

i
j=0)

[pi,j ]
s(i)
j=1 ← E

′
PC(pp, [ρj ]

i
j=0)

Q← Q(pp, [ρj ]
k
j=0; ρk+1)

(v, st)← B1(pp, [ρj ]
k
j=0, Q)

Sample opening challenge ξ
π ← B2(st, ξ)

Set c := [[ci,j ]
s(i)
j=1]ki=0 ,d := [[di,j ]

s(i)
j=1]ki=0

(ck, rk)← PC.Trimpp(1λ,d)



+ εPC(λ) .

As argued above, whenever E ′PC and P̃ succeed, P̃ does. The first term after the inequality captures
the case where the AHP verifier V is convinced to accept a pair (i,x) not in the indexed language
L(RN). If APC succeeds, then there is still some chance that P̃ succeeds assuming it holds that
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deg(p) ≤ d ≤ D for the polynomials output by E ′PC (otherwise P̃ outputs ⊥). This joint success
probability is upper bounded by the probability that just APC succeeds, which is in turn upper
bounded by εPC(λ). Hence the εPC(λ) term above and the inequality rather than equality above.
Since the above inequality implies our claim, we have concluded the proof.

2.8.3 Proof of Theorem 2.8.3
Let E be the extractor for AHP, which by hypothesis has a negligible knowledge soundness error
εAHP(λ). Suppose that P̃ = (P̃1, P̃2) is an efficient adversary for ARG. We use P̃ to construct an
admissible prover P̃ for AHP, exactly as in the proof of soundness (see Section 2.8.2). Then we
define the extractor E for P̃ to be as follows.
E(srs):
1. Compute (i,x, st)← P̃1(srs).
2. Compute F← field(srs).
3. Compute w← EP̃(st)(F, i,x, 1l(|i|)).
4. Output w.

Observe that by construction we have the equality:

Pr

 (i,x,w) 6∈ RN

∧
〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

w← E(srs)



= Pr


(i,x,w) 6∈ RN

∧
〈P̃2(st),V(rk, ivk,x)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(pp)

(i,x, st)← P̃1(pp)
(ipk, ivk)← Ipp(i)

w← EP̃(st)(F, i,x, 1l(|i|))

 .

Similarly to the proof of soundness (see Section 2.8.2), we can argue the following inequality:

Pr


(i,x,w) 6∈ RN

∧
〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(pp)

(i,x, st)← P̃1(pp)
(ipk, ivk)← Ipp(i)

w← EP̃(st)(F, i,x, 1l(|i|))



≤Pr

 (i,x,w) 6∈ RN

∧
〈P̃(st),VI(F,i)(F,x)〉 = 1

∣∣∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)

(i,x, st)← P̃1(pp)

w← EP̃(st)(F, i,x, 1l(|i|))

+ εPC(λ) .

The knowledge soundness of AHP implies that the probability above is at most εAHP(λ). Since
εAHP(λ) + εPC(λ) is negligible, we have established that the extractor E for P̃ works.
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2.8.4 Proof of Theorem 2.8.4
Let S be the zero knowledge simulator for AHP (see definition in Section 2.4), and let SPC be the
simulator for PC (see definition in Section 2.6). We describe how to construct a (perfect) zero
knowledge simulator S = (Setup,Prove) for ARG (see definition in Section 2.7). Let Ṽ = (Ṽ1, Ṽ2)
be any malicious verifier.

The simulated setup algorithm S.Setup receives a security parameter λ ∈ N and size bound
N ∈ N as input, and then proceeds as follows. First, S.Setup uses N to compute the same maximum
degree boundD ∈ N computed by the generator G (see Eq. (2.9)). Second, it runs SPC.Setup(1λ, D)
to sample simulated public parameters pp for the polynomial commitment and their trapdoor trap,
and outputs (srs, trap) := (pp, trap). Let F ∈ F be the field described in the public parameters pp.

The zero knowledge game states that first Ṽ1 receives srs, and then outputs an index-instance-
witness tuple (i,x,w) and a state st to pass onto Ṽ2. The proving subroutine of the simulator,
S.Prove, receives (trap, i,x) as input, and interacts with Ṽ2(st) over k + 2 rounds. We construct
S.Prove as follows.

1. For i ∈ {1, . . . , k}, simulate the polynomial commitments for round i as follows:
a) Receive a message ρi ∈ F∗ from Ṽ2, and forward it to the AHP simulator S(F, i,x).
b) Sample commitment randomness [ωi,j]

s(i)
j=1, and then send to Ṽ2 the simulated commitments

below
[ci,j]

s(i)
j=1 ← SPC.Commit(trap, [d(|i|, i, j)]s(i)j=1; [ωi,j]

s(i)
j=1) .

2. Simulate the evaluations in round k + 1 as follows:
a) Receive a message ρk+1 ∈ F∗ from Ṽ2.
b) Use the query algorithm of AHP to compute the query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1),

and abort if any query does not satisfy the query checker C. (The honest prover would also
abort.)

c) We need to assemble a list of evaluations v, containing actual evaluations of index polynomials
and simulated evaluations of prover polynomials. In more detail, first run the AHP indexer
I(F, i) to obtain polynomials [p0,j]

s(0)
j=1, and evaluate these on (the relevant queries in) the

query setQ. Next, forward the query setQ to the AHP simulator S(F, i,x) in order to obtain
a simulated view, which in particular contains simulated answers for queries to the AHP
prover’s polynomials.

3. Simulate the evaluation proof in round k + 2 as follows:
a) Receive a challenge ξ from Ṽ2.
b) Compute proofπ ← SPC.Open(trap, [[pi,j]

s(i)
j=1]ki=0,v, [[d(|i|, i, j)]s(i)j=1]ki=0, Q, ξ; [[ωi,j]

s(i)
j=1]ki=0),

where all polynomials [pi,j]
s(i)
j=1 with i > 0 are defined to be zero and the randomness [ω0,j]

s(0)
j=1

is set to ⊥.
c) Send π to Ṽ2.
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Lemma 2.8.7. The view of the malicious verifier Ṽ = (Ṽ1, Ṽ2) while interacting with the honest
prover is identically distributed as its view while interacting with the simulator S = (S1,S2)
described above.

Proof. The zero knowledge property of AHP states that interaction with the honest prover
P(F, i,x,w) can be replaced with interaction with the simulator S(F, i,x), which adaptively
answers oracle queries of the malicious verifier to prover oracles, provided the number of oracle
queries is below the zero knowledge query bound and each query satisfies the query checker. In
our setting, the number of oracle queries is bounded by the query complexity q of the honest AHP
verifier, because the query set Q is derived via the honest query algorithm run on the messages
sent by the malicious argument verifier. Moreover, the honest prover and simulator ensure that
each query in Q satisfies the query checker. This explains why the zero knowledge query bound in
Theorem 2.8.4 is q, and why we consider any polynomial-time query checker in Theorem 2.8.4.

Next, given that S(F, i,x) provides oracle responses that are identically distributed to those of
polynomials output by P(F, i,x,w), we are left to discuss the other information received by the
malicious verifier: the commitments (in the first k rounds) and the evaluation proof (in round k + 2).
The hiding property of the polynomial commitment scheme ensures that the simulator SPC, by using
the trapdoor trap, can perfectly simulate these commitments and this evaluation proof.
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2.9 Marlin: an efficient preprocessing zkSNARK with
universal SRS

We describe how to obtain a preprocessing zkSNARK with universal and updatable SRS that
achieves the efficiency reported in Fig. 2.1.

The first step is to apply our compiler (Section 2.8) to two ingredients: the AHP described
in Section 2.5, and the AGM-based polynomial commitment scheme described in Sections 2.6.2
and 2.13.1. The second step is to apply the Fiat–Shamir transformation to the resulting public-coin
preprocessing argument. These “generic” steps immediately yield a preprocessing zkSNARK with
universal and updatable SRS that has the same asymptotics as Sonic [MBKM19].11 Moreover, in
terms of concrete efficiency, this zkSNARK achieves argument size comparable to Sonic [MBKM19],
and also achieves proving and verification times that are close to the state of the art for circuit-specific
zkSNARKs [Gro16].

Below in Sections 2.9.1 and 2.9.2 we describe optimizations that further reduce argument
size, and as a positive side effect also reduce prover and verifier costs. Fig. 2.1 includes these
optimizations.

Before we discuss optimizations, we summarize the argument size that we obtain directly from
the compilation mentioned above. Recall that in the offline phase, the AHP indexer, given an index
i = (F, H,K,A,B,C), outputs for each matrixM ∈ {A,B,C} three polynomials that together
define the low-degree extension ofM . Then, during the interactive online phase, the prover outputs
twelve proof oracles. The verifier queries each of the nine indexer polynomials and the twelve prover
polynomials at exactly one location, which amounts to 21 queries.

After compilation, the argument indexer outputs 9 polynomial commitments, and the argument
prover outputs 12 commitments, 21 evaluations, and 3 evaluation proofs. In more detail, the
argument indexer outputs commitments to ˆrowM , ĉolM , v̂alM for each M ∈ {A,B,C}; and the
argument prover outputs commitments to the following twelve polynomials: ŵ, ẑA, ẑB, ẑC , h0, s,
h1, g1, h2, g2, h3, g3. The polynomials ŵ, ẑA, ẑB, ẑC , h0, s, h1, g1 are all evaluated at the same
point β1; h2 and g2 are evaluated at the same point β2; and h3, g3, and ˆrowM , ĉolM , v̂alM for each
M ∈ {A,B,C} are all evaluated at the same point β3. Overall our argument consists of 27 G1

elements and 24 Fq elements.

2.9.1 Optimizations for the AHP

Eliminating h0 and ẑC . The AHP prover P sends a polynomial h0(X) in the first round, and
the AHP verifier V checks the polynomial equation ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X) at a
random point. This is a standard technique from the probabilistic proof literature to ensure that
ẑA(X)ẑB(X) and ẑC(X) agree on H . An alternative (used, e.g., in [BCGRS17]) is to replace each

11The SRS of the zkSNARK is updatable because the SRS of the polynomial commitment scheme is updatable (see
Remark 2.8.2 and Section 2.6.2). Note also that the query algorithm in the AHP fulfills the admissibility requirement
imposed by the polynomial commitment scheme (see Section 2.6.2), as each query location is sampled at random from
a set of super-polynomial size.
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occurrence of ẑC(X) in the protocol with the product ẑA(X)ẑB(X), which “forces” the desired
property without any checks. This increases the degree of certain expressions by deg(ẑC) = |H|−1,
but this cost in our setting is negligible because it leads to a negligible increase in the soundness
error. This eliminates the need to commit to h0(X) and ẑC(X) and later reveal their evaluations,
which reduces argument size by two polynomial commitments and two field elements.
Minimal zero knowledge query bound. The query algorithm of the AHP verifier V queries each
prover polynomial at exactly one location, regardless of the randomness used to generate the queries.
In particular, ŵ(X), ẑA(X), ẑB(X), ẑC(X) are queried at exactly one location. So it suffices to set
the parameter b := 1.
Eliminating σ1. We can sample the random polynomial s(X) conditioned on it summing to zero
onH . The prover can thus omit σ1, because it will always be zero, without affecting zero knowledge.
Single low-degree extension for each matrix (unimplemented). The AHP indexer I constructs
the low-degree extensions of the nine functions {rowM , colM , valM}M∈{A,B,C}, which define the
low-degree extensions of A,B,C. The AHP verifier V queries each of these at a single location.
This means that, after compilation, the argument prover must provide nine field elements (the
evaluations) as part of the proof.

We can reduce this to only three field elements as follows. We modify the AHP indexer I to
construct, for eachM ∈ {A,B,C}, a single low-degree extension of the functions rowM , colM , valM .
Namely, let s1, s2 ∈ F be “shifts” such thatK,K + s1, andK + s2 are pairwise disjoint, and define
the set K̄ := K ∪ (K + s1) ∪ (K + s2). Define the function mM : K̄ → F where

mM(κ) :=


rowM(κ) κ ∈ K
colM(κ− s1) κ ∈ K + s1

valM(κ− s2) κ ∈ K + s2

.

Then Eq. (2.1) can be rewritten as

M̂(X, Y ) :=
∑
κ∈K

uH(X, m̂M(κ))uH(Y, m̂M(κ+ s1))m̂M(κ+ s2) . (2.10)

The modified AHP indexer I constructs the three polynomials m̂A, m̂B, m̂C , and the modified AHP
verifier V will query each of these at a single location. Thus, after compilation, the argument
prover will only need to provide three field elements, instead of nine, as part of the proof. Note
that this optimization triples the degree of the polynomials output by the AHP indexer I, which
after compilation increases the SRS size. Even given this tradeoff our SRS is still shorter than prior
work, and furthermore it represents a one-time offline cost (in contrast to argument size, which is a
recurring online cost).

2.9.2 Optimizations for the polynomial commitment scheme

Reducing the cost of hiding commitments. The hiding property that we adopt for polynomial
commitments (Definition 2.6.4) ensures that no information is revealed about the committed
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polynomial regardless of how many evaluations are revealed. Achieving this strong notion has a cost:
in our constructions we randomize a commitment c to a polynomial p by additionally committing
to a random polynomial p̄ of degree deg(p). Compared to the non-hiding variant, this requires
deg(p) additional elements in the SRS, and also requires PC.Commit and PC.Open to perform an
additional variable-base MSM of size deg(p).

In our compiler, however, the only evaluations the argument verifier sees are those sent by the
argument prover, and these are determined by the query sets produced by the query algorithm. This,
together with the fact in our AHP each polynomial is queried at exactly one location, implies that we
can relax our construction to provide hiding only for a single evaluation per polynomial. Concretely,
we can set p̄ to have degree 1. (Note that p̄ cannot be a constant because it is used to hide both
the commitment to p and to hide the commitment to the witness polynomial w.) This allows us to
eliminate (most of) the additional generators from the SRS, and the additional variable-base MSM
for PC.Commit and PC.Open.
Reducing the number of hiding commitments. Each hiding commitment, even taking into
account the above optimizations, requires an evaluation proof that is one field element larger than a
proof in the non-hiding case. We reduce this overhead by using the fact that only certain polynomials
reveal information about the witness and necessitate hiding. In particular, only the polynomials
ŵ, ẑA, ẑB, ẑC , s, h1, and g1 need hiding commitments. All other polynomials can rely on non-hiding
commitments because they can be derived in polynomial-time from the index i. This observation
removes a further 1 field element from the proof.
Eliminating unnecessary degree checks. The notion of polynomial commitment scheme that we
consider enables each commitment to guarantee a chosen degree bound that is up to the maximum
degree bound chosen for the SRS. This flexibility has a cost: ensuring a degree bound strictly less
than the maximum degree bound requires two group elements per commitment, corresponding to
unshifted and shifted polynomials respectively. When compiling our AHP, we need this feature
only when committing to g1, g2, g3 (the exact degree bound matters for soundness) but for all other
polynomials it suffices to rely on the maximum degree bound and so for them we omit the shifted
polynomials altogether. This increases the soundness error by a negligible amount (which is fine),
and lets us reduce argument size by 9 group elements.
Batching pairing equations. We can reduce the cost of the argument verifier by batching pairing
equations. Recall that, to verify an evaluation proof with evaluation v and point z, PC.Check needs
to check the pairing equation e(U − vG− γv̄G,H) = e(w, βH − zH). In our compiled zkSNARK,
PC.Check is invoked three times, each with different values of U , w, z, and v. This results in 3
pairing equations. To reduce the number of pairing equations needed down to just one, we use the
following reduction that ensures that the G2 argument to every pairing is constant:

e(U − vG− γv̄G,H) = e(w, βH − zH)

= e(w, βH) · e(w,−zH)

= e(w, βH) · e(−zw, H) .
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Hence, we have that

e(U − vG− γv̄G+ zw, H) = e(w, βH) .

Because we have three proofs to check, the verifier has to check three of the above equations. These
equations can be batch verified together as follows. The verifier samples a random field element r,
and then uses the identity

∏
i e(Gi, H)r

i

= e(
∑

i r
iGi, H) to check the following equation:

e(
∑

i r
i(C0,i − viG− γv̄iG+ ziwi), H) = e(

∑
i r
iwi, βH) .

By properties of random linear combinations, the above equation holds only if each of the individual
equations also hold (up to a negligible soundness error). In sum, the verifier only needs to evaluate
two pairings.
Opening linear combinations of polynomials. The decision procedure of the AHP verifier checks
polynomial equations such as

p1(X) + p2(X)p3(X) = p4(X) . (2.11)

It does so by querying the polynomials p1, . . . , p4 at a random point z ∈ F, and then checking
that the above equation holds with respect to the resulting evaluations p1(z), . . . , p4(z). To enable
the compiled SNARK verifier to invoke the AHP decision procedure, the SNARK proof must
also contain these evaluations. However, if we instead enable the AHP verifier to query linear
combinations of polynomial oracles, then one can avoid providing all these evaluations. For example,
we can rewrite the check in Equation (2.11) as follows:

p2(z) = v2 and p5(X) := p1(X) + v2p3(X)− p4(X) = 0 .

Then the AHP decision procedure only needs the evaluation p2(z), which means that the corre-
sponding SNARK proof will contain only 1 field element, instead of 4. For this, we need that the
polynomial commitment scheme allows checking evaluations of linear combinations of committed
polynomials. The schemes constructed in Section 2.13 have linearly homomorphic commitments,
and so support this feature.

Applying this optimization to the equations in ourAHP reduces the proof size of the corresponding
compiled SNARK by 10 field elements.
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2.10 Cryptographic assumptions
Wedescribe the cryptographic assumptions that underlie the constructions of polynomial commitment
schemes in this work (Section 2.6.2). In Section 2.10.1 we define bilinear group samplers.
In Section 2.10.2 we define (a minor variant of) the Strong Diffie–Hellman Assumption. In
Section 2.10.3 we define (a minor variant of) the Power Knowledge of Exponent Assumption. In
Section 2.10.4 we recall the Algebraic Group Model.

2.10.1 Bilinear groups
The cryptographic primitives that we construct in this work rely on cryptographic assumptions
about bilinear groups. We formalize these via a bilinear group sampler, which is a probabilistic
polynomial-time algorithm SampleGrp that, on input a security parameter λ (represented in unary),
outputs a tuple 〈group〉 = (G1,G2,GT , q, G,H, e) where G1,G2,GT are groups of a prime order
q ∈ N, G generates G1,H generates G2, and e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

2.10.2 Strong Diffie–Hellman
Assumption 1 ([BB04]). The Strong Diffie–Hellman (SDH) Assumption states that for every
efficient adversary A and degree bound d ∈ N the following probability is negligible in λ:

Pr

 C = 1
β+c

G

∣∣∣∣∣∣∣∣
〈group〉 ← SampleGrp(1λ)

β ← Fq
Σ← {{βiG}di=0, βH}

(c, C)← A(〈group〉,Σ)

 .

2.10.3 Power knowledge of exponent
The non-hiding variant of our polynomial commitment scheme relies on the PKE assumption below,
while the variant relies on the dPKE assumption below.

Assumption 2 ([Gro10]). The Power Knowledge of Exponent (PKE) Assumption states that for
every efficient adversary A and degree bound d ∈ N there exists an efficient extractor E such that
for every benign auxiliary input distribution Z the following probability is negligible in λ:

Pr


G1 = αG0

∧
G0 6=

∑d
i=0 aiβ

iG

∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β ← Fq
Σ← {{βiG,αβiG}di=0, αH, βH}

(G0, G1)← A(〈group〉,Σ, z)
(a0, . . . , ad)← E(〈group〉,Σ, z)

 .
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Assumption 3. The duplex Power Knowledge of Exponent Assumption (dPKE) states that for
every efficient adversary A and degree bound d ∈ N there exists an efficient extractor E such that
for every benign auxiliary input distribution Z the following probability is negligible in λ:

Pr


G1 = αG0

∧
G0 6=

∑d
i=0 aiβ

iG+
∑d

i=0 biγβ
iG

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β, γ ← Fq
Σ← {{βiG,αβiG, γβiG,αγβiG}di=0, αH, βH}

(G0, G1)← A(〈group〉,Σ, z)
(a0, . . . , ad, b0, . . . , bd)← E(〈group〉,Σ, z)


.

Remark 2.10.1 (benign auxiliary inputs). Extraction with auxiliary input requires that the auxiliary
input is sampled from a “benign” distribution, as discussed in [BP15; BCPR16]. In this work we
only rely on auxiliary inputs that consist of a prescribed number of random field elements, which
are indeed considered benign.

Remark 2.10.2 (asymmetric PKE). The PKE assumption in [Gro10] is stated for symmetric bilinear
group samplers (G1 = G2). Instead, like many prior works, we consider asymmetric bilinear group
samplers due to efficiency reasons. Our approach to adapting PKE to the asymmetric setting differs
from that taken in prior works such as [GGPR13; DFGK14]. Prior constructions rely on secret
powers of β in G2 for both completeness and security (and in particular incur the costs of many G2

exponentiations). In contrast, our constructions (of polynomial commitment schemes) do not need
secret powers of β in G2, for either completeness or security, and therefore are not part of the inputs
to the adversary. (Also see Section 2.10.5.)

Remark 2.10.3 (prior duplex variants). The dPKE assumption is similar to, but different from, the
assumption used in [ZGKPP17b; ZGKPP17a]. Namely, in dPKE the instance contains powers of
β with respect to a different generator γG, whereas the assumption in [ZGKPP17b; ZGKPP17a]
contains powers of γ with respect to G.

2.10.3.1 Extractability with multiple knowledge commitments

The PKE assumption implies a similar assumption where the adversary may output multiple
knowledge commitments and its corresponding extractor must extract a linear combination for each
knowledge commitment. We call this assumption MPKE, where the letter “M” denotes “multiple”.
MPKE implies PKE, so the two assumptions are equivalent. We use MPKE to prove extractability
of the non-hiding variant our polynomial commitment scheme. In order to prove extractability of
the hiding variant we rely on dMPKE, an analogous generalization of dPKE to the case of multiple
knowledge commitments.

Assumption 4. The MPKE assumption states that for every efficient adversaryA and degree bound
d ∈ N there exists an efficient extractor E such that for every benign auxiliary input distribution Z ,
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the following probability is negligible in λ:

Pr


∃ i ∈ [n] such that

Gi,1 = αGi,0

∧
Gi,0 6=

∑d
j=0 ai,jβ

jG

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β ← Fq
Σ← {{βiG,αβiG}di=0, βH, αH}

[(Gi,0, Gi,1)]ni=1 ← A(〈group〉,Σ, z)

[[ai,j]
d

j=0
]ni=1 ← E(〈group〉,Σ, z)


.

Lemma 2.10.4. The PKE and MPKE assumptions are equivalent.

Proof. That MPKE implies PKE follows because MPKE is a generalization of PKE. For the reverse
direction, PKE implies MPKE because a successful adversary A against MPKE can be used to
construct a successful adversary B against PKE that projects the output of A to one of the “lucky”
entries. In more detail, let Bi(〈group〉,Σ, z) be the adversary that returns the i-th commitment
output by A(〈group〉,Σ, z). Let EBi be any PKE extractor corresponding to Bi. Consider the
following MPKE extractor EA forA: given (〈group〉,Σ, z), compute [ai,j]

d
j=0 ← EBi(〈group〉,Σ, z)

for each i ∈ [n], and output [[ai,j]
d
j=0]ni=1. Observe that EA can fail only if at least one of the PKE

extractors EBi fails. Thus, if EA fails with non-negligible probability µ(λ), then by averaging at least
one EBi fails with non-negligible probability µ(λ)/n, contradicting the fact that assumption PKE
holds. We conclude that MPKE holds if PKE holds.

Assumption 5. The dMPKE assumption states that for every efficient adversaryA and degree bound
d ∈ N there exists an efficient extractor E such that for every benign auxiliary input distribution Z ,
the following probability is negligible in λ:

Pr


∃ i ∈ [n] such that

Gi,1 = αGi,0
∧

Gi,0 6=
∑d
j=0 ai,jβ

jG+
∑d
j=0 (bi,jγβ

j)G

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β, γ ← Fq
Σ← {{βiG,αβiG, γβiG,αγβiG}di=0, αH, βH}

[(Gi,0, Gi,1)]ni=1 ← A(〈group〉,Σ, z)

[[(ai,j , bi,j)]
d

j=0
]
n

i=1
← E(〈group〉,Σ, z)


.

Lemma 2.10.5. The dPKE and dMPKE assumptions are equivalent.

Proof. Follows via straightforward modifications to the proof of Lemma 2.10.4.

Remark 2.10.6 (dMPKE?). For technical reasons, our proof of hiding (Section 2.11.2.3) for the
hiding variant of our polynomial commitment scheme relies on the dMPKE? assumption, which is a
variant of dMPKE where γ is sampled not from Fq, but rather from F?q . dMPKE implies dMPKE? via
a straightforward reduction: given an adversary A against dMPKE?, one can construct an adversary
B against dMPKE that, on input (〈group〉,Σ, z), aborts if γG = G, and outputs A(〈group〉,Σ, z)
otherwise. Because γ = 0 with probability at most 1/q, B and A (and thus EB and EA) differ in
success probability by only 1/q.
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2.10.4 Algebraic group model
In order to achieve additional efficiency, we also construct polynomial commitment schemes in the
Algebraic Group Model (AGM) [FKL18], which replaces specific knowledge assumptions (such as
Power Knowledge of Exponent assumptions). In the AGM, all algorithms are modeled as algebraic,
which means that whenever an algorithm outputs a group element G, the algorithm must also output
an “explanation” of G in terms of the group elements that it has seen.

Definition 2.10.7 (algebraic algorithm). Let G be a cyclic group of prime order q and Aalg a
probabilistic algorithm run on initial inputs including description 〈group〉 of G. During its
execution Aalg may interact with oracles or other parties and receive further inputs including
obliviously sampled group elements (which it cannot sample directly12). Let L ∈ Gn be the list of
all group elementsAalg has been given so far such that all other inputs it has received do not depend
in any way on group elements13. We call Aalg algebraic if whenever it outputs a group element
G ∈ G it also outputs a vector a = [ai]

n
i=1 ∈ Fnq such that G =

∑n
i=1 aiLi. The coefficients a are

called the “representation” of G with respect to L, denoted G := 〈a,L〉.

Remark 2.10.8 (AGM vs. GGM). The Algebraic Group Model (AGM) [FKL18] is weaker than the
Generic Group Model (GGM) [Sho97; Mau05] but is stronger than the plain model. Indeed, every
generic algorithm is an algebraic algorithm [PV05], and so anything proved secure in the AGM is
also secure in the GGM. On the other hand, the AGM captures non-generic algorithms that exploit
the representation of group elements. For example, index-calculus and some factoring attacks
fall outside the class of generic algorithms and apply only over groups in which the elements are
represented as integers. Furthermore, there exist (pathological) algebraic-but-not-generic algorithms
that can be used to construct schemes that are secure in the GGM, but are insecure in the standard and
algebraic group models [Den02]. At present, it is not known if such a scheme could be constructed
to illustrate a similar gap between the AGM and the standard model.

To analyze the hardness of an assumption in the GGM one must explicitly augment the model
by any functionality offered by the structure of the group, e.g., providing a pairing oracle Ae(·,·).
However, in the AGM, the adversary has direct access to e (and thus to its description). Though it is
widely believe that e provides no additional information about the elements of G, the AGM captures
a hypothetical exploit without needing to explicitly model it and considers the relation between two
problems instead of their individual hardness. This means that if one can reduce problem A to
problem G in the AGM and A is conjectured to remain hard with respect to algebraic algorithms,
even when given e, then G also remains hard. No similar statement can be inferred in the GGM.

12Outputting obliviously sampled group elements (with unknown representation) is forbidden in the AGM. Instead,
Aalg must obliviously sample elements through an additional oracleO() such that they are by definition added to the list
L. Simulating O() to an algebraic algorithm during a reduction is straightforward and always possible. Integrating the
ROM and AGM indeed works for this reason that any outputs from random oracles are added to the list L.

13The restriction that all inputs to algebraic algorithms that are not group elements must not depend on group
elements helps to avoid pathological cases. For example, the algorithm that on input “G‖0” (which is not a group
element), outputs group element G cannot explain G in terms of previously seen group elements.
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2.10.5 The effect of powers on security
The SDH assumption and PKE assumption rely (in particular) on the hardness of computing the
discrete logarithm β when given the generatorG ∈ G1 and challenge βG ∈ G1. In fact, in both cases
the adversary is also given elements of the form βiG, which can have a small, but noticeable, impact
on concrete security. There are generic algorithms [BG04; KKM07; Che10] that, for any power i
such that i | (q − 1) where q is the prime order of G1, compute the secret β in time O(

√
q/i+

√
i),

improving on the usual O(
√
q)-time algorithm. This “polynomial speedup” should be taken into

account in practice.
Moreover, while our construction of polynomial commitment schemes in Section 2.11 does

not use powers of β in G2, other schemes that wish to share the same SRS might. Hence it is
natural to discuss whether our construction in Section 2.11 remains secure even in the presence of
elements of the form βiH . Our security reduction to the SDH and PKE assumptions does not rely
on the absence of powers of β in G2, and in particular can be modified in a straightforward way to
obtain a security reduction to variants of the SDH and PKE assumptions that additionally give to
the adversary the additional elements in G2. These variants, while similarly plausible assumptions,
provide the adversary with a further polynomial speedup that must also be taken into account in
practice. Namely, given the generator G ∈ G1, challenge βG, and elements of the form βiG ∈ G1

and βjH ∈ G2, one can use the pairing to compute e(G,H)β
i+j

= e(βiG, βjH). If i+ j | q − 1,
then the generic algorithms mentioned above compute β in time O(

√
q/(i+ j) +

√
i+ j).
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2.11 Polynomial commitments for a single degree bound
We construct (succinct) polynomial commitment schemes that support a single degree bound
chosen at setup time. We temporarily restrict our attention to the case where, in the reveal phase,
all polynomials are evaluated at the same evaluation point. (We will relax this restriction in
Section 2.13.) This section is organized as follows: in Section 2.11.1 we provide formal definitions,
in Section 2.11.2 we give a construction in the plain model under knowledge assumptions, and in
Section 2.11.3 we give a more efficient construction in the algebraic group model under standard
assumptions. In both cases we provide non-hiding and hiding variants.

2.11.1 Definition
A polynomial commitment scheme over a field family F for a single degree bound and a single
evaluation point is a tuple of algorithms PCs = (Setup,Commit,Open,Check) with the following
syntax.

• PCs.Setup(1λ, D)→ (ck, rk). On input a security parameter λ (in unary), and a maximum degree
bound D ∈ N, PCs.Setup samples a key pair (ck, rk). The keys contain the description of a finite
field F ∈ F .

• PCs.Commit(ck,p;ω) → c. On input ck and univariate polynomials p = [pi]
n
i=1 over the field

F with deg(pi) ≤ D, PCs.Commit outputs commitments c = [ci]
n
i=1 to the polynomials p. The

randomness ω = [ωi]
n
i=1 is used if the commitments c are meant to be hiding.

• PCs.Open(ck,p, z, ξ;ω)→ π. On input ck, univariate polynomials p = [pi]
n
i=1, evaluation point

z ∈ F, and opening challenge ξ, PCs.Open outputs an evaluation proof π. The randomness ω
must equal the one previously used in PCs.Commit.

• PCs.Check(rk, c, z,v, π, ξ) ∈ {0, 1}. On input rk, commitments c = [ci]
n
i=1, evaluation point

z ∈ F, alleged evaluations v = [vi]
n
i=1, evaluation proof π, and opening challenge ξ, PCs.Check

outputs 1 if π attests that, for each i ∈ [n], the polynomial committed in ci has degree at most D
and evaluates to vi at z.

The polynomial commitment scheme satisfies the completeness and extractability properties defined
below. The polynomial commitment scheme is (perfectly) hiding if it also satisfies the hiding
property defined below.

Definition 2.11.1 (Completeness). For every maximum degree boundD ∈ N and efficient adversary
A it holds that

Pr


deg(p) ≤ D

⇓
PCs.Check(rk, c, z,v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣
(ck, rk)← PCs.Setup(1λ, D)

(p, z, ξ)← A(ck, rk)
c← PCs.Commit(ck,p)

v ← p(z)
π ← PCs.Open(ck,p, z, ξ)

 = 1 .
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Definition 2.11.2 (Extractability). For every maximum degree boundD ∈ N and efficient adversary
A, there exists an efficient extractor E such that for every round bound r ∈ N, efficient public-
coin challenger C, efficient query sampler Q, and efficient adversary B = (B1,B2) the following
probability is negligibly close to 1:

Pr



PCs.Check(rk, c, z,v, π, ξ) = 1

⇓

deg(p) ≤ D and v = p(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PCs.Setup(1λ, D)

For i = 1, . . . , r:
ρi ← C(ck, rk, i)

ci ← A(ck, rk, [ρj ]
i
j=1)

pi ← E(ck, rk, [ρj ]
i
j=1)

Q← Q(ck, rk, [ρj ]
r
j=1)

(v, st)← B1(ck, rk, [ρj ]
r
j=1, Q)

Sample opening challenge ξ
π ← B2(st, ξ)

Set [ci]
n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, [di]

n
i=1 := [di]

r
i=1

Parse Q as T × {z} for some T ⊆ [n] and z ∈ F
Set c := [ci]i∈T , p := [pi]i∈T , d := [di]i∈T



.

Definition 2.11.3 (Succinctness). A polynomial commitment scheme is succinct if the size of
commitments, the size of evaluation proofs, and the time to check an opening are all independent
of the degree of the committed polynomials. That is, |c| = n · poly(λ), |π| = poly(λ), and
time(Check) = n · poly(λ).

Definition 2.11.4 (Hiding). There exists a polynomial-time simulator S = (Setup,Commit,Open)
such that, for every maximum degree boundD ∈ N, round bound r ∈ N, and (even unbounded) non-
uniform adversary A = (A1,A2,A3), the probability that b = 1 in the following two experiments is
identical.

Real(1λ, D,A):
1. (ck, rk)← PCs.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

a) (pi, hi)← A1(ck, rk, c0, c1, . . . , ci−1).
b) If hi = 0: sample commitment randomness ωi.
c) If hi = 1: set randomness ωi to ⊥.
d) ci ← PCs.Commit(ck,pi;ωi).

3. c := [ci]
r
i=1, p := [pi]

r
i=1, ω := [ωi]

r
i=1.

4. ([Qj ]
τ
j=1, [ξj ]

τ
j=1, st)← A2(ck, rk, c).

5. For j ∈ [τ ]:
πj ← PCs.Open(ck,p, Qj , ξj ;ω).

6. b← A3(st, [πj ]
τ
j=1).

Ideal(1λ, D,A):
1. (ck, rk, trap)← S.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

a) (pi, hi)← A1(ck, rk, c0, c1, . . . , ci−1).
b) If hi = 0: sample randomness ωi and compute simu-

lated commitments ci ← S.Commit(trap, |pi|;ωi).
c) If hi = 1: setωi := ⊥ and compute (real) commitments
ci ← PCs.Commit(ck,pi;ωi).

3. c := [ci]
r
i=1, p := [pi]

r
i=1, ω := [ωi]

r
i=1.

4. Zero out hidden polynomials: p′ := [hipi]
r
i=1.

5. ([Qj ]
τ
j=1, [ξj ]

τ
j=1, st)← A2(ck, rk, c).

6. For j ∈ [τ ]:
πj ← S.Open(trap,p′,p(Qj), Qj , ξj ;ω).

7. b← A3(st, [πj ]
τ
j=1).

Above we implicitly assume that A1 outputs poly(λ) polynomials in each round, and that A2

outputs τ = poly(λ) query sets Qj , so that PCs.Commit, PCs.Open, S.Commit, and S.Open are
all efficient.
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2.11.2 In the plain model
We adapt the polynomial commitment scheme in [KZG10] to use “knowledge commitments”, and
to support commitments to multiple polynomials. We then prove that the resulting scheme satisfies
the definitions in Section 2.11.1 under knowledge assumptions. We discuss both non-hiding and
hiding variants of the scheme.

2.11.2.1 Construction

We use notation for bilinear groups introduced in Section 2.10.1. The highlighted text below denotes
parts of the construction that are not needed if hiding is not desired. We refer to the non-hiding
variant as nhPCs, and to the perfectly hiding variant as phPCs.
Setup. On input a security parameter λ (in unary), and amaximum degree boundD ∈ N, PCs.Setup
samples a key pair (ck, rk) as follows. Sample a bilinear group 〈group〉 ← SampleGrp(1λ), and
parse 〈group〉 as a tuple (G1,G2,GT , q, G,H, e). Sample random elements α, β,∈ Fq and γ ∈ F?q .
Then compute the vector

Σ :=


G βG β2G . . . βDG

αG αβG αβ2G . . . αβDG

γG γβG γβ2G . . . γβDG

αγG αγβG αγβ2G . . . αγβDG

 ∈ G4D+4
1 .

Set ck := (〈group〉,Σ) and rk := (D, 〈group〉, γG, αH, βH), and then output the public parameters
(ck, rk). These public parameters will support polynomials over the field Fq of degree at most D.
Commit. On input ck, univariate polynomials p = [pi]

n
i=1 over Fq with deg(p) ≤ D, and

randomness ω = [ωi]
n
i=1, PCs.Commit outputs commitments c = [ci]

n
i=1 that are computed as

follows. If for any pi ∈ p, deg(pi) > D, abort. For each i ∈ [n], if ωi is not ⊥, then interpret
the randomness ωi as the coefficients of a random univariate polynomial p̄i of degree deg(pi).
Otherwise, set p̄i to be the zero polynomial. For each i ∈ [n], output ci := (Ui, Vi) ∈ G2

1 where

Ui := pi(β)G+ γp̄i(β)G Vi := α(pi(β)G+ γp̄i(β)G) .

Note that pi and p̄i have degree at most D, and so the above terms are linear combinations of terms
in ck.
Open. On input ck, univariate polynomials p = [pi]

n
i=1 over Fq, evaluation point z ∈ Fq, opening

challenge ξ ∈ Fq, and randomness ω = [ωi]
n
i=1 (the same randomness used for PCs.Commit),

PCs.Open outputs an evaluation proof π ∈ G1 that is computed as follows. If for any pi ∈ p,
deg(pi) > D, abort. For each i ∈ [n], if ωi is not ⊥, then obtain a random univariate polynomial p̄i
of degree deg(pi) from ωi, otherwise set p̄i to be the zero polynomial. Then compute the linear
combination of polynomials p(X) :=

∑n
i=1 ξ

ipi(X) and p̄(X) :=
∑n

i=1 ξ
ip̄i(X). Compute witness

polynomials w(X) := p(X)−p(z)
X−z and w̄(X) := p̄(X)−p̄(z)

X−z . Set w := w(β)G + γw̄(β)G ∈ G1 and
v̄ := p̄(z) ∈ Fq. The evaluation proof is π := (w, v̄).
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Check. On input rk, commitments c = [ci]
n
i=1, evaluation point z ∈ Fq, alleged evaluations

v = [vi]
n
i=1, evaluation proof π = (w, v̄), and opening challenge ξ ∈ Fq, PCs.Check proceeds as

follows. Parse each commitment ci as a tuple (Ui, Vi) ∈ G2
1. Compute the two linear combinations

U :=
n∑
i=1

ξiUi and V :=
n∑
i=1

ξiVi ,

and ensure that the commitment (U, V ) is extractable by checking that e(U, αH) = e(V,H). Then
compute the linear combination of evaluations v :=

∑n
i=1 ξ

ivi and check the evaluation proof via
the equality e(U − vG− v̄γG,H) = e(w, βH − zH).

Lemma 2.11.5. The scheme PCs constructed above achieves completeness (Definition 2.11.1).

Proof. Fix any maximum degree bound D and efficient adversary A. Let (ck, rk) be any key
pair output by the algorithm PCs.Setup(1λ, D) constructed above. The keys contain a description
〈group〉 of a bilinear group of some prime order q, which in particular induces a field Fq.

Let A(ck, rk) select polynomials p = [pi]
n
i=1 over Fq, location z ∈ Fq, and opening challenge

ξ ∈ Fq. We only need to consider adversaries A that make choices for which deg(p) ≤ D. Now
consider commitments c = [ci]

n
i=1 and evaluation proof π that are all computed according to the

construction above.
We need to show that, for the correct evaluations v := p(z),

PCs.Check(rk, c, z,v, π, ξ) = 1 .

This amounts to arguing that the two pairing equations are satisfied.
For the first pairing equation, note that the pair (Ui, Vi) has the property that the second element

is the first element multiplied by the secret scalar α. This is also true about the pair (U, V ) obtained
by taking the linear combination determined by ξ, as the following computation shows:

U =
n∑
i=1

ξiUi =
n∑
i=1

(ξipi(β)G+ γp̄i(β)G) ,

V =
n∑
i=1

ξiVi = α
n∑
i=1

(ξipi(β)G+ γp̄i(β)G) .

We conclude that V = αU , and so the check e(U, αH) = e(V,H) passes.
For the second pairing equation, note that in the evaluation proof π = (w, v̄), w equals the

element w := p(X)−p(z)+γ(p̄(X)−p̄(z))
X−z G where p(X) :=

∑n
i=1 ξ

ipi(X) and p̄(X) :=
∑n

i=1 ξ
ip̄i(X).

Also note that the value v computed by PCs.Check is the evaluation of p at z. Therefore,

e(U − vG− γv̄G,H) = e(((p(β)− v) + γ(p̄(β)− v̄))G,H)

= e(p(β)−p(z)+γ(p̄(β)−p̄(z))
β−z G, (β − z)H)

= e((w(β) + γw̄(β))G, βH − zH)

= e(w, βH − zH) .

We conclude that the second pairing equation also holds.
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Lemma 2.11.6. The scheme PCs constructed above achieves succinctness (Definition 2.11.3).

Proof. For a list of n polynomials, the scheme PCs requires 2n G1 elements for the commitment
and one G1 element and one Fq element for the evaluation proof, while the time to check this proof
requires two variable-base multi-scalar multiplications of size n and four pairings.

2.11.2.2 Extractability

Theorem 2.11.7. If the bilinear group sampler SampleGrp satisfies the SDH and dPKE assumptions,
nhPCs and phPCs constructed in Section 2.11.2.1 achieve extractability (Definition 2.11.2).

First in Lemma 2.11.9 we argue that nhPCs and phPCs satisfy evaluation binding, a property
stating that for any point z ∈ Fq and commitments c = [ci]

n
i=1, no efficient adversary can produce

valid proofs that open c to different lists of values at z. Then in Lemma 2.11.10 we build on this fact
to argue that nhPCs and phPCs achieve extractability.

Definition 2.11.8. PCs satisfies evaluation binding if for every maximum degree boundD ∈ N and
efficient adversary A = (A1,A2) the following probability is negligible in the security parameter λ:

Pr


v 6= v′

∧
PCs.Check(rk, c, z,v, π, ξ) = 1

∧
PCs.Check(rk, c, z,v′, π′, ξ) = 1

∣∣∣∣∣∣∣∣∣∣
(ck, rk)← PCs.Setup(1λ, D)(
c, z,v,v′, st

)
← A1(ck, rk)

Sample opening challenge ξ
(π, π′)← A2(st, ξ)

 .

Lemma 2.11.9. If the bilinear group sampler SampleGrp satisfies the SDH assumption (Assump-
tion 1), nhPCs and phPCs constructed in Section 2.11.2.1 achieve evaluation binding (Defini-
tion 2.11.8).

Proof. Suppose for contradiction that there exists a maximum degree bound D and an efficient
adversary A = (A1,A2) that breaks evaluation binding with non-negligible probability. We show
that either A can be used to break DL with non-negligible probability or that we can use A to
construct an efficient adversary B that breaks SDH with non-negligible probability. Since the SDH
assumption implies the DL assumption, in either case we obtain a contradiction that SDH holds with
respect to SampleGrp. We define B as follows.
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B(〈group〉,Σ):
1. Parse Σ as {{βiG}Di=0, βH}.
2. Randomly sample α← Fq, γ ∈ F?q and set

ck := (〈group〉, {βiG,αβiG, γβiG,αγβiG}Di=0),
rk := (〈group〉, αH, βH).

3. Compute
(
c, z,v,v′, st

)
← A1(ck, rk).

4. Sample random opening challenge ξ ∈ Fq.
5. Compute (π, π′)← A2(st, ξ).
6. Parse (π, π′) as ((w, v̄), (w′, v̄′)), v as [vi]

n
i=1, and v

′ as [v′i]
n
i=1.

7. Compute v :=
∑n

i=1 ξ
ivi and v

′ :=
∑n

i=1 ξ
iv′i.

8. If zG = βG (i.e., z = β):
choose a from Fq \ {z}, and output

(
a, 1

z+aG
)
, breaking SDH.

9. Else if (zG 6= βG) ∧ (w 6= w′):
output

(
−z, 1

v
′−v+γ(v̄

′−v̄)
(w − w′)

)
, breaking SDH.

10. Else abort.

First, we show that if either the predicate in Step 8 or the predicate in Step 9 is satisfied, then B
does in fact break SDH. Next, we show that one of these predicates is satisfied with non-negligible
probability whenever A breaks evaluation binding. We do this by showing that if B aborts but
A still succeeds, then A can be used to solve the discrete logarithm problem in SampleGrp with
non-negligible probability.

B succeeds if predicates are satisfied. If A outputs z = β, then B can construct an arbitrary
solution to the SDH problem. If on the other hand (β 6= z) ∧ (w 6= w′), then ifA breaks evaluation
binding, by construction of PCs.Check the following equations must hold:

e(U − vG− γv̄G,H) = e(w, βH − zH) , (2.12)
e(U − v′G− γv̄′G,H) = e(w′, βH − zH) . (2.13)

Then, w 6= w′ and β 6= z together imply that v′ − v + γ(v̄′ − v̄) 6= 0. The above equations can then
be rewritten as

1

v′ − v + γ(v̄′ − v̄)
(w − w′) =

1

β − z
G ,

making
(
−z, 1

v
′−v+γ(v̄

′−v̄)
(w − w′)

)
a pair that breaks the SDH assumption.

Probability that predicates are satisfied. We analyze the probability with which B aborts by
considering the probability that the predicates are not satisfied, i.e., (β 6= z) ∧ (w = w′). We break
this case down into the following two disjoint subcases:

• Case 1: v̄ 6= v̄′. In this case, Equations (2.12) and (2.13) imply that v′ − v + γ(v̄′ − v̄) = 0. We
can rewrite this equation to compute the secret discrete logarithm γ = v−v′

v̄
′−v̄ .

• Case 2: v̄ = v̄′. In this case, it must hold that v = v′. Since v 6= v′, this occurs with probability
at most n

q
.
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Hence, we conclude that if (β 6= z) ∧ (w = w′) with non-negligible probability andA still succeeds,
then A can be used to break DL with non-negligible probability, which cannot occur if SDH is hard
for SampleGrp.

Thus, if A succeeds, then with non-negligible probability either β = z, or (β 6= z) ∧ (w 6= w′),
which in turn implies that B breaks SDH, contradicting our assumption.

Lemma 2.11.10. If PCs constructed in Section 2.11.2.1 achieves evaluation binding (Defini-
tion 2.11.8), and if the bilinear group sampler SampleGrp satisfies the dPKE assumption (Assump-
tion 2 and Assumption 3), then PCs achieves extractability (Definition 2.11.2).

Proof. The dPKE assumption implies the dMPKE? assumption, which considers the case where
the adversary outputs multiple knowledge commitments; see Section 2.10.3.1. Below we rely on
dMPKE?.

Fix a maximum degree bound D and an efficient adversary A against extractability. We use A
to define the adversary D below, which is against dMPKE.

D(〈group〉,Σ, z):
1. Parse instance Σ as {ΣPC = {βiG,αβiG, γβiG,αγβiG}Di=0, αH, βH}.
2. Parse the auxiliary input z as randomness [ρj]

i
j=1.

3. Construct ck := (〈group〉,ΣPC).
4. Construct rk := (〈group〉, αH, βH).
5. Let c← A(ck, rk, [ρj]

i
j=1).

6. Output c.

By assumption there exists a dMPKE? extractor ED against D that works with overwhelming
probability. We use ED to construct an extractor EA for the polynomial commitment scheme. The
rest of this proof will argue that EA defined below succeeds with overwhelming probability. For
each round i ∈ [r], EA proceeds as follows. We denote by ki the number of polynomials output byA
in round i.

EA(ck, rk, [ρj ]
i
j=1):

1. Parse ck as (〈group〉,ΣPC) and rk as (〈group〉, αH, βH).
2. Construct dMPKE instance Σ := {ΣPC, αH, βH}.
3. Construct auxiliary input z := [ρj ]

i
j=1.

4. Run the dMPKE extractor: ([aj ]
ki
j=1, [bj ]

ki
j=1)← ED(〈group〉,Σ, z).

5. SetX := (1, X, . . . ,XD).
6. For each j in [ki], define polynomials pj(X) := 〈aj ,X〉 ∈ Fq[X] and p̄j(X) := 〈bj ,X〉 ∈ Fq[X].
7. For each j in [ki], let the randomness ωj be the coefficients of p̄j .
8. Output the polynomials p := [pj ]

ki
j=1 and the randomness ω := [ωj ]

ki
j=1.

For the purpose of our proof, we additionally let the above extractor output the randomness ω.
Suppose for contradiction that the extractor EA fails with some non-negligible probability, for a

choice of round bound r ∈ N, efficient public-coin challenger C, efficient query sampler Q, and



CHAPTER 2. MARLIN: ZKSNARKS WITH UNIVERSAL AND UPDATABLE SRS 76

efficient adversary B = (B1,B2). We show this implies that either D succeeds with non-negligible
probability (contradicting our dPKE assumption), or that we can construct an adversary A′ that
contradicts Lemma 2.11.9. In more detail, the extractor EA may fail due to (at least) one of two
reasons.
(1) Incorrect polynomial or randomness: there exists an i ∈ T such that polynomial pi or random

polynomial p̄i does not match its commitment.
(2) Incorrect evaluation: for every i ∈ T , the extracted polynomial pi and corresponding random

polynomial p̄i match their commitments, but claimed evaluation for one such pi is incorrect.
If EA fails with non-negligible probability, then at least one of these cases occurs with non-negligible
probability. We analyze each case, and argue that this cannot be (or else we contradict our
assumptions).
(1) Incorrect polynomial or randomness. Informally, this case occurs with negligible probability
if the dMPKE? assumption holds for SampleGrp. In more detail, we have to demonstrate that
since PCs.Check accepts, every knowledge commitment in c is “extractable”, i.e., for each c ∈ c,
c = (U, V ) satisfies αU = V with overwhelming probability.

We do this as follows. Since PCs.Check accepts, we know that e(U, αH) = e(V,H), where
U :=

∑
i∈T ξ

iUi and V :=
∑

i∈T ξ
iVi are linear combinations of the input commitments. In this

case, we have that αUi 6= Vi for some i with probability at most |T |/q over random choice of ξ.
Thus with probability 1− |T |/q, each knowledge commitment satisfies the equality Vi = αUi, and
is thus extractable. In this case we have that

Ui 6=
D∑
k=0

(ai,kβ
kG+ bi,kγβ

kG) ,

for some i ∈ T only if ED has failed, and by assumption this only happens with negligible probability.
(2) Incorrect evaluation. We show that this case occurs with negligible probability if evaluation
binding holds for PCs. If EA outputs polynomials that do not match the claimed evaluations with
non-negligible probability µ(λ), then we can use (A,B1,B2), the public-coin challenger C and the
query sampler Q to construct the following adversary A′ = (A′1,A′2) that succeeds in breaking
evaluation binding (Definition 2.11.8) with the same non-negligible probability µ(λ).
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A′1(ck, rk):
1. For i = 1, . . . , r:

a) Obtain challenge: ρi ← C(ck, rk, i).
b) Obtain commitments: ci ← A(ck, rk, [ρj ]

i
j=1).

c) Extract polynomials and randomness: (pi,ωi)← EA(ck, rk, [ρj ]
i
j=1).

2. Sample query set: Q← Q(ck, rk, [ρj ]
i
j=1).

3. Set [ci]
n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, and [ωi]

n
i=1 := [ωi]

r
i=1.

4. Parse Q as T × {z} for some T ⊆ [n] and z ∈ F.
5. Set c := [ci]i∈T , p := [pi]i∈T , and ω := [ωi]i∈T .
6. (v, stB)← B1(ck, rk, [ρj ]

k
j=1, Q).

7. Compute alternate evaluations v′ := p(z).
8. Set st := (ck, rk,p, z,ω, stB).
9. Output

(
c, z,v,v′, st

)
.

A′2(st, ξ):
1. Parse st as (ck, rk,p, z,ω, stB).
2. Obtain proof of evaluation: π ← B2(stB, ξ).
3. Compute alternate proof: π′ ← PCs.Open(ck,p, z, ξ;ω).
4. Output (π, π′).

Since the extractor successfully extracts each polynomial and the randomness, and since PCs satisfies
perfect completeness, A′2 should be able to produce an alternate valid proof π′ that is also accepted
by PCs.Check. Thus, if A breaks polynomial extractability with non-negligible probability by
producing valid proofs for incorrect evaluations, then A′ = (A′1,A′2) breaks evaluation binding for
PCs with non-negligible probability, which contradicts our assumption.

2.11.2.3 Hiding

Theorem 2.11.11. PCs constructed in Section 2.11.2.1 achieves hiding (Definition 2.11.4).

Proof. We describe a polynomial-time simulator S such that, for every maximum degree bound D
and efficient adversary A = (A1,A2,A3), the adversary A cannot distinguish the real world and
ideal world experiments.

We leverage the fact that by knowing the “trapdoor” the simulator S can create the evaluation
proof for arbitrary values with respect to the commitment. We build our simulator S as follows:

S.Setup(1λ, D):
1. Run PCs.Setup(1λ, D), additionally defining trap := (ck, rk, β, γ).
2. Output (ck, rk, trap).
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S.Commit(trap, k;ω):
1. Parse ω as [ωi]

k
i=1.

2. For i = 1, . . . , k:
a) Obtain the random polynomial p̄i(X) from ωi.
b) Compute Ui := p̄i(β)γG and Vi := αp̄i(β)γG.
c) Set ci = (Ui, Vi).

3. Output c := [ci]
k
i=1.

S.Open(trap,p,v, Q, ξ;ω):
1. Parse p := [pi]

n
i=1,v := [vi]

n
i=1, and ω := [ωi]

n
i=1.

2. Parse query set Q as T × {z} for some T ⊆ [n] and z ∈ Fq.
3. For i ∈ T :

a) If ωi 6= ⊥:
i. Compute (Ui, Vi)← S.Commit(trap, 1;ωi).
ii. Obtain the random polynomial p̄i(X) from ωi.
iii. Set ṽi := p̄i(z)−

vi
γ .

b) Else ωi = ⊥:
i. Compute (Ui, Vi)← PCs.Commit(ck, pi;⊥).
ii. Set ṽi := 0.

4. Compute v̄ :=
∑n

i=1 ξ
iṽi , v :=

∑n
i=1 ξ

ivi , U :=
∑n

i=1 ξ
iUi.

5. If z 6= β:
Compute w := 1

β−zU −
v−γv̄
β−z G.

6. Else z = β:
Set w := 0G .

7. Output π := (w, v̄).

Clearly, S is polynomial-time. Associated with each pi output by A there is an independently
and randomly sampled degree D polynomial p̄i defined by ωi. We define a polynomial p̄′i such
that in the real world, p̄′i := p̄i, whereas in the ideal world, if hi = 0 (and hence ωi 6= ⊥), then
p̄′i(X) := p̄i(X) − pi(X)

γ
, and p̄′i = 0 otherwise. Observe that each p̄′i is of degree D and is

independently and randomly distributed if the corresponding polynomial is required to be hiding.
It follows that these polynomials are identically distributed in the two worlds. Furthermore, since
S.Setup uses PCs.Setup to generate (ck, rk), we see that (ck, rk) is also identically distributed.

We claim that for each round i ∈ [r], upon fixing (ck, rk) and p̄′i, the resulting ci are given
by a deterministic function in pi(β) and, after fixing all the p̄′, for each query point [zj]

τ
j=1

the corresponding proof πj is given by a deterministic function in (p(zj), zj, ξj). Since these
deterministic functions are parametrized by ck, rk, and the p̄′, which we have already shown are
identically distributed in the two worlds, it follows that the mappings of these functions will likewise
be identically distributed, and thus we claim the two worlds are indistinguishable even by unbounded
adversaries.

Abusing notation to express group elements (or vectors thereof) as functions, we claim that for
commitments ci := (Ui,Vi) that Ui (pi(β)) = pi(β)G + γp̄′i(β)G and Vi = αUi. Similarly, we
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claim the proof elements πj := (v̄j,wj) that

v̄j
(
zj, ξj

)
=

n∑
i=1

ξij · p̄′i(zj) , wj

(
zj
)

=

{
1

β−zj
U − v−γv̄j

β−zj
G if zj 6= β

0 if zj = β
,

where

U
(
ξj
)

=
n∑
i=1

ξij · Ui , v
(
p(zj), ξj

)
=

n∑
i=1

ξij · pi(zj) .

To conclude the proof it now only remains to be shown that the functions above describe the outputs
of PCs and S. We demonstrate this sequentially below.
Indistinguishability of commitments. In the real world we have

Ui := pi(β)G+ γp̄i(β)G , Vi := α(pi(β) + γp̄i(β))G ,

where since in this world we have defined p̄′ := p̄ our claim that Ui(pi) = pi(β)G+ γp̄′i(β)G and
Vi = αUi follows immediately. Now considering the ideal world case, from our pseudocode above
we have that

Ui := γp̄i(β)G , Vi := αUi ,

where now we have defined p̄′i(z) := p̄i(z)− p(z)
γ
. Plugging this in we have

pi(β)G+ γp̄′i(β)G = pi(β)G+ γ

(
p̄i(β)− p(β)

γ

)
G = γp̄i(β)G ,

and thus may conclude that commitments are indistinguishable with respect to all adversaries.
Indistinguishability of evaluation proofs. In the real world we have v̄j =

∑n
i=1 ξ

i
j · p̄i(zj), where

since p̄′i = p̄i we arrive at the expected function. In the ideal world we have that v̄j :=
∑n

i=1 ξ
i
j · ṽi,

where in the pseudocode above we see that ṽi = p̄′i(zj). We conclude that the v̄ are indistinguishable
with respect to all adversaries.

Finally, we consider the wj . In the real world we have wj := w(β)G+ γw̄(β)G, where

w(X) :=
p(X)− p(z)

X − z
, w̄(X) :=

p̄(X)− p̄(z)

X − z
.

Plugging these values in we obtain

wj :=
p(β)− p(z)

β − z
G+ γ

p̄(β)− p̄(z)

β − z
G =

p(β) + γp̄(β)

β − z
G− p(z) + γp̄(z)

β − z
G .

Recall our expressions for p and p̄ are

p(X) :=
n∑
i=1

ξipi(X) , p̄(X) :=
n∑
i=1

ξip̄i(X) .
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Then we have that

p(β) + γp̄(β)

β − z
G =

1

β − z
U ,

p(z) + γp̄(z)

β − z
G =

v − γv̄j
β − zj

G ,

with U and v above defined in terms of a polynomial over the Ui and pi(zj), respectively, evaluated
at ξj . We note that w and w̄ are not rational functions because X − z always divides p(X)− p(z)
for any univariate polynomial p, and that evaluated at z = β they are both 0 rather than undefined.
Thus we have shown that in the real world each wj is defined as promised.

In the ideal world, it is easy to see our expression for wj already has the expected form, as
do the corresponding equations used for computing U and v. We conclude that no adversary can
distinguish between the two worlds.

2.11.3 In the algebraic group model
The constructions in Section 2.11.2 require two group elements to commit to a polynomial due to
their use of knowledge assumptions. In this section we achieve better efficiency (one group element
per polynomial) by proving extractability in the AGM. Instead of relying on the PKE extractor to
extract polynomials from commitment, we simply use the algebraic adversary’s own explanations.
This makes the extractability proof straightforward.

We proceed as follows. First, in Section 2.11.3.1, we describe how to modify the constructions
in Section 2.11.2.1 to rely on the AGM, and then in Section 2.11.3.2, we demonstrate that these
modified constructions achieve extractability against algebraic adversaries.

2.11.3.1 Construction

We use notation for bilinear groups introduced in Section 2.10.1 and notation for algebraic algorithms
from Definition 2.10.7. The highlighted text below denotes parts of the construction that are not
needed if hiding is not desired. Reusing notation from Section 2.11.2.1, we refer to the non-hiding
variant as nhPCs, and the hiding variant as phPCs (perfectly-hiding PCs). At a high level, the
construction follows the blueprint of Section 2.11.2.1 closely, but all the terms including α are never
generated during setup (and thus never subsequently used). This is because these are precisely the
terms used to prove knowledge when relying on PKE.
Setup. On input a security parameter λ (in unary), and amaximum degree boundD ∈ N, PCs.Setup
samples public parameters (ck, rk) as follows. Sample a bilinear group 〈group〉 ← SampleGrp(1λ),
and parse 〈group〉 as a tuple (G1,G2,GT , q, G,H, e). Sample random elements β, γ ∈ Fq. Then
compute the vector

Σ :=

(
G βG β2G . . . βDG

γG γβG γβ2G . . . γβDG

)
∈ G2D+2

1 .

Set ck := (〈group〉,Σ) and rk := (D, 〈group〉, γG, βH), and then output the public parameters
(ck, rk). These public parameters will support polynomials over the field Fq of degree at most D.
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Commit. On input ck, univariate polynomials p := [pi]
n
i=1 over Fq, and randomness ω := [ωi]

n
i=1,

PCs.Commit outputs commitments c := [ci]
n
i=1 that are computed as follows. If for any pi ∈ p,

deg(pi) > D, abort. Else, for each i ∈ [n], if ωi is not ⊥, then obtain random univariate polynomial
p̄i of degree deg(pi) from ωi, otherwise p̄i is set to be a zero polynomial. For each i ∈ [n], output
ci := pi(β)G+ γp̄i(β)G. Note that because pi and p̄i have degree at most D, the above terms are
linear combinations of terms in ck.
Open. On input ck, univariate polynomials p := [pi]

n
i=1 over Fq, evaluation point z ∈ Fq, opening

challenge ξ ∈ Fq, and randomnessω := [ωi]
n
i=1, which is the same randomness used forPCs.Commit,

PCs.Open outputs an evaluation proof π ∈ G1 that is computed as follows. If for any pi ∈ p,
deg(pi) > D, abort. For each i ∈ [n], if ωi is not ⊥, then obtain random univariate polynomial p̄i
of degree deg(pi) from ωi, otherwise p̄i is set to be a zero polynomial. Then compute the linear
combination of polynomials p(X) :=

∑n
i=1 ξ

ipi(X) and p̄(X) :=
∑n

i=1 ξ
ip̄i(X). Compute witness

polynomials w(X) := p(X)−p(z)
X−z and w̄(X) := p̄(X)−p̄(z)

X−z . Set w := w(β)G + γw̄(β)G ∈ G1 and
v̄ := p̄(z) ∈ Fq. The evaluation proof is π := (w, v̄).
Check. On input rk, commitments c := [ci]

n
i=1, evaluation point z ∈ Fq, alleged evaluations

v := [vi]
n
i=1, evaluation proof π := (w, v̄), and randomness ξ ∈ Fq, PCs.Check proceeds as

follows. Compute the linear combination C :=
∑n

i=1 ξ
ici Then compute the linear combination of

evaluations v :=
∑n

i=1 ξ
ivi, and check the evaluation proof via the equality e(C− vG− γv̄G,H) =

e(w, βH − zH).

Completeness. Completeness can be proved by suitably modifying the completeness proof in
Section 2.11.2.1.
Succinctness. The scheme PCs constructed in this section requires n G1 elements to commit to
c = [ci]

n
i=1, one G1 and one Fq element for the evaluation proof, and the time to check this proof of

evaluation requires two pairings and one variable-base multi-scalar multiplication of size n.

2.11.3.2 Extractability and hiding

Theorem 2.11.12. If the bilinear group sampler SampleGrp satisfies the SDH assumption against
algebraic adversaries (Assumption 1), nhPCs and phPCs constructed in Section 2.11.3.1 achieve
extractability against algebraic adversaries (Definition 2.11.2).

To prove this, we rely on the fact that nhPCs and phPCs satisfy evaluation binding (Defini-
tion 2.11.8):

Lemma 2.11.13. If the bilinear group sampler SampleGrp satisfies the SDH assumption (As-
sumption 1), then nhPCs and phPCs constructed in Section 2.11.3.1 achieve evaluation binding
(Definition 2.11.8).

The proof of the above lemma is easily achieved by straightforward modifications to the proof of
Lemma 2.11.9.
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Lemma 2.11.14. If the bilinear group sampler SampleGrp satisfies the SDH assumption against
algebraic adversaries (Assumption 1), nhPCs and phPCs constructed in Section 2.11.3.1 achieve
extractability against algebraic adversaries (Definition 2.11.2).

Proof. Fix any efficient, algebraic adversary Aalg and maximum degree bound D ∈ N. We show
how to construct an efficient extractor EAalg

for the polynomial commitment scheme that succeeds
with overwhelming probability. In each round i ∈ [r] algorithm EAalg

proceeds as follows. We
denote by k the number of group elements output by the adversary Aalg.

EAalg
(ck, rk; [ρj ]

i
j=1):

1. Parse ck as (〈group〉,Σ).

2. Parse Σ as

(
G βG β2G . . . βDG

γG γβG γβ2G . . . γβDG

)
.

3. Set Σ1 := (G, βG, β2G, . . . , βDG).
4. Set Σ2 := (γG, γβG, γβ2G, . . . , γβDG).
5. Invoke the adversary: [〈aj ,Σ1〉+ 〈bj ,Σ2〉]

k
j=1 ← Aalg(ck, rk; [ρj ]

i
j=1).

6. SetX := (1, X, . . . ,XD).
7. For each j in [k], define polynomials pj(X) := 〈aj ,X〉 ∈ Fq[X] and p̄j(X) := 〈bj ,X〉 ∈ Fq[X].
8. For each j in [k], let the randomness ωj be the coefficients of p̄j .
9. Output the polynomials p = [pj ]

k
j=1 and randomness ω := [ωj ]

k
j=1.

For a given efficient public-coin challenger C, efficient adversary B := (B1,B2), efficient query
sampler Q, and round bound r ∈ N, the extractor EAalg

can fail with non-negligible probability only
if there exists a polynomial whose claimed evaluation is incorrect. However, because nhPCs and
phPCs satisfy evaluation binding, all evaluations are correct with overwhelming probability. This
latter fact follows from a reduction identical to that in the corresponding portion of the extractability
proof of Lemma 2.11.10. Hence, EAalg

succeeds with overwhelming probability.

Lemma 2.11.15. phPCs constructed in Section 2.11.3.1 is perfectly hiding (Definition 2.11.4).

At a high level, one can adapt the proof in Theorem 2.11.11 into a proof of Lemma 2.11.15 by
removing from it all terms related to α, as the proof only reasons about these terms for the sake of
completeness.
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2.12 Polynomial commitments for multiple degree bounds
We construct a polynomial commitment scheme that supports multiple degree bounds up to a
maximum degree chosen at setup time.

We again temporarily restrict our attention to the case where, in the reveal phase, all polynomials
are evaluated at the same evaluation point. (We will relax this restriction in Section 2.13.) We do
not provide a standalone definition for the construction that we consider below, because it equals the
definition in Section 2.6.1 when restricted to admissible query samplers which output query sets
Q consisting of a single evaluation point at which a subset of the polynomials are evaluated (i.e.,
Q = T × {z} for some T ⊆ [n], and z ∈ F).14

We proceed as follows. First, in Section 2.12.1, we present a construction for the above goal that
builds upon ideas in Section 2.11.3.1. Then, in Section 2.12.2, we reduce the hiding and extractability
of this construction to the hiding and extractability of a related construction that is simpler to analyze,
but is not degree-efficient. This simpler construction might also be of independent interest.

2.12.1 Degree-efficient construction
We demonstrate how to construct a polynomial commitment that supports multiple degree bounds
efficiently. Our construction builds upon the construction in Section 2.11.3.1. A polynomial
commitment scheme over a field family F for multiple degree bounds and a single evaluation
point is a tuple of algorithms PCm = (Setup,Trim,Commit,Open,Check) with the following
syntax. Below we use [[ai, bi]]

n
i=1 as a short-hand for the tuple (a1, b1, . . . , an, bn). The highlighted

text below denotes the parts of the construction that differ from the construction in Section 2.11.3.1.
Setup. On input a security parameterλ (in unary), and amaximumdegree boundD ∈ N, PCm.Setup
samples public parameters pp as follows. Sample a bilinear group 〈group〉 ← SampleGrp(1λ),
and parse 〈group〉 as a tuple (G1,G2,GT , q, G,H, e). Sample random elements β, γ ∈ Fq. Then
compute the vector

Σ :=

(
G βG β2G . . . βDG

γG γβG γβ2G . . . γβDG

)
∈ G2D+2

1 .

Set pp := (D, 〈group〉,Σ, βH), and then output the public parameters pp. These public
parameters will support polynomials over the field Fq of degree at most D.
Trim. Given oracle access to public parameters pp, and on input a security parameter λ (in unary),
and degree bounds d = [di]

n
i=1, PCm.Trimpp deterministically computes a key pair (ck, rk) that is

specialized to d as follows. Let d be the maximum degree bound in d. Then obtain Σck from public
parameters:

Σck :=

(
G βG . . . βdG βD−dG βD−d+1G . . . βDG

γG γβG . . . γβdG

)
∈ G3d+3

1 .

14Recall from Definition 2.6.5 that an admissible query sampler outputs query sets such that every polynomial is
evaluated at least once at a point sampled from a super-polynomially-large subset.
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Set ck := (Σck,d). Let Σrk be the set {βD−diG}i∈[n] and rk := (D, 〈group〉,Σrk, γG, βH,d),
and then output the key pair (ck, rk). This key pair is specialized to d.
Commit. On input ck, univariate polynomials p = [pi]

n
i=1 over the field Fq, degree bounds

d = [di]
n
i=1 with deg(p) ≤ d ≤ D, and randomness ω = [[ωi, ω

′
i]]
n
i=1, PCm.Commit outputs

commitments c = [ci]
n
i=1 that are computed as follows. Obtain the supported degree bounds d′

from ck. If for any pi ∈ p, deg(pi) > di or di 6∈ d′, abort. For each i ∈ [n], if ωi and ω
′
i are not

⊥, then obtain from them random univariate polynomials p̄i and p̄
′
i of degree deg(pi); otherwise,

set p̄i and p̄
′
i to be the zero polynomial. For each i ∈ [n], compute ci := pi(β)G + γp̄i(β)G and

c
′
i := βD−dipi(β)G+γp̄′i(β)G. Finally, set ci := (ci, c

′
i), and output c := [ci]

n
i=1. Note that because

pi(X), XD−dipi(X), p̄i(X) and p̄′i(X) have at most di non-zero coefficients, the above terms are
linear combinations of terms in ck.
Open. On input ck, univariate polynomials p = [pi]

n
i=1 over the field Fq, degree bounds d = [di]

n
i=1,

evaluation point z ∈ Fq, opening challenge ξ, and randomness ω = [[ωi, ω
′
i]]
n
i=1, PCm.Open outputs

the evaluation proof π as follows. Obtain the supported degree bounds d′ from ck. If for any
pi ∈ p, deg(pi) > di or di 6∈ d′, abort. For each i ∈ [n], if ωi and ω

′
i are not ⊥, obtain from them

random univariate polynomials p̄i and p̄
′
i of degree deg(pi); otherwise, set p̄i and p̄

′
i to be the zero

polynomial.
Then, for each i ∈ [n], define the polynomial p?i (X) := XD−dipi(X) − XD−dipi(z), and

compute a witness polynomial wi(X) := pi(X)−pi(z)
X−z for pi, and a witness polynomial w?i (X) :=

XD−diwi(X) for p?i . Finally, compute the witness polynomial for these 2n polynomials as
w :=

∑n
i=1 ξ

iwi +
∑n

i=1 ξ
n+iw?i .

Next, compute the linear combination of the random polynomials p̄ :=
∑n

i=1 ξ
ip̄i and p̄

′ :=∑n
i=1 ξ

n+ip̄′i, and compute the witness polynomial w̄(X) := p̄(X)−p̄(z)+p̄′(X)−p̄′(z)
X−z for these. Set

w := w(β)G+ γw̄(β)G ∈ G1, and v̄ := p̄(z) + p̄′(z) ∈ Fq. The evaluation proof is π := (w, v̄).
Check. On input rk, commitments c = [ci]

n
i=1, degree bounds d = [di]

n
i=1, evaluation point z ∈ Fq,

alleged evaluations v = [vi]
n
i=1, evaluation proof π = (w, v̄), and opening challenge ξ, PCm.Check

proceeds as follows. Obtain the supported degree bounds d′ from rk. If for any di ∈ d, di 6∈ d′, abort.
Parse each commitment ci as a pair of sub-commitments (ci, c

′
i), and construct c

?
i := c

′
i−viβD−diG.

Next, compute the two linear combinations

C :=
n∑
i=1

ξici +
n∑
i=1

ξn+i
c
?
i , v :=

n∑
i=1

ξivi,

Then check the evaluation proof π = (w, v̄) via the equality e(C−vG−γv̄G,H) = e(w, βH−zH).

Lemma 2.12.1. The scheme PCm constructed above achieves completeness (Definition 2.6.1).

Proof. Fix any maximum degree bounds D, d = [di]
n
i=1 and efficient adversary A. Let pp be

any public parameters output by the algorithm PCm.Setup(1λ, D). Let A(pp) select polynomials
p = [pi]

n
i=1 over Fq, degree bounds d = [di]

n
i=1, location z ∈ Fq, and opening challenge ξ ∈ Fq. We

only need to consider adversaries A that make choices for which deg(p) ≤ di ≤ D. Let (ck, rk)
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be any key pair output by the algorithm PCm.Trimpp(1λ,d) constructed above. The keys contain a
description 〈group〉 of a bilinear group of some prime order q, which in particular induces a field Fq.

Now consider commitments c = [ci]
n
i=1 and evaluation proof π that are all computed according

to the construction above. We need to show that, for the correct evaluations v := p(z),

PCm.Check(rk, c,d, z,v, π, ξ) = 1 .

This amounts to arguing that the pairing equations are satisfied. For these equations, note that the
combined commitment C and evaluation v are computed by PCm.Check as follows:

C =
n∑
i=1

ξici +
n∑
i=1

ξn+i
c
?
i

=
n∑
i=1

ξi(pi(β)G+ γp̄i(β)G) +
n∑
i=1

ξn+i(βD−di(pi(β)− pi(z))G+ γp̄′i(β)G)

=
n∑
i=1

ξi(pi(β)G+ γp̄i(β)G) +
n∑
i=1

ξn+i(p?i (β)G+ γp̄′i(β)G) ,

v =
n∑
i=1

ξivi =
n∑
i=1

ξipi(z) .

In the evaluation proof π = (w, v̄), we have that

w = (w(β) + γw̄(β))G

=
n∑
i=1

ξiwi(β)G+
n∑
i=1

ξn+iw?i (β)G+
n∑
i=1

ξiw̄i(β)γG+
n∑
i=1

ξn+iw̄′i(β)γG

=
n∑
i=1

ξi(pi(β)− pi(z)) + ξn+ip?i (β) + ξi(p̄i(β)− p̄i(z))γ + ξn+i(p̄′i(β)− p̄′i(z))γ

β − z
G

We also have that the evaluation v̄ = p̄(z) + p̄′(z). Therefore,

e(C − vG− γv̄G,H)

= e(
∑n

i=1(ξi((pi(β)− vi) + γ(p̄i(β)− p̄i(z))) + ξn+i(p?i (β) + γ(p̄′i(β)− p̄′i(z))))G,H)

= e(
∑n
i=1 ξ

i
(pi(β)−pi(z))+ξ

n+i
p
?
i (β)+ξ

i
(p̄i(β)−p̄i(z))γ+ξ

n+i
(p̄
′
i(β)−p̄′i(z))γ

β−z G, (β − z)H)

= e((w(β) + γw̄(β))G, βH − zH)

= e(w, βH − zH) .

We conclude that the pairing equation also holds.

Lemma 2.12.2. The scheme PCm constructed achieves efficiency, as defined in Definition 2.6.3.
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Proof. PCm satisfies both efficiency properties:
• Degree-efficiency: For a list of n polynomials with degree bounds d = [di]

n
i=1 where d = max(d)

is themaximum supported degree bounds for these polynomials, bothPCm.Commit andPCm.Open
only handle polynomials having at most d coefficients, and so the time to commit to the polynomials
is the time for 4n variable-base multi-scalar multiplications of size at most d, while the time to
compute an evaluation proof is the time to compute two polynomial divisions of degree at most d
plus the time required for two variable-base multi-scalar multiplications of size at most d.

• Succinctness: For a list of n polynomials, the scheme PCm requires 2n G1 elements for a
commitment and one G1 element and one Fq element for an evaluation proof, while the time to
check this proof requires two variable-base multi-scalar multiplications of size n and two pairings.

Extractability and hiding. We reduce the extractability and hiding properties of our construction
to those of a simpler-to-analyze construction described below. This latter construction makes
black-box use of any PCs scheme.

2.12.2 Black-box construction
We now provide a simpler construction of PCm that makes black-box use of PCs. This construction
is not degree-efficient (Definition 2.6.3), but is simpler to analyze.
Setup. On input a security parameter λ (in unary), and a maximum degree bound D ∈ N,
PCm.Setup samples and outputs pp := PCs.Setup(1λ, D). The keys contain the description of a
finite field F ∈ F .
Trim. Given oracle access to public parameters pp, and on input a security parameter λ (in unary),
and degree bounds d, PCm.Trim simply parses pp as (ck, rk) and outputs these.
Commit. On input ck, univariate polynomials p = [pi]

n
i=1 over the field F, degree bounds

d = [di]
n
i=1 with deg(p) ≤ d ≤ D, and randomness ω = [[ωi, ω

′
i]]
n
i=1, PCm.Commit outputs

commitments c = [ci]
n
i=1 that are computed as follows. First, for each i ∈ [n], define the shifted

polynomial p′i(X) := XD−dipi(X). Next, use PCs to simultaneously commit to all unshifted and
shifted polynomials: [[ci, c

′
i]]
n
i=1 := PCs.Commit(ck, [[pi, p

′
i]]
n
i=1;ω). Finally, set ci := (ci, c

′
i), and

output c := [ci]
n
i=1. Note that every polynomial being committed has degree at most D.

Open. On input ck, univariate polynomials p = [pi]
n
i=1 over the field F, degree bounds d = [di]

n
i=1,

evaluation point z ∈ F, opening challenge ξ, and randomness ω = [[ωi, ω
′
i]]
n
i=1, PCm.Open outputs

the evaluation proof π := PCs.Open(ck, [[pi, p
′
i]]
n
i=1, z, ξ;ω), where each p′i is the shift of pi

respectively.
Check. On input rk, commitments c = [ci]

n
i=1, degree bounds d = [di]

n
i=1, evaluation point z ∈ F,

alleged evaluations v = [vi]
n
i=1, evaluation proof π, and opening challenge ξ, PCm.Check proceeds as

follows. Parse each commitment ci as a pair of sub-commitments (ci, c
′
i). For each i ∈ [n], compute

the shifted evaluation v′i := zD−divi. Check that PCs.Check(rk, [[ci, c
′
i]]
n
i=1, z, [[vi, v

′
i]]
n
i=1, π, ξ)

accepts.
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Lemma 2.12.3. If PCs achieves completeness (Definition 2.11.1) then PCm achieves completeness
(Definition 2.6.1).

Proof. If an adversaryA(ck, rk) selects polynomials [pi]
n
i=1, degree bounds [di]

n
i=1, evaluation point

z ∈ F, and opening challenge ξ such that, for every i ∈ [n], we have deg(pi) ≤ di ≤ D, then both the
unshifted polynomials [pi]

n
i=1 and shifted polynomials [p′i]

n
i=1 have degree at most D. Furthermore,

because the shifted polynomials are computed as p′(X) = XD−dip(X), the shifted evaluations
will always match: v′i = zD−di · vi. This means that the completeness of PCs ensures that the
commitments produced via PCs will pass the tests in PCs.Check.

Lemma 2.12.4. If PCs achieves succinctness (Definition 2.11.3) then PCm achieves succinctness
(Definition 2.6.3).

Proof. The commitment of PCm contains 2n PCs commitments and the evaluation proof contains
one PCs proof. The time to check n evaluations is the same as the time to check 2n evaluations in
PCs, plus at most n · (logD) field operations to compute v′.

Lemma 2.12.5. If the construction in Section 2.12.2 achieves extractability and hiding when
instantiated with PCs from Section 2.11.3, then so does the construction in Section 2.12.1.

Proof. We show how to reduce the extractability and hiding of the construction in Section 2.12.1
(denoted by PCm) to that of the foregoing construction (denoted by PC′m). For simplicity, we
consider the case of a single polynomial p with a single degree bound d evaluated at the query point
z.
• Extractability: Note that PCm commitments are identical to PC′m commitments. The same holds
for evaluation proofs for unshifted polynomials. Hence, the only difference is in how degree
bounds are enforced, and so we focus on this latter aspect.
Define the polynomials p1 := XD−dp(X) −XD−dv and p2 := XD−dp(X). To enforce degree
bounds, PCm provides an evaluation proof for the claim that p1(z) = 0, while PC′m provides
a proof for the claim that p2(z) = zD−dv. However, notice that p2(z) = zD−dv if and only if
p2(z) = 0, and so a PCm evaluation proof is valid only if the “corresponding” PC′m proof is also
valid.

• Hiding: Note that PCm commitments and evaluation proofs for unshifted polynomials are identical
to those for PC′m, and so we focus on evaluation proofs for shifted polynomials. As seen from the
calculation of PCm, the witness polynomial for p1 is a shifted version of the witness polynomial
for p, and hence the evaluation proof does not reveal any additional information about p.

2.12.2.1 Extractability

Theorem 2.12.6. If PCs achieves extractability (Definition 2.11.2) then PCm achieves extractability
(Definition 2.6.2) restricted to query sets Q querying a subset of polynomials at the same point (i.e.,
Q = T × {z} for some T ⊆ [n], and z ∈ F).
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Proof. Fix a maximum degree bound D and an efficient adversary A against PCm. We use A to
construct an adversary B and query sampler Q′ against PCs. By assumption there exists a PCs

extractor EB against B. We use EB to construct a PCm extractor EA for A.

B(ck, rk, [ρj]
i
j=1):

1. Set pp := (ck, rk).
2. Compute (c,d)← A(pp, [ρj]

i
j=1).

3. Parse c as [[ci, c
′
i]]
n
i=1.

4. Output [[ci, c
′
i]]
n
i=1.

EA(pp, [ρj]
i
j=1):

1. Parse pp as (ck, rk).
2. Compute p← EB(ck, rk, [ρj]

i
j=1).

3. Parse p as [[pi, p
′
i]]
n

i=1.
4. Output [pi]

n
i=1.

Suppose for contradiction that the extractor EA fails with non-negligible probability for some choice
of round bound r ∈ N, efficient public-coin challenger C, efficient query sampler Q, and efficient
adversary B = (B1,B2). This can occur due to one of two reasons.
(1) Extracted polynomial does not match evaluation: there exists an extracted polynomial whose

claimed evaluation is incorrect.
(2) Degree bounds are not satisfied: all extracted polynomials match their claimed evaluations, but

there exists a polynomial whose degree differs from the claimed degree.
If EA fails with non-negligible probability, then one of these cases occurs with non-negligible
probability. We analyze both cases, and argue that this cannot be.
(1) Extracted polynomial does not match evaluation. Each PCm commitment ci in [ci]i∈T is
a pair of PCs commitments (ci, c

′
i). Since PCm.Check invokes PCs.Check, [ci]i∈T are accepted by

PCm.Check if and only if [[ci, c
′
i]]i∈T are accepted by PCs.Check. Thus, if PCm.Check accepts but

the extractor EA fails with non-negligible probability, then we deduce that PCs.Check accepts but
the extractor EB fails with non-negligible probability against a PCs query sampler Q′ that obtains Q
from Q and outputs Q′ := {(2i − 1, z), (2i, z) | (i, z) ∈ Q}. This contradicts the fact that PCs

achieves extractability. Hence, we conclude that all extracted polynomials match their claimed
evaluations with probability negligibly close to 1.
(2) Degree bounds are not satisfied. We first recall how the extractor EA works: it invokes the PCs

extractor to obtain 2n polynomials p := [pi, p
′
i]
n

i=1, and outputs [pi]
n
i=1. The remaining polynomials

[p′i]
n
i=1 are supposedly “shifted” versions of the output polynomials. It should be the case that for

each i ∈ T it holds that p′i(X) = XD−dipi(X). To check that this condition is satisfied, PCm.Check
verifies that, for a point z ∈ F sampled by the admissible query sampler Q, v′i := zD−dipi(z) is
a valid evaluation for p′i. The probability that this equation holds but p′i(X) 6= XD−dipi(X) is
negligibly small because Q, being admissible, samples z from a super-polynomially-large subset of
F.

2.12.2.2 Hiding

Theorem 2.12.7. If PCs achieves hiding (Definition 2.11.4) then PCm achieves hiding (Defini-
tion 2.6.4) restricted to query sets Qj querying a subset of polynomials at the same point (i.e.,
Qj = Tj × {zj} for some Tj ⊆ [n], and zj ∈ F).
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Proof. Below we construct a simulator Sm for PCm using a simulator Ss for PCs as a subroutine.

Sm.Setup(1λ, D):
1. Compute (ck, rk, trap)← Ss.Setup(1λ, D).
2. Output (pp := (ck, rk), trap).

Sm.Commit(trap,d;ω):
1. Ignore the degrees d, and parse the randomness ω as [[ωi, ω

′
i]]

k
i=1.

2. Compute [[ci, c
′
i]]

k
i=1 := Ss.Commit(trap, 2k; [[ωi, ω

′
i]]

k
i=1).

3. For each i ∈ [k], assemble the pair ci := (ci, c
′
i) of simulated commit-

ments.
4. Output the simulated commitments c := [ci]

n
i=1 for PCm.

Sm.Open(trap,p,v,d, Q, ξ;ω):
1. Parse p,v,d,ω as [pi]

n
i=1, [vi]

n
i=1, [di]

n
i=1, [[ωi, ω

′
i]]
n
i=1.

2. Parse Q as T × {z} for some T ⊆ [n] and z ∈ F.
3. For each i ∈ T , set p′i(X) := XD−dipi(X) and v′i := zD−divi.
4. Construct PCs query set Q

′ := {(2i− 1, z), (2i, z) | (i, z) ∈ Q}.
5. Output π ← Ss.Open(trap, [pi, p

′
i]
n
i=1, [vi, v

′
i]
n
i=1, Q

′, ξ; [[ωi, ω
′
i]]
n
i=1).

The simulator Sm is a simple wrapper around the simulator Ss, and it is straightforward to see that if
Ss simulates correctly for PCs then Sm simulates correctly for PCm.
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2.13 Polynomial commitments that support different query
locations

We construct a polynomial commitment scheme PC that supports different query locations–
an instantiation of the primitive defined in Section 2.6.1. The query set Q consists of tuples
(i, z) ∈ [n]× Fq of polynomial indices and evaluation points. The construction is again a black-box
extension of the polynomial commitment scheme PCm considered in Section 2.12 which only
supports a single query.

2.13.1 Construction
PC.Setup,PC.Trim, andPC.Commit equalPCm.Setup,PCm.Trim, andPCm.Commit in Section 2.12,
and so below we show how to construct PC.Open and PC.Check.
Open. On input ck, univariate polynomials p over the field F, degree bounds d, the query set Q,
opening challenge ξ, and randomnessω that is the same one used in PC.Commit, PC.Open proceeds
as follows. Suppose there are t different evaluation points [zi]

t
i=1 in the query set Q. Divide p into

different (possibly overlapping) groups [pi]
t
i=1, where every polynomial in pi is evaluated at point zi

according to Q. Similarly divide degree bounds d and ω as [di]
t
i=1 and [ωi]

t
i=1 so that deg(pi) ≤ di

and ωi is the randomness for the polynomial pi. For each group pi, obtain the evaluation proof
πi := PCm.Open(ck,pi,di, zi, ξ;ωi). Output all the proofs of evaluation [πi]

t
i=1.

Check. On input rk, commitments c, degree bounds d, the query set Q, alleged evaluations v,
evaluation proof π, and opening challenge ξ, PC.Check proceeds as follows. Suppose there are t
different evaluation points [zi]

t
i=1 in the query set Q. Parse c, d, v and π as [ci]

t
i=1, [di]

t
i=1, [vi]

t
i=1

and [πi]
t
i=1 so that ci are the commitments of polynomials pi, where deg(pi) ≤ di and pi(zi) is

supposed to be vi. For each i ∈ [t], check that PCm.Check(rk, ci,di, zi,vi, πi, ξ) accepts.

Completeness. The completeness of PC follows directly from the completeness of PCm.
Efficiency. PC satisfies both efficiency properties defined in Definition 2.6.3:
• Degree efficiency: The degree efficiency of PC follows directly from the degree efficiency of

PCm, because PC.Commit is the same as PCm.Commit, and PC.Open invokes PCm.Open a total
of t = |Q|.

• Succinctness: The succinctness of PC follows directly from the succinctness of PCm. In particular,
a PC commitment equals a PCm commitment, and is hence of size poly(λ). Similarly, a PC
evaluation proof consists of t PCm evaluation proofs, and is hence of size t · poly(λ) = poly(λ).
Finally, PC.Check invokesPCm.Check t times such that the i-th invocation is over |ci| commitments.
Because PCm.Check takes time n · poly(λ) to check n commitments, PC.Check takes time∑t

i=1 |ci| · poly(λ).
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2.13.2 Extractability
Theorem 2.13.1. If PCm in Section 2.12 achieves extractability (Definition 2.6.2) then PC also
achieves extractability (Definition 2.6.2).

Proof. Suppose for contradiction that there exists a maximum degree bound D ∈ N and efficient
adversary A against PC such that for some choice of round bound r ∈ N, efficient public-coin
challenger C, efficient query sampler Q, and efficient adversary B = (B1,B2), every efficient
extractor EA fails with non-negligible probability µ(λ).

Then, we show how to use these to break extractability for PCm by constructing adversary A′,
query sampler Q′, and adversary B′ as follows. We define A′ to equal A, and construct Q′ and B′
below.

Q′(pp, [ρj]
r
j=1) :

1. Obtain query set Q← Q(pp, [ρj]
r
j=1).

2. Parse Q as ∪j∈[t]Tj × {zj}, for some Tj ⊆ [n] and zj ∈ F,
where each zj is distinct.

3. Uniformly sample k ∈ [t].
4. Output Q′ := Tk × {zk}.

B′1(pp, [ρj]
r
j=1, Q) :

1. Parse Q as {(i, z) | i ∈ [n]} for some z ∈ F.
2. Obtain query set QPC ← Q(pp, [ρj]

r
j=1).

3. Parse QPC as ∪j∈[t]Tj × {zj}, for some Tj ⊆ [n] and zj ∈ F,
where each zj is distinct.

4. Check that for some k ∈ [t], Q = Qk.
5. Obtain (v, stPC)← B1(pp, [ρj]

r
j=1, QPC).

6. Parse v as [vi]
t
i=1 similarly to above.

7. Output (vk, st := (stPC, k)).

B′2(st, ξ) :
1. Parse st as (stPC, k).
2. Obtain proof π ← B2(stPC, ξ).
3. Parse π as [πj]

t
j=1.

4. Output πk .

Now, by assumption, there exists an extractor EA′ for PCm that succeeds in extracting against any
choice of Q′ and B′. In particular, it succeeds against Q′ and B′ constructed above. Because the
extractor EA := EA′ fails only if EA′ fails, we need only to analyze the probability with which this
latter algorithm fails. We know that whenever EA fails, PC.Check accepts, but there exists k ∈ [t]
such that

deg(pk) 6≤ dk ∨ vk 6= pk(zk) .
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By construction of PC.Check, this means that the k-th invocation of PCm.Check succeeds, but the
corresponding polynomials are either of incorrect degree or have incorrect claimed evaluations.
Because Q′ selects this index k with probability 1/t, A′ and B′ break extractability of PCm with
non-negligible probability µ(λ)/t, thus contradicting our assumption.

2.13.3 Hiding
Theorem 2.13.2. If PCm in Section 2.12 achieves hiding (Definition 2.6.4) then PC also achieves
hiding (Definition 2.6.4).

Proof. We achieve this by constructing a simulator SPC for PC using the PCm simulator Sm.
SPC.Setup, SPC.Trim, and SPC.Commit are the same as Sm.Setup, Sm.Trim, and Sm.Commit, and
so we focus on constructing SPC.Open.

SPC.Open(trap,p,v,d, Qi, ξi;ω):
1. Parse Q as ∪i∈[t]Tj × {zi}, for some Ti ⊆ [n] and zi ∈ F, where each zi is distinct.
2. Divide p, d, and ω into [pi]

t
i=1, [di]

t
i=1, and [ωi]

t
i=1 so that pi = [pj ]j∈Ti , di = [dj ]j∈Ti , and

ωi = [ωj ]j∈Ti .
3. For each i in 1, . . . , t, compute evaluation proof πi ← Sm.Open(trap,pi,vi, Qi := Ti×{zi}, ξ;ωi).
4. Output πi := [πi]

t
i=1.

The simulator SPC is a simple wrapper around the simulator Sm. Since Sm achieves perfect hiding,
so does SPC regardless of τ , the number of query sets Qi, or ti, the respective number of distinct
points in each query set.
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Chapter 3

Proof-carrying Data without Succinct
Arguments

Proof-carrying data (PCD) is a powerful cryptographic primitive that enables mutually distrustful
parties to perform distributed computations that run indefinitely. Known approaches to construct
PCD are based on succinct non-interactive arguments of knowledge (SNARKs) that have a succinct
verifier or a succinct accumulation scheme.

In this chapter, we show how to obtain PCD without relying on SNARKs: we construct a PCD
scheme given any non-interactive argument of knowledge (e.g., with linear-size arguments) that has
a split accumulation scheme, which is a weak form of accumulation that we introduce.

Moreover, we construct a transparent non-interactive argument of knowledge for R1CS whose
split accumulation is verifiable via a (small) constant number of group and field operations. Our
construction is proved secure in the random oracle model based on the hardness of discrete logarithms,
and it leads, via the random oracle heuristic and our result above, to concrete efficiency improvements
for PCD.

Along the way, we construct a split accumulation scheme for Hadamard products under Pedersen
commitments and for a simple polynomial commitment scheme based on Pedersen commitments.

Our results are supported by a modular and efficient implementation.
This work was previously published in [BCLMS21].
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3.1 Introduction
Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that enables mutually
distrustful parties to perform distributed computations that run indefinitely, while ensuring that the
correctness of every intermediate state of the computation can be verified efficiently. A special
case of PCD is incrementally-verifiable computation (IVC) [Val08]. PCD has found applications
in enforcing language semantics [CTV13], verifiable MapReduce computations [CTV15], image
authentication [NT16], blockchains [Mina; KB20; BMRS20; CCDW20], and others. Given the
theoretical and practical relevance of PCD, it is an important research question to build efficient
PCD schemes from minimal cryptographic assumptions.
PCD from succinct verification. The canonical construction of PCD is via recursive composition
of succinct non-interactive arguments (SNARGs) [BCCT13; BCTV14; COS20]. Informally, a proof
that the computation was executed correctly for t steps consists of a proof of the claim “the t-th step
of the computation was executed correctly, and there exists a proof that the computation was executed
correctly for t− 1 steps”. The latter part of the claim is expressed using the SNARG verifier itself.
This construction yields secure PCD (with IVC as a special case) provided the SNARG satisfies
an adaptive knowledge soundness property (i.e., is a SNARK). Efficiency requires the SNARK to
have sublinear-time verification, achievable via SNARKs for machine computations [BCCT13] or
preprocessing SNARKs for circuit computations [BCTV14; COS20].

Requiring sublinear-time verification, however, significantly restricts the choice of SNARK,
which limits what is achievable for PCD. These restrictions have practical implications: the
concrete efficiency of recursion is limited by the use of expensive curves for pairing-based SNARKs
[BCTV14] or heavy use of cryptographic hash functions for hash-based SNARKs [COS20].
PCD from accumulation. Recently, [BCMS20] gave an alternative construction of PCD using
SNARKs that have succinct accumulation schemes; this developed and formalized a novel approach
for recursion sketched in [BGH19]. Informally, rather than being required to have sublinear-time
verification, the SNARK is required to be accompanied by a cryptographic primitive that enables
“postponing” the verification of SNARK proofs by way of an accumulator that is updated at each
recursion step. The main efficiency requirement on the accumulation scheme is that the accumulation
procedure must be succinctly verifiable, and in particular the accumulator itself must be succinct.

Requiring a SNARK to have a succinct accumulation scheme is a weaker condition than requiring
it to have sublinear-time verification. This has enabled constructing PCD from SNARKs that
do not have sublinear-time verification [BCMS20], which in turn led to PCD constructions from
assumptions and with efficiency properties that were not previously achieved. Practitioners have
exploited this freedom to design implementations of recursive composition with improved practical
efficiency [Halo20; Pickles20].
Our motivation. The motivation of this work is twofold. First, can PCD be built from a weaker
primitive than SNARKs with succinct accumulation schemes? If so, can we leverage this to obtain
PCD constructions with improved concrete efficiency?
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3.1.1 Contributions
We make theory and systems contributions that advance the state of the art for PCD: (1) We
introduce split accumulation schemes for relations, a cryptographic primitive that relaxes prior
notions of accumulation. (2) We obtain PCD from any non-interactive argument of knowledge
that satisfies this weaker notion of accumulation; surprisingly, this allows for arguments with no
succinctness whatsoever. (3) We construct a non-interactive argument of knowledge based on
discrete logarithms (and random oracles) whose accumulation verifier has constant size (improving
over the logarithmic-size verifier of prior accumulation schemes in this setting). (4) We implement
and evaluate constructions from this work and from [BCMS20].

We elaborate on each of these contributions next.
(1) Split accumulation for relations. Recall from [BCMS20] that an accumulation scheme for a
predicate Φ: X → {0, 1} enables proving/verifying that each input in an infinite stream q1, q2, . . .
satisfies the predicate Φ, by augmenting the stream with accumulators. Informally, for each i, the
prover produces a new accumulator acci+1 from the input qi and the old accumulator acci; the
verifier can check that the triple (qi, acci, acci+1) is a valid accumulation step, much more efficiently
than running Φ on qi. At any time, the decider can validate acci+1, which establishes that for all
j ≤ i it was the case that Φ(qj) = 1. The accumulator size (and hence the running time of the three
algorithms) cannot grow in the number of accumulation steps.

We extend this notion in two orthogonal ways. First we consider relations Φ: X ×W → {0, 1}
and now for a stream of instances qx1, qx2, . . . the goal is to establish that there exist witnesses
qw1, qw2, . . . such that Φ(qxi, qwi) = 1 for each i. Second, we consider accumulators acci that are
split into an instance part acci.x and a witness part acci.w with the restriction that the accumulation
verifier only gets to see the instance part (and possibly an auxiliary accumulation proof pf). We
refer to this notion as split accumulation for relations, and refer to (for contrast) the notion from
[BCMS20] as atomic accumulation for languages.

The purpose of these extensions is to enable us to consider accumulation schemes in which
predicate witnesses and accumulator witnesses are large while still requiring the accumulation
verifier to be succinct (it receives short predicate instances and accumulator instances but not large
witnesses). We will see that such accumulation schemes are both simpler and cheaper, while still
being useful for primitives such as PCD.

See Section 3.2.1 for more on atomic vs. split accumulation, and Section 3.4 for formal definitions.
(2) PCD via split accumulation. A non-interactive argument has a split accumulation scheme if
the relation corresponding to its verifier has a split accumulation scheme (we make this precise later).
We show that any non-interactive argument of knowledge (NARK) having a split accumulation
scheme where the accumulation verifier is sublinear can be used to build a proof-carrying data
(PCD) scheme, even if the NARK does not have sublinear argument size. This significantly broadens
the class of non-interactive arguments from which PCD can be built, and is the first result to obtain
PCD from non-interactive arguments that need not be succinct. Similarly to [BCMS20], if the
NARK and accumulation scheme are post-quantum secure, so is the PCD scheme. (It remains an
open question whether there are non-trivial post-quantum instantiations of these.)



CHAPTER 3. PROOF-CARRYING DATA WITHOUT SUCCINCT ARGUMENTS 96

Theorem 3 (informal). There is an efficient transformation that compiles any NARK with a split
accumulation scheme into a PCD scheme. If the NARK and its split accumulation scheme are
zero knowledge, then the PCD scheme is also zero knowledge. Additionally, if the NARK and its
accumulation scheme are post-quantum secure then the PCD scheme is also post-quantum secure.

Similarly to all PCD results known to date, the above theorem holds in a model where all parties
have access to a common reference string, but no oracles. (The construction makes non-black-box
use of the accumulation scheme verifier, and the theorem does not carry over to the random oracle
model.)

A corollary of Theorem 3 is that any NARK with a split accumulation scheme can be
“bootstrapped” into a SNARK for machine computations. (PCD implies IVC and, further assuming
collision-resistant hashing, also efficient SNARKs for machine computations [BCCT13].) This
is surprising: an argument with decidedly weak efficiency properties implies an argument with
succinct proofs and succinct verification!

See Section 3.2.2 for a summary of the ideas behind Theorem 3, and Section 3.5 for technical
details.
(3) NARK with split accumulation based on DL. Theorem 3 motivates the question of whether
we can leverage the weaker condition on the argument system to improve the efficiency of PCD.
Our focus is on minimizing the cost of the accumulation verifier for the argument system, because
it is the only component that is not used as a black box, and thus typically determines concrete
efficiency. Towards this end, we present a (zero knowledge) NARK with (zero knowledge) split
accumulation based on discrete logarithms, with a constant-size accumulation verifier; the NARK
has a transparent (public-coin) setup.

Theorem 4 (informal). In the random oracle model and assuming the hardness of the discrete
logarithm problem, there exists a transparent (zero knowledge) NARK for R1CS and a corresponding
(zero knowledge) split accumulation scheme with the following efficiency:

NARK split accumulation scheme
prover time verifier time argument size prover time verifier time decider time accumulator size

O(M) G O(M) G O(1) G O(M) G O(1) G O(M) G |acc.x| = O(1) G +O(1) F
O(M) F O(M) F O(M) F O(M) F O(1) F O(M) F |acc.w| = O(M) F

Above, M denotes the number of constraints in the R1CS instance, G denotes group scalar
multiplications or group elements, and F denotes field operations or field elements.

The NARK construction from Theorem 4 is particularly simple: it is obtained by applying the
Fiat–Shamir transformation to a sigma protocol for R1CS based on Pedersen commitments (and
linear argument size). The only “special” feature about the construction is that, as we prove, it
has a very efficient split accumulation scheme for the relation corresponding to its verifier. By
heuristically instantiating the random oracle, we can apply Theorem 3 (and [BCCT13]) to obtain a
SNARK for machines from this modest starting point.

We find it informative to compare Theorem 4 and SNARKs with atomic accumulation based on
discrete logarithms [BCMS20]:
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• the SNARK’s argument size is O(log M) group elements, much less than the NARK’s O(M) field
elements;

• the SNARK’s accumulator verifier usesO(log M) group scalar multiplications and field operations,
much more than the NARK’s O(1) group scalar multiplications and field operations.

Therefore Theorem 4 offers a tradeoff that minimizes the cost of the accumulator at the expense of
argument size. (As we shall see later, this tradeoff has concrete efficiency advantages.)

Our focus on argument systems based on discrete logarithms is motivated by the fact that they
can be instantiated based on efficient curves suitable for recursion: the Tweedle [BGH19] or Pasta
[Hop20] curve cycles, which follow the curve cycle technique for efficient recursion [BCTV14]. (In
fact, as our construction does not rely on any number-theoretic properties of |G|, we could even use
the (secp256k1, secq256k1) cycle, where secp256k1 is the curve used in Bitcoin.) This focus on
discrete logarithms is a choice made for this work, and we believe that our ideas can lead to efficiency
improvements to recursion in other settings (e.g., pairing-based and hash-based arguments) and
leave these to future work.

See Section 3.2.3 for a summary of the ideas behind Theorem 3, and Section 3.8 for technical
details.
(4) Split accumulation for common predicates. We obtain split accumulation schemes with
constant-size accumulation verifiers for common predicates: (i) Hadamard products (and more
generally any bilinear function) under Pedersen commitments (see Section 3.2.5 for a summary and
Section 3.7 for details); (ii) polynomial evaluations under Pedersen commitments (see Section 3.2.6
for a summary and Section 3.11 for technical details). Split accumulation for Hadamard products is
a building block that we use to prove Theorem 3.
(5) Implementation and evaluation. We contribute a set of Rust libraries that realize PCD via
accumulation via modular combinations of interchangeable components: (a) generic interfaces for
atomic and split accumulation; (b) generic construction of PCD from arguments with atomic and
split accumulation; (c) split accumulation for our zkNARK for R1CS; (d) split accumulation for
Hadamard products under Pedersen commitments; (e) split accumulation for polynomial evaluations
under Pedersen commitments; (f) atomic accumulation for polynomial commitments based on inner
product arguments and pairings from [BCMS20]; (g) constraints for all the foregoing accumulation
verifiers. Practitioners interested in PCD will find these libraries useful for prototyping and
comparing different types of recursion (and, e.g., may help decide if current systems based on
atomic recursion [Halo20; Pickles20] are better off via split recursion or not).

We additionally conduct experiments to evaluate our implementation. Our experiments focus
on determining the recursion threshold, which informally is the number of constraints that need
to be proved at each step of the recursion. Our evaluation demonstrates that, over curves from the
popular “Pasta” cycle [Hop20], the recursion threshold for split accumulation of our NARK for
R1CS is as low as 52,000 constraints, which is at least 8.5× cheaper than the cost of IVC constructed
from atomic accumulation for discrete-logarithm-based protocols [BCMS20]. In fact, the recursion
threshold is even lower than that for IVC constructed from prior state-of-the-art pairing-friendly
SNARKs [Gro16]. While this comes at the expense of much larger proof sizes, this overhead is
attractive for notable applications (e.g., incrementally-verifiable ledgers).
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See Section 3.9 and Section 3.10 for more details on our implementation and evaluation,
respectively.

Remark 3.1.1 (concurrent work). A concurrent work [BDFG21] studies similar questions as this
work. Below we summarize the similarities and the differences between the two works.

Similarities. Both works are motivated by the goal of reducing the cost of recursive arguments.
The main object of study in [BDFG21] is additive polynomial commitment schemes (PC schemes),
for which [BDFG21] considers different types of aggregation schemes: (1) public aggregation
in [BDFG21] is closely related to atomic accumulation specialized to PC schemes from a prior
work [BCMS20]; and (2) private aggregation in [BDFG21] is closely related to split accumulation
specialized to PC schemes from this work. Moreover, the private aggregation scheme for additive
PC schemes in [BDFG21] is similar to our split accumulation scheme for Pedersen PC schemes
(overviewed in Section 3.2.6 and detailed in Section 3.11). The protocols differ in how efficiency
depends on the n claims to aggregate/accumulate: the verifier in [BDFG21] uses n+ 1 group scalar
multiplications while ours uses 2n. (Informally, [BDFG21] first randomly combines claims and then
evaluates at a random point, while we first evaluate at a random point and then randomly combine
claims.)

Differences. The two works develop distinct, and complementary, directions.
The focus of [BDFG21] is to design protocols for any additive PC scheme (and, even more

generally, any PC scheme with a linear combination scheme), including the aforementioned private
aggregation protocol and a compiler that endows a given PC scheme with zero knowledge.

In contrast, our focus is to formulate a definition of split accumulation for general relation
predicates that (a) we demonstrate suffices to construct PCD, and (b) in the random oracle model,
we can also demonstrably achieve via a split accumulation scheme based on Pedersen commitments.
We emphasize that our definitions are materially different from the case of atomic accumulation in
[BCMS20], and necessitate careful consideration of technicalities such as the flavor of adaptive
knowledge soundness, which algorithms can be allowed to query oracles, and so on. Hence, we
cannot simply rely on the existing foundations for atomic accumulation of [BCMS20] in order to
infer the correct definitions and security reductions for split accumulation. Overall, our theoretical
work enables us to achieve the first construction of PCD without succinct arguments, and also to
obtain a novel NARK for R1CS with a constant-size accumulation verifier.

We stress that the treatment of accumulation at a higher level of abstraction than for PC schemes
is essential to prove theorems about PCD. In particular, contrary to what is claimed as a theorem in
[BDFG21], it is not known how to build PCD from a PC scheme with an aggregation/accumulation
scheme in any model without making additional heuristic assumptions. This is because obtaining a
NARK from a PC scheme using known techniques requires the use of a random oracle, which we do
not know how to accumulate. In contrast, we construct PCD in the standard model starting directly
from an aggregation/accumulation scheme for a NARK, and no additional assumptions. Separately,
the security of our accumulation scheme for a NARK in the standard model is an assumption, which
is conjectured based on a security proof in the ROM.

Another major difference is that we additionally contribute a comprehensive and modular
implementation of protocols from [BCMS20] and this work, and conduct an evaluation for the
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discrete logarithm setting. This supports the asymptotic improvements with measured improvements
in concrete efficiency.
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3.2 Techniques
We summarize the main ideas behind our results. In Section 3.2.1 we discuss our new notion of
split accumulation for relation predicates, and compare it with the notion of atomic accumulation
for language predicates from [BCMS20]. In Section 3.2.2 we discuss the proof of Theorem 3.
In Section 3.2.3 we discuss the proof of Theorem 4; for this we rely on a new result about split
accumulation for Hadamard products, which we discuss in Section 3.2.5. Then, in Section 3.2.6, we
discuss our split accumulation for a Pedersen-based polynomial commitment, which can act as a
drop-in replacement for polynomial commitments used in prior SNARKs, such as those of [BGH19].
Finally, in Section 3.2.7 we elaborate on our implementation and evaluation. Figure 3.1 illustrates
the relation between our results. The rest of the chapter contains technical details, and we provide
pointers to relevant sections along the way.

(zk)NARK with split accumulation 

(zk)PCD

Theorem 1

instantiate random oracle

Theorem 2

zkNARK for R1CS
Σ-protocol for R1CS based

on Pedersen commitments

split accumulation for the zkNARK verifier
Theorem 3: split accumulation for


Hadamard products
+

random oracle model

no oracles

Theorem 4: split accumulation for

Pedersen polynomial commitments

Figure 3.1: Diagram showing the relation between our results. Gray boxes within a result are notable subroutines.

3.2.1 Accumulation: atomic vs split
We review the notion of accumulation from [BCMS20], which we refer to as atomic accumulation,
and then describe the weaker notion that we introduce, which we call split accumulation.
Atomic accumulation for languages. An accumulation scheme for a language predicate Φ: X →
{0, 1} is a tuple of algorithms (P,V,D), known as the prover, verifier, and decider, that enable
proving/verifying statements of the form Φ(q1) ∧ Φ(q2) ∧ · · · more efficiently than running the
predicate Φ on each input.

This is done as follows. Starting from an initial (“empty”) accumulator acc1, the prover is used
to accumulate the first input q1 to produce a new accumulator acc2 ← P(q1, acc1); then the prover
is used again to accumulate the second input q2 to produce a new accumulator acc3 ← P(q2, acc2);
and so on.

Each accumulator produced so far enables efficient verification of the predicate on all inputs that
went into the accumulator. For example, to establish that Φ(q1) ∧ · · · ∧ Φ(qT ) = 1 it suffices to
check that:
• the verifier accepts each accumulation step: V(q1, acc1, acc2) = 1, V(q2, acc2, acc3) = 1, and so
on; and

• the decider accepts the final accumulator: D(accT ) = 1.
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Qualitatively, this replaces the naive cost T · |Φ| with the new cost T · |V|+ |D|. This is beneficial
when the verifier is much cheaper than checking the predicate directly and the decider is not much
costlier than checking the predicate directly. Crucially, the verifier and decider costs (and, in
particular, the accumulator size) should not grow with the number T of accumulation steps (which
need not be known in advance).

The properties of an accumulation scheme are summarized in the following informal definition,
which additionally includes an accumulation proof used to check an accumulation step (but is not
passed on).

Definition 3.2.1 (informal). An accumulation scheme for a predicate Φ: X → {0, 1} consists of a
triple of algorithms (P,V,D), known as the prover, verifier, and decider, that satisfies the following
properties.

• Completeness: For every accumulator acc and predicate input q ∈ X , ifD(acc) = 1 andΦ(q) = 1,
then for (acc?, pf?)← P(acc, q) it holds that V(q, acc, acc?, pf?) = 1 and D(acc?) = 1.

• Soundness: For every efficiently-generated old accumulator acc, predicate input q ∈ X , new
accumulator acc?, and accumulation proof pf?, if D(acc?) = 1 and V(q, acc, acc?, pf?) = 1 then,
with all but negligible probability, Φ(q) = 1 and D(acc) = 1.

The above definition omits many details, such as the ability to accumulate multiple accumulators
[accj]

m
j=1 and multiple predicate inputs [qi]

n
i=1 in one step, the optional property of zero knowledge

(enabled by the accumulation proof pf?), the fact that P,V,D should receive keys apk, avk, dk
generated by an indexer algorithm that receives the specification of Φ, and others. We refer the
reader to [BCMS20] for more details.

The aspect that we wish to highlight here is the following: in order for the verifier to be much
cheaper than the predicate (|V| � |Φ|) it must be that the accumulator itself is much smaller than
the predicate (|acc| � |Φ|) because the verifier receives the accumulator as input. (And if the
accumulator is accompanied by a validity proof pf then this proof must also be small.)

We refer to this setting as atomic accumulation because the entirety of the accumulator is treated
as one short monolithic string. In contrast, in this work we consider a relaxation where this is not the
case, and will enable us to obtain new instantiations that lead to new theoretical and practical results.
Split accumulation for relations. We propose a relaxed notion of accumulation: a split
accumulation scheme for a relation predicate Φ: X ×W → {0, 1} is again a tuple of algorithms
(P,V,D) as before. Split accumulation differs from atomic accumulation in that: (a) an input to Φ
consists of a short instance part qx and a (possibly) long witness part qw; (b) an accumulator acc is
split into a short instance part acc.x and a (possibly) long witness part acc.w; (c) the verifier only
needs the short parts of inputs and accumulators to verify an accumulation step, along with a short
validity proof instead of the long witness parts.

As before, the prover is used to accumulate a predicate input qi = (qxi, qwi) into a prior
accumulator acci to obtain a new accumulator and validity proof (acci+1, pfi+1) ← P(qi, acci).
Different from before, however, we wish to establish that given instances qx1, . . . , qxT there exist
(more precisely, a party knows) witnesses qw1, . . . , qwT such thatΦ(qx1, qw1)∧· · ·∧Φ(qxT , qwT ) =
1. For this it suffices to check that:
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• the verifier accepts each accumulation step given the short instance: V(qx1, acc1.x, acc2.x, pf2) =
1, V(qx2, acc2.x, acc3.x, pf3) = 1, and so on; and

• the decider accepts the final accumulator (made of both the instance and witness): D(accT ) = 1.
Again the naive cost T · |Φ| is replaced with the new cost T · |V| + |D|, but now it could be that
an accumulator is, e.g., as large as |Φ|; we only need the instance part of the accumulator (and
predicate inputs) to be short.

The security property of a split accumulation scheme involves an extractor that outputs a long
witness part from a short instance part and proof, and is reminiscent of the knowledge soundness of
a succinct non-interactive argument. Turning this high level description into a working definition
requires some care, however, and we view this as a contribution of this work.1 Informally the
security definition could be summarized as follows.

Definition 3.2.2 (informal). A split accumulation scheme for a predicate Φ: X ×W → {0, 1}
consists of a triple of algorithms (P,V,D) that satisfies the following properties.

• Completeness: For every accumulator acc and predicate input q = (qx, qw) ∈ X×W , ifD(acc) =
1 and Φ(q) = 1, then for (acc?, pf?)← P(q, acc) it holds that V(qx, acc.x, acc?.x, pf?) = 1 and
D(acc?) = 1.

• Knowledge: For every efficiently-generated old accumulator instance acc.x, old input instance qx,
accumulation proofpf?, and newaccumulator acc?, ifD(acc?) = 1 andV(qx, acc.x, acc?.x, pf?) =
1 then, with all but negligible probability, an efficient extractor can find an old accumulator
witness acc.w and predicate witness qw such that Φ(qx, qw) = 1 and D((acc.x, acc.w)) = 1.

One can verify that split accumulation is indeed a relaxation of atomic accumulation: any atomic
accumulation scheme is (trivially) a split accumulation scheme with empty witnesses. Crucially,
however, a split accumulation scheme alleviates a major restriction of atomic accumulation, namely,
that accumulators and predicate inputs have to be short.

See Section 3.4 for formal definitions for split accumulation.2

Next, in Section 3.2.2 we show that split accumulation suffices for recursive composition (which
has surprising theoretical consequences) and then in Section 3.2.3 we present a NARK with split
accumulation scheme based on discrete logarithms.

3.2.2 PCD from split accumulation
We summarize the main ideas behind Theorem 3, which obtains proof-carrying data (PCD) from
any NARK that has a split accumulation scheme. To ease exposition, in this summary we focus on

1By “working definition” we mean a definition that we can provably fulfill under concrete hardness assumptions in
the random oracle model, and, separately, that provably suffices for recursive composition in the plain model without
random oracles.

2The definitions in Section 3.4 are stated for the ROM, and one can obtain the definitions for the standard model (no
ROM) by simply omitting the random oracle. Jumping ahead, the definitions in the standard model are those that we use
for constructing PCD, while the definitions in the ROM are those that we prove are satisfied by our constructions of
accumulation schemes.
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IVC, which can be viewed as the special case where a circuit F is repeatedly applied. That is, we
wish to incrementally prove a claim of the form “F T (z0) = zT ” where F

T denotes F composed
with itself T times.
Prior work: recursion via atomic accumulation. Our starting point is a theorem from [BCMS20]
that obtains PCD from any SNARK that has an atomic accumulation scheme. The IVC construction
implied by that theorem is roughly follows.

• The IVC prover receives a previous instance zi, proof πi, and accumulator acci; accumulates
(zi, πi) with acci to obtain a new accumulator acci+1 and accumulation proof pfi+1; and generates
a SNARK proof πi+1 of the following claim expressed as a circuit R (see Fig. 3.2, middle box):
“zi+1 = F (zi), and there exist a SNARK proof πi, accumulator acci, and accumulation proof pfi+1

such that the accumulation verifier accepts ((zi, πi), acci, acci+1, pfi+1)”. The IVC proof for zi+1

is (πi+1, acci+1).

• The IVC verifier validates an IVC proof (πi, acci) for zi by running the SNARK verifier on the
instance (zi, acci) and proof πi, and running the accumulation scheme decider on the accumulator
acci.

In each iteration we maintain the invariant that if acci is a valid accumulator (according to the
decider) and πi is a valid SNARK proof, then the computation is correct up to the i-th step.

Note that while it would suffice to prove that “zi+1 = F (zi), πi is a valid SNARK proof, and acci
is a valid accumulator”, we cannot afford to do so. Indeed: (i) proving that πi is a valid proof requires
proving a statement about the argument verifier, which may not be sublinear; and (ii) proving that acci
is a valid accumulator requires proving a statement about the decider, which may not be sublinear.
Instead of proving this claim directly, we “defer” it by having the prover accumulate (zi, πi) into acci
to obtain a new accumulator acci+1. The soundness property of the accumulation scheme ensures
that if acci+1 is valid and the accumulation verifier accepts ((zi, πi), acci, acci+1, pfi+1), then πi is a
valid SNARK proof and acci is a valid accumulator. Thus all that remains to maintain the invariant
is for the prover to prove that the accumulation verifier accepts; this is possible provided that the
accumulation verifier is sublinear.
Our construction: recursion via split accumulation. Our construction naturally extends the above
idea to the setting ofNARKswith split accumulation schemes. Indeed, the only difference to the above
construction is that the proof πi+1 generated by the IVC prover is for the statement “zi+1 = F (zi),
and there exist a NARK proof instance πi.x, an accumulator instance acci.x, and an accumulation
proof pfi+1 such that the accumulation verifier accepts ((zi, πi.x), acci.x, acci+1.x, pfi+1)”, and
accordingly the IVC verifier runs the NARK verifier on ((zi, acci.x), πi) (in addition to running the
accumulation scheme decider on the accumulator acci). This is illustrated in Fig. 3.2 (lower box).
Note that the circuit R itself is unchanged from the atomic case; the difference is in whether we pass
the entire proof and accumulators or just the x part.

Proving that this relaxation yields a secure construction is more complex. Similar to prior work,
the proof of security proceeds via a recursive extraction argument, as we explain next.

For an atomic accumulation scheme ([BCMS20]), one maintains the following extraction
invariant: the i-th extractor outputs (zi, πi, acci) such that πi is valid according to the SNARK, acci
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is valid according to the decider, and F T−i(zi) = zT . The T -th “extractor” is simply the malicious
prover, and we can obtain the i-th extractor by applying the knowledge guarantee of the SNARK to
the (i+ 1)-th extractor. That the invariant is maintained is implied by the soundness guarantee of
the atomic accumulation scheme.

For a split accumulation scheme, we want to maintain the same extraction invariant; however,
the extractor for the NARK will only yield (zi, πi.x, acci.x), and not the corresponding witnesses.
This is where we make use of the extraction property of the split accumulation scheme itself.
Specifically, we interleave the knowledge guarantees of the NARK and accumulation scheme as
follows: the i-th NARK extractor is obtained from the (i+ 1)-th accumulation extractor using the
knowledge guarantee of the NARK, and the i-th accumulation extractor is obtained from the i-th
NARK extractor using the knowledge guarantee of the accumulation scheme. We take the malicious
prover to be the T -th accumulation extractor.
From sketch to proof. In Section 3.5, we give the formal details of our construction and a proof of
correctness. In particular, we show how to construct PCD, a more general primitive than IVC. In the
PCD setting, rather than each computation step having a single input zi, it receivesm inputs from
different nodes. Proving correctness hence requires proving that all of these inputs were computed
correctly. For our construction, this entails checkingm proofs andm accumulators. To do this, we
extend the definition of an accumulation scheme to allow accumulating multiple instance-proof
pairs and multiple “old” accumulators.

We also note that the application to PCD leads to other definitional considerations, which
are similar to those that have appeared in previous works [COS20; BCMS20]. In particular, the
knowledge soundness guarantee for both the NARK and the accumulation scheme should be of
the stronger “multi-instance witness-extended emulation with auxiliary input and output” type
used in previous work. Additionally, the underlying construction of split accumulation achieves
only expected polynomial-time extraction (in the ROM), and so the recursive extraction technique
requires that we are able to extract from expected-time adversaries.

Remark 3.2.3 (knowledge soundness for PCD vs. IVC). The proof of security for PCD extracts a
transcript one full layer at a time. Since a layer consists of many nodes, each with an independently-
generated proof and accumulator, a standard “single-instance” extraction guarantee is insufficient
in general. However, in the special case of IVC, every layer consists of exactly one node, and so
single-instance extraction does suffice.

Remark 3.2.4 (flavors of PCD). The recent advances in PCD from accumulation achieve weaker
efficiency guarantees than PCD from succinct verification, and formally these results are incomparable.
(Starting from weaker assumptions they obtain weaker conclusions.) The essential feature that
all these works achieve is that the efficiency of PCD algorithms is independent of the number of
nodes in the PCD computation, which is how PCD is defined (see Section 3.3.2). That said, prior
work on PCD from succinct verification [BCCT13; BCTV14; COS20] additionally guarantees that
verifying a PCD proof is sublinear in a node’s computation; and prior work on PCD from atomic
accumulation [BCMS20] merely ensures that a PCD proof has size (but not necessarily verification
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recursion circuit via
succinct verification

recursion circuit via
atomic accumulation

recursion circuit via
split accumulation

R
(
(ivk, zi+1), (zi, πi)

)
:

• check that zi+1 = F (zi)
• set SNARK instance xi := (ivk, zi)
• check that SNARK.V(ivk,xi, πi) = 1

R
(
(avk, zi+1, acci+1), (zi, πi, acci, pfi+1)

)
:

• check that zi+1 = F (zi)
• set predicate input qi := ((avk, zi, acci), πi)
• check that ACC.V(avk, qi, acci, acci+1, pfi+1) = 1

R
(
(avk, zi+1, acci+1.x), (zi, πi.x, acci.x, pfi+1)

)
:

• check that zi+1 = F (zi)
• set predicate instance qxi := ((avk, zi, acci.x), πi.x)
• check that ACC.V(avk, qxi, acci.x, acci+1.x, pfi+1) = 1

Figure 3.2: Comparison of circuits used to realize recursion with different techniques.

time) that is sublinear in a node’s computation. The PCD scheme obtained in this work does not
have these additional features: a PCD proof has size that is linear in a node’s computation.

3.2.3 NARK with split accumulation based on DL
We summarize the main ideas behind Theorem 4, which provides, in the discrete logarithm setting
with random oracles, a (zero knowledge) NARK for R1CS that has a (zero knowledge) split
accumulation scheme whose accumulation verifier has constant size (more precisely, performs a
constant number of group scalar multiplications, field operations, and random oracle calls).

Recall that R1CS is a standard generalization of arithmetic circuit satisfiability where the “circuit
description” is given by coefficient matrices, as specified below. (“◦” denotes the entry-wise
product.)

Definition 3.2.5 (R1CS problem). Given a finite field F, coefficient matrices A,B,C ∈ FM×N,
and an instance vector x ∈ Fn, is there a witness vector w ∈ FN−n such that Az ◦ Bz = Cz for
z := (x,w) ∈ FN?

We explain our construction incrementally. In Section 3.2.3.1 we begin by describing a NARK
for R1CS that is not zero knowledge, and a “basic” split accumulation scheme for it that is also not
zero knowledge. In Section 3.2.3.2 we show how to extend the NARK and its split accumulation
scheme to both be zero knowledge. In Section 3.2.3.3 we explain why the accumulation scheme
described so far is limited to the special case of 1 old accumulator and 1 predicate input (which
suffices for IVC), and sketch how to obtain accumulation form old accumulators and n predicate
inputs (which is required for PCD); this motivates the problem of accumulating Hadamard products,
which we subsequently address in Section 3.2.5.

We highlight here that both the NARK and the accumulation scheme are particularly simple
compared to other protocols in the SNARK literature (especially with regard to constructions that
enable recursion!), and view this as a significant advantage for potential deployments of these ideas
in the real world.
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3.2.3.1 Without zero knowledge

Let ck = (G1, . . . , GM) ∈ GM be a commitment key for the Pedersen commitment scheme with
message space FM, and let Commit(ck, a) :=

∑
i∈[M] ai · Gi denote its commitment function.

Consider the following non-interactive argument for R1CS:

P
(
ck, (A,B,C), x, w

)
V
(
ck, (A,B,C), x

)
z := (x,w) ∈ FN

zA := Az ∈ FM CA := Commit(ck, zA) ∈ G
zB := Bz ∈ FM CB := Commit(ck, zB) ∈ G
zC := Cz ∈ FM CC := Commit(ck, zC) ∈ G

CA, CB, CC , w
z := (x,w)

zA := Az CA
?
= Commit(ck, zA)

zB := Bz CB
?
= Commit(ck, zB)

zC := Cz CC
?
= Commit(ck, zC)

CC
?
= Commit(ck, zA ◦ zB)

The NARK’s security follows from the binding property of Pedersen commitments. (At this
point we are not using any homomorphic properties, but we will in the accumulation scheme.)
Moreover, denoting by K = Ω(M) the number of non-zero entries in the coefficient matrices, the
NARK’s efficiency is as follows:

NARK prover time NARK verifier time NARK argument size

O(M) G O(M) G O(1) G
O(K) F O(K) F O(N) F

The NARK may superficially appear useless because it has linear argument size and is not zero
knowledge. Nevertheless, we can obtain an efficient split accumulation scheme for it, as we describe
next.3

The predicate to be accumulated is the NARK verifier with a suitable split between predicate
instance and predicate witness: Φ takes as input a predicate instance qx = (x,CA, CB, CC) and
a predicate witness qw = w, and then runs the NARK verifier with R1CS instance x and proof
π = (CA, CB, CC, w).4

An accumulator acc is split into an accumulator instance acc.x = (x,CA, CB, CC, C◦) ∈ Fn×G4

and an accumulator witness acc.w = w ∈ FN−n. The accumulation decider D validates a split
accumulator acc = (acc.x, acc.w) as follows: set z := (x,w) ∈ FN; compute the vectors zA := Az,
zB := Bz, and zC := Cz; and check that the following conditions hold:

CA

?
= Commit(ck, zA), CB

?
= Commit(ck, zB), CC

?
= Commit(ck, zC), C◦

?
= Commit(ck, zA◦zB).

3We could even “re-arrange” computation between the NARK and the accumulation scheme, and simplify the
NARK further to be the NP decider (the verifier receives just the witness w and checks that the R1CS condition holds).
We do not do so because this does not lead to any savings in the accumulation verifier (the main efficiency metric of
interest) and also because the current presentation more naturally leads to the zero knowledge variant described in
Section 3.2.3.2. (We note that the foregoing rearrangement is a general transformation that does not preserve zero
knowledge or succinctness of the given NARK.)

4For now we view the commitment key ck and coefficient matrices A,B,C as hardcoded in the accumulation
predicate Φ; our definitions later handle this more precisely.
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Note that the accumulation decider D is similar, but not equal, to the NARK verifier.
We are left to describe the accumulation prover and accumulation verifier. Both have access to a

random oracle ρ. For adaptive security, queries to the random oracle should include a hash τ of
the coefficient matrices A,B,C and instance size n, which can be precomputed in an offline phase.
(Formally, this is done via the indexer algorithm of the accumulation scheme, which receives the
coefficient matrices and instance size, performs all one-time computations such as deriving τ , and
produces an accumulator proving key apk, an accumulator verification key avk, and a decision key
dk for P, V, and D respectively.)

The intuition for accumulation is to set the new accumulator to be a random linear combination
of the old accumulator and predicate input, and use the accumulation proof to collect cross terms
that arise from the Hadamard product (a bilinear, not linear, operation). This naturally leads to the
following simple construction.

PρAS(acc, (qx, qw)):
1. zA := A · (qx.x, qw.w), zB := B · (qx.x, qw.w).
2. z′A := A · (acc.x.x, acc.w.w), z′B := B · (acc.x.x, acc.w.w).
3. pf := Commit(ck, zA ◦ z

′
B + z′A ◦ zB).

4. β := ρAS(τ, acc.x, qx, pf).
5. acc?.x.x := acc.x.x+ β · qx.x.
6. acc?.x.CA := acc.x.CA + β · qx.CA.
7. acc?.x.CB := acc.x.CB + β · qx.CB.
8. acc?.x.CC := acc.x.CC + β · qx.CC .
9. acc?.x.C◦ := acc.x.C◦ + β · pf + β2 · qx.CC .

10. acc?.w.w := acc.w.w + β · qw.w.
11. Output (acc?, pf).

VρAS(acc.x, qx, acc?.x, pf):
1. β := ρAS(τ, acc.x, qx, pf).
2. acc?.x.x

?
= acc.x.x+ β · qx.x.

3. acc?.x.CA
?
= acc.x.CA + β · qx.CA.

4. acc?.x.CB
?
= acc.x.CB + β · qx.CB.

5. acc?.x.CC
?
= acc.x.CC + β · qx.CC .

6. acc?.x.C◦
?
= acc.x.C◦+β ·pf +β2 ·qx.CC .

The efficiency of the split accumulation scheme can be summarized by the following table:

accumulation prover time accumulation verifier time decider time accumulator size

O(M) G 4 G 5 O(M) G |acc.x| = 4 G + n F
O(K) F O(n) F O(K) F |acc.w| = (N− n) F
1 RO 1 RO — —

The key efficiency feature is that the accumulation verifier only performs 1 call to the random
oracle, a constant number of group scalar multiplications, and field operations. (More precisely, the
verifier makes n field operations, but this does not grow with circuit size and, more fundamentally,
is inevitable because the accumulation verifier must receive the R1CS instance x ∈ Fn as input.)

3.2.3.2 With zero knowledge

We explain how to add zero knowledge to the approach described in the previous section.
5The verifier performs 4 group scalar multiplication by computing β · qx.CC and then β · pf + β2 · qx.CC =

β · (pf + β · qx.CC) via another group scalar multiplication. Further it is possible to combine CA and CB in one
commitment in both the NARK and the accumulation scheme. This reduces the group scalar multiplications in the
verifier to 3, and the accumulator size to 3 G + n F.
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First, we extend the NARK to additionally achieve zero knowledge. For this we construct a
sigma protocol for R1CS based on Pedersen commitments, which is summarized in Figure 3.3; then
we apply the Fiat–Shamir transformation to it to obtain a corresponding zkNARK for R1CS. Here
the commitment key for the Pedersen commitment is ck := (G1, . . . , GM, H) ∈ GM+1, as we need a
spare group element for the commitment randomness. The blue text in the figure represents the
“diff” compared to the non-zero-knowledge version, and indeed if all such text were removed the
protocol would collapse to the previous one.

Second, we extend the split accumulation scheme to accumulate the modified protocol for R1CS.
Again the predicate being accumulated is the NARK verifier but now since the NARK verifier has
changed so does the predicate. A zkNARK proof π now can be viewed as a pair (π1, π2) denoting
the prover’s commitment and response in the sigma protocol. Then the predicate Φ takes as input a
predicate instance qx = (x, π1) ∈ Fn ×G8 and a predicate witness qw = π2 ∈ FN−n+4, and then
runs the NARK verifier with R1CS instance x and proof π = (π1, π2).

An accumulator acc is split into an accumulator instance acc.x = (x,CA, CB, CC, C◦) ∈ Fn×G4

(the same as before) and an accumulator witness acc.w = (w, σA, σB, σC, σ◦) ∈ FN−n+4. The
decider is essentially the same as in Section 3.2.3.1, except that now the four commitments are
computed using the corresponding randomness in acc.w.

The accumulation prover and accumulation verifier can be extended, in a straightforward way, to
support the new zkSNARK protocol; we provide these in Figure 3.4, with text in blue to denote the
“diff” to accumulate the zero knowledge features of the NARK and with text in red to denote the
features to make accumulation itself zero knowledge. There we use ρNARK to denote the oracle used
for the zkNARK for R1CS, which is obtained via the Fiat–Shamir transformation applied to a sigma
protocol (as mentioned above); for adaptive security, the Fiat–Shamir query includes, in addition to
π1, a hash τ := ρNARK(A,B,C, n) of the coefficient matrices and the R1CS input x ∈ Fn (this means
that the Fiat–Shamir query equals (τ, qx) = (τ, x, π1)).

Note that now the accumulation prover and accumulation verifier are each making 2 calls to
the random oracle, rather than 1 as before, because they have to additionally compute the sigma
protocol’s challenge.

3.2.3.3 Towards general accumulation

The accumulation schemes described in Sections 3.2.3.1 and 3.2.3.2 are limited to a special case,
which we could call the “IVC setting”, where accumulation involves 1 old accumulator and 1
predicate input. However, the definition of accumulation requires supportingm old accumulators
[accj]

m
j=1 = [(accj.x, accj.w)]mj=1 and n predicate inputs [(qxi, qwi)]

n
i=1, for anym and n. (E.g., to

construct PCD we set bothm and n equal to the “arity” of the compliance predicate.) How can we
extend the ideas described so far to this more general case?

The zkNARK verifier performs two types of computations: linear checks and a Hadamard
product check. We describe how to accumulate each of these in the general case.

• Linear checks. A split accumulator acc = (acc.x, acc.w) in Section 3.2.3.2 included sub-
accumulators for different linear checks: x,CA, CB, CC in acc.x and w, σA, σB, σC in acc.w.
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P
(
ck, (A,B,C), x, w

)
V
(
ck, (A,B,C), x

)
z := (x,w) r ← FN−n

zA := Az ωA ← F CA := Commit(ck, zA;ωA)
zB := Bz ωB ← F CB := Commit(ck, zB;ωB)
zC := Cz ωC ← F CC := Commit(ck, zC ;ωC)

rA := A · (0n
, r) ω

′
A ← F C

′
A := Commit(ck, rA;ω

′
A)

rB := B · (0n
, r) ω

′
B ← F C

′
B := Commit(ck, rB;ω

′
B)

rC := C · (0n
, r) ω

′
C ← F C

′
C := Commit(ck, rC ;ω

′
C)

ω1 ← F C1 := Commit(ck, zA ◦ rB + zB ◦ rA;ω1)
ω2 ← F C2 := Commit(ck, rA ◦ rB;ω2)

s := w+γr ∈ FN−n

σA := ωA + γω
′
A ∈ F

σB := ωB + γω
′
B ∈ F

σC := ωC + γω
′
C ∈ F

σ◦ := ωC + γω1 + γ
2
ω2 ∈ F

CA, CB, CC
C
′
A, C

′
B, C

′
C , C1, C2

γ ∈ F

s, σA, σB, σC , σ◦
sA := A · (x, s) CA+γC

′
A

?
= Commit(ck, sA;σA)

sB := B · (x, s) CB+γC
′
B

?
= Commit(ck, sB;σB)

sC := C · (x, s) CC+γC
′
C

?
= Commit(ck, sC ;σC)

CC+γC1 + γ
2
C2

?
= Commit(ck, sA ◦ sB;σ◦)

Figure 3.3: The sigma protocol for R1CS that underlies the zkNARK for R1CS.

P
ρAS ((qx, qw), acc):

1. zA := A · (qx.x, qw.s), zB := B · (qx.x, qw.s).
2. z′A := A · (acc.x.x, acc.w.s), z′B := B · (acc.x.x, acc.w.s).
3. Sample x? ← Fn and s? ← FN−n and ω?2 ← F.
4. s?A := A · (x?, s?), s?B := B · (x?, s?), s?C := C · (x?, s?).
5. C?A := Commit(ck, s

?
A;ω

?
A) for ω?A ← F.

6. C?B := Commit(ck, s
?
B;ω

?
B) for ω?B ← F.

7. C?C := Commit(ck, s
?
C ;ω

?
C) for ω?C ← F.

8. pf1 := Commit(ck, zA ◦ s
?
B + s

?
A ◦ zB; 0).

9. pf2 := Commit(ck, s
?
A ◦ s

?
B+zA ◦ z

′
B + z

′
A ◦ zB;ω

?
2).

10. pf3 := Commit(ck, s
?
A ◦ z

′
B + z

′
A ◦ s

?
B; 0).

11. pf := (x
?
, C

?
A, C

?
B, C

?
C , pf1,pf2, pf3).

12. β := ρAS(τ, acc.x, qx, pf).
13. Compute γ := ρNARK(τ, qx).
14. acc

?
.x.x := acc.x.x+β · x? + β

2 · qx.x.
15. acc

?
.x.CA := acc.x.CA+β · C?A +β

2 · (qx.CA+γ · qx.C
′
A).

16. acc
?
.x.CB := acc.x.CB+β · C?B +β

2 · (qx.CB+γ · qx.C
′
B).

17. acc
?
.x.CC := acc.x.CC+β · C?C +β

2 · (qx.CC+γ · qx.C
′
C).

18. acc
?
.x.C◦ := acc.x.C◦+β · pf1 + β

2 · pf2+β
3 · pf3

+β
4 · (qx.CC+γ · C1 + γ

2 · C2).
19. acc

?
.w.s := acc.w.s+β · s? + β

2 · qw.s.
20. acc

?
.w.σA := acc.w.σA+β · ω?A + β

2 · qw.σA.
21. acc

?
.w.σB := acc.w.σB+β · ω?B + β

2 · qw.σB .
22. acc

?
.w.σC := acc.w.σC+β · ω?C + β

2 · qw.σC .
23. acc

?
.w.σ◦ := acc.w.σ◦+β

2 · ω?2 + β
4 · qw.σ◦.

24. Output (acc
?
, pf).

V
ρAS (qx, acc.x, acc

?
.x, pf):

1. β := ρAS(τ, acc.x, qx, pf).
2. γ := ρNARK(τ, qx).
3. acc

?
.x.x

?
= acc.x.x+βx

?
+ β

2 · qx.x.
4. acc

?
.x.CA

?
= acc.x.CA+βC

?
A + β

2 · (qx.CA+γ · qx.C
′
A).

5. acc
?
.x.CB

?
= acc.x.CB+βC

?
B + β

2 · (qx.CB+γ · qx.C
′
B).

6. acc
?
.x.CC

?
= acc.x.CC+βC

?
C + β

2 · (qx.CC+γ · qx.C
′
C).

7. acc
?
.x.C◦

?
= acc.x.C◦+β · pf1 + β

2 · pf2+β
3 · pf3

+β
4 · (qx.CC+γ · C1 + γ

2 · C2).

Figure 3.4: Accumulation prover and accumulation verifier for the zkNARK for R1CS.
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We can keep these components and simply use more random coefficients or, as we do, further
powers of the element β. For example, in the accumulation prover P a computation such as
acc?.x.x := acc.x.x + β · qx.x is replaced by a computation such as acc?.x.x :=

∑m
j=1β

j−1 ·
accj.x.x+

∑n
i=1β

m+j−1 · qxi.x.

• Hadamard product check. A split accumulator acc = (acc.x, acc.w) in Section 3.2.3.2 also
included a sub-accumulator for the Hadamard product check: C◦ in acc.x and σ◦ in acc.w.
Because a Hadamard product is a bilinear operation, combining two Hadamard products via
a random coefficient led to a quadratic polynomial whose coefficients include the two original
Hadamard products and a cross term. This is indeed why we stored the cross term in the
accumulation proof pf. However, if we consider the cross terms that arise from combining more
than two Hadamard products (i.e., when m + n > 2) then the corresponding polynomials do
not lend themselves to accumulation because the original Hadamard products appear together
with other cross terms. To handle this issue, we introduce in Section 3.2.5 a new subroutine that
accumulates Hadamard products via an additional round of interaction.

We work out, and prove secure, the above ideas in full generality in Section 3.8.

3.2.4 On proving knowledge soundness
In order to construct accumulation schemes that fulfill the type of knowledge soundness that we
ultimately need for PCD (see Section 3.2.2), we formulate a new expected-time forking lemma
in the random oracle model, which is informally stated below. In our setting, (q, b, o) ∈ L if
o = ([qxi]

n
i=1, acc, pf) is such that D(acc) = 1 and, given that ρ(q) = b, the accumulation verifier

accepts: Vρ([qxi]
n
i=1, acc.x, pf) = 1.

Lemma 1 (informal). Let L be an efficiently recognizable set. There exists an algorithm Fork
such that for every expected polynomial time algorithm A and integer N ∈ N the following holds.
With all but negligible probability over the choice of random oracle ρ, randomness r of A, and
randomness of Fork, if Aρ(r) outputs a tuple (q, b, o) ∈ L with ρ(q) = b, then ForkA,ρ(1N , q, b, o, r)
outputs [(bj, oj)]

N
j=1 such that b1, . . . , bN are pairwise distinct and for each j ∈ [N ] it holds that

(q, bj, oj) ∈ L.

This forking lemma differs from prior forking lemmas in three significant ways. First, it is in the
random oracle model rather than the interactive setting (unlike [BCCGP16]). Second, we can obtain
any polynomial number of accepting transcripts in expected polynomial time with only negligible
loss in success probability (unlike forking lemmas for signature schemes, which typically extract
two transcripts in strict polynomial time [BN06]). Finally, it holds even if the adversary itself runs in
expected (as opposed to strict) polynomial time. This is important for our application to PCD where
the extractor in one recursive step becomes the adversary in the next. This last feature requires some
care, since the running time of the adversary, and in particular the length of its random tape, may
not be bounded. For more details, see Section 3.6.2.
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Moreover, in our security proofs we at times additionally rely on an expected-time variant of the
zero-finding game lemma from [BCMS20] to show that if a particular polynomial equation holds
at a point obtained from the random oracle via a “commitment” to the equation, then it must with
overwhelming probability be a polynomial identity. For more details, see Section 3.11.2.

3.2.5 Split accumulation for Hadamard products
We construct a split accumulation scheme for a predicate ΦHP that considers the Hadamard product
of committed vectors. For a commitment key ck for messages in F`, the predicate ΦHP takes as input
a predicate instance qx = (C1, C2, C3) ∈ G3 consisting of three Pedersen commitments, a predicate
witness qw = (a, b, ω1, ω2, ω3) consisting of two vectors a, b ∈ F` and three opening randomness
elementsω1, ω2, ω3 ∈ F, and checks thatC1 = CM.Commit(ck, a;ω1),C2 = CM.Commit(ck, b;ω2),
and C3 = CM.Commit(ck, a ◦ b;ω3). In other words, C3 is a commitment to the Hadamard product
of the vectors committed in C1 and C2.

Theorem 5 (informal). The Hadamard product predicate ΦHP has a split accumulation scheme ASHP

that is secure in the random oracle model (and assuming the hardness of the discrete logarithm
problem) where verifying accumulation requires 5 group scalar multiplications and O(1) field
operations per claim, and results in an accumulator whose instance part is 3 group elements and
witness part isO(`) field elements. Moreover, the accumulation scheme can be made zero knowledge
at a sub-constant overhead per claim.

We formalize and prove this theorem in Section 3.7. Below we summarize the ideas behind this
result. Our construction directly extends to accumulate any bilinear function (see Remark 3.2.6).
A bivariate identity. The accumulation scheme is based on a bivariate polynomial identity, and is
the result of turning a public-coin two-round reduction into a non-interactive scheme by using the
random oracle. Given n pairs of vectors [(ai, bi)]

n
i=1, consider the following two polynomials with

coefficients in F`:

a(X, Y ) :=
∑n

i=1X
i−1Y i−1ai and b(X) :=

∑n
i=1X

n−ibi .

The Hadamard product of the two polynomials can be written as

a(X, Y ) ◦ b(X) =
∑2n−1

i=1 X i−1ti(Y ) where tn(Y ) =
∑n

i=1Y
i−1ai ◦ bi .

The expression of the coefficient polynomials {ti(Y )}i 6=n is not important; instead, the important
aspect here is that a coefficient polynomial, namely tn(Y ), includes the Hadamard products of all
n pairs of vectors as different coefficients. This identity is the starting point of the accumulation
scheme, which informally evaluates this expression at random points to reduce the n Hadamard
products to 1 Hadamard product. Similar ideas are used to reduce several Hadamard products to a
single inner product in [BCCGP16; BBBPWM18].
Batching Hadamard products. We describe a public-coin two-round reduction from n Hadamard
product claims to 1 Hadamard product claim. The verifier receives n predicate instances
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[qxi]
n
i=1 = [(C1,i, C2,i, C3,i)]

n
i=1 each consisting of three Pedersen commitments, and the prover

receives corresponding predicate witnesses [qwi]
n
i=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]

n
i=1 containing the

corresponding openings.

• The verifier sends a first challenge µ ∈ F.
• The prover computes the product polynomial a(X,µ) ◦ b(X) =

∑2n−1
i=1 X i−1ti(µ) ∈ F`[X]; for

each i ∈ [2n− 1] \ {n}, computes the commitment Ct,i := CM.Commit(ck, ti; 0) ∈ G; and sends
to the verifier an accumulation proof pf := [Ct,i, Ct,n+i]

n−1
i=1 .

• The verifier sends a second challenge ν ∈ F.
• The verifier computes and outputs a new predicate instance qx = (C1, C2, C3):

C1 =
∑n

i=1ν
i−1µi−1C1,i ,

C2 =
∑n

i=1ν
n−iC2,i ,

C3 =
∑n−1

i=1 ν
i−1Ct,i + νn−1∑n

i=1µ
i−1C3,i +

∑n−1
i=1 ν

n+i−1Ct,n+i .

• The prover computes and outputs a corresponding predicate witness qw = (a, b, ω1, ω2, ω3):

a :=
∑n

i=1ν
i−1µi−1ai ω1 :=

∑n
i=1ν

i−1µi−1ω1,i ,

b :=
∑n

i=1ν
n−ibi ω2 :=

∑n
i=1ν

n−iω2,i ,

ω3 := νn−1∑n
i=1µ

i−1ω3,i .

Observe that the new predicate instance qx = (C1, C2, C3) consists of commitments to a(ν, µ),
b(ν), and a(ν, µ) ◦ b(ν), respectively, and the predicate witness qw = (a, b, ω1, ω2, ω3) consists of
corresponding opening information. The properties of low-degree polynomials imply that if any of
the n claims is incorrect (there is i ∈ [n] such that ΦHP(qxi, qwi) = 0) then, with high probability, so
is the output claim (ΦHP(qx, qw) = 0).
Split accumulation. The batching protocol described above yields a split accumulation scheme
for ΦHP in the random oracle model. An accumulator acc has the same form as a predicate input
(qx, qw): acc.x has the same form as a predicate instance qx, and acc.w has the same form as a
predicate witness qw. The accumulation decider D simply equals ΦHP (this is well-defined due to
the prior sentence). The accumulation prover and accumulation verifier are as follows.

• The accumulation prover P runs the interactive reduction by relying on the random oracle to
generate the random verifier messages (i.e., it applies the Fiat–Shamir transformation to the
reduction), in order to produce an accumulation proof pf as well as an accumulator acc = (qx, qw)
whose instance part is computed like the verifier of the reduction and witness part is computed
like the prover of the reduction.

• The accumulation verifier V re-derives the challenges using the random oracle, and checks that qx
was correctly derived from [qxi]

n
i=1 (also via the help of the accumulation proof pf).

The construction described above is not zero knowledge. One way to achieve zero knowledge
is for the accumulation prover to sample a random predicate input that satisfies the predicate,
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accumulate it, and include it as part of the accumulation proof pf. In our construction (detailed
in Section 3.7), we opt for a more efficient solution, leveraging the fact that we are not actually
interested in accumulating the random predicate input.
Efficiency. The efficiency claimed in Theorem 5 is evident from the construction. The (short)
instance part of an accumulator consists of 3 group elements, while the (long) witness part of an
accumulator consists of O(`) field elements. The accumulator verifier V performs 2 random oracle
calls, 5 group scalar multiplication, and O(1) field operations per accumulated claim.
Security. Given an adversary that produces a list of Hadamard product claims [qxi]

n
i=1 =

[(C1,i, C2,i, C3,i)]
n
i=1, a single Hadamard product claim qx = (C1, C2, C3) and corresponding

witness qw = (a, b, ω1, ω2, ω3), and an accumulation proof pf that makes the accumulation verifier
accept, we need to extract witnesses [qwi]

n
i=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]

n
i=1 for the instances [qxi]

n
i=1.

Our security proof (in Section 3.7.2) works in the random oracle model, assuming hardness of the
discrete logarithm problem.

In the proof we apply our expected-time forking lemma twice (see Section 3.2.4 for a discussion of
this lemma and Section 3.6.2 for details including a corollary that summarizes its double invocation).
This lets us construct a two-level tree of transcripts with branching factor n on the first challenge µ
and branching factor 2n− 1 on the second challenge ν. Given such a transcript tree, the extractor
works as follows:

1. Using the transcripts corresponding to challenges {(µ1, ν1,k)}k∈[n] we extract `-element vectors
[ai]

n
i=1, [bi]

n
i=1 and field elements [ω1,i]

n
i=1, [ω2,i]

n
i=1 such that [ai]

n
i=1 and [bi]

n
i=1 are committed in

[C1,i]
n
i=1 and [C2,i]

n
i=1 under randomness [ω1,i]

n
i=1 and [ω2,i]

n
i=1, respectively.

2. Define a(X, Y ) :=
∑n

i=1X
i−1Y i−1ai ∈ F`[X, Y ] and b(X) :=

∑n
i=1X

n−ibi ∈ F`[X], using
the vectors extracted above; then let ti(Y ) be the coefficient ofX i−1 in a(X, Y ) ◦ b(X). For each
j ∈ [n], using the transcripts corresponding to challenges {(µj, νj,k)}k∈[2n−1], we extract field
elements [τ

(j)
i ]2n−1

i=1 such that tn(µj) is committed in
∑n−1

i=1 µ
i−1
j C3,i under randomness τ (j)

n and
[ti(µj), tn+i(µj)]

n−1
i=1 are committed in pf(j) := [C

(j)
t,i , C

(j)
t,n+i]

n−1
i=1 under randomness [τ

(j)
i , τ

(j)
n+i]

n−1
i=1

respectively.
3. Compute the solution [ω3,i]

n
i=1 to the linear system {τ (j)

n =
∑n−1

i=1 µ
i−1
j ω3,i}j∈[n]. Together with

the relation {tn(µj) =
∑n−1

i=1 µ
i−1
j ai ◦ bi}j∈[n], we deduce that C3,i is a commitment to ai ◦ bi

under randomness ω3,i for all i ∈ [n].
4. For each i ∈ [n], output qwi := (ai, bi, ω1,i, ω2,i, ω3,i).

Remark 3.2.6 (extension to any bilinear operation). The ideas described above extend, in a straightfor-
ward way, to accumulating any bilinear operation of committed vectors. Let f : F`×F` → Fm be a bi-
linear operation, i.e., such that: (a) f(a+a′, b) = f(a, b)+f(a′, b); (b) f(a, b+b′) = f(a, b)+f(a, b′);
(c) α · f(a, b) = f(αa, b) = f(a, αb). Let Φf be the predicate that takes as input a predicate in-
stance qx = (C1, C2, C3) ∈ G3 consisting of three Pedersen commitments, a predicate witness
qw = (a, b, ω1, ω2, ω3) consisting of two vectors a, b ∈ F` and three opening randomness elements
ω1, ω2, ω3 ∈ F, and checks that C1 = CM.Commit(ck`, a;ω1), C2 = CM.Commit(ck`, b;ω2), and
C3 = CM.Commit(ckm, f(a, b);ω3). The Hadamard product ◦ : F` × F` → F` is a bilinear opera-
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tion, as is the scalar product 〈·, ·〉 : F` × F` → F. Our accumulation scheme for Hadamard products
works the same way, mutatis mutandis, for a general bilinear map f .

3.2.6 Split accumulation for Pedersen polynomial commitments
We construct an efficient split accumulation scheme ASPC for a predicate ΦPC that checks a
polynomial evaluation claim for a “trivial” polynomial commitment scheme PCPed based on Pedersen
commitments (see Fig. 3.5). In more detail, for a Pedersen commitment key ck for messages in Fd+1,
the predicate ΦPC takes as input a predicate instance qx = (C, z, v) ∈ G× F× F and a predicate
witness qw = p ∈ F≤d[X], and checks that C = CM.Commit(ck, p), p(z) = v, and deg(p) ≤ d. In
other words, the predicate ΦPC checks that the polynomial p of degree at most d committed in C
evaluates to v at z.

• Setup: On input λ,D ∈ N, output ppCM ← CM.Setup(1λ, D + 1).
• Trim: On input ppCM and d ∈ N, check that d ≤ D, set ck := CM.Trim(ppCM, d + 1), and output

(ck, rk := ck).
• Commit: On input ck and p ∈ F[X] of degree at most |ck| − 1, output C ← CM.Commit(ck, p).
• Open: On input (ck, p, C, z), output π := p.
• Check: On input (rk, (C, z, v), π = p), check that C = CM.Commit(rk, p), p(z) = v, and deg(p) <
|rk|.

Completeness of PCPed follows from that of CM, while extractability follows from the binding property
of CM.

Figure 3.5: PCPed is a trivial polynomial commitment scheme based on the Pedersen commitment scheme CM.

Theorem 6 (informal). The (Pedersen) polynomial commitment predicate ΦPC has a split
accumulation scheme ASPC that is secure in the random oracle model (and assuming the hardness of
the discrete logarithm problem). Verifying accumulation requires 2 group scalar multiplications and
O(1) field additions/multiplications per claim, and results in an accumulator whose instance part is
1 group element and 2 field elements and whose witness part is d field elements. (See Table 3.1.)

One can use ASPC to obtain a split accumulation scheme for a different NARK; see Remark 3.2.7
for details.

In Table 3.1 we compare the efficiency of our split accumulation scheme ASPC for the predicate
ΦPC with the efficiency of the atomic accumulation scheme ASIPA [BCMS20] for the equivalent
predicate defined by the check algorithm of the (succinct) PC scheme PCIPA based on the inner-
product argument on cyclic groups [BCCGP16; BBBPWM18; WTSTW18]. The takeaway is that
the accumulation verifier for ASPC is significantly cheaper than the accumulation verifier for ASIPA.

Technical details are in Section 3.11; in the rest of this section we sketch the ideas behind
Theorem 6.

First we describe a simple public-coin interactive reduction for combining two or more evaluation
claims into a single evaluation claim, and then explain how this interactive reduction gives rise to the
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scheme type assumption prover (per claim) verifier (per claim) decider accumulator size
instance witness

ASIPA

[BCMS20] atomic DLOG + RO †
O(log d) G
O(d) F

[+O(d) G per acc.]

O(log d) G
O(log d) F
O(log d) RO

O(d) G
O(d) F

1 G
O(log d) F 0

ASPC

[this work] split DLOG + RO O(d) G
O(d) F

2 G
O(1) F
2 RO

O(d) G
O(d) F

1 G
2 F d F

Table 3.1: Efficiency comparison between the atomic accumulation scheme ASIPA for PCIPA in [BCMS20] and the
split accumulation scheme ASPC for PCPed in this work. Above G denotes group scalar multiplications or group
elements, and F denotes field operations or field elements. (†: ASIPA relies on knowledge soundness of PCIPA,
which results from applying the Fiat–Shamir transformation to a logarithmic-round protocol. The security of this
protocol has only been proven via a superpolynomial-time extractor [BMMTV21] or in the algebraic group model
[GT21].)

split accumulation scheme. We prove security in the random oracle model, using an expected-time
extractor.
Batching evaluation claims. First consider two evaluation claims (C1, z, v1) and (C2, z, v2) for
the same evaluation point z (and degree d). We can use a random challenge α ∈ F to combine these
claims into one claim (C ′, z, v′) where C ′ := C1 + αC2 and v

′ := v1 + αv2. If either of the original
claims does not hold then, with high probability over the choice of α, neither does the new claim.
This idea extends to any number of claims for the same evaluation point, by taking C ′ :=

∑
i α

iCi
and v′ :=

∑
i α

ivi.
Next consider two evaluation claims (C1, z1, v1) and (C2, z2, v2) at (possibly) different evaluation

points z1 and z2. We explain how these can be combined into four claims all at the same point.
Below we use the fact that p(z) = v if and only if there exists a polynomial w(X) such that
p(X) = w(X) · (X − z) + v.

Let p1(X) and p2(X) be the polynomials “inside” C1 and C2, respectively, that are known to the
prover.

1. The prover computes the witness polynomials w1 := p1(X)−v1

X−z1
and w2 := p2(X)−v2

X−z2
and sends the

commitmentsW1 := Commit(w1) andW2 := Commit(w2).

2. The verifier sends a random evaluation point z∗ ∈ F.

3. The prover computes and sends the evaluations y1 := p1(z∗), y2 := p2(z∗), y′1 := w1(z∗), and
y′2 := w2(z∗).

4. The verifier checks the relation between each witness polynomial and the original polynomial at
the random evaluation point z∗:

y1 = y′1 · (z∗ − z1) + y′1 and y2 = y′2 · (z∗ − z2) + y′2 .
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Next, the verifier outputs four evaluation claims for p1(z∗) = y1, p2(z∗) = y2, w1(z∗) =
y′1, w2(z∗) = y′2:

(C1, z
∗, y1) , (C2, z

∗, y2) , (W1, z
∗, y′1) , (W2, z

∗, y′2) .

More generally, we can reducem evaluation claims atm points to 2m evaluation claims all at the
same point.

By combining the two techniques, one obtains a public-coin interactive reduction from any
number of evaluation claims (regardless of evaluation points) to a single evaluation claim.
Split accumulation. The batching protocol described above yields a split accumulation scheme
for ΦPC in the random oracle model. An accumulator acc has the same form as a predicate input:
the instance part is an evaluation claim and the witness part is a polynomial. Next we describe the
algorithms of the accumulation scheme.

• The accumulation prover P runs the interactive reduction by relying on the random oracle to
generate the random verifier messages (i.e., it applies the Fiat–Shamir transformation to the
reduction), in order to combine the instance parts of old accumulators and inputs to obtain the
instance part of a new accumulator. Then P also combines the committed polynomials using the
same linear combinations in order to derive the new committed polynomial, which is the witness
part of the new accumulator. The accumulation proof pf consists of the messages to the verifier in
the reduction, which includes the commitments to the witness polynomialsWi and the evaluations
yi, y

′
i at z

∗ of pi, wi (that is, pf := [(Wi, yi, y
′
i)]

n

i=1).

• The accumulation verifier V checks that the challenges were correctly computed from the random
oracle, and performs the checks of the reduction (the claims were correctly combined and that the
proper relation between each yi, y

′
i, zi, z

∗ holds).

• The accumulation decider D reads the accumulator in its entirety and checks that the polynomial
(the witness part) satisfies the evaluation claim (the instance part). (Here the random oracle is not
used.)

Efficiency. The efficiency claimed in Theorem 6 (and Table 3.1) is evident from the construction.
The accumulation prover P computes n+m commitments to polynomials when combining n old
accumulators andm predicate inputs (all polynomials are for degree at most d). The (short) instance
part of an accumulator consists of 1 group element and 2 field elements, while the (long) witness
part of an accumulator consists of O(d) field elements. The accumulator decider D computes 1
commitment (and 1 polynomial evaluation at 1 point) in order to validate an accumulator. Finally,
the cost of running the accumulator verifier V is dominated by 2(n+m) scalar multiplication of the
linear commitments.
Security. Given an adversary that produces evaluation claims [qxi]

n
i=1 = [(Ci, zi, vi)]

n
i=1, a single

claim qx = (C, z, v) and polynomial qw = s(X) with s(z∗) = v to which C is a commitment, and
accumulation proof pf that makes the accumulation verifier accept, we need to extract polynomials
[qwi]

n
i=1 = [pi(X)]ni=1 with pi(zi) = vi to which Ci is a commitment. Our security proof (in
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Section 3.11.3.1) works in the random oracle model, assuming hardness of the discrete logarithm
problem.

In the proof, we apply our expected-time forking lemma (see Sections 3.2.4 and 3.6.2) to obtain
2n polynomials [s(j)]2nj=1 for the same evaluation point z∗ but distinct challenges αj , where n is
the number of evaluation claims. The checks in the reduction procedure imply that s(j)(X) =∑n

i=1 α
i
jpi(X) +

∑n
i=1 α

n+i
j wi(X), where wi(X) is the witness corresponding to pi(X); hence we

can recover the pi(X), wi(X) by solving a linear system (given by the Vandermonde matrix in the
challenges [αj]

2n
j=1). We then use an expected-time variant of the zero-finding game lemma from

[BCMS20] (see Section 3.11.2) to show that if a particular polynomial equation on pi(X), wi(X)
holds at the point z∗ obtained from the random oracle, it must with overwhelming probability be an
identity. Applying this to the equation induced by the reduction shows that, with high probability,
each extracted polynomial pi satisfies the corresponding evaluation claim (Ci, zi, vi).

Remark 3.2.7 (from PCPed to an accumulatable NARK). If one replaced the (succinct) polynomial
commitment scheme that underlies the preprocessing zkSNARK in [CHMMVW20] with the
aforementioned (non-succinct) trivial Pedersen polynomial commitment scheme then (after some
adjustments and using our Theorem 6) one would obtain a zkNARK for R1CS with a split
accumulation scheme whose accumulation verifier is of constant size but other asymptotics would
be worse compared to Theorem 4.

First, the cryptographic costs and the quasilinear costs of the NARK and accumulation scheme
would also grow in the number K of non-zero entries in the coefficient matrices, which can be much
larger than M and N (asymptotically and concretely). Second, the NARK prover would additionally
use a quasilinear number of field operations due to FFTs. Finally, in addition to poorer asymptotics,
this approach would lead to a concretely more expensive accumulation verifier and overall a more
complex protocol. Nevertheless, one can design a concretely efficient zkNARK for R1CS based on
the Pedersen PC scheme and our accumulation scheme for it. This naturally leads to an alternative
construction to the one in Section 3.2.3 (which is instead based on accumulation of Hadamard
products), and would lead to a slightly more expensive prover (which now would use FFTs) and a
slightly cheaper accumulation verifier (a smaller number of group scalar multiplications). We leave
this as an exercise for the interested reader.

3.2.7 Implementation and evaluation
We elaborate on our implementation and evaluation of accumulation schemes and their application
to PCD.
The case for a PCD framework. Different PCD constructions offer different trade-offs. The
tradeoffs are both about asymptotics (see Remark 3.2.4) and about practical concerns, as we review
below.

• PCD from sublinear verification [BCCT13; BCTV14; COS20] is typically instantiated via
preprocessing SNARKs based on pairings.6 This route offers excellent verifier time (a few

6Instantiations based on hashes are also possible [COS20] but are (post-quantum and) less efficient.
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milliseconds regardless of the computation at a PCD node), but requires a private-coin setup
(which complicates deployment) and cycles of pairing-friendly elliptic curves (which are costly in
terms of group arithmetic and size).

• PCD from atomic accumulation [BCMS20] can, e.g., be instantiated via SNARKs based on cyclic
groups [BGH19]. This route offers a transparent setup (easy to deploy) and logarithmic-size
arguments (a few kilobytes even for large computations), using cycles of standard elliptic curves
(more efficient than their pairing-friendly counterparts). On the other hand, this route yields
linear verification times (expensive for large computations) and logarithmic costs for accumulation
(increasing the cost of recursion).

• PCD from split accumulation (this work) can, e.g., be instantiated via NARKs based on cyclic
groups. This route still offers a transparent setup and allows using cycles of standard elliptic
curves. Moreover, it offers constant costs for accumulation, but at the expense of argument size,
which is now linear.

It would be desirable to have a single framework that supports different PCD constructions via a
modular composition of simpler building blocks. Such a framework would enable a number of
desirable features: (a) ease of replacing older building blocks with new ones; (b) ease of prototyping
different PCD constructions for different applications (which may have different needs), thereby
enabling practitioners to make informed choices about which PCD construction is best for them;
(c) simpler and more efficient auditing of complex cryptographic systems with many intermixed
layers. (Realizing even a single PCD construction is a substantial implementation task.); and
(d) separation of “application” logic from the underlying recursion via a common PCD interface.
Together, these features would enable further industrial deployment of PCD, as well as making
future research and comparisons simpler.
Implementation (Section 3.9). The above considerations motivated our implementation efforts
for PCD. Our code base has two main parts, one for realizing accumulation schemes and another for
realizing PCD from accumulation (the latter is integrated with PCD from succinct verification under
a unified PCD interface).

• Framework for accumulation. We designed a modular framework for (atomic and split) accumula-
tion schemes, and use it to implement, under a common interface, several accumulation schemes:
(a) the atomic accumulation scheme ASAGM in [BCMS20] for the PC scheme PCAGM; (b) the atomic
accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA; (c) the split accumulation
scheme ASPC in this work for the PC scheme PCPed; (d) the split accumulation scheme ASHP in this
work for the Hadamard product predicate ΦHP; (e) the split accumulation scheme for our NARK
for R1CS. Our framework also provides a generic method for defining R1CS constraints for the
verifiers of these accumulation schemes; we leverage this to implement R1CS constraints for all
of these accumulation schemes.

• PCD from accumulation. We use the foregoing framework to implement a generic construction of
PCD from accumulation. We support the PCD construction of [BCMS20] (which uses atomic
accumulation) and the PCD construction in this work (which uses split accumulation). Our code
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builds on, and extends, an existing PCD library.7 Our implementation is modular: it takes as
ingredients an implementation of any NARK, an implementation of any accumulation scheme
for that NARK, and constraints for the accumulation verifier, and produces a concrete PCD
construction. This allows us, for example, to obtain a PCD instantiation based on our NARK for
R1CS and its split accumulation scheme.

Evaluation for DL setting (Section 3.10). When realizing PCD in practice the main goal is to
“minimize the cost of recursion”, that is, to minimize the number of constraints that need to be
recursively proved in each PCD step (excluding the constraints for the application) without hurting
other parameters too much (prover time, argument size, and so on). We evaluate our implementation
with respect to this goal, with a focus on understanding the trade-offs between atomic and split
accumulation in the discrete logarithm setting.

The DL setting is of particular interest to practitioners, as it leads to systems with a transparent
(public-coin) setup that can be based on efficient cycles of (standard) elliptic curves [BGH19;
Hop20]; indeed, some projects are developing real-world systems that use PCD in the DL setting
[Halo20; Pickles20]. The main drawback of the DL setting is that verification time (and sometimes
argument size) is linear in a PCD node’s computation. This inefficiency is, however, tolerable if a
PCD node’s computation is not too large, as is the case in the aforementioned projects. (Especially
so when taking into account the disadvantages of PCD based on pairings, which involves relying on
a private-coin setup and more expensive curve cycles.)

We evaluate our implementation to answer two questions: (a) how efficient is recursion with split
accumulation for our simple zkNARK for R1CS? (b) what is the constraint cost of split accumulation
for PCPed compared to atomic accumulation for PCIPA? All our experiments are performed over the
255-bit Pallas curve in the Pasta cycle of curves [Hop20], which is used by real-world deployments.

• Split accumulation for R1CS. Our evaluation demonstrates that the cost of recursion for IVC with
our split accumulation scheme for the simple NARK for R1CS is low, both with zero knowledge
(∼ 99× 103 constraints) and without (∼ 52× 103 constraints). In fact, this cost is even lower than
the cost of IVC based on highly efficient pairing-based circuit-specific SNARKs. Furthermore,
like in the pairing-based case, this cost does not grow with the size of computation being checked.
This is much better than prior constructions of IVC based on atomic accumulation for PCIPA in the
DL setting, as we will see next.

• Comparison of accumulation for PC schemes. Several (S)NARKs are built from PC schemes,
and the primary cost of recursion for these is determined by the cost of accumulation for the PC
scheme. In light of this we compare the costs of two accumulation schemes:
– the atomic accumulation scheme for the PC scheme PCIPA [BCMS20];
– the split accumulation scheme for PCPed (Section 3.11).
Our evaluation demonstrates that the constraint cost of the ASPC accumulation verifier is 8 to 20
times cheaper than that of the ASIPA accumulation verifier.

7https://github.com/arkworks-rs/pcd

https://github.com/arkworks-rs/pcd
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We note that the cost of all the aforementioned accumulation schemes is dominated by the cost
of many common subcomponents, and so improvements in these subcomponents will preserve the
relative cost. For example, applying existing techniques [Halo20; Pickles20] for optimizing the
constraint cost of elliptic curve scalar multiplications should benefit all our schemes in a similar way.
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3.3 Preliminaries
Indexed relations. An indexed relationR is a set of triples (i,x,w) where i is the index, x is the
instance, and w is the witness; the corresponding indexed language L(R) is the set of pairs (i,x)
for which there exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of
satisfiable boolean circuits consists of triples where i is the description of a boolean circuit, x is a
partial assignment to its input wires, and w is an assignment to the remaining wires that makes the
boolean circuit output 0.
Security parameters. For simplicity of notation, we assume that all public parameters have length
at least λ, so that algorithms which receive such parameters can run in time poly(λ).
Random oracles. We denote by U(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. We
denote by U(∗) the set

⋃
λ∈N U(λ). A random oracle with security parameter λ is a function

ρ : {0, 1}∗ → {0, 1}λ sampled uniformly at random from U(λ).
Adversaries. All the definitions in this work should be taken to refer to non-uniform adversaries.
An adversary (or extractor) running in expected polynomial time is then a Turing machine provided
with a polynomial-size non-uniform advice string and access to an infinite random tape, whose
expected running time for all choices of advice is polynomial. We sometimes write (o; r)← A(x)
when A is an expected polynomial-time algorithm, where o is A’s output and r is the randomness
used by A (i.e., up to the rightmost position of the head on the randomness tape). We also write
(o, r′) ← A(x; r), where r is a string of finite length: this denotes executing A with an infinite
random tape with prefix r and r′ is the randomness used byA (and in particular its prefix is consistent
with r). Finally, we write o← A(x;σ) where σ ∈ {0, 1}∗ is an infinite string representing the entire
random tape.

3.3.1 Non-interactive arguments in the ROM
A tuple of algorithms ARG = (G, I,P ,V) is a (preprocessing) non-interactive argument in the
random oracle model (ROM) for an indexed relation family {Rpp}pp if the following properties hold.

• Completeness. For every adversary A,

Pr


(i,x,w) 6∈ Rpp

∨
Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x,w)← Aρ(pp)

(ipk, ivk)← Iρ(pp, i)
π ← Pρ(ipk,x,w)

 = 1 .

• Soundness. For every polynomial-size adversary P̃ ,

Pr

 (i,x) 6∈ L(Rpp)
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x, π)← P̃ρ(pp)

(ipk, ivk)← Iρ(pp, i)

 ≤ negl(λ) .
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Completeness allows (i,x,w) to depend adversarially on the random oracle ρ and public parameters
pp; and soundness allows (i,x) to depend adversarially on the random oracle ρ and public parameters
pp.

Our PCD construction makes use of the stronger property of knowledge soundness, and optionally
also the property of (statistical) zero knowledge. We define both of these properties below.

We refer to an argument with knowledge soundness as a NARK (non-interactive argument of
knowledge) whereas an argument that just satisfies soundness is a NARG.
Knowledge soundness. ARG = (G, I,P ,V) has knowledge soundness (with respect to auxiliary
input distribution D) if for every expected polynomial time adversary P̃ there exists an expected
polynomial time extractor E such that for every set Z,

Pr

 (pp, ai,~i, ~x, ao) ∈ Z
∧∀ j ∈ [`] , (ij,xj,wj) ∈ Rpp

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
ai← D(pp)

(~i, ~x, ~w, ao)← EP̃(pp, ai)



≥ Pr

 (pp, ai,~i, ~x, ao) ∈ Z
∧∀ j ∈ [`] ,Vρ(ivkj,xj, πj) = 1

∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)
ai← D(pp)

(~i, ~x,~π, ao)← P̃ρ(pp, ai)
∀ j ∈ [`] , (ipkj, ivkj)← Iρ(pp, ij)

− negl(λ) .

Remark 3.3.1. The definition of knowledge soundness that we use is stronger than usual, to prove
post-quantum security in Theorem 3.5.3. This stronger definition is similar to witness-extended
emulation [Lin03].

Zero knowledge. ARG = (G, I,P ,V) has (statistical) zero knowledge if there exists a probabilistic
polynomial-time simulator S such that for every honest adversary A (on input pp it only outputs
triples in the indexed relationRpp) the distributions below are statistically close:(ρ, pp, i,x, π)

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x,w)← Aρ(pp)

(ipk, ivk)← Iρ(pp, i)
π ← Pρ(ipk,x,w)

 and

(ρ[µ], pp, i,x, π)

∣∣∣∣∣∣∣∣
ρ← U(λ)

(pp, τ)← Sρ(1λ)
(i,x,w)← Aρ(pp)
(π, µ)← Sρ(τ, i,x)

 .

Above, ρ[µ] is the function that, on input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise. This
definition uses explicitly-programmable random oracles [BR93]. (Non-interactive zero knowledge
with non-programmable random oracles is impossible for non-trivial languages [Pas03; BCS16].)

3.3.2 Proof-carrying data
A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data scheme (PCD
scheme) for a class of compliance predicates F if the properties below hold.
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Definition 3.3.2. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled
by local data z(u)

loc and each edge e ∈ E(T) is labeled by a message z(e) 6= ⊥. The output of a
transcript T, denoted o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is
a sink.

Definition 3.3.3. A vertex u ∈ V (T) is ϕ-compliant for ϕ ∈ F if for all outgoing edges e = (u, v) ∈
E(T):
• (base case) if u has no incoming edges, ϕ(z(e), z

(u)
loc ,⊥, . . . ,⊥) accepts;

• (recursive case) if u has incoming edges e1, . . . , em, ϕ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) accepts.
We say that T is ϕ-compliant if all of its vertices are ϕ-compliant.

Completeness. PCD has perfect completeness if for every adversary A the following holds:

Pr


 ϕ ∈ F

∧ ϕ(z, zloc, z1, . . . , zm) = 1
∧
(
∀ i, zi = ⊥ ∨ ∀ i, V(ivk, zi, πi) = 1

)


⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, ϕ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1 .

Knowledge soundness. PCD has knowledge soundness (with respect to auxiliary input distribution
D) if for every expected polynomial-time adversary P̃ there exists an expected polynomial-time
extractor EP̃ such that for every set Z,

Pr

 ϕ ∈ F
∧ (pp, ai, ϕ, o(T), ao) ∈ Z
∧ T is ϕ-compliant

∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(ϕ,T, ao)← EP̃(pp, ai)



≥ Pr

 ϕ ∈ F
∧ (pp, ai, ϕ, o, ao) ∈ Z
∧ V(ivk, o, π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(ϕ, o, π, ao)← P̃(pp, ai)
(ipk, ivk)← I(pp, ϕ)

− negl(λ) .

Zero knowledge. PCD has (statistical) zero knowledge if there exists a probabilistic polynomial-
time simulator S such that for every honest adversary A the distributions below are statistically
close:(pp, ϕ, z, π)

∣∣∣∣∣∣∣∣
pp← G(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, ϕ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 and

(pp, ϕ, z, π)

∣∣∣∣∣∣
(pp, τ)← S(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)
π ← S(τ, ϕ, z)

 .

An adversary is honest if its output satisfies the implicant of the completeness condition with proba-
bility 1, namely: ϕ ∈ F, ϕ(z, zloc, z1, . . . , zm) = 1, and either ∀ i, zi = ⊥ or ∀ i, V(ivk, zi, πi) = 1.
Efficiency. The generator G, prover P, indexer I, and verifier V run in polynomial time. A proof π
has size poly(λ, |ϕ|); in particular, it is not permitted to grow with each application of P.
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3.3.3 Instantiating the random oracle
Almost all results in this work are proved in the random oracle model, and so we give definitions
which include random oracles. The single exception is our construction of proof-carrying data,
in Section 3.5.1. We do not know how to build PCD schemes which are secure in the random
oracle model from any standard assumption. Instead, we show that assuming the existence of a
non-interactive argument with security in the standard (CRS) model, we obtain a PCD scheme that
is also secure in the standard (CRS) model.

For this reason, the definition of PCD above is stated in the standard model (without oracles).
We do not explicitly define non-interactive arguments in the standard model; the definition is easily
obtained by removing the random oracle from the definitions in Section 3.3.1.

3.3.4 Post-quantum security
The definitions of both non-interactive arguments (in the standard model) and proof-carrying data
can be strengthened, in a straightforward way, to express post-quantum security. In particular, we
replace “polynomial-size circuit” and “polynomial-time algorithm” with their quantum analogues.
Since we do not prove post-quantum security of any construction in the random oracle model, we do
not discuss the quantum random oracle model.

3.3.5 Commitment schemes
We define commitment schemes and specify the Pedersen commitment scheme (used throughout
this work).

Definition 3.3.4. A commitment scheme is a tuple CM = (Setup,Trim,Commit) with the following
syntax.
• CM.Setup, on input a message format L, outputs public parameters pp, which in particular
specify a message universeMpp and a commitment universe Cpp.

• CM.Trim, on input public parameters pp and a trim specification `, outputs a commitment key ck
containing a description of a message spaceMck ⊆Mpp corresponding to `.

• CM.Commit, on input a commitment key ck, a messagem ∈Mck, and randomness ω, outputs a
commitment C ∈ Cpp.

The commitment scheme CM is binding if, for every message format L with |L| = poly(λ) and
every expected polynomial-time adversary A, the following holds:

Pr


m1 ∈Mck1

, m2 ∈Mck2

∧ m1 6= m2

∧ CM.Commit(ck1,m1; ω1) = CM.Commit(ck2,m2; ω2)

∣∣∣∣∣∣∣∣∣∣
pp← CM.Setupρ(1λ, L)(
`1,m1, ω1

`2,m2, ω2

)
← Aρ(pp)

ck1 ← CM.Trimρ(pp, `1)
ck2 ← CM.Trimρ(pp, `2)

 = negl(λ) .

Note thatm1 6= m2 is well-defined sinceMck1
,Mck2

⊆Mpp.
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Remark 3.3.5. The binding property is stated for expected polynomial time adversaries, since this
is how it will be used in this work. This is equivalent to the standard definition of binding (i.e., for
polynomial size adversaries) via a non-uniform reduction.

The Pedersen commitment scheme CM = (Setup,Trim,Commit) operates as follows, for
some algorithm SampleGrp that outputs (G, q, G) where G is a group of prime order q generated by
G.
• The message format L and trim specification ` are nonnegative integers with ` ≤ L.
• CM.Setup(1λ, L) runs (G, q, G) ← SampleGrp(1λ), samples ~G = (G1, . . . , GL, H) ∈ GL+1

uniformly at random, and outputs pp := ((G, q, G), ~G);Mpp := FL where F is the prime field of
size q, and Cpp := G.

• CM.Trim(pp, `) outputs ck = ((G, q, G), (G1, . . . , G`, H)); this key determinesMck := F`.
• CM.Commit(ck,m;ω) outputs

∑`
i=1 mi ·Gi + ω ·H , where ω ∈ F.

CM is binding when the discrete logarithm problem is hard in G as sampled by SampleGrp. CM is
perfectly hiding: for any messagem, CM.Commit(ck,m;ω) is uniformly random in G when ω is
uniformly random in F. CM satisfies the following homomorphic property: for all keys ck, α, β ∈ F,
m1,m2 ∈ F`, ω1, ω2 ∈ F,

α · CM.Commit(ck,m1;ω1) + β · CM.Commit(ck,m2;ω2) = CM.Commit(ck, αm1 + βm2;αω1 + βω2)

where “·” above represents scalar multiplication in G (the natural action of F on G).
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3.4 Split accumulation schemes for relations
Let Φ: {0, 1}∗ → {0, 1} be a (relation) predicate andH a randomized oracle algorithm that outputs
predicate parameters ppΦ (see below). A split accumulation scheme for (Φ,H) is a tuple of
algorithms AS = (G, I,P,V,D) of which P,V have access to the same random oracle ρ. The
algorithms have the following syntax and properties.
Syntax. The algorithms comprising AS have the following syntax:

• Generator: On input a security parameter λ (in unary), G samples and outputs public parameters
pp.

• Indexer: On input public parameters pp, predicate parameters ppΦ (generated by H), and a
predicate index iΦ, I deterministically computes and outputs a triple (apk, avk, dk) consisting of
an accumulator proving key apk, an accumulator verification key avk, and a decision key dk.8

• Accumulation prover: On input the accumulator proving key apk, predicate inputs [(qxi, qwi)]
n
i=1,

and old accumulators [accj]
m
j=1 = [(accj.x, accj.w)]mj=1, P outputs a new accumulator acc =

(acc.x, acc.w) and a proof pf for the accumulation verifier.

• Accumulation verifier: On input the accumulator verification key avk, predicate input instances
[qxi]

n
i=1, accumulator instances [accj.x]mj=1, a new accumulator instance acc.x, and a proof pf, V

outputs a bit indicating whether acc.x correctly accumulates [(qxi, qwi)]
n
i=1 and [accj.x]mj=1.

• Decider: On input the decision key dk, and an accumulator acc = (acc.x, acc.w), D outputs a bit
indicating whether acc is a valid accumulator.

These algorithms must satisfy two properties, completeness and knowledge soundness, defined
below. We additionally define a notion of zero knowledge that we use to achieve zero knowledge
PCD (see Section 3.5).
Completeness. For every (unbounded) adversary A,

Pr


∀ j ∈ [m], D(dk, accj) = 1

∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1

⇓
Vρ(avk, [qxi]

n
i=1, [accj .x]mj=1, acc.x, pf) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1)← Aρ(pp, ppΦ)

(apk, avk, dk)← I(pp, ppΦ, iΦ)
(acc, pf)← Pρ(apk, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1)

 = 1 .

Note that form = n = 0 the precondition on the left-hand side holds vacuously and this is required
for the completeness condition to be non-trivial.

8In some schemes, for efficiency, the indexer I should have oracle access to the predicate parameters ppΦ and
predicate index iΦ, rather than reading them in full. All of our constructions and statements extend, in a straightforward
way, to this case.
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Knowledge soundness. There exists an extractor E running in expected polynomial time such
that for every adversary P̃ running in expected (non-uniform) polynomial time and auxiliary input
distribution D, the following probability is negligibly close to 1:

Pr



Vρ(avk, [qxi]
n
i=1, [accj .x]mj=1, acc.x, pf) = 1

D(dk, acc) = 1
⇓

∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1
∀ j ∈ [m], D

(
dk, (accj .x, accj .w)

)
= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)

ppΦ ← H(1λ)

ai← D(1λ)

(iΦ, [qxi]
n
i=1, [accj .x]mj=1, acc, pf; r)← P̃ρ(pp, ppΦ, ai)

([qwi]
n
i=1, [accj .w]mj=1)← EP̃,ρ(pp, ppΦ, ai, r)

(apk, avk, dk)← I(pp, ppΦ, iΦ)


.

Zero knowledge. There exists a polynomial-time simulator S such that for every polynomial-size
“honest” adversary A (see below) the following distributions are (statistically/computationally)
indistinguishable:

(ρ, pp, ppΦ, iΦ, acc)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1, [accj]

m
j=1)← Aρ(pp, ppΦ)

(apk, avk, dk)← I(pp, ppΦ, iΦ)
(acc, pf)← Pρ(apk, [(qxi, qwi)]

n
i=1, [accj]

m
j=1)


and (ρ[µ], pp, ppΦ, iΦ, acc)

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

(pp, τ)← Sρ(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1, [accj]

m
j=1)← Aρ(pp, ppΦ)

(acc, µ)← Sρ(τ, ppΦ, iΦ)

 .

Here A is honest if it outputs, with probability 1, a tuple (iΦ, [(qxi, qwi)]
n
i=1, [accj]

m
j=1) such that

Φ(ppΦ, iΦ, qxi, qwi) = 1 and D(dk, accj) = 1 for all i ∈ [n] and j ∈ [m]. Note that the simulator S
is not required to simulate the accumulation verifier proof pf.

Remark 3.4.1 (predicates with oracles). In Section 3.8 we accumulate predicates Φ that themselves
have access to oracles, as do their associated parameter generation algorithmsH. These oracles are
disjoint from the random oracle ρ used by the accumulation scheme. The definitions above can
be adapted to this setting by providing all algorithms ((G, I,P,V,D) of the accumulation scheme,
adversaries A and P̃, the extractor E, and the simulator S) with access to these oracles.

3.4.1 Special case: accumulators and predicate inputs are identical
Some accumulation schemes have the property that the decider is equal to the predicate itself:
D(dk, acc) ≡ Φ(ppΦ, iΦ, acc.x, acc.w). This implies that predicate inputs and accumulators have
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the same form, and are split in the same way. In this case, the definitions can be simplified. Below
we state these simplified definitions because we use them in Sections 3.7 and 3.11.
Completeness. For every (unbounded) adversary A:

Pr


∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1

⇓
Vρ(avk, [qxi]

n
i=1, acc.x, pf) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1)← A(pp, ppΦ)

(apk, avk, dk)← I(pp, ppΦ, iΦ)
(acc, pf)← Pρ(apk, [(qxi, qwi)]

n
i=1)


= 1 .

Knowledge soundness. There exists an extractor E running in expected polynomial time such
that for every adversary P̃ running in expected (non-uniform) polynomial time and auxiliary input
distribution D,

Pr


Vρ(avk, [qxi]

n
i=1, acc.x, pf) = 1

D(dk, acc) = 1
⇓

∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)

ppΦ ← H(1λ)

ai← D(1λ)

(iΦ, [qxi]
n
i=1, acc, pf; r)← P̃ρ(pp, ppΦ, ai)

[qwi]
n
i=1 ← EP̃,ρ(pp, ppΦ, ai, r)

(apk, avk, dk)← I(pp, ppΦ, iΦ)


≥ 1−negl(λ) .

3.4.2 A relaxation of knowledge soundness
The definitions of knowledge soundness that we presented so far are convenient for proving schemes
secure in the random oracle model, but are stronger than what we need. To prove security for PCD
in Section 3.5 a weaker notion of “multi-instance” extraction will suffice. This is motivated by
analyses in the quantum random oracle model, where the no-cloning principle necessitates that
the extractor simulate the oracle itself in order to extract. In contrast, in the classical setting the
extractor may simply “observe” the adversary’s queries to the real oracle, which justifies the prior
definition. Below we state the property we use, and then explain how it is implied (in the classical
setting) by the prior definitions of knowledge soundness.
Knowledge soundness (with respect to auxiliary input distributionD). For every (non-uniform)
adversary P̃ running in expected polynomial time there exists an extractor E running in expected
polynomial time such that for every set Z the following probabilities are within negl(λ) of each
other:



CHAPTER 3. PROOF-CARRYING DATA WITHOUT SUCCINCT ARGUMENTS 129

Pr



pp, ppΦ, ai,


i
(k)
Φ

acc
(k)

[qx
(k)
i ]

n
i=1

[accj .x
(k)

]
m
j=1


`

k=1

, ao

 ∈ Z
∧{

∀ j ∈ [m], D(dk
(k)
, acc

(k)
j ) = 1

∀ i ∈ [n], Φ(ppΦ, i
(k)
Φ , qx

(k)
i , qw

(k)
i ) = 1

}`
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1
λ
)

ppΦ ← H(1
λ
)

ai← D(1
λ
)


i
(k)
Φ

acc
(k)

[(qx
(k)
i , qw

(k)
i )]

n
i=1

[acc
(k)
j ]

m
j=1


`

k=1

, ao

← EP̃(pp, ppΦ, ai)

∀ k, (apk
(k)
, avk

(k)
, dk

(k)
)← I(pp, ppΦ, i

(k)
Φ )


and

Pr



pp, ppΦ, ai,


i
(k)
Φ

acc
(k)

[qx
(k)
i ]

n
i=1

[accj .x
(k)

]
m
j=1


`

k=1

, ao

 ∈ Z
∧{

V
ρ
(avk

(k)
, [qx

(k)
i ]

n
i=1, [accj .x

(k)
]
m
j=1, acc.x

(k)
, pf

(k)
) = 1

D(dk
(k)
, acc

(k)
) = 1

}`
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1
λ
)

ppΦ ← H(1
λ
)

ai← D(1
λ
)


i
(k)
Φ

acc
(k)

[qx
(k)
i ]

n
i=1

[accj .x
(k)

]
m
j=1

pf
(k)


`

k=1

, ao

← P̃
ρ
(pp, ppΦ, ai)

∀ k, (apk
(k)
, avk

(k)
, dk

(k)
)← I(pp, ppΦ, i

(k)
Φ )


The above definition is implied. In the classical setting, the above definition is implied by the
definition of knowledge soundness given earlier in this section. The multi-instance extractor EP̃ as
follows:

EP̃(ppAS, ppΦ, ai):

1. Initialize the table tr : {0, 1}∗ ⇀ {0, 1}λ to be empty.

2. Run ([i
(k)
Φ , acc(k), [qx

(k)
i ]ni=1, [accj.x

(k)]mj=1, pf(k)]`k=1, ao; r) ← P̃(·)(pp, ppΦ, ai), simulating
its access to the random oracle using tr.

3. For each k ∈ [`], let P̃(k) equal P̃ with its output is restricted to the index k. Run

([qw
(k)
i ]ni=1, [accj.w

(k)]mj=1)← EP̃
(k)
,(·)(pp, ppΦ, ai, r)

simulating its access to the random oracle using tr.

4. Output
([

i
(k)
Φ , acc(k), [(qx

(k)
i , qw

(k)
i )]ni=1, [(accj.x

(k), accj.w
(k))]mj=1

]`
k=1

, ao
)
.
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3.5 PCD from arguments of knowledge with split accumulation
We formally restate and then prove Theorem 3, which provides a construction of proof-carrying data
(PCD) from any NARK that has a split accumulation scheme with certain efficiency properties.

First, we provide definitions and notation for these properties.

Definition 3.5.1 (accumulation for ARG). We say that AS = (G, I,P,V,D) is a split accumulation
scheme for the non-interactive argument system ARG = (G, I,P ,V) if AS is a split accumulation
scheme for the pair (ΦV ,HARG := G) where ΦV is defined below:

ΦV(ppΦ = pp, iΦ = i, qx = (x, π.x), qw =
π.w):
1. (ipk, ivk)← I(pp, i).
2. Output V(ivk,x, (π.x, π.w)).

Definition 3.5.2. LetAS = (G, I,P,V,D) be an accumulation scheme for a non-interactive argument
(see Definition 3.5.1). We denote by V(λ,m,N,k) the circuit corresponding to the computation of
the accumulation verifier V, for security parameter λ, when checking the accumulation of m
instance-proof pairs and accumulators, on an index of size at most N , where each instance is of size
at most k.

We denote by v(λ,m,N, k) the size of the circuit V(λ,m,N,k), by |avk(λ,m,N)| the size of the
accumulator verification key avk, and by |acc.x(λ,m,N)| the size of an accumulator instance.

Note that here we have specified that the size of acc.x is bounded by a function of λ,m,N ; in
particular, it may not depend on the number of instances accumulated, or on the input size bound k.

When we invoke the accumulation verifier in our construction of PCD, an instance will consist
of an accumulator verification key, an accumulator instance, and some additional data of size `.
Thus the size of the accumulation verifier circuit used in the scheme is given by

v∗(λ,m,N, `) := v(λ,m,N, |avk(λ,m,N)|+ |acc.x(λ,m,N)|+ `) .

The notion of “sublinear verification” which is important here is that v∗ is sublinear in N . The
following theorem shows that when this is the case, this accumulation scheme can be used to
construct PCD.

Theorem 3.5.3. There exists a polynomial-time transformation T such that if ARG = (G, I,P ,V)
is a NARK for circuit satisfiability and AS is a split accumulation scheme for ARG then PCD =
(G, I,P,V) := T(ARG,AS) is a PCD scheme for constant-depth compliance predicates, provided

∃ ε ∈ (0, 1) and a polynomial α s.t. v∗(λ,m,N, `) = O(N1−ε · α(λ,m, `)) .

Moreover:
• If ARG and AS are secure against quantum adversaries, then PCD is secure against quantum
adversaries.

• If ARG and AS are (post-quantum) zero knowledge, then PCD is (post-quantum) zero knowledge.
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• If the size of the predicate ϕ : F(m+2)` → F is f = ω(α(λ,m, `)1/ε) then:
– the cost of running I is equal to the cost of running both I and I on an index of size f + o(f);
– the cost of running P is equal to the cost of accumulatingm instance-proof pairs using P, and
running P , on an index of size f + o(f) and instance of size o(f);

– the cost of running V is equal to the cost of running both V and D on an index of size f + o(f)
and an instance of size o(f).

This last point gives the conditions for a sublinear additive recursive overhead; i.e., when the
additional cost of proving that ϕ is satisfied recursively is asymptotically smaller than the cost
of proving that ϕ is satisfied locally. Note that the smaller the compliance predicate ϕ, the more
efficient the accumulation scheme has to be in order to achieve this.

Remark 3.5.4 (accumulator instance size). Theorem 3.5.3 requires that the size of an accumulator
instance acc.x be independent of the instance size k. This is achieved by our split accumulation
scheme in Section 3.8.2. It is also straightforward to convert any split accumulation scheme into one
that satisfies this condition, using a collision resistant hash function h. Specifically, the accumulator
instance of the new scheme will be h(acc.x), and acc.x is appended to the accumulator witness and
accumulation proof. The accumulation verifier and decider then simply verify the hash in addition
to performing their original computation.

3.5.1 Construction
Let ARG = (G, I,P ,V) be a non-interactive argument for circuit satisfiability and AS =
(G, I,P,V,D) an accumulation scheme for ARG (see Definition 3.5.1). Below we construct
a PCD scheme PCD = (G, I,P,V).

Given a compliance predicate ϕ : F(m+2)` → F, the circuit that realizes the recursion is as
follows.

R
(λ,N,k)
V,ϕ

(
(avk, z, acc.x), (zloc, [zi, πi.x, acci.x]mi=1, pf)

)
:

1. Check that the compliance predicate ϕ(z, zloc, z1, . . . , zm) accepts.
2. If there exists i ∈ [m] such that zi 6= ⊥, check that the NARK accumulation verifier accepts:

V(λ,m,N,k)(avk, [qxi]
m
i=1, [acci.x]mi=1, acc.x, pf) = 1 where qxi :=

(
(avk, zi, acci.x), πi.x

)
.

3. If the above checks hold, output 1; otherwise, output 0.

Above, V(λ,m,N,k) refers to the circuit representation of V with input size appropriate for security
parameter λ, number of instance-proof pairs and accumulatorsm, circuit size N , and circuit input
size k.

Next we describe the generator G, indexer I, prover P, and verifier V of the PCD scheme.

• G(1λ): Sample pp← G(1λ) and ppAS ← G(1λ), and output pp := (pp, ppAS).
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• I(pp, ϕ):
1. Compute the integer N := N(λ, |ϕ|,m, `), where N is defined in Lemma 3.5.5 below.
2. Construct the circuit R := R

(λ,N,k)
V,ϕ where k := |avk(λ,N)|+ |acc.x(λ,m,N)|+ `.

3. Compute the index key pair (ipk, ivk) := I(pp, R) for the circuit R for the NARK.
4. Compute the index key triple (apk, dk, avk) := I(ppAS, ppΦ = pp, iΦ = R) for the accumulator.
5. Output the proving key ipk := (ipk, apk) and verification key ivk := (ivk, dk, avk).

• P(ipk, z, zloc, [zi, (πi, acci)]
m
i=1):

1. If zi = ⊥ for all i ∈ [m] then sample (acc, pf)← P(apk,⊥).
2. If zi 6= ⊥ for some i ∈ [m] then:

a) set predicate input instance qxi := ((avk, zi, acci.x), πi.x);
b) set predicate input witness qwi := (acci.w, πi.w);
c) sample (acc, pf)← P(apk, [(qxi, qwi)]

m
i=1, [acci]

m
i=1).

3. Sample π ← P
(
ipk, (avk, z, acc.x), (zloc, [zi, πi.x, acci.x]mi=1, pf)

)
.

4. Output (π, acc).

• V(ivk, z, (π, acc)): Accept if both V(ivk, (avk, z, acc.x), π) and D(dk, acc) accept.

3.5.2 Completeness
LetA be any adversary that causes the completeness condition of PCD to be satisfied with probability
p. We construct an adversary B, as follows, that causes the completeness condition of AS to be
satisfied with probability at most p.

B(pp, ppAS):
1. Set pp := (pp, ppAS) and compute (ϕ, z, zloc, [zi, πi, acci]

m
i=1)← A(pp).

2. Set (apk, dk, avk) := I(ppAS, pp, R
(λ,N,k)
V,ϕ ).

3. Construct [(qxi, qwi)]
m
i=1 as in the PCD prover P.

4. Output (R
(λ,N,k)
V,ϕ , [(qxi, qwi)]

m
i=1, [acci]

m
i=1).

Suppose that A outputs (ϕ, z, zloc, [zi, πi, acci]
m
i=1) such that the completeness precondition is

satisfied, but the PCD verifier rejects, i.e., V(ivk, z, (π, acc)) = 0. Then, by construction of
V, it holds that either V(ivk, (avk, z, acc.x), π) = 0 or D(dk, acc) = 0. If zi = ⊥ for all i,
then by perfect completeness of ARG both of these algorithms output 1; hence there exists i
such that zi 6= ⊥. Hence it holds that for all i, V(ivk, zi, (πi, acci)) = 1, whence for all i,
V(ivk, (avk, zi, acci.x), πi) = ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, zi, acci.x), πi) = 1 and D(dk, acci) = 1.

If V(ivk, (avk, z, acc.x), π) = 0, then, by perfect completeness of ARG, we know that R(λ,N,k)
V,ϕ

rejects
(
(avk, z, acc), (zloc, [zi, πi.x, acci.x]mi=1), pf

)
, and so V(avk, [qxi]

m
i=1, [acci.x]mi=1, acc.x) = 0.

Otherwise, D(dk, acc) = 0.
Now consider the completeness experiment for AS with adversary B. Since pp, ppAS are drawn

identically to the PCD experiment, the distribution of the output ofA is identical. Hence in particular
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it holds that for all i, ΦV(pp, R
(λ,N,k)
V,ϕ , (avk, zi, acci), πi) = 1 and D(dk, acci) = 1. By the above,

it holds that either V(avk, [qxi]
m
i=1, [acci.x]mi=1, acc) = 0 or D(dk, acc) = 0, and so B := (B1,B2)

causes the completeness condition for AS to be satisfied with probability at most p.

3.5.3 Knowledge soundness
The extracted transcript T will be a tree, so for convenience we associate the label z(u,v) of the unique
outgoing edge of a node u with the node u itself, so that the node u is labelled with (z(u), z

(u)
loc ). In

this proof we also associate with each node u a NARK proof π(u) and an accumulator acc(u), so the
full label for a node is (z(u), z

(u)
loc , π

(u), acc(u)). One can transform such a transcript into one that
satisfies Definition 3.3.2.

Given a malicious prover P̃, we will construct an extractor EP̃ that satisfies knowledge soundness.
We do so via an iterative process that constructs a sequence of extractors E1, . . . ,Ed where d is

the depth of ϕ and Ej outputs a tree of depth j + 1. The extractor EP̃ is then equal to Ed.
In the base case, we define E0(pp, ai) to compute (ϕ, o, π, acc)← P̃(pp, ai) and output (ϕ,T0),

where T0 is a single node labeled with (o, π, acc).
Next, we construct the extractor Ej inductively for each recursion depth j ∈ [d], given that we

have already constructed Ej−1. We use the notation lT(j) to denote the vertices of T at depth j (so
that lT(0) := ∅ and lT(1) is the singleton containing the root). We proceed in several steps.

• First, we construct a NARK prover P̃j as follows:

P̃j(pp, (ppAS, ai)):
1. Compute (ϕ,Tj−1, ao)← Ej−1((pp, ppAS), ai).
2. For each vertex v ∈ lTj−1

(j), denote its label by (z(v), π(v), acc(v)).

3. Run the argument indexer (ipk, ivk) := I(pp, R
(λ,N,k)
V,ϕ ).

4. Run the accumulator indexer (apk, dk, avk) := I(ppAS, pp, R
(λ,N,k)
V,ϕ ).

5. Output

(~i, ~x,~π, ao′) :=
(
~R, (avk, z(v), acc(v).x)v∈lTj−1

(j), (π
(v))v∈lTj−1

(j), (ϕ,Tj−1, ao)
)

where ~R is the vector (R
(λ,N,k)
V,ϕ , . . . , R

(λ,N,k)
V,ϕ ) of the appropriate length.

• Second, we let EP̃j be the extractor that corresponds to P̃j , via the knowledge soundness of the
non-interactive argument ARG.

• Third, we construct an accumulation scheme prover P̃j as follows:
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P̃j(ppAS, (pp, ai)):
1. Run the extractor (~i, ~x, ~w, ao′)← EP̃j (pp, (ppAS, ai)).
2. Parse the auxiliary output ao′ as (ϕ,T′, ao). If T′ is not a transcript of depth j, abort.
3. For each vertex v ∈ lT′(j),

– obtain acc(v) from T′;
– obtain the local data z(v)

loc , input messages
(
z

(v)
i , π

(v)
i .x, acc

(v)
i .x

)
i∈[m]

and accumulation

proof pf(v) from w
(v);

– append z(v)
loc to the label of v in T′;

– let Sj := {v ∈ lT′(j) : ∃i, z(v)
i 6= ⊥};

– attachm children to each v ∈ Sj , where the i-th child is labeled with z
(v)
i ;

– define qx
(v)
i :=

(
(avk, z

(v)
i , acc

(v)
i .x), π

(v)
i .x

)
.

4. Output
((
i
(v), acc(v), pf(v), [qx

(v)
i ]mi=1, [acc

(v)
i .x]mi=1

)
v∈Sj

, (ϕ,T′, ao)
)
.

• Fourth, we let EP̃j
be the extractor corresponding to P̃j , by the knowledge soundness of the split

accumulation scheme AS.

• Finally, we define the extractor Ej as follows:

Ej(pp = (pp, ppAS), ai):
1. Run the extractor

((
i
(v), acc(v), [qx

(v)
i , qw

(v)
i ]mi=1, [acc

(v)
i ]mi=1

)
v∈Sj

, ao′
)
← EP̃j

(pp, ppAS, ai).

2. Parse the auxiliary output ao′ as (ϕ,T′, ao). If T′ is not a transcript of depth j, abort.
3. Let Sj := {v ∈ lT′(j) : ∃i, z(v)

i 6= ⊥}.
4. Parse each qx

(v)
i as ((avk(v), z

(v)
i , acc

(v)
i .x), π

(v)
i .x) and qw

(v)
i as π(v)

i .w; combine each pair
(π

(v)
i .x, π

(v)
i .w) into a proof π(v)

i .
5. Output (ϕ,Tj , ao) where Tj is the transcript constructed from T′ by adding, for each vertex
v ∈ Sj , (π

(v)
i , acc

(v)
i ) to the label of its i-th child.

We now show that EP̃ runs in expected polynomial time and that it outputs a transcript that is
ϕ-compliant.
Running time of the extractor. It follows from the extraction guarantees of ARG and AS that Ej
runs in expected time polynomial in the expected running time of Ej−1. Hence if d(ϕ) is a constant,
EP̃ = Ed(ϕ) runs in expected polynomial time.
Correctness of the extractor. Fix a set Z, and suppose that P̃’s output falls in Z and causes V to
accept, with probability µ. We show by induction that, for all j ∈ {0, . . . , d}, the transcript Tj output
byEj is ϕ-compliant up to depth j, and that for all v ∈ Tj , both V(ivk, (avk, z(v), acc(v).x), π(v)) and
D(dk, acc(v)) accept, and that (pp, ai, ϕ, o(Tj), ao) ∈ Z and ϕ ∈ F, with probability µ− negl(λ).

For j = 0 the statement holds by assumption.
Now suppose that (ϕ,Tj−1) ← Ej−1(pp, ai) is such that Tj−1 is ϕ-compliant up to depth

j − 1, and that both V(ivk, (avk, z(v), acc(v).x), π(v)) and D(dk, acc(v)) accept for all v ∈ Tj−1 with
probability µ− negl(λ).



CHAPTER 3. PROOF-CARRYING DATA WITHOUT SUCCINCT ARGUMENTS 135

Let (~i, (avkv, z
(v), acc(v).x)v, (π

(v))v, (ϕ,T
′), ~w) be the output of EP̃j(pp, (ppAS, ai)).

We let (pp, (ppAS, ai),~i, (avkv, z
(v), acc(v).x)v, (ϕ,T

′, ao)) ∈ Z ′ if and only if, for (apk, dk, avk)←
I(ppAS, pp, R

(λ,N,k)
V,ϕ ) it holds that:

• ((pp, ppAS), ai, ϕ, o(T′), ao) ∈ Z and ϕ ∈ F;
• i

(v) = R
(λ,N,k)
V,ϕ and avkv = avk for all v;

• T′ is ϕ-compliant up to depth j − 1;
• D(dk, acc(v)) accepts for all v ∈ T′; and
• for v ∈ lT′(j), v is labeled in T′ with (z(v), π(v), acc(v)).

By knowledge soundness, with probability µ−negl(λ), (pp, (ppAS, ai),~i, (ivkv, z
(v))v, (ϕ,T

′)) ∈ Z ′

and for every vertex v ∈ lT′(j), (R
(λ,N,k)
V,ϕ , (avkv, z

(v), acc(v)),w(v)) ∈ RR1CS. Here we use Z
′ and

the auxiliary output in the knowledge soundness definition of ARG to ensure consistency between
the values z(v) and T′, and to ensure that T′ is ϕ-compliant and that the decider accepts.

Consider some v ∈ lT′(j). Since (R
(λ,N,k)
V,ϕ , (avk(v), z(v), acc(v).x),w(v)) ∈ RR1CS, we obtain

from w
(v) either:

• local data z(v)
loc , input messages

(
z

(v)
i , π

(v)
i .x, acc

(v)
i .x

)
i∈[m]

and proof pf such that the PCD

predicate ϕ(z(v), zloc, z1, . . . , zm) accepts, and the accumulation verifier V(λ,N,k)(avk(v), [qx
(v)
i ]mi=1,

[acc
(v)
i .x]mi=1, acc(v), pf(v)) accepts, where qx

(v)
i := ((avk(v), z

(v)
i , acc

(v)
i .x), π

(v)
i .x); or

• local data z(v)
loc such that ϕ(z(v), z

(v)
loc ,⊥, . . . ,⊥) accepts.

In both cases we append z(v)
loc to the label of v. In the latter case, v has no children and so

is ϕ-compliant by the base case condition. In the former case we label the children of v with
(zi, πi, acci), and so v is ϕ-compliant.

We define (ppAS, pp, ai, (i(v), acc(v), [qx
(v)
i ]mi=1, [acc

(v)
i .x]mi=1)v, (ϕ,T

′, ao)) ∈ Z ′′ if and only if

• ((pp, ppAS), ai, ϕ, o(T′), ao) ∈ Z and ϕ ∈ F,
• i

(v) = R
(λ,N,k)
V,ϕ for all v,

• T′ is ϕ-compliant up to depth j,
• for all v, qx

(v)
i = ((avk, z

(v)
i , acc

(v)
i .x), π

(v)
i ) where (apk, avk, dk)← I(ppAS, ppΦ, iΦ), and

• for u ∈ lT′(j + 1), where u is the i-th child of v ∈ lT′(j), u is labeled in T′ with z(v)
i .

Let
((
i
(v), acc(v), [qx

(v)
i , qw

(v)
i ]mi=1, [acc

(v)
i ]mi=1

)
v∈Sj

, ao′
)
← EP̃j

(ppAS, pp, ai). By knowledge

soundness of the accumulation scheme, (pp, ppΦ, ai, (i(v), acc(v), [qx
(v)
i ]mi=1, [acc

(v)
i .x]mi=1)v, ao′) ∈

Z ′′, and it holds that for all descendants u of v in Tj , D(dk, acc(u)) accepts and the predicate
ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, z(u), acc(u).x), π

(u)
in ) = V(ivk, (avk, z(u), acc(u).x), π

(u)
in ) accepts, with proba-

bility µ− negl(λ); this completes the inductive step.
Hence by induction, (ϕ,T, ao)← E(pp, ai) has ϕ-compliant T, (pp, ai, ϕ, o(T), ao) ∈ Z, and

ϕ ∈ F, with probability µ− negl(λ).
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3.5.4 Zero knowledge
The simulator S operates as follows.

S(1λ):
1. Sample simulated parameters for the non-interactive argument: (pp, τ)← S(1λ).
2. Sample simulated parameters for the accumulation scheme: (ppAS, τAS)← S(1λ).
3. Output (pp := (pp, ppAS), (pp, ppAS, τ, τAS)).

S((pp, ppAS, τ, τAS), ϕ, z):
1. Compute accumulator keys: (apk, dk, avk) := I(ppAS, ppΦ = pp, iΦ = R

(λ,N,k)
V,ϕ ).

2. Sample simulated accumulator: acc← S(τAS, ppΦ = pp, iΦ = R
(λ,N,k)
V,ϕ ).

3. Sample simulated argument: π ← S(τ, R
(λ,N,k)
V,ϕ , (avk, z, acc.x)).

4. Output (π, acc).

We consider the following sequence of hybrids.

• H0: The original experiment.
• H1: As H0, but the public parameters pp and proof π are generated by the simulator S for ARG.
• H2: As H1, but the public parameters ppAS and accumulator acc is generated by the simulator S
for AS.

We need to argue that H0 and H2 are indistinguishable.
Since A is honest (for PCD), by completeness of AS it induces an honest adversary for ARG,

whence H0 and H1 are indistinguishable by the zero knowledge property of ARG. Note that since
they are part of the witness, the input and accumulator lists [(qxi, qwi)]

n
i=1, [accj]

m
j=1 and verifier

proof pf are not used in H1. Hence, since A induces an honest adversary for AS and the simulated
pp is indistinguishable from the real pp (sampled by G(1λ)), H1 and H2 are indistinguishable by the
zero knowledge property of AS.

3.5.5 Efficiency
The efficiency argument follows from Lemma 3.5.5 and is essentially identical to that of [BCMS20],
and so we will not repeat it. We note only that the quantity v∗ (i) describes the size of the
accumulation verifier, which in particular need not read the entire NARK proof, which may be large,
and (ii) is a function of the size of the accumulator instance alone; the accumulator witness may be
large.

Lemma 3.5.5. Suppose that for every security parameter λ ∈ N, aritym, and message size ` ∈ N
the ratio of accumulation verifier circuit size to index size v∗(λ,m,N, `)/N is monotone decreasing
in N . Then there exists a size function N(λ, f,m, `) such that

∀λ, f,m, ` ∈ N S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) .
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Moreover if for some ε > 0 and some increasing function α it holds that, for allN, λ,m, ` sufficiently
large,

v∗(λ,m,N, `) ≤ N1−εα(λ,m, `)

then, for all λ,m, ` sufficiently large, N(λ, f,m, `) ≤ O(f + α(λ,m, `)1/ε).

3.5.6 Post-quantum security
We consider post-quantum knowledge soundness and zero knowledge.
Knowledge soundness. In the quantum setting, P̃ is taken to be a polynomial-size quantum
circuit; hence also P̃j, EP̃j , P̃j,EP̃j

,Ej are quantum circuits for all j, as is the final extractor E.
Our definition of knowledge soundness is such that our proof then generalizes immediately to
show security against quantum adversaries. In particular, the only difficulty arising from quantum
adversaries is that they can generate their own randomness, whereas in the classical case we can
force an adversary to behave deterministically by fixing its randomness. This difference is resolved
by our strong adaptive knowledge extraction property, which we use to enforce that the extractor’s
output is consistent with the transcript obtained so far.
Zero knowledge. From the argument in the preceding section it is clear that, by modifying the
definitions of zero knowledge as appropriate for the quantum setting, if ARG and AS both achieve
post-quantum zero knowledge, then so does PCD.
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3.6 An expected-time forking lemma
We establish useful notation for algorithms with access to oracles (Section 3.6.1), and then provide
an expected-time forking lemma with negligible loss (Section 3.6.2). We use this technical lemma
to prove the security of split accumulation schemes in later sections.

3.6.1 Notation for oracle algorithms
Let A be a t-query oracle algorithm with access to an oracle ρ : {0, 1}∗ → {0, 1}λ. For ~a =

(a1, . . . , at) ∈ ({0, 1}λ)t, we denote by (q, o; tr, r) ← A~a(x) the following procedure: run A on
input x, and answer the i-th query qi of A to its oracle with ai for each i; output (q, o; tr, r), where r
is the randomness used by A. We write (q, o; tr, r)← Aρ(x) to denote the same procedure when
each ai is adaptively set to ρ(qi).

We assume without loss of generality that A makes no duplicate queries; in particular, we can
interpret tr as partial function tr : {0, 1}∗ ⇀ {0, 1}λ. For a query transcript tr = [(qi, ai)]

t
i=1 and

query q, if q = qj for some j ∈ [t] then let j be the smallest such index, and define trq := [(qi, ai)]
j−1
i=1 .

That is, tr is truncated to the query before the first query to q. If q does not appear in tr, define
trq := ⊥.

3.6.2 An expected-time forking lemma
We give an expected-time forking lemma that is suitable for our setting. In particular, it handles
adversaries with an expected running time guarantee, which is a requirement of our knowledge
soundness definition.

Lemma 3.6.1. Let p be a predicate computable in time tp. There exists an algorithm Fork such that
for every public parameter string pp ∈ {0, 1}poly(λ) and oracle algorithm A,

Pr


trq 6= ⊥ ∧ p(pp, (q, ρ(q)), o, trq) = 1

⇓
∀j ∈ [N ], p(pp, (q, bj), oj , trq) = 1
∧ b1, . . . , bN are pairwise distinct

∣∣∣∣∣∣∣∣
ρ← U(λ)

(q, o; tr, r)← Aρ(pp)

[bj , oj ]
N
j=1 ← ForkA(pp, 1N , (q, ρ(q)), o, trq, r)

 ≥ 1− 2N
√
t

2λ/2
.

In the above experiment, Fork runs in expected time O(tN · (tA + tp)), where t is a strict bound on
the number of oracle queries made by A and tA is its expected running time.

Proof. The algorithm Fork on input (pp, 1N , (q, a), o, tr, r) operates as follows.

1. If tr = ⊥ or p(pp, (q, a), o, tr) = 0, output ⊥.
2. Parse tr as [(q1, a1), . . . , (qi−1, ai−1)].
3. Set b1 := a and o1 := o.
4. Set J := 1 and repeat the following until J = N :

a) Draw a′i, . . . , a
′
t ← {0, 1}λ.

b) Run Aa1,...,ai−1,a
′
i,...,a

′
t(pp; r) until it halts and outputs (q′, o′; tr′, r′). If r′ is longer than r, set

r := r′.
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c) If q′ = q (in particular, tr′q = trq) and p(pp, (q, a′i), o
′, tr) = 1, set J := J + 1, bJ := a′i, and

oJ := o′.
5. Output (b1, o1, . . . , bN , oN).

For the purposes of analysis, we consider an experiment where both A and Fork obtain their
randomness from a shared infinite tape σ ∈ {0, 1}∗. This is indistinguishable from the real
experiment since we can view the (common) randomness generated by all runs of A as being the
prefix of σ.

Let Si := {(~a, σ) : (q, o; tr)← A~a(pp;σ) ∧ |trq| = i ∧ p(pp, (q, ai), o, trq) = 1}. Define

δi(a1, . . . , ai−1;σ) := Pr
a
′
i,...,a

′
t∈{0,1}

λ
[(a1, . . . , ai−1, a

′
i, . . . , a

′
t, σ) ∈ Si] .

Observe that if (~a, σ) ∈ Si then the probability that one iteration of Step 4 increments J is
δi(a1, . . . , ai−1;σ). If the precondition on the left of the probability statement holds then Fork does
not terminate in Step 1. In this case δi(a1, . . . , ai−1;σ) > 0, and Fork’s output (if it halts) satisfies
“∀j ∈ [N ], p(pp, (q, bj), oj, trq) = 1”.

We now bound the expected running time of Fork. Let TA, TFork be random variables denoting
the running time of A,Fork respectively, and let t(a1, . . . , ai−1;σ) denote the expected running
time of a single iteration of Step 4. The number of iterations between J = j and J = j + 1,
which we denote X(j), is geometrically distributed with parameter δi(a1, . . . , ai−1;σ) > 0 when
(~a, σ) ∈ Si. We denote the time between these increments of J by T (j) and note that, when
(~a;σ) ∈ Si, E[T (j) | X(j) = m] = m · t(a1, . . . , ai−1;σ) by linearity. Let

f(a1, . . . , ai−1;σ) :=

{
t(a1,...,ai−1;σ)

δi(a1,...,ai−1;σ)
if δi(a1, . . . , ai−1;σ) 6= 0

0 otherwise
.
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By the law of total expectation:

E[TFork]

= E~a,σ
[
E[TFork | (~a, σ)]

]
= E~a,σ

 N∑
j=1

∞∑
m=1

Pr[X(j) = m | (~a, σ)] · E[T (j) | X(j) = m, (~a, σ)]


=

N

2tλ
·

t∑
i=1

Eσ

 ∑
~a s.t. (~a,σ)∈Si

∞∑
m=1

(
1− δi(a1, . . . , ai−1;σ)

)m−1 · δi(a1, . . . , ai−1;σ) ·m · t(a1, . . . , ai−1;σ)


=

N

2tλ
·

t∑
i=1

Eσ

 ∑
~a s.t. (~a,σ)∈Si

t(a1, . . . , ai−1;σ)

δi(a1, . . . , ai−1;σ)


=

N

2tλ
·

t∑
i=1

Eσ

 ∑
~a s.t. (~a,σ)∈Si

f(a1, . . . , ai−1;σ)


≤ N ·

t∑
i=1

Ea1,...,ai−1,σ
[t(a1, . . . , ai−1;σ)]

= N · t · (E[TA] + tp +O(t)) .

Above the inequality follows because for all functions f(a1, . . . , ai−1;σ) into R and σ ∈ {0, 1}∗,∑
~a s.t. (~a,σ)∈Si

f(a1, . . . , ai−1;σ) =
∑

a1,...,ai−1

f(a1, . . . , ai−1;σ)
∑

ai,...,at

1Si(~a, σ)

= 2(t−i+1)λ
∑

a1,...,ai−1

f(a1, . . . , ai−1;σ) · δi(a1, . . . , ai−1;σ) .

It remains to show that the b1, . . . , bN are pairwise distinct. Similarly to the above, it can be
shown that the expected number of iterations is at mostNt, and so the probability that Fork performs
more than

√
t · 2λ/2 iterations is at most Nt√

t·2λ/2
= N

√
t

2
λ/2 . Conditioned on this, the probability that

in any iteration we draw a′i such that a
′
i = bj for any j < J is at most N

√
t2
λ/2

2
λ = N

√
t

2
λ/2 . By a union

bound we obtain that the probability that there exist two elements among b1, . . . , bN that are equal
is at most 2 · N

√
t

2
λ/2 .

The following corollary enables extraction from protocols with two sequential oracle queries;
e.g., those arising from the Fiat–Shamir transformation applied to a five-message protocol. It is
shown by “recursively” applying the above forking lemma to an adversary constructed using the
Fork algorithm itself.
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Corollary 1. Let p be a predicate computable in time tp. There exists an algorithm Fork2 such that
for all pp ∈ {0, 1}poly(λ) and oracle algorithms A,

Pr



trq 6= ⊥∧
p(pp, (q, ρ(q)), o, ρ(ρ(q), o), o′, trq) = 1

⇓
b1, . . . , bN are pairwise distinct

∧∀j ∈ [N ],

p(pp, (q, bj), oj , b
′
j,k, o

′
j,k, trq) = 1

∧ b′j,1, . . . , b
′
j,N
′ are pairwise distinct

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

(q, o, o′; tr, r)← Aρ(pp)

[bj , oj , [b
′
j,k, o

′
j,k]

N
′

k=1]Nj=1

← ForkA2 (pp, 1N , 1N
′
, (q, ρ(q)), o,

ρ(ρ(q), o), o′, tr, r)


≥ 1− 3NN ′

√
t

2λ/2

In the above experiment, Fork2 runs in expected time O(t2NN ′ · (tA + tp)), where t is a strict
bound on the number of oracle queries made by A and tA is its expected running time.



CHAPTER 3. PROOF-CARRYING DATA WITHOUT SUCCINCT ARGUMENTS 142

3.7 Split accumulation for Hadamard products
We construct a split accumulation scheme for the Hadamard products. We define the predicate to
accumulate and then state our theorem. The remainder of the section is dedicated to proving the
theorem.

Definition 3.7.1. The Hadamard product predicate ΦHP takes as input: (i) public parameters
ppΦ = ppCM for the Pedersen commitment scheme (for messages of some maximum length L); (ii) an
index iΦ = ` specifying a message length (at most L); (iii) an instance qx = (C1, C2, C3) ∈ G3

consisting of three Pedersen commitments; (iv) a witness qw = (a, b, ω1, ω2, ω3) consisting of
two vectors a, b ∈ F` and three opening randomness elements ω1, ω2, ω3 ∈ F. The predicate ΦHP

computes the commitment key ck := CM.Trim(ppCM, `) for messages of length ` and checks that

C1 = CM.Commit(ck, a;ω1) ∧ C2 = CM.Commit(ck, b;ω2) ∧ C3 = CM.Commit(ck, a◦b;ω3) .
(3.1)

Theorem 3.7.2. The scheme AS = (G, I,P,V,D) constructed in Section 3.7.1 is a zero-knowledge
split accumulation scheme in the random oracle model for the Hadamard product predicate in
Definition 3.7.1. AS achieves the efficiency stated below.

• Generator: G(1λ) runs in time O(λ).
• Indexer: The time of I(pp, ppΦ, iΦ = `) is dominated by the time to run CM.Trim with message
length `.

• Accumulation prover: The time of Pρ(apk, [(qxi, qwi)]
n
i=1, [accj]

m
j=1) is dominated byO(n+m) · `

group scalar multiplications and Õ(n+m) · ` field additions/multiplications.
• Accumulation verifier: Vρ(avk, [qxi]

n
i=1, [accj.x]mj=1, acc.x, pf) requires making 2 calls to the ran-

dom oracle,O(n+m) field additions/multiplications, andO(n+m) group scalar multiplications.
• Decider: The time of D(dk, acc) equals the time to run the predicate ΦHP.
• Sizes: An accumulator acc is split into an accumulator instance acc.x of 3 group elements, and
an accumulator witness acc.w of O(`) field elements. An accumulation proof pf consists of
O(n+m) group elements.

3.7.1 Construction
We describe the accumulation scheme AS = (G, I,P,V,D) for the Hadamard product predicate
ΦHP. An accumulator acc is split in two parts that are analogous to instance-witness pairs given to
ΦHP (see Definition 3.7.1). Jumping ahead, the decider D is equal to the predicate ΦHP; hence, there
is no distinction between inputs and prior accumulators, and so it suffices to accumulate inputs only.
Generator. The generator G receives as input pp := 1λ and outputs 1λ. (In other words, G does
not have to create additional public parameters beyond those used by ΦHP.)
Indexer. On input the accumulator parameters pp, predicate parameters ppΦ = ppCM, and a
predicate index iΦ = `, the indexer I computes the commitment key ck := CM.Trim(ppCM, `), and
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then outputs the accumulator proving key apk := (ck, `), the accumulator verification key avk := `,
and the decision key dk := ck.
Accumulation prover. On input the accumulation proving key apk and predicate instance-witness
pairs [(qxi, qwi)]

n
i=1 (of the same form as split accumulators [accj]

m
j=1 = [(accj.x, accj.w)]mj=1), P

works as below.

Pρ(apk = (ck, `), [(qxi, qwi)]
n
i=1):

1. For each i ∈ [n], parse the predicate instance qxi as (C1,i, C2,i, C3,i).
2. For each i ∈ [n], parse the predicate witness qwi as (ai, bi, ω1,i, ω2,i, ω3,i).
3. Sample a?, b? ∈ F` and ω?1 , ω

?
2 , ω

?
3 ∈ F and compute

C?1 := CM.Commit(ck, a?;ω?1) ,

C?2 := CM.Commit(ck, b?;ω?2) ,

C?3 := CM.Commit(ck, a? ◦ b1 + an ◦ b
?;ω?3) .

4. Use the random oracle to compute the challenge µ := ρ(`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3 ) ∈ F.

5. Compute a(X,µ) :=
∑n
i=1X

i−1µi−1ai+µ
na? ∈ F`[X].

6. Compute b(X,µ) :=
∑n
i=1X

n−ibi+µb
? ∈ F`[X].

7. Compute the product polynomial a(X,µ) ◦ b(X,µ), which is of the form
∑2n−1
i=1 Xi−1ti ∈ F`[X].

8. For each i ∈ [2n− 1] \ {n}, compute the commitment Ct,i := CM.Commit(ck, ti; 0) ∈ G.
9. Use the random oracle to compute the challenge ν := ρ(µ, [Ct,i, Ct,n+i]

n−1
i=1 ) ∈ F.

10. Compute the commitment to a(ν, µ): C1 :=
∑n
i=1 ν

i−1µi−1C1,i+µ
nC?1 ∈ G.

11. Compute the commitment to b(ν, µ): C2 :=
∑n
i=1 ν

n−iC2,i+µC
?
2 ∈ G.

12. Compute the commitment to a(ν, µ) ◦ b(ν, µ):

C3 :=
∑n−1
i=1 ν

i−1Ct,i + νn−1(µnC?3 +
∑n
i=1 µ

i−1C3,i) +
∑n−1
i=1 ν

n+i−1Ct,n+1 ∈ G .

13. Compute opening value and opening randomness for C1:

a :=
∑n
i=1 ν

i−1µi−1ai+µ
na? ∈ F` and ω1 :=

∑n
i=1 ν

i−1µi−1ω1,i+µ
nω?1 ∈ F .

14. Compute opening value and opening randomness for C2:

b :=
∑n
i=1 ν

n−ibi+µb
? ∈ F` and ω2 :=

∑n
i=1 ν

n−iω2,i+µω
?
2 ∈ F .

15. Compute opening randomness for C3:

ω3 := νn−1(µnω?3+
∑n
i=1µ

i−1ω3,i) ∈ F .

16. Set the accumulator acc := (acc.x, acc.w) where acc.x := (C1, C2, C3) and acc.w := (a, b, ω1, ω2, ω3).
17. Set the accumulation proof pf := (C?1 , C

?
2 , C

?
3 ,[Ct,i, Ct,n+i]

n−1
i=1 ).

18. Output (acc, pf).

Accumulation verifier. On input the accumulator verification key avk, predicate instances [qxi]
n
i=1

(of the same form as accumulator instances [accj.x]mj=1), a new accumulator instance acc.x, and an
accumulation proof pf, V works as below.
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Vρ(avk = `, [qxi]
n
i=1, acc.x, pf):

1. Compute µ := ρ(`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
2 ) and ν := ρ(µ, [Ct,i, Ct,n+i]

n−1
i=1 ).

2. Check that acc.x.C1 =
∑n

i=1 ν
i−1µi−1qxi.C1+µnC?1 .

3. Check that acc.x.C2 =
∑n

i=1 ν
n−iqxi.C2+µC?2 .

4. Check that acc.x.C3 =
∑n−1

i=1 ν
i−1Ct,i + νn−1(µnC?3+

∑n
i=1 µ

i−1qxi.C3) +
∑n−1

i=1 ν
n+i−1Ct,n+i.

Decider. On input the decision key dk = ck and an accumulator acc = (acc.x, acc.w), D performs
the checks from the Hadamard product predicate ΦHP on acc (see Equation (3.1)). That is, D checks
that acc.x.C1 = CM.Commit(ck, acc.w.a; acc.w.ω1), acc.x.C2 = CM.Commit(ck, acc.w.b; acc.w.ω2),
and acc.x.C3 = CM.Commit(ck, acc.w.a ◦ acc.w.b; acc.w.ω3).

3.7.2 Proof of Theorem 3.7.2
We prove that the accumulation scheme constructed in the previous section satisfies the claimed
efficiency properties, achieves completeness, and achieves zero knowledge. Then in Section 3.7.2.1
we prove that it achieves knowledge soundness.
Efficiency. We now analyze the efficiency of our accumulation scheme.

• Generator: G(1λ) outputs 1λ, and hence runs in time O(λ).

• Indexer: Iρ(pp, ppΦ, iΦ) runs CM.Trim with message length `.

• Accumulation prover: Pρ(apk, [(qxi, qwi)]
n
i=1) performs O(n) · ` group scalar multiplications and

Õ(n) · ` field additions/multiplications. (The quasilinear cost in n is due to multiplication of
polynomials of degree n.)

• Accumulation verifier: Vρ(avk, [qxi]
n
i=1, acc.x, pf) makes 2 calls to the random oracle, O(n) field

operations, and 5n− 5 group scalar multiplications.

• Decider: D(dk, acc) invokes the Hadamard product predicate ΦHP and performs 3` scalar
multiplications.

• Sizes: The accumulator instance acc.x consists of 3 group elements. The accumulator witness
acc.w consists of 2` + 3 field elements. The accumulation proof pf consists of 2n − 2 group
elements.

Completeness. Since we need only accumulate predicate inputs (as accumulators are split like
predicate inputs and the decider equals the predicate being accumulated), it suffices to demonstrate
that the simplified completeness property from Section 3.4.1 holds. Fix an (unbounded) adversary
A. For each i ∈ [n], since

ΦHP

(
ppΦ, iΦ = `, qxi = (C1,i, C2,i, C3,i), qwi = (ai, bi, ω1,i, ω2,i, ω3,i)

)
= 1 ,
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we know that C1,i = CM.Commit(ck, ai;ω1,i), C2,i = CM.Commit(ck, bi;ω2,i), and C3,i =

CM.Commit(ck, ai◦bi;ω3,i). This implies for a :=
∑n

i=1 ν
i−1µi−1ai+µ

na? and b :=
∑n

i=1 µ
n−ibi+

µb? that a ◦ b =
∑2n−1

i=1 νi−1ti and that tn = µn(a? ◦ b1 + an ◦ b?) +
∑n

i=1 µ
i−1ai ◦ bi. Further we

have that ω1 =
∑n

i=1 ν
i−1µi−1ω1,i + µnω?1 , ω2 =

∑n
i=1 µ

n−iω2,i + µω?2 , and ω3 = νn−1(µnω?3 +∑n
i=1µ

i−1ω3,i). This implies that C1 = CM.Commit(ck, a;ω1), C2 = CM.Commit(ck, b;ω2), and
C3 = CM.Commit(ck, a ◦ b;ω3); that is, the new accumulator is accepted by the decider. That the
accumulation verifier accepts the corresponding instance parts also follows form the above equations,
and the homomorphic properties of the Pedersen commitment.
Zero knowledge. Consider the simulator S for AS that works as follows:

Sρ(τ = ⊥, ppΦ = ppCM, iΦ = `):
1. Sample vectors a, b ∈ F`.
2. Sample opening randomness elements ω1, ω2, ω3 ∈ F.
3. Compute C1 := CM.Commit(ck, a;ω1).
4. Compute C2 := CM.Commit(ck, b;ω2).
5. Compute C3 := CM.Commit(ck, a ◦ b;ω3).
6. Set the accumulator instance acc.x := (C1, C2, C3).
7. Set the accumulator witness acc.w := (a, b, ω1, ω2, ω3).
8. Output acc := (acc.x, acc.w).

By construction, the sampled accumulator satisfies the decider. Moreover, the accumulator is
distributed identically to an accumulator output by the (honest) accumulation prover. This is because
all elements of the accumulator are random within the respective domains subject only to the
condition that the decider accepts the accumulator.

3.7.2.1 Knowledge soundness

We need only accumulate predicate inputs (as accumulators are split like predicate inputs and the
decider equals the predicate being accumulated), so it suffices to demonstrate that the simplified
knowledge soundness property from Section 3.4.1 holds. We describe an extractor and then analyze
why it satisfies the property.

Define the following algorithm:

Aρ
(
(pp, ppΦ, ai)

)
:

1. (iΦ = `, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai).

2. Parse the accumulation proof pf as (C?
1 , C

?
2 , C

?
3 , [Ct,i, Ct,n+i]

n−1
i=1 ).

3. Set the query q := (`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3).

4. Set the first output o to be [Ct,i, Ct,n+i]
n−1
i=1 .

5. Set the second output o′ to be the accumulator acc.
6. Query the random oracle ρ at q and at (ρ(q), o).
7. Output (q, o, o′).
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Define the forking lemma predicate:

p
(
(pp, ppΦ, ai), (q, a), o, a′, o′, tr

)
:

1. Parse the query q as (`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3).

2. Parse the first output o as [Ct,i, Ct,n+i]
n−1
i=1 .

3. Parse the second output o′ as an accumulator acc.
4. Set the accumulation proof pf := (C?

1 , C
?
2 , C

?
3 , [Ct,i, Ct,n+i]

n−1
i=1 ).

5. Compute (apk, avk, dk) := I(pp, ppΦ, `).
6. Check that a 6= 0.
7. Check that V(avk, [qxi]

n
i=1, acc.x, pf) outputs 1 when answering its first random oracle query

with a and its second random oracle query with a′.
8. Check that D(dk, acc) outputs 1.

For the remainder of the proof we implicitly consider only the case that Vρ(avk, [qxi]
n
i=1, acc.x, pf) =

1 andD(dk, acc) = 1 for (iΦ, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai) and (apk, avk, dk) := I(pp, ppΦ, `);

otherwise, the implication holds vacuously. In this case the output of A satisfies p with probability
1−negl(λ), where the negligible loss accounts for the case that ρ(q) = 0. Let Fork2 be the algorithm
given by applying Corollary 1 to the forking lemma predicate p.

EP̃,ρ(pp, ppΦ, ai, r):
1. Run (q, o, o′; tr)← Aρ

(
(pp, ppΦ, ai); r

)
.

2. Parse q as (`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3 ), o as [Ct,i, Ct,n+i]

n−1
i=1 , and o′ as acc.

3. Set the accumulation proof pf := (C?1 , C
?
2 , C

?
3 , [Ct,i, Ct,n+i]

n−1
i=1 ).

4. Run [µj , oj , [νj,k, o
′
j,k]

2n−1
k=1 ]n+1

j=1 ← ForkA2 (pp, 1n+1, 12n−1, (q, ρ(q)), o, ρ(ρ(q), o), o′, tr, r).
5. For each j ∈ [n+ 1] and for each k ∈ [2n− 1]:

parse o′j,k as acc(j,k) =
(
(C

(j,k)
1,? , C

(j,k)
2,? , C

(j,k)
3,? ), (a(j,k)

? , b(j,k)
? , ω

(j,k)
1,? , ω

(j,k)
2,? , ω

(j,k)
3,? )

)
.

6. Set Uj to be the Vandermonde matrix on (µjν1,1, . . . , µjν1,n).

7. Set Vj to be the descendingVandermondematrix on (νj,1, . . . , νj,n): Vj :=

ν
n−1
j,1 νn−2

j,1 · · · 1
...

... . . . ...
νn−1
j,n νn−2

j,n · · · 1

.

8. If U1, U2, V1, V2 are not invertible, abort. Otherwise, compute
ā1 ω̄1,1

a2 ω1,2
...

...
an ω1,n

 := U−1
1


a(1,1)
? ω

(1,1)
1,?

...
...

a(1,n)
? ω

(1,n)
1,?




b1 ω2,1
...

...
bn−1 ω2,n−1

b̄n ω̄2,n

 := V −1
1


b(1,1)
? ω

(1,1)
2,?

...
...

b(1,n)
? ω

(1,n)
2,?



ā′1 ω̄′1,1
a′2 ω′1,2
...

...
a′n ω′1,n

 := U−1
2


a(2,1)
? ω

(2,1)
1,?

...
...

a(2,n)
? ω

(2,n)
1,?




b′1 ω′2,1
...

...
b′n−1 ω′2,n−1

b̄′n ω̄′2,n

 := V −1
2


b(2,1)
? ω

(2,1)
2,?

...
...

b(2,n)
? ω

(2,n)
2,?


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9. Compute

a1 :=
µn2 ā1 − µ

n
1 ā
′
1

µn2 − µ
n
1

ω1,1 :=
µn2 ω̄1,1 − µ

n
1 ω̄
′
1,1

µn2 − µ
n
1

bn :=
µ2b̄n − µ1b̄

′
n

µ2 − µ1
ω2,n :=

µ2ω̄2,n − µ1ω̄
′
2,n

µ2 − µ1

10. For each j ∈ [n+ 1]:
a) Set Pj to be the Vandermonde matrix on (νj,1, . . . , νj,2n−1).
b) If Pj is not invertible, abort. Otherwise, compute τ

(j)
1
...

τ
(j)
2n−1

 := P−1
j


ω

(j,1)
3,?
...

ω
(j,2n−1)
3,?

 .

11. SetM to be the Vandermonde matrix on (µ1, . . . , µn+1).
12. IfM is not invertible, abort. Otherwise, compute ω3,1

...
ω3,n+1

 := M−1

 τ (1)
n
...

τ (n+1)
n

 .

13. For each i ∈ [n], set qwi := (ai, bi, ω1,i, ω2,i, ω3,i).
14. Output

(
iΦ, [(qxi, qwi)]

n
i=1, acc, pf

)
.

By the properties of Fork2 guaranteed in Corollary 1, EP̃ runs in expected polynomial time and,
moreover, except with probability negl(λ) the following event E occurs:

{µj}j∈[n+1] are pairwise distinct
and ∀ j ∈ [n+ 1] it holds that {νj,k}k∈[2n−1] are pairwise distinct
and ∀ j ∈ [n+1] ∀ k ∈ [2n−1] it holds that p

(
(pp, ppΦ, ai), (q, µj), oj, νj,k, o

′
j,k, trq

)
= 1.

Conditioned on E, since the challenges are all distinct, the Vandermonde matrices {Uj}j=1,2,
{Vj}j=1,2, {Pj}j=1,...,n+1, andM are all invertible, and so the extractor does not abort. (Note that
for Uj to be invertible, we need that µj 6= 0, which we guarantee by the definition of p.)

The claim below completes the proof, because it is immediate from that claim and the above
discussion that with all but negligible probability, for all i ∈ [n],

ΦHP

(
ppΦ, iΦ = `, qxi = (C1,i, C2,i, C3,i), qwi = (ai, bi, ω1,i, ω2,i, ω3,i)

)
= 1 .

Claim 3.7.3. The event E implies that for every i ∈ [n] it holds that:

C1,i = CM.Commit(ck, ai;ω1,i) ,

C2,i = CM.Commit(ck, bi;ω2,i) ,

C3,i = CM.Commit(ck, ai ◦ bi;ω3,i) .
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Proof. Define the following vectors:

∀j ∈ [n], ~C
(j)
1 := (C1,1 + µnjC

?
1 , C1,2, . . . , C1,n) ∀j ∈ [n], ~C

(j)
1,? := (C

(j,1)
1,? , . . . , C

(j,n)
1,? )

∀j ∈ [n], ~C
(j)
2 := (C2,1, . . . , C2,n−1, C2,n + µjC

?
2) ∀j ∈ [n], ~C

(j)
2,? := (C

(j,1)
2,? , . . . , C

(j,n)
2,? )

~C3 := (C3,1, . . . , C3,n, C
?
3) ∀j ∈ [n], ~C

(j)
3,? := (C

(j,1)
3,? , . . . , C

(j,2n−1)
3,? )

For each j ∈ [n], define the following vector

~C
(j)
t :=

(
C

(j)
t,1 , . . . C

(j)
t,n−1, µ

n
jC

?
3 +

∑n
i=1µ

i−1
j C3,i, C

(j)
t,n+1, . . . , C

(j)
t,2n−1

)
.

Fix j ∈ [n] and k ∈ [2n− 1]. Since the accumulation verifier accepts (avk, [qxi]
n
i=1, acc(j,k), pf), we

have
~C1,? = U1 · ~C

(1)
1 , ~C2,? = V1 · ~C

(1)
2 , ~C

(j)
3,? = Pj · ~C

(j)
t , ~C1,? = U2 · ~C

(2)
1 , ~C2,? = V2 · ~C

(2)
2 .

Moreover, since the decider accepts (dk, acc(j,k)), it holds that

C
(j,k)
1,? = CM.Commit(ck, a(j,k)

? ;ω
(j,k)
1,? ) ,

C
(j,k)
2,? = CM.Commit(ck, b(j,k)

? ;ω
(j,k)
2,? ) ,

C
(j,k)
3,? = CM.Commit(ck, a(j,k)

? ◦ b(j,k)
? ;ω

(j,k)
3,? ) .

Using the homomorphic property of CM.Commit, and because ~C1 = U−1
1
~C1,?, it holds for all

i ∈ {2, . . . , n} that

C1,i =
∑n

k=1U
−1
1 [i, k]C

(1,k)
1,?

=
∑n

k=1U
−1
1 [i, k]CM.Commit(ck, a(j,k)

? ;ω
(j,k)
1,? )

= CM.Commit(ck,
∑n

k=1U
−1
1 [i, k]a(1,k)

? ;
∑n

k=1U
−1
1 [i, k]ω

(1,k)
1,? )

= CM.Commit(ck, ai;ω1,i) .

Similarly, since ~C2 = V −1
1
~C2,?, it holds that for all i ∈ {1, . . . , n−1},C2,i = CM.Commit(ck, bi;ω2,i).

Furthermore,

C1,1 + µn1C
?
1 = CM.Commit(ck, ā1; ω̄1,1) , C1,1 + µn2C

?
1 = CM.Commit(ck, ā′1; ω̄′1,1) ,

C2,n + µ1C
?
2 = CM.Commit(ck, b̄n; ω̄2,n) , C2,n + µ2C

?
2 = CM.Commit(ck, b̄′2; ω̄′2,n) .

From this we can see that if µ1 6= µ2 (which is implied by E) then C1,1 = CM.Commit(ck, a1;ω1,1)

and C2,n = CM.Commit(ck, bn;ω2,n). Define a? := ā1−ā
′
1

µ
n
1−µ

n
2
, ω?1 :=

ω̄1,1−ω̄
′
1,1

µ
n
1−µ

n
2

and b? := b̄n−b̄
′
n

µ1−µ2
,

ω?2 :=
ω̄2,n−ω̄

′
2,n

µ1−µ2
. By the homomorphic property of the commitment scheme we have that for all

j ∈ [n]

C1,1 + µnjC
?
1 = CM.Commit(ck, a1 + µnj a

?;ω1,1 + µnj ω
?
1) ,

C2,n + µjC
?
2 = CM.Commit(ck, bn + µjb

?;ω2,n + µjω
?
2) .
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Fix j ∈ [n]. Recall that Uj is the Vandermonde matrix on (µjνj,1, . . . , µjνj,n), and that Vj is the
descending Vandermonde matrix on (νj,1, . . . , νj,n). Observe that since ~C(j)

1,? = Uj · ~C
(j)
1 and ~C(j)

2,? =

Vj · ~C
(j)
2 , C(j,k)

3,? = CM.Commit(ck, (a?µnj +
∑n

i=1 aiµ
i−1
j νi−1

j,k ) ◦ (b?µj +
∑n

i=1 biν
n−i
j,k );ω

(j,k)
3,? ). For

i ∈ [2n−1], let t(j)i be the coefficient ofX i−1 in the polynomial zj(X) := (a?µnj +
∑n

i=1 aiµ
i−1
j X i−1)◦

(b?µj +
∑n

i=1 biX
n−i), so that C(j,k)

3,? = CM.Commit(ck,
∑2n−1

i=1 t
(j)
i νi−1

j,k ;ω
(j,k)
3,? ). Recall that t(j)n =

µn · (a? ◦ b1 + an ◦ b?) +
∑n

i=1 µ
i−1
j ai ◦ bi.

Next, for each j ∈ [n], since ~C(j)
t = P−1

j
~C

(j)
3,?, it follows that for i ∈ [2n − 1] \ {n}, C(j)

t,i =

CM.Commit(ck, t
(j)
i ; τ

(j)
i ) and that C(j)

t,n := µnjC
?
3 +

∑n
i=1 µ

i−1
j C3,i = CM.Commit(ck, t(j)n ; τ (j)

n ).
Letting ~C◦ := (C

(1)
t,n , . . . , C

(n+1)
t,n ) we see that ~C◦ = M · ~C3, so that for all i ∈ [n], C3,i =

CM.Commit(ck, ai ◦ bi;ω3,i). Note that the (n + 1)-th entry of ~C3 is C?
3 , which commits to

a? ◦ b1 + an ◦ b?.
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3.8 Split accumulation for R1CS
In Section 3.8.1 we describe a zkNARK for R1CS and then in Section 3.8.2 we describe a split
accumulation scheme for it; security proofs are in Section 3.8.3.

3.8.1 zkNARK for R1CS
We describe a zkNARK for R1CS (see Definition 3.8.1) in the ROM; the protocol is the result
of applying the Fiat–Shamir transformation to an underlying sigma protocol for R1CS based on
Pedersen commitments. Following the definition of a non-interactive argument in the ROM from
Section 3.3.1, we describe the generator G, indexer I, prover P , and verifier V .

Definition 3.8.1. The indexed relation RR1CS(F) is the set of all triples (i,x,w) where i =
(A,B,C, n) is a triple of three coefficient matrices in FM×N and an instance size n ∈ N, x = x ∈ Fn

is an R1CS input, and w = w ∈ FN−n is an R1CS witness such that Az ◦Bz = Cz for z := (x,w).

Generator. The generator G has query access to a random oracle ρNARK (but happens not to use
it here) and receives as input the security parameter λ in unary and works as follows. Sample the
description of a prime-order group (G, q, G) ← SampleGrp(1λ); here q is the prime order of the
group and G is a generator for the group; henceforth we denote by F the field of prime order q.
Output the public parameters pp := (G, q, G).
Indexer. The indexer I has query access to a random oracle ρNARK, receives as input public
parameters pp and an index i = (A,B,C, n), and works as follows. Use the random oracle to
hash the coefficient matrices: τ := ρNARK(A,B,C, n). Letting M be the number of rows in a
coefficient matrix, use the random oracle ρNARK to sample group generators to form a commitment
key ck := (G1, . . . , GM, H) ∈ GM+1 for the Pedersen commitment with messages in FM (the extra
group element H is used for hiding). Output the index proving key ipk := (ck, A,B,C, n, τ) and
index verification key ivk := ipk. (Here, unlike in the split accumulation scheme in Section 3.8.2,
the indexer can be folded into the prover and verifier as the verifier runs in linear time.)
Prover. The prover P has query access to a random oracle ρNARK, receives as input the index proving
key ipk = (ck, A,B,C, n, τ), an instance x = x ∈ Fn, and a witness w = w ∈ FN−n, and works as
follows.

1. Assemble the full assignment z := (x,w) ∈ FN.
2. Sample randomness r ∈ FN−n that will be used to blind the witness w.
3. Compute linear combinations of the full assignment z and (padded) randomness r (they are in

FM):

zA := Az , zB := Bz , zC := Cz ,

rA := A

[
0n

r

]
, rB := B

[
0n

r

]
, rC := C

[
0n

r

]
.
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4. Commit to all the linear combinations: sample ωA, ωB, ωC, ω
′
A, ω

′
B, ω

′
C ∈ F and compute

CA := CM.Commit(ck, zA;ωA) , CB := CM.Commit(ck, zB;ωB) , CC := CM.Commit(ck, zC ;ωC) ,

C ′A := CM.Commit(ck, rA;ω′A) , C ′B := CM.Commit(ck, rB;ω′B) , C ′C := CM.Commit(ck, rC ;ω′C) .

5. Commit to cross terms: sample ω1, ω2 ∈ F and compute

C1 := CM.Commit(ck, zA ◦ rB + zB ◦ rA;ω1) and C2 := CM.Commit(ck, rA ◦ rB;ω2) .

6. Set π1 := (CA, CB, CC, C
′
A, C

′
B, C

′
C, C1, C2) as the sigma protocol’s prover commitment.

7. Use the random oracle to compute the sigma protocol’s challenge γ := ρNARK(τ, x, π1) ∈ F.
8. Blind the witness by computing s := w + γr ∈ FN−n.
9. Blind the randomness for linear combinations: σA := ωA+γω′A, σB := ωB+γω′B, σC := ωC+γω′C .

10. Blind the randomness for cross terms: σ◦ := ωC + γω1 + γ2ω2.
11. Set π2 := (s, σA, σB, σC, σ◦) as the sigma protocol’s prover response.
12. Output the proof string π := (π1, π2).

Verifier. The prover V has query access to a random oracle ρNARK, receives as input the index
verification key ivk = (ck, A,B,C, n, τ) and an instance x = x ∈ Fn, and works as follows.

1. Parse the proof π as a pair (π1, π2) consisting of a sigma protocol commitment and response.
2. Use the random oracle to compute the sigma protocol’s challenge γ := ρNARK(τ, x, π1) ∈ F.
3. Compute linear combinations of the shifted assignment (they are in FM):

sA := A

[
x
s

]
, sB := B

[
x
s

]
, sC := C

[
x
s

]
.

4. Check consistency of the linear combinations with the commitments:

CA + γC ′A = CM.Commit(ck, sA;σA) ,

CB + γC ′B = CM.Commit(ck, sB;σB) ,

CC + γC ′C = CM.Commit(ck, sC;σC) .

5. Check consistency of the Hadamard product with the commitment:

CC + γC1 + γ2C2 = CM.Commit(ck, sA ◦ sB;σ◦) .

3.8.2 Split accumulation for the zkNARK verifier
We describe a split accumulation scheme AS = (G, I,P,V,D) for the zkNARK for R1CS in
Section 3.8.1. As a subroutine we use an accumulation scheme ASHP = (GHP, IHP,PHP,VHP,DHP) for
the Hadamard product predicate ΦHP (e.g., the one we construct in Section 3.7). We use domain
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separation on the given random oracle ρ for different tasks: we use ρHP to denote the oracle used for
one invocation of ASHP; ρNARK to denote the oracle used to run the zkNARK for R1CS; and ρAS to
denote the random oracle used by AS for other tasks. We use red text to denote features required to
achieve zero knowledge accumulation, provided that ASHP is itself a zero knowledge accumulation
scheme. (Dropping the red text leads to secure, but not zero knowledge, accumulation.)
Predicate inputs. FollowingDefinition 3.5.1, the predicate to accumulate is the NARK verifier, with
the following split in a predicate input q obtained from an R1CS instance x and proof π = (π1, π2):

• The instance part of q consists of the R1CS input x and the sigma protocol’s commitment π1.
This amounts to 8 group elements and n field elements (which is short).

• The witness part of q consists of the sigma protocol’s response π2. This amounts to N− n + 4
field elements (which is proportional to the number of rows of the R1CS matrices).

Accumulator. The format of an accumulator acc is as follows:

• The instance part of acc consists of acc.x = (Cx, CA, CB, CC, accHP.x).
• The witness part of acc consists of acc.w = (x, s, σA, σB, σC, accHP.w).

Note that a split accumulator has a different format to a predicate input. The size of acc.x does not
depend on the size of the public input x, as required by our PCD construction (Theorem 3.5.3).
Generator. The generator G runs GHP as a subroutine and outputs its output pp := ppHP.
Indexer. The indexer I receives as input accumulation public parameters pp = ppHP (output by G),
predicate public parameters ppΦ = ppNARK (the public parameters of the NARK per Definition 3.5.1),
predicate index iΦ = (A,B,C, n) (the index of the relation verified by theNARKperDefinition 3.5.1),
and works as follows:
• Invoke the NARK indexer (ipk, ivk) := IρNARK

NARK (ppNARK, iΦ), and then obtain ck and τ from ipk.
• Set the vector length to be ` := M, the number of rows in each R1CS coefficient matrix.
• Invoke IHP(ppHP, ck, `) to obtain (apkHP, avkHP, dkHP). (Here we provide ck in place of ppΦHP

,
making use of the fact that for the Pedersen commitment, these have the same form.)

• Output (apk, avk, dk) :=
(
(A,B,C, n, τ, apkHP), (τ, n, avkHP), (A,B,C, n, ck, dkHP)

)
.

Accumulation prover. On input the accumulation proving key apk = (A,B,C, n, τ, apkHP), predi-
cate instance-witness pairs [(qxi, qwi)]

n
i=1, and old accumulators [accj]

m
j=1 = [(accj.x, accj.w)]mj=1,

P works as below.

1. For each i ∈ [n]:
a) Compute the challenge of the i-th proof: γi := ρNARK(τ, qxi).
b) Set qxHP,i

:= (qxi.CA + γi · qxi.C
′
A, qxi.CB + γi · qxi.C

′
B, qxi.CC + γi · qxi.C1 + γ2

i · qxi.C2).
c) Set qwHP,i

:=
(
A · (qxi.x, qwi.s), B · (qxi.x, qwi.s), qwi.σA, qwi.σB, qwi.σ◦

)
.

2. For each j ∈ [m]:
a) Set accHP,j.x := accj.x.accHP.x.
b) Set accHP,j.w := accj.w.accHP.w.
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3. Accumulate Hadamard products:

(accHP, pfHP) := ASHP.P
ρHP(apkHP, [(qxHP,i, qwHP,i)]

n
i=1, [(accHP,j.x, accHP,j.w)]mj=1) .

4. Sample randomness x? ∈ Fn, s? ∈ FN−n, and ω?A, ω
?
B, ω

?
C ∈ F and compute the following

commitments:

C?
x := CM.Commit(ck, x?; 0) ,

C?
A := CM.Commit

(
ck, A ·

[
x?

s?

]
;ω?A

)
,

C?
B := CM.Commit

(
ck, B ·

[
x?

s?

]
;ω?B

)
,

C?
C := CM.Commit

(
ck, C ·

[
x?

s?

]
;ω?C

)
.

5. Use the random oracle to compute β := ρAS(τ, [accj.x]mj=1, [qxi]
n
i=1, C

?
x, C

?
A, C

?
B, C

?
C) ∈ F.

6. Compute the accumulator instance acc.x := (Cx, CA, CB, CC, accHP.x) where:

Cx :=
∑m

j=1β
j−1 · accj.x.Cx +

∑n
i=1β

m+i−1 · CM.Commit(ck, qxi.x; 0) + βm+n · C?
x ,

CA :=
∑m

j=1β
j−1 · accj.x.CA +

∑n
i=1β

m+i−1 ·
(
qxi.CA + γi · qxi.C

′
A

)
+ βm+n · C?

A ,

CB :=
∑m

j=1β
j−1 · accj.x.CB +

∑n
i=1β

m+i−1 ·
(
qxi.CB + γi · qxi.C

′
B

)
+ βm+n · C?

B ,

CC :=
∑m

j=1β
j−1 · accj.x.CC +

∑n
i=1β

m+i−1 ·
(
qxi.CC + γi · qxi.C

′
C

)
+ βm+n · C?

C .

7. Compute the accumulator witness acc.w := (x, s, σA, σB, σC, accHP.w) where:

x :=
∑m

j=1β
j−1 · accj.w.x+

∑n
i=1β

m+i−1 · qxi.x+ βm+n · x? ,
s :=

∑m
j=1β

j−1 · accj.w.s+
∑n

i=1β
m+i−1 · qwi.s+ βm+n · s? ,

σA :=
∑m

j=1β
j−1 · accj.w.σA +

∑n
i=1β

m+i−1 · qwi.σA + βm+n · ω?A ,
σB :=

∑m
j=1β

j−1 · accj.w.σB +
∑n

i=1β
m+i−1 · qwi.σB + βm+n · ω?B ,

σC :=
∑m

j=1β
j−1 · accj.w.σC +

∑n
i=1β

m+i−1 · qwi.σC + βm+n · ω?C .

8. Set the accumulator acc := (acc.x, acc.w) and accumulation proof pf := (pfHP, C
?
x, C

?
A, C

?
B, C

?
C).

9. Output (acc, pf).

Accumulation verifier. On input the accumulator verification key avk = (τ, n, avkHP), predicate
instances [qxi]

n
i=1, old accumulator instances [accj.x]mj=1, a new accumulator instance acc.x =

(Cx, CA, CB, CC, accHP.x), and an accumulation proof pf = (pfHP, C
?
x, C

?
A, C

?
B, C

?
C), V works as

below.

1. Compute [γi]
n
i=1 as in Step 1a of the accumulation prover P.
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2. Compute [qxHP,i]
n
i=1 as in Step 1b of the accumulation prover P.

3. Compute [accHP,j.x]mj=1 as in Step 2a of the accumulation prover P.
4. Check that ASHP.V

ρHP(avkHP, [qxHP,i]
n
i=1, [accHP,j.x]mj=1, accHP.x, pfHP) = 1.

5. Compute β as in Step 5 of the accumulation prover P.
6. Perform the assignments in Step 6 of the accumulation prover P as equality checks (between the

new accumulator instance and the input instances and old accumulator instances).

Decider. On input the decision key dk = (A,B,C, n, ck, dkHP) and an accumulator acc, D works
as follows.

1. Parse the accumulator instance acc.x as (Cx, CA, CB, CC, accHP.x).
2. Parse the accumulator witness acc.w as (x, s, σA, σB, σC, accHP.w).

3. Compute sA := A

[
x
s

]
, sB := B

[
x
s

]
, sC := C

[
x
s

]
, which are vectors in FM.

4. Check that Cx = CM.Commit(ck, x; 0).
5. Check that CA = CM.Commit(ck, sA;σA).
6. Check that CB = CM.Commit(ck, sB;σB).
7. Check that CC = CM.Commit(ck, sC;σC).
8. Set accHP := (accHP.x, accHP.w) and check that ASHP.D(dkHP, accHP) = 1.

3.8.3 Security proofs
We prove that the non-interactive argument for R1CS in Section 3.8.1 satisfies the zero knowledge
and knowledge soundness definitions from Section 3.3.1. Then we provide proof sketches that the
accumulation scheme for it in Section 3.8.2 satisfies the zero knowledge and knowledge soundness
definitions from Section 3.4.

Lemma 3.8.2. The non-interactive argument for R1CS satisfies perfect zero knowledge.

Proof. Consider the simulator S that is first given the security parameter λ in unary and invokes the
generator G to sample the public parameters (in particular, there are no trapdoors). Subsequently, S
receives as input an index i = (A,B,C, n) and an instance x = x ∈ Fn, and works as follows.

1. Compute a commitment key ck and hash of coefficient matrices τ like the indexer I does.
2. Sample the following at random: s ∈ FN−n, σA, σB, σC, σ◦ ∈ F, and C ′A, C ′B, C1, C2 ∈ G.
3. Set π2 := (x, s, σA, σB, σC, σ◦).

4. Compute sA := A

[
x
s

]
, sB := B

[
x
s

]
, sC := C

[
x
s

]
.

5. Compute Cx := CM.Commit(ck, x; 0)
6. Sample a random challenge γ ∈ F.
7. Compute CA := CM.Commit(ck, sA;σA)− γC ′A.
8. Compute CB := CM.Commit(ck, sB;σB)− γC ′B.
9. Compute CC := CM.Commit(ck, sA ◦ sB;σC)− γC1 − γ2C2.
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10. Compute C ′C := γ−1
(
CM.Commit(ck, sC;σC)− CC

)
.

11. Set π1 := (CA, CB, CC, C
′
A, C

′
B, C

′
C, C1, C2).

12. Program the random oracle ρ to output γ on input π1.
13. Output π := (π1, π2), along with the programming µ := [π1 7→ γ].

By construction the output proof string π makes the verifier accept when its random oracle is
programmed with µ. Moreover, the distribution of all elements in the proof string π is random
subject to the condition that the proof string π is accepting.

Lemma 3.8.3. The non-interactive argument for R1CS satisfies knowledge soundness.

Proof. We prove a stronger knowledge soundness property that what is required in Section 3.3.1:
there exists an extractor E such that for every (non-uniform) adversary P̃ running in expected
polynomial time and auxiliary input distribution D,

Pr


Vρ(ivk,x, π) = 1

⇓
(i,x,w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← G(1λ)

ai← D(1λ)

(i,x, π; r)← P̃ρ(pp, ai)

w← E P̃,ρ(pp, ai, r)
(ipk, ivk)← Iρ(pp, i)


≥ 1− negl(λ) .

We construct the extractor E based on our forking lemma (Lemma 3.6.1).
Define the following algorithm:

Aρ((pp, ai)):
1. (i,x, π)← P̃ρ(pp, ai).
2. Compute (ipk, ivk) := Iρ(pp, i).
3. Parse the index verification key ivk as (ck, A,B,C, n, τ), and the proof string π as (π1, π2).
4. Set the query q := (τ,x, π1).
5. Set the output o to (i, π2).
6. Query the random oracle ρ at q.
7. Output (q, o).

Define the forking lemma predicate:

p
(
(pp, ai), (q, a), o, tr

)
:

1. Parse the query q as (τ,x, π1).
2. Parse the output o as a pair (i, π2).
3. Check that τ = tr(i); if not, output 0.
4. Compute (ipk, ivk) := Iρ(pp, i), answering its queries to ρ with tr.
5. Check that Vρ

(
ivk,x, (π1, π2)

)
outputs 1 when answering its query to ρ with a.
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Let E be the extractor that runs the forking algorithm ForkA obtained by applying Lemma 3.6.1 to p
to obtain three outputs. With all but negligible probability it obtains (τ,x, π1) and tuples (γ, (i, π2)),
(γ′, (i′, π′2)), (γ′′, (i′′, π′′2)) satisfying p with γ, γ′, γ′′ pairwise distinct. This implies that (π1, γ, π2)
is an accepting transcript for the underlying sigma protocol with respect to i; similarly for (π1, γ

′, π′2)
with respect to i′ and (π1, γ

′′, π′′2) with respect to i′′. Moreover, since τ = tr(i) = tr(i′) = tr(i′′), it
holds by collision resistance of the random oracle that i = i

′ = i
′′ with all but negligible probability.

The extractor then computes and outputs w := γ

γ−γ′ s
′ − γ

′

γ−γ′ s ∈ FN−n.
We argue that w := w is a valid witness for the index-instance pair (i,x) output by P̃ .
Define r := 1

γ−γ′ (s − s
′) ∈ FN−n. We first extract an opening of CA to A[x‖w]. Since the

verifier accepts, CA + γC ′A opens to A[x‖s] = A[x‖(w + γr)]; likewise for γ′ and s′. Using the
linear homomorphism of CM, we can solve the system to open CA to A[x‖w]. Similar reasoning
allows us to open CB, CC to B[x‖w], C[x‖w] respectively.

By definition of w, r it holds that s = w + γr and s′ = w + γ′r. Moreover by the binding
property of CM it holds that s′′A = A[x‖(w + γ′′r)], and likewise for s′′B.

Next we use this fact with the Hadamard product check to show that the R1CS equation holds.
We argue that CC commits to the Hadamard product of the vectors inside CA and CB. Note that

the following holds as a polynomial identity in Y :

A

[
x

w + Y r

]
◦B

[
x

w + Y r

]
≡ A

[
x
w

]
◦B

[
x
w

]
+

(
A

[
x
w

]
◦B

[
0
r

]
+A

[
0
r

]
◦B

[
x
w

])
Y +

(
A

[
0
r

]
◦B

[
0
r

])
Y 2.

Since the NARK verifier accepts, we know that CC + γC1 + γ2C2 is a commitment to the
evaluation of the above polynomial at γ; the same is true with respect to γ′ and γ′′ for the associated
commitments. We can hence solve a linear system to open CC to A[x‖w] ◦B[x‖w]. By the binding
of CM, it then holds that C[x‖w] = A[x‖w] ◦ B[x‖w]. This means that w = w is a valid R1CS
witness with respect to (i,x).

Lemma 3.8.4. The split accumulation scheme for R1CS satisfies perfect zero knowledge.

Proof. Let SHP be the simulator for ASHP, and suppose that it does not rely on a trapdoor or program
the random oracle (this is the case for our construction in Section 3.7). Consider the simulator S for
AS that works as follows:

Sρ(τ = ⊥, ppΦ = ppNARK, iΦ = (A,B,C, n)):
1. Sample (x, s) ∈ FN.
2. Compute sA := A · (x, s), sB := B · (x, s), sC := C · (x, s), which are vectors in FM.
3. Compute Cx := CM.Commit(ck, x; 0).
4. Compute CA := CM.Commit(ck, sA;σA).
5. Compute CB := CM.Commit(ck, sB;σB).
6. Compute CC := CM.Commit(ck, sC;σC).
7. Sample accHP ← SHP(τHP = ⊥, ppΦ, `).
8. Set the accumulator instance acc.x := (Cx, CA, CB, CC, accHP.x).
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9. Set the accumulator witness acc.w := (x, s, σA, σB, σC, accHP.w).
10. Output acc := (acc.x, acc.w).

By construction, the sampled accumulator satisfies the decider. Moreover, the accumulator is
distributed identically as an accumulator output by the (honest) accumulation prover. This is because
accHP is sampled by the simulator SHP for ASHP (which we have assumed is zero knowledge) and all
other elements of the accumulator are random within the respective domains subject only to the
condition that the decider accepts the accumulator.

Lemma 3.8.5. The split accumulation scheme for R1CS satisfies knowledge soundness.

Proof. We describe an extractor E and then argue that it satisfies the knowledge property in
Section 3.4; E has access to the random oracle ρ that consists of three domain-separated random
oracles ρ = (ρAS, ρHP, ρNARK).

Below we use the notation (Aρint)ρext to distinguish between an “external” oracle ρext that is
exposed to the extractor and “internal” oracles ρint that are used only to run the adversary P̃.

Define the following algorithm:

(AρHP,ρNARK)ρAS
(
(pp, ppΦ, ai)

)
:

1. (iΦ = (A,B,C, n), [accj.x]mj=1, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai).

2. Compute τ := ρNARK(A,B,C, n).
3. Set the query q := (τ, [accj.x]mj=1, [qxi]

n
i=1, C

?
x, C

?
A, C

?
B, C

?
C).

4. Set the output o := (iΦ, acc, pf).
5. Query the random oracle ρAS at q.
6. Output (q, o).

Define the forking lemma predicate:

pρHP,ρNARK
(
(pp, ppΦ, ai), (q, a), o, tr

)
:

1. Parse the query q as (τ, [accj.x]mj=1, [qxi]
n
i=1, C

?
x, C

?
A, C

?
B, C

?
C).

2. Parse the output o as (iΦ, acc, pf).
3. Check that τ = ρNARK(iΦ).
4. Compute (apk, avk, dk) := IρNARK(pp, ppΦ, iΦ).
5. Check that VρHP,ρNARK(avk, [qxi]

n
i=1, [accj.x]mj=1, acc.x, pf) outputs 1 when answering its query

to ρAS with a.
6. Check that D(dk, acc) outputs 1.

Finally, define an adversary P̃HP for the Hadamard product accumulation scheme ASHP.

(P̃ρAS,ρNARK
HP )ρHP(pp, ppΦ, ai):

1. (iΦ = (A,B,C, n), [qxi]
n
i=1, [accj.x]mj=1, acc, pf)← P̃ρ(pp = ppASHP

, ppΦ = ppHP, ai).
2. Compute qxHP,i from qxi for all i ∈ [n] as in Step 1b of the accumulation prover.
3. Set the vector length to be ` := M, the number of rows in each R1CS coefficient matrix.
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4. Output (`, [qxHP,i]
n
i=1, [accj.x.accHP.x]mj=1).

For the remainder of the proof we implicitly consider only the case that the verifier and decider accept
the malicious prover’s output, i.e., Vρ(avk, [qxi]

n
i=1, [accj.x]mj=1, acc.x, pf) = 1 and D(dk, acc) = 1

for (iΦ, [qxi]
n
i=1, [accj.x]mj=1, acc, pf) ← P̃ρ(pp, ppΦ, ai) and (apk, avk, dk) := I(pp, ppΦ, iΦ); other-

wise, the implication holds vacuously. In this case the output of A satisfies p with probability 1. Let
Fork be the algorithm given by applying Lemma 3.6.1 to the forking lemma predicate p.

EP̃,ρ(pp, ppΦ, ai, r) for ρ = (ρAS, ρHP, ρNARK):
1. Run (q, o; tr)← Aρ

(
(pp, ppΦ, ai); r

)
.

2. Parse the query q as (τ, [accj .x]mj=1, [qxi]
n
i=1, C

?
x, C

?
A, C

?
B, C

?
C).

3. Parse the output o as a tuple (iΦ, acc, pf).
4. Run E

(P̃
ρAS,ρNARK
HP ),ρHP

HP to extract predicate witnesses [qwHP,i]
n
i=1 and accumulator witnesses [accHP,j .w]mj=1.

5. Run [βj , oj ]
n+m+1
j=1 ← Fork(A

ρHP,ρNARK )(pp, 1n+m+1, (q, ρ(q)), o, trq, r).
6. For each j ∈ [n+m+ 1]:

a) parse the output oj as a tuple (i
(j)
Φ , acc(j), pf(j)), and the accumulator acc(j) as (acc.x(j), acc.w(j));

b) parse the accumulator instance acc.x(j) as (C(j)
x,?, C

(j)
A,?, C

(j)
B,?, C

(j)
C,?, accHP,?.x

(j));
c) parse the accumulator witness acc.w(j) as (x(j)

? , s(j)
? , σ(j)

A,?, σ
(j)
B,?, σ

(j)
C,?, accHP,?.w

(j)).

7. SetM to be the Vandermonde matrix on (1, β, . . . , βm+n).
8. IfM is not invertible, abort. Otherwise, computex1 s1 σA,1 σB,1 σC,1

...
...

...
...

...
xk sk σA,k σB,k σC,k

 := M−1 ·

x
(1)
? s(1)

? σ(1)
A,? σ(1)

B,? σ(1)
C,?

...
...

...
...

...
x(k)
? s(k)

? σ(k)
A,? σ(k)

B,? σ(k)
C,?

 ,

where k := n+m+ 1.
9. For each i ∈ [n], set qwi = (si, σA,i, σB,i, σC,i, qwHP,i).
10. For each j ∈ [m], accj .w = (xn+j , sn+j , σA,n+j, σB,n+j, σC,n+j, accHP,j .w).
11. Output

(
iΦ, acc, [(qxi, qwi)]

n
i=1, [(accj .x, accj .w)]mj=1, pf

)
.

By the properties of Fork guaranteed in Lemma 3.6.1, and the extraction guarantee of ASHP

(Theorem 3.7.2), EP̃ runs in expected polynomial time and, except with probability negl(λ), the
following event E holds:

[βj]
n+m+1
j=1 are pairwise distinct

and ∀j ∈ [n+m+ 1], p
(
(pp, ppΦ, ai), (q, βj), oj, trq

)
= 1,

and ∀i ∈ [n], ΦHP(pp, ppΦ, qxHP,i, qwHP,i) = 1,
and ∀j ∈ [m], DHP

(
dk, (accHP,j.x, accHP,j.w)

)
= 1.

Moreover, since ρNARK(i
(j)
Φ ) = τ for all j, with all but negligible probability (over the randomness of

ρNARK), i
(1)
Φ = · · · = i

(n+m+1)
Φ . Hence we consider a single index iΦ = (A,B,C, n) for the remainder

of the proof.
We complete the proof of knowledge soundness by showing two claims. Claim 3.8.6 shows that

the extracted assignments si obey the correct linear relations with respect to the commitments output
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by A. Claim 3.8.7 then uses the binding property of the commitment scheme and the guarantee of
the Hadamard product extractor to show that these assignments satisfy the R1CS equation and the
decider as appropriate.

Claim 3.8.6. Define the following:

∀ i ∈ [n] s
(i)
A := A

[
qxi.x
si

]
s

(i)
B := B

[
qxi.x
si

]
s

(i)
C := C

[
qxi.x
si

]
∀ j ∈ [m] s

(n+j)
A := A

[
xn+j

sn+j

]
s

(n+j)
B := B

[
xn+j

sn+j

]
s

(n+j)
C := C

[
xn+j

sn+j

]
The event E implies that with overwhelming probability:

∀ i ∈ [n] qxi.CA + γi · qxi.C
′
A = CM.Commit(ck, s

(i)
A ;σA,i) ,

qxi.CB + γi · qxi.C
′
B = CM.Commit(ck, s

(i)
B ;σB,i) ,

qxi.CC + γi · qxi.C
′
C = CM.Commit(ck, s

(i)
C ;σC,i) ,

∀ j ∈ [m] accj.x.Cx = CM.Commit(ck, xn+j; 0) ,

accj.x.CA = CM.Commit(ck, s
(n+j)
A ;σA,n+j) ,

accj.x.CB = CM.Commit(ck, s
(n+j)
B ;σB,n+j) ,

accj.x.CC = CM.Commit(ck, s
(n+j)
C ;σC,n+j) .

Proof. We prove the statements for A. The statements for B,C follow similarly.
Define the following (n+m+ 1)-entry vectors:

~CA := (qx1.CA + γ1 · qx1.C
′
A, . . . , qxn.CA + γn · qxn.C

′
A, acc1.x.CA, . . . , accm.x.CA, C

?
A) ,

~CA,? := (C
(1)
A,?, . . . , C

(n+m+1)
A,? ) .

Recall that if p holds then both the accumulation verifier and decider accept. Since the accumulation
verifier accepts, it holds that ~CA,? = M ~CA. Moreover, since the decider accepts [(dk, acc(j))]n+m+1

i=1 ,
it holds for all j ∈ [n + m + 1] that C(j)

A,? = CM.Commit(ck, A[x(j)
? s(j)

? ];σ
(j)
A,?). Using the

homomorphic property of CM.Commit and thatM−1~CA,? = ~CA, we conclude that

∀ i ∈ [n] qxi.CA + γi · qxi.C
′
A = CM.Commit(ck, A

[
xi
si

]
;σA,i) = CM.Commit(ck, s

(i)
A ;σA,i) ,

∀ j ∈ [m] accj.x.CA = CM.Commit(ck, A

[
xn+j

sn+j

]
;σA,n+j) = CM.Commit(ck, s

(n+j)
A ;σA,n+j) .

Finally, similarly to the above, since the accumulation verifier and decider accept, it holds that

∀ i ∈ [n] CM.Commit(qxi.x; 0) = CM.Commit(xi; 0) ,

∀ j ∈ [m] accj.x.Cx = CM.Commit(xn+j; 0) .

Hence by the binding property ofCM, xi = qxi.x for all i ∈ [n]with all but negligible probability.
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Claim 3.8.7. The event E implies that with overwhelming probability it holds that

∀ i ∈ [n] A

[
qxi.x
si

]
◦B

[
qxi.x
si

]
= C

[
qxi.x
si

]
,

∀ j ∈ [m] D
(
dk, (accj.x, accj.w)

)
= 1 .

Proof. Fix i ∈ [n] and write qwHP,i = (a(i), b(i), ω
(i)
1 , ω

(i)
2 , ω

(i)
3 ). The event E implies that

C1 = CM.Commit(ck, a(i);ω
(i)
1 ) = CM.Commit(ck, s

(i)
A , σA,i) ,

C2 = CM.Commit(ck, b(i);ω
(i)
2 ) = CM.Commit(ck, s

(i)
B ;σB,i) ,

C3 = CM.Commit(ck, a(i) ◦ b(i);ω
(i)
3 ) = CM.Commit(ck, s

(i)
C ;σC,i) .

If it is not the case that a(i) = s
(i)
A , b(i) = s

(i)
B , and a(i) ◦ b(i) = s

(i)
C , then the extractor breaks the

binding property of CM, which can occur with only negligible probability. It follows that with all
but negligible probability, s(i)

A ◦ s(i)
B = s

(i)
C .

The eventE also implies that EHP produces witnesses [accHP,j.w]mj=1 such that the decider accepts:
DHP

(
dk, (accHP,j.x, accHP,j.w)

)
= 1 for all j ∈ [m]. Together with Claim 3.8.6 this shows that for

all j ∈ [m], D
(
dk, (accj.x, accj.w)

)
= 1.
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3.9 Implementation
We contribute a generic and modular implementation of proof-carrying data based on accumulation
schemes. Our implementation includes several components of independent interest.
Framework for accumulation. We design and implement a generic framework for accumulation
schemes that supports arbitrary predicates/relations. The main interface is a Rust trait that defines
the behavior of any (atomic or split) accumulation scheme. We implement this trait for several
accumulation schemes:
• the atomic accumulation scheme ASAGM in [BCMS20] for the PC scheme PCAGM;
• the atomic accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA;
• the split accumulation scheme ASPC in Section 3.11 for the polynomial commitment predicate ΦPC

(corresponding to the check algorithm of the trivial PC scheme PCPed);
• the split accumulation scheme ASHP in Section 3.7 for the Hadamard product predicate ΦHP;
• the split accumulation scheme ASR1CS for the zkNARK for R1CS in Section 3.8.
Our framework also provides a generic trait for defining R1CS constraints for the verifier of an
accumulation scheme. We use this trait to implement R1CS constraints for all of these accumulation
schemes.
PCD from accumulation. We provide a generic construction of PCD from accumulation, which
simultaneously supports the case of atomic accumulation from [BCMS20] and the case of split
accumulation from Section 3.5. Our code builds on and extends an existing PCD library that offers
a generic “PCD” trait.9 We instantiate this PCD trait via a modular construction, which takes as
ingredients any NARK (as defined by an appropriate trait), accumulation scheme for that NARK
that implements the accumulation trait (from above), and constraints for the accumulation verifier.
We use our concrete instantiations of these ingredients to achieve recursion based on accumulation
for each of PCAGM, PCIPA, ΦPC, and ΦHP. In particular, we obtain a simple construction of PCD based
on the zkNARK for R1CS and its split accumulation from Section 3.8.1.
Cycles of elliptic curves. All PCD constructions in our implementation rely on the technique of
cycles of elliptic curves [BCTV14]: PCD based on PCAGM uses cycles of pairing-friendly curves,
while PCD based on PCIPA, ΦPC, and ΦHP uses cycles of standard curves. For all of these, we rely on
existing implementations from the arkworks ecosystem:10 for pairing-friendly cycles we use the
MNT cycle of curves (low security and high security variants), while for standard cycles we use the
Pasta cycle of curves [Hop20].

Remark 3.9.1. Many of the aforementioned accumulation schemes compute linear combinations
with respect to powers of a single challenge derived from the random oracle. In our implementation,
when possible, we instead use linear combinations where the coefficients are multiple independent
challenges obtained from the random oracle, because this leads to lower constraint costs for the
accumulation verifier.

9https://github.com/arkworks-rs/pcd
10https://github.com/arkworks-rs/curves

https://github.com/arkworks-rs/pcd
https://github.com/arkworks-rs/curves
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This modification requires minor modifications in the security proofs. The knowledge extractor
rewinds the prover several times to build a tree of accepting transcripts, and extraction succeeds if
certain matrices constructed from the challenges of these transcripts are invertible. When using
powers of challenges each matrix is a Vandermonde matrix, which is invertible precisely when the
challenges are distinct, and this occurs with all but negligible probability. Similarly, when using
independent challenges, each matrix consists of rows of random independent challenges, and such a
matrix is invertible with all but negligible probability.

Proof-carrying data 

Accumulation schemes 

(+ verifier constraints)
AHP PC

PCAGM PCIPA PCPed

atomic 
 AS for 
PCAGM

atomic 
AS for 
PCIPA

split  
AS for 
ΦPC

Marlin AHP

Non-interactive Arguments of Knowledge 

Preprocessing 
 SNARK 

 

(+ verifier constraints)
NARK

atomic 
accumulation  

for any PC

split 
accumulation  

for any PC

recursion via 
atomic 

accumulation

recursion via 
sublinear 

verification

recursion via 
split  

accumulation

accumulation 
 for SNARK

accumulation  
for NARK

split 
accumulation  

for Pedersen HP

MNT 
cycle

Pasta 
cycle

Figure 3.6: Diagram illustrating components in our implementation. The gray boxes denote components that

exist in prior libraries; the orange boxes denote our implementation of components from [BCMS20]; and the

yellow boxes denote our implementation of components contributed in this work.
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3.10 Evaluation
We perform an evaluation focused on the discrete logarithm setting.11 In Section 3.10.1 we describe
the concrete costs of our zkNARK for R1CS and its split accumulation scheme; and in Section 3.10.2
we compare the costs of atomic versus split accumulation for PC schemes based on Pedersen
commitments.

In Figure 3.7 we report the asymptotic cost of |V| (the constraint cost of V) in ASIPA, ASPC,
and ASR1CS.12 Note that because these accumulation schemes share many common subcomponents
(scalar multiplication, random oracle calls, non-native field arithmetic), any improvements would
preserve the relative cost.
Experimental setup. All experiments are performed using a single thread on a machine with
an Intel Xeon 6136 CPU at 3.0 GHz. The reported numbers are for schemes instantiated over the
255-bit prime-order Pallas curve in the Pasta cycle [Hop20]; results for the Vesta curve in that cycle
would be similar.
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Figure 3.7: Comparison of the constraint cost of the accumulation verifier V in ASIPA, ASPC, and ASR1CS when
varying the number of constraints (for ASR1CS) or the degree of the accumulated polynomial (for ASIPA and ASPC)
from 210 to 220. Note that the cost of accumulating PCIPA and PCPed is a lower bound on the cost of accumulating
any SNARK built atop those, and this enables comparing against the cost of ASR1CS.

11The pairing setting is also part of our implementation, as described in Section 3.9, but we do not include an
evaluation for it here.

12This comparison is meaningful because the cost of accumulating polynomial commitments provides a lower bound
on the cost accumulating SNARKs that rely on these PC schemes.
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3.10.1 Split accumulation for R1CS
In Tables 3.2 and 3.3, we compare the costs of our accumulation scheme for our zkNARK for R1CS
for an illustrative number of constraints, with and without zero knowledge. We include the metric of
lines of code (LoC) to highlight the simplicity of our constructions. We focus on the special case
where the accumulation scheme is used to accumulate one new proof into one old accumulator to
obtain a new accumulator (this corresponds to the case of IVC). We find that the cost in both cases
is modest, and the overhead of zero knowledge is less than a factor of 2 in the number of constraints.
Furthermore, the measured cost matches the expected asymptotic cost. In more detail, while the
prover time and decider time are both linear in the number of constraints, the verifier cost (both
wall-clock time and constraint cost) does not grow with the number of constraints. This latter point
is illustrated in Fig. 3.7.

zk? P V |π| LoC

no 2.9 s 3.9 s 4.19 MB
618yes 6.9 s 3.9 s 4.19 MB

Table 3.2: Cost of proving and verifying a constraint system containing 217 constraints.

zk? P V D |acc| |V| LoC

|x| |w| native constraints

no 2.0 s 2 ms 6.0 s 392 B 8.4 MB 52×103

1258 1120
yes 8.1 s 3 ms 6.3 s 392 B 8.4 MB 99×103

Table 3.3: Cost of accumulating a NARK proof and an old accumulator, for a constraint system of size 217.

3.10.2 Accumulation for polynomial commitments based on DL
We compare the costs of two accumulation schemes for two PC schemes:
• the atomic accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA;
• the split accumulation scheme ASPC in Section 3.11 for the predicate ΦPC corresponding to PCPed.
In Section 3.10.2.1 we compare the two polynomial commitment schemes PCIPA and PCPed, and in
Section 3.10.2.2 we compare the two corresponding accumulation schemes ASIPA and ASPC.

3.10.2.1 Comparing polynomial commitments based on DL

We compare the performance of PCIPA and PCPed in Table 3.4, reporting experiments for an illustrative
choice of polynomial degree d. In both PC schemes all operations (commit, open, check) are linear
in the degree d, though for PCPed opening is concretely much cheaper than PCIPA (primarily because
PCPed has a trivial opening procedure). The main difference between the two PC schemes is that
an evaluation proof in PCPed is O(d) field elements while an evaluation proof in PCIPA is O(log d)
group elements; this asymptotic difference is apparent in the reported numbers (the proof size for
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PCPed is significantly larger than for PCIPA). We also report lines of code to realize the same abstract
PC scheme trait, to support the (intuitive) claim that PCPed is a much simpler primitive than PCIPA.

PC scheme Commit Open Check |C| |π| LoC

PCIPA 8.0 s 106.6 s 8.2 s 33 B 1.4 kB O(log d) G 1120
PCPed 8.1 s 0.43 s 8.3 s 33 B 33.5 MB O(d) F 608

Table 3.4: Comparison between the PC schemes PCIPA and PCPed for polynomials of degree d = 220.

3.10.2.2 Comparing accumulation schemes based on DL

We compare the performance of ASIPA and ASPC in Table 3.5, reporting experiments for an illustrative
choice of polynomial degree d. We focus on the special case where the accumulation scheme is
used to accumulate one new polynomial evaluation claim into one old accumulator to obtain a new
accumulator. Our experiments indicate that ASPC is cheaper than ASIPA across all metrics except for
accumulator size, and more generally that performance is consistent with the asymptotic comparison
from Table 3.1. In more detail:
• While prover time (per claim) in both ASIPA and ASPC are linear in the degree d, our experiments
show that ASIPA is concretely much more expensive than ASPC.

• Decider time in both ASIPA and ASPC are linear in the degree d, and our experiments show that the
two schemes have similar concrete performance.

• Verifier time (per claim) in ASIPA is logarithmic while in ASPC it is constant, and our experiments
confirm that ASIPA is concretely significantly more expensive than ASPC.

• Verifier constraint cost ismuch higher for ASIPA, even though both schemes use the same underlying
constraint gadget libraries.

• The size of an atomic accumulator for ASIPA is logarithmic, and amounts to a few kilobytes; in
contrast an accumulator for ASPC is much larger, but is split into a short instance part (106 bytes)
and a long witness part (33.5 megabytes).

Overall the expensive parts of ASPC are exactly where intended (a large accumulation witness part)
in exchange for a very cheap verifier and a very short accumulation instance part; all other metrics
are comparable to (and concretely better than for) ASIPA.

scheme P V D |acc| |V| LoC

|x| |w| native constraints

ASIPA 117.6 s 14 ms 8.3 s 1.58 kB 0 435×103 664 1232

ASPC 25.2 s 2 ms 8.1 s 106 B 33.5 MB 30×103 571 395

Table 3.5: Comparison between the accumulation schemes ASIPA and ASPC for polynomials of degree d = 220,
when accumulating one old accumulator and one evaluation claim into a new accumulator.

In Figure 3.7, we also compare |V| (the constraint cost of V) in both ASPC and ASIPA as we
accumulate polynomial evaluation claims of degree d in the range 210 to 220. As expected, the cost
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for ASPC is a small constant, whereas the cost of ASIPA grows logarithmically (and is concretely much
larger).
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3.11 Split accumulation for Pedersen polynomial commitments
We construct a split accumulation scheme for Pedersen commitments to polynomials. We define the
predicate we accumulate and then state our theorem. The remainder of the section is dedicated to
proving the theorem.

Definition 3.11.1. The (Pedersen) polynomial commitment predicateΦPC takes as input: (i) public
parameters ppΦ = ppCM for the Pedersen commitment scheme (for messages of some maximum
length D + 1); (ii) an index iΦ = d specifying a supported degree (at most D); (iii) an instance
qx = (C, z, v) ∈ G × F × F consisting of a commitment to a polynomial, a point at which it
is evaluated, and the evaluation; (iv) a witness qw = p ∈ F≤d[X] consisting of the committed
polynomial. The predicate ΦPC computes the Pedersen commitment key ck := CM.Trim(ppCM, d+ 1)
for messages of length d+ 1, and checks that C = CM.Commit(ck, p), p(z) = v, and deg(p) ≤ d.

Theorem 3.11.2. The scheme AS = (G, I,P,V,D) constructed in Section 3.11.1 is a split accumu-
lation scheme in the random oracle model (assuming the hardness of the discrete logarithm problem)
for the polynomial commitment predicate ΦPC in Definition 3.11.1. AS achieves the efficiency stated
below.

• Generator: G(1λ) runs in time O(λ).
• Indexer: The time of I(pp, ppΦ, iΦ = d) is dominated by the time to run CM.Trim for messages of
length d+ 1.

• Accumulation prover: The time of Pρ(apk, [(qxi, qwi)]
n
i=1, [accj]

m
j=1) is dominated by the time to

commit to n+m polynomials of degree d (i.e, n+m multi-scalar multiplications of size d+ 1).
• Accumulation verifier: The time of Vρ(avk, [qxi]

n
i=1, [accj.x]mj=1, acc.x, pf) is dominated by

O(n+m) field additions/multiplications and O(n+m) group scalar multiplications.
• Decider: The time of D(dk, acc) is dominated by the time to commit to a polynomial of degree at
most d.

• Sizes: An accumulator acc consists of (a) an accumulator instance acc.x consisting of a
commitment and two field elements, and (b) an accumulator witness acc.w consisting of a
polynomial of degree less than d. An accumulation proof pf consists of n commitments and
2n+ 2m field elements.

Recall from Section 3.2.6 that the predicate ΦPC can be seen as equivalent to checking an
evaluation claim in the trivial polynomial commitment (PC) scheme PCPed: the evaluation proof is
simply the original polynomial. This PC scheme is a drop-in replacement for PC schemes used
in existing SNARKs [GWC19; CHMMVW20], and facilitates accumulation of the verifier for the
resulting SNARKs.

3.11.1 Construction
Wedescribe the accumulation schemeAS = (G, I,P,V,D) for the Pedersen polynomial commitment
predicate ΦPC. Predicate instances qx have the form (C, z, v), and predicate witnesses qw consist
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of a polynomial p (allegedly, committed inside C and such that p(z) = v and deg(p) < d). An
accumulator acc is split in two parts that are analogous to predicate instances and predicate witnesses.
Jumping ahead, the decider D is equal to the predicate ΦPC; therefore, there is no distinction between
inputs and prior accumulators, and so it suffices to accumulate inputs only.
Generator. The generator G receives as input pp := 1λ and outputs 1λ. (In other words, G does
not have to create additional public parameters beyond those used by ΦPC.)
Indexer. On input the accumulator parameters pp, predicate parameters ppΦ = ppPC, and a
predicate index iΦ = d, the indexer I computes the commitment key ck := CM.Trim(ppPC, d+ 1),
and then outputs the accumulator proving key apk := ck, the accumulator verification key avk := d,
and the decision key dk := ck.
Accumulation prover. On input the accumulation proving key apk and predicate instance-witness
pairs [(qxi, qwi)]

n
i=1 (of the same form as split accumulators [accj]

m
j=1 = [(accj.x, accj.w)]mj=1), P

works as below.

Pρ(apk = ck, [(qxi, qwi)]
n
i=1):

1. For each i in [n]:
a) Parse the predicate instance qxi as an evaluation claim (Ci, zi, vi) ∈ G× F× F.
b) Parse the predicate witness qwi as a polynomial pi(X) ∈ F≤ck.d[X].
c) Compute the witness polynomial wi(X) := pi(X)−vi

X−zi
∈ F[X].

d) Compute a commitment to wi(X): Wi := CM.Commit(ck, wi) ∈ G.
2. Use the random oracle to compute the evaluation point z? := ρ(d, [(Ci, zi, vi,Wi)]

n
i=1) ∈ F.

3. For each i in [n], compute the evaluations yi := pi(z?) ∈ F and y′i := wi(z?) ∈ F.
4. Use the random oracle to compute the challenge α := ρ(z?, [(yi, y

′
i)]
n
i=1) ∈ F.

5. Compute the linear combination p?(X) :=
∑n

i=1 α
i−1 · pi(X) +

∑n
i=1 α

n+i−1 · wi(X) ∈ F[X].
6. Compute the evaluation v? := p?(z?) ∈ F.
7. Compute the linear combination C? :=

∑n
i=1 α

i−1 · Ci +
∑n

i=1 α
n+i−1 ·Wi ∈ G.

8. Set the split accumulator acc := (acc.x, acc.w) where acc.x := (C?, z?, v?) and acc.w := p?.
9. Set the accumulation proof pf := [(Wi, yi, y

′
i)]
n
i=1.

10. Output (acc, pf).

Accumulation verifier. On input the accumulator verification key avk, predicate instances [qxi]
n
i=1

(of the same form as accumulator instances [accj.x]mj=1), a new accumulator instance acc.x, and an
accumulation proof pf, V works as below.

Vρ(avk = d, [qxi]
n
i=1, acc.x, pf):

1. For each i ∈ [n], parse qxi as (Ci, zi, vi).
2. Parse acc.x as (C?, z?, v?), and pf as [(Wi, yi, y

′
i)]
n
i=1.

3. Check that z? = ρ(d, [(Ci, zi, vi,Wi)]
n
i=1).

4. For each i ∈ [n], check that yi − vi = y′i · (z? − zi).
5. Compute α := ρ(z?, [(yi, y

′
i)]
n
i=1).

6. Check that v? =
∑n

i=1 α
i−1 · yi +

∑n
i=i α

n+i−1 · y′i.
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7. Check that C? =
∑n

i=1 α
i−1 · Ci +

∑n
i=1 α

n+i−1 ·Wi.

Decider. On input the decision key dk = ck and an accumulator acc, D parses acc.x as (C, z, v),
parses acc.w as p, and checks C = CM.Commit(ck, p), p(z) = v, and deg(p) < |ck|.

3.11.2 Zero-finding games
The following lemma, due to [BCMS20], bounds the probability that applying the random oracle
to a binding commitment to a polynomial yields a zero of that polynomial. We refer to this as a
zero-finding game. Here we have adapted the lemma to expected-time adversaries; the proof is
essentially unchanged.

The statement of the lemma involves the definition of a binding commitment scheme, given
below. Even if in this work we focus on accumulation schemes based on Pedersen commitments, in
the security proofs we need to invoke the lemma on binding commitment schemes that are related,
but not equal, to Pedersen commitments. Hence we require this technical lemma with respect to a
general binding commitment scheme.

Lemma 3.11.3 ([BCMS20]). Let CM = (Setup,Trim,Commit) be a binding commitment scheme
and L a message format for CM. Let F : N → N be a field size function, N ∈ N a number of
variables, and D ∈ N a total degree bound. For every family of (possibly inefficient) functions
{fpp : Mpp → F≤Dpp [X1, . . . , XN ]}pp mapping messages to polynomials of degree at most D over
fields of size |Fpp| ≥ F (λ) and every t-query oracle algorithm A that runs in expected polynomial
time, the following holds:

Pr


p ∈Mck

∧ z ∈ FNpp

∧ p 6≡ 0
∧ p(z) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)

pp← CM.Setup(1λ, L)
(`, p, ω)← Aρ(pp)

ck← CM.Trim(pp, `)
C ← CM.Commit(ck, p;ω)

z ← ρ(C)
p← fpp(p)


≤

√
(t+ 1) ·D
F (λ)

+ negl(λ) .

Remark 3.11.4. For Lemma 3.11.3 to hold, the algorithms of CM must not have access to the
random oracle ρ used to generate the challenge point z. The lemma is otherwise black-box with
respect to CM, and so CM itself may use other oracles. The lemma continues to hold when A has
access to these additional oracles. We use this fact later to justify the security of domain separation.

3.11.3 Proof of Theorem 3.11.2
We prove that the accumulation scheme constructed in the previous section satisfies the claimed
efficiency properties and achieves completeness, and then, in Section 3.11.3.1, that it achieves
knowledge soundness.
Efficiency. We now analyze the efficiency of our accumulation scheme.
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• Generator: G(1λ) outputs 1λ, and hence runs in time O(λ).

• Indexer: Iρ(pp, ppΦ, iΦ) invokes CM.Trim, and hence runs in time Oλ(d).

• Accumulation prover: Pρ(apk, [(qxi, qwi)]
n
i=1) computes a commitment to the degree deg(pi)− 1

witness polynomial wi for each input qxi = (Ci, zi, vi). The time to generate these n commitments
dominates the running time of P.

• Accumulation verifier: Vρ(avk, [qxi]
n
i=1, acc.x, pf) computes a random linear combination between

2n commitments, and hence its running time is as claimed.

• Decider: D(dk, acc) invokes CM.Commit and checks that the output matches the accumulator.

• Sizes: The accumulator instance acc.x consists of a polynomial commitment C, an evaluation
point z and an evaluation claim v. The accumulator witness acc.w is a polynomial of degree d.
The accumulation proof pf contains O(n) group and field elements.

Completeness. Since we need only accumulate predicate inputs (as accumulators are split like
predicate inputs and the decider equals the predicate being accumulated), it suffices to demonstrate
that the simplified completeness property from Section 3.4.1 holds. Fix an (unbounded) adversary
A. For each i ∈ [n], since

ΦPC

(
ppΦ, iΦ, qxi = (Ci, zi, vi), qwi = pi

)
= 1 ,

we know that Ci = CM.Commit(ck, pi) and pi(zi) = vi; this implies that each witness polynomial
wi(X) = pi(X)−vi

X−zi
is indeed a polynomial of degree d− 1.

Together with the fact that the accumulation prover P behaves honestly, the foregoing facts imply
that C is a well-formed commitment to p? =

∑n
i=1 α

ipi +
∑n

i=1 α
n+iwi, and that p?(z?) = v?, as

required.

3.11.3.1 Knowledge soundness

We need only accumulate predicate inputs (as accumulators are split like predicate inputs and the
decider equals the predicate being accumulated), so it suffices to demonstrate that the simplified
knowledge soundness property from Section 3.4.1 holds. We describe an extractor and then analyze
why it satisfies the property.

Define the following algorithm:

Aρ
(
(pp, ppΦ, ai)):

1. (iΦ = d, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai).

2. Parse, for each i ∈ [n], qxi as (Ci, zi, vi).
3. Parse acc as (C, z, v; p), and pf as [(Wi, yi, y

′
i)]

n
i=1.

4. Set q := (z, [yi, y
′
i]
n
i=1).

5. Set o := (iΦ, [qxi]
n
i=1, acc, pf).
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6. Query ρ at the points (d, [(Ci, zi, vi,Wi)]
n
i=1) and q, if not already queried by P̃.

7. Output (q, o).

Define the forking lemma predicate:

p
(
(pp, ppΦ, ai), (q, a), o, tr

)
:

1. Check that tr contains no collisions.
2. Parse the query q as (z, [(yi, y

′
i)]

n

i=1), and the output o as (iΦ = d, [qxi]
n
i=1, acc, pf).

3. Compute (apk, avk, dk) := I(pp, ppΦ, d).
4. Check that V(avk, [qxi]

n
i=1, acc.x, pf) outputs 1 when answering its first query according to tr

and its second query with a. (If the first query is outside the support of tr then output 0.)
5. Check that D(dk, acc) outputs 1.

For the remainder of the proof we implicitly consider only the case that Vρ(avk, [qxi]
n
i=1, acc.x, pf) =

1 andD(dk, acc) = 1 for (iΦ, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai) and (apk, avk, dk) := I(pp, ppΦ, d);

otherwise, the implication holds vacuously. The probability that V accepts when its first query is
outside the support of trq, or that tr contains a collision, is O(t2/2λ), and so the output of A fails to
satisfy p with probability at most negl(λ). Let Fork be the algorithm given by applying Lemma 3.6.1
to the forking lemma predicate p.

EP̃,ρ(pp, ppΦ, ai, r):
1. Run (q, o; tr)← Aρ

(
(pp, ppΦ, ai); r

)
; parse o as (iΦ = d, [qxi]

n
i=1, acc, pf).

2. Run (α1, o1, . . . , α2n, o2n)← ForkA((pp, ppΦ, ai), 12n, (q, ρ(q)), o, trq, r).
3. For j ∈ [2n]:

• parse oj as (i
(j)
Φ = d, [qx

(j)
i ]ni=1, pf(j), acc(j));

• parse acc(j) as acc(j).x = (C(j)
? , z(j)

? , v(j)
? ) ∈ G× F× F and acc(j).w = p(j)

? ∈ F≤d[X].

4. Set~p? :=

 p(1)
?
...

p(2n)
?

, and setM to be the Vandermonde matrix on (α1, . . . , α2n).

5. IfM is invertible, compute (~p‖~w) := M−1 ·~p?; otherwise, abort.
6. Output

(
iΦ, [(qxi, pi)]

n
i=1, acc, pf

)
.

By the properties of Fork guaranteed in Lemma 3.6.1, EP̃ runs in expected polynomial time and,
moreover, except with probability negl(λ) the following event E holds:

{αj}j∈[2n] are pairwise distinct and ∀j ∈ [2n] p
(
(pp, ppΦ, ai), (q, αj), oj, trq

)
= 1.

Conditioned onE, we observe the following. First, since the αj are distinct,M is invertible. Next, let
(z?, [(yi, y

′
i)]

n
i=1) := q; note that z(j)

? = z? and (d(j), [qx
(j)
i ,W

(j)
i ]ni=1) = tr−1

q (z?) = (d, [qxi,Wi]
n
i=1)

for all j, whence also pf(j) = pf for all j. The function tr−1
q is well-defined only because p requires

that trq contains no collisions. For the remainder of the proof we therefore omit the superscripts on
d, z?, qxi = (Ci, zi, vi), and pf = [(Wi, yi, y

′
i)]

n
i=1.
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We conclude the proof with two claims. In Claim 3.11.5 we argue that the extracted polynomials
~p, ~w are openings of the corresponding commitments, and that their evaluations at z? are as claimed.
In Claim 3.11.6 we argue that the evaluations of the polynomials {pi}i∈[n] on the original query points
{zi}i∈[n] are as claimed. Together these claims establish that, with all but negligible probability, for
all i ∈ [n] it holds that ΦPC(ppCM, d, (Ci, zi, vi), pi) = 1, which completes the proof of knowledge
soundness.

Claim 3.11.5. The event E implies that for each i ∈ [n]:

Ci = CM.Commit(ck, pi) , deg(pi) ≤ d , pi(z?) = yi ,

Wi = CM.Commit(ck, wi) , deg(wi) ≤ d , wi(z?) = y′i .

Proof. Define the following vectors:

~C := (C1, . . . , Cn) , ~W := (W1, . . . ,Wn) , ~C? := (C(1)
? , . . . , C(2n)

? ) ,

~y := (y1, . . . , yn) , ~y′ := (y′1, . . . , y
′
n) , ~v? := (v(1)

? , . . . , v(2n)
? ) .

Above, for each j ∈ [2n], Cj
? and v

(j)
? are the commitment and claimed evaluation in acc(j).x.

By the definition of the forking lemma predicate p, the accumulation verifier V accepts
(avk, [qxi]

n
i=1, acc(j).x, pf) for all j ∈ [2n]. By the polynomial evaluation check in Step 6 of V we

obtain that~v = M · (~y‖~y′), and by the commitment check in Step 7 we obtain that ~C? = M · (~C‖ ~W ).
Moreover, since the decider accepts (avk, acc(j)) for all j ∈ [2n], it holds for all j that

C(j)
? = CM.Commit(ck, p(j)

? ) , p(j)
? (z?) = v(j)

? , deg(p(j)
? ) ≤ d .

From this the degree bounds on pi, wi follow by linearity.
Since (~C‖ ~W ) = M−1 · ~C?, and by the homomorphic property of PCPed, for each i ∈ [n] we have

that

Ci =
∑

jM
−1
i,j C

(j)
? = PCPed.Commit(ck,

∑
jM

−1
i,j p

(j)
? ) = PCPed.Commit(ck, pi) .

Similarly,Wi = PCPed.Commit(ck, wi) for each i ∈ [n].
In addition, since (~y, ~y′) = M−1 ·~v, and p(j)

? (z?) = v(j)
? , we have that pi(z?) =

∑
jM

−1
i,j v

(j)
? = yi,

and wi(z?) =
∑

jM
−1
n+i,jv

(j)
? = y′i.

Claim 3.11.6. With probability at least 1 − negl(λ), it holds that E implies pi(zi) = vi for all
i ∈ [n].

Proof. Consider a modification to EP̃ that also outputs ~w. By Claim 3.11.5, ifE occurs then for each
i ∈ [n] the tuple (Ci, zi, vi,Wi) is a binding commitment to the polynomial pi(X)−vi−wi(X)·(X−
zi) of degree at most d+ 1, and further it holds that pi(zi) = yi and wi(zi) = y′i. Since the verifier
accepts the output of EP̃, we have that z? = tr(d, [(Ci, zi, vi,Wi)]

n
i=1) = ρ(d, [(Ci, zi, vi,Wi)]

n
i=1),

and that ∀ i ∈ [n] yi − vi = y′i · (z? − zi). By Lemma 3.11.3, except with probability negl(λ),
pi(X)− vi − wi(X) · (X − zi) is the zero polynomial, and so pi(zi) = vi.
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Chapter 4

Zexe: Enabling Decentralized Private
Computations

This chapter presents Zexe, a ledger-based system where users can execute offline computations and
subsequently produce transactions, attesting to the correctness of these computations, that satisfy
two main properties. First, transactions hide all information about the offline computations. Second,
transactions can be validated in constant time by anyone, regardless of the offline computation.

The core of Zexe is a construction for a new cryptographic primitive that we introduce,
decentralized private computation (DPC) schemes. In order to achieve an efficient implementation
of our construction, we leverage tools in the area of cryptographic proofs, including succinct zero
knowledge proofs and recursive proof composition. Overall, transactions in Zexe are 968 bytes
regardless of the offline computation, and generating them takes less than a minute plus a time that
grows with the offline computation.

We demonstrate how to use Zexe to realize privacy-preserving analogues of popular applications:
private decentralized exchanges for user-defined fungible assets and regulation-friendly private
stablecoins.

This work was previously published in [BCGMMW20].
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4.1 Introduction
Distributed ledgers are a mechanism that maintains data across a distributed system while ensuring
that every party has the same view of the data, even in the presence of corrupted parties. Ledgers
can provide an indisputable history of all “events” logged in a system, thereby offering a mechanism
for multiple parties to collaborate with minimal trust (any party can ensure the system’s integrity
by auditing history). Interest in distributed ledgers has soared recently, catalyzed by their use in
cryptocurrencies (peer-to-peer payment systems) and by their potential as a foundation for new
forms of financial systems, governance, and data sharing. In this work we study two limitations of
ledgers, one about privacy and the other about scalability.
A privacy problem. The main strength of distributed ledgers is also their main weakness: the
history of all events is available for anyone to read. This severely limits a direct application of
distributed ledgers.

For example, in ledger-based payment systems such as Bitcoin [Nak09], every payment transaction
reveals the payment’s sender, receiver, and amount. This not only reveals private financial details of
individuals and businesses using the system,1 but also violates fungibility, a fundamental economic
property of money. This lack of privacy becomes more severe in smart contract systems like
Ethereum [Woo17], wherein transactions not only contain payment details, but also embed function
calls to specific applications. In these systems, every application’s internal state is necessarily public,
and so is the history of function calls associated to it.

This problem has motivated prior work to find ways to achieve meaningful privacy guarantees
on ledgers. For example, the Zerocash protocol [Ben+14] provides privacy-preserving payments,
and Hawk [KMSWP16] enables general state transitions with data privacy, that is, an application’s
data is hidden from third parties.

However, all prior work is limited to hiding the inputs and outputs of a state transition but
not which transition function is being executed. That is, prior work achieves data privacy but not
function privacy. In systems with a single transition function this is not a concern.2 In systems with
multiple transition functions, however, this leakage is problematic. For example, Ethereum currently
supports thousands of separate ERC-20 “token” contracts [Eth18], each representing a distinct
currency on the Ethereum ledger; even if these contracts each individually adopted a protocol such
as Zerocash to hide details about token payments, the corresponding transactions would still reveal
which token was being exchanged. Moreover, the leakage of this information would substantially
reduce the anonymity set of those payments.
A scalability problem. Public auditability in the aforementioned systems (and many others) is
achieved via direct verification of state transitions that re-executes the associated computation. This
creates the following scalability issues. First, note that in a network consisting of devices with

1Even if payments merely contain addresses rather than, say, social security numbers, much information about
individuals and businesses can be gleaned by analyzing the flow of money over time between addresses [RH11; RS13;
AKRSC13; Mei+13; SMZ14; Kal+20]. There are even companies that offer analytics services on the information stored
on ledgers [Ell13; Cha14].

2For example, in Zerocash the single transition function is the one governing cash flow of a single currency.
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heterogeneous computing power, requiring every node to re-execute transactions makes the weakest
node a bottleneck, and this effect persists even when the underlying ledger is “perfect”, that is, it
confirms every valid transaction immediately. To counteract this and to discourage denial-of-service
attacks whereby users send transactions that take a long time to validate, current systems introduce
mechanisms such as gas to make users paymore for longer computations. However, such mechanisms
can make it unprofitable to validate legitimate but expensive transactions, a problem known as
the “Verifier’s Dilemma” [LTKS15]. These problems have resulted in Bitcoin forks [Bit15] and
Ethereum attacks [Eth16].

In sum, there is a dire need for techniques that facilitate the use of distributed ledgers for rich
applications, without compromising privacy (of data or functions) or relying on unnecessary
re-executions. Prior works only partially address this need, as discussed in Section 4.1.2 below.

4.1.1 Our contributions
We design, implement, and evaluate Zexe (Zero knowledge EXEcution), a ledger-based system
that enables users to execute offline computations and subsequently produce publicly-verifiable
transactions that attest to the correctness of these offline executions. Zexe simultaneously provides
two main security properties.

• Privacy: a transaction reveals no information about the offline computation, except (an upper
bound on) the number of consumed inputs and created outputs.3 One cannot link together multiple
transactions by the same user or involving related computations, nor selectively censor transactions
based on such information.

• Succinctness: a transaction can be validated in time that is independent of the cost of the offline
computation whose correctness it attests to. Since all transactions are indistinguishable, and are
hence equally cheap to validate, there is no “Verifier’s Dilemma”, nor a need for mechanisms like
Ethereum’s gas.

Zexe also offers rich functionality, as offline computations in Zexe can be used to realize state
transitions of multiple applications (such as tokens, elections, markets) simultaneously running atop
the same ledger. The users participating in applications do not have to trust, or even know of, one
another. Zexe supports this functionality by exposing a simple, yet powerful, shared execution
environment with the following properties.

• Extensibility: users may execute arbitrary functions of their choice, without seeking anyone’s
permission.

• Isolation: functions of malicious users cannot interfere with the computations and data of honest
users.

3One can fix the number of inputs and outputs (say, fix both to 2), or carefully consider side channels that could
arise from revealing bounds on the number of inputs and outputs.



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 176

• Inter-process communication: functions may exchange data with one another.

DPC schemes. The technical core of Zexe is a protocol for a new cryptographic primitive for
performing computations on a ledger called decentralized private computation (DPC). Informally, a
DPC scheme supports a simple, yet expressive, programming model in which units of data, which
we call records, are bound to scripts (arbitrary programs) that specify the conditions under which a
record can be created and consumed (this model is similar to the UTXO model; see Remark 4.2.3).
The rules that dictate how these programs interact can be viewed as a “nano-kernel” that provides a
shared execution environment upon which to build applications. From a technical perspective, DPC
can be viewed as extending Zerocash [Ben+14] to the foregoing programming model, while still
providing strong privacy guarantees, not only within a single application (which is a straightforward
extension) but also across multiple co-existing applications (which requires new ideas that we
discuss later on). The security guarantees of DPC are captured via an ideal functionality, which our
protocol provably achieves.
Applications. To illustrate the expressivity of the RNK, we show how to use DPC schemes
to construct privacy-preserving analogues of popular applications: private user-defined assets,
private decentralized or non-custodial exchanges (DEXs), and private stablecoins. Our privacy
guarantees in particular protect against vulnerabilities of current DEX designs such as front-running
[BDJT17; BBDJLZ17; EMC19; Dai+20]. Moreover, we sketch how to use DPC to construct a
privacy-preserving smart contract system. See Sections 4.2.3 and 4.6 for details.
Techniques for efficient implementation. We devise a set of techniques to achieve an efficient
implementation of our DPC protocol, by drawing upon recent advances in zero knowledge succinct
cryptographic proofs (namely, zkSNARKs) and in recursive proof composition (proofs attesting to
the validity of other proofs).

Overall, transactions in Zexe with two input records and two output records are 968 bytes and
can be verified in tens of milliseconds, regardless of the offline computation; generating these
transactions takes less than a minute plus a time that grows with the offline computation (inevitably
so). This implementation is achieved in a modular fashion via a collection of Rust libraries (see
Fig. 4.15), in which the top-level one is libzexe. Our implementation also supports transactions
with any number m of input records and n of output records; transactions size in this case is
32m + 32n + 840 bytes (the transaction stores the serial number of each input record and the
commitment of each output record).
Delegating transactions. While verifying succinct cryptographic proofs is cheap, producing them
can be expensive. As the offline computation grows, the (time and space) cost of producing a
cryptographic proof of its correctness also grows, which could become infeasible for a user.

To address this problem, we further obtain delegable DPC. The user communicates to an
untrusted worker details about the desired transaction, then the worker produces the transaction,
and finally the user authorizes it via a cheap computation (and in a way that does not violate
indistinguishability of transactions). This feature is particularly relevant for prospective real-world
deployments, because it enables support for weak devices, such as mobile phones or hardware
tokens.
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In fact, our delegable DPC protocol also extends to support threshold transactions, which can be
used to improve operational security, and also to support blind transactions, which can be used to
realize lottery tickets for applications such as micropayments.

All of these extensions are also part of our Rust library libzexe.
A perspective on costs. Zexe is not a lightweight construction, but achieves, in our opinion,
tolerable efficiency for the ambitious goals it sets out to achieve: data and function privacy, and
succinctness, with rich functionality, in a threat model that requires security against all efficient
adversaries. Relaxing any of these goals (assuming rational adversaries or hardware enclaves, or
compromising on privacy) will lead to more efficient approaches.

The primary cost in our system is, unsurprisingly, the cost of generating the cryptographic proofs
that are included in transactions. We have managed to keep this cost to roughly a minute plus a cost
that grows with the offline computation. For the applications mentioned above, these additional
costs are negligible. Our system thus supports applications of real-world interest today (e.g., private
DEXs) with reasonable costs.

4.1.2 Related work

Avoiding naive re-execution. A number of proposals for improving the scalability of smart
contract systems, such as TrueBit [TR17], Plasma [PB17], and Arbitrum [KGCWF18], avoid naive
re-execution by having users report the results of their computations without any cryptographic
proofs, and instead putting in place incentive mechanisms wherein others can challenge reported
results. The user and challenger engage in a so-called refereed game [FK97; CRR11; CRR13;
JSST16; Rei16], mediated by a smart contract acting as the referee, that efficiently determines which
of the two was “telling the truth”. In contrast, in this work correctness of computation is ensured by
cryptography, regardless of any economic motives; we thus protect against all efficient adversaries
rather than merely all rational and efficient ones. Also, unlike our DPC scheme, the above works
do not provide formal guarantees of strong privacy (challengers must be able to re-execute the
computation leading to a result and in particular must know its potentially private inputs).
Private payments. Zerocash [Ben+14], building on earlier work [MGGR13], showed how to
use distributed ledgers to achieve payment systems with strong privacy guarantees. The Zerocash
protocol, with some modifications, is now commercially deployed in several cryptocurrencies,
including Zcash [Zcash]. Solidus [CZJKJS17] enables customers of financial institutions (such as
banks) to transfer funds to one another in a manner that ensures that only the banks of the sender
and receiver learn the details of the transfer; all other parties (all other customers and banks) only
learn that a transfer occurred, and nothing else. zkLedger [NVV18] enables anonymous payments
between a small number of distinguished parties via the use of homomorphic commitments and
Schnorr proofs. None of these protocols support scripts (small programs that dictate how funds can
be spent), let alone arbitrary state transitions as in Zexe.
Privacy beyond payments. Hawk [KMSWP16], combining ideas from Zerocash and the notion
of an evaluator-prover for multi-party computation, enables parties to conduct offline computations
and then report their results via cryptographic proofs. Hawk’s privacy guarantee protects the private
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inputs used in a computation, but does not hide which computation was performed. That said, we
view Hawk as complementary to our work: a user in our system could in particular be a semi-trusted
manager that administers a multi-party computation and generates a transaction about its output.
The privacy guarantees provided in this work would then additionally hide which computation was
carried out offline.

Zether [BAZB20] is a system that enables publicly known smart contracts to reason about
homomorphic commitments in zero knowledge, and in particular enables these to transact in a
manner that hides transaction amounts; it does not hide the identities of parties involved in the
transaction, beyond a small anonymity set. Furthermore, the cost of verifying a transaction scales
linearly with the size of the anonymity set, whereas in Zexe this cost scales logarithmically with the
size of anonymity set.
Succinct blockchains. Coda [MS18] uses arbitrary-depth recursive composition of SNARKs to
enable blockchain nodes to verify the current blockchain state quickly. In contrast, Zexe uses depth-2
recursive composition to ensure that all blockchain transactions are equally cheap to verify (and are
moreover indistinguishable from each other), regardless of the cost of the offline computation. In
this respect, Coda and Zexe address orthogonal scalability concerns.
MPCwith ledgers. Several works [ADMM14b; ADMM14a; KMB15; KB16; BKM17; RGJKM17]
have applied ledgers to obtain secure multi-party protocols that have security properties that are
difficult to achieve otherwise, such as fairness. These approaches are complementary to our work,
as any set of parties wishing to jointly compute a certain function via one of these protocols could
run the protocol “under” our DPC scheme in such a way that third parties would not learn any
information that such a multi-party computation is happening.
Hardware enclaves. Kaptchuk et al. [KGM19] and Ekiden [Zha+20] combine ledgers with
hardware enclaves, such as Intel Software Guard Extensions [McK+13], to achieve various integrity
and privacy goals for smart contracts. Beyond ledgers, several systems explore privacy goals in
distributed systems by leveraging hardware enclaves; see for example M2R [DSCOZ15], VC3
[Sch+15], and Opaque [ZDBPGS17]. All of these works are able to efficiently support rich and
complex computations. In this work, we make no use of hardware enclaves, and instead rely entirely
on cryptography. This means that on the one hand our performance overheads are more severe,
while on the other hand we protect against a richer class of adversaries (all efficient ones). Moreover,
the techniques above depend on a working remote attestation capability; we note that our techniques
can be used to achieve stronger security guarantees, even in the face of a compromise in the remote
attestation capabilities of an enclave system (as recently occurred with Intel SGX [Van+19]).
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4.2 Techniques
We now summarize the main ideas behind our contributions. Our goal is to design a ledger-based
system in which transactions attest to offline computations while simultaneously providing privacy
and succinctness.

We first note that if privacy is not required, there is a straightforward folklore approach that
provides succinctness and low verification cost: each user accompanies the result reported in a
transaction with a succinct cryptographic proof (i.e., a SNARK) attesting to the result’s correctness.
Others who validate the transaction can simply verify the cryptographic proof, and do not have
to re-execute the computation. Even this limited approach rules out a number of cryptographic
directions, such as the use of Bulletproofs [BCCGP16; BBBPWM18] (which have verification time
linear in the circuit complexity), but can be accomplished using a number of efficient SNARK
techniques [GGPR13; BCTV14; BCS16; BCTV17]. In light of this, we shall first discuss how to
achieve privacy, and then how to additionally achieve succinctness.

The rest of this section is organized as follows. In Sections 4.2.1 and 4.2.2 we explain why
achieving privacy in our setting is challenging. In Section 4.2.3 we introduce the shared execution
environment that we consider, and in Section 4.2.4 we introduce decentralized private computation
(DPC), a cryptographic primitive that securely realizes it. In Section 4.2.5 we describe how we turn
our ideas into an efficient implementation.

4.2.1 Achieving privacy for a single arbitrary function
Zerocash [Ben+14] is a protocol that achieves privacy for a specific functionality, namely, value
transfers within a single currency. Therefore, it is natural to consider what happens if we extend
Zerocash from this special case to the general case of a single arbitrary function that is known in
advance to everybody.
Sketch of Zerocash. Money in Zerocash is represented via coins. The commitment of a coin is
published on the ledger when the coin is created, and its serial number is published when the coin is
consumed. Each transaction on the ledger attests that some “old” coins were consumed in order to
create some “new” coins: it contains the serial numbers of the consumed coins, commitments of the
created coins, and a zero knowledge proof attesting that the serial numbers belong to coins created
in the past (without identifying which ones), and that the commitments contain new coins of the
same total value. A transaction is private because it only reveals how many coins were consumed
and how many were created, but no other information (each coin’s value and owner address remain
hidden). Also, revealing a coin’s serial number ensures that a coin cannot be consumed more than
once (the same serial number would appear twice). In sum, data in Zerocash corresponds to coin
values, and state transitions are the single invariant that monetary value is preserved.
Extending to an arbitrary function. One way to extend Zerocash to a single arbitrary function Φ
(known in advance to everybody) is to think of a coin as a record that stores some arbitrary data
payload, rather than just some integer value. The commitment of a record would then be published
on the ledger when the record is created, and its unique serial number would be published when
the record is consumed. A transaction would then contain serial numbers of consumed records,



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 180

commitments of created records, and a proof attesting that invoking the function Φ on (the payload
of) the old records produces (the payload of) the new records.

Data privacy holds because the ledger merely stores each record’s commitment (and its serial
number once consumed), and transactions only reveal that some number of old records were
consumed in order to create some number of new records in a way that is consistent with Φ. Function
privacy also holds but for trivial reasons: Φ is known in advance to everybody, and every transaction
is about computations of Φ.

Note that Zerocash is indeed a special case of the above: it corresponds to fixing Φ to the
particular (and publicly known) choice of a function Φ$ that governs value transfers within a single
currency. However the foregoing protocol supports only a single hard-coded function Φ, while
instead we want to enable users to select their own functions, as we discuss next.

4.2.2 Difficulties with achieving privacy for user-defined functions
We want to enable users to execute functions of their choice concurrently on the same ledger without
seeking permission from anyone. That is, when preparing a transaction, a user should be able to
pick any function Φ of their choice for creating new records by consuming some old records. If
function privacy is not a concern, then this is easy: just attach to the transaction a zero-knowledge
proof that Φ was correctly evaluated offline. However, because this approach reveals Φ, we cannot
use it because function privacy is a goal for us.

An approach that does achieve function privacy would be to modify the sketch in Section 4.2.1
by fixing a single function that is universal, and then interpreting data payloads as user-defined
functions that are provided as inputs. Indeed, zero knowledge would ensure function privacy in
this case. However merely allowing users to define their own functions does not by itself yield
meaningful functionality, as we explain next.
The problem: malicious functions. A key challenge in this setting is that malicious users could
devise functions to attack or disrupt other users’ functions and data, so that a particular user would
not know whether to trust records created by other users; indeed, due to function privacy, a verifier
would not know what functions were used to create those records. For a concrete example, suppose
that we wanted to realize the special case of value transfers within a single currency (i.e., Zerocash).
One may believe that it would suffice to instruct users to pick the function Φ$ (or similar). But
this does not work: a user receiving a record claiming to contain, say, 1 unit of currency does not
know if this record was created via the function Φ$ from other such records and so on. A malicious
user could have used a different function to create that record, for example, one that illegally
“mints” records that appear valid to Φ$, and thus enables arbitrary inflation of the currency. More
generally, the lack of any enforced rules about how user-defined functions can interact precludes
productive cooperation between users that are mutually distrustful. We stress that this challenge
arises specifically due to the requirement that functions be private: if the function that created (the
commitment of) a record was public knowledge, users could decide for themselves if records they
receive were generated by “good” functions.

One way to address the foregoing problem is to augment records with a new attribute that identifies
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the function that “created” the record, and then impose the restriction that in a valid transaction
only records created by the same function may participate. This new attribute is contained within a
hiding commitment and thus is never revealed publicly on the ledger (just like a record’s payload);
the zero knowledge proof is tasked with ensuring that records participating in the same transaction
all have the same “type”. This approach now does suffice to realize value transfers within a single
currency, by letting users select the function Φ$. More generally, this approach generalizes that in
Section 4.2.1, and can be viewed as running multiple segregated “virtual ledgers” each with a fixed
function. Function privacy holds because one cannot tell if a transaction belongs to one virtual
ledger or another.
The problem: functions cannot communicate. The limitation of the above technique is that it
forbids any “inter-process communication” between different functions, and so one cannot realize
even simple functionalities like transferring value between different currencies on the same ledger.
It also rules out more complex smart contract systems, as communication between contracts is a key
part of such systems. It is thus clear that this crude “time sharing” of the ledger is too limiting.

4.2.3 The records nano-kernel: a minimalist shared execution environment
The approaches in Section 4.2.2 lie at opposite extremes: unrestricted inter-process interaction
prevents the secure construction of even basic applications such as a single currency, while complete
process segregation limits the ability to construct complex applications that interact with each other.

Balancing these extremes requires a shared execution environment: one can think of this as an
operating system for a shared ledger. This operating system manages user-defined functions: it
provides process isolation, determines data ownership, handles inter-process communication, and so
on. Overall, processes must be able to concurrently share a ledger, without violating the integrity or
confidentiality of one another.

However, function privacy (one of our goals) dictates that user-defined functions are hidden,
which means that an operating system cannot be maintained publicly atop the ledger (as in current
smart contract systems) but, instead, must be part of the statement proved in zero knowledge. This
is unfortunate because designing an operating system that governs interactions across user-defined
functions within a zero knowledge proof is not only a colossal design challenge but also entails
many arbitrary design choices that we should not have to take.

In light of the above, we choose to take the following approach: we formulate aminimalist shared
execution environment that imposes simple, yet expressive, rules on how records may interact, and
enables programming applications in the UTXO model (see Remark 4.2.3 for why we make this
choice). This execution environment can be viewed as a “nano-kernel” that enables users to manage
records containing data by programming two boolean functions (or predicates) associated with each
record. These predicates control the two defining moments in a record’s life, namely creation (or
“birth”) and consumption (or “death”), and are hence called the record’s birth and death predicates.
A user can create and consume records in a transaction by satisfying the predicates of those records.
In more detail,
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The records nano-kernel (RNK) is an execution environment that operates over units
of data called records. A record contains a data payload, a birth predicate Φb, and a
death predicate Φd. Records are created and consumed by valid transactions. These are
transactions where the death predicates of all consumed records and the birth predicates
of all created records are simultaneously satisfied when given as input the transaction’s
local data (see Fig. 4.3), which includes: (a) every record’s contents (such as its payload
and the identity of its predicates); (b) a piece of shared memory that is publicly revealed,
called transaction memorandum; (c) a piece of shared memory that is kept hidden, called
auxiliary input; and (d) other construction specifics.

The foregoing definition enables predicates to see the contents of the entire transaction and hence
to individually decide if the local data is valid according to its own logic. This in turn enables
predicates to communicate with each other securely without interference from malicious predicates.
In more detail, a record r can protect itself from other records that contain “bad” birth or death
predicates because the r’s predicates could refuse to accept when they detect (from reading the
local data) that they are in a transaction with records having bad predicates. At the same time, a
record can interact with other records in the same transaction when its predicates decide to accept,
providing the flexibility that we seek.

We briefly illustrate this via an example, user-defined assets, whereby one can use birth predicates
to define and transact with their own assets, and also use death predicates to enforce custom access
control policies over these assets.

Example 4.2.1 (user-defined assets). Consider records whose payloads encode an asset identifier
id, the initial asset supply v, and a value v. Fix the birth predicate in all such records to be a
mint-or-conserve function MoC that is responsible for creating the initial supply of a new asset,
and then subsequently conserving the value of the asset across all transactions. In more detail,
MoC can be invoked in one of two modes. In mint mode, given as input a desired initial supply v,
MoC deterministically derives (in a way that we discuss later) a fresh unique identifier id for a new
asset and stores (id,v, v = v) in a genesis record. In conserve mode, MoC inspects all records in a
transaction whose birth predicates equal to MoC and whose asset identifiers equal the identifier of
the current record, and ensures that among these records, the asset values are conserved.

Users can program death predicates of records to enforce conditions on how assets can be
consumed, e.g., by realizing conditional exchanges with other counter-parties. Suppose that Alice
wishes to exchange 100 units of an asset id1 for 50 units of another asset id2, but does not have a
counter-party for the exchange. She creates a record r with 100 units of id1 whose death predicate
enforces that any transaction consuming r must also create another record, consumable by Alice,
with 50 units of id2. She then publishes out of band information about r, and anyone can subsequently
claim it by creating a transaction doing the exchange.

Since death predicates can be arbitrary, many different access policies can also be realized, e.g.,
to enforce that a transaction redeeming a record (a) must be authorized by two of three public keys,
or (b) becomes valid only after a given amount of time, or (c) must reveal the pre-image of a hash
function.
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One can generalize this basic example to show how the RNK can realize a specific class of
smart contract systems, namely those in which the transaction creator knows both the contract
code being executed, as well as the (public and secret) state of the contract. At a high level, these
contracts can be executed within a single transaction, or across multiple transactions, by storing
suitable intermediate state/message data in record payloads, or by publishing that data in transaction
memoranda (as plaintext or ciphertext as needed). We discuss in more detail below.

Example 4.2.2 (smart contracts with caller-known state). At the highest level, smart contract systems
operate over a set of individual contracts, each of which consists of a function (or collection of
functions), some state variables, and some form of address that serves to uniquely identify the
contract. The contract address ensures that the same code/functions can be deployed multiple times
by different individuals, without two contracts inadvertently sharing state.4 A standard feature of
smart contract systems is that a contract can communicate with other contracts: that is, a contract
can invoke a second smart contract as a subroutine, provided that the second contract provides an
interface to allow this behavior. In our setting, we consider contracts in which the caller knows at
least part of the state of each contract.

In this setting, one can use the records nano-kernel to realize basic smart contracts as follows.
Each contract can be implemented as a function Φsc. The contract’s state variables can be stored in
one or more records such that each record ri is labeled with Φsc as the birth and death predicate.
Using this labeling, Φsc (via the RNK) can enforce that only it can update its state variables, thus
fulfilling one requirement of a secure contract. Of course, while this serves to prevent other functions
from updating the contract’s state, it does not address the situation where multiple users wish to
deploy different instances of the same function Φsc, each with isolated state. Fortunately (and
validating our argument that the RNK realizes the minimal requirements needed for such a system),
addressing this problem does not require changes to the RNK. Instead, one can devise the function
Φsc so that it reasons over a unique contract address identifier id, which is recorded within the
payload of every record.5 The function Φsc can achieve contract state isolation by enforcing that
each input and output state record considered by single execution of Φsc shares the same contract
address.

To realize “inter-contract calls” between two functions Φsc1
and Φsc2

, one can use “ephemeral”
records that communicate between the two functions. For example, if Φsc1

wishes to call Φsc2
, the

caller may construct a record re that contains the “arguments” to the called function Φsc2
, as well as

the result of the function call. A transaction would then show that both Φsc1
and Φsc2

are satisfied.

The above example outlines how to implement a general smart contract system atop the RNK.We
leave to future work the task of developing this outline into a full-fledged smart contract framework,
and instead focus on constructing a scheme that implements the RNK, and on illustrating how to
directly program the RNK to construct specific applications such as user-defined assets, private

4In concrete implementations such as Ethereum [Woo17], contract identification is accomplished through unique
contract addresses, each of which can be bound to a possibly non-unique codeHash that identifies the code of the
program implementing the contract.

5This identifier can be generated in a manner similar to the asset identifier in Example 4.2.1.
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decentralized asset exchanges, and regulation-friendly private stablecoins. We discuss these
applications in more detail in Section 4.6.

Remark 4.2.3 (working in the UTXO model). In the records nano-kernel, applications update their
state by consuming records containing the old state, and producing new records that contain the
updated state. This programming model is popularly known as the “unspent transaction output”
(UTXO) model. This is in contrast to the “account-based” model which is used by many other smart
contract systems [Goo14; Woo17; Yak18]. At present, it is not known how to efficiently achieve
strong privacy properties in this model even for the simple case of privacy-preserving payments
among any number of users, as we explain below.

In the account-based model, application state is stored in a persistent location associated with the
application’s account, and updates to this state are applied in-place. A smart contract that implements
a currency in this model would store user balances in a persistent table T that maps user account
identifiers to user balances. Transactions from a user A to another user B would then decrement
A’s balance in T and increment B’s balance by a corresponding amount. A straightforward way to
make this contract data-private (i.e., to hide the transaction value and the identities of A and B)
would be to replace the user balances in T with hiding commitments to these balances; transactions
would then update these commitments instead of directly updating the balances. However, while
this hides transaction values, it does not hide user identities; to further hide these, every transaction
would have to update all commitments in T , which entails a cost that grows linearly with the number
of users. This approach is taken by zkLedger [NVV18], which enables private payments between a
small number of known users (among other things).

Even worse, achieving function privacy when running multiple applications in such a system
would require each transaction to hide which application’s data was being updated, which means
that the transaction would have to update the data of all applications at once, again severely harming
the efficiency of the system.

In sum, it is unclear how to efficiently achieve strong data and function privacy in the account-
based model when users can freely join and leave the system without notifying other users. On the
other hand, we show in this work that these properties can be achieved in the UTXO model at a
modest cost.

4.2.4 Decentralized private computation

A new cryptographic primitive. We introduce a new cryptographic primitive called decentralized
private computation (DPC) schemes, which capture the notion of a ledger-based system where
privacy-preserving transactions attest to offline computations that follow the records nano-kernel.
See Section 4.3 for the definition of DPC schemes, including the ideal functionality that we use to
express security.

We construct a DPC scheme in Section 4.4, and prove it secure in Section 4.10. We take Zerocash
[Ben+14] as a starting point, and then extend the protocol to support the records nano-kernel and
also to facilitate proving security in the simulation paradigm relative to an ideal functionality (rather
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than via a collection of separate game-based definitions as in [Ben+14]). Below we sketch the
construction.
Construction sketch. Each transaction in the ledger consumes some old records and creates new
records in a manner that is consistent with the records nano-kernel. To ensure privacy, a transaction
only contains serial numbers of the consumed records, commitments of the created records, and a
zero knowledge proof attesting that there exist records consistent with this information (and with
the records nano-kernel). All commitments on the ledger are collected in a Merkle tree, which
facilitates efficiently proving that a commitment appears on the ledger (by proving in zero knowledge
the knowledge of a suitable authentication path). All serial numbers on the ledger are collected in a
list that cannot contain duplicates. This implies that a record cannot be consumed twice because the
same serial number is revealed each time a record is consumed. See Fig. 4.1.

The record data structure is summarized in Fig. 4.2. Each record is associated to an address
public key, which is a commitment to a seed for a pseudorandom function acting as the corresponding
address secret key; addresses determine ownership of records, and in particular consuming a record
requires knowing its secret key. A record consists of an address public key, a data payload, a birth
predicate, a death predicate, and a serial number nonce; a record commitment is a commitment to
all of these attributes. The serial number of a record is the evaluation of a pseudorandom function,
whose seed is the secret key for the record’s address public key, evaluated at the record’s serial
number nonce. A record’s commitment and serial number, which appear on the ledger when the
record is created and consumed, reveal no information about the record attributes. This follows from
the hiding properties of the commitment, and the pseudorandom properties of the serial number.
The derivation of a record’s serial number ensures that a user can create a record for another in such
a way that its serial number is fully determined and yet cannot be predicted without knowing the
other user’s secret key.

Lledger tx1 tx2 ... tx ... txt

all record commitments all serial numbers

sn1,...,snm cm1,...,cmn memo stL !
serial numbers 
of old records

commitments 
of new records

transaction 
memorandum

ledger 
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zkSNARK

...

ledger 
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...

Figure 4.1: Construction of a transaction.
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Figure 4.2: Construction of a record.

In order to produce a transaction, a user selects some previously-created records to consume,
assembles some new records to create (including their payloads and predicates), and decides on other
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aspects of the local data such as the transaction memorandum (shared memory seen by all predicates
and published on the ledger) and the auxiliary input (shared memory seen by all predicates but not
published on the ledger); see Fig. 4.3. If the user knows the secret keys of the records to consume
and if all relevant predicates are satisfied (death predicates of old records and birth predicates of
new predicates), then the user can produce a zero knowledge proof to append to the transaction. See
Fig. 4.4 for a summary of the NP statement being proved.

In sum, a transaction only reveals the number of consumed records and number of created
records, as well as any data that was deliberately revealed in the transaction memorandum (possibly
nothing).6
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Figure 4.3: Predicates receive local data.
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Figure 4.4: The execute statement.

Achieving succinctness. Our discussions so far have focused on achieving (data and function)
privacy. However, we also want to achieve succinctness, namely, that a transaction can be validated
in “constant time”. This follows from a straightforward modification: we take the protocol that
we have designed so far and use a zero knowledge succinct argument rather than just any zero
knowledge proof. Indeed, the NP statement being proved (summarized in Fig. 4.4) involves attesting
the satisfiability of all (old) death and (new) birth predicates, and thus we need to ensure that
verifying the corresponding proof can be done in time that does not depend on the complexity of
these predicates. While turning this idea into an efficient implementation requires more ideas (as we
discuss in Section 4.2.5), the foregoing modification suffices from a theoretical point of view.
Delegation to an untrusted worker. In our DPC scheme, a user must produce, and include in
the transaction, a zero knowledge succinct argument that, among other things, attests that death
predicates of consumed records are satisfied and, similarly, that birth predicates of created records
are satisfied. This implies that the cost of creating a transaction grows with the complexity (and
number of) predicates involved in the transaction. Such a cost can quickly become infeasible for
weak devices such as mobile phones or hardware tokens.

We address this problem by enabling a user to delegate to an untrusted worker, such as a remote
server, the computation that produces a transaction. This notion, which we call a delegable DPC

6By supporting the use of dummy records, we can in fact ensure that only upper bounds on the foregoing numbers
are revealed.
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scheme, empowers weak devices to produce transactions that they otherwise could not have produced
on their own.

The basic idea is to augment address keys in such a way that the secret information needed
to produce the cryptographic proof is separate from the secret information needed to authorize
a transaction containing that proof. Thus, the user can communicate to the worker the secrets
necessary to generate a cryptographic proof, while retaining the remaining secrets for authorizing
this (and future) transactions. In particular, the worker has no way to produce valid transactions that
have not been authorized by the user.

We use randomizable signatures to achieve the foregoing functionality, without violating either
privacy or succinctness. Informally, we modify a record’s serial number to be an unlinkable
randomization of (part of) the record’s address public key, and a user’s authorization of a transaction
consists of signing the instance and proof relative to every randomized key (i.e., serial number) in
that transaction. See Section 4.5 for details.

4.2.5 Achieving an efficient implementation
Our system Zexe (Zero knowledge EXEcution) provides an implementation of two constructions:
our “plain” DPC protocol, and its extension to a delegable DPC protocol. Achieving efficiency in
our system required overcoming several challenges. Below we highlight some of these challenges,
and explain how we addressed them; see Sections 4.7 and 4.8 for details. The discussions below
equally apply to both types of DPC protocols.
Avoiding the cost of universality. The NP statement that we need to prove involves checking
user-defined predicates, so it must support arbitrary computations that are not fixed in advance.
However, state-of-the-art zkSNARKs for universal computations rely on expensive tools [BCGTV13;
BCTV14; WSRBW15; BCTV17].

We address this problem by relying on one layer of recursive proof composition [Val08; BCCT13].
Instead of tasking the NP statement with directly checking user-defined predicates, we only task it
with checking succinct proofs attesting to this. Checking these inner succinct proofs is a (relatively)
inexpensive computation that is fixed for all predicates, which can be “hardcoded” in the statement.
Since the single outer succinct proof produced does not reveal information about the inner succinct
proofs attesting to predicates’ satisfiability (thanks to zero knowledge), the inner succinct proofs
do not have to hide what predicate was checked, so they can be for NP statements tailored to the
computations of particular user-defined predicates.
A bespoke recursion. Recursive proof composition has been empirically demonstrated for pairing-
based SNARKs [BCTV17]. We thus focus our attention on these, and explain the challenges that
arise in our setting. Recall that if we instantiate a SNARK’s pairing via an elliptic curve E defined
over a prime field Fq and having a subgroup of prime order r, then (a) the SNARK supports NP
statements expressed as arithmetic circuits over Fr, while (b) proof verification involves arithmetic
operations over Fq. Being part of the NP statement, the SNARK verifier must also be expressed
as an arithmetic circuit over Fr, which is problematic because the verifier’s “native” operations
are over Fq. Simulating Fq operations via Fr operations is expensive, and picking E such that
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q = r is impossible [BCTV17]. Prior work thus uses multiple curves [BCTV17]: a two-cycle of
pairing-friendly elliptic curves, that is, two prime-order curves E1 and E2 such that the prime size of
one’s base field is the prime order of the other’s group, and orchestrating SNARKs based on these
so that fields “match up”. However, known cycles are inefficient at 128 bits of security [BCTV17;
CCW19].

We address this problem by noting that we merely need “a proof of a proof”, and thus, instead
of relying on a cycle, we can use the Cocks–Pinch method [FST10] to set up a bounded recursion
[BCTV17]. First we pick a pairing-friendly elliptic curve that not only is suitable for 128 bits of
security according to standard considerations but, moreover, is compatible with efficient SNARK
provers in both levels of the recursion. Namely, letting p be the prime order of the base field and r the
prime order of the group, we need that both Fr and Fp have multiplicative subgroups whose orders
are large powers of 2. The condition on Fr ensures efficient proving for SNARKs over this curve,
while the condition on Fp ensures efficient proving for SNARKs that verify proofs over this curve.
In light of the above, we select a curve EBLS from the Barreto–Lynn–Scott (BLS) family [BLS02;
CLN11] with embedding degree 12. This family not only enables parameters that conservatively
achieve 128 bits of security, but also enjoys properties that facilitate very efficient implementation
[AFKMR12]. We ensure that both Fr and Fp have multiplicative subgroups of order 2α for α ≥ 40,
by a suitable condition on the parameter of the BLS family.

Next we use the Cocks–Pinch method to pick a pairing-friendly elliptic curve ECP over a field
Fq such that the curve group ECP(Fq) contains a subgroup of prime order p (the size of EBLS’s base
field). Since the method outputs a prime q that has about 2× more bits than the desired p, and in
turn p has about 1.5× more bits than r (due to properties of the BLS family), we only need ECP

to have embedding degree of 6 in order to achieve 128 bits of security (as determined from the
guidelines in [FST10]).

In sum, a SNARK over EBLS is used to generate proofs of predicates’ satisfiability; after that
a zkSNARK over ECP is used to generate proofs that these prior proofs are valid along with the
remaining NP statement’s checks. The matching fields between the two curves ensure that the
former proofs can be efficiently verified.
Minimizing operations over ECP. While the curve ECP facilitates efficient checking of SNARK
proofs over EBLS, operations on it are at least 2× more costly (in time and space) than operations
over EBLS, simply because ECP’s base field is twice the size of EBLS’s base field. This makes checks
in the NP relationRe that are not related to proof checking unnecessarily expensive.

To avoid this, we splitRe into two NP relations,RBLS andRCP. The latter is responsible only for
verifying proofs of predicates’ satisfaction, while the former is responsible for all other checks. We
minimize the number of ECP operations by proving satisfaction ofRBLS andRCP with zkSNARKs
over EBLS and ECP respectively. A transaction now includes both proofs.
Optimizing the NP statement. We note that the remaining NP statement’s checks can themselves
be quite expensive, as they range from verifying authentication paths in a Merkle tree to verifying
commitment openings, and from evaluating pseudorandom functions to evaluating collision resistant
functions. Prior work realizing similar collections of checks required upwards of four million gates
[Ben+14] to express such checks. This not only resulted in high latencies for producing transactions
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(several minutes) but also resulted in large public parameters for the system (hundreds of megabytes).
Commitments and collision-resistant hashing can be expressed as very efficient arithmetic

circuits if one opts for Pedersen-type constructions over suitable Edwards elliptic curves (and
techniques derived from these ideas are now part of deployed systems [HBHW20]). To achieve
this, we pick two Edwards curves, EEd/BLS over the field Fr (thereby matching the group order of
EBLS), and EEd/CP over the field Fp (thereby matching the group order of ECP). This allows to
realize very efficient circuits for various primitives used in our NP relations, including commitments,
collision-resistant hashing, and randomizable signatures. Overall, we obtain highly optimized
realizations of all checks in Fig. 4.4.

4.2.6 Deployment considerations
DPC schemes include a setup algorithm that specifies how to sample public parameters, which are
used to produce transactions and to verify transactions. The setup algorithm in our DPC construction
(see Section 4.4) simply consists of running the setup algorithms for the various cryptographic
building blocks that we rely on: commitment schemes, collision-resistant hash functions, and zero
knowledge proofs.

In practice, deploying cryptography that relies on setup algorithms (such as DPC schemes)
can be challenging because the entity running the setup algorithm may be able to break certain
security properties of the scheme, by abusing knowledge of the randomness used to produce the
public parameters. On the other hand, some setup algorithm is typically inevitable. For example,
non-interactive zero knowledge proofs without any setup exist only for languages decidable in
polynomial time [GO94]. Nevertheless, one could still aim for a transparent setup, one that consists
of public randomness, because in practice it is cheaper to realize.

Our construction of a DPC scheme has a transparent setup algorithm whenever the setup
algorithms for the underlying cryptographic building blocks also have transparent setups. For
example, this would hold if we instantiated our construction via Pedersen commitments, Pedersen
hash functions, and transparent zkSNARKs (as obtained from probabilistic checking tools in the
random oracle model [Mic00; BCS16]).

However, due to efficiency considerations described in Section 4.2.5, our implemented system
relies on pairing-based zkSNARKs whose setup is not transparent. (We use the simulation-
extractable zkSNARK of Groth and Maller [GM17].) We should thus discuss how one may deploy
our implemented system, and in particular the effects of compromise in the trusted setup phase of
these SNARKs. (All other primitives in our system use a transparent setup.)

Recall that prior zkSNARK deployments have used secure multiparty computation [BCGTV15;
ZcashCmny; BGM17; BGG18; KMSV21], so that the sampled public parameters are guaranteed to
be secure as long as even a single participating party is honest. One could leverage these same ideas
to sample “master” parameters for proving/verifying the two NP relationsRBLS andRCP (over the
two elliptic curves EBLS and ECP) mentioned in Section 4.2.5. Note that these public parameters do
not depend on any user-defined functions (birth or death predicates), and can thus be sampled once
and for all regardless of which applications will be run over the system. Note also that these public
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parameters must be trusted by everyone, because if they were compromised then the security (but
not privacy) of all applications running over the system would be compromised as well.

The foregoing public parameters are not the only ones that need to be sampled in order to use our
implemented system. Every (birth or death) predicate requires its own public parameters, because
(the verification key contained in) these public parameters is part of the record that contains it, and
is ultimately used to recursively check a proof of the predicate’s satisfiability. Since an application
relies only on the public parameters of certain predicates, we call such parameters as “application”
parameters.

Unlike “master” parameters, “application” parameters do not have to be sampled at the start
of the system’s lifetime, and also do not have to be trusted by every user in the system. Indeed,
interactions across records are overseen by the NP relations RBLS and RCP (which rely on the
“master” parameters) and thus compromised parameters for one application will not affect (the
security and privacy of) an application that does not rely on them. This means that a user only
needs to trust the parameters that are relied upon by the applications that the user cares about. In
turn this means that the sampling of application parameters can be viewed as an organic process,
which occurs as applications are developed and deployed, and each application can be in charge of
deciding whichever method is most suitable for securely sampling its own parameters.

Subsequent works [MBKM19; CFQ19; CHMMVW20; GWC19] have proposed pairing-based
SNARKs that have a universal setup that can be used for any circuit. Once such SNARK constructions
mature into efficient implementations, our system can be easily modified to use these instead of
[GM17] to mitigate the above concerns, as both our construction and implementation make use of
the underlying SNARKs in a modular and black-box manner.
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4.3 Definition of decentralized private computation schemes
We define decentralized private computation (DPC) schemes, a cryptographic primitive in which
parties with access to an ideal append-only ledger execute computations offline and subsequently
post privacy-preserving, publicly-verifiable transactions that attest to the correctness of these
offline executions. This primitive generalizes prior notions [Ben+14] that were limited to proving
correctness of simple financial invariants.

Below we introduce the data structures, interface, and security requirements for a DPC scheme:
Section 4.3.1 describes the main data structures of a DPC scheme, Section 4.3.2 defines the syntax
of the DPC algorithms, and finally in Section 4.3.3 we describe the security requirements for
DPC schemes via an ideal functionality. We note that our definition of DPC schemes focuses on
(correctness and) privacy, because we leave succinctness as a separate efficiency goal that easily
follows from suitable building blocks (see Remark 4.4.1).

4.3.1 Data structures
In a DPC scheme there are three main data structures: records, transactions, and the ledger.
Records. A record, denoted by the symbol r, is a data structure representing a unit of data. Records
can be created or consumed, and these events denote state changes in the system. For example, in a
currency application, records store units of the currency, and state changes represent the flow of
units in that currency.

In more detail, a record r has the following attributes (see Fig. 4.5): (a) a commitment cm,
which binds together all other attributes of r while hiding all information about them; (b) an address
public key apk, which specifies the record’s owner; (c) a payload payload containing arbitrary
application-dependent information; (d) a birth predicate Φb that must be satisfied when r is created;
(e) a death predicate Φd that must be satisfied when r is consumed; and (f) other construction-specific
information. Both Φb and Φd are arbitrary non-deterministic boolean-valued functions. The payload
payload contains a designated subfield isDummy which denotes whether r is dummy or not.

Informally, the “life” of a (non-dummy) record r is marked by two events: birth and death.
The record r is born (or is created) when its commitment cm is posted to the ledger as part of a
transaction. Then the record r dies (or is consumed) when its serial number sn appears on the ledger
as part of a later transaction. At each of these times (birth or death) the corresponding predicate (Φb

or Φd) must be satisfied. Dummy records, on the other hand, can be created freely, but consuming
them requires satisfaction of their death predicates. The purpose of dummy records is solely to
enable the creation of new non-dummy records.

To consume r, one must also know the address secret key ask corresponding to r’s address
public key apk because the serial number sn to be revealed can only be computed from r and ask.
The ledger forbids the same serial number to appear more than once, so that: (a) a record cannot be
consumed twice because it is associated to exactly one serial number; (b) others cannot prevent one
from consuming a record because it is computationally infeasible to create two distinct records that
share the same serial number sn but have distinct commitments cm and cm′.
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Figure 4.5: Diagram of a record.
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Figure 4.6: Diagram of a transaction.

Transactions. A transaction, denoted by the symbol tx, is a data structure representing a
state change that involves the consumption and creation of records (see Fig. 4.6). It is a tuple
([sni]

m
1 , [cmj]

n
1 ,memo, ?)where (a) [sni]

m
1 is the list of serial numbers of them old records, (b) [cmj]

n
1

is the list of commitments of the n new records, (c) memo is an arbitrary string associated with the
transaction, and (d) ? is other construction-specific information. The transaction tx reveals only the
following information about old and new records: (i) the old records’ serial numbers; (ii) the new
records’ commitments; and (iii) the fact that the death predicates of all consumed records and birth
predicates of all new records were satisfied.

Anyone can assemble a transaction and append it to the ledger, provided that it is “valid” in the
sense that (all records are well-formed and) the death predicates of any consumed records and the
birth predicates of any created records are satisfied. Note that all transactions reveal the number of
old records (m) and the number of new records (n), but not how many of these were dummy or not.
Ledger. We consider a model where all parties have access to an append-only ledger, denoted L,
that stores all published transactions. Our definitions (and constructions) are agnostic to how this
ledger is realized (e.g., the ledger may be centrally managed or a distributed protocol). When an
algorithm needs to interact with the ledger, we specify L in the algorithm’s superscript. The ledger
exposes the following interface.

• L.Len: Return the number of transactions currently on the ledger.
• L.Push(tx): Append a (valid) transaction tx to the ledger.
• L.Digest→ stL: Return a (short) digest of the current state of the ledger.
• L.ValidateDigest(stL)→ b: Check that stL is a valid digest for some (past) ledger state.
• L.Contains(tx)→ b: Determine if tx (or a subcomponent thereof) appears on the ledger or not.
• L.Prove(tx)→ wL: If a transaction tx (or a subcomponent thereof) appears on the ledger, return
a proof of membership wL for it. If there are duplicates, return a proof for the lexicographically
first one.

• L.Verify(stL, tx,wL) → b: Check that wL certifies that tx (or a subcomponent thereof) is in a
ledger with digest stL.

We stress that only “valid” transactions can be appended to the ledger. While the full definition
of a valid transaction is implementation dependent, in all cases it must be that the commitments
and serial numbers in a transaction (including any appearing in the ? field of a transaction) do not
already appear on the ledger.



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 193

4.3.2 Algorithms
A DPC scheme is a tuple of algorithms (some of which may read information from L):

DPC = (Setup,GenAddress,ExecuteL,VerifyL) .

The syntax and semantics of these algorithms are informally described below.

• Setup: DPC.Setup(1λ)→ pp.
On input a security parameter 1λ, DPC.Setup outputs public parameters pp for the system. A
trusted party runs this algorithm once and then publishes its output; afterwards the trusted party is
not needed anymore.
For some constructions, the trusted party can be replaced by an efficient multiparty computation
that securely realizes the DPC.Setup algorithm (see [BCGTV15; ZcashCmny; BGM17; BGG18]
for how this has been done in some systems); in other constructions, the trusted party may not be
needed, as the public parameters may simply consist of a random string of a certain length.

• Create address: DPC.GenAddress(pp)→ (apk, ask).
On input public parameters pp, DPC.GenAddress outputs an address key pair (apk, ask). Any
user may run this algorithm to create an address key pair. Each record is bound to an address
public key, and the corresponding secret key is used to consume it.

• Execute: Any user may invoke DPC.Execute to consume records and create new ones.

DPC.ExecuteL



public parameters pp
old records [ri]

m
1

old address secret keys [aski]
m
1

new address public keys [apkj ]
n
1

new record payloads [payloadj ]
n
1

new record birth predicates [Φb,j ]
n
1

new record death predicates [Φd,j ]
n
1

auxiliary predicate input aux
transaction memorandum memo


→
(

new records [rj ]
n
1

transaction tx

)
.

Given as input a list of old records [ri]
m
1 with corresponding secret keys [aski]

m
1 , attributes for

new records, private auxiliary input aux to birth and death predicates of new and old records
respectively,7 and an arbitrary transaction memorandum memo, DPC.Execute produces new
records [rj]

n
1 and a transaction tx. The transaction attests that the input records’ death predicates

and the output records’ birth predicates are all satisfied. The user subsequently pushes tx to the
ledger by invoking L.Push(tx).

• Verify: DPC.VerifyL(pp, tx)→ b.
On input public parameters pp and a transaction tx, and given oracle access to the ledger L,
DPC.Verify outputs a bit b denoting whether the transaction tx is valid relative to the ledger L.

7In addition to the “global” auxiliary input aux, each predicate may also take as input a “local” auxiliary input that
is not (necessarily) shared with other predicates. For simplicity, we make these local inputs implicit.
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4.3.3 Security
Informally, a DPC scheme achieves the following security goals.

• Execution correctness. Malicious parties cannot create valid transactions if the death predicate of
some consumed record or the birth predicate of some created record is not satisfied.

• Execution privacy. Transactions reveal only the information revealed in the memorandum field, a
bound on the number of consumed records, and a bound on the number of created records.8 All
other information is hidden, including the payloads and predicates of all involved records. For
example, putting aside the information revealed in the memorandum (which is arbitrary), one
cannot link a transaction that consumes a record with the prior transaction that created it.

• Consumability. Every record can be consumed at least once and at most once by parties that know
its secrets. Thus, a malicious party cannot create two valid records for another party such that only
one of them can be consumed. (This captures security against “faerie-gold” attacks [HBHW20].)

• Transaction non-malleability. Malicious parties cannot modify a transaction “in flight” to the
ledger.

Formally, we prove standalone security against static corruptions, in a model where every party
has private anonymous channels to all other parties [IKOS06].9 (In Section 4.12 we discuss how
to prove security under composition and against adaptive corruptions.) In more detail, we capture
security of a DPC scheme via a simulation-based security definition that is akin to UC security
[Can01], but restricted to a single execution.

Definition 4.3.1. A DPC scheme DPC is secure if for every efficient real-world adversary A there
exists an efficient ideal-world simulator SA such that for every efficient environment E the following
are computationally indistinguishable:
• the output of E when interacting with the adversary A in a real-world execution of DPC in a
model where parties can communicate with other parties via private anonymous channels; and

• the output of E when interacting with the simulator SA in an ideal-world execution with the ideal
functionality FDPC specified in Fig. 4.7 (and further described below).

We describe the data structures used by the ideal functionality FDPC, the internal state of FDPC,
and the interface offered by FDPC to parties in the ideal-world execution.
Ideal data structures. The ideal functionality FDPC uses ideal counterparts of a DPC scheme’s
data structures. An address public key apk denotes the owner of an ideal record r, which is a tuple
(cm, apk, payload,Φb,Φd), where cm is its commitment, apk is its address public key, payload is
its payload, and Φb and Φd are its birth and death predicates. The record is also associated with a
unique identifier (or serial number) sn. We require that apk, cm, and sn are “globally unique”; this
means that there cannot be two different ideal records r and r′ having the same commitments or
serial numbers.

8And any information implied by knowing that the birth (resp., death) predicates of consumed (resp., created)
records are satisfied.

9Parties can, e.g., use these channels to communicate the contents of newly created records to other parties.
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The distribution of these components is specified by the simulator S as follows. Before the ideal
execution begins, S specifies three functions (SampleAddrPk, SampleCm, SampleSn) that, on input
a random string, sample (apk, cm, sn) respectively. When FDPC needs to sample one of these, it
invokes the respective functions. (Note that FDPC cannot directly ask S to sample these because that
would reveal to S when an honest party was invoking FDPC.GenAddress or FDPC.Execute, and we
cannot afford this leakage.)
Internal state. The ideal functionality FDPC maintains several internal tables.
• Addr, which stores address public keys.
• AddrUsers, which maps an address public key to the set of parties that are authorized to use it.
• Records, which maps a record’s commitment to that record’s information (address public key,
payload, birth predicate, and death predicates).

• RecUsers, which maps a record’s commitment to the set of parties that are authorized to consume it.
Note that, for a record r, the set RecUsers[r.cm] can be different from the set in AddrUsers[r.apk],
but a party P has to be in both sets to consume r.

• SerialNumbers, which maps a record’s commitment to that record’s (unique) serial number.
• State, which maps a record’s commitment to that record’s state, either alive or dead.
Ideal algorithms. The ideal functionality FDPC provides the following interface to parties.
• Address generation: FDPC.GenAddress outputs a new address public key apk.
• Execution: FDPC.Execute performs an execution that consumes old records and creates new
records. All parties are notified that an execution has occurred, and learn the serial numbers of input
records, commitments of output records, and the transaction memorandum memo. Concurrent
FDPC.Execute calls are serialized arbitrarily.

• Record consumption authorization: FDPC.ShareRecord allows a party P to authorize another
party P ′ to consume a record r (provided that P ′ is also authorized to use r’s address public key).

Operation of honest parties. In both the real and ideal executions, the environment E can send
instructions to honest parties. These instructions can be one of GenAddress, Execute, or ShareRecord.
In the real world honest parties translate these instructions into corresponding invocations of DPC
algorithms (or messages sent via private anonymous channels as in the case of ShareRecord), while
in the ideal world they translate them into corresponding invocations of FDPC algorithms. In
both worlds, honest parties immediately invoke ShareRecord on records obtained from an Execute
instruction. Finally, in the ideal world, when invoking FDPC, honest parties do not provide any
inputs marked as optional; instead, they let FDPC sample these.
Intuition. We explain how FDPC enforces the informal security notions described at this section’s
beginning.

• Execution correctness. FDPC.Execute ensures that the death predicates of consumed records and
birth predicates of created records are satisfied by the local data. Note that each predicate receives
its own position as input so that it knows to which record in the local data it belongs.

• Execution privacy. Transactions contain serial numbers [sni]
m
1 of consumed records, commitments

[cmj]
n
1 of created records, and a memorandum memo. Serial numbers and commitments are

sampled via SampleSn and SampleCm, so they are independent of the contents of any record, and
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thus reveal no information about them. Transactions thus reveal no information (beyond what is
contained in memo).

• Consumability. From the point of view of FDPC, two records are different if and only if they have
different commitments. In such a case, both records can be consumed as long as their death
predicates are satisfied. If a DPC scheme realizes FDPC, then it must satisfy this same requirement:
if two valid records have distinct commitments, then they must both be consumable.

• Transaction non-malleability. The adversary has no power to modify the inputs to, or output of,
an honest party’s invocation of FDPC.Execute.
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FDPC.GenAddress[P]
(
(optional) address public key apk

)
1. Sample randomness r for generating address public key.
2. If apk = ⊥ then apk← SampleAddrPk(r).
3. Check that apk is unique: Addr[apk] = ⊥.
4. Set Addr[apk] := r.
5. If P is corrupted: set S to be the set of corrupted parties.
6. If P is honest: set S := {P}.
7. Set AddrUsers[apk] := AddrUsers[apk] ∪ S.
8. Send to P: address public key apk.

FDPC.ShareRecord[P]

(
record r

recipient party P ′
)

1. If Records[r.cm] 6= ⊥:
a) Check that P ∈ RecUsers[r.cm].
b) Retrieve ((cm, apk, payload,Φb,Φd), r) := Records[r.cm].

2. If P ′ is corrupted: set S to be the set of corrupted parties.
3. If P ′ is honest: set S :=

{
P ′
}
.

4. Set RecUsers[r.cm] := RecUsers[r.cm] ∪ S.
5. If P is honest and P ′ isn’t, Send to P ′: (RecordAuth, (r, r)).
6. Else, Send to P ′: (RecordAuth, r).

FDPC.Execute[P]



old records [ri]
m
1

(optional) old serial numbers [sni]
m
1

(optional) new record commitments [cmj ]
n
1

new address public keys [apkj ]
n
1

new record payloads [payloadj ]
n
1

new record birth predicates [Φb,j ]
n
1

new record death predicates [Φd,j ]
n
1

auxiliary predicate input aux
transaction memorandum memo


1. For each i ∈ {1, . . . ,m}:

(a) Sample randomness ri.
(b) If sni = ⊥ then generate serial number: sni ← SampleSn(ri).
(c) Check that sni is unique: SerialNumbers[sni] = ⊥.

2. For each j ∈ {1, . . . , n}:
(a) Sample randomness rj .
(b) If cmj = ⊥ then generate commitment: cmj ← SampleCm(rj).
(c) Check that cmj is unique: Records[cmj ] = ⊥.
(d) Construct record: rj := (cmj , apkj , payloadj ,Φb,j ,Φd,j).

3. Define the local data ldata := ([ri]
m
1 , [sni]

m
1 , [rj ]

n
1 , aux,memo).

4. For each i ∈ {1, . . . ,m}:
a) Parse ri as (cmi, apki, payloadi,Φb,i,Φd,i).
b) Check that, for some randomness ri, old record ri exists: ((apki, payloadi,Φb,i,Φd,i), ri) = Records[cmi].
c) Check that P is authorized to use apki: P ∈ AddrUsers[apki].
d) If payloadi.isDummy = 0:

i. Check that record is unconsumed: State[ri] = alive.
ii. Check that P is authorized to consume ri: P ∈ RecUsers[cmi].
iii. Check that P is authorized to use apki: P ∈ AddrUsers[apki].

e) Check that death predicate is satisfied: Φd,i(i‖ldata) = 1.
f)Mark it as consumed: State[cmi] := dead.

5. For each j ∈ {1, . . . , n}:
a) Check that birth predicate is satisfied: Φb,j(j‖ldata) = 1.
b) Insert new record rj : Records[cmj ] := ((apkj , payloadj ,Φb,j ,Φd,j), rj).
c)Mark new record as unconsumed: State[cmj ] := alive.

6. Send to P: ([rj ]
n
1 ).

7. Send to all parties: (Execute, [sni]
m
1 , [cmj ]

n
1 ,memo).

Figure 4.7: Ideal functionality FDPC of a DPC scheme.
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4.4 Construction of decentralized private computation schemes
We describe our construction of a DPC scheme. In Section 4.4.1 we introduce the building blocks
that we use, and in Section 4.4.2 we describe each algorithm in the scheme. The security proof is
provided in Section 4.10. We also describe some extensions of our construction, in functionality
and in security, in Section 4.12.

4.4.1 Building blocks

CRHs. A collision-resistant hash function CRH = (Setup,Eval) works as follows.
• Setup: on input a security parameter, CRH.Setup samples public parameters ppCRH.
• Hashing: on input public parameters ppCRH and messagem, CRH.Eval outputs a short hash h of
m.

Given public parameters ppCRH ← CRH.Setup(1λ), it is computationally infeasible to find distinct
inputs x and y such that CRH.Eval(ppCRH, x) = CRH.Eval(ppCRH, y).
PRFs. A pseudorandom function family PRF = {PRFx : {0, 1}∗ → {0, 1}O(|x|)}x, where x
denotes the seed, is computationally indistinguishable from a random function family.
Commitments. A commitment scheme CM = (Setup,Commit) enables a party to generate a
(perfectly) hiding and (computationally) binding commitment to a given message.
• Setup: on input a security parameter, CM.Setup samples public parameters ppCM.
• Commitment: on input public parameters ppCM, messagem, and randomness rcm, CM.Commit
outputs a commitment cm tom.

We also use a trapdoor commitment scheme TCM = (Setup,Commit), with the same syntax as
above. Auxiliary algorithms (beyond those in CM) enable producing a trapdoor and using it to open
a commitment, originally to an empty string, to an arbitrary message. These algorithms are used
only in the proof of security, and so we introduce them there (see Section 4.10).
NIZKs. Non-interactive zero knowledge arguments of knowledge enable a party, known as the
prover, to convince another party, known as the verifier, about knowledge of the witness for an NP
statement without revealing any information about the witness (besides what is already implied by
the statement being true). This primitive is a tuple NIZK = (Setup,Prove,Verify) with the following
syntax.
• Setup: on input a security parameter and the specification of an NP relation R, NIZK.Setup
outputs a set of public parameters ppNIZK (also known as a common reference string).

• Proving: on input ppNIZK and an instance-witness pair (x,w) ∈ R, NIZK.Prove outputs a proof
π.

• Verifying: on input ppNIZK, instance x, and proof π, NIZK.Verify outputs a decision bit.
Completeness states that honestly generated proofs make the verifier accept; (computational) proof
of knowledge states that if the verifier accepts a proof for an instance then the prover “knows” a
witness for it; and perfect zero knowledge states that honestly generated proofs can be perfectly
simulated, when given a trapdoor to the public parameters. In fact, we require a strong form of
(computational) proof of knowledge known as simulation-extractability, which states that proofs
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continue to be proofs of knowledge even when the adversary has seen prior simulated proofs. For
more details, see [Sah99; DDOPS01; Gro06].

Remark 4.4.1. If NIZK is additionally succinct (i.e., it is a simulation-extractable zkSNARK) then
the DPC scheme constructed in this section is also succinct. This is the case in our implementation;
see Section 4.8.

4.4.2 Algorithms
Pseudocode for our construction of a DPC scheme is in Fig. 4.8. The construction involves invoking
zero knowledge proofs for the NP relationRe described in Fig. 4.9. The text below is a summary of
the construction.
System setup. DPC.Setup is a wrapper around the setup algorithms of cryptographic building
blocks. It invokes CM.Setup, TCM.Setup, CRH.Setup, and NIZK.Setup to obtain (plain and
trapdoor) commitment public parameters ppCM and ppTCM, CRH public parameters ppCRH, and
NIZK public parameters for the NP relationRe (see Fig. 4.9). It then outputs pp := (ppCM, ppTCM,
ppCRH, ppe).
Address creation. DPC.GenAddress constructs an address key pair as follows. The address secret
key ask = (skPRF, rpk) consists of a secret key skPRF for the pseudorandom function PRF, and
commitment randomness rpk. The address public key apk is a perfectly hiding commitment to skPRF

with randomness rpk.
Execution. DPC.Execute produces a transaction attesting that some old records [ri]

m
1 were

consumed and some new records [rj]
n
1 were created, and that their death and birth predicates were

satisfied. First, DPC.Execute computes a ledger membership witness and serial number for every old
record. Then, DPC.Execute invokes the following auxiliary function to create record commitments
for the new records.

DPC.ConstructRecord(pp, apk, payload,Φb,Φd, ρ)→ (r, cm)
1. Sample new commitment randomness r.
2. Construct new record commitment: cm ← TCM.Commit(ppTCM, apk‖payload‖Φb‖Φd‖ρ; r).

3. Construct new record r :=

(
address public key apk payload payload comm. rand. r

serial number nonce ρ predicates (Φb,Φd) commitment cm

)
.

4. Output (r, cm).

Information about all records, secret addresses of old records, the desired transaction memorandum
memo, and desired auxiliary predicate input aux are collected into the local data ldata (see Fig. 4.9).

Finally, DPC.Execute produces a proof that all records are well-formed and that several conditions
hold.

• Old records are properly consumed, namely, for every old record ri ∈ [ri]
m
1 :

– (if ri is not dummy) ri exists, demonstrated by checking a ledger membership witness for ri’s
commitment;

– ri has not been consumed, demonstrated by publishing ri’s serial number sni;
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– ri’s death predicate Φd,i is satisfied, demonstrated by checking that Φd,i(i‖ldata) = 1.

• New records are property created, namely, for every new record rj ∈ [rj]
n
1 :

– rj’s serial number is unique, achieved by setting nonceρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm);
– rj’s birth predicate Φb,j is satisfied, demonstrated by checking that Φb,j(j‖ldata) = 1.

The serial number sn of a record r relative to an address secret key ask = (skPRF, rpk) is derived by
evaluating PRF at r’s serial number nonce ρ with seed skPRF. This ensures that sn is pseudorandom
even to a party that knows all of r but not ask (e.g., to a party that created the record for some other
party). Note that each predicate receives its own position as input so that it knows to which record
in the local data it belongs.
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DPC.Setup
Input: security parameter 1λ

Output: public parameters pp

1. Generate commitment parameters:
ppCM ← CM.Setup(1

λ
), ppTCM ← TCM.Setup(1

λ
).

2. Generate CRH parameters: ppCRH ← CRH.Setup(1
λ
).

3. Generate NIZK parameters forRe (see Figure 4.9):
ppe ← NIZK.Setup(1

λ
,Re).

4. Output pp := (ppCM, ppTCM, ppCRH, ppe).

DPC.GenAddress
Input: public parameters pp
Output: address key pair (apk, ask)

1. Sample secret key skPRF for pseudorandom function PRF.
2. Sample randomness rpk for commitment scheme CM.
3. Set address public key

apk := CM.Commit(ppCM, skPRF; rpk).
4. Set address secret key ask := (skPRF, rpk).
5. Output (apk, ask).

DPC.ExecuteL

Input:
• public parameters pp

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• new


address public keys [apkj ]

n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

• auxiliary predicate input aux
• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

1. For each i ∈ {1, . . . ,m}, process the i-th old record as follows:

a) Parse old record ri as
(

address public key apki payload payloadi comm. rand. ri
serial number nonce ρi predicates (Φb,i,Φd,i) commitment cmi

)
.

b) If payloadi.isDummy = 1, set ledger membership witnesswL,i := ⊥.
If payloadi.isDummy = 0, compute ledger membership witness for commitment: wL,i ← L.Prove(cmi).

c) Parse address secret key aski as (skPRF,i, rpk,i).
d) Compute serial number: sni ← PRFskPRF,i

(ρi).
2. For each j ∈ {1, . . . , n}, construct the j-th new record as follows:

a) Compute serial number nonce: ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
b) Construct new record: (rj , cmj)← DPC.ConstructRecord(ppTCM, apkj , payloadj ,Φb,j ,Φd,j , ρj).

3. Retrieve current ledger digest: stL ← L.Digest.
4. Construct instance xe forRe: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5. Construct witnesswe forRe: we := ([ri]
m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

6. Generate proof forRe: πe ← NIZK.Prove(ppe,xe,we).
7. Construct transaction: tx := ([sni]

m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe).

8. Output ([rj ]
n
1 , tx).

DPC.VerifyL

Input: public parameters pp and transaction tx
Output: decision bit b

1. Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe).

2. Check that there are no duplicate serial numbers
a) within the transaction tx: sni 6= snj for every distinct i, j ∈ {1, . . . ,m};
b) on the ledger: L.Contains(sni) = 0 for every i ∈ {1, . . . ,m}.

3. Check that the ledger state is valid: L.ValidateDigest(stL) = 1.
4. Construct instance for the relationRe: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5. Check proof for the relationRe: NIZK.Verify(ppe,xe, πe) = 1.

Figure 4.8: Construction of a DPC scheme.
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xe =


ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

transaction memorandum memo

 and we =


old records [ri]

m
1

old record membership witnesses [wL,i]
m
1

old address secret keys [aski]
m
1

new records [rj ]
n
1

auxiliary predicate input aux


where

• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi);

• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [Φd,i]

m
1 [Φb,i]

m
1 [sni]

m
1 memo

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [Φd,j ]

n
1 [Φb,j ]

n
1 aux

)
.

Then, a witness we is valid for an instance xe if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• If ri is not dummy,wL,i proves that the commitment cmi is in a ledgerwith digest stL: L.Verify(stL, cmi,wL,i) =
1.

• The address public key apki and secret key aski form a valid key pair:
apki = CM.Commit(ppCM, skPRF,i; rpk,i) and aski = (skPRF,i, rpk,i).

• The serial number sni is valid: sni = PRFskPRF,i
(ρi).

• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖Φb,i‖Φd,i‖ρi; ri).
• The death predicate Φd,i is satisfied by local data: Φd,i(i‖ldata) = 1.

2. For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖Φb,j‖Φd,j‖ρj ; rj).
• The birth predicate Φb,j is satisfied by local data: Φb,j(j‖ldata) = 1.

Figure 4.9: The execute NP relationRe.
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4.5 Delegating zero knowledge execution
The cost of creating a transaction in the DPC scheme from Section 4.4 grows with the complexity
(and number of) predicates involved in the transaction. The user must produce, and include in
the transaction, a cryptographic proof that, among other things, attests that death predicates of
consumed records are satisfied and, similarly, that birth predicates of created records are satisfied.
This implies that producing transactions on weak devices such as mobile phones or hardware tokens
quickly becomes infeasible.

In Sections 4.5.1 to 4.5.3 we explain how to address this problem by enabling a user to delegate
to an untrusted worker, such as a remote server, the computation that produces a transaction. This
empowers weak devices to produce transactions that they otherwise could not have produced on their
own. Then, in Section 4.5.4, we explain how the ideas that we use for delegating transactions also
yield solutions for achieving threshold transactions and blind transactions in a DPC scheme, which
are also valuable in applications. Techniques derived from these ideas are now part of deployed
systems [HBHW20].

4.5.1 Approach
A naive approach is for the user to simply ask the worker to produce the cryptographic proof on its
behalf, and then include this proof in the transaction. The intuition behind this idea is that the user
can check that the proof received from the worker is valid, by simply running the proof verification
procedure. Indeed, whenever the DPC scheme uses a succinct argument (see Remark 4.4.1), the
verification procedure is succinct.

However, this approach is insecure, because the worker, in order to produce a proof, would have
to learn not only the instance but also the secret witness for the NP statement being proved. Since
the secret witness includes the user’s address secret key, if the worker learns this information then
the worker can impersonate the user, e.g., by producing further transactions that the user never
authorized. This naive approach also fails in prior proof-based ledger protocols, including Zerocash
[Ben+14]. New ideas are needed.

Taking our construction of a DPC scheme from Section 4.4 as a starting point, we explain how
to enable a user to delegate the expensive proof computation to a worker in such a way that the
worker cannot produce valid transactions that have not been authorized by the user; see Fig. 4.11.
(Additional security goals, such as ensuring that the worker learns no information about the user, are
left to future work.)

The basic idea is to augment address keys in such a way that the secret information needed
to produce the cryptographic proof is separate from the secret information needed to authorize
a transaction containing that proof. Thus, the user can communicate to the worker the secrets
necessary to generate a cryptographic proof, while retaining the remaining secrets for authorizing
this (and future) transactions. In particular, the worker has no way to produce valid transactions that
have not been authorized by the user.

We stress that the simplistic solution in which the user authorizes the proof produced by the
worker by signing it via a secret key not shared with the worker does not work because it violates



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 204

privacy. Indeed, others would have to use the same public key to verify signatures across multiple
transactions containing signatures produced by the same secret key, thereby linking these transactions
together.

The next two sub-sections explain how we achieve delegation: first, in Section 4.5.2, we describe
a variant of randomizable signatures, which we use as a building block; then, in Section 4.5.3, we
provide a high-level description of a delegable DPC scheme. The detailed construction is provided
in Section 4.11.

4.5.2 Additional building block: randomizable signatures
A randomizable signature scheme is a tuple of algorithms SIG = (Setup,Keygen, Sign,Verify,
RandPk,RandSig) that enables a party to sign messages, while also allowing randomization of
public keys and signatures to prevent linking across multiple signatures. We first discuss the syntax
of the usual algorithms.

• Setup: on input a security parameter, SIG.Setup samples public parameters ppSIG.
• Key generation: on input public parameters ppSIG, SIG.Keygen samples a key pair (pkSIG, skSIG).
• Message signing: on input public parameters ppSIG, secret key skSIG, and messagem, SIG.Sign
produces a signature σ.

• Signature verification: on input public parameters ppSIG, public key pkSIG, message m, and
signature σ, SIG.Verify outputs a bit b denoting whether σ is a valid signature form under public
key pkSIG.

In addition to the usual algorithms, SIG has two algorithms for randomizing public keys and
signatures.

• Public key randomization: SIG.RandPk(ppSIG, pkSIG, rSIG) samples a randomized public key
p̂kSIG.

• Signature randomization: SIG.RandSig(ppSIG, σ, rSIG) samples a randomized signature σ̂.

The signature scheme SIG must satisfy the following security properties.

• Existential unforgeability. Given a public key pkSIG, it is infeasible to produce a forgery under
pkSIG or under any randomization of pkSIG. This notion strengthens the standard unforgeability
notion, and is similar to that of randomizable signatures in [FKMSSS16].

• Unlinkability. Given a public key pkSIG and a tuple (p̂kSIG,m, σ̂) where σ̂ is a valid signature for
m under p̂kSIG, no efficient adversary can determine if p̂kSIG is a fresh public key and σ̂ a fresh
signature, or if instead p̂kSIG is a randomization of pkSIG and σ̂ a randomization of a signature
for pkSIG. This property is a computational relaxation of the perfect unlinkability property of
randomizable signatures in [FKMSSS16].

• Injective randomization. Randomization of public keys is (computationally) injective with respect
to randomness. Informally, given public parameters ppSIG, it is infeasible to find a public key
pkSIG and r1 6= r2 such that SIG.RandPk(ppSIG, pkSIG, r1) = SIG.RandPk(ppSIG, pkSIG, r2).
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4.5.3 A delegable DPC scheme
We describe how to construct a delegable DPC scheme, namely, a DPC scheme in which a user can
delegate to an untrusted worker the expensive computations associated with producing a transaction.
The security goal is that the worker should not be able to produce valid transactions that have not
been authorized by the user. Below we assume familiarity with our “plain” DPC construction (see
Section 4.4).

The user will maintain (among other things) a key pair (pkSIG, skSIG) for a randomizable signature
scheme SIG (see Section 4.5.2). The public key pkSIG will be embedded in the user’s public key apk
and also be used to derive the serial numbers of records “owned” by apk. In contrast, the secret key
skSIG will not be a part of any data structures, and will only be used to authorize transactions by
signing the cryptographic proofs produced by untrusted workers.

In more detail, we first describe how addresses and records are generated (also see summary in
Fig. 4.10).

• Addresses. In Section 4.4 an address public key apk was a commitment to a secret key skPRF for
a pseudorandom function PRF. Now apk is a commitment to this same information as well as the
public key of a key pair (pkSIG, skSIG) for SIG. The corresponding address secret key ask consists
of all the committed information and the commitment randomness.

• Records. The structure of a record, including how a record commitment is computed, is as
in Section 4.4. However, a record’s serial number sn is now derived in a different way: while
previously sn := PRFskPRF

(ρ) now we set sn := SIG.RandPk(ppSIG, pkSIG,PRFskPRF
(ρ)) where

ρ is the record’s serial number nonce. Namely, while before serial numbers were outputs of a
pseudorandom function keyed by skPRF, now they are randomizations of the authorization public
key pkSIG when using suitable pseudorandomness.

Note that the foregoing new derivation of serial numbers does not break important security properties.

– Unlinkability of serial numbers: serial numbers of different records that share the same authoriza-
tion public pkSIG are computationally indistinguishable. This follows rather directly from the fact
sn, being a randomization of pkSIG, does not reveal information (to efficient distinguishers) about
pkSIG itself.

– No double spending: a user cannot “spend” (i.e., consume) r in two different transactions by
revealing different serial numbers because rSIG (and thus sn) is generated deterministically from r.
Since SIG is randomness-injective in SIG.RandPk, sn is (computationally) unique to r.

Having described the modified data structures of addresses and serial numbers, we now explain
how a user can task a worker to produce the cryptographic proofs that need to be included in a
transaction. For simplicity, in this high-level discussion we focus on the case where the transaction
involves only one input (old) record r and one output (new) record r′. In this case, the transaction
contains a serial number sn (supposedly corresponding to r), and a commitment cm′ (supposedly
corresponding to r′).
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Previously, the user had to generate a proof πe that sn is consistent with r, that cm′ can be
opened to r′, and that the death and birth predicates of r and r′ respectively are satisfied. Now the
user can delegate to a worker the generation of the proof πe because the modified derivation of apk
and sn allows the user to communicate to the worker only r, r′ and a part of the address secret
key of r. Namely, the user sends to the worker only the pseudorandom function key skPRF and the
commitment randomness rpk. Crucially, the user does not have to communicate to the worker the
authorization secret key skSIG.

After receiving the proof πe from the worker, the user uses the authorization secret key skSIG to
sign πe (along with the instance that πe attests to), and then randomizes the resulting signature σ to
obtain σ̂. The final transaction tx not only includes the serial number sn (consuming the old record),
the commitment cm′ (creating the new record), and πe (attesting to the correct state transition)
as before, but also includes σ̂. Transaction verification involves checking the proof πe and also
checking that σ̂ is valid with respect to the randomized public key sn.

This completes our high-level description of our delegable DPC scheme; see Section 4.11 for
details.

Plain DPC Delegable DPC

Address secret key (skPRF, rpk) (skSIG, skPRF, rpk)

Address public key apk := CM.Commit

(
ppCM,
skPRF

; rpk

)
apk := CM.Commit

(
ppCM,

pkSIG‖skPRF
; rpk

)
Serial number
derivation

sn← PRFskPRF
(ρ) 1. rSIG ← PRFskPRF

(ρ)
2. sn← SIG.RandPk(ppSIG, pkSIG, rSIG)

Transaction
construction

tx := ([sni]
m
1 , [cmj ]

n
1 ,memo, ?),

where ? := (stL, πe).
1. Sign transaction contents:

a) σi ← SIG.Sign(ppSIG, skSIG,i,xe‖πe).
b) σ̂i ← SIG.RandSig(ppSIG, σi, rSIG,i).

2. tx := ([sni]
m
1 , [cmj ]

n
1 ,memo, ?),

where ? := (stL, πe, [σ̂i]
m
1 ).

Transaction
verification

Check that serial numbers do not appear on
ledger, that the ledger state digest is valid,
and that the NIZK proof verifies.

As in plain DPC, but additionally check that
each signature verifies:
SIG.Verify(ppSIG, tx.sni,xe‖πe, σi) = 1.

Figure 4.10: Summary of differences between plain DPC and delegable DPC (highlighted).

4.5.4 Threshold transactions and blind transactions
We explain how the delegable DPC scheme described above can be modified, in a straightforward
way, to achieve additional features: threshold transactions or blind transactions.
Threshold transactions. A DPC scheme has threshold transactions if the power to authorize
transactions can be vested unto any t out of n parties, for any desired choice of t and n (as opposed
to a single user as discussed thus far, which corresponds to the special case of t = n = 1); see
Fig. 4.12. Threshold transactions are useful in many settings, e.g., to enhance operational security
by realizing two-factor authentication.
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We can achieve threshold transactions by simply using, in our delegable DPC scheme, a
randomizable signature scheme SIG that also supports threshold key generation and threshold
signing algorithms [DF91]. Such a threshold signature scheme distributes signing ability among n
parties such that at least t of them are needed to authorize a signature. Threshold key generation
would then be used to create an address, and threshold signing would be used to authorize a
transaction by signing the corresponding cryptographic proof.
Blind transactions. A DPC scheme has blind transactions if there is a way for a user to authorize
a transaction without learning of its contents; see Fig. 4.13. Blind transactions, in conjunction
with prior techniques [CGLMMM17], can be used to construct efficient lottery tickets and thereby
probabilistic micropayments.

We can achieve blind transactions by simply using, in our delegable DPC scheme, a randomizable
signature scheme SIG that has a blind signing algorithm, which can then be used for signing the
relevant cryptographic proof in order to authorize a transaction.
Instantiating randomizable threshold and blind signatures. As we explain in Section 4.11.1,
we construct randomizable signature schemes by modifying Schnorr signatures. To further construct
threshold or blind randomizable signatures, it is enough to note that public key and signature
randomization occurs after the public key or signature has been created. Thus one can use existing
protocols for threshold key-generation and signing [SS01; NKDM03; Dod07], and blind signing
[PS00; SJ99] to obtain public keys and signatures, and then use the algorithms from Section 4.11.1
to randomize these. A nice feature of this approach is that all these types of delegated transactions
(regular, threshold, blind) cannot be distinguished from one another.

userworker

request

proof tx

usersworker

request

proof tx

authorizeruser

request 
w/ proof

tx

Figure 4.11: Delegable trans-
actions.

userworker

request

proof tx

usersworker

request

proof tx

authorizeruser

request 
w/ proof

tx

Figure 4.12: Threshold transac-
tions.

userworker

request

proof tx

usersworker

request

proof tx

authorizeruser

authtx

blinded proof

Figure 4.13: Blind transac-
tions.
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4.6 Applications
We describe example applications of DPC schemes, by showing how to “program” these within
the records nano-kernel. We draw inspiration from current uses of smart contract systems (e.g.,
Ethereum), which largely focus on financial applications where privacy is an important goal. First,
in Section 4.6.1 we describe how to enable users to privately create and transact with custom
assets (expanding on Example 4.2.1). Second, in Section 4.6.2 we describe how to realize private
DEXs, which enable users to privately trade assets while retaining custody of their assets. Finally,
in Section 4.6.3, we describe how a central authority can issue assets with self-enforcing, and
updatable, policies, and use these to realize regulation-friendly private stablecoins.

4.6.1 User-defined assets
One of the most basic applications of smart contract systems like Ethereum is the construction of
assets (or tokens) that can be used for financial applications. For example, the Ethereum ERC20
specification [VB15] defines a general framework for such assets. These assets have two phases:
asset minting (creation), and asset conservation (expenditure). We show below how to express such
custom assets via the records nano-kernel.

We consider records whose payloads encode: an asset identifier id, the initial asset supply v,
a value v, and application-dependent data c (we will use this in Sections 4.6.2 and 4.6.3). We fix
the birth predicate in all such records to be a mint-or-conserve function MoC that is responsible
for asset minting and conservation. In more detail, the birth predicate MoC can be invoked in two
modes, mint mode or conserve mode.

When invoked in mint mode, MoC creates the initial supply v of the asset in, say, a single output
record, by deterministically deriving a fresh unique identifier id for the asset (see below for how),
and storing the tuple (id,v,v,⊥) in the record’s payload. The predicate MoC also ensures that the
given transaction contains no input records or other output records (dummy records are allowed). If
MoC is invoked in mint mode in other transactions, a different identifier id is created, ensuring that
multiple assets can be distinguished even though anyone can use MoC as the birth predicate of a
record.

When invoked in conserve mode, MoC inspects all records in a transaction whose birth predicates
all equal MoC (i.e., all the transaction’s user-defined assets) and whose asset identifiers all equal to
the identifier of the current record. For these records it ensures that no new value is created: that is,
the sum of the value across all output records is less than or equal to the sum of the value in all input
records.

Below we provide pseudocode for MoC, making the informal discussion above more precise.
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Mint-or-conserve predicate MoC(k, ldata; mode) (mode is the private input of the predicate)

1. Parse ldata as
(

[cmin
i ]21 [apkin

i ]21 [payloadin
i ]21 [Φin

d,i]
2
1 [Φin

b,i]
2
1 [snin

i ]21 memo

[cmout
j ]21 [apkout

j ]21 [payloadout
j ]21 [Φout

d,j ]
2
1 [Φout

b,j ]
2
1 aux

)
.

2. If mode = (mint,v, r), ensure that the first output record contains the initial supply of the asset:
a) the index of the current output record is correct: k = 1.
b) all other records are dummy: payloadin

1 .isDummy = payloadin
2 .isDummy = payloadout

2 .isDummy = 1.
c) the asset identifier is derived correctly: id = CM.Commit(ppCM, sn1‖ sn2; r). (See explanation below.)
d) the current output record’s payload is correct: payloadout

1 .isDummy = 0 and payloadout
1 = (id,v,v,⊥).

3. If mode = conserve, check that the value of the current asset is conserved:
a) parse the current output record’s payload payloadout

k as (id?,v?, v?, c?).
b) for i ∈ {1, 2}, parse the i-th input record’s payload payloadin

i as (idin
i ,v

in
i , v

in
i , c

in
i ).

c) for j ∈ {1, 2}, parse the i-th output record’s payload payloadout
j as (idout

j ,vout
j , vout

j , cout
j ).

d) initialize vin := 0 and vout := 0, representing the value of asset id? consumed and created (respectively).
e) for i ∈ {1, 2}, if Φin

b,i = Φ?
b, idin

i = id?, payloadin
i .isDummy = 0, set vin := vin + vin

i and check that
v

in
i = v

?.
f) for j ∈ {1, 2}, if Φout

b,j = Φ?
b, idout

j = id?, payloadout
j .isDummy = 0, set vout := vout + vout

j and check
that vout

j = v
?.

g) check that the value of asset id? is conserved: vin = vout.

Most of the lines above are self-explanatory, but for the line that derives a fresh unique identifier
in the “mint” case (Step 2c), which deserves an explanation. Informally, the idea is to derive the
identifier from the (globally unique) serial numbers of records consumed in the minting transaction.
In more detail, we set the identifier to be a commitment to the serial numbers of consumed input
records. To see why this works, first note that the commitment scheme’s binding property guarantees
that opening a commitment to two different messages is computationally difficult. Next, note that in
our case these messages are the input records’ serial numbers, and hence are different. Together,
these facts imply that the identifier is globally unique (and hence non-repeating). A benefit of this
method is that the commitment scheme’s hiding property further guarantees that the identifier reveals
no information about the underlying serial numbers, which in turn guarantees that the identifier
hides all information about the initial minting transaction (given that r is random).

4.6.2 Decentralized exchanges
We describe how to use death predicates that enforce custom-access policies to build privacy-
preserving decentralized exchanges. These allow users to exchange custom assets with strong
privacy guarantees without requiring users to give up custody of these assets. We proceed by first
providing background on centralized and decentralized exchanges. Then, we formulate desirable
privacy properties for decentralized exchanges. Finally, we describe constructions that achieve these
properties.
Motivation. Exchanging digital assets is a compelling use case of ledger-based systems. A
straightforward method to exchange digital assets is via a centralized exchange: users entrust
the exchange with custody of their assets via an on-chain transaction, and the exchange can then
credit or debit assets to users’ accounts according to off-chain trades without any on-chain activity;
users can “exit” by requesting to withdraw assets, which generates another on-chain transaction
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that transfers those assets from the exchange to the user. Examples of such exchanges include
Coinbase [Coinbase] and Binance [Binance]. This architecture provides centralized exchanges
with two attractive properties: (a) efficiency, namely, all trades occur in the exchange’s off-chain
database, resulting in low latency and high throughput for all users; and (b) privacy, namely, only
the exchange knows the details of individual trades, and only asset deposits and withdrawals require
on-chain activity; this activity can further be concealed by using private (Zerocash-style) transactions
to realize deposits/withdrawals. However, this centralized architecture has a serious drawback:
having given up custody of their assets, users are exposed to the risk of security breaches, fraud, or
front-running at the exchange. These risks are not hypothetical: users have lost funds deposited at
centralized exchanges [PA14; De18; Zha18; Cim18].

In light of the above, decentralized exchanges (DEXs) have been proposed as an alternative
method for exchanging digital assets that enable users to retain custody of their assets. However,
existing DEX constructions have poor efficiency and privacy guarantees. Below we describe how we
can provide strong privacy for DEXs. (We leave improving the efficiency of DEXs to future work.)
DEX architectures. A DEX is a ledger-based application that enables users to trade digital assets
without giving up custody of these assets to a third party. There are different DEX architectures
with different trade-offs; see [Pro18] for a survey. In the following, we consider DEX architectures
where the exchange has no state or maintains its state off-chain.10 There are two main categories of
such DEXs:

• Intent-based DEX. The DEX maintains an index, which is a table where makers publish their
intention to trade (say, a particular asset pair) without committing any assets. A taker interested in
a maker’s intention to trade can directly communicate with the maker to agree on terms. They can
jointly produce a transaction for the trade, to be broadcast for on-chain processing. An example of
such a DEX is AirSwap [AirSwap].
An attractive feature of intent-based DEXs is that they reduce exposure to front-running because
the information required for front-running (like prices or identities of the involved parties) has
been finalized by the time the transaction representing the trade is broadcast for processing. Note
that the aforementioned lack of information also makes it difficult for the market to discover
appropriate exchange rates because listings in the index cannot directly be linked with completed
transactions.

• Order-based DEX. The DEX maintains an order book, which is a table where makers can publish
orders by committing the funds for those orders up front. A taker can then interact with the order
book to fill orders. In an open-book DEX, the taker manually picks an order from the order book,
while in a closed-book DEX, the taker is matched off-chain with a maker’s offer by the order
book operator. An example of an open-book DEX is Radar Relay [Radar], and an example of a
closed-book DEX is Paradex [Paradex].
Note that order books (which are typically public) give more information about market activity than
indexes, and hence enable better price discovery. However, existing constructions of order-based
10This is in contrast to DEX architectures that involve, say, a smart contract that stores on-chain the standing orders

of all users.
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DEXs also allow other parties to link a standing order with a transaction that fills the order before
the transaction is finalized, enabling them to front-run the order. Which parties can front-run
depends on the kind of order-based DEX: in the open-book variant, anyone can front-run, while in
the closed-book variant, only the order book operator can front-run (as it is the sole entity that can
invoke the trade smart-contract).

The architectures described above offer different trade-offs with respect to market price discovery
and front-running exposure, and hence can be useful in different scenarios.
Privacy shortcomings and goals. While the foregoing DEX architectures offer attractive security
and functionality, they do not provide strong privacy guarantees, as we now explain. First, each
transaction reveals information about the corresponding trade, such as the assets and amounts that
were exchanged. Prior work [BDJT17; BBDJLZ17; EMC19; Dai+20] shows that such leakage
enables front-running that harms user experience and market transparency, and proposes mitigations
that, while potentially useful, do not provide strong privacy guarantees. Even if one manages to hide
these trade details, transactions in existing DEXs also reveal the identities of transacting parties.
Onlookers can use this information to extract trading patterns and frequencies of users. This reduces
the privacy of users, violates the fungibility of assets, and increases exposure to front-running,
because onlookers can use the aforementioned patterns to infer when particular assets are being
traded.

These shortcomings motivate the following privacy goals for DEXs. Throughout, we assume
that an order is defined by a pair of assets (that are to be exchanged), and their exchange rates.

1. Trade confidentiality: No efficient adversary A should be able to learn the trade details of
completed or cancelled trades. That is, a transaction that completes or cancels a trade should not
reveal to A the asset pairs or amounts involved in the trade.

2. Trade anonymity: No efficient adversary A should be able to learn the identities of parties
involved in a trade. That is, a transaction that completes or cancels a trade should not reveal to A
any information about the maker or taker of the trade.

A protocol that achieves trade confidentiality and trade anonymity against an adversary A is secure
against front-running by A. The flip-side of this is that A cannot easily discover the rates used in
successful trades, leading to poorer visibility into the trading market. We now describe constructions
of intent-based and order-based DEXs that achieve trade confidentiality and anonymity.11
Record format. Recall from Section 4.6.1 that records representing units of an asset have payloads
of the form (id,v, v, c), where id is the asset identifier, v is the initial asset supply, v is the asset
amount, and c is arbitrary auxiliary information. In the following, we make use of records that, in
addition to the mint-or-conserve birth predicate MoC, have an exchange-or-cancel death predicate
EoC described next. Informally, EoC allows a record r to be consumed either by exchanging it for
v? units of an asset with birth predicate Φ?

b and identifier id? (id?, Φ?
b and v

? are specified in c), or by
11Throughout, we assume that users interact with index or-order book operators via anonymous channels. (If this

is not the case, operators can use network information to link users across different interactions regardless of any
cryptographic solutions used.).
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“cancelling” the exchange and instead sending new records with r’s asset identifier to an address apk?

(also specified in c). The information required for the exchange includes the asset’s birth predicate in
addition to its identifier, as it enables users to interact with assets that have birth predicate different
from MoC (such as the stablecoins in Section 4.6.3). The predicate is described below.

Exchange-or-cancel predicate EoC(k, ldata; mode) (mode is the private input for the predicate.)

1. Parse ldata as
(

[cmin
i ]21 [apkin

i ]21 [payloadin
i ]21 [Φin

d,i]
2
1 [Φin

b,i]
2
1 [snin

i ]21 memo

[cmout
j ]21 [apkout

j ]21 [payloadout
j ]21 [Φout

d,j ]
2
1 [Φout

b,j ]
2
1 aux

)
.

2. Recall that k ∈ {1, 2} is the index of the current input record. Let l ∈ {1, 2} denote the index of the other
input record.
(If k = 1 then set l := 2; if instead k = 2 then set l := 1.)

3. Parse the current input record’s payload payloadin
k as (idin

k ,vk, v
in
k , c

in
k ), and the application data cin

k as
(Φ?

b,k, id
?
k, v

?
k, apk?k).

4. Parse the other input record’s payload payloadin
l as (idin

l ,vl, v
in
l , c

in
l ), and the application data cin

l as
(Φ?

b,l, id
?
l , v

?
l , apk?l ).

5. If mode = exch, ensure that the assets are correctly exchanged, by checking the following.
a) the input records are not dummy: payloadin

1 .isDummy = payloadin
2 .isDummy = 0.

b) the conditions of the trade are satisfied:
i. the current input record has the expected identifier, birth predicate, and value: Φin

b,k = Φ?
b,l, idin

k = id?l ,
and vin

k = v?l .
ii. the other input record has the expected identifier, birth predicate, and value: Φin

b,l = Φ?
b,k, idin

l = id?k, and
vin
l = v?k.

iii. the output records’ birth predicates are correctly swapped: Φin
b,1 = Φout

b,2 and Φin
b,2 = Φout

b,1.
iv. the output records have the correct asset identifier, initial supply, and value:

payloadout
1 = (idin

2 ,v2, v
in
2 ,⊥) and payloadout

2 = (idin
1 ,v1, v

in
1 ,⊥).

v. the output records are addressed correctly: apkout
k = apk?k and apkout

l = apk?l .
6. Else if mode = cancel, ensure that the trade is cancelled by checking that the idk-value is transferred to the

specified “redemption” address public key apk?k, by checking the following.
a) the current input record is non-dummy: payloadk.isDummy = 0.
b) the other input record is dummy: payloadl.isDummy = 1.
c) the output records are custom assets with identifier idin

k :
i. the output records have the correct birth predicate: Φout

b,1 = Φout
b,2 = Φin

b,k.
ii. the output records have the correct asset identifier and initial supply:

payloadout
1 = (idin

k ,vk, v
out
1 ,⊥) and payloadout

2 = (idin
k ,vk, v

out
2 ,⊥).

d) the output records preserve idin
k -value: v

out
1 + vout

2 = vin
k .

e) the address public key of the output records is correct: apkout
1 = apkout

2 = apk?k.

The case of intent-based DEXs. We describe an intent-based DEX that hides all information
about orders and transacting parties.

1. A maker M can publish to the index an intention to trade, which is a tuple (idA, idB, pkM) to be
interpreted as: “I want to buy assets with identifier idB in exchange for assets with identifier idA.
Please contact me using the encryption public key pkM if you would like to discuss the terms.”

2. A taker T who is interested in this offer can use pkM to privately communicate with M and agree
on the terms of the trade (the form of communication is irrelevant). If T and M do not reach an
agreement, then T can always pursue other entries in the index. So suppose that T and M do
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reach an agreement. For the sake of example, T will give 10 units of asset idB to M and will
receive 5 units of asset idA from M.

3. The taker T creates a new record r with payload (idB,vB, 10, c) for auxiliary data c =
(idA, 5, apknew), and with death predicate EoC. Then T sends r (along with the information
necessary to redeem r) to M.

4. If M possesses a record worth 5 units of asset idA, he can use T’s message to construct a DPC
transaction that completes the exchange by consuming r and by producing appropriate new
records for M and T. (This step deviates from existing intent-based DEXs in that it is the maker
that broadcasts the trade transaction.)

The record r produced by the taker T can be redeemed by M only via an appropriate record in
exchange. If M does not possess such a record, T can cancel the trade (at any time) and retrieve his
funds by satisfying the “cancel” branch of the predicate EoC (which requires knowing the secret key
corresponding to apknew).

Note that regardless of whether the trade was successful or not, this protocol achieves trade
anonymity and trade confidentiality against all parties (including the index operator). Indeed, the
only information revealed in the final transaction is that some records were consumed and others
created; no information is revealed about M, T, the assets involved in the trade (idA and idB), or the
amounts exchanged.
The case of order-based DEXs. We describe private order-based DEXs, with open or closed
books.

• Open-book DEX: The variant below hides all information about M and T, but reveals the assets
and amounts involved. This implies achieving trade anonymity but not trade confidentiality.
For the sake of example, assume again that the maker M will trade 5 units of asset idA for 10 units
of asset idB. M constructs a record r with payload (idB,vB, v = 10, c = (idA, 5, apk)) and death
predicate EoC. He uses this to construct an order o = (r, info) consisting of the record and the
information necessary to consume it, and publishes o to the order book. An interested taker T
can then construct and publish a transaction tx that consumes r and creates new records with the
appropriate values and asset identifiers.
The transaction tx hides information about the maker M and taker T, but because it reveals r’s
serial number, it can be linked with its originating order o. This allows onlookers to learn the assets
and amounts of tx. Hence, this protocol achieves trade anonymity, but not trade confidentiality.

• Closed-book DEX: The variant below hides all order information from everyone but the order
book operator. Hence it achieves trade anonymity and confidentiality against everyone but the
order book operator.
The maker M creates a record r as above, and sends the record and its consumption information
info to the order book. The order book does not publish these; it publishes only the terms of the
order. Takers can publish orders of their own, and if two orders match then the order book operator
constructs a transaction tx that consumes both records and produces new records, completing
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the order. At no point does either party surrender custody of their funds, thus preserving the
self-custodial nature of the exchange protocol.
The foregoing achieves trade anonymity and confidentiality against everyone but the order book
operator because only the order book operator learns the details of the records consumed by the
transaction tx, and tx itself (which once published anyone can see) does not reveal any information
about these records. As a consequence, this protocol also protects against front-running by
everyone but the order book.
Note that in our protocol, the maker acts as the taker’s counterparty (and vice versa), while in
non-private closed-book DEXs, only the order book operator can act as the counterparty for both
the maker and the taker. Our protocol can be modified to support such a flow by straightforward
modifications to EoC.

Operator fees. In the foregoing we have omitted a discussion of fees due to the operators of DEX
infrastructure (such as index or order book operators). Support for such fees can be achieved, in a
straightforward way, by the following small modifications to the exchange-or-cancel predicate EoC.
First, one would need to increase the number of output records of DPC transactions to n = 3; the
third record would be used to pay fees to the operator. Second, one would have to decide how these
fees are calculated. This can be done, e.g., by hardcoding a fee percentage into the predicate or by
allowing users to specify fees that they are willing to pay.

Remark 4.6.1 (preventing a denial-of-funds attack). In the foregoing protocols, the maker M could
refuse to provide the taker T with information about its output record, thus denying T the ability to
consume its exchanged record. A simple approach to prevent this is to modify the exchange-or-cancel
predicate to additionally enforce that the memorandum field of the created transaction contains an
encryption of the output record information under a public key specified by T.

4.6.3 Stablecoins and centrally-managed assets
Recently there has been growing interest in custom assets that are managed by a central authority.
These include stablecoins, which are assets whose value relative to an another is fixed (see [Har18]
for an overview). Centrally-managed assets are more compatible with regulations like taxes or
blacklists, because the central authority can enforce monetary policies that follow these regulations.
Indeed, existing stablecoins like the Gemini dollar [Gemini] and the Paxos standard [Paxos] have
mechanisms for reversing transactions or freezing funds in response to legal rulings. In this section,
we show how to construct private centrally-managed assets that support arbitrary, and updatable,
policies issued by the central authority; this in particular shows how to create and manage policies for
private stablecoins. We stress that the ideas described below are compatible with applications that
reason about other custom assets. For example, one can use DEXs from Section 4.6.2 to exchange
units of a private stablecoin with units of any other user-defined asset (like one from Section 4.6.1).

We enforce policies by extending the mint-or-conserve predicate MoC from Section 4.6.1 into
a mint-or-enforce predicate MoEΠ whose “enforce” mode enforces a desired policy Π. In more
detail, say that a central authority A wishes to issue an asset satisfying policy Π (initially). To do
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so, A generates a signature public key pkA, and then invokes MoEΠ in mint mode. In this mode,
MoEΠ, like MoC, generates the asset identifier id and creates the initial supply v of the asset in
a single output record whose payload stores the tuple (id,v,v,⊥). Unlike MoC, MoEΠ binds id
not only to the serial numbers of input records (to achieve uniqueness), but also to the public key
pkA that authorized Π. This means that, when receiving payments in such assets, the recipient can
immediately deduce the asset’s identifier and (authorized) policy.

In a transaction with multiple records, policies are applied and updated by the enforce mode of
MoEΠ. In this mode, MoEΠ ensures that the new record’s payload stores (id,v, v, c), and that the
policy Π is satisfied. To update a record r having policy Π to a record r′ having policy Π′, one can
create a transaction that consumes r and creates r′ such that r′ has birth predicate MoEΠ

′ . To ensure
that this update is authorized by A, MoEΠ

′ checks that a signature over Π′ with respect to pkA has
been provided, and that id has been correctly derived from pkA. These checks ensure that every
record with identifier id only has authorized policies.

Below we provide pseudocode for MoEΠ.

Mint-or-enforce predicate MoEΠ(k, ldata; mode) (mode is the private input of the predicate)

1. Parse ldata as
(

[cmin
i ]21 [apkin

i ]21 [payloadin
i ]21 [Φin

d,i]
2
1 [Φin

b,i]
2
1 [snin

i ]21 memo

[cmout
j ]21 [apkout

j ]21 [payloadout
j ]21 [Φout

d,j ]
2
1 [Φout

b,j ]
2
1 aux

)
.

2. If mode = (mint,v, r, pkSIG, σΠ), ensure that the first output record contains the initial supply of the asset:
a) the index of the current output record is correct: k = 1.
b) all other records are dummy: payloadin

1 .isDummy = payloadin
2 .isDummy = payloadout

2 .isDummy = 1.
c) the asset identifier is derived correctly: id = CRH(ppCRH,CM.Commit(ppCM, sn1‖ sn2; r)‖pkSIG).
d) the policy Π is authorized by pkSIG: SIG.Verify(ppSIG, pkSIG,Π, σΠ) = 1.
e) the current output record’s payload is correct: payloadout

1 .isDummy = 0 and payloadout
1 = (id,v,v, c = ⊥).

3. If mode = (enforce, ρ, pkSIG, σΠ), check that the policy Π is enforced:
a) parse the current output record’s payload payloadout

k as (id?,v?, v?, c).
b) check that pkSIG is valid for the asset: id? = CRH(ppCRH, ρ‖pkSIG).
c) check that the policy Π is authorized under pk: SIG.Verify(ppSIG, pkSIG,Π, σΠ) = 1.
d) check that the policy Π is satisfied: Π(k, ldata) = 1.

By way of example, we now show how a central authority A can use the mint-or-enforce predicate
to construct a stablecoin that enforces a blacklisting (in addition to the default value-conservation
policy). Namely, if an address is on a blacklist B of addresses, the address is not allowed to
participate in transactions. To do so, A follows the above procedure to construct and publish a
mint-or-enforce predicate MoEΠB

implementing a policy ΠB that inspects the address public keys
of consumed records, and ensures that none of them are in B. Now suppose that later on A wishes
to update B into a new blacklist B′ that includes a new address apk. It does so by publishing a
corresponding updated predicate MoEΠ

B
′ for this new blacklist, and users can use the above update

mechanism to move their records from policy ΠB to policy ΠB
′ . Now, any funds stored at the

newly-blacklisted address apk cannot be moved to the new policy.
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4.7 Implementation strategy
The straightforward approach to implement our construction of a DPC scheme (described in
Section 4.4) is to instantiate the proof system via a simulation-extractable zkSNARK (e.g., [GM17])
and then select the other cryptographic building blocks so that the circuit (more precisely, constraint
system) for deciding the NP relationRe has as small a size as possible. While the straightforward
approach sounds promising, closer inspection reveals significant costs that we need to somehow
reduce. In this section we discuss, in a “problem and solution” format, the challenges that we
encountered and how we addressed them. (The implementation strategy for plain DPC schemes
directly ports over to delegable DPC schemes so we do not discuss them.)

Problem 1: universality is expensive. The NP relationRe involves checking arbitrary predicates,
which means that one must rely on proof systems for universal computations. However, checking
universal computations via state-of-the-art zkSNARKs involves expensive tools for universal
circuits/machines [BCGTV13; BCTV14; WSRBW15; BCTV17]. These tools would not only yield
an expensive solution but would also penalize users who only produce transactions that attest to
simple inexpensive predicates, because these users would have to incur the costs of using these
“heavy duty” proof systems.
Solution 1: recursive proof verification. We address this problem by relying on one layer of
recursive proof composition [Val08; BCCT13]. Instead of taskingRe with checking satisfiability
of general predicates, we only task it with checking succinct proofs attesting to this. Checking
succinct proofs is a (relatively) inexpensive computation that is universal for all predicates, which
can be “hardcoded” in Re. Crucially, since the “outer” succinct proofs produced for Re do not
reveal information about the “inner” succinct proofs attesting to predicates’ satisfiability (thanks
to zero knowledge), the inner succinct proofs do not have to hide what predicate was checked,
removing the need for expensive universal circuits; in fact, inner proofs do not even have to be zero
knowledge. Rather, these inner succinct proofs can be for NP relations tailored to the computations
needed by particular birth and death predicates. Furthermore, this approach ensures that a user only
has to incur the cost of proving satisfiability of the specific predicates involved in his transactions,
regardless of the complexity of predicates used by other users in their transactions.

In more detail, taking the case of one input and one output record as an example, we modify
DPC.Execute to additionally take as input SNARK proofs πd and πb, and also modify the NP relation
Re so that, instead of directly checking that Φd and Φb are satisfied, it instead checks that πd and
πb attest to the satisfaction of Φd and Φb. That is, Re checks that NIZK.Verify(ppΦd

,xe, πd) = 1
and NIZK.Verify(ppΦb

,xe, πb) = 1, where ppΦd
are public parameters for the NP relation RΦd

:=
{(xe,we) s.t. Φd(xe,we) = 1} and similarly for Φb. The public parameters ppΦd

and ppΦb
are

stored in the record, in place of (a description of) the predicates.12
12More precisely, to verify a proof for a predicate Φ, the proof verifier does not need to read all of ppΦ, which has

size Oλ(|Φ|) in some zkSNARKs (i.e., it is large). Rather, the proof verifier only needs to read Oλ(|xe|) bits of ppΦ,
which are collectively known as the verification key. The record would then store this verification key (or a hash thereof)
rather than ppΦ.
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More generally, we modify DPC.Execute to additionally take as input SNARK proofs [πd,i]
m
1

attesting that the old records’ death predicates are satisfied and SNARK proofs [πb,j]
n
1 attesting that

the new records’ birth predicates are satisfied. Moreover, we similarly modify the NP relationRe

to check that these proofs are valid, instead of directly checking that the relevant predicates are
satisfied.

In sum, Re is not tasked with checking general predicates. Instead, it merely has to check
SNARK proofs, a fixed computation of size Oλ(m+ n). Separately, a user wishing to prove that a
predicate Φ is satisfied will invoke a SNARK on an NP statement of size |Φ| (tailored for Φ).13 The
approach described so far, however, hides additional costs that we need to overcome.

Problem 2: recursion is expensive. Recursive proof composition has so far been empirically
demonstrated for pairing-based SNARKs [BCTV17], whose proofs are extremely short and cheap
to verify. We thus focus our attention on these, and explain the efficiency challenges that we must
overcome in our setting.

Recall that pairings are instantiated via elliptic curves of small embedding degree. If we
instantiate a SNARK’s pairing via an elliptic curve E defined over a prime field Fq and having
a subgroup of large prime order r, then (a) the SNARK supports NP relations R expressed as
arithmetic circuits over Fr, while (b) proof verification involves arithmetic operations over Fq. This
means that we need to expressRe via arithmetic circuits over Fr. In turn, since the SNARK verifier
is part ofRe, this means that we need to also express the verifier via an arithmetic circuit over Fr,
which is problematic because the verifier’s “native” operations are over Fq. Simulating Fq operations
via Fr operations introduces significant overheads, and picking E such that q = r, in order to avoid
simulation, is impossible [BCTV17].

Prior work thus suggests usingmultiple curves [BCTV17], such as a two-cycle of pairing-friendly
elliptic curves, that is, two prime-order curves E1 and E2 such that the prime size of one’s base field
is the prime order of the other’s group, and orchestrating SNARKs based on these so that fields
always “match up”. Unfortunately, known curves with these properties are inefficient at 128 bits of
security [BCTV17; CCW19].
Solution 2: tailored set of curves. In our setting we merely need “a proof of a proof”, with the
latter proof not itself depending on further proofs.

This implies that we do not actually need a cycle of pairing-friendly elliptic curves (which
enables recursion of arbitrary depth), but rather only a “two-chain” of two curves E1 and E2 such
that the size of the base field of E1 is the size of the prime order subgroup of E2. We can use the
Cocks–Pinch method [FST10] to set up such a bounded recursion [BCTV17]. We now elaborate on
this.

First we pick a pairing-friendly elliptic curve E1 that not only is suitable for 128 bits of security
according to standard considerations (involving, e.g., its embedding degree and the ratio of the sizes
of its base field and prime order group) but, moreover, is compatible with efficient SNARK provers

13An additional benefit of each predicate Φ having its own public parameters ppΦ is flexible trust: users are not
obliged to trust parameters used in each others’ transactions and, moreover, if some parameters are known to be
compromised, predicates can safely refuse to interact with records associated with them. We view this isolation
mechanism as a novel and valuable feature in practice.



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 218

in both levels of the recursion. Namely, letting p be the prime order of the base field and r the prime
order of the group, we need that both Fr and Fp have multiplicative subgroups whose orders are
large powers of 2. The condition on Fr ensures efficient proving for SNARKs over E1, while the
condition on Fp ensures efficient proving for SNARKs that verify proofs over E1. In light of the
above, we set E1 to be EBLS, a curve from the Barreto–Lynn–Scott (BLS) family [BLS02; CLN11]
with embedding degree 12. This family not only enables parameters that conservatively achieve 128
bits of security, but also enjoys properties that facilitate very efficient implementation [AFKMR12].
We ensure that both Fr and Fp have multiplicative subgroups of order 2α for α ≥ 40, by choosing
the parameter x of the BLS family to satisfy x ≡ 1 mod 3 · 2α; indeed, for such a choice of x both
r(x) = x4 − x2 + 1 and p(x) = (x − 1)2r(x)/3 + x are divisible by 2α. This also ensures that
x ≡ 1 mod 3, which ensures that there are efficient towering options for the relevant fields [Cos12].

Next we use the Cocks–Pinch method to pick a pairing-friendly elliptic curve E2 = ECP over a
field Fq such that the curve group ECP(Fq) contains a subgroup of prime order p (the size of EBLS’s
base field). Since the method outputs a prime q that has about 2× more bits than the desired p, and
in turn p has about 1.5×more bits than r (due to properties of the BLS family), we only need ECP to
have embedding degree 6 in order to achieve 128 bits of security (as determined from the guidelines
in [FST10]).

In sum, proofs of predicates’ satisfiability are produced via a SNARK over EBLS, and proofs for
the NP relationRe are produced via a zkSNARK over ECP. The matching fields between the two
curves ensure that the former proofs can be efficiently verified.

Problem 3: Cocks–Pinch curves are costly. While the curve ECP was chosen to facilitate efficient
checking of proofs over EBLS, the curve ECP is at least 2× more expensive (in time and space) than
EBLS simply because ECP’s base field has about twice as many bits as EBLS’s base field. Checks in
the NP relationRe that are not directly related to proof checking are now unnecessarily carried over
a less efficient curve.
Solution 3: split relations across two curves. We splitRe into two NP relationsRBLS andRCP

(see Fig. 4.14), with the latter containing just the proof check and the former containing all other
checks. We can then use a zkSNARK over the curve EBLS (an efficient curve) to produce proofs
for RBLS, and a zkSNARK over ECP (the less efficient curve) to produce proofs for RCP. This
approach significantly reduces the running time of DPC.Execute (producing proofs for the checks in
RBLS is more efficient over EBLS than over ECP), at the expense of a modest increase in transaction
size (a transaction now includes a zkSNARK proof over EBLS in addition to a proof over ECP).
An important technicality that must be addressed is that the foregoing split relies on certain secret
information to be shared across the NP relations, namely, the identities of relevant predicates and the
local data. We can store this information in suitable commitments that are part of the NP instances
for the two NP relations (doing this efficiently requires some care as we discuss below).

Problem 4: the NP relations have many checks. Even using ECP only for SNARK verification
and EBLS for all other checks does not suffice: the NP relationsRBLS andRCP still have to perform
expensive checks like verifying Merkle tree authentication paths and commitment openings, and
evaluating pseudorandom functions and collision resistant functions. Similar NP relations, like the
one in Zerocash [Ben+14], require upwards of four million gates to express such checks, resulting
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in high latencies for producing transactions (several minutes) and large public parameters for the
system (hundreds of megabytes).
Solution 4: efficient EC primitives. Commitments and collision-resistant hashing can be
expressed as very efficient arithmetic circuits if one opts for Pedersen-type constructions over
suitable Edwards elliptic curves (and techniques derived from these ideas are now part of deployed
systems [HBHW20]). To do this, we pick two Edwards curves, EEd/BLS over the field Fr (matching
the group order of EBLS) and EEd/CP over the field Fp (matching the group order of ECP). This
enables us to achieve very efficient circuits for primitives used in our NP relations, including
commitments, collision-resistant hashing, and randomizable signatures. (Note that EEd/BLS and
EEd/CP do not need to be pairing-friendly as the primitives only rely on their group structure.)

Problem 5: sharing information between NP relations is costly. We have said that splittingRe

into two NP relationsRBLS andRCP relies on sharing secret information via commitments across
NP statements; namely, a commitment cmΦ to the identities of predicates and a commitment cmldata

to the local data. But if both relations open these commitments, we cannot make an efficient use of
Pedersen commitments because the two NP relations are over different fields: RBLS is over Fr, while
RCP is over Fp. For example, if we used a Pedersen commitment over the order-r subgroup of the
Edwards curve EEd/BLS, then: (a) opening a commitment inRBLS would be cheap, but (b) opening
a commitment inRCP would involve expensive simulation of Fr-arithmetic via Fp-arithmetic. (And
similarly if we used a Pedersen commitment over the order-p subgroup of the Edwards curveEEd/CP.)
To make matters worse, the predicate identities and the local data are large, so an inefficient solution
for committing to these would add significant costs toRBLS andRCP.
Solution 5: hash predicate verification keys and commit to local data. In a record, instead
of storing predicate verification keys, we store collision-resistant hashes of these. This reduces
the cost of producing the commitment cmΦ in RBLS and RCP, as cmΦ contains hashes that are
much smaller than verification keys. We realize cmΦ via Blake2s, a boolean primitive of modest
cost in Fr and Fp. Crucially, onlyRCP needs to access the verification keys themselves, so we can
efficiently use a Pedersen hash over the Edwards curve EEd/CP to letRCP check the keys (supplied
as non-deterministic advice) against the hashes inside cmΦ.

We realize the local data commitment cmldata via a Pedersen commitment over EEd/BLS, and
assume that predicates take cmldata as input rather than local data in the clear. Since bothRBLS and
the predicate relations are defined over the field Fr (the prime-order subgroup of the curve EBLS),
non-deterministically opening cmldata is efficient in both relations. This approach significantly
reduces costs becauseRCP no longer needs to reason about the contents of cmldata, and can simply
pass cmldata as input to the SNARK verifier.
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The NP relationRBLS has instances xBLS and witnesseswBLS of the form

xBLS =


ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

predicate commitment cmΦ

local data commitment cmldata

transaction memorandum memo

 and wBLS =



old records [ri]
m
1

old record membership witnesses [wL,i]
m
1

old address secret keys [aski]
m
1

new records [rj ]
n
1

predicate comm. randomness rΦ

local data randomness rldata

auxiliary predicate input aux


where
• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi, hb,i, hd,i, ρi, ri, cmi);
• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj , hb,j , hd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [hd,i]

m
1 [hb,i]

m
1 [sni]

m
1 memo

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [hd,j ]

n
1 [hb,j ]

n
1 aux

)
.

A witnesswBLS is valid for an instance xBLS if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• If ri is not dummy,wL,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,wL,i) = 1.
• The address public key apki and secret key aski form a valid key pair:

apki = CM.Commit(ppCM, skPRF,i; rpk,i) and aski = (skPRF,i, rpk,i).
• The serial number sni is valid: sni = PRFskPRF,i

(ρi).
• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖hb,i‖hd,i‖ρi; ri).

2. For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖hb,j‖hd,j‖ρj ; rj).

3. The predicate commitment cmΦ is valid: cmΦ = b2s([hd,i]
m
1 ‖ [hb,j ]

n
1 ‖ rΦ).

4. The local data commitment cmldata is valid: cmldata = CM.Commit(ppCM, ldata; rldata)

The NP relationRCP has instances xCP and witnesseswCP of the form

xCP =

(
predicate commitment cmΦ

local data commitment cmldata

)
and wCP =


old death pred. ver. keys [vkd,i]

m
1

old death pred. proofs [πd,i]
m
1

new birth pred. ver. keys [vkb,j ]
n
1

new birth pred. proofs [πb,j ]
n
1

predicate comm. randomness rΦ


A witnesswCP is valid for an instance xCP if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• The death predicate hash hd,i is computed correctly: hd,i = CRH.Eval(ppCRH, vkd,i).
• The death predicate proof πd,i is valid: NIZK.Verify(vkd,i, i‖cmldata, πd,i).

2. For each j ∈ {1, . . . , n}:
• The birth predicate hash hb,j is computed correctly: hb,j = CRH.Eval(ppCRH, vkb,j).
• The birth predicate proof πb,j is valid: NIZK.Verify(vkb,j , j‖cmldata, πb,j).

3. The predicate commitment cmΦ is valid: cmΦ = b2s([hd,i]
m
1 ‖ [hb,j ]

n
1 ‖ rΦ).

Figure 4.14: Splitting the NP relationRe into two NP relationsRBLS andRCP, over Fr and Fp respectively.
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4.8 System implementation
We implemented our “plain” DPC scheme (Section 4.4) and our delegable DPC scheme (Section 4.5),
by following the strategy described in Section 4.7. The resulting system, named Zexe (Zero
knowledge EXEcution), consists of several Rust libraries: (a) a library for finite field and elliptic
curve arithmetic, adapted from [Bow17b]; (b) a library for cryptographic building blocks, including
zkSNARKs for constraint systems (using components from [Bow17a]); (c) a library with constraints
for many of these building blocks; and (d) a library that realizes our constructions of plain and
delegable DPC. Our code base, like our construction, is written in terms of abstract building blocks,
which allows to easily switch between different instantiations of the building blocks. In the rest of
this section we describe the efficient instantiations used in the experiments reported in Section 4.9.

libzexe

constraints for building blocks

zkSNARK
cryptographic
building blocks

algebra

Figure 4.15: Stack of libraries comprising Zexe.

Ledger. The ledger L in our prototype is simply an ideal ledger, i.e., an append-only log of valid
transactions that is stored in memory. Of course, in a real-world deployment, this ideal ledger would
be replaced by a distributed protocol that realizes (a suitable approximation of) an ideal ledger.
Recall from Section 4.3.1 that we require the ledger L to provide a method to efficiently prove and
verify membership of a transaction, or one of its subcomponents, in L. For this, we maintain a
Merkle tree [Mer87] atop the list of transactions, using the collision-resistant hash function CRH
described below. This results in the following algorithms for L.
• L.Push(tx): Append tx to the transaction list and update the Merkle tree.
• L.Digest→ stL: Return the root of the Merkle tree.
• L.Prove(tx)→ wL: Return the authentication path for tx in the Merkle tree.
• L.Verify(stL, tx,wL)→ b: Check that wL is a valid authentication path for tx in a tree with root

stL.
Our prototype maintains the Merkle tree in memory, but a real-world deployment would have to
maintain it via a distributed protocol. (Such data structures atop distributed ledgers are used in
existing systems [Zcash].)
Pseudorandom function. Fixing key length and input length at 256 bits, we instantiate PRF using
the Blake2s hash function [ANWW13]: PRFk(x) := b2s(k‖x) for k, x ∈ {0, 1}256.
Elliptic curves. Our implementation strategy (see Section 4.7) involves several elliptic curves: two
pairing-friendly curves EBLS and ECP, and two “plain” curves EEd/BLS and EEd/CP whose base field
respectively matches the prime-order subgroup of EBLS and ECP. Details about these curves are in
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Figure 4.16; the parameter used to generate the BLS curve EBLS is x = 3 · 246 · (7 · 13 · 499) + 1
(see Section 4.7 for why).

name curve type embedding
degree

size of prime-order
subgroup

size of base
field size of compressed

group elements in bytes
G1 G2

EEd/BLS twisted Edwards — s r 32 —
EBLS BLS 12 r p 48 96
EEd/CP twisted Edwards — t p 48 —
ECP short Weierstrass 6 p q 104 312

prime value size in bits 2-adicity

s 0x4aad957a68b2955982d1347970dec005293a3afc43c8afeb
95aee9ac33fd9ff

251 1

r 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed0000001
0a11800000000001

253 47

t 0x35c748c2f8a21d58c760b80d94292763445b3e601ea271e1
d75fe7d6eeb84234066d10f5d893814103486497d95295

374 2

p 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1
ef3622fba094800170b5d44300000008508c00000000001

377 46

q 0x3848c4d2263babf8941fe959283d8f526663bc5d176b746a
f0266a7223ee72023d07830c728d80f9d78bab3596c8617c57
9252a3fb77c79c13201ad533049cfe6a399c2f764a12c4024b
ee135c065f4d26b7545d85c16dfd424adace79b57b942ae9

782 3

Figure 4.16: The elliptic curves EBLS, ECP, EEd/BLS, EEd/CP.

NIZKs. We instantiate the NIZKs used for the NP relation Re via zero-knowledge succinct
non-interactive arguments of knowledge (zkSNARKs), which makes our DPC schemes succinct (see
Remark 4.4.1). Concretely, we rely on the simulation-extractable zkSNARK of Groth and Maller
[GM17], used over the pairing-friendly elliptic curves EBLS (for proving predicates’ satisfiability)
and ECP (for proving validity of these latter proofs).
DLP-hard group. Several instantiations of cryptographic primitives introduced below rely on the
hardness of extracting discrete logarithms in a prime order group. We generate these groups via a
group generator SampleGrp, which on input a security parameter λ (represented in unary), outputs a
tuple (G, q, g) that describes a group G of prime order q generated by g. The discrete-log problem
is hard in G. In our prototype we fix G to be the largest prime-order subgroup of either EEd/BLS or
EEd/CP, depending on the context.
Commitments. We instantiate (plain and) trapdoor commitments via Pedersen commitments over
G, as defined in Figure 4.17; note that the setup algorithm takes as additional input the message
length n. Pedersen commitments are perfectly hiding, and are computationally binding if the
discrete-log problem is hard in G.
Collision-resistant hashing. We instantiate CRH via a Pedersen hash function overG, as specified
in Figure 4.18; note that the setup algorithm takes as additional input the message length n. Collision
resistance follows from hardness of the discrete-logarithm problem [MRK03].
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Remark 4.8.1. Hopwood et al. [HBHW20] note that projecting a twisted Edwards curve point
(x, y) to its x-coordinate is injective when the point is in the curve’s largest prime-order subgroup.
Our implementation uses this fact to reduce the output size of TCM and CRH by projecting their
output to its x-coordinate.

TCM.Setup(1λ, n)→ ppTCM:
1. Sample a group: (G, q, g)← SampleGrp(1λ).
2. For i ∈ {1, . . . , n}, sample generator hi:

ri ← Zq;hi := gri .
3. Output ppTCM := (G, q, g, [hi]

n
1 ).

TCM.Commit(ppTCM,m ∈ {0, 1}
n; rcm)→ cm:

1. Parse ppTCM as (G, q, g, [hi]
n
1 ).

2. Output cm := grcm
∏n
i=1 h

mi
i .

Figure 4.17: Pedersen commitment scheme.

CRH.Setup(1λ, n)→ ppCRH:
1. Sample a group: (G, q, g1)← SampleGrp(1λ).
2. For i ∈ {2, . . . , n}, sample generator gi:

ri ← Zq; gi := gri .
3. Output ppCRH := (G, q, [gi]

n
1 ).

CRH.Eval(ppCRH,m ∈ {0, 1}
n)→ h:

1. Parse ppCRH as (G, q, [gi]
n
1 ).

2. Output h :=
∏n
i=1 g

mi
i .

Figure 4.18: Pedersen collision-resistant hash.
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4.9 System evaluation
In Section 4.9.1 we evaluate individual cryptographic building blocks. In Section 4.9.2 we evaluate
the cost of NP relations expressed as constraints, as required by the underlying zkSNARK. In
Section 4.9.3 we evaluate the running time of DPC algorithms. In Section 4.9.4 we evaluate the
sizes of DPC data structures. All reported measurements were taken on a machine with an Intel
Xeon 6136 CPU at 3.0 GHz with 252 GB of RAM.

4.9.1 Cryptographic building blocks
We are interested in two types of costs associated with a given cryptographic building block: the
native execution cost, which are the running times of certain algorithms on a CPU; and the constraint
cost, which are the numbers of constraints required to express certain invariants, to be used by the
underlying zkSNARK.
Native execution cost. The zkSNARK dominates native execution cost, and the costs of all other
building blocks are negligible in comparison. Therefore we separately report only the running times
of the zkSNARK, which in our case is a protocol due to Groth and Maller [GM17], abbreviated as
GM17. When instantiated over the elliptic curve EBLS, the GM17 prover takes 25 µs per constraint
(with 12 threads), while the GM17 verifier takes 250n µs + 9.5 ms on an input with n field elements
(with 1 thread). When instantiated over the elliptic curve ECP, the respective prover and verifier
costs are 147 µs per constraint and 1.6nms + 34 ms.
Constraint cost. There are three building blocks that together account for the majority of the cost
of NP statements that we use. These are: (a) the Blake2s PRF, which requires 21792 constraints to
map a 64-byte input to a 32-byte output; (b) the Pedersen collision-resistant hash, which requires 5n
constraints for an input of n bits; and (c) the GM17 verifier, which requires 14n+ 52626 constraints
for an n-bit input.

4.9.2 The execute NP relation
In many zkSNARK constructions, including the one that we use, one must express all the relevant
checks in the given NP relation as (rank-1) quadratic constraints over a certain large prime field. The
goal is to minimize the number of such constraints because the prover’s costs grow (quasi)linearly in
this number.

In our DPC scheme we use a zkSNARK for the NP relationRe in Fig. 4.9 and, similarly, in our
delegable DPC scheme we use it for the NP relationRdel

e in Fig. 4.23. More precisely, for efficiency
reasons explained in Section 4.7, we splitRe into the two NP relationsRBLS andRCP in Fig. 4.14,
which we prove via zkSNARKs over the pairing-friendly curves EBLS and ECP, respectively. (We
also similarly splitRdel

e .)
Table 4.3 reports the number of constraints that we use to express RBLS, as a function of the

number of input (m) and output (n) records, and additionally reports its primary contributors.
Table 4.4 does the same forRCP. These tables show that for each input record costs are dominated
by verification of a Merkle tree path and the verification of a (death predicate) proof; while for each
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output record costs are dominated by the verification of a (birth predicate) proof. We also report the
cumulative number of constraints when settingm := 2 and n := 2 because this is a representative
instantiation ofm and n that enables useful applications.

4.9.3 DPC algorithms
In Table 4.1 we report the running times of algorithms in our plain DPC and delegable DPC
implementations for two input and two output records (i.e., m := 2 and n := 2). Note that for
Execute and Verify, we have excluded costs of ledger operations (such as retrieving an authentication
path or scanning for duplicate serial numbers) because these depend on how a ledger is realized, which
is orthogonal to our work. Also, we assume that Execute receives as inputs the application-specific
SNARK proofs checked by the NP relation. Producing each of these proofs requires invoking the
GM17 prover, over the elliptic curve EBLS, for the relevant birth or death predicate; we describe the
cost of doing so for representative applications in Section 4.9.5.

Observe that the overhead incurred by delegable DPC over plain DPC is negligible, and that, as
expected, Setup and Execute are the most costly algorithms, as they invoke costly zkSNARK setup
and proving algorithms. To mitigate these costs, Setup and Execute are executed on 12 threads;
everything else is executed with 1 thread. Overall, we learn that Execute takes less than a minute,
and Verify takes tens of milliseconds. Furthermore, both Setup and Execute consume less than
5 GB of RAM. These costs are comparable with those of similar systems such as Zerocash [Ben+14]
and Hawk [KMSWP16].

4.9.4 DPC data structures

Addresses. An address public key in a DPC scheme is a point on the elliptic curve EEd/BLS, which
is 32 bytes when compressed (see Fig. 4.16); the corresponding secret key is 64 bytes and consists
of a PRF seed (32 bytes) and commitment randomness (32 bytes). In a delegable DPC scheme,
address public keys do not change, but address secret keys are 96 bytes, because they additionally
contain the 32-byte secret key of a randomizable signature scheme over the elliptic curve EEd/BLS

(see Fig. 4.10).
Transactions. A transaction in a DPC scheme, with two input and two output records, is 968 bytes.
It contains two zkSNARK proofs: πBLS, over the elliptic curve EBLS, and πCP, over the curve ECP.
Each proof consists of two G1 and one G2 elements from its respective curve, amounting to 192
bytes for πBLS and 520 for πCP (both in compressed form). In general, for m input records and n
output records, transactions are 32m+ 32n+ 840 bytes. In a delegable DPC scheme, a transaction
additionally contains a 64-byte signature for each input record. See Table 4.2 for a detailed break
down of all of these costs.
Record contents. We set a record’s payload to be 32 bytes long; if a predicate needs longer data
then it can set the payload to be the hash of this data, and use non-determinism to access the data.
The foregoing choice means that all contents of a record add up to 224 bytes, since a record consists
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of an address public key (32 bytes), the 32-byte payload, hashes of birth and death predicates (48
bytes each), a serial number nonce (32 bytes), and commitment randomness (32 bytes).

Plain DPC Delegable DPC

Setup 109.62 s 109.3 s
GenAddress 380 µs 780 µs
Execute 52.5 s 53.4 s
Verify 46 ms 47 ms

Table 4.1: Cost of DPC algorithms for
2 inputs and 2 outputs.

Plain DPC Delegable DPC

2 inputs and 2 outputs 968 1096
m inputs and n outputs 32m+ 32n+ 840 96m+ 32n+ 840

Per input record:
Serial number 32 32
Signature — 64

Per output record:
Commitment 32 32

Memorandum 32 32
zkSNARK proof over ECP 520 520
zkSNARK proof over EBLS 192 192
Predicate commitment 32 32
Local data commitment 32 32
Ledger digest 32 32

Table 4.2: Size of a DPC transaction (in bytes).

4.9.5 Applications
We do not report total costs for producing transactions for the applications in Section 4.6 because the
additional application-specific costs are negligible compared to the base cost reported in Table 4.1.
This is because all application-specific proofs are produced over the efficient elliptic curve EBLS,
and moreover, for each application we consider, the heaviest computation checked by these proofs is
the relatively lightweight one of opening the local data commitment; the remaining costs consist
of a few cheap range and equality checks. Indeed, with two input and two output records, these
applications require fewer than 35, 000 constraints (compared to over 350, 000 forRBLS andRCP),
and producing the corresponding proofs takes tens of milliseconds (compared to tens of seconds for
the base cost of DPC.Execute).



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 227

Plain DPC Delegable DPC

Total with 2 inputs and 2 outputs 387412 414339

Below we provide a breakdown of the number of constraints withm input and n output records.

Per input record Total 117699 125401

Enforce validity of:
Merkle tree path 81824 81824
Address key pair 3822 8435
Serial number computation 22301 25390
Record commitment 9752 9752

Per output record Total 15427 19523

Enforce validity of:
Serial number nonce 5417 9513
Record commitment 10010 10010

Other: Enforce validity of:
Predicate commitment 21792 · d 3

4 (m+ n) + 1
2e 21792 · d 3

4 (m+ n) + 1
2e

Local data commitment 7168 ·m+ 6144 · n 8192 ·m+ 6144 · n
Miscellaneous 7368 8651

Table 4.3: Number of constraints forRBLS.

Plain DPC Delegable DPC

Total with 2 inputs and 2 outputs 439224 439476

Below we provide a breakdown of the number of constraints withm input and n output records.

Per input record Total 87569 87569

Enforce validity of:
Death predicate ver. key 45827 45827
Death predicate proof 41742 41742

Per output record Total 87569 87569

Enforce validity of:
Birth predicate ver. key 45827 45827
Birth predicate proof 41742 41742

Other Enforce validity of:
Predicate commitment 21792 · d 3

4 (m+ n) + 1
2e 21792 · d 3

4 (m+ n) + 1
2e

Miscellaneous 1780 2032

Table 4.4: Number of constraints forRCP.
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4.10 Proof of security for our DPC scheme
We prove that our DPC construction (see Section 4.4) satisfies the security definition in Section 4.3.3.
To do this, for every real-world (efficient) adversary A, we construct an ideal-world (efficient)
simulator S such that the ideal-world and real-world executions are computationally indistinguishable
with respect to any (efficient) environment E . We proceed in three parts: in Section 4.10.1 we
describe building blocks used to construct the simulator S; in Section 4.10.2 we describe the
simulator S; in Section 4.10.3 we argue that the ideal-world and the real-world executions are
computationally indistinguishable.

4.10.1 Building blocks for the simulator
We describe various algorithms that are used as sub-routines in the simulator S.
Trapdoor commitments. Recall from Section 4.4.1 that a trapdoor commitment scheme is a
commitment scheme with auxiliary algorithms (SimSetup,Equivocate) that enable one to open a
commitment cm to any chosen message. Below we restrict cm to be a commitment to the empty
string ε because this is sufficient for the proof of security of our DPC scheme.

• Trapdoor setup: on input a security parameter, TCM.SimSetup samples public parameters ppTCM

and a trapdoor tdTCM such that ppTCM is indistinguishable from public parameters sampled by
TCM.Setup.

• Equivocation: on input public parameters ppTCM, trapdoor tdTCM, commitment cm to ε, com-
mitment randomness rcm (so that TCM.Commit(ppTCM, ε; rcm) = cm), and target message m′,
TCM.Equivocate outputs commitment randomness r′cm such thatTCM.Commit(ppTCM,m

′; r′cm) =
cm. Moreover, if rcm is uniformly random then r′cm is statistically close to uniformly random.

In Figure 4.19 we instantiate these algorithms for the Pedersen commitment scheme. Note that
the real and simulated public parameters are identical; moreover, the trapdoor randomness r′cm is the
real randomness rcm shifted by uniformly random field elements, and is hence statistically close to
rcm.

TCM.SimSetup(1
λ
, n)→ (ppTCM, tdTCM)

1. Sample a group: (G, q, g)← SampleGrp(1
λ
).

2. For i ∈ {1, . . . , n}:
sample ri uniformly from Zq , and set hi := g

ri .
3. Output (ppTCM := (G, q, g, [hi]

n
1 ), tdTCM := [ri]

n
1 ).

TCM.Equivocate(ppTCM, tdTCM, cm, rcm,m
′ ∈ {0, 1}n)→ r

′
cm

1. Parse ppTCM as (G, q, g, [hi]
n
1 ).

2. Parse tdTCM as [ri]
n
1 .

3. Output r′cm := rcm −
∑n
i=1 rim

′
i mod q.

Figure 4.19: Simulated setup and equivocation algorithms for the Pedersen commitment scheme.

NIZKs. The scheme NIZK = (Setup,Prove,Verify) is a simulation-extractable non-interactive
zero knowledge argument. Formally stating the properties of this scheme involves several auxiliary
algorithms.
– Trapdoor setup: on input a security parameter and a description of an NP relation R,

NIZK.SimSetup outputs a set of public parameters ppNIZK and a trapdoor tdNIZK.
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– Simulation: on input public parameters ppNIZK, trapdoor tdNIZK, NP instance x, and (optionally)
auxiliary information aux, NIZK.Simulate outputs a simulated proof π.

– Extraction: on input public parameters ppNIZK, trapdoor tdNIZK, NP instance x, and proof π,
NIZK.Extract outputs a witness w such that (x,w) ∈ R (allegedly).

We can now state the properties satisfied by NIZK.

• Completeness: for every NP relationR and instance-witness pair (x,w) ∈ R,

Pr

[
NIZK.Verify(ppNIZK,x, π) = 1

∣∣∣∣ ppNIZK ← NIZK.Setup(1λ,R)
(x, π)← NIZK.Prove(ppNIZK,x,w)

]
= 1 .

• Perfect zero knowledge: for every relationR and efficient adversary A,

Pr

[
ppNIZK ← NIZK.Setup(1λ,R)

AS1(·,·)(ppNIZK, aux) = 1

]
= Pr

[
(ppNIZK, tdNIZK)← NIZK.SimSetup(1λ,R)

AS2(·,·)(ppNIZK, aux) = 1

]

where the two oracles are defined as follows
– S1(x,w) := “if (x,w) ∈ R then NIZK.Prove(ppNIZK,x,w), else abort”;
– S2(x,w) := “if (x,w) ∈ R then NIZK.Simulate(ppNIZK, tdNIZK,x), else abort”.

• Simulation extractability: for every relationR and efficient adversary A,

Pr

 (x, π) 6∈ Q
(x,w) 6∈ R
NIZK.Verify(ppNIZK,x, π) = 1

∣∣∣∣∣∣∣
(ppNIZK, tdNIZK)← NIZK.SimSetup(1λ,R)

(x, π)← AS(·)(ppNIZK)
w← NIZK.Extract(ppNIZK, tdNIZK,x, π)

 = negl(λ) ,

where S(x) := NIZK.Simulate(ppNIZK, tdNIZK,x) andQ is the set of query-answer pairs between
the adversary A and the simulated-proof oracle S.

4.10.2 The ideal-world simulator
The ideal-word simulator S will interact with the ideal functionality FDPC and with the environment
E . Note that for UC security it suffices to show security against a dummy real-world adversaryA that
simply forwards all instructions from the environment E [Can01]. Since our security definition is a
special case of UC security, we inherit this simplification, and thus only consider such an adversary
A. The pseudocode for S is provided below; auxiliary subroutines are provided in Figure 4.20.
Setup.

1. Initialize an empty table S.Records that maps record commitments to their contents.
2. Initialize an empty table S.AddrPk that maps address public keys to their secret keys.
3. Initialize an empty transaction ledger L.
4. Sample simulated public parameters and trapdoor: (pp, td) ← DPC.SimSetup(1λ). (See

Fig. 4.20.)



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 230

5. Define

SampleAddrPk(·) := CM.Commit(ppCM, ε; ·) ,

SampleCm(·) := TCM.Commit(ppTCM, ε; ·) ,

SampleSn(·) := “sample uniformly random string of correct length” .

6. Start ideal-world execution with the above (SampleAddrPk, SampleCm, SampleSn).

At this point, the simulator will receive messages notifying it of transactions and of messages sharing
contents of newly-created records. The simulator handles each case separately.

Transaction notifications.

• From environment. When E instructs a corrupted party to invoke L.Push(tx):
1. If DPC.VerifyL(pp, tx) 6= 1, abort.
2. Parse the real-world transaction tx as ([sni]

m
1 , [cmj]

n
1 ,memo, ?).

3. Compute ([ri]
m
1 , [aski]

m
1 , [rj]

n
1 , aux)← DPC.ExtractExecute(pp, td, tx). [See Figure 4.20.]

4. For every i ∈ {1, . . . ,m}:
a) Parse the real-world record ri as (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi).
b) Parse the address secret key aski as (skPRF,i, rpk,i).
c) If S.Records[cmi] 6= ri, abort. (Note: Captures binding property of the commitment.)
d) If L.Contains(cmi) = 0, abort. (Note: Captures existence of record.)
e) Create the ideal-world record ri := (cmi, apki, payloadi,Φb,i,Φd,i).
f) If S.AddrPk[apki] = ⊥:

i. Invoke FDPC.GenAddress(apki).
ii. Insert apki into S.AddrPk: S.AddrPk[apki] := aski.

g) Else, if S.AddrPk[apki] 6= aski, abort. (Note: Captures uniqueness of secret key.)
5. For every j ∈ {1, . . . , n}:

a) Parse the real-world record rj as (apkj, payloadj,Φb,j,Φd,j, ρj, rj, cmj).
b) If the serial number nonce ρj was seen in a prior extracted transaction, or if ρj = ρk for

k 6= j, abort. (Note: Captures uniqueness of nonce.)
c) Set S.Records[cmj] := rj .

6. Construct instance forRe: xe := (stL, [sni]
m
1 , [cmj]

n
1 ,memo).

7. Construct witness forRe: we := ([ri]
m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj]

n
1 , aux).

8. If (xe,we) 6∈ Re, abort.

9. Invoke FDPC.Execute

(
[ri]

m
1 [metai]

m
1 [sni]

m
1 aux memo

[cmj]
n
1 [apkj]

n
1 [payloadj]

n
1 [Φb,j]

n
1 [Φd,j]

n
1

)
.

10. Receive from FDPC: [rj]
n
1 .

11. Receive from FDPC: (Execute, [sni]
m
1 , [cmj]

n
1 ,memo).

12. Append the real-world transaction tx to the ledger L.
• From ideal functionality. When FDPC broadcasts (Execute, [sni]

m
1 , [cmj]

n
1 ,memo):

1. Compute ([rj]
n
1 , tx)← DPC.SimExecuteL(pp, td, [sni]

m
1 , [cmj]

n
1 ,memo). (See Fig. 4.20.)
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2. For each j ∈ {1, . . . , n}, set S.Records[cmj] := rj .
3. Append the real-world transaction tx to the ledger L.

Record authorization notification.

• From environment. When E instructs a corrupted party to send (RecordAuth, r,P) to P:
1. Parse the real-world record r as (apk, payload,Φb,Φd, ρ, r, cm).
2. Invoke FDPC.ShareRecord(r,P) with r := (cm, apk, payload,Φb,Φd).

• From ideal functionality. When FDPC sends (RecordAuth, r, r):
1. Parse the ideal record r as (cm, apk, payload,Φb,Φd).
2. Retrieve the real-world record r = S.Records[cm], and set the serial number nonce ρ := r.ρ.
3. Define new record commitment messagem := (apk‖payload‖Φb‖Φd‖ρ).
4. Compute new commitment randomness r′ ← TCM.Equivocate(ppTCM, tdTCM, cm, r,m).
5. Construct the new real-world record r′ := (apk, payload,Φb,Φd, ρ, r

′, cm).
6. Set S.Records[cm] := r′.
7. Send to A: (RecordAuth, r′) .
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DPC.SimSetup
Input: security parameter 1λ

Output: simulated public parameters pp and trapdoor td

1. Sample parameters for commitment: ppCM ← CM.Setup(1λ).
2. Sample simulated parameters for trapdoor commitment: (ppTCM, tdTCM)← TCM.SimSetup(1λ).
3. Sample parameters for CRH: ppCRH ← CRH.Setup(1λ).
4. Sample simulated parameters for NIZK forRe: (ppe, tde)← NIZK.SimSetup(1λ,Re).
5. Set pp := (ppCM, ppTCM, ppCRH, ppe).
6. Set td := (tdTCM, tde).
7. Output (pp, td).

DPC.SimExecuteL

Input:
• public parameters pp and trapdoor td
• old serial numbers [sni]

m
1

• new record commitments [cmj ]
n
1

• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

1. For j ∈ {1, . . . , n}:
a) Set new serial number nonce ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
b) Set address public key, payload, predicates, and commitment randomness to be the empty string:

apkj , payloadj ,Φb,j ,Φd,j , rj := ε.
c) Construct dummy record: rj := (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

2. Retrieve current ledger digest: stL ← L.Digest.
3. Construct instance for relationRe: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

4. Generate simulated proof forRe: πe ← NIZK.Simulate(ppe, tde,xe).
5. Construct transaction: tx := ([sni]

m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe).

6. Output ([rj ]
n
1 , tx).

DPC.ExtractExecute
Input:
• public parameters pp and trapdoor td
• transaction tx
Output:

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• new records [rj ]
n
1

• auxiliary predicate input aux

1. Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe).

2. Construct instance for relationRe: xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

3. Obtain witness: we ← NIZK.Extract(ppe, tde,xe, πe).
4. Parse the witness we as ([ri]

m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

5. Output ([ri]
m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

Figure 4.20: Several subroutines used by the ideal-world simulator S.
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4.10.3 Proof of security by hybrid argument
We use a sequence of hybrids, each identified by a game Gi, to prove that the outputs of the
environment E when interacting with the real-world (dummy) adversary A and the ideal-world
simulator S are computationally indistinguishable. We denote by Outputi(E) the output of E in
game Gi, and by G0 the real-world execution.

• G1 (sample parameters):
This game is the real-world execution modified as follows.
– E interacts with S instead of A.
– S uses DPC.Setup to generate public parameters pp, and gives these to E .
– S maintains the ledger L for E (it appends to L any pushed transaction passing the checks in

DPC.Verify).
– S forwards messages from E to L and other parties.
– S forwards messages from other honest parties to E .
Output1(E) is perfectly indistinguishable from Output0(E) since S samples the public parameters
honestly, maintains the ledger identically to the ideal ledger, and otherwise behaves like the dummy
adversary.

• G2 (simulate setup):
S invokes DPC.SimSetup instead of DPC.Setup. Output2(E) is perfectly indistinguishable from
Output1(E) since NIZK is perfect zero knowledge.

• G3 (simulate proofs):
In all honest party transactions, S replaces NIZK proofs with simulated proofs produced via
NIZK.Simulate. Output3(E) is perfectly indistinguishable from Output2(E) since NIZK is perfect
zero knowledge.

• G4 (simulate serial numbers):
In all honest party transactions, S replaces all serial numbers with uniformly random elements
sampled from PRF’s codomain. Since PRF is a pseudorandom function, and E does not know the
secret key used to compute it, Output4(E) is computationally indistinguishable from Output3(E).

• G5 (simulate commitments and equivocate commitment openings):
In all honest party transactions, S replaces record commitments with commitments to the empty
string ε. In all messages from honest parties to corrupted parties containing record contents, S
replaces the actual commitment randomness with randomness produced by TCM.Equivocate.
Output5(E) is perfectly indistinguishable from Output4(E) since TCM is perfectly hiding and
equivocation produces commitment randomness that is statistically close to uniform.

• G6 (handle adversarial transactions):
For every corrupted party transaction, S extracts an NP instance xe and witness we forRe from
the included proof and then proceeds as follows.



CHAPTER 4. ZEXE: ENABLING DECENTRALIZED PRIVATE COMPUTATIONS 234

– If (xe,we) 6∈ R, S aborts. If NIZK is simulation-extractable, this occurs with negligible
probability.

– For all i ∈ {1, . . . ,m}, if the contents of any ri are different from those seen in any RecordAuth
from an honest party or in the output of a previously extracted transaction, S aborts. If TCM is
a binding commitment scheme, then this occurs with negligible probability.

– For all i ∈ {1, . . . ,m}, if the extracted secret key aski for apki differs from the secret key
extracted for apki in a prior transaction, S aborts. If CM is a binding commitment scheme, then
this occurs with negligible probability.

– For all j ∈ {1, . . . , n}, if the serial number nonce ρj matches one extracted in a prior transaction,
S aborts. If CRH is a collision-resistant hash, then this occurs with negligible probability
because the serial number nonce is the output of CRH evaluated (in part) over the serial numbers
of the input records. If this input is distinct across two different invocations of CRH, then
collision resistance guarantees that a nonce collision happens with negligible probability. Now
for the transaction to be valid, it must contain serial numbers not seen before on the ledger.
Therefore, the inputs to CRH are never repeated.

Output6(E) is therefore computationally indistinguishable from Output5(E).

The final game is distributed identically to the operation of S from the point of view of E . We have
thus shown that E’s advantage in distinguishing the interaction with S from the interaction with A
is negligible.
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4.11 Construction of a delegable DPC scheme
We provide more details on the delegable DPC scheme discussed in Section 4.5. First we give details
on randomizable signatures (Section 4.11.1), and then give pseudocode for the DPC construction
(Section 4.11.2).

4.11.1 Definition and construction of a randomizable signature scheme
A randomizable signature scheme is a tuple of algorithms SIG = (Setup,Keygen, Sign,Verify,
RandPk,RandSig) that enables a party to sign messages, while also allowing randomization of
public keys and signatures to prevent linking across multiple signatures.

We have already described the syntax of the scheme’s algorithms, and summarized its security
properties, in Section 4.5.2. Now we discuss in more detail the security properties, and the
construction used in our code.
Security properties. The signature scheme SIG satisfies the following security properties.

• Existential unforgeability under randomization (EUR). For every efficient adversary A, the
following probability is negligible:

Pr


(
m∗ 6∈ Q and SIG.Verify(ppSIG, pkSIG,m

∗, σ∗)
)

or(
m∗ 6∈ Q and SIG.Verify(ppSIG, p̂kSIG,m

∗, σ∗)
)
∣∣∣∣∣∣∣∣∣

ppSIG ← SIG.Setup(1λ)
(pkSIG, skSIG)← SIG.Keygen(ppSIG)

(m∗, σ∗, r∗SIG)← AS(·)(ppSIG, pkSIG)

p̂kSIG ← SIG.RandPk(ppSIG, pkSIG, r
∗
SIG)


where S(m) := SIG.Sign(ppSIG, skSIG,m) and Q is the set of queries made by A to the signing
oracle S.

• Unlinkability. Every efficient adversary A = (A1,A2) has at most negligible advantage in
guessing the bit b in the IND-RSIG game below.

IND-RSIG
SIG
A (1

λ
):

1. Generate public parameters: ppSIG ← SIG.Setup(1
λ
).

2. Generate key pair: (pkSIG, skSIG)← SIG.Keygen(ppSIG).
3. Obtain message from adversary: m← ASIG.Sign(ppSIG,skSIG,·)

1 (ppSIG, pkSIG).
4. Sample a bit b uniformly at random.
5. If b = 0:

a) Sample new key pair: (pk
′
SIG, sk

′
SIG)← SIG.Keygen(ppSIG).

b) Sign message: σ ← SIG.Sign(ppSIG, sk
′
SIG,m).

c) Set c := (pk
′
SIG, σ).

6. If b = 1:
a) Sign message: σ ← SIG.Sign(ppSIG, skSIG,m).
b) Sample randomness rSIG.
c) Randomize public key: p̂kSIG ← SIG.RandPk(ppSIG, pkSIG, rSIG).
d) Randomize signature: σ̂ ← SIG.RandSig(ppSIG, σ, rSIG).
e) Set c := (p̂kSIG, σ̂).

7. Output ASIG.Sign(ppSIG,skSIG,·)
2 (ppSIG, pkSIG, c).
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• Injective randomization. For every efficient adversary A, the following probability is negligible:

Pr

[
r1 6= r2

SIG.RandPk(ppSIG, pkSIG, r1) = SIG.RandPk(ppSIG, pkSIG, r2)

∣∣∣∣ ppSIG ← SIG.Setup(1λ)
(pkSIG, r1, r2)← A(ppSIG)

]
.

Construction. In Fig. 4.21 we provide a modification of the Schnorr signature scheme [Sch91] that
is randomizable. We briefly explain why this modification satisfies the security properties above.

• Existential unforgeability under randomization (EUR). Given an efficient adversary A that breaks
EUR of randomizable Schnorr signatures, we construct an efficient adversary A′ that breaks
existential unforgeability of standard Schnorr signatures. In detail, A′ forwards signature queries
from A to its own signing oracle and returns the answers to A and then, when A outputs a
tuple (m∗, σ∗, r∗SIG), A′ outputs the tuple (m∗, σ) where σ is computed as follows. If σ∗ is a
valid signature form∗ under pkSIG then σ := σ∗. Otherwise, A′ “undoes” the randomization of
σ∗ = (s, e) by setting σ := (s + e · r∗SIG, e); thus if A outputs a forgery for a randomization of
pkSIG, A

′ translates it back into a forgery for pkSIG. In sum, since standard Schnorr signatures are
secure in the random oracle model assuming hardness of discrete logarithms [PS00], so is the
randomizable variant under the same assumptions.

• Unlinkability of public keys. Public keys are unlinkable because SIG.RandPk multiplies the
public key pk (which is a group element) by a random group element; the result is statistically
independent of pk.

• Unlinkability of signatures. The only part of a Schnorr signature that depends on the public or
secret key is the scalar s. Since SIG.RandSig adds a random shift to s, the result is statistically
independent of the signature’s original key pair.

• Injective randomization. Fixing all inputs but for rSIG, SIG.RandPk is a permutation over G.
Hence, finding collisions over the randomness is not possible.

SIG.Setup(1
λ
)→ ppSIG

1. Sample a group: (G, q, g)← SampleGrp(1
λ
).

2. Sample cryptographic hash functionH .
3. Output ppSIG := (G, q, g,H).

SIG.Keygen(ppSIG)→ (pkSIG, skSIG)
1. Parse ppSIG as (G, q, g,H).
2. Sample a scalar x uniformly from Zq .
3. Output (pkSIG, skSIG) := (g

x
, x).

SIG.Verify(ppSIG, pkSIG,m, σ)→ b
1. Parse ppSIG as (G, q, g,H).
2. Parse σ as (s, e).
3. Set rv := g

s
pk
e
SIG = g

s+xe.
4. Set ev := H(rv‖m).
5. Check if e = ev .

SIG.Sign(ppSIG, skSIG,m)→ σ
1. Parse ppSIG as (G, q, g,H).
2. Sample a scalar k uniformly from Zq .
3. Set r := g

k and e := H(r‖m).
4. Set s := k − xe.
5. Output σ := (s, e).

SIG.RandPk(ppSIG, pkSIG, rSIG)→ p̂kSIG

1. Parse ppSIG as (G, q, g,H).
2. Output p̂kSIG := pkSIG · g

rSIG .

SIG.RandSig(ppSIG, σ, rSIG)→ σ̂
1. Parse ppSIG as (G, q, g,H).
2. Parse σ as (s, e).
3. Output σ̂ := (s− e · rSIG, e).

Figure 4.21: Construction of a randomizable signature scheme based on the Schnorr signature scheme [Sch91].
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4.11.2 Construction of a delegable DPC scheme
Fig. 4.22 provides pseudocode that, together with the modified NP relationRdel

e given in Fig. 4.23,
formalizes the high-level description of a delegable DPC scheme from Section 4.5.3. In both
figures, we highlighted changes from the “plain” DPC scheme in Section 4.4.2. The only step in
DPC.Execute that must be performed by the delegator is Step 7a; all other steps can be performed
by the worker without knowing the signature secret key.
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DPC.Setup
Input: security parameter 1λ

Output: public parameters pp

1. Generate commitment parameters:
ppCM ← CM.Setup(1

λ
), ppTCM ← TCM.Setup(1

λ
).

2. Generate CRH parameters: ppCRH ← CRH.Setup(1
λ
).

3. Generate signature parameters: ppSIG ← SIG.Setup(1
λ
).

4. Generate NIZK parameters forRdel
e (Fig. 4.23):

ppe ← NIZK.Setup(1
λ
,Rdel

e ).
5. Output pp := (ppCM, ppTCM, ppCRH, ppSIG, ppe).

DPC.GenAddress
Input: public parameters pp
Output: address key pair (apk, ask)

1. Generate authorization key pair:
(pkSIG, skSIG)← SIG.Keygen(ppSIG) .

2. Sample secret key skPRF for pseudorandom function PRF.
3. Sample randomness rpk for commitment scheme TCM.
4. Set address public key

apk := CM.Commit(ppCM, pkSIG‖skPRF; rpk).
5. Set address secret key ask := (skSIG, skPRF, rpk).
6. Output (apk, ask).

DPC.ExecuteL

Input:
• public parameters pp

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• auxiliary predicate input aux
• transaction memorandum memo

• new


address public keys [apkj ]

n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

Output: new records [rj ]
n
1 and transaction tx

1. For each i ∈ {1, . . . ,m}, process the i-th old record as follows:

a) Parse old record ri as ri =

(
address public key apki payload payloadi comm. rand. ri

serial number nonce ρi predicates (Φb,i,Φd,i) commitment cmi

)
.

b) If payloadi.isDummy = 1, set ledger membership witnesswL,i := ⊥.
If payloadi.isDummy = 0, compute ledger membership witness for commitment: wL,i ← L.Prove(cmi).

c) Parse address secret key aski as (skSIG,i, skPRF,i, rpk,i) and derive pkSIG,i from skSIG,i.
d) Compute signature randomness: rSIG,i ← PRFskPRF,i

(ρi).
e) Compute serial number: sni ← SIG.RandPk(ppSIG, pkSIG,i, rSIG,i).

2. For each j ∈ {1, . . . , n}, construct the j-th new record as follows:
a) Compute serial number nonce: ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
b) Construct new record: rj ← DPC.ConstructRecord(pp, apkj , payloadj ,Φb,j ,Φd,j , ρj).

3. Retrieve current ledger digest: stL ← L.Digest.
4. Construct instance for relationRdel

e : xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

5. Construct witness for relationRdel
e : we := ([ri]

m
1 , [wL,i]

m
1 , [skPRF,i]

m
1 , [pkSIG,i]

m
1 , [metai]

m
1 , [rpk,i]

m
1 , [rj ]

n
1 , aux).

6. Generate proof for relationRdel
e : πe ← NIZK.Prove(ppe,xe,we).

7. For each i ∈ {1, . . . ,m}:
a) Sign message: σi ← SIG.Sign(ppSIG, skSIG,i,xe‖πe).
b) Randomize signature: σ̂i ← SIG.RandSig(ppSIG, σi, rSIG,i).

8. Construct transaction: tx := ([sni]
m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe, [σ̂i]

m
1 ).

9. Output ([rj ]
n
1 , tx).

DPC.VerifyL

Input: public parameters pp and transaction tx
Output: decision bit b

1. Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe, [σ̂i]

m
1 ).

2. Check that there are no duplicate serial numbers
a) within the transaction tx: sni 6= snj for every distinct i, j ∈ {1, . . . ,m};
b) on the ledger: L.Contains(sni) = 0 for every i ∈ {1, . . . ,m}.

3. Check that the ledger state is valid: L.ValidateDigest(stL) = 1.
4. Construct instance for the relationRdel

e : xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

5. Check proof for the relationRdel
e : NIZK.Verify(ppe,xe, πe) = 1.

6. For every i ∈ {1, . . . ,m}, check that signature verifies: SIG.Verify(ppSIG, sni,xe‖πe, σ̂i) = 1.

Figure 4.22: Construction of a delegable DPC scheme. Highlights denote differences from Figure 4.8.
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The NP relationRdel
e has instances xe and witnesses we of the following form.

xe =

 ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

transaction memorandum memo

 and we =



old records [ri]
m
1

old record membership witnesses [wL,i]
m
1

old record authorization public keys [skPRF,i]
m
1

old record serial number secret keys [pkSIG,i]
m
1

old record address randomness [rpk,i]
m
1

new records [rj ]
n
1

auxiliary predicate input aux


where

• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi);

• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [Φd,i]

m
1 [Φb,i]

m
1 [sni]

m
1 memo

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [Φd,j ]

n
1 [Φb,j ]

n
1 aux

)
.

A witnesswe is valid for an instance xe if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• If ri is not dummy,wL,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,wL,i) = 1.
• The address public key apki matches the authorization public key pkSIG,i and the serial number secret key skPRF,i:

apki = CM.Commit(ppCM, pkSIG,i‖skPRF,i; rpk,i) .
• The serial number sni is valid: rSIG,i = PRFskPRF,i

(ρi) and sni = SIG.RandPk(ppSIG, pkSIG,i, rSIG,i).
• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖Φb,i‖Φd,i‖ρi; ri).
• The death predicate Φd,i is satisfied by the local data: Φd,i(i‖ldata) = 1.

2. For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖Φb,j‖Φd,j‖ρj ; rj).
• The birth predicate Φb,j is satisfied by the local data: Φb,j(j‖ldata) = 1.

Figure 4.23: The NP relationRdel
e . Highlights denote differences from Figure 4.9.
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4.12 Extensions in functionality and in security
We summarize some natural extensions of our DPC construction that give richer functionality, as
well as methods to prove security notions beyond standalone non-adaptive security.
Storing data in addresses. For some applications it can be useful to verifiably associate address
public keys with additional metadata meta. One can easily modify our construction to achieve this
by using the address public key commitment to additionally commit to meta. To prove that a given
address public key is bound to the metadata string meta, one can use a standard non-interactive zero
knowledge proof of knowledge.14

With such a mechanism in hand, we can realize various useful functionality like on-ledger
encryption: a user stores an encryption public key in the metadata of one of her addresses, and
others can later use this public key to encrypt information about records created for her, and store the
resulting ciphertext in the transaction’s memorandum. This method, used for example in Zerocash
[Ben+14], gives users the option to not use other out-of-band secure communication channels.
Selective disclosure. For compliance purposes, it may be useful to selectively reveal information
about a transaction to certain parties. Our implementation can be extended to support this by
changing how hashes of predicate verification keys are committed to in a transaction: instead
of committing all the verification keys together, one can instead commit to them in separate
commitments. To disclose the predicates that were invoked in a transaction, a user can then simply
open the relevant commitments.
Ledger position. In some applications it may be useful to know the unique ledger position of a
record, i.e., to have this information be part of the local data ldata given as input to predicates. For
example, one can use a record’s ledger position to implement a “time lock” that prevents the record’s
consumption until a pre-specified amount of time has passed since the record’s creation. However,
the ledger interface we described in Section 4.3.1 does not expose this functionality: L.Prove only
returns a proof that a transaction (or a subcomponent thereof) appears on the ledger, and not its
position. One can augment L.Prove to instead output the transaction’s ledger position posL, and a
proof that posL is the transaction’s position on the ledger. Our instantiation of the ledger with a
Merkle tree supports this augmentation inherently: the path to the transaction in the Merkle tree is
also its position the tree.
Composable security. The security definition in Section 4.3.3 is a restriction of UC security
definitions to a single execution at any given time. We can avoid this restriction and prove our
construction UC-secure by replacing our simulation-extractable NIZKs with UC-secure NIZKs.
The remainder of the proof would go through unchanged, and this would achieve composition of
multiple protocol instances.
Adaptive security. We can prove adaptive security, with a minor modification to our protocol
in Section 4.4. The barrier to proving security against adaptive corruptions (even in a standalone
setting) is a lack of forward-secure privacy. Namely, when the adversary corrupts a party P , it gets

14We do not need these NIZK proofs to be simulation-extractable since we do not extract from them. In fact, in
our implementation we can even use specific sigma-protocols designed to prove knowledge of openings of Pedersen
commitments.
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access to P’s state, which includes contents of records held by P and address secret keys belonging
to P . The adversary can then use this information to break unlinkability of P’s transactions by
deriving the serial numbers of consumed records and matching these against those present on the
ledger.

In the proof, this problem is reflected in how the simulator S handles serial numbers in honest
party transactions (see Section 4.10.2). For honest party transactions, serial numbers are sampled
uniformly at random via SampleSn. When the environment E corrupts an honest party, it can attempt
to carry out the aforementioned linking attack by computing serial numbers via the PRF. Since
serial numbers already published in transactions were derived randomly, they would not match the
output of the PRF, allowing E to distinguish the ideal world from the real world.

We address this issue as follows. First, we work in the secure-erasure model and ensure that
honest parties delete (a) all records output from Execute (after sending their contents to the intended
recipients), and (b) all records that have been consumed. Hence, at the time a party is corrupted,
the state revealed to the adversary does not contain secrets of past records, so the adversary cannot
derive those records’ serial numbers. Next, we have to convincingly match the address public
keys of unconsumed records with corresponding address secret keys. To do this, we modify
DPC.GenAddress to use trapdoor commitments to construct address public keys. The trapdoor
property then allows us to open public keys to the correct secret keys.

However, these measures by themselves are not enough. Consider the following scenario: the
adversary corrupts an honest user and learns her secret key. For every transaction in the ledger,
it computes the serial number nonces of the output records from the serial numbers of the input
records. The adversary can then use these nonces along with the secret key to derive candidate serial
numbers for the output records. If these candidate serial numbers appear on the ledger, then the
adversary learns that the record has been consumed.

To prevent this, we randomize the serial number nonces of all records output by Execute by
deriving them as ρj := CRH(j‖rρ,j‖sn1‖ · · · ‖snm) for some randomness rρ,j that is deleted after
invoking Execute. This randomization ensures that the serial number nonce of an output record
cannot be derived deterministically from the (publicly visible) serial numbers of the input records.

The above measures, however, are still insufficient: the adversary still knows the secrets of
records that a corrupted party sent to an honest party. After corrupting this honest party, the
adversary can learn its address secret key and therefore derive the serial number of those records.
To overcome this obstacle, one can replace the PRF with a programmable PRF [PS18], for which
the owner of the secret key can “program” the PRF to output pre-determined values on specific
inputs: for all polynomial-sized sets S = {(xi, yi)}i, the owner of a PRF secret key sk can derive a
second key skS such that PRFsks

(xi) = yi for each (xi, yi) ∈ S, while PRFskS
(x) = PRFsk(x) for

other inputs x. This fixes the foregoing issue because S can now give E a programmed PRF secret
key for the set S = {(ρi, sni)}i, where ρi is the serial number nonce of the i-th record received from
a corrupted party.
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Chapter 5

Impact and adoption

The work in this dissertation has resulted in both academic and industrial impact. Below we first
elaborate on the adoption of Marlin (Section 5.1) and Zexe (Section 5.2), and then, in Section 5.3,
we describe arkworks, our open source Rust ecosystem for programming zkSNARKs.

5.1 Marlin
The AHP abstraction and concrete AHPs constructed in [CHMMVW20] have spurred a number of
novel academic works on universal zkSNARKs:
• Fractal[COS20] adapts the holographic lincheck of Marlin to the IOP setting, and uses it to
construct a transparent zkSNARK in the ROM.

• Claymore [SZ20] constructs new AHPs in the monomial basis.
• Bünz et al. [BCMS20; BCLMS21] show how to construct PCD from AHP-based SNARKs via
the new paradigm of accumulation, and Darlin [HGD21] provides an end-to-end construction
instantiating this paradigm with the Marlin AHP.

• Lunar [CFFQR20] constructs new AHPs that achieve better efficiency.
• Ràfols and Zapico [RZ21] and Zhang et al. [ZZWG21] define new generalizations of AHPs and

Marlin’s AHP-to-SNARK compiler, and provide constructions which, after compilation, achieve
better proof size and prover time.

• Eclipse [ABCGOT21] shows how to add commit-and-prove capabilities to AHP-based SNARKs.
Marlin’s efficiency and succinctness properties have also resulted in it being used for applications:
it is used to construct PCD in [CCDW20], and auditable MPC in [KZGM21]. Finally, it has also
seen deployment in industrial projects: Aleo [Aleo] is an implementation of Zexe [BCGMMW20]
that uses Marlin to implement its birth and death predicates, while Horizen Network [Horizen]
uses Marlin as part of its PCD implementation [HGD21].
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5.2 Zexe
Zexe’s construction of decentralized private computation (DPC) schemes is being deployed in a
number of cryptocurrency projects [Aleo; Aztec; Mir], and some projects are considering using
our construction of privacy-preserving DEXs as well [Anoma]. Subsequent academic works have
developed new techniques to construct two-chains of curves, such as [EG20], which constructs a new
“outer” curve for BLS12-377. These curves have been deployed in industrial projects [Gab+20].

5.3 arkworks

We have developed our initial implementation of Zexe into arkworks [con], a state-of-the-art open
source Rust ecosystem for zkSNARK development. This ecosystem provides all the components
required for zkSNARK programming, organized into generic, efficient, and easy-to-use modules,
such as:
• Generic implementations of efficient algorithms for finite fields, elliptic curves, and pairings, as
well as instantiations of widely-used curves.

• State-of-the-art zkSNARKs, including Marlin (see Chapter 2 and [CHMMVW20]), as well as
those of Groth [Gro16], and Groth and Maller [GM17].

• Ergonomic interfaces for expressing a computation as arithmetic constraints (the “language” of
zkSNARKs).

• Recursive composition of arbitrary SNARKs, including recursion from atomic and split accumu-
lation schemes (that is, the constructions in Chapter 3 and [BGH19; BCMS20; BCLMS21]).

• Libraries for aggregating proofs and signatures [BMMTV21].
The modular design of arkworks means that improvements in one component (such as finite field
arithmetic) are inherited “for free” by downstream components (such as zkSNARK implementations).
We achieve this composability without sacrificing performance: our generic libraries are competitive
with the best specialized libraries.

The arkworks ecosystem is open-source, and has a vibrant contributor community with over
fifty unique contributors that have collectively contributed over 800 pull requests spanning 120, 000
lines of Rust code. Our community has also developed a tutorial to help beginners get started with
programming zkSNARKs.1

As a result of our open source ethos and modular and efficient design, arkworks libraries have
seen deployment in a number of state-of-the-art industry projects, such as:
• Mina [Mina] is a blockchain that uses proof-carrying data to provide a short verifiable digest of
the entire chain’s history. Their implementation of proof-carrying-data [Pickles20] builds on top
of our finite field (ark-ff2) and elliptic curve (ark-ec2) libraries.

• Celo [Celo] is a blockchain that has developed a custom protocol [Gab+20] to aggregate BLS signa-
ture [BLS04]. The implementation of this protocol relies on our libraries for the Groth16 SNARK

1https://github.com/arkworks-rs/r1cs-tutorial/
2https://github.com/arkworks-rs/algebra

https://github.com/arkworks-rs/r1cs-tutorial/
https://github.com/arkworks-rs/algebra


CHAPTER 5. IMPACT AND ADOPTION 244

(ark-groth163) and constraint gadgets (ark-r1cs-std4 and ark-crypto-primitives5).
• Anoma Network [Anoma] uses ark-ec to implement threshold encryption.
• Manta Network [Manta] uses ark-r1cs-std and ark-crypto-primitives to implement
private transactions and a private DEX.

• ZoKrates [ET18; ZoKrates] and Noir [Noir] are domain-specific languages designed for pro-
gramming zkSNARKs. Their reference compilers include a backend that produces arkworks
constraints by relying on ark-r1cs-std and ark-crypto-primitives.

A number of academic works have also used arkworks libraries to implement and evaluate their
cryptographic protocols [BCGMMW20; CHMMVW20; CCDW20; BCLMS21; BMMTV21; ZX21;
TFBT21; CXZ21; FQZDC21; GJMMST21; KMSV21; Ili+21].

3https://github.com/arkworks-rs/groth16
4https://github.com/arkworks-rs/r1cs-std
5https://github.com/arkworks-rs/crypto-primitives

https://github.com/arkworks-rs/groth16
https://github.com/arkworks-rs/r1cs-std
https://github.com/arkworks-rs/crypto-primitives
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