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Abstract

Behavioral Network Economics

by

Soham Rajesh Phade

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkat Anantharam, Chair

Game theoretic models are prevalent in the study of interactions between autonomous agents.
Given the pervasive role of humans as agents in networks (e.g. social networks) and markets
(e.g. labor markets), building mechanisms based on presumably more accurate models of
human behavior is of great interest both for increasing human welfare and for building
more efficient commercial systems that interact with humans. Cumulative prospect theory
(CPT), one of the leading models for decision-making under risk and uncertainty, introduced
by Kahneman and Tversky, combines several psychological insights into decision theory.
Theoretical economics has primarily focused on expected utility theory (EUT) to model
human behavior. On the other hand, CPT has been observed to be a better fit in empirical
studies, it is a generalization of EUT, and has a nice mathematical formulation convenient for
theoretical studies. It provides a way to incorporate psychological aspects into the concrete
frameworks of game theory and economics which is required in building large scale systems
that are better aligned with human preferences and needs and are also robust to their
emotional traits. A systematic and principled approach is needed. This thesis aims to build
work in this direction by studying the following three problems through the lens of CPT:

1. resource allocation over networks,

2. notions of equilibrium in non-cooperative games, and

3. mechanism design.

In this thesis, we develop theoretical tools and establish fundamental results that would
support real-world applications and future research in behavioral network economics.
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Chapter 1

Introduction

1.1 Motivation

We will mainly be concerned with the study of social systems comprised of several individuals,
typically humans, henceforth called players , interacting directly or indirectly in a bounded
situation (or an environment). Systems influenced by technological innovations over the past
several decades will be of particular interest to us. For example, these include transportation
and communication networks, the Internet, computation networks and data-centers, energy
and utility networks, financial networks, labor markets, social networks, and digital markets.

The complex nature of these systems requires consideration of several crucial aspects
which gave rise to the interdisciplinary fields of cybernetics and systems science. These
combine knowledge from various fields such as control theory, information theory, dynamical
systems, operations research, computer science, systems engineering, economics, statistics,
and psychology. The engineering approach towards solving these problems primarily focuses
on the physical aspects such as feasibility, practicality, maintainability, stability, and scal-
ability. An equally important dimension is that of catering to individual preferences and
needs. Ultimately these systems are there for the users. Thus enters marketing research
and business management. These fields study the market economy and business processes
to identify, anticipate and satisfy customers’ needs and wants. A holistic approach that
combines these two approaches will go a long way.

Technological advancements in domains such as the Internet, Computing, Communica-
tion, and Artificial Intelligence (AI) have lead to rapidly evolving network services such as
cloud computing, smart information systems, multimedia platforms, software companies,
online marketplaces, and smart grids, that have global scopes. Consequently, network eco-
nomics research evolved along two major lines:

1. Optimal routing and control: This involved the study of flow dynamics and congestion
based on the underlying network structures and routing decisions. Typical problems
studied include the shortest path problem, the maximum flow problem, the minimum
cost flow problem, etc. (See books by Anna Nagurney [94, 95, 97, 98, 96].)
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2. Network formation and growth: Here, the focus is on the understanding of the for-
mation of network links, the flow of information in social networks or diseases in epi-
demiological studies, connectivity and segregation in different networks, etc. Models
from random graph theory and statistics are helpful in this approach. (See books by
Mathew Jackson [62, 63] and Sanjeev Goyal [54].)

Besides understanding the working of networks, a fundamental goal of network economics
is to assist decision-making for both the system designer and the players in the system. For
example, Braess’ paradox warns a network planner of the following counter-intuitive effect:
adding additional links to a network can reduce the overall system utility (such as the total
delays for all the drivers in a transportation network) at Nash equilibrium when each player is
making an optimal self-interested decision. Observations like these and results from network
economics have greatly helped policy-making and system design. (Shapiro and Varian [122]
describe strategies to guide business decisions and policies in network economies such as
differential pricing, utilizing network positive externalities and lock-in effects, patents and
rights management, and others.)

Game theory and economics offer valuable guiding principles in the design of these sys-
tems. The economic models for studying these problems typically assume that the partic-
ipating agents are rational and possess immense computational power (which is reasonable
when the participating agents are firms or nations). However, for e-commerce platforms like
social media and online marketplaces, where the participating agents are single individuals
who perform several repeated short-lived interactions with the platform, it is unusual that
these agents would adhere to the above behavioral assumptions. We cannot expect the
human mind to make informed and well-thought decisions in such complex interconnected
systems, let alone the stress it generates. Our goal here is to use sophisticated models from
behavioral psychology and decision theory to model human interaction and design robust
and scalable systems that would assist the users in making decisions that are in their own
interests and also for those around them.

The digital revolution has given rise to software companies having massive control over
several crucial networks with the power to micromanage them. The algorithms deployed
by these companies can influence social, economic, and political networks like never before.
Along with all the evident benefits of these software systems in automating tasks and facil-
itating large-scale network operations, we must pay closer attention to how these systems
interact with their users. The growing human-computer interaction requires careful con-
sideration of human behavior and their emotional responses. Our knowledge regarding the
guiding principles for governing these interactions is quite limited, and a methodological
approach towards incorporating psychological aspects into system design is barely off the
ground. There is an ongoing debate relating to the benefits of these big technology com-
panies, the extreme power these companies hold, and whether they are using it wisely or
not. Although it will not be the focus of this thesis, I hope that the behavioral foundations
developed in this work would help answer some of these questions (see Section 7.3), and
consequently, help build systems that are better aware of human behavior and needs.
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Perhaps the most apt historical model for algorithmic regulation is not trust-
busting, but environmental protection. To improve the ecology around a river,
it isn’t enough to simply regulate companies pollution. Nor will it help to just
break up the polluting companies. You need to think about how the river is
used by citizens—what sort of residential buildings are constructed along the
banks, what is transported up and down the river—and the fish that swim in the
water. Fishermen, yachtsmen, ecologists, property developers, and area residents
all need a say. Apply that metaphor to the online world: Politicians, citizen-
scientists, activists, and ordinary people will all have to work together to co-
govern a technology whose impact is dependent on everyone’s behavior, and that
will be as integral to our lives and our economies as rivers once were to the
emergence of early civilizations.

Anne Applebaum
“The Internet doesn’t have to be awful.” The Atlantic. April 2021.

1.2 Examples and Applications

Transportation Networks

Let’s say you want to reach the airport to catch a flight. You open a navigation app, such
as Google Maps or Apple Maps, and check for possible routes and the estimated times of
arrival. Your topmost concern is to arrive at your destination in time. Plus, you’d like to
have a good estimate of your arrival time. Compare it with someone who might be using
the same app but is looking for a scenic route and not so worried about his arrival time. At
any given time, hundreds of thousands of users are using such apps to find what suits them
the best. All these different people have varied requirements based on their purposes and
preferences while sharing the same infrastructure and resources. The app recommendations
affect their choices, and their choices have externalities that affect the conditions for others.
One could imagine the app providing signals and economic incentives to alter traffic patterns.

A familiar example in this spirit is clearing the way for emergency vehicles. Something
that we have been doing for several years. Another example is charging a variable rate
adapted to the traffic conditions for the use of the express lanes. Given the prevalent use of
navigation apps and other communicating devices today, we have more options to influence
traffic routing. At the same time, we can collect and process a lot more data. Our goal is
to explore ideas along these lines. An important thing to notice here is that the players in
this system are human agents and they are bound to display behavioral features that do not
fall under the traditional notions of rationality. For example, drivers might prefer routes
that they are familiar with, even if the alternative route is faster. (This is reminiscent of the
well-documented endowment effect , which says that people are more likely to hold onto an
object they own rather than trade it for an equally or higher valued alternative they do not



CHAPTER 1. INTRODUCTION 4

own. The fear of the unknown and uncertainty also plays a role here.) We must incorporate
these behavioral features into system modeling. Furthermore, this applies to all forms of
transportation services such as public transport, railways, airways, waterways, shipping of
goods, etc.

Communication Networks

Using navigation apps to help route traffic is just an instance of taking advantage of the
advanced communication technologies for improving resource allocation. Indeed, communi-
cating the availability of resources, individual preferences, and incentives for resource man-
agement, and controlling system parameters require real-time information transfer and sig-
naling. No wonder the Internet was the first to witness real-time algorithm-based traffic
management. Transmission Control Protocol (TCP) and bandwidth allocation algorithms
have helped avoid the congestion issues that had plagued the Internet before TCP. The the-
oretical foundations for this work were laid by Kelly in the late 1990s [72, 73]. In Chapter 2,
we extend these ideas to incorporate behavioral features and psychological traits displayed
by the users.

Today, traffic shaping is a major area that deals with congestion control [84, 116]. The
users are allocated bandwidth based on the choice of the monthly plans selected by them
and the ambient network traffic conditions. One of our goals is to extend these ideas to
real-time traffic management. For example, imagine you have a virtual presentation coming
up. It would be nice to indicate this to the service provider, such as Xfinity or AT&T, and
request a boost for this period. It might result in additional charges, but it would provide
you the added benefit of choosing a more economical base plan. Certainly, re-engineering
the Internet along these lines would increase user-system interactions and it would need
algorithms that are more aware of human behavior and responses.

Cloud Computing Networks

Just as communication networks allocate bandwidth to the users, cloud computing networks,
such as Amazon Web Services, Microsoft Azure, or Google Cloud, provide on-demand com-
puter system resources such as data storage and computing power. Cloud service providers
can schedule most of the customer jobs instantly today as the resources exceed the demand.
However, with a growing trend of customers opting for computing resources as a service
instead of maintaining such systems on their own, this surplus luxury is not sustainable.
Resources are also naturally constrained in settings such as fog computing and peer-to-peer
computing networks. Besides, concerns over the energy consumption by data centers is
another factor that limits the expansion of computing resources.

The demand for resources can vary significantly over time, different jobs have different
resource requirements, and customers have varying preferences towards their job delays and
the quality of service. The prices must conform to these changing demands in real-time.
Although the typical customers in this setting are firms and organizations, the end-users
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of their services and products are often individual humans. The value and revenue gener-
ation for these organizations is closely related to the levels of consumer satisfaction. As a
result, behavioral considerations naturally creep into the utilities and preferences of these
organizations.

Energy Networks

Smart grids are another excellent example of the application of digital processing and com-
munications to systems where user interactions play a major role. The goal here is to improve
the economic efficiency of electricity networks and maintain high levels of quality of supply
by integrating the behavior and actions of all the users connected to the network - genera-
tors, consumers, and those that do both. It would provide communication protocols to the
suppliers and the consumers, allowing them to be more flexible and sophisticated in their
operational strategies. For example, the suppliers could indicate their energy prices, and
the consumers could indicate their willingness to pay in real-time. The users can configure
smart devices to generate additional energy or initiate energy-saving modes under specific
settings such as during high-cost peak usage periods. Similar to the pricing based on job
delays in the cloud computing setting, we can imagine customers having different prefer-
ences towards their energy requirements based on deadlines, for example, such requirements
would naturally occur in charging of electric vehicles. Today, PG&E, a utility company that
provides natural gas and electric service, offers different pricing schemes such as time-of-use
rate plans and tiered usage rate plans. Along similar lines, we are interested in much more
flexible and sophisticated pricing schemes based on dynamic market conditions and human
behavior analysis. This would also benefit in incentivizing people to shift to clean electricity
options and adopt solar panels at home.

Social Networks

Several activities such as advertising, campaigning, or running welfare programs depend on
the underlying social networks. Humans are the primary agents in any social network. Their
interactions and behavior form an integral part in the study of social networks. Models that
incorporate psychological aspects are needed to better allocate resources in these activities.
It would help answer questions like: How can we maximize the impact of a campaign with
a limited budget? How to best incentivize the agents in a network to perform actions that
are in the best interests of the entire society?

From a commercial point of view, it would greatly benefit the online ad exchange com-
panies such as Google Ads or Facebook Ads. These are digital marketplaces that enable
advertisers to buy and sell advertising spaces. Here, user attention is the limited resource
and the different advertisers are competing for this limited resource. The tools developed in
this thesis will help regulate these markets more efficiently by incorporating human behav-
ioral features.
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Matching Markets

Just like the ad exchange marketplace, several other matching markets fall in this domain.
These include labor markets that match employers and workers such as Upwork and Free-
lancer, ride hailing applications that match drivers and riders such as Uber and Lyft, delivery
services that match restaurants and diners such as Doordash and UberEats, or online mar-
ketplaces that match sellers and buyers such as Amazon and eBay. Notice that most of the
participating agents in these settings are individual humans susceptible to showing behavior
that is influenced by biases and heuristics.

Finance and Insurance

Finance and insurance is another interesting setting where behavioral factors play a huge
role. There is a decent amount of work studying how individuals make decisions about their
investment strategies and insurance policies, but there is only a limited amount of work that
considers behavioral features in a financial network setting where the individuals interact
with each other and their decisions affect the other individuals in the network. In this work,
we establish results that would facilitate this research.

Observe that, in all the above examples, the following factors are common:

1. The resources are limited.

2. Players have varying requirements and preferences.

3. The preferences of the players are private information.

4. Players have limited information about the system operations and constraints.

5. Players show behavioral features.

The goal is to design a communication protocol or a market system to fa-
cilitate the exchange of information for strategic players who might display
behavioral features, and consequently allocate resources to satisfy certain re-
quirements. In contrast to prior works, we will pay special attention to the last
factor, namely, the behavioral features of the players. We aim to bring these aspects
to the same level of mathematical sophistication as other aspects in system sciences. Such
an approach is crucial to building systems that are scalable across different users and robust
to the intricacies of human behavior.

With me, everything turns into
mathematics.

Rene Descartes
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1.3 The Tool: Cumulative Prospect Theory (CPT)

Central to our approach is a mathematical model to capture human behavior and preferences.
As is common in decision theory, we will consider the problem of decision-making by rational
agents under uncertainty. In many of the examples discussed above, the agents need to make
decisions without having complete information about the system and the behavior of other
players in the system. For instance, a person who is traveling needs to decide which route
to take without the exact information about traffic conditions, or a company launching
a new product needs to decide how to maximize its advertising impact without complete
knowledge of its customers as well as its competitors. Decision-making under uncertainty
provides a minimal framework that is general enough to capture the commonly encountered
interactions, preferences, choices and actions of agents in a network.

Rationality is generally formulated as expected utility maximization. The justification for
this comes from the von Neumann and Morgenstern expected utility maximization theorem
[130]. Although this assumption has a nice normative appeal to it and can be used to a
large extent as a prescriptive theory, it has been evident through several examples [3, 48,
67] that the model is not that good an approximation for descriptive purposes. On the
other hand, cumulative prospect theory (CPT) accommodates many empirically observed
behavioral features [127]. Proposed by Kahneman and Tversky, it is one of the leading
theories for decision making under uncertainty. It has a nice mathematical formulation and
is a generalization of expected utility theory (EUT).

A lottery (or prospect) is comprised of one or more outcomes with their corresponding
probabilities.1 We will denote a lottery by

L := {(p1, z1), (p2, z2), . . . , (pt, zt)}, (1.3.1)

where zj ∈ R, 1 ≤ j ≤ t, denotes an outcome and pj, 1 ≤ j ≤ t, is the probability with which
outcome zj occurs. We assume that the lottery is exhaustive, i.e.

∑t
j=1 pj = 1. (Note that

we are allowed to have pj = 0 for some values of j and we can have zk = zl even when k 6= l.)
Expected utility theory (EUT) posits that each individual is associated with a utility

function u : R→ R. The utility function is typically assumed to be concave (to capture the
risk-averseness of the individual). The expected utility corresponding to lottery L is given
by

U(L) =
t∑

j=1

pju(zj). (1.3.2)

A person is said to have EUT preferences if, given a choice between lottery L1 and lottery
L2, she chooses the one with the higher expected utility.

In the latter half of the 20th century, several people began documenting the limitations of
EUT to model human behavior. Allais paradox (1952) is a particularly interesting thought
experiment that marks the beginning of this work [3]. The experiment goes as follows:
Consider the two lotteries shown in Experiment A of Figure 1.1. If you choose Lottery 1A,
then you win $1 Million for sure, i.e. with a 100% chance. If you choose Lottery 2A, then
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Experiment A
Lottery 1A Lottery 2A

Winning Chance Winning Chance
$1 Million 100% $1 Million 89%

Nothing 1%
$5 Million 10%

Experiment B
Lottery 1B Lottery 2B

Winning Chance Winning Chance
Nothing 89% Nothing 90%

$1 Million 11%
$5 Million 10%

Figure 1.1: Allais Paradox: Lotteries involved in the thought experiments proposed by Allais
are shown. Each lottery is comprised of the winning amounts and the corresponding chance
of winning these amounts.

you win $1 Million with a 89% chance, you do not win anything with a 1% chance, and you
win $5 Million with a 10% chance. You can choose only one of the two lotteries and it is a
one time offer. Which one do you select? Now instead, consider Experiment B. The lotteries
are shown in Figure 1.1. Again you can choose only one of the two lotteries and it is a one
time offer. Which one now?

It is quite common for people to choose Lottery 1A in Experiment A and Lottery 2B in
Experiment B. The paradox arises from the following observation: Lottery 1B is obtained
from Lottery 1A by transforming 89% chance of winning $1 Million to winning nothing. The
remaining 11% chance of winning $1 Million is left as is. When a similar transformation is
applied to Lottery 2A, we get Lottery 2B. Note that the 89% chance of winning $1 Million
in Lottery 2A changed to nothing combined with the 1% chance of winning nothing gives
the 90% chance of winning nothing in Lottery 2B. The 10% chance of winning $5 Million
remains unchanged.

The above observation underlies the fact that the choice of Lottery 1A and Lottery 2B
is inconsistent with EUT. To see this, let u be the utility function of the individual. Choice
of Lottery 1A over Lottery 2A implies

u($1M) > 0.89u($1M) + 0.01u($0) + 0.10u($5M). (1.3.3)

And choice of Lottery 2B over Lottery 1B implies

0.89u($0) + 0.11u($1M) > 0.90u($0) + 0.10u($1M). (1.3.4)

No utility function u can satisfy the above inequalities simultaneously. Later we will see how
CPT explains this phenomenon.
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We now give a quick review of cumulative prospect theory (CPT) (for more details
see [132]). Each person is associated with a reference point r ∈ R, a corresponding value
function vr : R→ R, and two probability weighting functions w± : [0, 1]→ [0, 1], w+ for gains
and w− for losses. We say that (r, vr, w±) are the CPT features of that person.

The function vr(x) satisfies: (i) it is continuous in x; (ii) vr(r) = 0; (iii) it is strictly
increasing in x. The value function is generally assumed to be convex in the losses domain
(x < r) and concave in the gains domain (x ≥ r), and to be steeper for losses for gains in
the sense that vr(r) − vr(r − z) ≥ vr(r + z) − vr(r) for all z ≥ 0. 2 The reference point
is meant to capture psychological factors such as the players expectations, her status quo,
or her goal. By letting the value function be steeper for losses we are able to capture the
individual’s loss aversion. The concavity in gains and convexity in losses captures the effect
of diminishing sensitivity of the individual. Contrast this with the typical assumption that
the utility function is concave throughout in EUT.

An example of a typical value function is

vr(z) =

{
(z − r)α1 for z ≥ r,

−λ(r − z)α2 for z < 0,
(1.3.5)

with α1, α2 ∈ (0, 1], and λ ≥ 1. Here, α1 and α2 capture the diminishing sensitivity to
returns for gains and losses, respectively, and λ captures the loss aversion. In Figure 1.2, we
plot the above value function with α1 = α2 = 0.5, λ = 2.5.

The probability weighting function along with the ordering of the outcomes in a lottery,
dictates the probabilistic sensitivity of a player, a property that plays an important role in
lotteries and gambling. As Boyce [3] points out, “It is the lure of getting the good without
having to pay for it that gives allocation by lottery its appeal.”

The probability weighting function typically over-weights small probabilities and under-
weights large probabilities, and this captures the ‘lure’ effect. The probability weighting
functions w± : [0, 1]→ [0, 1] satisfy: (i) they are continuous; (ii) they are strictly increasing;
(iii) w±(0) = 0 and w±(1) = 1.

An example of a typical probability weighting function (for gains or losses) suggested by
Prelec [113] is

w(p) = exp{−(− ln p)γ}, (1.3.6)

with γ ∈ (0, 1]. In Figure 1.3, we plot this function with γ = 0.65.
We now describe how to compute the CPT value of a lottery. This is the analog of the

expected utility in EUT. Let α := (α1, . . . , αt) be a permutation of (1, . . . , t) such that

zα1 ≥ zα2 ≥ · · · ≥ zαt . (1.3.7)

Let 0 ≤ jr ≤ t be such that zαj ≥ r for 1 ≤ j ≤ jr and zαj < r for jr < j ≤ t. (Here jr = 0
when zαj < r for all 1 ≤ j ≤ t.) The CPT value V r(L) of the prospect L is evaluated using
the value function vr(·) and the probability weighting functions w±(·) as follows:

V r(L) :=

jr∑
j=1

∇+
j (p, α)vr(zαj) +

t∑
j=jr+1

∇−j (p, α)vr(zαj), (1.3.8)
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Figure 1.2: Example of a typical value function. The plot shows value function v0 (i.e.
reference point r = 0) given in equation (1.3.5) with α1 = α2 = 0.5, and λ = 2.5. With
reference point r = 0, positive outcomes (z > 0) are gains and negative outcomes (z < 0)
are losses. The value at reference point r = 0 is 0. Notice that the value function is concave
in the positive domain and convex in the negative domain. Also, notice that value function
is much more steeper in the negative domain than in the positive domain giving rise to a
kink at the origin.

where ∇+
j (p, α), 1 ≤ j ≤ jr,∇−j (p, α), jr < j ≤ t, are decision weights defined via:

∇+
1 (p, α) := w+(pα1),

∇+
j (p, α) := w+(pα1 + · · ·+ pαj)− w+(pα1 + · · ·+ pαj−1

) for 1 < j ≤ t,

∇−j (p, α) := w−(pαt + · · ·+ pαj)− w−(pαt + · · ·+ pαj+1
) for 1 ≤ j < t,

∇−t (p, α) := w−(pαt).

Although the expression on the right in equation (1.3.8) depends on the permutation α, one
can check that the formula evaluates to the same value V r(L) as long as the permutation α
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Figure 1.3: Example of a typical probability weighting function. The solid curve shows the
typical shape of a probability weighting function, be it for gains or for losses. The dotted
line shows the identity function for reference. This marks the deviation form EUT. Indeed,
if the probability weighting function is given by the identity function for both gains and
losses, then the player has EUT preferences with the utility function given by the value
function vr at its reference point. The plot shows the probability weighting function given
by equation (1.3.6) with γ = 0.65. Notice that the probability weighting function is typically
concave initially and convex later with an inflection point around 1/3. It over-weights smaller
probabilities and under-weights larger probabilities. The probabilistic sensitivity (derivative
of the probability weighting function) is high near the end probabilities, namely, 0 and 1,
and low in the middle.

satisfies (1.3.7). The CPT value in equation (1.3.8) can equivalently be written as:

V r(L) =

jr−1∑
j=1

w+

(
j∑
i=1

pαi

)[
vr(zαj)− vr(zαj+1

)
]

+ w+

(
jr∑
i=1

pαi

)
vr
(
zαjr

)
+ w−

(
t∑

i=jr+1

pαi

)
vr(zαjr+1

)

+
t−1∑

j=jr+1

w−

(
t∑

i=j+1

pαi

)[
vr(zαj+1

)− vr(zαj)
]
. (1.3.9)

A person is said to have CPT preferences if, given a choice between prospect L1 and
prospect L2, she chooses the one with higher CPT value.
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Let us see how CPT explains the Allais paradox. Let the value function be given by

vr(z) =

{
(z − r)0.5 for z ≥ r,

−10(r − z)0.5 for z < r.

Interpret this as the value of winning $z Million is vr(z). Let the probability weighting
functions for both gains and losses be as shown in Figure 1.3. When faced with the two
lotteries in Experiment A, suppose the reference point is $1 Million, i.e. r = 1. The CPT
value of Lottery 1A is 0 (recall that vr(r) = 0). The CPT value of Lottery 2A is given by

w−(0.01)v1(0) + w+(0.1)v1(5) = 0.0673× (−10) + 0.1791× 2 = −0.3148.

Hence, Lottery 1A is preferred over Lottery 2A. When faced with the two lotteries in Ex-
periment B, suppose the reference point is 0, i.e. r = 0. Then, the CPT value of lottery 1B
is given by

w+(0.11)v0(1) = 0.1877,

and the CPT value of Lottery 2B is given by

w+(0.1)v0(5) = 0.1791× 2.2361 = 0.4005.

Thus, Lottery 2B is preferred over Lottery 1B. This resolves the Allais paradox. Notice how
the different aspects in CPT play a role here: the reference point captures the expectations
of the individual and the 1% chance of winning nothing in Lottery 2A is thus perceived as
a loss. Combined with the over-weighting on the 1% chance by the probability weighting
function w− and the high loss aversion of λ = 10 makes Lottery 2A disfavored as compared
to Lottery 1A. On the other hand, in Experiment B, we assumed the reference point to be 0.
The probability weighting function w+ assigns similar decision weights to winning $1 Million
and $5 Million (namely, w+(0.11) and w+(0.1), respectively). Naturally, winning $5 Million
is favored over winning $1 Million, and Lottery 2B is preferred over Lottery 1B.

In a way, CPT seems to introduce so much flexibility that one could fit almost any
observation. As said by John von Neumann, “with four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.” In this regard, I would like to point out
that each of the concepts introduced by CPT such as the reference point, value function,
and probability weighting functions have an interpretation that fulfills certain behavioral
requirements. Moreover, this flexibility allows CPT to encompass a plethora of behavioral
aspects in a convenient mathematical form. Finally, and most importantly, any theoretical
guarantees provided under such flexible settings are applicable in restricted settings of CPT
and hence not affected by the potential overparametrization present in CPT.

CPT also satisfies some important properties such as:

• Strict stochastic dominance [30]: shifting positive probability mass from an outcome
to a strictly preferred outcome leads to a strictly preferred prospect. For exam-
ple, the prospect L1 = {(0.6, 40); (0.4, 20)} can be obtained from the prospect L2 =
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{(0.5, 40); (0.5, 20)} by shifting a probability mass of 0.1 from outcome 20 to a strictly
better outcome 40. The strict stochastic dominance condition says that V r(L1) >
V r(L2) (see equation (1.3.9)).

• Strict monotonicity [30]: any prospect becomes strictly better as soon as one of its
outcomes is strictly improved. For example, if L1 = {(0.6, 40); (0.4,−10)} and L2 =
{(0.6, 40); (0.4,−20)}, then V r(L1) > V r(L2) (see equation (1.3.8)).

One wonders whether it is necessary to have the cumulative form of probability weighting
in the evaluation of the CPT value. In fact, a precursor to cumulative prospect theory was
proposed by Kahneman and Tversky in 1979, called prospect theory (PT). However, in the
subsequent years, several drawbacks of this theory were observed. For example, it does
not satisfy the first order stochastic dominance property. Schmiedler[119] and Quiggin[114]
developed rank dependent utility theory (RDU) that involved the cumulative functional
form. CPT combines RDU with reference dependence in a consistent manner. Wakker, in
his book [132], argues how the cumulative functional form is indeed the correct way to extend
EUT to account for probabilistic sensitivity.

To summarize, CPT has the following features that are lacking from EUT: (i) refer-
ence dependence, (ii) loss aversion, (iii) diminishing sensitivity to returns for both, gains
and losses, (iv) probabilistic sensitivity, (v) rank dependence and cumulative probability
weighting.

1.4 Related Work and Overview

Several works have confirmed the applicability of prospect theory and cumulative prospect
theory to individual decision-making in laboratory settings [66]. There is also evidence that
these theories offer good description of behavior for the participants in game shows with large
prizes [65, 110] and professional investors in financial markets [1]. The application of these
theories to economics is relatively scarce. Amongst those, application of prospect theory to
the fields of finance and insurance is by far most popular [14, 11, 39, 9, 42] (see also, [10]
and the references therein). Most of these studies are lacking along two major lines:

1. they consider prospect theory to model behavior instead of its improved version,
namely, cumulative prospect theory, and

2. they restrict their attention to single-agent choice scenarios without much consideration
for the effects arising from multi-agent interactions.

In this thesis, we will develop theory that contributes to both these directions. To quote
Camerer [24],

There is no good scientific reason why it (prospect theory or rather cumulative
prospect theory) should not replace expected utility in current research, and be
given prominent space in economics textbooks.
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Figure 1.4: Agent-network decomposition: The central optimizer broadcasts a menu of
market prices and the autonomous agents respond with the optimal budget signals based
on the preferences learned from the users. These budget signals are then collected by the
central optimizer to update the broadcasted prices and allocate resources. See Chapter 2 for
more details.

As observed above in the examples, resource allocation over networks is a fundamental
problem in systems. In Chapter 2, we consider this problem with CPT players. Modeling
the agents using CPT brings forward the surprising benefits of lottery-based allocations in
increasing social welfare compared to the corresponding EUT-based analysis. This conforms
with the observation that lotteries help in influencing the behavior of people, which is backed
by several experimental studies [111]. Our work3 based on CPT analysis not only explains
the above phenomenon theoretically but also provides a practical algorithm to design the
optimum lottery allocations. It achieves this without actually knowing the CPT preferences
of the agents through an appropriate pricing scheme.

The practicality of this algorithm stems from the agent-network decomposition, outlined
in Figure 1.4. It consists of decomposing the network resource allocation problem into a
central optimizer and several user optimizers, one for each user. It builds on the work
by Kelly [72] on optimal bandwidth allocation. Similar to the TCP/IP used in internet
routing, a signaling scheme is set up between the user optimizers and the central optimizer.
Here the central optimizer broadcasts a menu of prices, and the user optimizers respond
with their optimal budget signals based on their individual preferences. We show that such
an iterative scheme converges to the optimal lottery scheme and can track the trends in
gradually changing market behavior. To accommodate CPT preferences, we invent a novel
pricing scheme. It is actually reminiscent of the pricing strategies employed by several airline
companies where they offer their customers an option to make additional payments to be
enrolled in a raffle to win an upgrade on their tickets.
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In this analysis, each agent is assumed to be a price-taker, i.e., we assume that the agents
respond in a myopically optimal manner to the broadcasted prices, and none of the agents
are dominant enough to single-handedly influence the market prices. However, when there
are localized interactions amongst a small number of agents, game-theoretic models become
important to study these interactions. The popular choice for studying these models is
through different notions of equilibrium.

In Chapter 3, we take the notions of CPT Nash equilibrium and CPT correlated equilib-
rium defined by Keskin [74] as our starting point and establish several geometric properties of
these equilibrium notions.4 We explore questions such as the convexity and the connectivity
properties of the correlated equilibria set, and the relation between the Nash equilibria and
the correlated equilibria. For example, under EUT, it was known that the set of all corre-
lated equilibria is a convex polytope. Keskin showed that this property need not hold under
CPT. We prove that it can, in fact, be disconnected. Nonetheless, certain properties like the
Nash equilibria all lying on the boundary of the correlated equilibria set [101] continue to
hold true, although they require new proof techniques.

These new theoretical phenomena bring out some of the important distinctions resulting
from CPT modeling. One of the fundamental reasons for these distinctions is that CPT
preferences do not satisfy something called the betweenness property. Betweenness implies
that if an agent is indifferent between L1 and L2, then she is indifferent between any mixtures
of them too. Several empirical studies show systematic violations of betweenness [25, 2,
41, 123], and this makes the use of CPT more attractive than EUT for modeling human
preferences. Further evidence comes from [25], where the authors fit data from nine studies
using three non-EUT models, one of them being CPT, to find that, compared to the EUT
model, the non-EUT models perform better.

Building upon the idea that the players might prefer to actively randomize their actions,
we consider mixed strategies in non-cooperative games from a new perspective. We refer to
such actively mixed strategies as black-box strategies.

Traditionally, mixed actions have been considered from two viewpoints, especially in
the context of mixed-action Nash equilibrium. According to the first viewpoint, these are
conscious randomizations by the players—each player only knows her mixed-action and not
its pure realization. The notion of black-box strategies captures this interpretation of mixed-
actions. According to the other viewpoint, players do not randomize, and each player chooses
some definite action. But the other players need not know which one and the mixture
represents their uncertainty, i.e., their conjecture about her choice.

Under CPT, these two interpretations get nicely untangled, and we get four different
concepts of Nash equilibria depending on whether we allow randomization in each of the
interpretations. In Chapter 4, we develop these four notions and study their properties such
as existence and relation to each other.5

We then consider the setting of learning in repeated games in Chapter 5.6 The literature
on learning in games provides an alternative explanation to the equilibrium notions as a long-
run outcome in repeated games with mild rationality assumptions on the players. They are
especially important from a behavioral perspective where players have limited computational
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powers. We consider the celebrated theorem of Vohra and Foster [50] on the convergence of
the empirical average of the action play to the set of correlated equilibria when players make
calibrated forecasts and respond with myopically optimal actions. One soon realizes that
the notion of CPT correlated equilibrium, as defined by Keskin, is not enough to capture
this result. But instead, we need an appropriate convexification of this set that we call the
mediated CPT correlated equilibrium.

In a correlated equilibrium, the mediator is assumed to recommend an action to each
player to play. We introduce the notion of mediated games in which the mediator is allowed
to send signals from more general sets. This is a specific type of game with communication
as introduced by Myerson. The mediated CPT correlated equilibria are then the Bayes-Nash
equilibria of this mediated game. Since the mediated CPT correlated equilibria are more
general than the CPT correlated equilibria we get that the revelation principle in the context
of correlated equilibria does not hold under CPT preferences.

Calibrated learning is one form of learning in games. More generally, the result on the
convergence to correlated equilibria is closely related to the notion of no-regret learning
in games. We prove that the set of CPT correlated equilibria is not approachable in the
Blackwell approachability sense. These results strongly suggest that the notion of mediated
CPT correlated equilibrium is the appropriate notion to consider in this context.

A major revelation in the previous study is that: The revelation principle fails under
CPT! A natural question is what happens in mechanism design where the revelation principle
has played a fundamental role. As suspected we observe that the revelation principle fails
in mechanism design when agents have CPT preferences. In Chapter 6, we develop an
appropriate framework that we call mediated mechanism design that allows us to recover
the revelation principle under certain settings.7

The premise of a typical mechanism design scenario comprises a bunch of agents each
having a private type consisting of their private information and preferences over the out-
comes. There is a system operator (or a principal) who controls the implementations in
the system but cannot directly observe the private types of players. To achieve optimal
implementations conditioned on the types of the players, the system operator designs a com-
munication protocol where the players can interact strategically in the resulting game. This
allows the system operator to elicit information about the private types of the players. As an
example, think of auctions. The second-price sealed-bid auctions incentivize the players to
reveal their private values truthfully, and the item is allocated to the player with the highest
value at the second-highest bid.

For a modern application, consider ride-hailing services such as Uber or Lyft. These apps
present the customers with several options such as premium rides, shared rides, economy
rides, etc. The purpose of these options is to elicit the preferences of the customers and
provide optimal services. These systems have inherent uncertainties, and it is essential to
account for the customers’ behavior towards such uncertainties. The CPT-based analysis
reveals that if we add a stage where each customer is sent a private message before she makes
her option selection, then we can get improved results. For example, these messages could
take the form of selecting a customer at random to receive priority service or discounted
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Figure 1.5: Flow chart showing the dependence between different chapters and sections.

pricing. Such messages play the role of nudges that help in aligning the beliefs of the players
for optimal service provisioning.

We already observe such nudges and incentives being used around us. But a theory
explaining these practices is still in the infant stage. Our mediated mechanism design frame-
work is a very promising direction for explaining these observations theoretically and improv-
ing the design of these systems. Mechanism design is commonly referred to as the engineering
side of game theory. These theoretical and methodological results can have substantial im-
plications for the design of behavior-aware systems such as online marketplaces and social
networks.

We conclude in Chapter 7 with some additional remarks related to the spirit of this work,
possible directions for future work, its connections to communication, data analytics, and
artificial intelligence, and fairness and ethical considerations related to the use of emotional
and psychological aspects in resource allocation.

Appendix 1.A provides the notational conventions followed throughout the document.
Figure 1.5 outlines the dependence of the different portions of this thesis on each other.
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Appendix

1.A Notational Conventions

We introduce some notational conventions that will be used throughout the rest of the
thesis. The scope of any additional notation introduced within a chapter will be limited to
that chapter.

Let N,Z,Q, and R denote the sets of all natural numbers, integers, rational numbers, and
real numbers, respectively. Let 1{·} denote the indicator function that is equal to one if the
predicate inside the brackets is true and is zero otherwise. Let supp(·) denote the support
of the probability distribution within the parentheses. If Z is a subset of a Euclidean space,
then let co(Z) denote the convex hull of Z, and let co(Z) denote the closed convex hull of
Z. For any integer n ∈ N, let [n] := {1, 2, . . . , n}.

If Z is a Polish space (complete separable metric space), let P(Z) denote the set of
all probability measures on (Z,F ), where F is the Borel sigma-algebra of Z. Let supp(p)
denote the support of a distribution p ∈P(Z), i.e. the smallest closed subset of Z such that
p(Z) = 1. Let ∆f (Z) ⊂ P(Z) denote the set of all probability distributions that have a
finite support. For any element p ∈ ∆f (Z), we will denote the probability of z ∈ Z assigned
under the distribution p by p(z) (or sometimes by p[z]). For z ∈ Z, let 1{z} ∈ ∆f (Z) denote
the probability distribution such that p(z) = 1. If Z is finite (and hence a Polish space with
respect to the discrete topology), let ∆(Z) denote the set of all probability distributions on
the set Z, viz.

∆(Z) = P(Z) = ∆f (Z) =

{
(p(z))z∈Z

∣∣∣∣p(z) ≥ 0 ∀z ∈ Z,
∑
z∈Z

p(z) = 1

}
,

with the usual topology. Let ∆m−1 denote the standard (m − 1)-simplex, i.e. ∆([m]). For
a function f : X → ∆(Y ), let f(y|x) = f(x)(y) denote the probability of y under the
probability distribution f(x).

Let
L = {(p1, z1); . . . ; (pt, zt)}.

denote a lottery with outcomes zj, 1 ≤ j ≤ t, with their corresponding probabilities given
by pj. We assume the lottery to be exhaustive (i.e.

∑t
j=1 pj = 1). Note that we are allowed

to have pj = 0 for some values of j and we can have zk = zl even when k 6= l.
If a lottery L consists of a unique outcome z that occurs with probability 1, then with

an abuse of notation we will denote the lottery L = {(1, z)} simply by L = z. Similarly, if a
probability distribution f(x) assigns probability 1 to y, then again with an abuse of notation
we will write f(x) = y. If, for each x, f(x) has a singleton support, then with an abuse of
notation we will treat f as a function from X to Y .
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Notes
1Our focus here will be on decision under risk with outcome spaces mapped to real numbers but EUT

and CPT extend to more general settings with general outcome sets and subjective beliefs. See [132].
2These assumptions are not needed for the results in this thesis to hold unless stated otherwise.
3 The results in Chapter 2 appear in the paper [109].
4 The results in Chapter 3 appear in the paper [108].
5 The results in Chapter 4 appear in the pre-print [105].
6 The results in Chapter 5 appear in the paper [106].
7 The results in Chapter 6 appear in the pre-print [107].
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Chapter 2

Optimal Resource Allocation over
Networks with CPT Players

2.1 Introduction

We consider the problem of congestion management in a network, and resource allocation
amongst heterogeneous users, in particular human agents, with varying preferences. This is
a well-recognized problem in network economics [94] and central to most of the examples
discussed in Section 1.2. Market-based solutions have proven to be very useful for this
purpose, with varied mechanisms, such as auctions and fixed rate pricing [46]. In this
chapter, we consider a lottery-based mechanism, as opposed to the deterministic allocations
studied in the literature. We mainly ask the following questions: (i) Do lotteries provide an
advantage over deterministic implementations? (ii) If yes, then does there exist a market-
based mechanism to implement an optimum lottery?

In order to answer the first question we need to define our goal in allocating resources.
There is an extensive literature on the advantages of lotteries: Eckhoff [43] and Stone [125]
hold that lotteries are used because of fairness concerns; Boyce [21] argues that lotteries
are effective to reduce rent-seeking from speculators; Morgan [87] shows that lotteries are
an effective way of financing public goods through voluntary funds, when the entity raising
funds lacks tax power; Hylland and Zeckhauser [61] propose implementing lotteries to elicit
honest preferences and allocate jobs efficiently. In all of these works, there is an underlying
assumption, which is also one of the key reasons for the use of lotteries, that the goods to
be allocated are indivisible.

However, we notice lotteries being implemented even when the goods to be allocated are
divisible, for example in lottos and parimutuel betting. In several experiments, it has been
observed that lottery-based rewards are more appealing than deterministic rewards of the
same expected value, and thus provide an advantage in maximizing the desired influence
on people’s behavior [111]. We also observe several firms presenting lottery-based offers to
incentivize customers into buying their products or using their services, and in return to
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improve their revenues. Thus, although lottery-based mechanisms are being widely imple-
mented, a theoretical understanding for the same seems to be lacking. This is one of the
motivations for this chapter, which aims to justify the use of lottery-based mechanisms,
based on models coming from behavioral economics for how humans evaluate options.

2.2 Lottery-Based Resource Allocation Model

We work with the framework proposed by Kelly [72] for throughput control in the Internet
with elastic traffic. However, this framework is general enough to have applications to
network resource allocation problems arising in several other domains. We have a network
with a set [m] = {1, . . . ,m} of resources or links and a set [n] = {1, . . . , n} of users or
players. Let cj > 0 denote the finite capacity of link j ∈ [m] and let c := (cj)j∈[m] ∈ Rm.
(All vectors, unless otherwise specified, will be treated as column vectors.) Each user i has
a fixed route Ji, which is a non-empty subset of [m]. Let Rj := {i ∈ [n]|j ∈ Ji} the set of all
players whose route uses link j. We say that an allocation profile x is feasible if it satisfies
the capacity constraints of the network, i.e.∑

i∈Rj

xi ≤ ci,∀j ∈ [m]. (2.2.1)

Let F denote the set of all feasible allocation profiles. We assume that the network con-
straints are such that F is bounded, and hence a polytope.

Instead of allocating a fixed throughput xi to player i ∈ [n], we consider allocating her a
lottery (or a prospect)

Li := {(pi(1), yi(1)), . . . , (pi(ki), yi(ki))}, (2.2.2)

where yi(li) ≥ 0, li ∈ [ki], denotes a throughput and pi(li), li ∈ [ki], is the probability with
which throughput yi(li) is allocated.

We now describe the CPT model we use to measure the “utility” or “happiness” derived
by each player from her lottery. In order to focus on the effects of probabilistic sensitivity,
and to avoid the complications resulting from reference point considerations, we assume
that the reference point of all the players is equal to 0, and we consider prospects with
only nonnegative outcomes. This is, in fact, identical to the rank dependent utility (RDU)
model [114]. As a result, we assume that each player i is associated with a value function
vi : R+ → R+ that is continuous, differentiable, concave, and strictly increasing, and a
probability weighting function wi : [0, 1] → [0, 1] that is continuous, strictly increasing and
satisfies wi(0) = 0 and wi(1) = 1.8

For the prospect Li in (2.2.2), let πi : [ki]→ [ki] be a permutation such that

zi(1) ≥ zi(2) ≥ · · · ≥ zi(ki), (2.2.3)

and
yi(li) = zi(πi(li)) for all li ∈ [ki]. (2.2.4)
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The prospect Li can equivalently be written as

Li = {(p̃i(1), zi(1)); . . . ; (p̃i(ki), zi(ki))},

where p̃i(li) := pi(π
−1
i (li)) for all li ∈ [ki]. The CPT value of prospect Li for player i

is evaluated using the value function vi(·) and the probability weighting function wi(·) as
follows:

Vi(Li) =

ki∑
li=1

dli(pi, πi)vi(zi(li)), (2.2.5)

where dli(pi, πi) are the decision weights given by d1(pi, πi) := wi(p̃i(1)) and

dli(pi, πi) := wi(p̃i(1) + · · ·+ p̃i(li))− wi(p̃i(1) + · · ·+ p̃i(li − 1)),

for 1 < li ≤ ki. And equivalently, the CPT value of prospect Li, can be written as

Vi(Li) =

ki∑
li=1

wi
( li∑
si=1

p̃i(si)
)

[vi(zi(li))− vi(zi(li + 1)))] ,

where zi(ki + 1) := 0. Thus the lowest allocation zi(ki) is weighted by wi(1) = 1, and every
increment in the value of the allocations, vi(zi(li))− vi(zi(li + 1)),∀li ∈ [ki − 1], is weighted
by the probability weighting function of the probability of receiving an allocation at least
equal to zi(li).

We take a utilitarian approach of maximizing the ex ante aggregate utility or the net
happiness of the players. (See [4] and the references therein for the relation with other goals
such as maximizing revenue.) We then ask the question of finding the optimum allocation
profile of prospects, one for each user, comprised of throughputs and associated probabilities
for that user, that maximizes the aggregate utility of all the players, and is also feasible. An
allocation profile of prospects for each user is said to be feasible if it can be implemented, i.e.
there exists a probability distribution over feasible throughput allocations whose marginals
for each player agree with their allocated prospects.

We say that a lottery profile {L1, . . . , Ln} is feasible if there exists a joint distribution
p ∈ ∆(

∏
i[ki]) such that the following conditions are satisfied:

(i) The marginal distributions agree with Li for all players i, i.e.
∑

l−i
p(li, l−i) = pi(li) for

all li ∈ [ki], where l−i in the summation ranges over values in
∏

i′ 6=i[ki′ ].

(ii) For each (li)i∈[n] ∈
∏

i[ki] in the support of the distribution p (i.e. p((li)i∈[n]) > 0), the
allocation profile (yi(li))i∈[n] is feasible.

Kelly suggested that the throughput allocation problem be posed as one of achieving
maximum aggregate utility for the users. In [73], he considers deterministic allocations and
each player has a utility function that determines her utility corresponding to an allocation.
Its natural analog in our setup can be framed as the following optimization problem:
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Maximize
n∑
i=1

Vi(Li)

subject to (i) and (ii)

The corresponding problem in [73] is a convex optimization problem and permits a de-
composition into a central optimization problem and several user optimization problems,
one for each user. Based on this decomposition, a market is proposed, in which each user
submits an amount she is willing to pay per unit time to the network based on tentative
rates that she received from the network; the network accepts these submitted amounts and
determines the price of each network link. A user is then allocated a throughput in pro-
portion to her submitted amount and inversely proportional to the sum of the prices of the
links she wishes to use. Under certain assumptions, Kelly shows that there exist equilibrium
prices and throughput allocations, and that these allocations achieve maximum aggregate
utility. Thus the overall system problem of maximizing aggregate utility is decomposed into
a network problem and several user problems , one for each individual user. Further, in [73],
the authors have proposed two classes of algorithms which can be used to implement a
relaxation of the above optimization problem.

The optimization problem is our setting is more complicated than this. The two key
reasons for this are the non-convexity of the probability weighting functions and the per-
mutation structure present in the computation of CPT value. In this chapter we will take
a closer look at these aspects and see how we can get around these issues. We will ob-
tain a user-network decomposition of the optimization problem that would give rise to a
market-based mechanism for optimal lottery allocations.

If all the players have EUT utility with concave utility functions, as is typically assumed
to model risk-averseness, one can show that there exists a feasible deterministic allocation
that achieves the optimum and hence there is no need to consider lotteries. However, if the
players’ utility is modeled by CPT, then one can improve over the best aggregate utility
obtained through deterministic allocations.

For example, Quiggin [115] considers the problem of distributing a fixed amount amongst
several homogeneous players with RDU preferences. He concludes that, under certain condi-
tions on players’ RDU preferences, the optimum allocation system is a lottery scheme with a
few large prizes and a large number of small prizes, and is strictly preferred over distributing
the total amount deterministically amongst the players. In Section 2.7, we extend these
results to network settings with heterogeneous players.

2.3 Discretization Trick

The distribution p and the throughputs (yi(li), i ∈ [n], li ∈ [ki]) of a feasible lottery profile
together define a lottery scheme. In the following, we restrict our attention to specific types
of lottery schemes, wherein the network implements with equal probability one of the k
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allocation profiles y(l) := (yi(l))i∈[n] ∈ Rn+, for l ∈ [k]. Let [k] = {1, . . . , k} denote the set
of outcomes, where allocation profile y(l) is implemented if outcome l occurs. Clearly, such
a scheme is feasible iff each of the allocation profiles y(l),∀l ∈ [k] belongs to F . Player
i thus faces the prospect Li = {(1/k, yi(l))}kl=1 and such a lottery scheme is completely
characterized by the tuple y := (yi(l), i ∈ [n], l ∈ [k]). By taking k large enough, any lottery
scheme can be approximated by such a scheme.

Let yi := (yi(l))l∈[k] ∈ Rk+. Let zi := (zi(l))l∈[k] ∈ Rk+ be a vector and πi : [k] → [k] be a
permutation such that

zi(1) ≥ zi(2) ≥ · · · ≥ zi(k),

and
yi(l) = zi(πi(l)) for all l ∈ [k].

Note that yi is completely characterized by πi and zi. Then player i’s CPT value will be

Vi(Li) =
k∑
l=1

hi(l)vi(zi(l)),

where hi(l) := wi(l/k) − wi((l − 1)/k) for l ∈ [k]. Let hi := (hi(l))l∈[k] ∈ Rk+. Note that
hi(l) > 0 for all i, l, since the weighting functions are assumed to be strictly increasing.

Looking at the lottery scheme y in terms of individual allocation profiles zi and permuta-
tions πi for all players i ∈ [n], allows us to separate those features of y that affect individual
preferences and those that pertain to the network implementation. We will later see that
the problem of optimizing aggregate utility can be decomposed into two layers: (i) a convex
problem that optimizes over resource allocations, and (ii) a non-convex problem that finds
the optimal permutation profile.

Let z := (zi(l), i ∈ [n], l ∈ [k]), π := (πi, i ∈ [n]), h := (hi(l), i ∈ [n], l ∈ [k]) and
v := (vi(·), i ∈ [n]). Let Sk denote the set of all permutations of [k]. The problem of
optimizing aggregate utility

∑
i Vi(Li) subject to the lottery scheme being feasible, can be

formulated as follows:

SYS[z, π;h, v, A, c]

Maximize
n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

subject to
∑
i∈Rj

zi(πi(l)) ≤ cj, ∀j ∈ [m],∀l ∈ [k],

zi(l) ≥ zi(l + 1),∀i ∈ [n], ∀l ∈ [k],

πi ∈ Sk, ∀i ∈ [n].

We set zi(k + 1) = 0 for all i, and the zi(k + 1) are not treated as variables. This takes care
of the condition zi(l) ≥ 0 for all i ∈ [n], l ∈ [k].

Note that such discretization serves in two ways:
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• Instead of considering the non-convex probability weighting function wi for each player
i, we can restrict our attention to the vector hi := (hi(l), l ∈ [k]).

• It highlights the dependence on the permutation structure π.

In addition, the discretization also has a behavioral interpretation. Oftentimes, the play-
ers are incapable of discerning the distinction between probabilities that are very close to
each other. They also show a poor sense of judgment when it comes to very small probabil-
ities as one in a million. By restricting k say to be 100, we are making sure that the players
are faced with lotteries that have integer percentages which they can comprehend better.

Given a permutation profile, the problem of finding optimum feasible throughput al-
locations is a convex programming problem, which we call the fixed-permutation system
problem, and leads to a nice price mechanism. In the next section we prove the existence
of equilibrium prices that decompose the fixed-permutation system problem into a network
problem and several user problems, one for each player, as in [72]. The prices can be inter-
preted as the cost imposed on the players and can be implemented in several forms, such as
waiting times in waiting-line auctions or first-come-first-served allocations [12, 126], delay or
packet loss in the Internet TCP protocol [84, 76], efforts or resources invested by players in
a contest [85, 31], or simply money or reward points.

Finding the optimum permutation profile, on the other hand, is a non-convex problem.
In Section 2.6, we study the duality gap in the system problem and consider a relaxation of
the system problem by allowing the permutations to be doubly stochastic matrices instead
of restricting them to be permutation matrices. We show that strong duality holds in the
relaxed system problem and so it has value equal to the dual of the original system problem
(Theorem 2.6.2). We also consider the problem where link constraints hold in expectation,
called the average system problem, and show that strong duality holds in this case and so it
has value equal to the relaxed problem. In Section 2.7, we study the average system problem
in further detail, and prove a result on the structure of optimal lotteries. We give an example
in Section 2.D to show that the duality gap in the original system problem can be nonzero
and Theorem 2.6.3 shows that the primal system problem is NP-hard.

2.4 Pricing and Market-Based Mechanism

The system problem SYS[z, π;h, v, A, c] optimizes over z and π. In this section we fix πi ∈ Sk
for all i and optimize over z. Let SYS FIX[z; π, h, v, A, c] denote this fixed-permutation
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system problem.

SYS FIX[z; π, h, v, A, c]

Maximize
n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

subject to
∑
i∈Rj

zi(πi(l)) ≤ cj,∀j ∈ [m],∀l ∈ [k],

zi(l) ≥ zi(l + 1),∀i ∈ [n],∀l ∈ [k].

(In contrast with SYS(z, π; . . . ), in SYS FIX(z; π, . . . ), the permutation π is thought of as
being fixed.) Since vi(·) is assumed to be a concave function and hi(l) > 0 for all i, l, this
problem has a concave objective function with linear constraints. For all j ∈ [m], l ∈ [k],
let λj(l) ≥ 0 be the dual variables corresponding to the constraints

∑
i∈Rj zi(πi(l)) ≤ cj

respectively, and for all i ∈ [n], l ∈ [k], let αi(l) ≥ 0 be the dual variables corresponding
to the constraints zi(l) ≥ zi(l + 1) respectively. Let λ := (λj(l), j ∈ [m], l ∈ [k]) and
α := (αi(t), i ∈ [n], l ∈ [k]). Then the Lagrangian for the fixed-permutation system problem
SYS FIX[z; π, h, v, A, c] can be written as follows:

L (z;α, λ) :=
n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

+
n∑
i=1

k∑
l=1

αi(l)[zi(l)− zi(l + 1)] +
m∑
j=1

k∑
l=1

λj(l)[cj −
∑
i∈Rj

zi(πi(l))]

=
n∑
i=1

k∑
l=1

[
hi(l)vi(zi(l)) + (αi(l)− αi(l − 1))zi(l)−

(∑
j∈Ji

λj(π
−1
i (l))

)
zi(l)

]

+
m∑
j=1

k∑
l=1

λj(l)cj,

where αi(0) = 0 for all i ∈ [n]. Differentiating the Lagrangian with respect to zi(l) we get,

∂L(z;α, λ)

∂zi(l)
= hi(l)v

′
i(zi(l)) + αi(l)− αi(l − 1)−

(∑
j∈Ji

λj(π
−1
i (l))

)
.

Let
ρi(l) :=

∑
j∈Ji

λj(π
−1
i (l)), (2.4.1)

for all i ∈ [n], l ∈ [k]. This can be interpreted as the price per unit throughput for player
i for her l-th largest allocation zi(l). The price of the lottery zi for player i is given by
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∑k
l=1 ρi(l)zi(l), or equivalently,

k∑
l=1

µi(l) [zi(l)− zi(l + 1)] ,

where

µi(l) :=
l∑

s=1

ρi(s), for all l ∈ [k]. (2.4.2)

For l ∈ [k − 1], αi(l) can be interpreted as a transfer of a nonnegative price for player
i from her l-th largest allocation to her (l + 1)-th largest allocation. Since the allocation
zi(l + 1) cannot be greater than the allocation zi(l), there is a subsidy of αi(l) in the price
of zi(l) and an equal surcharge of αi(l) in the price of zi(l + 1). This subsidy and surcharge
is nonzero (and hence positive) only if the constraint is binding, i.e. zi(l) = zi(l + 1). On
the other hand, αi(k) is a subsidy in price given to player i for her lowest allocation, since
she cannot be charged anything higher than the marginal utility at her zero allocation.

Let hi := (hi(l))l∈[k] ∈ Rk+. Consider the following user problem for player i:

USER[mi;µi, hi, vi]

Maximize
k∑
l=1

hi(l)vi

(
k∑
s=l

mi(s)

µi(s)

)
−

k∑
l=1

mi(l)

subject to mi(l) ≥ 0,∀l ∈ [k],

(2.4.3)

where µi := (µi(l), l ∈ [k]) is a vector of rates such that

0 < µi(1) ≤ µi(2) ≤ · · · ≤ µi(k). (2.4.4)

We can interpret this as follows: User i is charged rate µi(k) for her lowest allocation
δi(k) := zi(k). Let mi(k) denote the budget spent on the lowest allocation and hence
mi(k) = µi(k)δi(k). For 1 ≤ l < k, she is charged rate µi(l) for the additional allocation
δi(l) := zi(l) − zi(l + 1), beyond zi(l + 1) up to the next lowest allocation zi(l). Let mi(l)
denote the budget spent on l-th additional allocation and hence mi(l) = µi(l)δi(l).

Let m := (mi(l), i ∈ [n], l ∈ [k]) and δ := (δi(l), i ∈ [n], l ∈ [k]). Consider the following
network problem:

NET[δ;m,π,A, c]

Maximize
n∑
i=1

k∑
l=1

mi(l) log(δi(l))

subject to δi(l) ≥ 0,∀i, ∀l,∑
i∈Rj

k∑
s=πi(l)

δi(s) ≤ cj,∀j,∀l.
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This is the well known Eisenberg-Gale convex program [44] and it can be solved efficiently.
Kelly et al. [73] proposed continuous time algorithms for finding equilibrium prices and
allocations. For results on polynomial time algorithms for these problems see [64, 28]. We
have the following decomposition result:

Theorem 2.4.1. For any fixed π, there exist equilibrium parameters µ∗,m∗, δ∗ and z∗ such
that

(i) for each player i, m∗i solves the user problem USER[mi;µ
∗
i , hi, vi],

(ii) δ∗ solves the network problem NET[δ;m∗, π, A, c],

(iii) m∗i (l) = δ∗i (l)µ
∗
i (l) for all i, l,

(iv) δ∗i (l) = z∗i (l)− z∗i (l + 1) for all i, l, and

(v) z∗ solves the fixed-permutation system problem SYS FIX[z; π, h, v, A, c].

The proof of this can be found in Appendix 2.A.
Thus the fixed-permutation system problem can be decomposed into user problems – one

for each player – and a network problem, for any fixed permutation profile π. Similar to the
framework in [73], we have an iterative process as follows: The network presents each user
i with a rate vector µi. Each user solves the user problem USER[mi;µi, hi, vi], and submits
their budget vector mi, The network collects these budget vectors (mi)i∈[n] and solves the
network problem NET[δ;m∗, π, A, c] to get the corresponding allocation z (which can be
computed from the incremental allocations δ) and the dual variables λ. The network then
computes the rate vectors corresponding to each user from these dual variables as given by
(2.4.1) and (2.4.2) and presents it to the users as updated rates. Theorem 2.4.1 shows that
the fixed-permutation system problem of maximizing the aggregate utility is solved at the
equilibrium of the above iterative process. If the value functions vi(·) are strictly concave,
then one can show that the optimal lottery allocation z∗ for the fixed-permutation system
problem is unique. However, the dual variables λ, and hence the rates µi,∀i, need not be
unique. Nonetheless, if one uses the continuous-time algorithm proposed in [73] to solve the
network problem, then a similar analysis as in [73], based on Lyapunov stability, shows that
the above iterative process converges to the equilibrium lottery allocation z∗.

One of the permutation profiles, say π∗, solves the system problem. In Section 2.6, we
explore this in more detail. However, it is interesting to note that, for any fixed permutation
profile π, any deterministic solution is a special case of the lottery scheme y with permutation
profile π. Thus, it is guaranteed that the solution of the fixed-permutation system problem for
any permutation profile π is at least as good as any deterministic allocation. Here is a simple
example, where a lottery-based allocation leads to strict improvement over deterministic
allocations.
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Figure 2.1: Probability weighting function for the example in Section 2.5. The plot shows
the probability weighting function given by equation (1.3.6) (also shown in Section 2.5) with
γ = 0.61. The dotted line shows the identity function for reference.

2.5 A Quick Illustrative Example

Consider a network with n players and a single link with capacity c. Let n = 10 and
c = 10. For all players i, we employ the value functions and weighting functions suggested
by Kahneman and Tversky [127], given by

vi(xi) = xβii , βi ∈ [0, 1],

and

wi(pi) =
pγii

(pγi + (1− p)γi)1/γi
, γi ∈ (0, 1],

respectively. We take βi = 0.88 and γi = 0.61 for all i ∈ [n]. These parameters were reported
as the best fits to the empirical data in [127]. The probability weighting function is displayed
in Figure 2.1.

By symmetry and concavity of the value function vi(·), the optimal deterministic alloca-
tion is given by allocating c/n to each player i. The aggregate utility for this allocation is
n ∗ v1(c/n) = 10.

Now consider the following lottery allocation: Let k = n = 10. Let πi(l)−1 = l+i(mod k)
for all i ∈ [n] and l ∈ [k]. Let x ∈ [c/n, c] and zi(1) = x for all i ∈ [n] and zi(l) = (c−x)/(n−1)
for all i ∈ [n] and l = 2, . . . , k. Note that this is a feasible lottery allocation. Such a lottery
scheme can be interpreted as follows: Select a “winning” player uniformly at random from
all the players. Allocate her a reward x and equally distribute the remaining reward c − x
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amongst the rest of the players. The ex ante aggregate utility is given by

n ∗ [w1(1/n)v1(x) + (1− w1(1/n))v1((c− x)/(n− 1))] .

This function achieves its maximum equal to 14.1690 at x = 9.7871. Thus, the above pro-
posed lottery improves the aggregate utility over any deterministic allocation. The optimum
lottery allocation is at least as good as 14.1690.

2.6 Optimum Permutation Profile and Duality Gap

The system problem SYS[z, π;h, v, A, c] can equivalently be formulated as

max
πi∈Sk∀i,

z:zi(l)≥zi(l+1)∀i,l

min
λ≥0

n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

+
m∑
j=1

k∑
l=1

λj(l)

cj −∑
i∈Rj

zi(πi(l))

 .
(I)

Let Wps denote the value of this problem. It is equal to the optimum value of the system
problem SYS[z, π;h, v, A, c]. By interchanging the max and min, we obtain the following
dual problem:

min
λ≥0

max
πi∈Sk∀i,

z:zi(l)≥zi(l+1)∀i,l

n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

+
m∑
j=1

k∑
l=1

λj(l)

cj −∑
i∈Rj

zi(πi(l))

 .
(II)

Let Wds denote the value of this dual problem. By weak duality, we know that Wps ≤ Wds.
For a fixed λ ≥ 0 and a fixed z that satisfies zi(l) ≥ zi(l+ 1),∀i, l, the optimum permutation
profile π in the dual problem (II) should minimize

m∑
j=1

k∑
l=1

λj(l)
∑
i∈Rj

zi(πi(l)),

which equals ∑
i

∑
l

ρ̂i(l)zi(πi(l)),

Here ρ̂i(l) :=
∑

j∈Ji λj(l), is the price per unit allocation for player i under outcome l. Since
the numbers zi(l) are ordered in descending order, any optimal permutation πi must satisfy

ρ̂i(π
−1
i (1)) ≤ ρ̂i(π

−1
i (2)) ≤ · · · ≤ ρ̂i(π

−1
i (k)). (2.6.1)
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In other words, any optimal permutation profile π of the dual problem (II) must allocate
throughputs in the order opposite to that of the prices ρ̂i(l).

Lemma 2.6.1. If strong duality holds between the problems (I) and (II), then any optimum
permutation profile π∗ satisfies (2.6.1) for all i.

We prove this lemma in Appendix 2.B. In general, there is a non-zero duality gap
between the problems (I) and (II) (see Section 2.D for such an example where the optimum
permutation profile π∗ does not satisfy (2.6.1)).

The permutation πi can be represented by a k × k permutation matrix Mi, where
Mi(s, t) = 1 if πi(s) = t and Mi(s, t) = 0 otherwise, for s, t ∈ [k]. The network constraints∑

i∈Rj zi(πi(l)) ≤ cj,∀l ∈ [k], can equivalently be written as
∑

i∈Rj Mizi ≤ cj1, where 1
denotes a vector of appropriate size with all its elements equal to 1, and the inequality is
coordinatewise. A possible relaxation of the system problem is to consider doubly stochastic
matrices Mi instead of restricting them to be permutation matrices. A matrix is said to be
doubly stochastic if all its entries are nonnegative and each row and column sums up to 1. A
permutation matrix is hence a doubly stochastic matrix. Let Ωk denote the set of all doubly
stochastic k × k matrices and let Ω∗k denote the set of all k × k permutation matrices.

Let M = (Mi, i ∈ [n]) denote a profile of doubly stochastic matrices. The relaxed system
problem can then be written as follows:

SYS REL[z,M ;h, v, A, c]

Maximize
n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

subject to
∑
i∈Rj

Mizi ≤ cj1,∀j,

zi(l) ≥ zi(l + 1),∀i,∀l,
Mi ∈ Ωk,∀i.

Then the corresponding primal problem can be written as follows:

max
Mi∈Ωk∀i,

z:zi(l)≥zi(l+1)∀l,∀i

min
λj≥0,∀j

∑
i

∑
l

hi(l)vi(zi(l))

+
∑
j

λTj

cj1−∑
i∈Rj

Mizi

 . (III)

where λj = (λj(l))l∈[k] ∈ Rk+. Let Wpr denote the value of this problem. Interchanging min
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and max we get the corresponding dual:

min
λj≥0,∀j

max
Mi∈Ωk∀i,

z:zi(l)≥zi(l+1)∀l,∀i

∑
i

∑
l

hi(l)vi(zi(l))

+
∑
j

λTj

cj1−∑
i∈Rj

Mizi

 . (IV)

Let Wdr denote the value of this problem. If the link constraints in the relaxed system
problem hold then

1

k

∑
i∈Rj

k∑
l=1

zi(l) =
1

k

∑
i∈Rj

1TMizi ≤
1

k
1T cj1 = cj. (2.6.2)

This inequality essentially says that the link constraints should hold in expectation. Thus
we have the following average system problem:

SYS AVG[z;h, v, A, c]

Maximize
n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

subject to
∑
i∈Rj

1

k

k∑
l=1

zi(l) ≤ cj,∀j,

zi(l) ≥ zi(l + 1),∀i, ∀l,

with its corresponding primal problem:

max
z:zi(l)≥zi(l+1)∀l,∀i

min
λ̄j≥0,∀j

∑
i

∑
l

hi(l)vi(zi(l))

+
∑
j

λ̄j

cj −∑
i∈Rj

1

k

k∑
l=1

zi(l)

 , (V)

and the dual problem:

min
λ̄j≥0,∀j

max
z:zi(l)≥zi(l+1)∀l,∀i

∑
i

∑
l

hi(l)vi(zi(l))

+
∑
j

λ̄j

cj −∑
i∈Rj

1

k

k∑
l=1

zi(l)

 , (VI)

where λ̄j ∈ R are the dual variables corresponding to the link constraints. Let Wpa and Wda

denote the values of these primal and dual problems respectively.
Then we have the following relation:
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Theorem 2.6.2. For any system problem defined by h, v, A and c, we have

Wps ≤ Wpr = Wpa = Wda = Wdr = Wds.

Proof given in Appendix 2.C.
Thus the duality gap is a manifestation of the “hard” link constraints. In the proof of the

above theorem we saw that the relaxed problem is “equivalent” to the average problem and
strong duality holds for this relaxation. We will later study the average problem in further
detail (Section 2.7).

We observed earlier in Lemma 2.6.1 that if strong duality holds in the system problem,
then the optimum permutation profile π∗ satisfies (2.6.1). Consider a simple example of two
players sharing a single link. Suppose that, at the optimum, λ(l) are the prices for l ∈ [k]
corresponding to this link under the different outcomes, and suppose not all of these are
equal. Then the optimum permutation profile of the dual problem will align both players’
allocations in the same order, i.e. the high allocations of player 1 will be aligned with the
high allocations of player 2. However, we can directly see from the system problem that
an optimum π∗ should align the two players’ allocations in opposite order. The example in
Appendix 2.D builds on this observation and shows that strong duality need not hold for
the system problem.

Finally, we prove the following result in Appendix 2.E.

Theorem 2.6.3. The primal problem (I) is NP-hard.

2.7 Average System Problem and Optimal Lottery

Structure

Suppose it is enough to ensure that the link constraints are satisfied in expectation, as in the
average system problem. As an example, suppose we are allocating resources to the players
repeatedly and the links have buffers that allow us to allocate excess resources over these
links provided the capacity constraints are satisfied on average. If the preferences of the
players are not changing with time in this repeated setting, then we get the average system
problem. More generally, we should allow the players’ preferences (and perhaps also the
capacity constraints) to change with time. We do not consider such a general setting here,
however, as the average system problem solves a special case of this problem it would be
helpful towards solving the general problem.

Consider the function V avg
i (z̄i) on R+ given by the value of the following optimization
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problem:

Maximize
k∑
l=1

hi(l)vi(zi(l))

subject to
1

k

k∑
l=1

zi(l) = z̄i,

zi(l) ≥ zi(l + 1), ∀l ∈ [k].

(VII)

Let Zi(z̄i) denote the set of feasible (zi(l))l∈[k] in the above problem for any fixed z̄i ≥ 0.
We observe that Zi(z̄i) is a closed and bounded polytope, and hence V avg

i (z̄i) is well defined.

Lemma 2.7.1. For any continuous, differentiable, concave and strictly increasing value func-
tion vi(·), the function V avg

i (·) is continuous, differentiable, concave and strictly increasing
in z̄i.

We prove this lemma in Appendix 2.F. The average system problem SYS AVG[z;h, v, A, c]
can be written as

Maximize
n∑
i=1

V avg
i (z̄i)

subject to
∑
i∈Rj

z̄i ≤ cj,∀j,

z̄i ≥ 0,∀i.

Kelly [72] showed that this problem can be decomposed into user problems, one for each
user i,

Maximize V avg
i (z̄i)− ρ̄iz̄i

subject to z̄i ≥ 0,

and a network problem,

Maximize
n∑
i=1

ρ̄iz̄i

subject to
∑
i∈Rj

z̄i ≤ cj,∀j,

z̄i ≥ 0,∀i,

in the sense that there exist ρ̄i ≥ 0, ∀i ∈ [n], such that the optimum solutions z̄i of the
user problems, for each i, solve the network problem and the average system problem. Note
that this decomposition is different from the one presented in Section 4.3. Here the network
problem aims at maximizing its total revenue

∑n
i=1 ρ̄iz̄i, instead of maximizing a weighted

aggregate utility where the utility is replaced with a proxy logarithmic function. The above
decomposition is not as useful as the decomposition in Section 4.3 in order to develop iterative
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schemes that converge to equilibrium. However, the above decomposition motivates the
following user problem:

USER AVG[zi; ρ̄i, hi, vi]

Maximize
k∑
l=1

hi(l)vi(zi(l))−
ρ̄i
k

k∑
l=1

zi(l)

subject to zi(l) ≥ zi(l + 1),∀l ∈ [k],

where, as before, zi(k + 1) = 0.
We observed in Proposition 2.6.2 that strong duality holds in the average system problem.

Let z∗ be the optimum lottery scheme that solves this problem. Then, first of all, z∗ satisfies
z∗i (l) ≥ z∗i (l + 1) ∀i, l and is feasible in expectation, i.e., z̄∗ := (z̄∗i )i∈[n] ∈ F , where z̄∗i :=
(1/k)

∑
l z
∗
i (l). Further, z∗ optimizes the objective function of the average system problem.

Besides, there exist λ̄∗j ≥ 0 for all j such that the primal average problem (V) and the dual
average problem (VI) each attain their optimum at z∗, (λ̄∗j , j ∈ [m]).

For player i, consider the price ρ̄∗i :=
∑

j∈Ji λ̄
∗
j , which is obtained by summing the prices

λ̄∗j corresponding to the links on player i’s route. From the dual average problem (VI), fixing
λ̄j = λ̄∗j ∀j, we get that the optimum lottery allocation z∗i for player i should optimize the
problem USER AVG[zi; ρ̄

∗
i , hi, vi].

We now impose some additional conditions on the probability weighting function that
are typically assumed based on empirical evidence and certain psychological arguments [67].
We assume that the probability weighting function wi(pi) is concave for small values of the
probability pi and convex for the rest. Formally, there exists a probability p̃i ∈ [0, 1] such that
wi(pi) is concave over the interval pi ∈ [0, p̃i] and convex over the interval [p̃i, 1]. Typically
the point of inflection, p̃i, is around 1/3.

Let w∗i : [0, 1] → [0, 1] be the minimum concave function that dominates wi(·), i.e.,
w∗i (pi) ≥ wi(pi) for all pi ∈ [0, 1]. Let p∗i ∈ [0, 1] be the smallest probability such that w∗i (pi)
is linear over the interval [p∗i , 1].

Lemma 2.7.2. Given the assumptions on wi(·), we have p∗i ≤ p̃i and w∗i (pi) = wi(pi) for
pi ∈ [0, p∗i ]. If p∗i < 1, then for any p1

i ∈ [p∗i , 1), we have

wi(pi) ≤ wi(p
1
i ) + (pi − p1

i )
1− wi(p1

i )

1− p1
i

. (2.7.1)

for all pi ∈ [p1
i , 1].

A proof of this lemma is included in Appendix 2.G. We now show that, under certain
conditions, the optimal lottery allocation z∗i satisfies

z∗i (l
∗) = z∗i (l

∗ + 1) = · · · = z∗i (k), (2.7.2)

where l∗ := min{l ∈ [k] : (l − 1)/k ≥ p∗i }, provided p∗i ≤ (k − 1)/k. As a result, for
a typical optimum lottery allocation, the lowest allocation occurs with a large probability
approximately equal to 1−p∗i , and with a few higher allocations that we recognize as bonuses.
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Proposition 2.7.3. For any average user problem USER AVG[zi; ρ̄
∗
i , hi, vi] with a strictly

increasing, continuous, differentiable and strictly concave value function vi(·), and a strictly
increasing continuous probability weighting function wi(·) (satisfying wi(0) = 0 and wi(1) =
1) such that p∗i ≤ (k − 1)/k, the optimum lottery allocation z∗i satisfies Equation (2.7.2).

Proof of this proposition is provided in Appendix 2.H.

2.8 Summary

We saw that if we take the probabilistic sensitivity of players into account, then lottery
allocation improves the ex ante aggregate utility of the players. We considered the RDU
model, a special case of CPT utility, to model probabilistic sensitivity. This model, however,
is restricted to reward allocations, and it would be interesting to extend it to a general CPT
model with reference point and loss aversion. This will allow us to study loss allocations as
in punishment or burden allocations, for example criminal justice, military drafting, etc.

For any fixed permutation profile, we showed the existence of equilibrium prices in a
market-based mechanism to implement an optimal lottery. We also saw that finding the
optimal permutation profile is an NP-hard problem. We note that the system problem has
parallels in cross-layer optimization in wireless [79] and multi-route networks [133]. Several
heuristic methods have helped achieve approximately optimal solutions in cross-layer opti-
mization. Similar methods need to be developed for our system problem. We leave this for
future work.

The hardness in the system problem comes from hard link constraints. Hence, by relaxing
these conditions to hold only in expectation, we derived some qualitative features of the
optimal lottery structure under the typical assumptions on the probability weighting function
of each agent in the RDU model. As observed, the players typically ensure their minimum
allocation with high probability, and gamble for higher rewards with low probability.

We assumed that the players are price-takers, i.e. they respond optimally to the prices
shown to them in a myopic sense. Such an assumption is reasonable in situations when
each player is a small participant in the system and does not have the ability to single-
handedly influence the prices. However, more generally, one can imagine the players to
behave strategically and could try to manipulate the prices. For example, if a handful of
people are competing for a limited resource then they are prone to showing strategic behavior
as opposed to the price-taking behavior assumed here. Analyzing such situations requires
studying the strategic behavior of the players. In the following chapters, we undertake a
systematic study of this by considering games with players having CPT preferences.

Appendix
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2.A Proof of Theorem 2.4.1

Since SYS FIX[z; π, h, v, A, c] is a convex optimization problem, we know that there exist
z∗ = (z∗i (l), i ∈ [n], l ∈ [k]), α∗ = (α∗i (l), i ∈ [n], l ∈ [k]) and λ∗ = (λ∗j(l), j ∈ [m], l ∈ [k]) such
that

hi(l)v
′
i(z
∗
i (l)) = ρ∗i (l)− α∗i (l) + α∗i (l − 1),∀i,∀l, (2.A.1)

z∗i (l) ≥ z∗i (l + 1), α∗i (l) ≥ 0, α∗i (l)(z
∗
i (l)− z∗i (l + 1)) = 0,∀i,∀l, (2.A.2)∑

i∈Rj

z∗i (πi(l)) ≤ cj, λ∗j(l) ≥ 0, λ∗j(l)[cj −
∑
i∈Rj

z∗i (πi(l))] = 0,∀j,∀l, (2.A.3)

where
ρ∗i (l) :=

∑
j∈Ji

λ∗j(π
−1
i (l)),

and such that z∗ solves the fixed-permutation system problem SYS FIX[z; π, h, v, A, c]. Hence
statement (v) holds for this choice of z∗. Let µ∗i (l) :=

∑l
s=1 ρ

∗
i (s), δ

∗
i (l) := z∗i (l) − z∗i (l + 1)

and m∗i (l) := δ∗i (l)µ
∗
i (l) for all i, l. From (2.A.1), we have ρ∗i (1) > 0, because vi(·) is strictly

increasing, hi(1) > 0 and α∗i (0) = 0. Thus, the rate vector µ∗i satisfies (2.4.4) for all i. Also
note that, by construction, the vectors µ∗, δ∗, z∗ and m∗ satisfy statements (iii) and (iv) of
the theorem.

We now show that statement (i) holds. Fix a player i. Observe that the user problem
USER[mi;µ

∗
i , hi, vi] has a concave objective function since hi(l) > 0, µ∗i (l) > 0 and vi(·) is

concave. Differentiating the objective function of the user problem USER[mi;µ
∗
i , hi, vi] with

respect to mi(l) at mi = m∗i , we get

l∑
s=1

hi(s)v
′
i(z
∗
i (s))

µ∗i (l)
− 1.

From (2.A.1), we have

l∑
s=1

hi(s)v
′
i(z
∗
i (l)) =

l∑
s=1

ρ∗i (s)− α∗i (l)

= µ∗i (l)− α∗i (l).

Thus,
l∑

s=1

hi(s)v
′
i(z
∗
i (s))

µ∗i (l)
− 1 = −α

∗
i (l)

µ∗i (l)
≤ 0,

where equality holds iff α∗i (l) = 0. If m∗i (l) > 0, then δ∗i (l) > 0 and hence, by (2.A.2),
α∗i (l) = 0. Since this holds for all l ∈ [k], these are precisely the conditions necessary and
sufficient for the optimality of m∗i in the problem of user i, it being a convex problem.
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We now show that statement (ii) holds. The Lagrangian corresponding to the network
problem NET[δ;m∗, π, A, c] can be written as follows:

L(δ;µ) =
∑
i

k∑
l=1

m∗i (l) log(δi(l)) +
∑
j

∑
l

µj(l)

cj −∑
i∈Rj

k∑
s=πi(l)

δi(s)

 ,
where µj(l) is the dual variable corresponding to the link constraint and µ := (µj(l), j ∈
[n], l ∈ [k]). Let µj(l) = λ∗j(l). If m∗i (l) > 0, then δ∗i (l) > 0, and differentiating the
Lagrangian with respect to δi(l) at δ∗i (l), we get

∂L(δ;λ∗)

∂δi(l)

∣∣∣∣∣
δi(l)=δ∗i (l)

=
m∗i (l)

δ∗i (l)
−
∑
j∈Ji

l∑
s=1

λ∗j(π
−1
i (s))

= r∗i (l)−
l∑

s=1

ρ∗i (s) = 0.

If m∗i (l) = 0, then ∂L(δ;λ∗)
∂δi(l)

∣∣
δi(l)=δ∗i (l)

≤ 0 since λ∗j(l) ≥ 0 for all j, l. Further, from (2.A.3), we

have λ∗j(l)
[
cj −

∑
i∈Rj

∑k
s=πi(l)

δ∗i (s)
]

= 0 for all j, l. Thus, δ∗ solves the network problem

NET[δ;m∗, π, A, c].

2.B Proof of Lemma 2.6.1

Suppose problem (I) and its dual (II) have the same value. The value of (I) is same as that
of the system problem SYS[z, π;h, v, A, c]. Let us denote the objective function by

Θ(π, z, λ) :=
n∑
i=1

k∑
l=1

hi(l)vi(zi(l))

+
m∑
j=1

k∑
l=1

λj(l)

cj −∑
i∈Rj

zi(πi(l))

 .
Since F is a polytope, for any fixed permutation profile π, the set of feasible z is closed
and bounded. The function Θ(π, z, λ) is continuous in z and hence the fixed-permutation
system problem SYS FIX[z; π, h, v, A, c] has a bounded value. We also note that this value is
non-negative. Since there are finitely many permutation profiles π ∈

∏
i Sk, maximizing over

these, we get that the system problem has a bounded non-negative value, say W , achieved
say at z∗ and π∗. Thus

n∑
i=1

k∑
l=1

hi(l)vi(z
∗
i (l)) = W, (2.B.1)
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and the lottery z∗ is feasible with respect to the permutation profile π∗, i.e. z∗i (l) ≥ z∗i (l+ 1)
for all i ∈ [n], l ∈ [k] and ∑

i∈Rj

z∗i (π
∗
i (l)) ≤ cj for all j ∈ [m], l ∈ [k]. (2.B.2)

If this were not true, then the minimum of the objective function Θ(π∗, z∗, λ) with respect
to λ would be −∞ and not W ≥ 0.

The value of the dual problem (II) is equal to W . Consider the function Θd : Rm×k+ → R,
given by maximizing over the objective function in problem (II), with respect to π and z for
a fixed λ ≥ 0,

Θd(λ) := max
πi∈Sk∀i,

z:zi(l)≥zi(l+1)∀i,l

Θ(π, z, λ).

We note that the function Θd(λ) is lower semi-continuous, since the function Θ(π, z, λ) is
continuous in λ. Since (vi(·),∀i) are concave strictly increasing functions, there exists a
sufficiently large finite λ such that 0 ≤ M := Θd(λ) < ∞. It follows that the minimum of
Θd(λ) is achieved over the domain defined by λj(l) ∈ [0,M/(minj cj)] for all j, l. Since this
is a bounded region and the function Θd(λ) is lower semi-continuous, there exists a λ∗ such
that Θd(λ

∗) = minλ≥0 Θd(λ) = W .
Since Θd(λ

∗) = W , we have Θ(π∗, z∗, λ∗) ≤ W . However, from (2.B.1), (2.B.2) and the
fact that λ∗j(l) ≥ 0 for all j, l we get Θ(π∗, z∗, λ∗) ≥ W . Hence Θ(π∗, z∗, λ∗) = W . Thus the
maximum in the definition of Θd(λ

∗) is achieved at z∗, π∗. This implies π∗i satisfies (2.6.1)
for all i.

2.C Proof of Proposition 2.6.2

As observed earlier, if we replace the condition Mi ∈ Ωk in the primal relaxed problem (III)
with the condition Mi ∈ Ω∗k, we get the primal system problem (I). Since Ω∗k ⊂ Ωk, we have
Wps ≤ Wpr.

The constraint
∑

i∈Rj
1
k

∑k
l=1 zi(l) ≤ cj can equivalently be written as∑

i∈Rj

M̄izi ≤ cj1,

for all j, where M̄i is the matrix with all its entries equal to 1/k. Thus, if we replace Mi ∈ Ωk

in the primal relaxed problem (III) with M̄i, we get the primal average problem (V). This
implies that Wpa ≤ Wpr. However, as observed earlier in Equation (2.6.2), if for some fixed
allocations z the link constraints are satisfied with respect to any doubly stochastic matrix
Mi, then they are also satisfied with respect to M̄i. Thus the maximum of the average system
problem SYS AVG[z;h, v, A, c] is at least as much as the maximum of the relaxed system
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problem SYS REL[h, v, A, c]. Since the maximum of the relaxed system problem is equal to
the value of its corresponding primal problem, we get Wpa ≥ Wpr. Thus, we have established
that Wpr = Wpa.

The average system problem has a concave objective function with linear constraints.
Thus, strong duality holds, and we get Wpa = Wda.

We now show that Wda = Wdr. From Wpr ≤ Wdr and Wpr = Wpa = Wda, we get
Wda ≤ Wdr. Suppose λj = λ̄j1. Then the objective function of the relaxed dual problem (IV),

n∑
i=1

k∑
l=1

hi(l)vi(zi(l)) +
m∑
j=1

λTj

cj1−∑
i∈Rj

Mizi


=

n∑
i=1

k∑
l=1

hi(l)vi(zi(l)) +
m∑
j=1

λ̄j

cj −∑
i∈Rj

1

k

k∑
l=1

zi(l)

 ,
equals the objective function of the dual average problem (V). This implies that Wdr ≤ Wda.
This established that Wda = Wdr.

Since any doubly stochastic matrix Mi is a convex combination of permutation matrices
by the Birkhoff-von Neumann theorem, in the dual problem (IV), for any fixed λj, zi, the
optimum can be achieved by a permutation matrix. This established that Wdr = Wds.

This completes the proof.

2.D Example to Show Duality Gap

Consider the following example with two players {1, 2} and a single link with capacity 2.9.
Let k = 2. Let the corresponding CPT characteristics of the two players be as follows:

h1(1) =
1

3
, h1(2) =

2

3
,

h2(1) =
5

6
, h2(2) =

1

6
,

v1(x) = log(x+ 0.05) + 3, v2(x) =
2 log(x+ 0.05) + 3(x+ 0.05)

5
+ 3.

For this problem, it is easy to see that π1 = (1, 2) and π2 = (2, 1) is an optimal permuta-
tion. Solving the fixed-permutation system problem with respect to this permutation we get
optimal value equal to 7.5621. The corresponding variable values are

z1(1) = y1(1) = 1.95, z1(2) = y1(2) = 0.95,

z2(1) = y2(2) = 1.95, z2(2) = y2(1) = 0.95,

and the dual variable values are

λ1(1) =
1

6
, λ1(2) =

2

3
,
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and αi(l) = 0, for i = 1, 2, l = 1, 2. One can check that these satisfy the KKT conditions.
Let us now evaluate the value of the dual problem (II). By symmetry, we can assume

without loss of generality that λ1(1) ≤ λ1(2). As a result, optimal permutations for the dual
problem are given by π1 = π2 = (1, 2). For fixed λ1(1) and λ1(2), we solve the following
optimization problem:

max
z1(1)≥z1(2)≥0
z2(1)≥z2(2)≥0

1

3
log(z1(1) + 0.05) +

2

3
log(z1(2) + 0.05)

+
5

6

[
2 log(z2(1) + 0.05) + 3(z2(1) + 0.05)

5

]
+

1

6

[
2 log(z2(2) + 0.05) + 3(z2(2) + 0.05)

5

]
− λ1(1)[z1(1) + z2(1)]− λ1(2)[z1(2) + z2(2)]

+ 2.9[λ1(1) + λ1(2)] + 6.

(VIII)

If λ1(1) ≤ 0.5, then the value of the problem (VIII) is equal to ∞ (let z2(1) → ∞).
If λ1(1) > 0.5 (and hence λ1(2) > 0.5 because λ1(2) ≥ λ1(2)), then we observe that the
effective domain of maximization in the problem (VIII) is compact and problem (VIII) has
a finite value. Hence it is enough to consider λ1(1) > 0.5. At the optimum there exist
α1(1), α1(2), α2(1), α2(2) ≥ 0 such that

λ1(1) =
1

3

1

z1(1) + 0.05
+ α1(1),

λ1(2) =
2

3

1

z1(2) + 0.05
− α1(1) + α1(2),

λ1(1) =
1

3

1

z2(1) + 0.05
+

1

2
+ α2(1),

λ1(2) =
1

15

1

z2(2) + 0.05
+

1

10
− α2(1) + α2(2),

and

α1(1)[z1(1)− z1(2)] = 0, α1(2)z1(2) = 0,

α2(1)[z2(1)− z2(2)] = 0, α2(2)z2(2) = 0.

We now consider each of the sixteen (4 × 4) cases based on whether the inequalities
zi(l) ≥ zi(l + 1) for i = 1, 2 and l = 1, 2, hold strictly or not.

Case A1 (z1(1) = 0, z1(2) = 0). Then λ1(1) ≥ 1/0.15.
Case B1 (z1(1) > 0, z1(2) = 0). Then λ1(1) < 1/0.15, λ1(2) ≥ 2/0.15, and

α1(1) = 0, z1(1) =
1

3λ1(1)
− 0.05.
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B2 D2
C1 10.2284 8.2757
D1 10.1814 9.5006

Table 2.D.1: Table showing the numerical evaluations corresponding to the example in
Section 2.D. The numbers in the cells denote the optimum value of the objective function
(VIII) in the corresponding cases.

Case C1 (z1(1) = z1(2) > 0). Then λ1(2)/2 ≤ λ1(1) ≤ λ1(2), λ1(1) + λ1(2) < 1/0.05,
and

α1(1) =
2λ1(1)− λ1(2)

3
, α1(2) = 0, z1(1) = z1(2) =

1

λ1(1) + λ1(2)
− 0.05.

Case D1 (z1(1) > z1(2) > 0). Then λ1(1) < λ1(2)/2, 0 < λ1(1) < 1/0.15, 0 < λ1(2) <
2/0.15, and

α1(1) = 0, α1(2) = 0, z1(1) =
1

3λ1(1)
− 0.05, z1(2) =

2

3λ1(2)
− 0.05.

Case A2 (z2(1) = 0, z2(2) = 0). Then λ1(1) ≥ (1/0.15) + 0.5.
Case B2 (z2(1) > 0, z2(2) = 0). Then 0.5 < λ1(1) < 2.15/0.3, λ1(2) ≥ (1/0.75) + 0.1,

and

α2(1) = 0, z2(1) =
2

6λ1(1)− 3
− 0.05.

Case C2 (z2(1) = z2(2) > 0). This is not possible since λ1(1) ≤ λ1(2).
Case D2 (z2(1) > z2(2) > 0). Then 0.5 < λ1(1) < 2.15/0.3, 0.1 < λ1(2) < 2.15/1.5, and

α2(1) = 0, α2(2) = 0, z2(1) =
2

6λ1(1)− 3
− 0.05, z2(2) =

2

30λ1(2)− 3
− 0.05.

If case A1 or case A2 holds, then λ1(1) ≥ 1/0.15. For any fixed λ1(1), λ1(2), by choosing
zi(l), i = 1, 2, l = 1, 2 small enough (respecting the conditions imposed by the corresponding
cases), we get that the value of problem (VIII) is greater than or equal to 2.9 ∗ (1/0.15) =
19.3333 > 7.5621. Similarly, if case B1 holds, then λ1(2) ≥ 2/0.15, and we get that the value
of problem (VIII) is greater than or equal to 2.9 ∗ (2/0.15) = 38.6667 > 7.5621. For the
remaining 4 cases, substituting the corresponding expressions for zi(l), i = 1, 2, l = 1, 2 in
the objective function (VIII) and evaluating the optimum over feasible pairs (λ1(1), λ1(2))
for each pair of cases {C1,D1} × {B2,D2}, the minimum is achieved for the case (C1,D2)
and has value equal to 8.2757. Numerical evaluation for each of these cases gives rise to the
minimum values as shown in Table 2.D.1. Thus the optimal dual value is 8.2757 and this is
strictly greater than the primal value.
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2.E Proof of Theorem 2.6.3

We describe a polynomial time procedure that reduces an instance of the integer parti-
tion problem to a special case of the primal problem. Given a set of positive integers
{c1, c2, . . . , cn}, the integer partition problem is to find a subset S ⊂ [n], such that∑

i∈S

ci =
∑
i/∈S

ci.

If such a set S exists, then we say that an integer partition exists. Consider a network with
n players and n+ 1 link constraints given by

yi ≤ ci,∀i ∈ [n], and
n∑
i=1

yi ≤
∑n

i=1 ci
2

.

It is easy to realize a network with these link constraints. Let k = 2. Let the CPT charac-
teristics of all the players be as follows:

hi(1) = 1− ε, hi(2) = ε, vi(xi) = xi,∀i ∈ [n],

where ε = 1/10. Let Wps denote the optimal value of the system problem. We show that
Wps ≥ T := (1 − ε)

∑
i∈[n] ci if and only if an integer partition exists. Suppose an integer

partition exists and is given by the set S, consider the allocation πi = [1, 2] if i ∈ S and
πi = [2, 1] otherwise, zi(1) = ci, zi(2) = 0 for all i ∈ [n]. The aggregate utility for this
allocation is equal to T and hence Wps ≥ T . Suppose Wps ≥ T . Then there an allocation,
say z∗ and π∗ with aggregate utility at least T . Since k = 2, π∗ actually defines a partition
of [n], given by S = {i ∈ [n] : πi(1) = 1}. We have, the aggregate utility

W (1) +W (2) ≥ T,

where

W (1) :=
∑
i∈S

(1− ε)zi(1) +
∑
i/∈S

εzi(2),

W (2) :=
∑
i/∈S

(1− ε)zi(1) +
∑
i∈S

εzi(2).

Hence at least one of W (1) and W (2 is at least as big as T/2. Without loss of generality, let
W (1) ≥ T/2. Thus we have,∑

i∈S

zi(1) +
ε

1− ε
∑
i/∈S

zi(2) ≥
∑

i∈[n] ci

2
.

However, since z∗ is feasible, the link constraints give∑
i∈S

zi(1) +
∑
i/∈S

zi(2) ≤
∑

i∈[n] ci

2
.

Since ε < 1/2, we should have
∑

i/∈S zi(2) = 0 and
∑

i∈S zi(1) = (
∑

i∈[n] ci)/2, implying that
S forms an integer partition. This completes the proof.
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2.F Proof of Lemma 2.7.1

Let z̄i ≥ 0 and τ > 0. Let z∗i ∈ Zi(z̄i) be such that V avg
i (z̄i) =

∑k
l=1 hi(l)vi(z

∗
i (l)). We have,

(z∗i (l) + τ)l∈[k] ∈ Zi(z̄i + τ) and

V avg
i (z̄i + τ) ≥

k∑
l=1

hi(l)vi(z
∗
i (l) + τ) >

k∑
l=1

hi(l)vi(z
∗
i (l)) = V avg

i (z̄i),

where the strict inequality follows from the fact that vi(·) is strictly increasing. This estab-
lishes that the function V avg

i (z̄i) is strictly increasing.
Let z̄1

i , z̄
2
i ≥ 0 and σ ∈ [0, 1]. Let z1

i ∈ Zi(z̄1
i ) and z2

i ∈ Zi(z̄2
i ) be such that V avg

i (z̄1
i ) =∑k

l=1 hi(l)vi(z
1
i (l)) and V avg

i (z̄2
i ) =

∑k
l=1 hi(l)vi(z

2
i (l)). Let zσi := σz1

i (l) + (1 − σ)z2
i (l) and

z̄σi := σz̄1
i (l) + (1− σ)z̄2

i (l). Then zσi ∈ Zi(z̄σi ) and by the concavity of vi(·), we have

V avg
i (z̄σi ) ≥

k∑
l=1

hi(l)vi(z
σ
i (l)) ≥

k∑
l=1

hi(l)
[
σvi(z

1
i (l)) + (1− σ)vi(z

2
i (l))

]
= σV avg

i (z̄1
i ) + (1− σ)V avg

i (z̄2
i ).

This establishes that the function V avg
i (z̄i) is concave. This implies that V avg

i (z̄i) is continuous
and directionally differentiable at each z̄i > 0, and we have the following relation between
its left and right directional derivatives (see, for example, [117]):

d

dz̄i
V avg
i (z̄i−) ≥ d

dz̄i
V avg
i (z̄i+), for all z̄i > 0. (2.F.1)

Further, if (z̄ti)t≥1 is a sequence such that z̄ti → 0, and zti ∈ Zi(z̄ti) for all t ≥ 1, then zti(l)→ 0
for all l ∈ [k]. By the continuity of the function vi(·), we have that the function V avg

i (z̄i) is
continuous at z̄i = 0.

Let z̄i > 0, and let τ t := 1/t, for t ≥ 1. As before, let z∗i ∈ Zi(z̄i) be such that V avg
i (z̄i) =∑k

l=1 hi(l)vi(z
∗
i (l)). Since z̄i > 0 and (1/k)

∑k
l=1 z

∗
i (l) = z̄i, we have z∗i (l) > z∗i (l + 1) for at

least one l ∈ [k]. Let l̂ ∈ [k] be the smallest such l. For t ≥ 1, let zt+i be given by

zt+i (l) :=

{
z∗i (l) + k

l̂
τ t, for 1 ≤ l ≤ l̂,

z∗i (l), for l̂ < l ≤ k.

Note that zt+i ∈ Zi(z̄i + τ t). We have,

V avg
i (z̄i + τ t)− V avg

i (z̄i)−
kτ t

l̂

l̂∑
l=1

hi(l)v
′
i(z
∗
i (l))

≥
k∑
l=1

hi(l)vi(z
t+
i (l))−

k∑
l=1

hi(l)vi(z
∗
i (l))−

kτ t

l̂

l̂∑
l=1

hi(l)v
′
i(z
∗
i (l))

=
l̂∑
l=1

hi(l)

[
vi(z

∗
i (l) + kτ t/l̂)− vi(z∗i (l))−

kτ t

l̂
v′i(z

∗
i (l))

]
.



CHAPTER 2. NETWORK RESOURCE ALLOCATION 45

Let γ∗ := k

l̂

∑l̂
l=1 hi(l)v

′
i(z
∗
i (l)). We have,

d

dz̄i
V avg
i (z̄i+) ≥ lim inf

t→∞

V avg
i (z̄i + τ t)− V avg

i (z̄i)

τ t
≥ γ∗. (2.F.2)

Similarly, for t ≥ dk/z∗i (l̂)e (here, d·e denotes the ceiling function), let zt−i be given by

zt−i (l) :=

{
z∗i (l)− k

l̂
τ t, for 1 ≤ l ≤ l̂,

z∗i (l), for l̂ < l ≤ k.

We observe that zt−i ∈ Zi(z̄i − τ t), for all t ≥ dk/z∗i (l̂)e, and we have

V avg
i (z̄i)− V avg

i (z̄i − τ t)−
kτ t

l̂

l̂∑
l=1

hi(l)v
′
i(z
∗
i (l))

≤
k∑
l=1

hi(l)vi(z
∗
i (l))−

k∑
l=1

hi(l)vi(z
t−
i (l))− kτ t

l̂

l̂∑
l=1

hi(l)v
′
i(z
∗
i (l))

=
l̂∑
l=1

hi(l)

[
vi(z

∗
i (l))− vi(z∗i (l)− kτ t/l̂)−

kτ t

l̂
v′i(z

∗
i (l))

]
.

This implies,
d

dz̄i
V avg
i (z̄i−) ≤ lim sup

t→∞

V avg
i (z̄i)− V avg

i (z̄i − τ t)
τ t

≤ γ∗. (2.F.3)

From (2.F.1), (2.F.2) and (2.F.3), we have

d

dz̄i
V avg
i (z̄i−) =

d

dz̄i
V avg
i (z̄i+) = γ∗. (2.F.4)

This establishes that the function V avg
i (z̄i) is differentiable and completes the proof.

2.G Proof of Lemma 2.7.2

Consider the function w̄i : [0, 1]→ [0, 1], given by

w̄i(pi) :=

{
w∗i (pi) for 0 ≤ pi < p̃i,

w∗i (p̃i) + (pi − p̃i)1−w∗i (p̃i)

1−p̃i for p̃i ≤ pi ≤ 1.

Since w∗i is concave on [0, 1], one can verify that the function w̄i is also concave on [0, 1].
Since w∗i dominates wi, we have w∗i (p̃i) ≥ wi(p̃i). Since the function wi(pi) is convex on the
interval [p̃i, 1], we have wi(pi) ≤ w̄i(pi), for pi ∈ [p̃i, 1]. However, since w∗i is the minimum
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concave function that dominates wi, we get w̄i = w∗i . Thus, w∗i is linear over the interval
[p̃i, 1], and hence p∗i ≤ p̃i.

Suppose p̃i = 1. Then wi(·) is a concave function on the unit interval [0, 1], and hence
w∗i (pi) = wi(pi), for pi ∈ [0, 1] ⊃ [0, p∗i ]. Further, if p∗i < 1, then wi(pi) is linear over [p∗i , 1],
and inequality (2.7.1) holds, in fact, with equality. This completes the proof of Lemma 2.7.2,
if p̃i = 1.

For the rest of the proof we assume p̃i < 1. Define gi : [0, 1)→ R+ as

gi(pi) :=
1− wi(pi)

1− pi
.

We now provide an alternate characterization of the function w∗i and the point p∗i . Let
p̂i ∈ [0, 1] be given by

p̂i := min arg min
pi∈[0,p̃i]

{g(pi)} .

The existence of p̂i is guaranteed by the continuity of the function gi(pi) on the compact
interval [0, p̃i]. Let âi := gi(p̂i). Since wi(pi) is convex over the interval [p̃i, 1], the function
gi(pi) is non-decreasing over [p̃i, 1). Hence gi(pi) ≥ gi(p̂i), for pi ∈ [0, 1). Substituting the
expression for gi(·) and rearranging, we get

wi(pi) ≤ wi(p̂i) + âi(pi − p̂i),

for pi ∈ [0, 1]. Since the function wi(pi) is concave on the interval [0, p̂i] and the linear
function wi(p̂i) + âi(pi − p̂i) dominates wi(pi) on [0, 1], we have that the following function
ŵi(pi) is concave on [0, 1]:

ŵi(pi) :=

{
wi(pi) for 0 ≤ pi < p̂i,

wi(p̂i) + âi(pi − p̂i) for p̂i ≤ pi ≤ 1.

It follows that w∗i (pi) = ŵi(pi) for pi ∈ [0, 1]. Thus, p∗i ≤ p̂i and w∗i (pi) = ŵi(pi) = wi(pi)
for pi ∈ [0, p∗i ]. If p̂i = 0, then p∗i = p̂i. If p̂i > 1, then from the definition of p̂i, we have
gi(pi) > gi(p̂i) for pi ∈ [0, p̂i), and this implies that p̂i = p∗i .

We now prove inequality (2.7.1). Since p̃i < 1 we have p∗i < 1. Rearranging we get that
inequality (2.7.1) is equivalent to showing that the function gi(pi) is non-decreasing over the
interval [p∗i , 1). As observed earlier, gi(pi) is non-decreasing over the interval [p̃i, 1). Hence
it is enough to show that the function gi(pi) is non-decreasing on [p∗i , p̃i]. Suppose, on the
contrary, there exist p1

i , p
2
i ∈ [p∗i , p̃i] such that p1

i < p2
i and gi(p

1
i ) > gi(p

2
i ). Since p∗i = p̂i, and

from the definition of p̂i, we have p1
i > p∗i and gi(p

∗
i ) ≤ gi(p

2
i ). Since, gi(pi) is a continuous

function, there exist pi ∈ [p∗i , p
1
i ) such that gi(pi) = gi(p

2
i ). Thus we have pi < p1

i < p2
i such

that gi(p
1
i ) > gi(pi) = gi(p

2
i ). However, this contradicts the concavity of wi(pi) on [p∗i , p̃i].

This completes the proof.
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2.H Proof of Proposition 2.7.3

The Lagrangian for the average user problem USER AVG[zi; ρ̄
∗
i , hi, vi] is

L(zi;αi) =
k∑
l=1

hi(l)vi(zi(l))−
ρ̄∗i
k

k∑
l=1

zi(l) +
k∑
l=1

αi(l)[zi(l)− zi(l + 1)],

where αi(l) ≥ 0 are the dual variables corresponding to the order constraints zi(l) ≥ zi(l+1),
and αi(0) = 0. Differentiating with respect to zi(l), we get,

∂L(zi;αi)

∂zi(l)
= hi(l)v

′
i(zi(l))−

ρ̄∗i
k

+ αi(l)− αi(l − 1).

Since the problem USER AVG[zi; ρ̄
∗
i , hi, vi] has a concave objective function and linear con-

straints, there exist α∗i (l) ≥ 0 such that

hi(l)v
′
i(z
∗
i (l)) =

ρ̄∗i
k
− α∗i (l) + α∗i (l − 1),∀l ∈ [k], (2.H.1)

and

α∗i (l)[z
∗
i (l)− z∗i (l + 1)] = 0, ∀l ∈ [k]. (2.H.2)

If z∗i consists of identical allocations then it trivially satisfies Equation (2.7.2). If not, then
there exists l1 ∈ {2, . . . , k} such that

z∗i (l
1 − 1) > z∗i (l

1) = z∗i (l
1 + 1) = · · · = z∗i (k),

i.e. z∗i (l
1) is the lowest allocation and occurs with probability (k − l1 + 1)/k, and the next

lowest allocation is equal to z∗i (l
1 − 1). Summing the equations corresponding to l1 ≤ l ≤ k

from (2.H.1), we get[
k∑

s=l1

hi(s)

]
v′i(z

∗
i (l

1)) =

(
k − l1 + 1

k

)
ρ̄∗i − α∗i (k) + α∗i (l

1 − 1). (2.H.3)

The equation corresponding to l = l1 − 1 in (2.H.1) says,

hi(l
1 − 1)v′i(z

∗
i (l

1 − 1)) =
ρ̄∗i
k
− α∗i (l1 − 1) + α∗i (l

1 − 2). (2.H.4)

Since z∗i (l
1 − 1) > z∗i (l

1), from (2.H.2), we have α∗i (l
1 − 1) = 0. Thus from (2.H.3) and

(2.H.4), we have

hi(l
1 − 1)v′i(z

∗
i (l

1 − 1)) ≥ ρ̄∗i
k
≥ 1

k − l1 + 1

[
k∑

s=l1

hi(s)

]
v′i(z

∗
i (l

1)).
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Further, since vi(·) is strictly concave and strictly increasing, z∗i (l
1 − 1) > z∗i (l

1) implies
0 < v′i(z

∗
i (l

1 − 1) < v′i(z
∗
i (l

1)). Thus,

hi(l
1 − 1) >

1

k − l1 + 1

[
k∑

s=l1

hi(s)

]
. (2.H.5)

If (l1 − 2)/k ≥ p∗i , then

hi(l
1 − 1) = wi

(
l1 − 1

k

)
− wi

(
l1 − 2

k

)
≤ 1

k − l1 + 1

[
wi(1)− wi

(
l1 − 1

k

)]
=

1

k − l1 + 1

[
k∑

s=l1

hi(s)

]
. (2.H.6)

where the inequality follows from (2.7.1) with p1
i = (l1− 2)/k and pi = (l1− 1)/k. However,

(2.H.6) contradicts (2.H.5) and hence (l1 − 2)/k < p∗i . This proves the lemma.

Notes
8 In this chapter, for brevity, we drop the notation of reference point r from vri , and the positive sign

from the probability weighting function w+
i .
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Chapter 3

Notions of Equilibrium: CPT Nash
Equilibrium and CPT Correlated
Equilibrium

3.1 Introduction

Non-cooperative game theory studies the interaction between decision makers with possibly
different objectives. The decision-makers are generally modeled as expected utility maximiz-
ers. We will consider games where players have cumulative prospect theoretic preferences.
Two of the most well known notions of equilibrium, Nash equilibrium [99] and correlated
equilibrium [6], are based on EUT. (See [75] for an excellent account of the strengths and
weaknesses of these notions.) Keskin [74] defines analogs for both these equilibrium notions
based on cumulative prospect theory. He also establishes the existence of such equilibria
under certain continuity conditions. In this chapter, we further study several interesting
properties of these notions of equilibria.

There has been considerable interest in the study of the comparative geometry of Nash
and correlated equilibria. Under EUT, it is known that the set of all correlated equilibria is
a convex polytope and contains the set of all Nash equilibria. In the paper [101], it has been
proved that:

the Nash equilibria all lie on the boundary of the correlated equilibrium poly-
tope.

(P)

Further, it has been found that in 2-player (bimatrix) games, all extremal Nash equilibria
are also extremal correlated equilibria [38, 26, 45], although this result does not hold for
more than 2 players [101]. We give a complete characterization of the sets of correlated and
Nash equilibria for 2x2 games under CPT, with EUT being a special case.9

CPT is known to share common features with EUT. Indeed, recall that CPT is a gener-
alization of EUT. The purpose of this chapter is to study how the geometry of equilibrium
notions is affected by prospect theoretic preferences. For example, under CPT, it continues
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to be the case that the set of correlated equilibria contains all Nash equilibria, but the set
of correlated equilibria is not guaranteed to be a convex polytope (see Example 2 in [74]).
The pure Nash equilibria, if they exist, coincide under EUT and CPT (see Proposition 2 in
[74]). It is known that the set of correlated equilibria under CPT includes the set of joint
probability distributions induced by the convex hull of the set of pure Nash equilibria (see
Proposition 3 in [74]), as is true under EUT.

These similarities and differences raise the natural question of whether property (P)
continues to hold or not under CPT. In fact, we will see that the set of correlated equilibria
can be disconnected (Section 3.6). Nevertheless, our main result says that property (P)
continues to hold under CPT (Section 3.3). We also show that for 2 × 2 games the set of
correlated equilibria under CPT is a convex polytope, and we characterize it (Section 3.4).

3.2 Definitions

Let Γ = ([n], (Ai)i∈N , (xi)i∈N) be a finite n-person normal form game, where [n] = {1, . . . , n}
is the set of players , Ai is the finite action set of player i ∈ [n], and xi : A1 × · · · × An → R
is the payoff function for player i ∈ [n]. Let each player i ∈ [n] have at least two actions, i.e
|Ai| ≥ 2,∀i ∈ [n]. Let the set of all action profiles be denoted by A =

∏
i∈[n] Ai. Let ai ∈ Ai

denote a an action of player i ∈ [n] (also referred to as a pure strategy or simply a strategy)
and let a = (a1, . . . , an) ∈ A denote an action profile of all players. Let A−i =

∏
j 6=iAj

denote the set of action profiles a−i ∈ A−i of all players except player i. Let xi(a) denote
the payoff of player i when action profile a is played, and let xi(ãi, a−i) denote the payoff to
player i when she chooses action ãi ∈ Ai while the others adhere to a−i.

Definition 3.2.1. The game Γ is non-trivial if xi(a) 6= xi(ãi, a−i) for some player i ∈ [n],
some a−i ∈ A−i, and some ai, ãi ∈ Ai.
Definition 3.2.2 ([5]). A joint probability distribution µ ∈ ∆|A|−1 is said to be a correlated
equilibrium of Γ if it satisfies the following inequalities:∑

a−i∈A−i

µ(a)(xi(ai, a−i)− xi(ãi, a−i)) ≥ 0, for all i and for all ai, ãi ∈ Ai. (3.2.1)

The set of all correlated equilibria, henceforth denoted as CEUT (Γ), is a convex polytope
which is a proper subset of ∆|A|−1 iff the game is non-trivial. The set ∆∗(A) of all joint prob-
ability distributions that are of product form is defined by a system of nonlinear constraints,
viz.

∆∗(A) := {µ ∈ ∆|A|−1 : µ(a) = µ1(a1)× · · · × µn(an) ∀ a ∈ A}, (3.2.2)

where µi denotes the marginal probability distribution on Ai induced by µ. The set of all
Nash equilibria is the intersection of ∆∗(A) and CEUT (Γ), which is non-empty by virtue of
Nash’s existence theorem.

We now describe the notion of correlated equilibrium incorporating CPT preferences,
as defined by Keskin [74]. Let {vrii (·), ri ∈ R} be a family of value functions, one for each
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reference point, and w±i (·) be the probability weighting functions for each player i ∈ [n].
We assume that vrii (z) is continuous in z and ri for each i. For every player i ∈ N , let
the reference point be determined by a continuous function ri : ∆|A|−1 → R. Let V ri

i (L)
denote the CPT value of a lottery L evaluated by player i, using the value function vrii (·)
and probability weighting functions w±i (·) as described in equation (1.3.8) or (1.3.9).

Corresponding to a lottery

L = {(p1, z1); . . . ; (pt, zt)},

as in equation (1.3.1), let z := (z1, . . . , zt) and p := (p1 . . . , pt). We denote L as (p, z) and
refer to the vector z as an outcome profile.

For a joint distribution µ ∈ ∆|A|−1, let

µi(ai) =
∑

a−i∈A−i

µ(ai, a−i)

be the marginal distribution of player i, and for ai such that µi(ai) > 0 let

µ−i(a−i|ai) =
µ(ai, a−i)

µi(ai)

be the conditional distribution on A−i.
If player i observes a signal to play ai drawn from the joint distribution µ, and if she

decides to deviate to an action ãi ∈ Ai, then she will face the lottery

L(µ, ai, ãi) := {(µ−i(a−i|ai), xi(ãi, a−i))}a−i∈A−i .

Definition 3.2.3 ([74]). A joint probability distribution µ ∈ ∆|A|−1 is said to be a CPT
correlated equilibrium of Γ if it satisfies the following inequalities for all i and for all ai, ãi ∈ Ai
such that µi(ai) > 0:

V
ri(µ)
i (L(µ, ai, ai)) ≥ V

ri(µ)
i (L(µ, ai, ãi)). (3.2.3)

Let C(Γ) denote the set of all CPT correlated equilibria of Γ.
For any fixed reference point r, since the value function vr(·) is assumed to be strictly

increasing, one can check that two outcome profiles z and y have equal CPT value under all
probability distributions p, i.e. V r(p, z) = V r(p, y) for all p, iff z = y. It then follows that
the set C(Γ) is a proper subset of ∆|A|−1 iff the game is non-trivial.

We now describe the notion of CPT Nash equilibrium as defined by Keskin10 [74]. For
a mixed strategy µ ∈ ∆∗(A), if player i decides to play ai, drawn from the distribution µi,
then she will face the lottery

L(µ−i, ai) := {(µ−i(a−i), xi(ai, a−i))}a−i∈A−i ,
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where µ−i(a−i) =
∏

j 6=i µj(aj) plays the role of µ−i(a−i|ai), which does not depend on ai.
Suppose player i decides to deviate and play a mixed strategy µ′i while the rest of the players
continue to play µ−i. Then define the average CPT value for player i by

Ai(µ
′
i, µ−i) =

∑
ai∈Ai

µ′i(ai)V
ri(µ)
i (L(µ−i, ai)).

The best response of player i to a mixed strategy µ ∈ ∆∗(A) is defined as

BRi(µ) :=
{
µ∗i ∈ ∆|Ai|−1|∀µ′i ∈ ∆|Ai|−1,Ai(µ

∗
i , µ−i) ≥ Ai(µ

′
i, µ−i)

}
. (3.2.4)

Definition 3.2.4 ([74]). A mixed strategy µ∗ ∈ ∆∗(A), is a CPT Nash equilibrium iff

µ∗i ∈ BRi(µ
∗) for all i.

We call µ∗ a pure or mixed CPT Nash equilibrium depending on µ∗ being a pure or mixed
strategy respectively.

The set of all CPT correlated equilibria is no longer guaranteed to be a convex polytope
(Example 2 in [74]). The set of all CPT Nash equilibria is the intersection of ∆∗(A) and
C(Γ) (Proposition 1 in [74]) and is non-empty (Theorem 1 in [74]). We are interested in
studying the geometry of this intersection. It should be noted that the set C(Γ) depends on
the choice of the reference functions ri(µ), as does the set of CPT Nash equilibria.

3.3 Main Result: An Interesting Geometric Property

In the case of traditional utility-theoretic equilibria, it has been proved that

Proposition 3.3.1 ([101]). In any finite, non-trivial game, the Nash equilibria are on the
boundary of the polytope of correlated equilibria when it is viewed as a subset of the smallest
affine space containing all joint probability distributions.

Since the set of correlated equilibria CEUT (Γ) is a convex polytope, it is enough to prove
that the Nash equilibria lie on one of the faces of CEUT (Γ) if CEUT (Γ) is full-dimensional, i.e.
has dimension |A| − 1, when it is viewed as a subset of the affine space containing ∆|A|−1,
and the statement is trivially true if it is not full-dimensional. When the set CEUT (Γ) is
not full-dimensional, it is possible for the Nash equilibria to lie in the relative interior of the
set CEUT (Γ) (Proposition 2 in [101]). Further, the class of games with the Nash equilibrium
in the relative interior of the correlated equilibrium polytope has been characterized in the
paper [128].

We now extend the above proposition for equilibria with CPT preferences. The proof is
quite different since in general C(Γ) is not a convex polytope, as shown in Section 3.6 below
(see also Example 2 in [74]).
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Proposition 3.3.2. In any finite, non-trivial game, the CPT Nash equilibria are on the
boundary of the set of CPT correlated equilibria set when it is viewed as a subset of the
smallest affine space containing all joint probability distributions.

We first prove a lemma which in itself is an interesting property of cumulative prospect
theoretic preferences. Let V r(·) denote the CPT value evaluated with respect to a value
function vr(·) and probability weighting functions w±(·) with respect to a reference point
r ∈ R. Let z = (z1, . . . , zt) and y = (y1, . . . , yt) be two outcome profiles and p = (p1, . . . , pt)
be a probability distribution. The prospect (p, z) is said to pointwise dominate the prospect
(p, y) if zj ≥ yj for all j such that pj > 0. Further, if the inequality zj ≥ yj holds strictly for
at least one j with pj > 0 then the prospect (p, z) is said to strictly pointwise dominate the
prospect (p, y). Let the regret corresponding to choosing y instead of z be denoted by

Rr(p, z, y) := V r(p, x)− V r(p, y). (3.3.1)

Prospects (p, z) and (p, y) are said to be similarly ranked if there exists a permutation
(α1, . . . , αt′) of T ′ := {j ∈ {1, . . . , t}|pj > 0} such that

zα1 ≥ · · · ≥ zαt′ and yα1 ≥ · · · ≥ yαt′ .

Lemma 3.3.3. In the above setting, suppose the prospects (p, z) and (p, y) satisfy either of
the following:

(i) they are not similarly ranked or,

(ii) neither of them dominates the other,

then there exists a direction δ = (δ1, . . . , δt) with
∑t

j=1 δj = 0 and δj = 0 for j /∈ T ′ such that

Rr(p+ εδ, z, y) < Rr(p, z, y) (3.3.2)

for all r ∈ R, for all ε > 0 such that p+ εδ ∈ ∆t−1.

Proof. We observe that it is enough to prove the claim for the case when pj > 0 for all
1 ≤ j ≤ t because if not, then we can let z′, y′ and p′ be respectively the vectors z, y and p
restricted to the coordinates in T ′ and then use the result. WLOG let the ordering be such
that z1 ≥ · · · ≥ zt. Let δ(j1, j2) correspond to transferring probability from j1 to j2, i.e. for
all 1 ≤ j ≤ t,

δj(j1, j2) =


1 if j = j2,

−1 if j = j1,

0 otherwise .

Suppose (i) holds. Then there exists j1 < j2 (and hence zj1 ≥ zj2) such that yj1 < yj2 . Now,
by the strict stochastic dominance property of CPT we have

V r(p+ εδ, z) ≤ V r(p, z) and V r(p, y) < V r(p+ εδ, y),



CHAPTER 3. NOTIONS OF EQUILIBRIUM 54

where δ denotes δ(j1, j2), and hence (3.3.2) follows.
Now suppose (p, z) and (p, y) are similarly ranked. WLOG let the ordering be such that

z1 ≥ · · · ≥ zt and y1 ≥ · · · ≥ yt. Suppose (ii) holds. Then there exist j1, j2 such that zj1 > yj1
and zj2 < yj2 . In fact, one can find j1, j2 such that zj1 > yj1 , zj = yj for all j between j1 and
j2, and zj2 < yj2 . Depending on the order of j1 and j2 we have the following two cases (note
j1 6= j2):
Case 1 (j1 < j2): Then we have the ordering zj2 < yj2 ≤ yj1 < xj1 . Let δ = δ(j1, j2). Then
it follows from the strict monotonicity of the functions w±i (·) and the definition of decision
weights that

∇+
j1

(p+ εδ)−∇+
j1

(p) < 0,

∇+
j2

(p+ εδ)−∇+
j2

(p) > 0,

∇−j1(p+ εδ)−∇−j1(p) < 0,

∇−j2(p+ εδ)−∇−j2(p) > 0.

(We suppress the dependence of ∇±j (p, a) on the permutation a since we have assumed z and
y to be ordered.) Depending on the position of the reference point r, we have the following
subcases:
Subcase 1a (r ≤ xj2):

[V r(p+ εδ, x)− V r(p+ εδ, y)]− [V r(p, z)− V r(p, y)]

= [∇+
j1

(p+ εδ)−∇+
j1

(p)][vr(zj1)− vr(yj1)]

+ [∇+
j2

(p+ εδ)−∇+
j2

(p)][vr(zj2)− vr(yj2)],

because ∇+
j (p + εδ) = ∇+

j (p) for all j /∈ {j1, . . . , j2} and vr(zj) = vr(yj) for all j1 < j < j2.
Since vr(zj1)− vr(yj1) > 0 and vr(zj2)− vr(yj2) < 0 we get (3.3.2).
Subcase 1b (xj2 < r ≤ yj2):

[V r(p+ εδ, x)− V r(p+ εδ, y)]− [V r(p, x)− V r(p, y)]

= [∇+
j1

(p+ εδ)−∇+
j1

(p)][vr(zj1)− vr(yj1)] + [∇−j2(p+ εδ)−∇−j2(p)]vr(xj2)

− [∇+
j2

(p+ εδ)−∇+
j2

(p)]vr(yj2).

Now vr(zj1)− vr(yj1) > 0, vr(zj2) < 0, vr(yj2) > 0 and the result follows.
Subcase 1c (yj2 < r ≤ yj1):

[V r(p+ εδ, x)− V r(p+ εδ, y)]− [V r(p, z)− V r(p, y)]

= [∇+
j1

(p+ εδ)−∇+
j1

(p)][vr(zj1)− vr(yj1)]

+ [∇−j2(p+ εδ)−∇−j2(p)][vr(zj2)− vr(yj2)].

Now vr(zj1)− vr(yj1) > 0, vr(zj2)− vr(yj2) < 0 and the result follows.



CHAPTER 3. NOTIONS OF EQUILIBRIUM 55

Subcase 1d (yj1 < r ≤ zj1):

[V r(p+ εδ, z)− V r(p+ εδ, y)]− [V r(p, z)− V r(p, y)]

= [∇+
j1

(p+ εδ)−∇+
j1

(p)]vr(zj1)− [∇−j1(p+ εδ)−∇−j1(p)]vr(yj1)

+ [∇−j2(p+ εδ)−∇−j2(p)][vr(zj2)− vr(yj2)].

Now vr(zj1) > 0, vr(yj1) < 0, vr(zj2)− vr(yj2) < 0 and the result follows.
Subcase 1e (xji < r):

[V r(p+ εδ, x)− V r(p+ εδ, y)]− [V r(p, x)− V r(p, y)]

= [∇−j1(p+ εδ)−∇−j1(p)][vr(zj1)− vr(yj1)]

+ [∇−j2(p+ εδ)−∇−j2(p)][vr(zj2)− vr(yj2)].

Now vr(zj1)− vr(yj1) > 0, vr(zj2)− vr(yj2) < 0 and the result follows.
Case 2 (j1 > j2) implies the order yj1 < xj1 ≤ zj2 < yj2 . Taking δ = δ(j2, j1), each of the

subcases depending on the position of the reference point can be handled as in case 1.

Remark 3.3.4. The vector δ used in the proof of the this lemma depends only on the prospects
(p, z) and (p, y) and not on the reference point r. In fact, it depends only on the order
structure of the vectors z and y and not on the probability distribution vector p as long as
pj > 0 for all 1 ≤ j ≤ t. Also, the range of ε for which the claim holds depends only on the
prospects (p, z) and (p, y) and not on the reference point r. Lemma 3.3.3 can be extended to
more general CPT settings as in [30], where the outcome space is assumed to be a connected
topological space instead of monetary outcomes in R.

Proof of proposition 3.3.2. If a CPT Nash equilibrium µ̂ is not completely mixed, i.e. there
is a player i and an action ai ∈ Ai, such that µ̂i(ai) = 0, then µ̂ assigns zero probability to
one or more action profiles and hence lies on the boundary of ∆|A|−1 and thus also on the
boundary of CCPT .

Suppose now that µ̂ ∈ ∆∗(A) ∩ C(Γ) is completely mixed. Then the inequalities (3.2.3)
hold for all i and for all ai, ãi ∈ Ai. In particular, for any pair ai, ãi ∈ Ai we have

V
ri(µ̂)
i

(
{(µ̂−i(a−i|ai), xi(ai, a−i))}a−i∈A−i

)
≥ V

ri(µ̂)
i

(
{(µ̂−i(a−i|ai), xi(ãi, a−i))}a−i∈A−i

)
,

V
ri(µ̂)
i

(
{(µ̂−i(a−i|ãi), xi(ãi, a−i))}a−i∈A−i

)
≥ V

ri(µ̂)
i

(
{(µ̂−i(a−i|ãi), xi(ai, a−i))}a−i∈A−i

)
.

However, since µ̂ ∈ ∆∗(A), we have µ̂−i := µ̂−i(·|ai) = µ̂−i(·|ãi) and hence the above inequal-
ities are in fact equalities. The same is true for all the inequalities (3.2.3).

Since the game is non-trivial, there exist i ∈ [n] and ai, ãi ∈ Ai such that xi(ai, a−i) 6=
xi(ãi, a−i) for some a−i ∈ A−i. Consider the inequality in (3.2.3) corresponding to such an
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(i, ai, ãi). Fix a one to one correspondence between the numbers {1, . . . , t} and the action
profiles {a−i ∈ A−i} (here t = |A−i|). Let

z := (z1, . . . , zt) = (xi(ai, a−i))a−i∈A−i ,

and
y := (y1, . . . , yt) = (xi(ãi, a−i))a−i∈A−i .

Since µ̂ is completely mixed, µ̂i(ai) > 0. Let

p = (p1, . . . , pt) = (µ̂−i(a−i))a−i∈A−i

be the conditional probability distribution on A−i.
If either profile (p, z) or (p, y) pointwise dominated the other then the pointwise domi-

nance would be strict since z and y are distinct and pj > 0 for all 1 ≤ j ≤ t. By the strict
monotonicity property of CPT, we would get V ri(µ̂)(p, z) 6= V ri(µ̂)(p, y) contrary to our as-
sumption. Thus condition (ii) in Lemma 3.3.3 is satisfied and there exists a direction vector
δ = (δ1, . . . , δt) with

∑t
j=1 δj = 0 such that V ri

i (p + εδ, z) < V ri
i (p + εδ, y) for all ri ∈ R, for

all ε > 0 such that p+ εδ ∈ ∆t−1. Note that the vector δ and the range of ε does not depend
on the reference point ri (see Remark 3.3.4). Consider the joint probability distribution µ̄
given by

µ̄(āi, a−i) =

{
µ̂i(ai)(pj + εδj) if āi = ai and j corresponds to a−i ,

µ̂(āi, a−i) otherwise.

Let Rr
i (·) denote the regret corresponding to player i, evaluated using her value function

and probability weighting functions. This should be thought of as defined for any pair
of outcome profiles z and y on A−i with a given probability distribution p on A−i, as in
equation (3.3.1), with V r being replaced by V r

i and defined as in equation (1.3.8), using the
value function vri and the weighting functions w±i . Since µ̂ ∈ ∆∗(A) ∩ C(Γ),

Rri(µ̂)
i (µ̂−i, z, y) = V

ri(µ̂)
i (p, z)− V ri(µ̂)

i (p, y) = 0,

and
Rri(µ̂)
i (µ̂−i, y, z) = V

ri(µ̂)
i (p, y)− V ri(µ̂)

i (p, z) = 0.

respectively. Now if
Rri(µ̄)
i (µ̂−i, z, y) ≤ Rri(µ̂)

i (µ̂−i, z, y)

then from the choice of µ̄

Rri(µ̄)
i (µ̄−i(·|ai), z, y) = Rri(µ̄)

i (p+ εδ, z, y) < Rri(µ̄)
i (p, z, y) = Rri(µ̄)

i (µ̂−i, z, y) ≤ 0.

On the other hand, if
Rri(µ̄)
i (µ̂−i, z, y) > Rri(µ̂)

i (µ̂−i, z, y) = 0
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then
Rri(µ̄)
i (µ̄−i(·|ãi), y, z) = R

ri(µ̄)
i (µ̂−i, y, z) = −Rri(µ̄)

i (µ̂−i, z, y) < 0.

Thus either of the inequalities in (3.2.3) corresponding to deviation from ai to ãi or ãi to ai
is violated by the joint distribution µ̄. Thus, for any neighborhood N of µ̂, µ̄ belongs to N
for sufficiently small ε and µ̄ /∈ C(Γ). Thus µ̂ lies on the boundary of C(Γ).

3.4 2× 2 Games

For a game Γ, the set C(Γ), in general, need not be convex (Example 2 in [74]). In this section
we will see that, in the special case of a 2 × 2 game with players having a fixed reference
point independent of the underlying probability distribution, C(Γ) is a convex polytope.

Consider a 2 player game Γ with N = {1, 2} and A1 = A2 = {0, 1}. With player 1 as
the row player and player 2 as the column player and {cij, dij}i,j∈{0,1} representing payoffs
for player 1 and 2 respectively, let the payoff matrix be as shown in Figure 3.1. Here, the
real numbers cij and dij should be thought of as outcomes in the terminology of cumulative
prospect theory, but we will call them payoffs in this section. Let µ = {µ00, µ01, µ10, µ11} ∈ ∆3

be a joint probability distribution assigning probabilities to action profiles as represented by
the matrix in Figure 3.1. Let r1 and r2 be the fixed reference points (independent of the
joint probability distribution µ) for players 1 and 2 respectively.

0 1
0 c00, d00 c01, d01

1 c10, d10 c11, d11

0 1
0 µ00 µ01

1 µ10 µ11

Figure 3.1: Payoff matrix (left) and joint probability matrix (right) of a 2× 2 game

Proposition 3.4.1. For the above 2× 2 game, the set CCPT is a convex polytope.

Proof. The condition for µ ∈ CCPT corresponding to the row player deviating from strategy
0 to strategy 1 in (3.2.3) is:

if µ00 + µ01 > 0 then Rr1
1 (p1, z, y) ≥ 0, (3.4.1)

where p1 = (p1
0, p

1
1), p1

0 = µ00

µ00+µ01
, p1

1 = µ01

µ00+µ01
, z = (c00, c01), y = (c10, c11). Let C1 denote

the set of all µ ∈ ∆3 satisfying condition (3.4.1). We have:

(i) if c00 ≥ c10 and c01 ≥ c11, then C1 = ∆3;

(ii) if c00 < c10 and c01 = c11 (resp. c00 = c10 and c01 < c11), then C1 = {µ ∈ ∆3|µ00 = 0}
(resp. C1 = {µ ∈ ∆3|µ01 = 0});

(iii) If c00 < c10 and c01 < c11, then C1 = {µ ∈ ∆3|µ00 = 0, µ01 = 0};
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(iv) if c00 < c10 and c01 > c11 (resp. c00 > c10 and c01 < c11), then from lemma 3.3.3,
Rr1

1 (p1, z, y) is strictly monotonic as a function of p1
0 (= 1− p1

1) on the interval (0, 1),

Rr1
1 ((0, 1), z, y) > 0 > Rr1

1 ((1, 0), z, y)

(resp. Rr1
1 ((0, 1), z, y) < 0 < Rr1

1 ((1, 0), z, y))),

and hence the inequality in condition (3.4.1) holds iff p1
0 ≤ q0 (resp. p1

1 ≤ q1) for a
certain q0 ∈ (0, 1) (resp. q1 ∈ (0, 1)) depending on the payoffs c00, c01, c10 and c11,
the value function vr1(·), and the probability weight functions w±1 (·). Thus C1 = {µ ∈
∆3|α0µ00 ≤ µ01} with α0 = 1−q0

q0
(resp. C1 = {µ ∈ ∆3|α1µ00 ≥ µ01} with α1 = q1

1−q1 ).

In each case, C1 is a convex polytope. Similarly, the other three conditions in (3.2.3),
corresponding to the row player deviating from action 1 to action 0, the column player
deviating from action 0 to action 1, and the column player deviating from action 1 to action
0, give rise to convex polytopes C2, C3 and C4 respectively. The set C(Γ) is the (non-empty)
intersection of these convex polytopes and hence is itself a convex polytope.

Remark 3.4.2. From the assumption that the value functions and the probability weighting
functions are continuous, we get that the CPT value function V r(p, z) is continuous in r, p
and z [74], and hence Rr1(p1, z, y) in the proof above is continuous in r1, p

1, z and y. In case
(iv) above, since Rr1(p1, z, y) is a strictly monotonic continuous function, the probability
threshold q0 (resp. q1 depending on the relation between the payoffs) is uniquely determined
by the payoff vectors x and y (keeping the reference point, value function and probability
weighting functions fixed) as the one satisfying Rr1(q0, z, y) = 0 (resp. Rr1(q1, z, y) = 0).
Let (zt = (ct00, c

t
01), t ≥ 1) and (yt = (ct10, c

t
11), t ≥ 1) be a sequence of payoff vectors such that

ct00 < ct10 and ct01 > ct11 for all t ≥ 1 and zt → z∗ = (c∗00, c
∗
01) and yt → y∗ = (c∗10, c

∗
11). Let qt0

be the corresponding probability threshold for payoff vectors zt and yt. Unless c∗00 = c∗10 and
c∗01 = c∗11, there is a unique q∗0 such that Rr1(q∗0, z

∗, y∗) = 0. If qt0 6→ q∗0, then the sequence
(qt0, t ≥ 1) has a limit point q̃0 6= q∗0 and from the continuity of the function Rr1(p, z, y) we
get that Rr1(q̃0, z

∗, y∗) = 0 contradicting the uniqueness of q∗0. Hence, except for the case
when c∗00 = c∗10 and c∗01 = c∗11, we have qt0 → q∗0 and hence αt0 = 1−q0

q0
→ α∗ ∈ R+ ∪ {0,∞}.

We further note that the limit α∗ depends only on the payoff vectors z∗, y∗ and not on
the limiting sequence zt, yt. This fact will be useful in analyzing 2 × 2 games with weakly
dominated strategies as defined below. The case when ct00 > ct10 and ct01 < ct11 for all t is
similar.

Definition 3.4.3. For an n player game Γ = ([n], (Ai)i∈[n], (xi)i∈[n]), let ai, ãi ∈ Ai be two
strategies corresponding to player i.

• Strategies ai and ãi are said to be equivalent if player i is indifferent in choosing between
ai and ãi no matter what the other players do.

• Strategy ai is said to be weakly dominated by strategy ãi if there exists at least one
strategy profile of the opponents for which choosing ãi is better than choosing ai, and
for all strategy profiles of the opponents choosing ãi is at least as good as choosing ai.



CHAPTER 3. NOTIONS OF EQUILIBRIUM 59

• Strategy ai is said to be strictly dominated by strategy ãi if, for every strategy profile
of the opponents, choosing ãi is better than choosing ai.

Note that a strictly dominated strategy is also a weakly dominated strategy.
As observed in Section 3.3, two outcome profiles z and y are equivalent under all prob-

ability distributions p iff z = y. Thus, as under EUT, for players with CPT preferences we
have the following:

• Strategy ai is equivalent to strategy ãi iff

xi(ai, a−i) = si(ãi, a−i) ∀a−i ∈ S−i.

• Strategy ai is weakly dominated by strategy ãi iff

xi(ai, a−i) ≤ xi(ãi, a−i) ∀a−i ∈ A−i,

where strict inequality holds for at least one a−i ∈ A−i.

• Strategy ai is strictly dominated by strategy ãi iff

xi(ai, a−i) < xi(ãi, a−i) ∀a−i ∈ S−i.

We now look at the convex polytope C(Γ) for a 2× 2 game in more detail.

2× 2 games with at least one equivalent pair of strategies

Consider a 2× 2 game with at least one equivalent pair of strategies. Suppose player 1 has
equivalent strategies. This corresponds to case (i) above with both equalities (i.e. c00 = c10

and c01 = c10). Thus player 1 is indifferent between his strategies. For player 2, if the two
strategies are equivalent, then the game is trivial and C(Γ) = ∆3. If one of the strategies
for player 2 is weakly dominated, say strategy 0 is weakly dominated by strategy 1, then
either d00 = d01, d10 < d11 or d00 < d01, d10 = d11. If d00 = d01, d10 < d11, then the set
C(Γ) = {µ ∈ ∆3|µ10 = 0} is a triangle with vertices F = (1, 0, 0, 0), G = (0, 1, 0, 0) and
H = (0, 0, 0, 1). It intersects the set ∆∗(A) at the lines with endpoints {F,G} and {G,H}.
The other three cases are similar. If neither of the two strategies for player 2 dominates the
other, then C(Γ) is characterized by the inequalities

{βµ00 ≥ µ10, βµ01 ≤ µ11} or {βµ00 ≤ µ10, βµ01 ≥ µ11}.

where the former pair holds if d00 > d01, d10 < d11 and the latter holds if d00 < d01, d10 >
d11. Suppose the first pair of inequalities hold (the other case can be handled similarly).
Then one can check that the set C(Γ) is a tetrahedron with vertices E = (1, 0, 0, 0), F =
( 1

1+β
, 0, β

1+β
, 0), G = (0, 0, 0, 1) and H = (0, 1

1+β
, 0, β

1+β
). It intersects ∆∗(A) at the lines with

endpoints {E,F}, {G,H} and {F,H}.
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2× 2 games with at least one strictly dominated strategy

Consider now a 2×2 game with at least one strictly dominated strategy. This corresponds to
case (i) above with both inequalities strict (i.e. c00 > c10 and c01 > c11) or case (iii). Strictly
dominated strategies cannot be used with positive probability in any correlated equilibrium
of that game. It is easy then to compute the set C(Γ) for such a game by eliminating the
strictly dominated strategies. Suppose strategy 1 is strictly dominated by strategy 0. Thus,
c00 > c10 and c01 > c11. If d00 > d01 then C(Γ) = {µ ∈ ∆3|µ01 = µ10 = µ11 = 0} is a
point. If d00 < d01 then C(Γ) = {µ ∈ ∆3|µ00 = µ10 = µ11 = 0} is a point. If d00 = d01 then
C(Γ) = {µ ∈ ∆3|µ10 = µ11 = 0} is a line segment. In each case C(Γ) is contained in ∆∗(A).
The case when strategy 0 is strictly dominated by strategy 1 is similar.

2× 2 games with no equivalent or weakly dominated strategies

We now discuss 2 × 2 games with no equivalent or weakly dominated strategies. Let G0

denote the set of all such games. For any game Γ ∈ G0, the relation amongst the payoffs for
all the four conditions corresponding to C1, C2, C3 and C4 are as in case (iv) above. Further,
the conditions corresponding to the row player deviating from strategy 0 to strategy 1, and
vice versa are

if µ00 + µ01 > 0 then V r1
1 (p1, z) ≥ V r1

1 (p1, y); (3.4.2)

and
if µ10 + µ11 > 0 then V r1

1 (p2, z) ≤ V r1
1 (p2, y); (3.4.3)

respectively, where p1 is as in Proposition 3.4.1 and p2 = (p2
0, p

2
1), p2

0 = µ10

µ10+µ11
and p2

1 =
µ11

µ10+µ11
. Now there exists a q0 ∈ (0, 1) (or a q1 ∈ (0, 1)) such that inequality (3.4.2) holds

for all p1
0 ≤ q0 (resp. p1

1 ≤ q1) and inequality (3.4.3) holds for all p2
0 ≥ q0 (resp. p2

1 ≥
q1). Thus if C1 = {µ ∈ ∆3|α0µ00 ≤ µ01} (resp. C1 = {µ ∈ ∆3|α1µ00 ≥ µ01}), then
C2 = {µ ∈ ∆3|α0µ10 ≥ µ11} (resp. C2 = {µ ∈ ∆3|α1µ10 ≤ µ11}). Similarly for player 2.
Thus, depending on the relation amongst the payoffs, the conditions (3.2.3) take one of the
following forms:

(I) if c00 > c10, c01 < c11, d00 > d01, d10 < d11 then

αµ00 ≥ µ01, αµ10 ≤ µ11, βµ00 ≥ µ10, βµ01 ≤ µ11;

(II) if c00 < c10, c01 > c11, d00 > d01, d10 < d11 then

αµ00 ≤ µ01, αµ10 ≥ µ11, βµ00 ≥ µ10, βµ01 ≤ µ11;

(III) if c00 > c10, c01 < c11, d00 < d01, d10 > d11 then

αµ00 ≥ µ01, αµ10 ≤ µ11, βµ00 ≤ µ10, βµ01 ≥ µ11;
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0 1
0 α, β 0, 0
1 0, 0 1, 1

γI(α, β)

0 1
0 −α, β 0, 0
1 0, 0 −1, 1

γII(α, β)

0 1
0 α,−β 0, 0
1 0, 0 1,−1

γIII(α, β)

0 1
0 −α,−β 0, 0
1 0, 0 −1,−1

γIV (α, β)

Figure 3.2: Canonical 2× 2 games

(IV) if c00 < c10, c01 > c11, d00 < d01, d10 > d11 then

αµ00 ≤ µ01, αµ10 ≥ µ11, βµ00 ≤ µ10, βµ01 ≥ µ11;

for some α, β > 0. Thus every 2×2 game with no equivalent or weakly dominated strategies
can be classified into one of the above four types depending on the relations amongst its
payoffs.

We consider the canonical 2× 2 games γl(α, β) for l ∈ {I, II, III, IV } with α, β > 0 as
shown in Figure 3.2. One can check that the set CEUT for each of these games is given by
the corresponding inequalities above.

As in the paper [23], based on the type of inequalities satisfied, we classify all 2×2 games,
with no equivalent or weakly dominated strategies, into three types:

• coordination games if the inequalities take form (I),

• anti-coordination games if the inequalities take form (IV) and,

• competitive games if the inequalities take either form (II) or form (III).

Since the inequalities above completely characterize the set C(Γ), it is enough to find the
set CEUT (Γ) for each of the canonical games. For case (II), we have

αµ00 ≤ µ01 ≤
µ11

β
and µ11 ≤ αµ10 ≤ βαµ00.
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µ µ00 µ01 µ10 µ11

µ∗A(α, β) 1 0 0 0
µ∗B(α, β) 0 0 0 1

µ∗C(α, β) 1
(1+α)(1+β)

α
(1+α)(1+β)

β
(1+α)(1+β)

αβ
(1+α)(1+β)

µ∗D(α, β) 1
1+β+αβ

0 β
1+β+αβ

αβ
1+β+αβ

µ∗E(α, β) 1
1+α+αβ

α
1+α+αβ

0 αβ
1+α+αβ

Figure 3.3: Vertices of the convex polytope CEUT for γI(α, β)

Thus all inequalities must be satisfied with equality and we get

µ00 =
1

(1 + α)(1 + β)
, µ01 =

α

(1 + α)(1 + β)
,

µ10 =
β

(1 + α)(1 + β)
, µ11 =

αβ

(1 + α)(1 + β)
. (3.4.4)

Case (III) is similar. Thus, for competitive games, the set CEUT (Γ) is reduced to a single
point, which is also the unique mixed Nash equilibrium. For coordination games, the set
CEUT (Γ) is a convex polytope with five vertices as given in Figure 3.3. It intersects the
set ∆∗(A) at the three vertices µ∗A(α, β), µ∗B(α, β) and µ∗C(α, β) of which the first two are
pure Nash equilibria. From the set of inequalities corresponding to cases (I) and (IV) we
can see that the joint distribution µ = (µ00, µ01, µ10, µ11) belongs to CEUT (Γ) of γI(α, β) iff
τ(µ) := (µ10, µ11, µ00, µ01) belongs to CEUT (Γ) of γIV (α, 1/β). Thus, for anti-coordination
games, the set CEUT (Γ) is again a convex polytope with five vertices and it intersects ∆∗(A)
at three of its vertices with two of them pure Nash equilibria. The vertices can be found from
Figure 3.3, using the transformation τ , and replacing β by 1/β. Since C(Γ) is determined by
the same set of inequalities in α and β, all the results carry over to 2× 2 games with CPT
preferences. In particular, the set C(Γ) is determined by α and β. Since the set of CPT Nash
equilibria (pure and mixed) is given by the intersection of ∆∗(A) and C(Γ), we have a unique
mixed CPT Nash equilibrium and no pure CPT Nash equilibria for competitive games, and
one mixed and two pure CPT Nash equilibria for coordination and anti-coordination games.

2× 2 games with at least one weakly dominated strategy but no
equivalent or strictly dominated strategy

Let G1 denote the set of all 2× 2 games with at least one weakly dominated strategy but no
equivalent or strictly dominated strategy. If player 1 has a weakly dominated strategy then
this corresponds to case (i) above with one equality and one strict inequality (i.e. c00 > c10

and c01 = c11, or c00 = c10 and c01 > c11), or case (ii). The set of all 2× 2 games, each game
characterized by its payoff matrix, forms an 8-dimensional Euclidean vector space.
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β = 0 0 < β <∞ β =∞
α = 0 µ01 = 0 µ01 = 0 µ01 = 0

µ10 = 0 βµ00 ≥ µ10

0 < α <∞ µ10 = 0 − µ01 = 0
αµ00 ≥ µ01 αµ10 ≤ µ11

α =∞ µ10 = 0 µ10 = 0 µ01 = 0
βµ01 ≤ µ11 µ10 = 0

Figure 3.4: The set CCPT for games of type (I) with weakly dominated strategies

For every game Γ ∈ G1, the intersection of any ε-neighborhood of Γ for sufficiently small
ε > 0 with the set G0 is non-empty and contains games of a unique type and hence Γ can
be seen as a limit of games in G0 of a unique type l ∈ {I, II, III, IV }.11 Let αl(Γ̃), βl(Γ̃),
for Γ̃ ∈ G0, be such that γl(α

l(Γ̃), βl(Γ̃)) are the corresponding canonical games to Γ̃. From
Remark 3.4.2, for any sequence (Γt, t ≥ 1) of games Γt ∈ G0 of this unique type l, such that
Γt → Γ, the sequences αl(Γt) → α and βl(Γt) → β, where α, β depend on the game Γ and
not on the sequence (Γt, t ≥ 1).

For example, a game Γ ∈ G1 with payoffs satisfying c00 < c10, c01 = c11, d00 > d01, d10 <
d11 is the limit, as ε ↓ 0, of games Γε ∈ G0 with payoffs same as that of Γ except c01 replaced
by c01 + ε. Each of the games Γε is of type (II) for sufficiently small ε > 0. Further, if
γII(αε, βε) are the canonical games corresponding to Γε then αε → α = ∞ and βε = β for
some fixed β.

Suppose γl(α, β) is the corresponding canonical game for Γ. Then the payoffs of player 1
are strategically equivalent to

M =

[
α 0
0 1

]
.

Strategically equivalent here should be interpreted as meaning that the best response of
player 1 to a mixed strategy p1 = (p1

0, p
1
1) in a game, with her payoffs given by matrix M

under EUT, is same as that in the game Γ under CPT. When α =∞, it means that action
1 is player 1’s best response only to the mixed strategy p1 = (0, 1) and action 0 is her best
response for all mixed strategies p1, which is true when action 0 weakly dominates action 1
but not strictly.

Using this observation we classify every game Γ ∈ G1 into four types l ∈ {I, II, III, IV }
and each of these 4 types into eight further subtypes depending on the limit of αε and βε
going either to 0,∞ or some real number in (0,∞) with at least one of them tending to
0 or ∞. The set C(Γ) for games of the type (I) and (II) are given in Figures 3.4 and 3.5
respectively. The set C(Γ) for types (IV) and (III) can be found using the transformation τ
and replacing β by 1/β (with the convention 1/0 =∞ and 1/∞ = 0) from Figures 3.4 and
3.5 respectively.



CHAPTER 3. NOTIONS OF EQUILIBRIUM 64

β = 0 0 < β <∞ β =∞
α = 0 µ11 = 0 µ11 = µ01 = 0 µ11 = 0

µ10 = 0 βµ00 ≥ µ10 µ01 = 0
0 < α <∞ µ11 = µ10 = 0 − µ01 = µ00 = 0

αµ00 ≤ µ01 αµ10 ≥ µ11

α =∞ µ10 = 0 µ00 = µ10 = 0 µ00 = 0
µ00 = 0 βµ01 ≤ µ11 µ01 = 0

Figure 3.5: The set CCPT for games of type (II) with weakly dominated strategies

We now describe the typical geometry displayed by the CPT equilibrium notions in each
of the above cases. The geometry of CCPT in case (I) is as follows:

• If α = β = 0 or α = β = ∞, then C(Γ) is a line with endpoints F = (1, 0, 0, 0) and
G = (0, 0, 0, 1). It intersects the set I at the two endpoints F and G.

• If α = 0, β = ∞, then C(Γ) is a triangle with vertices F = (1, 0, 0, 0), G = (0, 0, 1, 0),
and H = (0, 0, 0, 1). It intersects ∆∗(A) at the lines with endpoints {F,G} and {G,H}.
Similarly, if α =∞, β = 0, then CCPT is a triangle and it intersects ∆∗(A) at two lines.

• If α = 0, 0 < β < ∞, then C(Γ) is a triangle with vertices F = (0, 0, 0, 1), G =
(1, 0, 0, 0), and H = ( 1

1+β
, 0, β

1+β
, 0). It intersects the set ∆∗(A) at the point (0, 0, 0, 1)

and the line joining the points (1, 0, 0, 0) and ( 1
1+β

, 0, β
1+β

, 0). The remaining three
cases can be analyzed similarly.

The geometry of C(Γ) in case (II) is as follows:

• If α = β = 0, then the set C(Γ) is a line joining the points (1, 0, 0, 0) and (0, 1, 0, 0)
contained in the set ∆∗(A). Similarly, for the cases when α = 0 or∞ and β = 0 or∞,
the set C(Γ) is a line segment contained in the set ∆∗(A).

• If α = 0, 0 < β <∞, then C(Γ) is a line joining the points (1, 0, 0, 0) and ( 1
1+β

, 0, β
1+β

, 0)
and is contained in the set I. The remaining three cases can be analyzed similarly.

The geometry of C(Γ) is cases (IV) and (III) can be obtained from cases (I) and (II) respec-
tively, using the transformation τ , and replacing β by 1/β.

3.5 On the connectedness of CPT correlated

equilirbium

In the previous section, we saw that for 2 × 2 games the set C(Γ) is a convex polytope.
However, in general, the set C(Γ) can have a more complicated geometry. We will now see
that the set CCPT can, in fact, be disconnected.
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In this section, we restrict our attention to games with each player i having reference point
ri = 0, and all the outcomes xi(·) non-negative. Thus all our outcome profiles are “one-sided”
with zero reference point, and we will denote w+

i (·), v0
i (·), V r

i (·) simply by wi(·), vi(·), Vi(·)
respectively.

The geometry of the set CCPT is determined by the set of inequalities (3.2.3). Let us
consider the inequality corresponding to player i deviating from strategy ai to ãi. For ease
of notation, fix a one to one correspondence between the numbers {1, . . . , t} and the joint
strategies {a−i ∈ A−i} (here t = |A−i|). Let

z = (z1, . . . , zt) := (vi(xi(ai, a−i)))a−i∈A−i ,

and
y = (y1, . . . , yt) := (vi(xi(ãi, a−i)))a−i∈A−i .

Let p = (p1, . . . , pt) ∈ ∆t−1 be a joint probability distribution on S−i. Let (α1, . . . , αt) and
(β1, . . . , βt) be permutations of (1, . . . , t) such that

zα1 ≥ zα2 ≥ · · · ≥ zαt and yβ1 ≥ yβ2 ≥ · · · ≥ yβt ,

respectively.
Consider the inequality

Ṽi(p, z) ≥ Ṽi(p, y), (3.5.1)

where

Ṽi(p, z) = zαt + wi(pα1 + · · ·+ pαt−1)[zαt−1 − zαt ]
+ wi(pα1 + · · ·+ pαt−2)[zαt−2 − zαt−1 ] + · · ·+ wi(pα1)[zα1 − zα2 ], (3.5.2)

and

Ṽi(p, y) = yβt + wi(pβ1 + · · ·+ pβt−1)[yβt−1 − yβt ]
+ wi(pβ1 + · · ·+ pβt−2)[yβt−2 − yβt−1 ] + · · ·+ wi(pβ1)[yβ1 − yβ2 ]. (3.5.3)

To contrast with the notation used in earlier sections, note that Ṽi(p, z) = Vi(p, z̃) and
Ṽi(p, y) = Vi(p, ỹ), where x̃ := (xi(ai, a−i))a−i∈A−i and ỹ := (xi(ãi, a−i))a−i∈A−i . Let C(Γ, i, ai, ãi)

denote the set of all probability vectors p ∈ ∆t−1 that satisfy the inequality (3.5.1). We can
similarly define C(Γ, i, si, di) for all i ∈ [n], ai, ãi ∈ Ai. It is clear from the definition of CPT
correlated equilibrium that for a joint probability distribution µ ∈ C(Γ), provided µi(si) > 0,
the probability vector p = µ−i(·|ai) ∈ ∆t−1 should belong to C(Γ, i, ai, ãi) for all ãi ∈ Ai.
Let

C(Γ, i, ai) := ∩ãi∈AiC(Γ, i, ai, ãi).

Now, for all i, define a subset C(Γ, i) ⊂ ∆|A|−1, as follows:

C(Γ, i) := {µ ∈ ∆|A|−1|µ−i(·|ai) ∈ C(Γ, i, ai),∀ai ∈ Ai such that µi(ai) > 0}.
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Note that since C(Γ) is nonempty, the set C(Γ, i) is nonempty for each i. The set C(Γ, i)
can be constructed from the sets {C(Γ, i, ai), ai ∈ Ai} as follows: let pai ∈ C(Γ, i, ai) for
all ai ∈ Ai such that C(Γ, i, ai) 6= φ, let qi ∈ ∆|Ai|−1 be a probability distribution over Ai
such that qi(ai) = 0 for all ai ∈ Si such that C(Γ, i, ai) = ∅, and define a joint probability
distribution µ ∈ ∆|A|−1 by µ(ai, a−i) = qi(ai)p

ai(a−i) if C(Γ, i, ai) 6= φ and µ(ai, a−i) = 0
otherwise. Then µ ∈ C(Γ, i), and for every µ ∈ C(Γ, i), the corresponding qi = µi for all
ai ∈ Ai and pai = µ−i(·|ai) for all ai ∈ Ai with C(Γ, i, ai) 6= φ. Further, it is clear that

C(Γ) = ∩i∈[n]C(Γ, i).

Thus the set C(Γ) is uniquely determined by the collection of sets

{C(Γ, i, ai, ãi), i ∈ [n], ai, ãi ∈ Ai}.

Lemma 3.5.1. In the above setting, the set C(Γ, i, ai, ãi) is connected.

Proof. Suppose the permutations (α1, . . . , αt) and (β1, . . . , βt) can be chosen such that they
are equal. Let

lj := wi(

j∑
k=1

pαk) = wi(

j∑
k=1

pβk), for 1 ≤ j ≤ t. (3.5.4)

For every vector l = (l1, . . . , lt) ∈ Rt such that 0 ≤ l1 ≤ · · · ≤ lt = 1, there corresponds a
unique probability vector p = (p1, . . . , pt) satisfying equations (3.5.4) and this mapping is
continuous because wi(·) is a continuous strictly increasing function. Thus we have a one-
to-one correspondence between probability vectors (p1, . . . , pt) and the vectors (l1, . . . , lt).

Inequality (3.5.1) can then be written as

ltzαt +
t−1∑
i=1

lt−i[zαt−i − zαt−i+1
] ≥ ltyβt +

t−1∑
i=1

lt−i[yβt−i − yβt−i+1
]. (3.5.5)

Since this is linear in (l1, . . . , lt), the set of all vectors (l1, . . . , lt) satisfying inequal-
ity (3.5.5) is a convex polytope. In particular, it is connected. Thus the set C(Γ, i, ai, ãi) is
also connected.

Suppose now the permutations (α1, . . . , αt) and (β1, . . . , βt) cannot be chosen to be equal.
Then there exists 1 ≤ j1, j2 ≤ t such that zj1 > zj2 and yj1 ≤ yj2 . If p ∈ C(Γ, i, ai, ãi) such
that pj2 > 0, then, by the stochastic dominance property, the following probability vector
q(ε), for all 0 ≤ ε ≤ 1, also belongs to C(Γ, i, ai, ãi):

qj(ε) =


pj1 + (1− ε)pj2 if j = j1,

εpj2 if j = j2,

pj otherwise.
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RED YELLOW GREEN
TOP 69, 10 61, 0 20, 10

CENTER 50, 0 60, 10 30, 0
BOTTOM 101, 0 41, 10 0, 0

Table 3.1: Payoff matrix for the game in Section 3.6

Thus, from every vector p ∈ C(Γ, i, ai, ãi), we have a path connecting it to a probability
vector p′ ∈ C(Γ, i, ai, ãi) such that p′j2 = 0. To show that C(Γ, i, ai, ãi) is connected it is
enough to show that the subset

C ′(Γ, i, ai, ãi) = {p′ ∈ C(Γ, i, ai, ãi)|p′j2 = 0}.

is connected. From (3.5.2) and (3.5.3), we can see that the CPT values of the prospects
(p, z) and (p, y) with probability vector restricted to C ′(Γ, i, ai, ãi) do not depend on the
outcomes zj2 and yj2 . If one can now choose permutations (α′1, . . . , α

′
t−1) and (β′2, . . . , β

′
t−1)

of {1, . . . , t}\{j2} such that

zα′1 ≥ zα′2 ≥ · · · ≥ zα′t−1
and yβ′1 ≥ yβ′2 ≥ · · · ≥ yβ′t−1

,

then, as before, one can argue that the set C ′(i, si, di) is connected. If not, we can continue to
decrease the support of the probability vectors under consideration. This process terminates
since our state space is finite.

Even though the sets C(Γ, i, ai, ãi) are connected, their intersection might be discon-
nected, as in the example given in the next section.

3.6 Example of a Game with Disconnected CPT

Correlated Equilibrium

Consider a 2 player Γ game with each player having three pure strategies: TOP, CENTER,
BOTTOM for player 1 (row player) and RED, YELLOW, GREEN for player 2 (column
player), with the corresponding payoffs as shown in Table 3.1. For both the players, let vi(·)
be the identity function. For the probability weight function wi(·) we employ the function
suggested by Prelec [113], which, for i = 1, 2, is given by

wi(p) = exp{−(− ln p)γi},

for some γi ∈ (0, 1]. We take γ1 = 0.5 and γ2 = 1. We will now see that the set C(Γ, 1,TOP)
is disconnected. Fix the correspondence (R, Y,G) ↔ (RED, YELLOW, GREEN). The set



CHAPTER 3. NOTIONS OF EQUILIBRIUM 68

C(1,TOP,BOTTOM) consists of all probability vectors p = (pR, pY , pG) ∈ ∆2 satisfying the
following inequality:

20 + w1(pR + pY )[61− 20] + w1(pR)[69− 61]

≥ 0 + w1(pR + pY )[41− 0] + w1(pR)[101− 41].

This holds iff pR ≤ 0.40 (all the decimal numbers henceforth are correct up to two decimal
points). Thus, we have

C(Γ, 1,TOP,BOTTOM) = {p ∈ ∆2|pR ≤ 0.40}.

The set C(Γ, 1,TOP,CENTER) consists of all probability vectors p = (pR, pY , pG) ∈ ∆2

satisfying the inequality

20 + w1(pR + pY )[61− 20] + w1(pR)[69− 61]

≥ 30 + w1(pR + pY )[50− 30] + w1(pY )[60− 50].

Rearranging, we get

21w1(1− pG)− 10w1(1− pR − pG) ≥ 10− 8w1(pR).

For each pR ∈ [0, 0.4], we solve the above inequality for pG. The set C(Γ, 1,TOP), as shown
in Figure 3.1, is disconnected. One can check that

(0, ε, 1− ε) ∈ C(Γ, 1,CENTER) and (1− ε, ε, 0) ∈ C(Γ, 1,BOTTOM),

for ε ∈ [0, 0.20]. We cannot as yet conclude that the set C(Γ, 1) is disconnected, because of
the existence of joint probability distributions µ with marginal distribution µ1(TOP) = 0.
We now show that C(Γ, 2) cannot contain any distribution µ with µ1(TOP) = 0.

Fix the correspondence (T,C,B)↔ (TOP,CENTER,BOTTOM). A similar analysis for
player 2 shows that

C(Γ, 2,RED) = {p ∈ ∆2|pT ≥ 0.5},
C(Γ, 2,YELLOW) = {p ∈ ∆2|pT ≤ 0.5},
C(Γ, 2,GREEN) = {p ∈ ∆2|pT ≥ 0.5}.

Suppose that there were µ ∈ C(Γ) with µ1(TOP) = 0. Then

µ(TOP,RED) = µ(TOP,YELLOW) = µ(TOP,GREEN) = 0,

and from the structure of the sets C(2,RED) and C(2,GREEN) we get

µ2(RED) = µ2(GREEN) = 0.
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(1, 0, 0)

(0, 1, 0) (0, 0, 1)

pR = 0.40

Figure 3.1: Standard 2-simplex of probability vectors p = (pR, pY , pG). The shaded region
represents the set C(Γ, 1,TOP) and is disconnected.

Thus, the joint probability µ has support only on the strategy pairs (CENTER,YELLOW)
and (BOTTOM,YELLOW). Thus, player 2 always plays strategy YELLOW and player 1
mixes between CENTER and BOTTOM. However, given player 2 plays strategy YELLOW,
player 1’s TOP strategy dominates strategies CENTER and BOTTOM. Hence such a joint
probability distribution is not possible. Thus there does not exist any distribution µ ∈ C(Γ)
with µ1(TOP) = 0.

There is a possibility that one of the components of C(Γ, 1,TOP) could disappear in the
intersection C(Γ, 1) ∩ C(2). However, this does not happen because both the distributions
µ̄, µ̃ in Figure 3.2 belong to C(Γ) with µ̄−1(·|TOP) and µ̃−1(·|TOP) belonging to different
components of C(Γ, 1,TOP).

3.7 Summary

Although the set of correlated equilibria under CPT has a more complicated geometry than
a convex polytope, property (P), on the intersection of the Nash and correlated equilibrium
sets, continues to hold. Property (P) is particularly relevant to the interactive learning
problem in game theory [50, 51, 60]. This raises the question of analyzing the interactive
learning problem under cumulative prospect theoretic preferences. We will get back to this
in Chapter 5. In this process, we will see that the notion of CPT correlated equilibrium
needs to be reconsidered.
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RED YELLOW GREEN
TOP 0.4 0.1 0.5

CENTER 0 0.05 0.5
BOTTOM 0.4 0.05 0

RED YELLOW GREEN
TOP 0.4 0 0.6

CENTER 0 0 0.6
BOTTOM 0.4 0 0

Figure 3.2: Un-normalized distributions µ̄ and µ̃.

In the next chapter, we will see another interesting phenomenon related to the notion of
Nash equilibria when players have CPT preferences. We will rethink the reasoning behind
the definition of Nash equilibrium and discuss its implications to the definition of CPT Nash
equilibrium. This will give rise to two novel notions of equilibrium that we call black-box
equilibrium.

Notes
9A working paper [23] analyzes the set of correlated equilibria for 2x2 games. However, some of the results

in that paper are partially incorrect, and unfortunately, due to the untimely death of the author, they never
got addressed. Our characterization is based on the ideas presented in that paper.

10Keskin defines CPT equilibrium assuming w+(·) = w−(·). However, the definition can be easily extended
to our general setting and the proof of existence goes through without difficulty.

11Even though the game Γ can be obtained as a limit of a sequence of games in G0, one cannot obtain, in
general, the set C(Γ) as a limit of the sets of correlated equilibria of the games in G0. This is because the
set of correlated equilibria is only upper-semicontinuous as a function of the game.
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Chapter 4

Black-Box Equilibrium:
Reconsidering CPT Nash Equilibrium

4.1 Introduction

The independence axiom says that if lottery L1 is weakly preferred over lottery L2 by an
agent (i.e. the agent wants lottery L1 at least as much as lottery L2), and L is some other
lottery, then, for 0 ≤ α ≤ 1, the combined lottery αL1 + (1 − α)L is weakly preferred over
the combined lottery αL2 + (1− α)L by that agent. A weakened form of the independence
axiom, called betweenness, says that if lottery L1 is weakly preferred over lottery L2 (by an
agent), then, for any 0 ≤ α ≤ 1, the mixed lottery L = αL1 +(1−α)L2 must lie between the
lotteries L1 and L2 in preference. Betweenness implies that if an agent is indifferent between
L1 and L2, then she is indifferent between any mixtures of them too. It is known that
independence implies betweenness, but betweenness does not imply independence [34]. As
a result, EUT preferences, which are known to satisfy the independence axiom, also satisfy
betweenness. CPT preferences, on the other hand, do not satisfy betweenness in general (see
Example 4.2.2). In fact, in Theorem 4.2.3, we show that CPT preferences satisfy betweenness
if and only if they are EUT preferences (recall that EUT preferences are a special case of
CPT preferences).

Suppose in a non-cooperative game that given her beliefs about the other players, a player
is indifferent between two of her actions. Then according to EUT, she should be indifferent
between any of the mixtures of these two actions. This facilitates the proof of the existence
of a Nash equilibrium in mixed actions for such games. However, with CPT preferences, the
player could either prefer some mixture of these two actions over the individual actions or
vice versa.

As a result, it is important to make a distinction in CPT regarding whether the players
can actively randomize over their actions or not. One way to enable active randomization
is by assuming that each player has access to a randomizing device and the player can
“commit” to the outcome of this randomization. The commitment assumption is necessary,
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as is evident from the following scenario (the gambles presented below appear in [112]). Alice
needs to choose between the following two actions:

1. Action 1 results in a lottery L1 = {(0.34, $20,000); (0.66, $0)}, i.e. she receives $20,000
with probability 0.34 and nothing with probability 0.66.

2. Action 2 results in a lottery L2 = {(0.17, $30,000); (0.83, $0)}.

(See Example 4.3.7 for an instance of a 2-player game with Alice and Bob, where Alice
has two actions that result in the above two lotteries.) Note that L1 is a less risky gamble
with a lower reward and L2 is a more risky gamble with a higher reward. Now consider a
compound lottery L = 16/17L1 + 1/17L2. Substituting for the lotteries L1 and L2 we get L
in its reduced form to be

L = {(0.01, $30,000); (0.32, $20,000); (0.67, $0)}.

In Example 4.2.1, we provide a CPT model for Alice’s preferences that result in lottery
L1 being preferred over lottery L2, whereas lottery L is preferred over lotteries L1 and L2.
Roughly speaking, the underlying intuition is that Alice is risk-averse in general, and she
prefers lottery L1 over lottery L2. However, she over-weights the small 1% chance of getting
$30,000 in L and finds it lucrative enough to make her prefer lottery L over both the lotteries
L1 and L2. Let us say Alice has a biased coin that she can use to implement the randomized
strategy. Now, if Alice tossed the coin, and the outcome was to play action 2, then in the
absence of commitment, she will switch to action 1, since she prefers lottery L1 over lottery
L2. Commitment can be achieved, for example, by asking a trusted party to implement
the randomized strategy for her or use a device that would carry out the randomization
and implement the outcome without further consultation with Alice. Regardless of the
implementation mechanism, we will call such randomized strategies black-box strategies . The
above problem of commitment is closely related to the problem of using non-EUT models in
dynamic decisions. For an interesting discussion on this topic, see Appendix C of [132] and
the references therein.

Traditionally, mixed actions have been considered from two viewpoints, especially in
the context of mixed action Nash equilibrium. According to the first viewpoint, these are
conscious randomizations by the players – each player only knows her mixed action and
not its pure realization. The notion of black-box strategies captures this interpretation
of mixed actions. According to the other viewpoint, players do not randomize, and each
player chooses some definite action, but the other players need not know which one, and the
mixture represents their uncertainty, i.e. their conjecture about her choice. Aumann and
Brandenburger [8] establish mixed action Nash equilibrium as an equilibrium in conjectures
provided they satisfy certain epistemic conditions regarding the common knowledge amongst
the players.

In the absence of the betweenness condition, these two viewpoints give rise to different
notions of Nash equilibria. Throughout we assume that the player set and their correspond-
ing action sets and payoff functions, as well as the rationality of each player, are common



CHAPTER 4. BLACKBOX EQUILIBRIUM 73

knowledge. A player is said to be rational if, given her beliefs and her preferences, she does
not play any suboptimal strategy. Suppose each player plays a fixed action, and these fixed
actions are common knowledge, then we get back the notion of pure Nash equilibrium (see
Definition 4.3.2). If each player plays a fixed action, but the other players have mixed conjec-
tures over her action, and these conjectures are common knowledge, then this gives us mixed
action Nash equilibrium (see Definition 4.3.4). This coincides with the notion of Nash equi-
librium that we saw in Chapter 3. Now suppose each player can randomize over her actions
and hence implement a black-box strategy. If each player plays a fixed black-box strategy
and these black-box strategies are common knowledge, then this gives rise to a new notion
of equilibrium. We call it black-box strategy Nash equilibrium (see Definition 4.3.8). If each
player plays a fixed black-box strategy and the other players have mixed conjectures over her
black-box strategy, and these conjectures are common knowledge, then we get the notion of
mixed black-box strategy Nash equilibrium (see Definition 4.3.10). It should be noted that the
notion of mixed black-box strategy Nash equilibrium is identical to the notion of equilibrium
in beliefs as defined in [37] when restricted to players having CPT preferences.12

In the setting of an n-player normal form game with real valued payoff functions, the pure
Nash equilibria do not depend on the specific CPT features of the players, i.e. the reference
point, the value function and the two probability weighting functions, one for gains and one
for losses. Hence the traditional result on the lack of guarantee for the existence of a pure
Nash equilibrium continues to hold when players have CPT preferences. Keskin [74] proves
the existence of a mixed action Nash equilibrium for any finite game when players have
CPT preferences. In Example 4.3.9, we show that a finite game may not have any black-box
strategy Nash equilibrium.13 On the other hand, in Theorem 4.3.12, we prove our main
result that for any finite game with players having CPT preferences, there exists a mixed
black-box strategy Nash equilibrium. If the players have EUT preferences, then the notions
of black-box strategy Nash equilibrium and mixed black-box strategy Nash equilibrium are
equivalent to the notion of mixed action Nash equilibrium (when interpreted appropriately;
see the remark before Proposition 4.3.14; see also Figure 4.5).

The chapter is organized as follows. In Section 4.2, we describe the CPT setup and
establish that under this setup betweenness is equivalent to independence (Theorem 4.2.3).14

In Section 4.3, we describe an n-player non-cooperative game setup and define various notions
of Nash equilibrium in the absence of betweenness, in particular with CPT preferences. We
discuss the questions concerning their existence and how these different notions of equilibria
compare with each other. In Section 5.6, we conclude with a table that summarizes the
results.

4.2 CPT and Betweenness

In this chapter, we assume that each person is associated with a fixed reference point r ∈ R,
a value function v : R → R, and two probability weighting functions w± : [0, 1] → [0, 1], w+

for gains and w− for losses. The CPT value is evaluated as described in Section 1.3.
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We now define some axioms for preferences over lotteries. We are interested in “mixtures”
of lotteries, i.e. lotteries with other lotteries as outcomes. Consider a (two-stage) compound
lottery K := {(qj, Lj)}1≤j≤t, where Lj = (pj, zj), 1 ≤ j ≤ t, are lotteries over real outcomes
and qj is the chance of lottery Lj. We assume that

∑t
j=1 q

j = 1. A two-stage compound

lottery can be reduced to a single-stage lottery by multiplying the probability vector pj

corresponding to the lottery Lj by qj for each j, 1 ≤ j ≤ t, and then adding the probabilities
of identical outcomes across all the lotteries Lj, 1 ≤ j ≤ t. Let

∑t
j=1 q

jLj denote the reduced
lottery corresponding to the compound lottery K.

Let � denote a preference relation over single-stage lotteries. We assume � to be a weak
order, i.e. � is transitive (if L1 � L2 and L2 � L3, then L1 � L3) and complete (for all
L1, L2, we have L1 � L2 or L2 � L1, where possibly both preferences hold). The additional
binary relations �,∼,≺ and � are derived from � in the usual manner. A preference relation
� is a CPT preference relation if there exist CPT features (r, v, w±) such that L1 � L2 iff
V (L1) ≤ V (L2). Note that a CPT preference relation is a weak order. A preference relation
� satisfies independence if for any lotteries L1, L2 and L, and any constant 0 ≤ α ≤ 1,
L1 � L2 implies αL1 + (1 − α)L � αL2 + (1 − α)L. A preference relation � satisfies
betweenness if for any lotteries L1 � L2, we have L1 � αL1 + (1 − α)L2 � L2, for all
0 ≤ α ≤ 1. A preference relation � satisfies weak betweenness if for any lotteries L1 ∼ L2,
we have L1 ∼ αL1 + (1− α)L2, for all 0 ≤ α ≤ 1.

Suppose a preference relation � satisfies independence. Then L1 � L2 implies

L1 = αL1 + (1− α)L1 � αL1 + (1− α)L2 � αL2 + (1− α)L2 = L2.

Thus, if a preference relation satisfies independence, then it satisfies betweenness. Also, if a
preference relation satisfies betweenness, then it satisfies weak betweenness.

In the following example, we will provide CPT features for Alice so that her preferences
agree with those described in Section 4.1. This example also shows that cumulative prospect
theory can give rise to preferences that do not satisfy betweenness.

Example 4.2.1. Recall that Alice is faced with the following three lotteries:

L1 = {(0.34, $20, 000); (0.66, $0)},
L2 = {(0.17, $30, 000); (0.83, $0)},

L = {(0.01, $30, 000); (0.32, $20, 000); (0.67, $0)}.

Let r = 0 be the reference point of Alice. Thus all the outcomes lie in the gains domain. Let
v(x) = x0.8 for x ≥ 0; Alice is risk-averse in the gains domain. Let the probability weighting
function for gains be given by

w+(p) = exp{−(− ln p)0.6},

a form suggested by Prelec [113] (see Figure 4.1). We won’t need the probability weighting
function for losses. Direct computations show that V (L1) = 968.96, V (L2) = 932.29, and
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Figure 4.1: The solid curve shows the probability weighting function for Alice from Exam-
ple 4.2.1 and Example 4.3.7, and the dashed curve shows the probability weighting function
for Charlie from Example 4.2.2.

V (L) = 1022.51 (all decimal numbers in this example are correct to two decimal places).
Thus the preference behavior of Alice, as described in Section 4.1 (i.e., she prefers L1 over
L2, but prefers L over L1 and L2), is consistent with CPT and can be modeled, for example,
with the CPT features stated here.

The following example shows that CPT can give rise to preferences that do not satisfy
weak betweenness (the lotteries and the CPT features presented below appear in [74]).

Example 4.2.2. Suppose Charlie has r = 0 as his reference point and v(x) = x as his value
function. Let his probability weighting function for gains be given by

w+(p) = exp{−(− ln p)0.5}.

(See Figure 4.1.) We won’t need the probability weighting function for losses since we
consider only outcomes in the gains domain in this example. Consider the lotteries L1 =
{(0.5, 2β); (0.5, 0)} and L2 = {(0.5, β + 1); (0.5, 1)}, where β = 1/w+(0.5) = 2.299 (all
decimal numbers in this example are correct to three decimal places). Direct computations
reveal that V (L1) = V (L2) = 2.000 > V (0.5L1 + 0.5L2) = 1.985.

Given a utility function u : R → R (assumed to be continuous and strictly increasing),
the expected utility of a lottery L = {(pk, zk)}1≤k≤m is defined as U(L) :=

∑m
k=1 pku(zk).

A preference relation � is said to be an EUT preference relation if there exists a utility
function u such that L1 � L2 iff U(L1) ≤ U(L2). Note that if the CPT probability weighting
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functions are linear, i.e. w±(p) = p for 0 ≤ p ≤ 1, then the CPT value of a lottery coincides
with the expected utility of that lottery with respect to the utility function u = v. It is well
known that EUT preference relations satisfy independence and hence betweenness. Sev-
eral generalizations of EUT have been obtained by weakening the independence axiom and
assuming only betweenness, for example, weighted utility theory [32, 33], skew-symmetric
bilinear utility [47, 18], implicit expected utility [40, 34] and disappointment aversion theory
[55, 17]. The following theorem shows that in the restricted setting of CPT preferences,
betweenness and independence are equivalent.

Theorem 4.2.3. If � is a CPT preference relation, then the following are equivalent:

(i) � is an EUT preference relation,

(ii) � satisfies independence,

(iii) � satisfies betweenness.

Wakker [131] considers rank-dependent utility (RDU) preferences [114], which is a special
case of CPT preferences; RDU preferences are CPT preferences for which the probability
weighting functions satisfy w+(p) = 1 − w−(1 − p) for all p ∈ [0, 1]. Wakker proves that,
under RDU preferences �, the probability weighting function w+ is linear if and only if
� satisfies betweenness. In fact, Wakker proves something more general. A preference
relation � is said to be quasi-concave (resp. quasi-convex) if for any lotteries L1, L2 and
any constant 0 ≤ α ≤ 1, L1 � L2 implies L1 � αL1 + (1 − α)L2 (resp. L1 � L2 implies
L1 � αL1 + (1 − α)L2). Note that � satisfies betweenness if it is both quasi-concave and
quasi-convex. Wakker shows that, under RDU preferences, w+ is concave (resp. convex) if
and only if � is quasi-concave (resp. quasi-convex).

Wakker proves this by defining a measure of convexity

λ[p, q] :=
w+(p)/2 + w+(q)/2− w+(p/2 + q/2)

w+(p)− w+(q)
,

and showing that λ[p1, q2] + λ[p2, q2] ≥ 0, for any 0 ≤ p1 < q1 ≤ p2 < q2 ≤ 1, if � satisfies
quasi-convexity by consideration of proper lotteries. A simple analytic proof is then used
to show that the above condition implies convexity of w+. Although Wakker’s proof can
be easily modified to account for general CPT preferences, we give an alternative proof in
Appendix 4.B, where we show that the probability weighting functions satisfy[

w±(a2)− w±(b)
] [
w±(b)− w±(c1)

]
=
[
w±(b)− w±(a1)

] [
w±(c2)− w±(b)

]
,

for any 0 ≤ a1 < c1 < b < c2 < a2 ≤ 1 such that (a2 − b)(b − c1) = (b − a1)(c2 − b), if �
satisfies betweenness. We then solve this functional equation using the appropriate boundary
conditions and the continuity property of w± to show that w±(p) = p for p ∈ [0, 1].
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4.3 Equilibrium in Black-Box Strategies

We now consider an n-player non-cooperative game where the players have CPT preferences.
We will discuss several notions of equilibrium for such a game and will contrast them.

Let Γ := (N, (Ai)i∈N , (xi)i∈N) denote a game, where N := {1, . . . , n} is the set of players,
Ai is the finite action set of player i, and xi : A → R is the payoff function for player i.
Here A :=

∏
iAi denotes the set of all action profiles a := (a1, . . . , an). Let A−i :=

∏
i 6=j Aj

denote the set of action profiles a−i of all players except player i.

Definition 4.3.1. For any action profile a−i ∈ A−i of the opponents, we define the best
response action set of player i to be

Ai(a−i) := arg max
ai∈Ai

xi(ai, a−i). (4.3.1)

Definition 4.3.2. An action profile a = (a1, . . . , an) is said to be a pure Nash equilibrium if
for each player i ∈ N , we have

ai ∈ Ai(a−i).

The notion of pure Nash equilibrium is the same whether the players have CPT pref-
erences or EUT preferences because only deterministic lotteries, comprised of being offered
one outcome with probability 1, are considered in the framework of this notion. It is well
known that for any given game Γ, a pure Nash equilibrium need not exist.

Let µ−i ∈ ∆(A−i) denote a belief of player i on the action profiles of her opponents.
Given the belief µ−i of player i, if she decides to play action ai, then she will face the lottery
{(µ−i[a−i], xi(ai, a−i))}a−i∈A−i .
Definition 4.3.3. For any belief µ−i ∈ ∆(A−i), define the best response action set of player i
as

Ai(µ−i) := arg max
ai∈Ai

Vi

(
{(µ−i[a−i], xi(ai, a−i))}a−i∈A−i

)
. (4.3.2)

Note that this definition is consistent with the definition of the best response action set
that takes an action profile a−i of the opponents as its input (Definition 4.3.1), if we interpret
a−i as the belief 1{a−i} ∈ ∆(A−i), since Ai(1{a−i}) = Ai(a−i).

Let σi ∈ ∆(Ai) denote a conjecture over the action of player i. Let σ := (σ1, . . . , σn)
denote a profile of conjectures, and let σ−i := (σj)j 6=i denote the profile of conjectures for all
players except player i. Let µ−i(σ−i) ∈ ∆(A−i) be the belief induced by conjectures σj, j 6= i,
given by

µ−i(σ−i)[a−i] :=
∏
j 6=i

σj[a−i],

which is nothing but the product distribution induced by σ−i.

Definition 4.3.4. A conjecture profile σ = (σ1, . . . , σn) is said to be a mixed action Nash
equilibrium if, for each player i, we have

ai ∈ Ai(µ−i(σ−i)), for all ai ∈ suppσi.
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In other words, the conjecture σi over the action of player i should assign positive prob-
abilities to only optimal actions of player i, given her belief µ−i(σ−i).

It is well known that a mixed Nash equilibrium exists for every game with EUT players,
see [99]. Keskin [74] generalizes the result of Nash [99] on the existence of a mixed action
Nash equilibrium to the case when players have CPT preferences.

Let Bi := ∆(Ai) denote the set of all black-box strategies for player i with a typical
element denoted by bi ∈ Bi. Recall that if player i implements a black-box strategy bi, then
we interpret this as a trusted party other than the player sampling an action ai ∈ Ai from
the distribution bi and playing action ai on behalf of player i. We assume the usual topology
on Bi. Let B :=

∏
iBi and B−i :=

∏
j 6=iBj with typical elements denoted by b and b−i,

respectively.
Note that, although a conjecture σi and a black-box strategy bi are mathematically equiv-

alent, viz. they are elements of the same set Bi = ∆(Ai), they have different interpretations.
We will call si ∈ ∆(Ai) a mixture of actions of player i when we want to be agnostic to which
interpretation is being imposed. Let Si := ∆(Ai), S :=

∏
i ∆(Ai) and S−i :=

∏
j 6=i Si with

typical elements denoted by si, s and s−i, respectively. (Note that S 6= ∆(A) unless all but
one player have singleton action sets.)

For any belief µ−i ∈ ∆(A−i) and any black-box strategy bi of player i, let µ(bi, µ−i) ∈
∆(A) denote the product distribution given by

µ(bi, µ−i)[a] := bi[ai]µ−i[a−i].

Given the belief µ−i of player i, if she decides to implement the black-box strategy bi, then
she will face the lottery {µ(bi, µ−i)[a], xi(a))}a∈A.

Definition 4.3.5. For any belief µ−i ∈ ∆(A−i), define the best response black-box strategy set
of player i as

Bi(µ−i) := arg max
bi∈Bi

Vi
(
{(µ(bi, µ−i)[a], xi(a))}a∈A

)
.

Lemma 4.3.6. For any belief µ−i, the set Bi(µ−i) is non-empty, and

co(Bi(µ−i)) = co(Bi(µ−i)).

See Appendix 4.C for proof.
Let us compare the two concepts: the best response action set (Definition 4.3.3) and

the best response black-box strategy set (Definition 4.3.5). Even though both of them take
the belief µ−i of player i as input, the best response action set Ai(µ−i) outputs a collection
of actions of player i, whereas the best response black-box strategy set Bi(µ−i) outputs a
collection of black-box strategies of player i, which are probability distributions over the set
of actions ai ∈ Ai. If we interpret an action ai as the mixture 1{ai} ∈ Si = ∆(Ai), and a
black-box strategy bi as a mixture as well, then we can compare the two sets A (µ−i) and
B(µ−i) as subsets of Si. The following example shows that, in general, the two sets can be
disjoint, and hence quite distinct.
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1 2 3
1 $20,000 $20,000 $0
2 $30,000 $0 $0

Figure 4.1: Payoff matrix for Alice in Example 4.3.7. Rows and columns correspond to Alice’s
and Bob’s actions respectively. The amount in each cell corresponds to Alice’s payoff.

Example 4.3.7. We consider a 2-player game. Let Alice be player 1, with action set A1 =
{1, 2}, and let Bob be player 2, with action set A2 = {1, 2, 3}. Let the payoff function
for Alice be as shown in Figure 4.1. Let µ−1 = (0.17, 0.17, 0.66) ∈ ∆(A−1) = ∆(A2)
be the belief of Alice. Then, as considered in Section 4.1, Alice faces the lottery L1 =
{(0.34, $20, 000); (0.66, $0)} if she plays action 1 and the lottery L2 = {(0.17, $30, 000); (0.83, $0)}
if she plays action 2. We retain the CPT features for Alice, as in Example 4.2.1, viz.: r = 0,
v(x) = x0.8 for x ≥ 0, and

w+(p) = exp{−(− ln p)0.6}.

We saw that V1(L1) = 968.96, V1(L2) = 932.29, and V (16/17L1 + 1/17L2) = 1022.51
(all decimal numbers in this example are correct to two decimal places). Amongst all the
mixtures, the maximum CPT value is achieved at the unique mixture L∗ = α∗L1+(1−α∗)L2,
where α∗ = 0.96; we have V1(L∗) = 1023.16. Thus, A1(µ−1) = {1{1}} and B1(µ−1) =
{(α∗, 1− α∗)}.

For any black-box strategy profile b−i of the opponents, let µ−i(b−i) ∈ ∆(A−i) be the
induced belief given by

µ−i(b−i)[a−i] :=
∏
j 6=i

bj[a−i].

Definition 4.3.8. A black-box strategy profile b = (b1, . . . , bn) is said to be a black-box strategy
Nash equilibrium if, for each player i, we have

bi ∈ Bi(µ−i(b−i)).

If the players have EUT preferences, a conjecture profile σ = (σ1, . . . , σn) is a mixed
action Nash equilibrium if and only if the black-box strategy profile b = (b1, . . . , bn), where
bi = σi, for all i ∈ N , is a black-box strategy Nash equilibrium. Thus, under EUT, the
notion of a black-box strategy Nash equilibrium is equivalent to the notion of a mixed action
Nash equilibrium, although there is still a conceptual difference between these two notions
based on the interpretations for the mixtures of actions. Further, we have the existence of a
black-box strategy Nash equilibrium for any game when players have EUT preferences from
the well-known result about the existence of a mixed action Nash equilibrium. The following
example shows that, in general, a black-box strategy Nash equilibrium may not exist when
players have CPT preferences.
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0 1
0 4 0
1 3 1

0 1
0 0 1
1 1 0

Figure 4.2: Payoff matrices for the 2× 2 game in Example 4.3.9 (left matrix for player 1 and
right matrix for player 2). The rows and the columns correspond to the actions of player 1
and player 2, respectively, and the entries in the cell represent the corresponding payoffs.

Example 4.3.9. Consider a 2 × 2 game (i.e a 2-player game where each player has two
actions {0, 1}) with the payoff matrices as shown in Figure 4.2. Let the reference points be
r1 = r2 = 0. Let vi(·) be the identity function for i = 1, 2. Let the probability weighting
functions for gains for the two players be given by

w+
i (p) = exp{−(− ln p)γi}, for i = 1, 2,

where γ1 = 0.5 and γ2 = 1. We do not need the probability weighting functions for losses
since all the outcomes lie in the gains domain for both the players. Notice that player 2 has
EUT preferences since w+

2 (p) = p.
Suppose player 1 and player 2 play black-box strategies (1− p, p) and (1− q, q), respec-

tively, where p, q ∈ [0, 1]. With an abuse of notation, we identify these black-box strategies
by p and q, respectively. The corresponding lottery faced by player 1 is given by

L1(p, q) := {(µ[0, 0], 4); (µ[1, 0], 3); (µ[1, 1], 1); (µ[0, 1], 0)},

where µ[0, 0] := (1 − p)(1 − q), µ[1, 0] := p(1 − q), µ[0, 1] := (1 − p)q, and µ[1, 1] := pq. By
(1.3.8), the CPT value of the lottery faced by player 1 is given by

V1(L1(p, q)) := 4×
[
w+

1 (µ[0, 0])
]

+ 3×
[
w+

1 (µ[0, 0] + µ[1, 0])− w+
1 (µ[0, 0]))

]
+ 1×

[
w+

1 (µ[0, 0] + µ[1, 0] + µ[1, 1])− w+
1 (µ[0, 0] + µ[1, 0])

]
.

The plot of the function V1(L1(p, q)) with respect to p, for q = 0.3 and q = 0.35, is shown in
Figure 4.3. We observe that the best response black-box strategy set B1(µ−1(q)) of player 1
to player 2’s black-box strategy q ∈ B2 satisfies the following: B1(µ−1(q)) = {0} for q < q∗,
B1(µ−1(q)) = {0, p∗} for q = q∗, and B1(µ−1(q)) ⊂ [p∗, 1] for q > q∗, where p∗ = 0.996 and
q∗ = 0.340 (here the numbers are correct to three decimal points). Further, B1(µ−1(q)) is
singleton for q ∈ (q∗, 1] and the unique element in B1(µ−1(q)) increases monotonically with
respect to q from p∗ to 1 (see Figure 4.4). In particular, B1(µ−1(1)) = {1}. The lottery
faced by player 2 is given by

L2(p, q) := {(µ[0, 0], 0); (µ[1, 0], 1); (µ[1, 1], 0); (µ[0, 1], 1)},
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Figure 4.3: The CPT value of player 1 in Example 4.3.9. Here, p and q denote the black-box
strategies for player 1 and 2, respectively. Note the rise and sharp drop in the two curves
near p = 1. For the curve for q = 0.3, the global maximum is attained at p = 0, whereas, for
the curve for q = 0.35, the global maximum is attained close to p = 1, specifically for some
p ∈ [0.9, 1].

and the CPT value of player 2 for this lottery is given by V2(L2(p, q)) = p(1− q) + q(1− p).
The best response black-box strategy set B2(µ−2(p)) of player 2 to player 1’s black-box
strategy p ∈ B1 satisfies the following: B2(µ−2(p)) = {1} for p < 0.5, B2(µ−2(p)) = [0, 1]
for p = 0.5, and B2(µ−2(p)) = {0} for p > 0.5. As a result, see Figure 4.4, there does not
exist any (p′, q′) such that p′ ∈ B1(µ−1(q′)) and q′ ∈ B2(µ−2(p′)), and hence no black-box
strategy Nash equilibrium exists for this game.

Let τi ∈ P(Bi) denote a conjecture over the black-box strategy of player i. This will
induce a conjecture σi(τi) ∈ ∆(Ai) over the action of player i, given by

σi(τi)[ai] = Eτibi[ai].

Given conjectures over black-box strategies (τj ∈ ∆(Bj), j 6= i), let σ−i(τ−i) := (σj(τj))j 6=i.

Definition 4.3.10. A profile of conjectures over black-box strategies τ = (τ1, . . . , τn) is said
to be a mixed black-box strategy Nash equilibrium if, for each player i, we have

bi ∈ Bi(µ−i(σ−i(τ−i))), for all bi ∈ supp τi.

Proposition 4.3.11. For a profile of conjectures σ∗ = (σ∗1, . . . , σ
∗
n), consider the condition

σ∗i ∈ co(Bi(µ−i(σ
∗
−i))), for all i. (4.3.3)

(i) If τ is a mixed black-box strategy Nash equilibrium, then the profile of conjectures σ∗,
where σ∗i = σi(τi),∀i, satisfies (4.3.3).
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Figure 4.4: The figure (not to scale) shows the best response black-box strategy sets of the
two players for the game in Example 4.3.9. The red (dashed) line shows the best response
black-box strategy set of player 2 in response to the black-box strategy (1− p, p) of player 1.
The green (solid) line shows the best response black-box strategy set of player 1 in response
to the black-box strategy (1 − q, q) of player 2. Note that there is no intersection of these
lines.

(ii) If σ∗ satisfies (4.3.3), then there exists a profile of finite support conjectures on black-
box strategies τ̇ = (τ̇1, . . . , τ̇n), where τ̇i ∈ ∆f (Bi), ∀i, that is a mixed black-box strategy
Nash equilibrium, such that σ∗i = σi(τ̇i), ∀i.

We prove this proposition in Appendix 4.D. The content of this proposition is that in
order to determine whether a profile τ of conjectures on black box strategies is a mixed black-
box strategy Nash equilibrium or not it suffices to study the associated profile of conjectures
on actions that is induced by τ . This justifies the study of the set mBBNE discussed below.

Theorem 4.3.12. For any game Γ, there exists a profile of conjectures σ∗ = (σ∗1, . . . , σ
∗
n)

that satisfies (4.3.3).

We prove this theorem in Appendix 4.E. We have the following corollary from Theo-
rem 4.3.12 and statement (ii) of Proposition 4.3.11.

Corollary 4.3.13. For any finite game Γ, there exists a mixed black-box strategy Nash
equilibrium. In particular, there is one that is a profile of finite support conjectures over the
black-box strategies of players.

We now compare the different notions of Nash equilibrium defined above. To that end,
we will associate each of the equilibrium notions with their corresponding natural profile
of mixtures over actions. For example, corresponding to any pure Nash equilibrium a =
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(a1, . . . , an), assign the profile of mixtures over actions (1{a1}, . . . ,1{an}) ∈ S. Let pNE ⊂ S
denote the set of all profiles of mixtures over actions that correspond to pure Nash equilibria.
Let mNE ⊂ S denote the set of all mixed action Nash equilibria σ ∈ S. Let BBNE ⊂ S
denote the set of all black-box strategy Nash equilibria b ∈ S. Corresponding to any mixed
black-box strategy Nash equilibrium τ = (τ1, . . . , τn), assign the profiles of mixtures over
actions (σ1(τ1), . . . , σn(τn)) ∈ S, and let mBBNE ⊂ S denote the set of all such profiles.
Note that each of the above subsets depends on the underlying game Γ and the CPT features
of the players.

Proposition 4.3.14. For any fixed game Γ and CPT features of the players, we have

(i) pNE ⊂ mNE,

(ii) pNE ⊂ BBNE, and

(iii) BBNE ⊂ mBBNE.

Proof. The proof of statement (i) can be found in [74].
For statement (ii), let (1{a1}, . . . ,1{an}) ∈ pNE. For a black-box strategy bi of player i,

the belief µ−i = 1{a−i} of player i gives rise to the lottery {(bi[a′i], xi(a′i, a−i))}a′i∈Ai . From the
definition of CPT value (see Equation (1.3.8)), we observe that Vi({(bi[a′i], xi(a′i, a−i))}a′i∈Ai)
is optimal as long as the probability distribution bi does not assign positive probability to
any suboptimal outcome. Hence,

Bi(1{a−i}) = co(1{a′i} ∈ Si : a′i ∈ Ai(1{a−i})).

In particular, 1{ai} ∈ Bi(1{a−i}), and hence (1{a1}, . . . ,1{an}) ∈ BBNE.
Statement (iii) follows directly from the Definitions 4.3.8 and 4.3.10.

In the following, we show via examples that each of the labeled regions ((a)–(g)), in
Figure 4.5, is non-empty in general.

Example 4.3.15. For each of the seven regions in Figure 4.5, we provide a 2 × 2 game with
the accompanying CPT features for the two players verifying that the corresponding region
is non-empty. Let the action sets be A1 = A2 = {0, 1}. With an abuse of notation, let
p, q ∈ [0, 1] denote the mixtures over actions for players 1 and 2, respectively, where p and
q are the probabilities corresponding to action 1 for both the players. Thus, the set of all
profiles of mixtures over actions is S = {(p, q) : p, q ∈ [0, 1]}. Let L1(p, q) and L2(p, q) denote
the corresponding lotteries faced by the two players. (All decimal numbers in these examples
are correct to three decimal places.)

(a) Let both the players have EUT preferences with their utility functions given by the iden-
tity functions ui(x) = x, for i = 1, 2. Let the payoff matrix be as shown in Figure 4.6a.
Clearly, (p = 0, q = 0) ∈ pNE.
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Figure 4.5: Venn diagram depicting the different notions of equilibrium as subsets of the
set S =

∏
i ∆(Ai). The sets marked pNE,mNE,BBNE, and mBBNE represent the sets of

pure Nash equilibria, mixed action Nash equilibria, black-box strategy Nash equilibria, and
mixed black-box strategy Nash equilibria, respectively. Examples are given in the body of
the text of CPT games lying in each of the indicated regions (a) through (g).

(b) Let ri = 0, vi(x) = x, for i = 1, 2. Let w+
1 (p) = p0.5 and w+

2 (p) = p, for p ∈ [0, 1]. Let
the payoff matrix be as shown in Figure 4.6b, where β := 1/w+

1 (0.5) = 1.414. We have

L1(p, q) = {((1− p)(1− q), 2β); (p(1− q), β + 1); (pq, 1); ((1− p)q, 0)}.

The way β is defined, we get V1(L1(0, 0.5)) = V1(L1(1, 0.5)) = 2. Also, observe that
V2(L2(0.5, 0)) = V2(L2(0.5, q)) = V2(L2(0.5, 1)),∀q ∈ [0, 1]. With these observations, we
get that (0.5, 0.5) ∈ mNE. We have, arg maxp∈[0,1] V1(L1(p, 0.5)) = {p′}, where p′ = 0.707
(see Figure 4.7). Hence 0.5 /∈ co(B1(µ−1(0.5))) and (0.5, 0.5) /∈ mBBNE.

(c) Let the CPT features for both the players be as in (b). Let the payoff matrix be as
shown in Figure 4.6c, where β := 1/w+

1 (0.5) = 1.414 and γ = (1−p′)/p′ (here p′ = 0.707
as in (b)). As observed in (b), B1(µ−1(0.5)) = {p′}. From the definition of γ, we see
that player 2 is indifferent between her two actions, given her belief p′ over player 1’s
actions. Thus (p′, 0.5) ∈ (mNE ∩ BBNE)\pNE.

(d) Let ri = 0, vi(x) = x, for i = 1, 2. Let w−1 (p) = p0.5, w+
2 (p) = p. Let the payoff

matrix be as shown in Figure 4.6d, where β := 1/w−1 (0.5) = 1.414. Note that the
payoffs for player 1 are negations of her payoffs in (b), and her probability weighing
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function for losses is same as her probability weighing function for gains in (b). Thus
her CPT value function V1(L1(p, q)) is the negation of her CPT value function in (b).
In particular, we have V1(L1(0, 0.5)) = V1(L1(1, 0.5)) > V1(L1(p, 0.5)) for all p ∈ (0, 1).
Thus, 0.5 ∈ co(B1(µ−1(0.5))), but 0.5 /∈ B1(µ−1(0.5)). The payoffs and CPT features
of player 2 are same as in (b). Thus, (0.5, 0.5) ∈ (mNE ∩mBBNE)\BBNE.

(e) Let the CPT features for both the players be as in (b). Let the payoff matrix be as
shown in Figure 4.6e, where β := 1/w+

1 (0.5) = 1.414, ε = 0.1, and γ := (1 − p̃)/p̃;
here p̃ = 0.582 is the unique maximizer of V1(L1(p, 0.5)) (see Figure 4.8). We have
V1(L1(0, 0.5)) = 2.071 > 2 = V1(L1(1, 0.5)) and arg maxp V1(L1(p, 0.5)) = {p̃} with
V1(L1(p̃, 0.5)) = 2.125. From the definition of γ, we see that player 2 is indifferent
between her two actions, given her belief p̃ over player 1’s actions. Thus, (p̃, 0.5) ∈
BBNE\mNE.

(f) Let the CPT features be as in Example 4.3.9. Let p∗ = 0.996 and q∗ = 0.340 be the same
as in Example 4.3.9. Let the payoff matrix be as shown in Figure 4.6f. Note that the
payoffs for both the players are the same as in Example 4.3.9. Recall B1(µ−1(q)) = 0
for q < q∗, B1(µ−1(q)) = {0, p∗} for q = q∗, and B1(µ−1(q)) ⊂ [p∗, 1] for q > q∗, and
hence 0.5 ∈ co(B1(µ−1(q∗))) and 0.5 /∈ B1(µ−1(q∗)). Further, from the definition of γ,
we have V2(L2(0.5, 0)) = V2(L2(0.5, q)) = V2(L2(0.5, 1)), ∀q ∈ [0, 1]. Hence, (0.5, q∗) ∈
mBBNE\(mNE ∩ BBNE).

(g) Finally, if we let the players have EUT preferences and the payoffs as in (a), then
(1, 0) /∈ (mNE ∪mBBNE).

4.4 Summary

In the study of non-cooperative game theory from a decision-theoretic viewpoint, it is im-
portant to distinguish between two types of randomization:

1. conscious randomizations implemented by the players, and

2. randomizations in conjectures resulting from the beliefs held by the other players about
the behavior of a given player.

This difference becomes evident when the preferences of the players over lotteries do not sat-
isfy betweenness, a weakened form of independence property. We considered n-player normal
form games where players have CPT preferences, an important example of preference relation
that does not satisfy betweenness. This gives rise to four types of Nash equilibrium notions,
depending on the different types of randomizations. We defined these different notions of
equilibrium and discussed the question of their existence. The results are summarized in
Table 4.1.
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0 1
0 1, 1 0, 0
1 0, 0 0, 0

(a) pNE

0 1
0 2β, 0 0, 1
1 β + 1, 1 1, 0

(b) mNE\mBBNE

0 1
0 2β, 0 0, 1
1 β + 1, γ 1, 0

(c) (mNE ∩ BBNE)\pNE

0 1
0 −2β, 0 0, 1
1 −(β + 1), 1 −1, 0

(d) (mNE ∩mBBNE)\BBNE

0 1
0 2β + ε, 0 0, 1
1 β + 1, γ 1, 0

(e) BBNE\mNE

0 1
0 4, 0 0, 1
1 3, 1 1, 0

(f) mBBNE\(mNE ∪ BBNE)

Figure 4.6: Payoff matrices for the 2 × 2 games in Example 4.3.15. The rows and the
columns correspond to the actions of player 1 and player 2, respectively. In each cell, the
left and right entries correspond to player 1 and player 2, respectively. The labels indicate
the corresponding regions in Figure 4.5. The game matrix for the example corresponding to
region (g) is the same as that for the one corresponding to region (a).
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Figure 4.7: The CPT value function for
player 1 in Example 4.3.15(b), when q =
0.5 is the mixture of actions of player 2.
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Figure 4.8: The CPT value function for
player 1 in Example 4.3.15(e), when q =
0.5 is the mixture of actions of player 2.
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Type of Nash
equilibrium

Strategies Conjectures Always exists

Pure Nash equilibrium Pure
actions

Exact conjectures No

Mixed action Nash
equilibrium

Pure
actions

Mixed conjectures Yes [74]

Black-box strategy Nash
equilibrium

Black box
strategies

Exact conjectures No (Exam-
ple 4.3.9)

Mixed black-box
strategy Nash
equilibrium

Black box
strategies

Mixed conjectures Yes (Theo-
rem 4.3.12)

Table 4.1: Different types of Nash equilibrium when players have CPT preferences.

Appendix

4.A Proof of Theorem 4.2.3

Proof. Let the CPT preference relation � be given by (r, v, w±). Since an EUT preference
relation satisfies independence, we get that (i) implies (ii). Since betweenness is a weaker
condition than independence, we get that (ii) implies (iii). We will now show that if �
satisfies betweenness, then the probability weighting functions are linear, i.e. w±(p) = p for
0 ≤ p ≤ 1. This will imply that � is an EUT preference relation with utility function u = v,
and hence complete the proof.

Assume that the CPT preference relation � satisfies betweenness. Consider a lottery
A := {(p1, z1), (p2, z2), (1−p1−p2, r)} such that z1 ≥ z2 ≥ r, p1 ≥ 0, p2 > 0 and p1 +p2 ≤ 1.
By (1.3.9), we have

V (A) = δ1w
+(P1) + δ2w

+(P2),

where δ1 := v(z1) − v(z2), δ2 := v(z2), P1 := p1 and P2 := p1 + p2. Let lottery B :=
{(q1, z1), (q2, z2), (1−q1−q2, r)} be such that q1, q2 ≥ 0, Q1 := q1 > p1, and Q2 := q1+q2 < P2.
By (1.3.9), we have

V (B) = δ1w
+(Q1) + δ2w

+(Q2).

If z1, z2, p1, p2, q1 and q2 are such that

δ1

δ2

=
w+(P2)− w+(Q2)

w+(Q1)− w+(P1)
, (4.A.1)
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then V (A) = V (B) and, by betweenness, for any 0 ≤ α ≤ 1 we have V (A) = V (B) =
V (αA+ (1− α)B), i.e.

δ1w
+(Q1) + δ2w

+(Q2) = δ1w
+(αP1 + (1− α)Q1) + δ2w

+(αP2 + (1− α)Q2).

Using (4.A.1) we get[
w+(P2)− w+(Q2)

] [
w+(Q1)− w+(αP1 + (1− α)Q1))

]
=
[
w+(Q1)− w+(P1)

] [
w+(αP2 + (1− α)Q2)− w+(Q2)

]
. (4.A.2)

Given any 0 ≤ P1 < Q1 ≤ Q2 < P2 ≤ 1, there exist z1 and z2 such that (4.A.1) holds.
Indeed, take any δ > 0 belonging to the range of the function v. This exists because v(r) = 0
and v is a strictly increasing function. Since w+ is a strictly increasing function, we have

κ :=
w+(P2)− w+(Q2)

w+(Q1)− w+(P1)
> 0.

Take z2 = v−1(δ/(1 + κ)) and z1 = v−1(δ). These are well defined because v is assumed
to be continuous and strictly increasing, and δ belongs to its range. Hence z1 > z2 > r as
required. Thus (4.A.2) holds for any 0 ≤ P1 < Q1 ≤ Q2 < P2 ≤ 1. In particular, when
Q1 = Q2, we have[

w+(P2)− w+(Q)
] [
w+(Q)− w+(R1)

]
=
[
w+(Q)− w+(P1)

] [
w+(R2)− w+(Q)

]
,

where Q := Q1 = Q2, R1 := αP1 + (1 − α)Q and R2 := αP2 + (1 − α)Q. Equivalently, for
any 0 ≤ a1 < c1 < b < c2 < a2 ≤ 1 such that (a2 − b)(b− c1) = (b− a1)(c2 − b), we have[

w+(a2)− w+(b)
] [
w+(b)− w+(c1)

]
=
[
w+(b)− w+(a1)

] [
w+(c2)− w+(b)

]
.

In Lemma 4.B.1, we prove that the above condition implies w+(p) = p, for 0 ≤ p ≤ 1.
Similarly, we can show that w−(p) = p, for 0 ≤ p ≤ 1. This completes the proof.

4.B An Interesting Functional Equation

Lemma 4.B.1. Let w : [0, 1] → [0, 1] be a continuous, strictly increasing function such
that w(0) = 0 and w(1) = 1. For any 0 ≤ a1 < c1 < b < c2 < a2 ≤ 1 such that
(a2 − b)(b− c1) = (b− a1)(c2 − b), let

[w(a2)− w(b)] [w(b)− w(c1)] = [w(b)− w(a1)] [w(c2)− w(b)] . (4.B.1)

Then w(p) = p for all p ∈ [0, 1].
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Proof. Taking a1 = 0, c1 = 1/4, b = 1/2, c2 = 3/4 and a2 = 1 in (4.B.1) we get,

[1− w(1/2)] [w(1/2)− w(1/4)] = [w(1/2)] [w(3/4)− w(1/2)] ,

and hence,

w(3/4) =
w(1/2) + w(1/2)w(1/4)− w(1/4)

w(1/2)
.

Note that w(1/2) > 0. Taking a1 = 0, c1 = 1/4, b = 1/3, c2 = 1/2 and a2 = 1 in (4.B.1) we
get,

[1− w(1/3)] [w(1/3)− w(1/4)] = [w(1/3)] [w(1/2)− w(1/3)] ,

and hence,

w(1/3) =
w(1/4)

1− w(1/2) + w(1/4)
.

Note that 1−w(1/2) +w(1/4) > 1−w(1/2) > 0. Taking a1 = 0, c1 = 1/3, b = 1/2, c2 = 2/3
and a2 = 1 in (4.B.1) we get,

[1− w(1/2)] [w(1/2)− w(1/3)] = [w(1/2)] [w(2/3)− w(1/2)] ,

and substituting for w(1/3) we get,

w(2/3) =
w(1/2)− w(1/2)2 + 2w(1/2)w(1/4)− w(1/4)

w(1/2)− w(1/2)2 + w(1/2)w(1/4)
.

Note that

w(1/2)− w(1/2)2 + w(1/2)w(1/4) = w(1/2)[1− w(1/2) + w(1/4)] > 0.

Taking a1 = 0, c1 = 1/2, b = 2/3, c2 = 3/4 and a2 = 1 in (4.B.1) we get,

[1− w(2/3)] [w(2/3)− w(1/2)] = [w(2/3)] [w(3/4)− w(2/3)] .

Simplifying we get,

w(2/3)− w(2/3)w(3/4) = w(1/2)− w(1/2)w(2/3),

Substituting for w(2/3) and w(3/4) we get,[
w(1/2)− w(1/2)2 + 2w(1/2)w(1/4)− w(1/4)

w(1/2)− w(1/2)2 + w(1/2)w(1/4)

] [
w(1/4)− w(1/2)w(1/4)

w(1/2)

]
= w(1/2)

[
w(1/4)− w(1/2)w(1/4)

w(1/2)− w(1/2)2 + w(1/2)w(1/4)

]
.
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Since w(1/4)− w(1/2)w(1/4) > 0 and w(1/2)− w(1/2)2 + w(1/2)w(1/4) > 0, we get

w(1/2)− w(1/4) = 2w(1/2)[w(1/2)− w(1/4)].

Since w(1/2)− w(1/4) > 0, we get w(1/2) = 1/2.
For any fixed 0 ≤ x < y ≤ 1, let

w′(p′) :=
w(p′(y − x) + x)− w(x)

w(y)− w(x)
, for all 0 ≤ p′ ≤ 1.

Note that w′ : [0, 1]→ [0, 1] is a continuous, strictly increasing function with w′(0) = 0 and
w′(1) = 1. Further, if 0 ≤ a′1 < c′1 < b′ < c′2 < a′2 ≤ 1 are such that (a′2 − b′)(b′ − c′1) =
(b′ − a′1)(c′2 − b′), then

[w′(a′2)− w′(b′)] [w′(b′)− w′(c′1)] = [w′(b′)− w′(a′1)] [w′(c′2)− w′(b′)] .

Thus w′(1/2) = 1/2 and hence w ((x+ y)/2) = (w(x) + w(y))/2. Using this repeatedly we
get w(k/2t) = k/2t, for 0 ≤ k ≤ 2t, t = 1, 2, . . . . Continuity of w then implies w(p) = p, for
all p ∈ [0, 1].

4.C Proof of Lemma 4.3.6

Proof. For a lottery L = (p, z), where z = (zk)1≤k≤m is the outcome profile, and (pk)1≤k≤m
is the probability vector, the function Vi(p, z) is continuous with respect to p ∈ ∆m−1 [74].
Thus, Vi({(µ(bi, µ−i)[a], xi(a))}a∈A) is a function continuous with respect to bi ∈ Bi, and
hence Bi(µ−i) is a non-empty closed subset of the compact space Bi. Since the convex hull
of a compact subset of a Euclidean space is compact, the set co(Bi(µ−i)) is closed. This
completes the proof.

4.D Proof of Proposition 4.3.11

Proof. Suppose τ is a mixed black-box strategy Nash equilibrium. Let σ∗i = σi(τi). Then,
for all bi ∈ supp τi, we have bi ∈ Bi(µ−i(σ

∗
−i)), and hence σ∗i ∈ co(Bi(µ−i(σ

∗
−i))). This proves

statement (i).
For statement (ii), suppose σ∗ satisfies condition (4.3.3). In fact, by Lemma 4.3.6 we

have, σ∗i ∈ co(Bi(µ−i(σ
∗
−i))) ⊂ ∆(Ai), and by Caratheodory’s theorem, σ∗i is a convex

combination of at most |Ai| elements in Bi(µ−i(σ
∗
−i)). Hence, we can construct a mixed

black-box strategy Nash equilibrium τ̇ such that τ̇i ∈ ∆f (Bi) and σ∗i = σi(τ̇i),∀i.

4.E Proof of Theorem 4.3.12

Proof. The idea is to use the Kakutani fixed-point theorem, as in the proof of the existence
of mixed action Nash equilibrium [100]. Assume the usual topology on Si, for each i, and
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let S have the corresponding product topology. The set S is a non-empty compact convex
subset of the Euclidean space

∏
i R
|Ai|. Let K(σ) be the set-valued function given by

K(σ) :=
∏
i

co(Bi(µ−i(σ−i))),

for all σ ∈ S. Since co(Bi(µ−i(σ−i))) is non-empty and convex for each i (Lemma 4.3.6),
the function K(σ) is non-empty and convex for any σ ∈ S. We now show that the function
K(·) has a closed graph. Let {σt}∞t=1 and {st}∞t=1 be two sequences in S that converge to σ̄
and s̄, respectively, and let st ∈ K(σt) for all t. It is enough to show that s̄ ∈ K(σ̄). For all
si ∈ Si, σ−i ∈ S−i, let

Ṽi(si, σ−i) := sup
τi∈P(Bi),
Eτibi=si

EτiVi ({(µ(bi, µ−i(σ−i))[a], xi(a))}a∈A) .

Since the product distribution µ(bi, µ−i(σ−i)) is jointly continuous in bi and σ−i, and, as
noted earlier, Vi(p, z) is continuous with respect to the probability vector p, for any fixed
outcome profile z, the function Vi ({µ(bi, µ−i(σ−i))[a], xi(a)}a∈A) is jointly continuous in bi
and σ−i. This implies that the function Ṽi(si, σ−i) is jointly continuous in si and σ−i (see
Appendix 4.F). From the definition of Ṽi, it follows that

max
si∈∆(Ai)

Ṽi(si, σ−i) = max
bi∈Bi

Vi ({(µ(bi, µ−i(σ−i))[a], xi(a))}a∈A) .

Indeed, the maximum on the left-hand side is well-defined since ∆(Ai) is a compact space
and Ṽi(·, σ−i) is a continuous function. The maximum on the right-hand side is well-defined
and the maximum is achieved by all bi ∈ Bi(µ−i(σ−i)) (Lemma 4.3.6). Hence,

arg max
si∈∆(Ai)

Ṽi(si, σ−i) = co(Bi(µ−i(σ−i))).

Since sti ∈ co(Bi(µ−i(σ̄
t
−i))), for all t, we have

Ṽi(s
t
i, σ

t
−i) ≥ Ṽi(s̃i, σ

t
−i), for all s̃i ∈ Si.

Since Ṽi(si, σ−i) is jointly continuous in si and σ−i, we get

Ṽi(s̄i, σ̄−i) ≥ Ṽi(s̃i, σ̄−i), for all s̃i ∈ Si.

Hence we have s̄i ∈ co(Bi(µ−i(σ̄
t
−i))). This shows that the function K(·) has a closed graph.

By the Kakutani fixed-point theorem, there exists σ∗ such that σ∗ ∈ K(σ∗), i.e. σ∗ satisfies
condition (4.3.3) [69]. This completes the proof.
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4.F Joint Continuity of the Concave Hull of a Jointly

Continuous Function

Let ∆m−1 and ∆n−1 be simplices of the corresponding dimensions with the usual topologies.
Let f : ∆m−1 × ∆n−1 → R be a continuous function on ∆m−1 × ∆n−1 (with the product
topology). Let P(∆m−1) denote the space of all probability measures on ∆m−1 with the
topology of weak convergence. Let g : ∆m−1 ×∆n−1 → R be given by

g(x, y) := sup
{

EX∼pf(X, y)
∣∣p ∈P(∆m−1),EX∼p id(X) = x

}
.

where id : ∆m−1 → ∆m−1 is the identity function id(x) := x, ∀x ∈ ∆m−1 and the expectation
is over a random variable X taking values in ∆m−1 with the distribution p.

Proposition 4.F.1. The function g(x, y) is continuous on ∆m−1 ×∆n−1.

Proof. We first prove that the function g(x, y) is upper semi-continuous. Let xt → x and yt →
y. Let {g(xtn , ytn)} be a convergent subsequence of {g(xt, yt)} with limit L. It is enough to
show that the limit L ≤ g(x, y). Since for all n the set {p ∈P(∆m−1),EX∼p id(X) = xtn} is
compact, we know that there exists ptn ∈P(∆m−1), such that g(xtn , ytn) = EX∼ptn [f(X, ytn)]
and EX∼ptn [id(X)] = xtn . The sequence {ptn} has a convergent subsequence, say ptnk →
p̄ (because P(∆m−1) is a compact space). Now, EX∼p̄[id(X)] = limk EX∼ptnk [id(X)] =

limk xtnk = x. Further, EX∼ptnk [f(X, ytnk )]→ EX∼p̄[f(X, y)], since the product distributions

ptnk×1{ytnk}, for all k, on ∆m−1×∆n−1, converge weakly to the product distribution p̄×1{y}.
Thus, L = EX∼p̄[f(X, y)] ≤ g(x, y) and the function g(x, y) is upper-semicontinuous.

We now prove that the function g(x, y) is lower semi-continuous. Let xt → x and yt → y.
The simplex ∆m−1 can be triangulated into finitely many other simplices, say T1, . . . , Tk,
whose vertices are x and some m−1 of the m vertices of ∆m−1. Let (xtn) be any subsequence
such that all xtn ∈ Tj for some simplex. It is enough to show that the lim inf of the sequence
{g(xtn , ytn)} is greater than or equal to g(x, y). Let the other vertices of Tj be e1, . . . , em−1.
Let ztn = (z1

tn , . . . , z
l
tn) be the barycentric coordinates of xtn with respect to the simplex Tj,

i.e.
xtn = (1− z1

tn − · · · − z
m−1
tn )x+ z1

tne1 + · · ·+ zm−1
tn em−1.

The function g(x, y) is concave in x for any fixed y by construction. We have,

g(xtn , ytn) ≥ (1− z1
tn − · · · − z

m−1
tn )g(x, ytn) + z1

tng(e1, ytn) + · · ·+ zm−1
tn g(em−1, ytn).

Since ztn → (0, . . . , 0) and g(e1, ytn), . . . , g(em−1, ytn) are all finite we get,

lim inf g(xtn , ytn) ≥ lim inf g(x, ytn).

Let p̃ ∈ P(∆m−1) be such that EX∼p̃[f(X, y)] = g(x, y) and EX∼p̃[id(X)] = x. Then,
g(x, ytn) ≥ EX∼p̄[f(X, ytn)], for all n, and hence,

lim inf g(x, ytn) ≥ lim inf EX∼p̃[f(X, ytn)] = g(x, y).

This shows that the function g(x, y) is lower semi-continuous.
Since the function g(x, y) is upper and lower semi-continuous, it is continuous.
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Notes
12 Crawford [37] defines the notion of equilibrium in beliefs for 2-player games, but, as noted by Crawford,

it can be easily extended to games with more than 2 players.
13 For the setting of 2-player games, this follows from the result of Crawford [37] on the existence of

equilibrium in beliefs. A technical complex analysis argument is required to extend this result to more than
2 players. It appears that Crawford was aware of this (see footnote 9 in [37]). We provide an independent
proof in Section 4.3 for the sake of completeness.

14 A similar result was proved by Wakker [131] in the setting of rank-dependent utility (RDU) preferences
[114], which is a special case of CPT preferences. See the discussion following Theorem 4.2.3 for more on
this.
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Chapter 5

Mediated Correlated Equilibrium:
Reconsidering CPT Correlated
Equilibrium

5.1 Introduction

In the previous two chapters we took the neoclassical economics viewpoint of game theory
that attempts to explain an equilibrium as a self-evident outcome of the optimal behavior
of the participating players, assuming them to be rational. An alternative approach, called
learning in games, is concerned with justifying equilibrium behavior via a dynamic process
where the players learn from the past play and observations from the environment, and adapt
accordingly [7, 52, 136]. In this chapter, we will be concerned with this alternative approach.
Along the process, we will naturally come up with a modified version of the notion of CPT
correlated equilibrium that will prove to be more appropriate in the settings of learning in
games as well as mechanism design, which we consider in more detail in the next chapter.

It becomes even more important to consider non-EUT behavior in the theory of learning
in games. For example, in a repeated game, Hart [59] argues that players tend to use simple
procedures like regret minimization. A player i is said to have no regret15 if, for each pair of
her actions ai, ãi, she does not regret not having played action ãi whenever she played action
ai. Such regrets can simply be computed as the difference in the average payoffs received
by the player from playing action ãi instead of action ai, assuming the opponents stick to
their actions. While evaluating such regrets in the real world, however, players who are
modeled as evaluating lotteries according to CPT preferences are likely to exhibit different
kinds of learning behavior than that exhibited by EUT players. The proposed model in this
chapter is an attempt to handle these systematic deviations in learning, anticipated from the
empirically observed behavioral features exhibited by human agents, as captured by CPT.
We pose the following question: How do the predictions of the theory of learning in games
change if the players behave according to CPT?
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For a repeated game, Foster and Vohra [49] describe a procedure based on calibrated
learning that guarantees the convergence of the empirical distribution of action play to the set
of correlated equilibria, when players behave according to EUT. In Section 5.2, we formulate
an analog for their procedure when players behave according to CPT. In Example 5.2.1, we
describe a game for which the set of all CPT correlated equilibria is non-convex and we show
that the empirical distribution of action play does not converge to this set.

We then define an extension of the set of CPT correlated equilibria and establish the
convergence of the empirical distribution of action play to this extended set. It turns out that
this extension has a nice game-theoretic interpretation, obtained by allowing the mediator
to send any private signal (instead of restricting her to send a signal corresponding to some
action). We formally define this setup in Section 5.3, and call it a mediated game. Myerson
[91] has considered a further generalization in which each player i first reports her type from
a finite set Ti. The mediator collects the reports from all the players and then sends each
one of them a private signal from a finite set Bi. The mediator is characterized by a rule
ψ :

∏
i Ti → ∆(

∏
iBi) that maps each type profile to a probability distribution on the

set of signal profiles from which it samples the private signals to be sent. Based on her
received signal, each player chooses her action. These are called games with communication.
The type sets (Ti)

n
i=1, the signal sets (Bi)

n
i=1, and the mediator rule ψ together are said

to comprise a communication system. Under EUT, the set of all correlated equilibria of a
game is characterized as the union, over all possible communication systems, of the sets of
joint distributions on the action profiles of all players arising from all the Nash equilibria
for the corresponding game with communication (for a detailed exposition, see Chapter 6 in
[89]). This is sometimes referred to as the Bayes-Nash revelation principle, or simply the
revelation principle. Since a mediated game is a specific type of game with communication,
characterized by players not reporting their type, or equivalently by the mediator ignoring
the types reported by the players, our analysis shows that the revelation principle does not
hold under CPT.

Calibrated learning is one way of studying learning in games. Some other approaches
originate from Blackwell’s approachability theory and the regret-based framework of online
learning ([60, 53]). In fact, Foster and Vohra [49] establish the existence of calibrated learning
schemes using such a regret-based framework and Blackwell’s approachability theory. See
[104] for a comparison between these approaches, and see also [27]. Hannan [56] introduced
the concept of no-regret strategies in the context of repeated matrix games. No-regret
learning in games is equivalent to the convergence of the empirical distribution of action
play to the set of correlated equilibria [60, 53]. We establish an analog of this result when
players behave according to CPT. We then ask if no-regret learning is possible under CPT.

Blackwell’s approachability theorem prescribes a strategy to steer the average payoff
vector of a player in a game with vector payoffs towards a given target set, irrespective of the
strategies of the other players. The theorem also gives a necessary and sufficient condition for
the existence of such a strategy provided the target set is convex and the game environment
remains fixed. Here, by game environment, we mean the rule by which the payoff vectors
depend on the players’ actions. Under EUT, Hart and Mas-Colell [60] take these payoff
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vectors to be the regrets associated to a player and establish no-regret learning by showing
that the nonpositive orthant in the space of payoff vectors is approachable. Under CPT,
although the target set is convex, the environment is not fixed. It depends on the empirical
distribution of play at each step. A similar problem with dynamically evolving environment
is considered in [70], where they get around this problem by considering a Stackelberg setting;
one player (leader) plays an action first, then, after observing this action, the other player
(follower) plays her action. In the absence of a Stackelberg setting, as in our case, we do not
know of any result that characterizes approachability under dynamic environments. However,
as far as games with CPT preferences are concerned, we answer this question by giving an
example of a game for which a no-regret learning strategy does not exist (Example 5.5.2).

5.2 Calibrated Learning in Games

Let Γ = ([n], (Ai)i∈[n], (xi)i∈[n]) be a finite n-person game which is played repeatedly at each
step t ≥ 1. The game Γ is called the stage game of the repeated game. At every step t,
each player i draws an action ati ∈ Ai with the probability distribution σti ∈ ∆(Ai). We
assume that the randomizations of the players are independent of each other and of the
past randomizations. For example, if each player i uses a uniform random variable U t

i to
draw a sample from σti , then the random variables {U t

i }i∈[n],t≥1 are independent. Each player
is assumed to know the action space of all the players in the stage game Γ, but does not
know the payoff functions and the CPT parameters of the other players. We assume that,
after playing her action ati, each player observes the actions taken by all the other players
and thus at any step t all the players have access to the past history of the play at step
t, H t−1 := (a1, . . . , at−1), where at := (ati)i∈[n] is the action profile played at step t. Let
the strategy for player i for the repeated game above be given by τi := (σti , t ≥ 1), where
σti : H t−1 → ∆(Ai), for each t.

We first describe the result of Foster and Vohra [50]. Suppose the players follow the
following natural strategy: At every step t, on the basis of the past history of play, H t−1,
each player i predicts a joint distribution µt−i ∈ ∆(A−i) on the action profile of all the other
players. This is player i’s assessment of how her opponents might play at step t. The
sequence of functions of past history giving rise to the assessment is called the assessment
scheme of the player. Depending on her assessment at step t, player i chooses a specific
action among those that are most preferred by her in response to her assessment, called her
best reaction.16 This is done using a fixed (time-invariant) function from ∆(A−i) to Ai, which
maps µ−i ∈ ∆(A−i) to an action in Ai that is in the best response set for µ−i; this function is
called the best reaction map of player i. Foster and Vohra [50] prove that (i) if each player’s
assessments are calibrated with respect to the sequence of action profiles of the other players
and (ii) if each player plays the best reaction to her assessments, then the limit points of the
empirical distribution of action play are correlated equilibria. By action play we mean the
sequence of action profiles played by the players. We will give a formal definition of what is
meant by calibration shortly. For the moment, roughly speaking, calibration says that the
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empirical distributions conditioned on assessments converge to the assessments. The best
reaction of player i to her assessment µ−i of the actions of the other players, as considered in
[50], is a specific action a∗i ∈ Ai that maximizes the expected payoff to player i with respect
to her assessment, i.e.,

a∗i ∈ arg max
ai∈Ai

∑
a−i∈A−i

µ−i(a−i)xi(ai, a−i).

Thus the best reaction is an action in the best response set. Note that it is assumed that
each player uses a fixed tie breaking rule if there is more than one action in the best response
set.

Suppose now that the players behave with CPT preferences. Given player i’s assessment
µ−i of the play of her opponents, she is faced with the following set of lotteries, one for each
of her actions ai ∈ Ai:

Li(µ−i, ai) := {µ−i(a−i), xi (ai, a−i)}a−i∈A−i .

Out of these lotteries, the ones she prefers most are those with the maximum CPT value
Vi (Li (µ−i, ai)), evaluated using her CPT features. The choice of the action she takes corre-
sponding to her most preferred lottery (with any arbitrary but fixed tie breaking rule) will
be called her best reaction, and the map from ∆(A−i) to Ai giving the best reaction as a
function of the assessment will be called the best reaction map of player i. Thus, once again,
the best reaction is a specific action in the best response set.

We now ask the following question: Suppose each player’s assessments are calibrated
with respect to the sequence of action profiles of the other players and she evaluates her
best reaction in accordance with CPT preferences as explained above, then are the limit
points of the empirical distribution of play contained in the set of CPT correlated equilibria?
Unfortunately, the answer is no (see Example 5.2.1). Before seeing why, let us give the
promised formal definition of the notion of calibration.

Consider a sequence of outcomes y1, y2, . . . generated by Nature, belonging to some finite
set S. At each step t, the forecaster predicts a distribution qt ∈ ∆(S). Let N(q, t) denote the
number of times the distribution q is forecast up to step t, i.e. N(q, t) :=

∑t
τ=1 1{qτ = q},

where 1{·} is the indicator function that takes value 1 if the expression inside {·} holds and
0 otherwise. Let ρ(q, y, t) be the fraction of the steps on which the forecaster predicts q for
which Nature plays y ∈ S, i.e.,

ρ(q, y, t) :=


0, if N(q, t) = 0,
t∑

τ=1
1{qτ=q}1{yτ=y}

N(q,t)
, otherwise.

The forecast is said to be calibrated with respect to the sequence of plays made by Nature if

lim
t→∞

∑
q∈Qt
|ρ(q, y, t)− q(y)|N(q, t)

t
= 0, for all y ∈ S, (5.2.1)

where the sum is over the set Qt of all distributions predicted by the forecaster up to step t.
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I II III IV
0 2β, 1 β + 1, 1 0, 1 1, 1
1 1.99, 0 1.99, 0 1.99, 0 1.99, 0

Table 5.1: Payoff matrix for the game Γ∗ in Example 5.2.1. The rows and columns correspond
to player 1 and 2’s actions respectively. The first entry in each cell corresponds to player 1’s
payoff and second to player 2’s payoff.

Example 5.2.1. We consider a modification of the 2-player game proposed by Keskin [74],
who uses it to demonstrate that the set of CPT correlated equilibria can be nonconvex. Let
the 2-player game Γ∗ be represented by the matrix in Table 5.1, where β = 1/w+

1 (0.5). For
the probability weighting functions w±i (·), we employ the functions of the form suggested by
Prelec [113], which, for i = 1, 2, are given by

w±i (p) = exp{−(− ln p)γi},

where γ1 = 0.5 and γ2 = 1. We thus have w+
1 (0.5) = 0.435 and β = 2.299. Let the reference

points be r1 = r2 = 0. Let vrii (·) be the identity function for i = 1, 2. Notice that player 2 is
indifferent amongst her actions.

Let µodd := (0.5, 0, 0.5, 0) and µeven := (0, 0.5, 0, 0.5) be probability distributions on player
2’s actions. We can evaluate the CPT values of player 1 for the following lotteries:

V1(L1(µodd, 0)) = 2βw+
1 (0.5) = 2, V1(L1(µodd, 1)) = 1.99,

V1(L1(µeven, 0)) = 1 + βw+
1 (0.5) = 2, V1(L1(µeven, 1)) = 1.99.

Thus, player 1’s best reaction to both these distributions µodd and µeven is action 0. Since,
player 2 is indifferent amongst her actions, we get that the distributions µo and µe, repre-
sented in Tables 5.2 and 5.3 respectively, belong to the set C(Γ∗) (the set of CPT correlated
equilibria of the game Γ∗). The mean of these two distributions is given by µ∗ as represented
in Table 5.4. Let µunif := (0.25, 0.25, 0.25, 0.25) be the uniform distribution on player 2’s
actions. The CPT values of player 1 for the lotteries corresponding to player 2 playing µunif
are:

V1(L1(µunif , 0)) = w+
1 (0.75) + βw+

1 (0.5) + (β − 1)w+
1 (0.25) = 1.985,

V1(L1(µunif , 1)) = 1.99,

since w+
1 (0.25) = 0.308 and w+

1 (0.75) = 0.585. We see that player 1’s best reaction to the
distribution µunif of player 2 is action 1. This shows that µ∗ /∈ C(Γ∗), and hence C(Γ∗) is
not convex.

Using this fact, we will attempt to construct an assessment scheme and a best reaction
function for each player such that if each player makes assessments at each step according
to her assessment scheme and acts according to the best reaction to her assessment at each
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I II III IV
0 0.5 0 0.5 0
1 0 0 0 0

Table 5.2: Empirical distribution µo for the action play in Example 5.2.1.

I II III IV
0 0 0.5 0 0.5
1 0 0 0 0

Table 5.3: Empirical distribution µe for the action play in Example 5.2.1.

I II III IV
0 0.25 0.25 0.25 0.25
1 0 0 0 0

Table 5.4: Empirical distribution µ∗ for the action play in Example 5.2.1.

step, then the assessments of each player are calibrated with respect to the sequence of action
profiles of the other player and the limit of the generated empirical distribution of action
play does not belong to C(Γ∗).

Suppose player 2 plays her actions in a cyclic manner starting with action I at step 1,
followed by actions II, III, IV and then again I and so on. Suppose player 1’s assessment of
player 2’s action is µodd = (0.5, 0, 0.5, 0) and µeven = (0, 0.5, 0, 0.5) at each odd and even step
respectively. Then it is easy to see that player 1’s assessments are calibrated with respect to
the sequence of actions of player 2. (Here player 2 plays the role of Nature from the point of
view of player 1.) Since player 1’s best reaction is action 0 to all her assessments, she would
play action 0 throughout. The distribution µ∗ is a limit point of the empirical distribution
of action play and does not belong to C(Γ∗).

We have not described player 2’s assessments. We would like to come up with an assess-
ment scheme and a best reaction map for player 2 such that if player 2 forms assessments
according to this assessment scheme and acts according to this best reaction map, then the
sequence of her actions is the cyclic sequence that we require her to play and, further, player
2’s assessments are calibrated with respect to the sequence of actions of player 1 (which is the
all 0 sequence). Instead of doing this for the game Γ∗, we find it more natural to modify it
into a 3-person game, denoted Γ̃∗, and create an assessment scheme and a best reaction map
for each player in this 3-person game such that the assessments of each player are calibrated
with respect to the sequence of action profiles of her opponents, each player plays her best
reaction to her assessments at each step, and the limit empirical distribution of action play
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exists but is not a CPT correlated equilibrium. We describe this in the following.
In the 3-person game Γ̃∗, player 1 has two actions {0,1}, and players 2 and 3 each have

four actions {I,II,III,IV}. Let the payoffs to all the three players be −1 if players 2 and 3
play different actions. If players 2 and 3 play the same action, then let the resulting payoff
matrix be as represented in Table 5.1, where the rows correspond to player 1’s actions and
the columns correspond to the common actions of players 2 and 3. Player 1 receives the
payoff represented by the first entry in each cell and players 2 and 3 each receive the payoff
represented by the second entry. Let player 1’s CPT features be as in the 2-person game Γ∗.
For players 2 and 3, let them be as for player 2 in that game. Let players 2 and 3 play in
the cyclic manner as above, in sync with each other. Let player 1 play action 0 throughout.
Let player 2’s assessment at step t be the point distribution supported by the action profile
at−2 which equals 0 for player 1 and the action played by player 2 for player 3. Similarly,
let player 3’s assessment at step t be the point distribution supported by the action profile
at−3 which equals 0 for player 1 and the action played by player 3 for player 2. Then, for
each of the players 2 and 3, her assessments are calibrated with respect to the sequence of
action profiles of her opponents. Here the action pair comprised of the actions of players 1
and 3 plays the role of the actions of Nature from the point of view of player 2, and similarly
the action pair comprised of the actions of players 1 and 2 plays the role of the actions of
Nature from the point of view of player 3. The actions of player 2 and 3 at every step are
best reactions to their corresponding assessments. Let the assessment of player 1 be µ̃odd and
µ̃even at odd and even steps respectively, where now the distribution µ̃odd puts 0.5 probability
on action profiles (I,I) and (III,III), and µ̃even puts 0.5 probability on action profiles (II,II)
and (IV,IV). Again player 1’s assessments are calibrated with respect to the sequence of
action profiles of her opponents (where now action pairs comprised of the actions of player 2
and player 3 play the role of the actions of Nature from the point of view of player 1) and her
actions are best reactions to her assessments. The limit point of the empirical distribution
of action play is the distribution that puts probability 0.25 on action profiles (0,I,I), (0,II,II),
(0,III,III) and (0,IV,IV). Since action 0 is not a best response of player 1 to the distribution
µ̃unif that puts probability 0.25 on action profiles (I,I), (II,II), (III,III) and (IV,IV), the limit
point of the empirical distribution is not a CPT correlated equilibrium of the 3-player game
Γ̃∗. Thus, we have a game where the assessments of each player are calibrated with respect
to the sequence of action profiles of her opponents, each player plays her best reaction to
her assessments at each step, and the limit empirical distribution of action play exists but
is not a CPT correlated equilibrium.

5.3 Mediated Games and Equilibrium

In Example 5.2.1, the fact that action 0 is player 1’s best reaction to the distributions µodd
and µeven, but not to µunif , plays an essential role in showing the non-convexity of the set
C(Γ∗) in the 2-player game Γ∗, and the fact that action 0 is player 1’s best reaction to the
distributions µ̃odd and µ̃even, but not to µ̃unif , helps us in showing the non-convergence of



CHAPTER 5. MEDIATED CORRELATED EQUILIBRIUM 101

calibrated learning to the set C(Γ̃∗) in the 3-player game Γ̃∗. We now describe a convex
extension of the set C(Γ) in a general finite n-person game Γ, and establish the convergence
of the empirical distribution of action play to this extended set when each player plays the
best reaction to her assessment at each step and her assessment scheme is calibrated with
respect to the sequence of action profiles of her opponents. It turns out that this extended set
of equilibria also has a game-theoretic interpretation, as follows. Suppose we add a signal
system (Bi)i∈[n] to a game Γ, where each Bi is a finite set. (In Appendix 5.C, we study
what happens when we relax the assumption that the sets Bi are finite and show that in a
certain sense it is enough to consider only finite signal sets.) Suppose there is a mediator
who sends a signal bi ∈ Bi to player i. Let B := Πi∈[n]Bi be the set of all signal profiles
b = (bi)i∈[n], and let B−i := Πj 6=iBj denote the set of signal profiles b−i of all players except

player i. Let Γ̃ := (Γ, (Bi)i∈[n]) denote such a game with a signal system. We call it a
mediated game. The mediator is characterized by a distribution ψ ∈ ∆(B) that we call the
mediator distribution!mediated game. Thus, the mediator draws a signal profile b = (bi)i∈[n]

from the mediator distribution ψ and sends signal bi to player i. Let ψi denote the marginal
probability distribution on Bi induced by ψ, and for bi such that ψi(bi) > 0, let ψ−i(·|bi)
denote the conditional probability distribution on B−i. In the definition of a correlated
equilibrium, the set Bi is restricted to be the set of actions Ai for each player i.

A randomized strategy for any player i is given by a function σi : Bi → ∆(Ai) and a
randomized strategy profile σ = (σ1, . . . , σn) gives the randomized strategy for all players.
We define the best response set of player i to a randomized strategy profile σ and a mediator
distribution ψ as

BRi(ψ, σ) :=

{
σ∗i : Bi → ∆(Ai)

∣∣∣∣ for all bi ∈ supp(ψi),

supp(σ∗i (bi)) ⊂ arg max
ai∈Ai

Vi

(
{µ̃−i(a−i|bi), xi(ai, a−i)}a−i∈A−i

)}
, (5.3.1)

where
µ̃−i(a−i|bi) :=

∑
b−i∈B−i

ψ−i(b−i|bi)
∏

j∈[n]\i

σj(bj)(aj), (5.3.2)

and supp(·) denotes the support of the distribution within the parentheses.

Definition 5.3.1. A randomized strategy profile σ is said to be a mediated CPT Nash equilib-
rium of a mediated game Γ̃ = (Γ, (Bi)i∈[n]) with respect to a mediator distribution ψ ∈ ∆(B)
if

σi ∈ BRi(ψ, σ) for all i ∈ [n].

Let Σ(Γ, (Bi)i∈[n], ψ) denote the set of all mediated CPT Nash equilibria of Γ̃ = (Γ, (Bi)i∈[n])
with respect to a mediator distribution ψ ∈ ∆(B).
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For any mediator distribution ψ ∈ ∆(B), and any randomized strategy profile σ, let
η(ψ, σ) ∈ ∆(A) be given by

η(ψ, σ)(a) :=
∑
b∈B

ψ(b)
∏
i∈[n]

σi(bi)(ai). (5.3.3)

Thus, η(ψ, σ) gives the joint distribution over the action profiles of all the players corre-
sponding to the randomized strategy σ and the mediator distribution ψ.

Definition 5.3.2. A probability distribution µ ∈ ∆(A) is said to be a mediated CPT correlated
equilibrium of a game Γ if there exist a signal system (Bi)i∈[n], a mediator distribution ψ ∈
∆(B), and a mediated CPT Nash equilibrium σ ∈ Σ(Γ, (Bi)i∈[n], ψ) such that µ = η(ψ, σ).

Consider an arbitrary mediated game Γ̃ = (Γ, (Bi)i∈[n]) with an arbitrary mediator dis-
tribution ψ ∈ ∆(B), where B =

∏n
i=1 Bi. If all the players choose to ignore the signals sent

by the mediator, then the corresponding randomized strategy profile σ consists of constant
functions σi(bi) ≡ µ∗i . Further, as shown in Remark 5.A.1 in Appendix 5.A, it follows from
Definition 3.2.4 and Definition 5.3.1 that the product probability distribution µ∗ =

∏
i∈[n] µ

∗
i

is a CPT Nash equilibrium of the game Γ iff σ is a mediated CPT Nash equilibrium of the
mediated game Γ̃ with respect to the mediator distribution ψ. In particular, since every
game Γ has at least one CPT Nash equilibrium, we see that every mediated game Γ̃ has at
least one mediated CPT Nash equilibrium with respect to the mediator distribution ψ, for
any mediator distribution ψ.

Let D(Γ) denote the set of all mediated CPT correlated equilibria of a game Γ. By
definition, D(Γ) is the union over all signal systems (Bi)i∈[n] and mediator distributions ψ ∈
∆(B) of {η(ψ, σ) : σ ∈ Σ(Γ, (Bi)i∈[n], ψ)}. When Bi = Ai for all i ∈ [n] and σ = (σ1, . . . , σn)
is the deterministic strategy profile given, with an abuse of notation, by σi(bi)(ai) = 1{bi =
ai}, one can check, see Remark 5.A.2 in Appendix 5.A, that σ ∈ Σ(Γ, (Ai)i∈[n], ψ) iff ψ ∈
C(Γ). In this case η(ψ, σ) = ψ and so we have C(Γ) ⊂ D(Γ). Under EUT, [5] proves
that D(Γ) = C(Γ). However, under CPT, this property, in general, does not hold true.
Lemma 5.3.3 shows how D(Γ) compares with C(Γ).

For any i, ai, ãi ∈ Ai, let C(Γ, i, ai, ãi) denote the set of all probability vectors π−i ∈
∆(A−i) such that

Vi(Li(π−i, ai)) ≥ Vi(Li(π−i, ãi)). (5.3.4)

It is clear from the definition of CPT correlated equilibrium that, for a joint probability
distribution µ ∈ C(Γ), provided µi(ai) > 0, the probability vector π−i(·) = µ−i(·|ai) ∈
∆(A−i) should belong to C(Γ, i, ai, ãi) for all ãi ∈ Ai. Let

C(Γ, i, ai) := ∩ãi∈AiC(Γ, i, ai, ãi).

Notice that the set C(Γ, i, ai) is comprised of all probability vectors π−i ∈ ∆(A−i) such that

Vi(Li(π−i, ai)) ≥ Vi(Li(π−i, ãi)),∀ãi ∈ Ai.
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In other words, C(Γ, i, ai) is the set of all probability distributions on the opponents’ action
profiles for which the lottery corresponding to action ai gives the maximum CPT value to
player i amongst all her actions. Now, for all i, define a subset C(Γ, i) ⊂ ∆(A), as follows:

C(Γ, i) := {µ ∈ ∆(A)|µ−i(·|ai) ∈ C(Γ, i, ai),∀ai ∈ supp (µi)}.

In words, C(Γ, i) is the set of all probability distributions µ ∈ ∆(A) such that, for every
action ai that has a positive probability under the marginal distribution µi, the conditional
distribution µ−i(·|ai) is such that the lottery corresponding to action ai gives the maximum
CPT value to player i amongst all her actions. Note that, since Vi(Li(π−i, ai)) is a continuous
function of π−i, the sets C(Γ, i, ai, ãi), C(Γ, i, ai) and C(Γ, i) are all closed.

Lemma 5.3.3. For any game Γ, we have

(i) For all i ∈ [n], co (C(Γ, i)) = {µ ∈ ∆(A)|µ−i(·|ai) ∈ co (C(Γ, i, ai)) ,∀ai ∈ supp (µi)},

(ii) C(Γ) = ∩i∈[n]C(Γ, i), and

(iii) D(Γ) = ∩i∈[n] co(C(Γ, i)).

where co(S) denotes the convex hull of a set S.

We prove this in Appendix 5.D.
For the 2-person game Γ∗ in Example 5.2.1, we observed that the set C(Γ∗) is non-

convex and hence C(Γ∗) 6= D(Γ∗). If Γ is a 2 × 2 game, i.e., a game with 2 players, each
having two actions, and both behaving according to CPT, then [108] prove that the sets
C(Γ, i), corresponding to both these players are convex, and hence also the set C(Γ). From
Lemma 5.3.3, we have the following result, having the flavor of the revelation principle:

Proposition 5.3.4. If Γ is a 2 × 2 game, then the set of all CPT correlated equilibria is
equal to the set of all mediated CPT correlated equilibria.

In the context of mediated games, a strategy σi for player i is said to be pure if supp (σi)
is singleton and a strategy profile σ = (σi)i∈[n] is said to be a pure strategy profile if each σi
is a pure strategy.

Remark 5.3.5. From the proof of Lemma 5.3.3, we observe that for any µ ∈ D(Γ), there exists
a signal system (Bi)i∈[n] (of size |Bi| = |Ai|× |Mi| = |A|), a mediator distribution ψ ∈ ∆(B),
and a mediated CPT Nash equilibrium σ ∈ Σ(Γ, (Bi)i∈[n], ψ) such that µ = η(ψ, σ) where σ
is a pure strategy profile.



CHAPTER 5. MEDIATED CORRELATED EQUILIBRIUM 104

5.4 Calibrated Learning to Mediated CPT Correlated

Equilibrium

Let ξt denote the empirical joint distribution of the action play up to step t. Formally,

ξt =
1

t

t∑
τ=1

eaτ ,

where eat is an |A|-dimensional vector with its at-th component equal to 1 and the rest
0. We write the coordinates of ξt as (ξt(a), a ∈ A). For each i ∈ [n], we write ξti :=
(ξti(ai), ai ∈ Ai) for the empirical distribution of the actions of player i. Thus ξti is the i-th
marginal distribution corresponding to ξt. Similarly, for i ∈ [n], ξt−i := (ξt−i(a−i|ai), a ∈ A)
are conditional distributions corresponding to ξt, where ξt−i(a−i|ai) is defined to be 0 when
ξt(a) = 0.

Let the distance between a vector x and a set X in the same Euclidean space be given
by

d(x,X) = inf
x′∈X
‖x− x′‖,

where ‖x‖ denotes the standard Euclidean norm of x. We say that a sequence (xt, t ≥ 1)
converges to a set X if the following holds:

lim
t→∞

d(xt, X) = 0.

Theorem 5.4.1. Assume that the assessment schemes and best reaction maps of the players
are such that if each player at each step plays the best reaction to her assessment then
each player is calibrated with respect to the sequence of action profiles of the other players.
Then the empirical joint distribution of action play ξt converges to the set of mediated CPT
correlated equilibria.

We prove this theorem in Appendix 5.E.

Remark 5.4.2. In the proof of Theorem 5.4.1, in fact, we prove the following stronger state-
ment: If player i’s assessments are calibrated with respect to the sequence of action profiles
of her opponents and she chooses the best reaction to her assessments at every step, then
the joint empirical distribution of action play converges to the set co (C(Γ, i)).

Now the question remains whether each player i can make assessments that are guaran-
teed to be calibrated no matter what strategies her opponents use. But this has nothing to
do whether the players have EUT or CPT preferences, and has been answered in the affirma-
tive by Theorem 3 in [50]. To be precise, at each step t, the player i predicts a distribution
µt−i ∈ ∆(A−i) by drawing one from a distribution over the space of distributions ∆(A−i),
determined by the history H t−1 (which we recall is given by the sequence of action profiles of
all the players over the steps up to t− 1) and a random seed U t

i , where the seeds (U t
i , t ≥ 1)

are i.i.d. and independent of the randomizations, if any, used by the other players. The rule
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by which this probability distribution is created as a function of H t−1 and U t
i is assumed to

be common knowledge to all the players. The assessment of player i at step t is then the re-
alization of this random choice. Lumping together the opponents of player i as Nature from
the point of view of this player, at each step t, Nature can be assumed to have access not
only to the history H t−1 but also to the realizations of the past seed values (U1

i , . . . , U
t−1
i ),

so Nature knows the assessments of the player i from steps 1 to t−1. Crucially, while Nature
now knows the distribution of the assessment of player i at time t, Nature does not know
the realization of this assessment till the next time step. In this scenario (referred to as the
adaptive adversary scenario in [49]), a strategy for Nature is comprised of Nature playing an
action at step t by drawing one randomly from a distribution on her set of actions (i.e. the
set A−i of action profiles of the opponents of player i) based on the information available to
her at this step, namely H t−1 and (U1

i , . . . , U
t−1
i ). The calibrated learning result proved in

[49] says that there exists such a randomized forecasting scheme on the part of player i such
that, no matter what randomized strategy Nature employs as above, we have∑

q∈Qt
|ρ(q, y, t)− q(y)|N(q, t)

t
→ 0, as t→∞, (5.4.1)

for all y ∈ A−i, almost surely (over the random seeds of player i and the randomization
in Nature’s strategy).17 Here, as in equation (5.2.1), Qt denotes the set of probability
distributions in ∆(A−i) actually predicted by player i up to step t.

Combining this result with Theorem 5.4.1 we have the following corollary, proved in
Appendix 5.F.

Corollary 5.4.3. There exist a randomized assessment scheme and a best reaction map for
each player such that, if each player predicts her assessments according to her scheme and
plays the best reaction to her assessments, then it is almost surely true (over the random-
ization in the randomized assessment schemes for the players) that each player is calibrated
with respect to the sequence of action profiles of her opponents, and hence the empirical
distribution of action play converges to the set of mediated CPT correlated equilibria.

We now show that, in a certain sense, the set D(Γ) is the smallest possible extension of
the set C(Γ) that guarantees convergence of the empirical distribution of action play to this
set, when all the players have assessment schemes and best reaction maps such that when
each player plays the best reaction to her assessment at each step the player is calibrated
with respect to the sequence of action profiles of her opponents. In particular, we claim the
following.

Proposition 5.4.4. For all games Γ such that the sets C(Γ, i, ai), i ∈ [n], ai ∈ Ai do not have
any isolated points, if µ ∈ D(Γ), then there exists an assessment scheme and a best reaction
map for each player such that if each player plays her best reaction to her assessment at
each step then each player’s assessments are calibrated with respect to the sequence of action
profiles of her opponents and the empirical distribution of action play converges to µ.
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See Appendix 5.G for a proof of this proposition. The following proposition (proved in
Appendix 5.H) shows under some technical conditions on the value function of each player
that, for generic games Γ, the sets C(Γ, i, ai), i ∈ [n], ai ∈ Ai, do not have any isolated points.
For any player i, we know that the value function vrii (x) is a strictly increasing continuous
function. Let the open interval Yi ⊂ R denote the range of vrii , and let λ∗i denote the push

forward measure of the Lebesgue measure on R with respect to the function vrii . Let λ̂i
denote the Lebesgue measure restricted to the interval Yi. We will require that the function
vrii is such that λ∗i � λ̂i (i.e., the measure λ∗i is absolutely continuous with respect to the

measure λ̂i). Since the function vrii is strictly increasing, its inverse function (vrii )−1 : Yi → R
is well defined. We have λ∗i � λ̂i if and only if the function (vrii )−1 is absolutely continuous.

Proposition 5.4.5. For any fixed CPT features ri, v
ri
i , w

±
i such that (vrii )−1 is absolutely

continuous, and a fixed action set Ai for each of the players i ∈ [n] (here, we assume n > 1
and |Ai| > 1,∀i ∈ [n]), the set of all games Γ for which there exists a player i ∈ [n] and
an action ai ∈ Ai such that the set C(Γ, i, ai) has an isolated point is a null set with respect
to the Lebesgue measure λ on the space of payoffs (xi(a), a ∈ A, i ∈ [n]), viewed as an
n× |A|-dimensional Euclidean space.

5.5 No-Regret Learning and CPT Correlated

Equilibrium

The randomized forecasting scheme proposed in [49] generates a probability distribution on
the space of assessments of player i. Player i draws her assessment from this distribution
and then plays her best reaction. This two step process gives rise to a randomized strategy
for player i at each step. Together with Remark 5.4.2 we get that, no matter what strategies
the opponents play, player i can guarantee that the empirical distribution of action play
converges almost surely to the set co (C(Γ, i)).

Under EUT, player i has a strategy that guarantees the almost sure convergence of the
empirical distribution of action play to the set C(Γ, i). This convergence is related to the
notion of no-regret learning. We now describe this approach. Suppose that, at step t,
player i imagines replacing action ai by action ãi, every time she played action ai in the
past. Assuming the actions of the other players did not change, her payoff would become
xi(ãi, a

τ
−i) for all τ ≤ t such that ati = ai, instead of xi(ai, a

τ
−i), while for all τ ≤ t such that

ati 6= ai it will continue to be xi(a
t). We define the resulting CPT regret of player i for having

played action ai instead of action ãi as

Kt
i (ai, ãi) := ξti(ai)Ri

[{(
ξt−i(a−i|ai), xi(ãi, a−i), xi(ai, a−i)

)}
a−i∈A−i

]
, (5.5.1)

where
Ri [{(νl, ẑl, zl)}ml=1] := Vi ({(νl, ẑl)}ml=1)− Vi ({(νl, zl)}ml=1) (5.5.2)
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is the difference in the CPT values of the lotteries {(νl, ẑl)}ml=1 and {(νl, zl)}ml=1. We associate
player i with CPT regrets {Kt

i (ai, ãi), ai, ãi ∈ Ai, ai 6= ãi)} at each step t. Under EUT, this
simplifies to

Kt
i (ai, ãi) =

1

t

∑
τ≤t:aτi =ai

[xi(ãi, a
τ
−i)− xi(aτ )], (5.5.3)

in agreement with the definition given in [60].
The following proposition (proved in Appendix 5.I) shows the connection between regrets

and correlated equilibrium.

Proposition 5.5.1. Let (at)t≥1 be a sequence of action profiles played by the players. Then
lim supt→∞K

t
i (ai, ãi) ≤ 0, for every i ∈ [n] and every ai, ãi ∈ Ai, ai 6= ãi, if and only if the

sequence of empirical distributions ξt converges to the set C(Γ) of CPT correlated equilibrium.

Player i is said to have a no-regret learning strategy if, irrespective of the strategies of
the other players, her regrets satisfy

P

(
lim sup
t→∞

Kt
i (ai, ãi) ≤ 0

)
= 1, for every ai, ãi ∈ Ai, ai 6= ãi.

This is equivalent to asking if the vector of regrets (Kt
i (ai, ãi), ai, ãi ∈ Ai, ai 6= ãi)), converges

to the nonpositive orthant almost surely. This is related to the concept of approachability,
the setup for which is as follows. Consider a repeated two player game, where now at step t,
if the row player and the column player play actions âtrow and âtcol respectively, then the row
player receives a vector payoff ~x(âtrow, â

t
col) instead of a scalar payoff. A subset S is said to

be approachable by the row player if she has a (randomized) strategy such that, no matter
how the column player plays, we have

lim
t→∞

d

(
1

t

t∑
τ=1

~x(âtrow, â
t
col), S

)
= 0, almost surely.

Blackwell’s approachability theorem [16] establishes that a convex closed set S is approach-
able if and only if every halfspace H containing S is approachable.

[60] cast the repeated game with stage game Γ in the above setup as a two player repeated
game where player i is the row player and the opponents together form the column player.
Let ~x(âi, â−i) be the vector payoff when player i plays action âi and the others play â−i, with
components given by

~xai,ãi(âi, â−i) =

{
xi(ãi, â−i)− xi(ai, â−i) if ai = âi,

0 otherwise,

for all ai, ãi ∈ Ai, ai 6= ãi. Under EUT, the average vector payoff of the row player corre-
sponds to the regret of player i (see equation (5.5.3)). Hart and Mas-Colell [60] show that
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the nonpositive orthant is approachable for the row player and hence player i has a no-regret
learning strategy. Under CPT, if the average vector payoffs were to match the regrets of
player i, then the vector payoffs for the row player at step t would need to depend on the
empirical distribution of action play up to step t. Indeed, the component corresponding to
the pair (ai, ãi) of the vector payoff for the row player at step t when player i plays action
âi and the others play â−i would need to match the difference

(t+ 1)Kt+1
i (ai, ãi)− tKt

i (ai, ãi).

This difference depends on the empirical distribution of action play up to step t, and hence
in general changes with t. This suggests that there might be difficulties in adapting the
approach in [60] to study no-regret learning strategies under CPT.

The following example shows that, under CPT, approachability of the nonpositive orthant
need not hold. In other words, it can happen under CPT that at least one of the players
does not have a no-regret learning strategy.

Example 5.5.2. Consider the 2-player repeated game from Example 5.2.1. Recall the fol-
lowing distributions on player 2’s actions: σodd = (0.5, 0, 0.5, 0), σeven = (0, 0.5, 0, 0.5) and
σunif = (0.25, 0.25, 0.25, 0.25). We observed that player 1’s action 1 is not a best response to
σodd and σeven and player 1’s action 0 is not a best response to σunif . For an integer T > 2,
consider the following strategy for player 2:

• play mixed strategy σodd at step 1,

• play mixed strategy σeven at step 2,

• play mixed strategy σodd at steps 2T k < t ≤ T k+1, for k ≥ 0,

• play mixed strategy σeven at steps T k+1 < t ≤ 2T k+1, for k ≥ 0.

The rest of this section will be devoted to proving that player 1 cannot have a no-regret
learning strategy. In particular, we will prove the following in Appendix 5.K:

Proposition 5.5.3. In the above example, for a suitable choice of T, δ̃ > 0 and ε̃ > 0, there
exists an integer k0 such that no matter what learning strategy player 1 uses, for all k ≥ k0

we have
P
(
K̄k > ε̃

)
> δ̃,

where
K̄k := [KTk+1

1 (1, 0)]+ + [K2Tk+1

1 (0, 1)]+ + [K2Tk+1

1 (1, 0)]+, (5.5.4)

using the notation [·]+ := max{·, 0}. Here, for actions ai and ãi of player 1, Kt
1(ai, ãi) are

the CPT regrets of player 1 at step t, as defined in equation (5.5.1).
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Consider the subsequence of steps (tlodd)l≥1 when player 2 played σodd. Let νlodd(a1, a2)
denote the empirical distribution over those times of the action profile (a1, a2), where a1 ∈
{0,1}, a2 ∈ {I,III}, i.e.

νlodd(a1, a2) :=
1

l

l∑
u=1

1{atuodd = (a1, a2)}. (5.5.5)

Similarly, consider the sequence of steps (tleven)l≥1 when player 2 played σeven. Let νleven(a1, a2)
denote the empirical distribution over those times of the action profile (a1, a2), where a1 ∈
{0,1}, a2 ∈ {II,IV}, i.e.

νleven(a1, a2) :=
1

l

l∑
u=1

1{atueven = (a1, a2)}. (5.5.6)

Lemma 5.5.4. For any δ > 0, there exists an integer lδ > 1, such that for all l ≥ lδ, we have

P
(
|νlodd(0,I))− νlodd(0,III)| < δ

)
> 1− δ, (5.5.7)

P
(
|νlodd(1,I))− νlodd(1,III)| < δ

)
> 1− δ, (5.5.8)

P
(
|νleven(0,II))− νleven(0,IV)| < δ

)
> 1− δ, (5.5.9)

P
(
|νleven(1,II))− νleven(1,IV)| < δ

)
> 1− δ. (5.5.10)

The proof of Lemma 5.5.4 can be found in Appendix 5.J.
For a vector q ∈ RS and ε > 0, let [q]ε :=

{
q̃ ∈ RS : |q̃(s)− q(s)| < ε,∀s ∈ S

}
denote

the set of all vectors strictly within ε of q in the sup norm. Select positive constants
ε3, c3, ε2, c2, ε1, c1 as follows:

• Let ε3 < 1 and c3 be such that for the indicated regret we have

R1 [{(µ(·), x1(1, ·), x1(0, ·))}] > c3, (5.5.11)

for all probability distributions µ ∈ [σunif ]ε3 (such constants exist because action 0 is
not a best response to σunif ). Let

δ3 := ε3/2. (5.5.12)

Note that δ3 < 1/2.

• Let ε2 < 1 and c2 be such that for the indicated regret we have

R1 [{(µ(·), x1(0, ·), x1(1, ·))}] > c2, (5.5.13)

for all probability distributions µ ∈ [σeven]ε2 (such constants exist because action 1 is
not a best response to σeven). Let

δ2 := ε2δ3/4. (5.5.14)

Note that δ2 < 1/8.
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• Let ε1 < 0.5 and c1 be such that for the indicated regret we have

R1 [{(µ(·), x1(0, ·), x1(1, ·))}] > c1, (5.5.15)

for all probability distributions µ ∈ [σodd]ε1 (such constants exist because action 1 is
not a best response to σodd). Let

δ1 := ε1δ2. (5.5.16)

Note that δ1 < 1/16.

Let T > 2/δ1 and k0 be such that

T k0+1 > max
{
t
lδ1
odd, t

lδ1
odd, t

lδ1
even, t

lδ1
even

}
, (5.5.17)

where lδ1 is such that the inequalities in Lemma 5.5.4 hold for δ = δ1.
For k ≥ 0, let fk+1

1 denote the fraction of times player 2 plays σeven up to step t = T k+1.
From the definition of the strategy of player 2, we have

fk+1
1 <

2T k

T k+1
=

2

T
. (5.5.18)

Similarly, for k ≥ 0, let fk+1
2 denote the fraction of times player 2 plays σeven up to step

t = 2T k+1. We have

fk+1
2 =

T k+1 + Tk+1−1
T−1

2T k+1
∈
[

1

2
,
1

2
+

1

T

]
, (5.5.19)

where the last inclusion follows from the assumption that T > 2. Note that

fk+1
2 = 1/2 + fk+1

1 /2.

Next, for k ≥ 0, let
fk+1

3 := ξT
k+1

1 (0), (5.5.20)

i.e. the fraction of times player 1 plays action 0 up to step t = T k+1, and let

fk+1
4 := 2ξ2Tk+1

1 (0)− ξTk+1

1 (0), (5.5.21)

i.e. the fraction of times player 1 plays action 0 among the steps from T k+1 + 1 to 2T k+1.
Note that fk+1

3 and fk+1
4 are random variables, in contrast with fk+1

1 and fk+1
2 .

We will establish the proof of Proposition 5.5.3 is stages through several lemmas. In the
next couple of paragraphs we first outline our proof strategy.

Depending on the strategy of player 1, we have two possibilities, either P (fk+1
3 < 1 −

δ2) > 1/4 or P (fk+1
3 < 1 − δ2) ≤ 1/4. In the former case, in Lemma 5.K.3, we show that

the empirical distribution ξT
k+1

(1, ·) is restricted to be of a certain type with significant
probability, conditioned on {fk+1

3 < 1− δ2}. The purpose of this lemma is to show that the
conditional distribution ξT

k+1

−1 (·|1) is close to σodd. We explain this in Lemma 5.K.4, and use
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it to establish that player 1 has a significant regret at step T k+1 for not having played action
0 whenever she played action 1 up to that step, i.e. KTk+1

1 (1,0) is considerable.
In the latter case, in Lemma 5.K.5, we show that the distribution ξ2Tk+1

is restricted to
be of a certain type with significant probability, conditioned on {fk+1

3 ≥ 1 − δ2}. We then
consider two cases depending on fk+1

4 , which was defined in equation (5.5.21). If fk+1
4 is less

than 1 − δ3, then, in Lemma 5.K.6, we show that the conditional distribution ξ2Tk+1

−1 (·|1) is
similar to σeven and hence player 1 suffers from a significant regret at step 2T k+1 for not
having played action 0 whenever she played action 1 up to that step, i.e. K2Tk+1

1 (1,0) is
considerable. If fk+1

4 is greater than or equal to 1− δ3, then, in Lemma 5.K.7, we show that
the conditional distribution ξ2Tk+1

−1 (·|0) is similar to σunif and hence player 1 suffers from a
significant regret at step 2T k+1 for not having played action 1 whenever she played action
0 up to that step, i.e. K2Tk+1

1 (0,1) is considerable. Finally, we can combine these results to
show that player 1 faces some regret either at step T k+1 or 2T k+1 for all k ≥ k0, and hence
the regret vector of player 1 never converges to the nonpositive orthant.

5.6 Summary

We studied how some of the results from the theory of learning in games are affected when
the players in the game have cumulative prospect theoretic preferences. For example, we saw
that the notion of mediated CPT correlated equilibrium arising from mediated games is more
appropriate than the notion of CPT correlated equilibrium while studying the convergence of
the empirical distribution of action play, in particular for calibrated learning schemes. One
can ask similar questions with respect to other learning schemes such as follow the perturbed
leader [53], fictitious play [22], etc. We leave this for future work. In general, it seems that
the results from the theory of learning in games continue to hold under CPT with slight
modifications.

We also observed that the revelation principle does not hold under CPT. In the next
chapter, we will see the implications of this to mechanism design.

Appendix

5.A Notions of equilibrium

In this appendix, we explore the relationship between the different notions of equilibrium for
a finite n-person normal form game Γ with CPT players, organizing our observations into a
sequence of remarks. For convenience, we first briefly recall the four notions of equilibrium
that played a role in the discussion in this chapter. A CPT correlated equilibrium of the
game Γ, see Definition 3.2.3, is an element of ∆(A). A CPT Nash equilibrium of the game Γ,
see Definition 3.2.4, is an element of ∆∗(A). Given a signal system (Bi)i∈[n] and a mediator
distribution ψ ∈ ∆(B), where B :=

∏n
i=1Bi, a mediated CPT Nash equilibrium of the
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mediated game Γ̃ := (Γ, (Bi)i∈[n]) with respect to the mediator distribution ψ, see Definition
5.3.1, is a randomized strategy profile σ = (σ1, . . . , σn), where σi : Bi → ∆(Ai). A mediated
CPT correlated equilibrium of the game Γ, see Definition 5.3.2, is an element of ∆(A).

Remark 5.A.1. Let µ :=
∏n

i=1 µi ∈ ∆∗(A) be a CPT Nash equilibrium of the game Γ.
Then, for every signal system (Bi)i∈[n] and mediator distribution ψ ∈ ∆(B), the randomized
strategy profile σ = (σ1, . . . , σn), where σi : Bi → ∆(Ai) is the constant function given
by σi(bi) = µi for all bi ∈ Bi, is a mediated CPT Nash equilibrium of the mediated game
Γ̃ := (Γ, (Bi)i∈[n]) with respect to the mediator distribution ψ. Conversely, if σ is defined in
terms of µ ∈ ∆∗(A) as above and σ is a mediated CPT Nash equilibrium of the mediated
game Γ̃ := (Γ, (Bi)i∈[n]) with respect to the mediator distribution ψ, then µ is a CPT Nash
equilibrium of the game Γ.

To see this, note that for the strategy profile σ, for all bi ∈ Bi, we have µ̃−i(a−i|bi) =∏
j 6=i µj(aj) for all a−i ∈ A−i, where µ̃−i(a−i|bi) is as defined in equation (5.3.2). Hence

σi ∈ BRi(ψ, σ), where BRi(ψ, σ) is as defined in equation (5.3.1), iff µi ∈ BRi(µ), where
BRi(µ) is as defined in equation (3.2.4). This establishes the claim.

Remark 5.A.2. Every CPT correlated equilibrium of the game Γ is a mediated CPT corre-
lated equilibrium of the game Γ. Namely C(Γ) ⊂ D(Γ).

To see this, let µ ∈ C(Γ). Consider the signal system (Ai)i∈[n] (i.e. take Bi = Ai for
all i ∈ [n]) with the mediator distribution µ, and consider the deterministic strategy profile
σ = (σ1, . . . , σn) given, with an abuse of notation, by σi(bi) = 1{bi = ai}. Note that η(ψ, σ),
as defined in equation (5.3.3), equals µ. Since µ ∈ C(Γ), it verifies the condition in equation
(3.2.3), which then implies that σi ∈ BRi(ψ, σ), where ψ = µ and BRi(ψ, σ) is as defined in
equation (5.3.1). This implies that µ ∈ D(Γ).

Remark 5.A.3. Suppose the mediator distribution ψ is of product form, which we write as
ψ ∈ ∆∗(B). Let σ = (σ1, . . . , σn) be a mediated CPT Nash equilibrium of the mediated game
Γ̃ := (Γ, (Bi)i∈[n]) with respect to the mediator distribution ψ. Let µ := η(ψ, σ), as defined
in equation (5.3.3). Note that we will have µ ∈ ∆∗(A). A simple calculation shows that
µ̃i(a−i|bi) =

∏
j 6=i µj(aj) for all i ∈ [n], bi ∈ Bi, and a−i ∈ A−i, where µ̃−i(a−i|bi) is as defined

in equation (5.3.2). Thus σi ∈ BRi(ψ, σ) iff for all bi ∈ supp(ψi) we have σi(bi) ∈ BRi(µ).
This, in turn, is equivalent to µi ∈ BRi(µ). This characterizes the mediated CPT Nash
equilibria of a mediated game Γ̃ := (Γ, (Bi)i∈[n]) with respect to product form mediator
distributions ψ ∈ ∆∗(B) in terms the CPT Nash equilibria of the game Γ.

Remark 5.A.4. In [101], the authors showed that for any finite n-person game the Nash
equilibria all lie on the boundary of the set of correlated equilibria. We extended this result
to the CPT setting and showed that all the CPT Nash equilibria lie on the boundary of the
set of CPT correlated equilibria in Chapter 3. It is natural to ask whether the CPT Nash
equilibria in fact lie on the boundary of the set of all mediated CPT correlated equilibria.
We know this is true for any 2 × 2 game Γ, since C(Γ) = D(Γ) for such games. However,
it is not known if this property holds in general for all finite n-person CPT games, and we
leave this for future work.
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5.B Beyond Fixed Reference Points

CPT differs from EUT in several ways:

(i) The reference point r divides the outcomes into two domains – gains (x > r) and losses
(x < r) – and governs the shape of the value function vr. Recall that vr(r) = 0, and
typically vr(x) is convex in the losses frame and concave in the gains frame, and it is
steeper in the losses frame than in the gains frame.

(ii) The probability weighting functions w± govern the probabilistic sensitivity of an indi-
vidual for gains and losses, respectively.

(iii) The cumulative functional form of the CPT value function based on the reference point,
the value function and the probability weighting functions governs the CPT preferences.

Throughout this chapter we have assumed that the reference points ri are exogenous and
hence fixed, for all players i. In Example 5.2.1 and Example 5.5.2, the reference points of the
players were set to be zero, all the outcomes were non-negative (hence, in the gains domain),
and the value functions were set to be the identity functions. Thus, the results from these
two examples are purely an effect of the probability weighting functions and the cumulative
functional form of the CPT values (equation (1.3.9)). The two results, namely:

1. the lack of convergence of the empirical distribution of action play to the set of CPT
correlated equilibria when each player’s assessments are calibrated with respect to the
sequence of action profiles of the other players and she evaluates her best reaction in
accordance to CPT preferences, and

2. the existence of instances of repeated games where a player does not have a no-regret
learning strategy under CPT preferences,

carry over to other restrictive versions of CPT such as rank-dependent utility theory (RDU)
[114] and Yaari’s dual theory [135].

Although our framework with exogenous reference points is rich enough to capture loss
aversion, diminishing sensitivity to returns, and the cumulative functional form of the CPT
value function that depends on the reference point and treats gains and losses separately, it
is interesting to consider reference points that are determined endogenously. For instance, in
the definition of CPT Nash equilibrium and CPT correlated equilibrium given in Chapter 3,
we allow the reference point ri to depend on the equilibrium distribution µ ∈ ∆(A) given
by a function r̂i : ∆(A)→ R, for each player i. (For other works with endogenous reference
points, see [121] and [78].)

In general, there is no consensus in the literature on how the players update their reference
points at each step of a repeated game (see, for example, [13, 82, 81, 77, 57]). Taking the
viewpoint that the reference point indicates the expectations of the player for the decision-
making problem at hand, we assume that the reference point of player i at step t is determined
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by her assessment µt−i ∈ ∆(A−i) over the actions of the other players. Let this be given by
a function

r̃i : ∆(A−i)→ R,

for each player i (we assume that r̃i is same across all the steps). Let V ri
i (Li) denote the

CPT value evaluated by player i for lottery Li when her reference point is ri. At step t,
if player i’s assessment of the actions of the other players is µt−i, then she evaluates the

lottery corresponding to each of her actions using the CPT value function V
r̃i(µ

t
−i)

i based on

the reference point r̃i(µ
t
−i) and the value function v

r̃i(µ
t
−i)

i . As before, we assume that she
prefers to play an action that gives her the maximum CPT value (now incorporating the
updated reference point r̃i(µ

t
−i)). Accordingly, for any assessment µ−i ∈ ∆(A−i), we assume

that player i has a corresponding action that gives her the maximum CPT value (with any
arbitrary but fixed tie breaking rule if multiple actions correspond to the maximum CPT
value). We call this her best reaction for her assessment µ−i.

We now consider a repeated game where each player’s assessments are calibrated with
respect to the sequence of action profiles of the other players and she evaluates her best
reaction in accordance with CPT preferences corresponding to the reference point determined
by her assessment at each step. To study the convergence of the empirical distribution of
play, we need to modify the definitions of CPT correlated equilibrium and mediated CPT
correlated equilibrium to account for the reference points based on functions r̃i, for all players
i.

A joint probability distribution µ ∈ ∆(A) will be called a CPT correlated equilibrium
(with reference points r̃i) of a game Γ if it satisfies the following inequalities for all i, and
for all ai, ãi ∈ Ai, such that µi(ai) > 0:

V
r̃i(µ−i(·|ai))
i (Li(µ−i(a−i|ai), ai)) ≥ V

r̃i(µ−i(·|ai))
i (Li(µ−i(a−i|ai), ãi)).

Let C̃(Γ) denote the set of all CPT correlated equilibria (with reference points given by
r̃i : ∆(A−i)→ R). Notice that this definition of CPT correlated equilibrium is different from
the definition given in Chapter 3, where the reference points are determined by the functions
r̂i : ∆(A) → R. These two definitions coincide when the reference points are fixed, i.e. r̃i
and r̂i are constant functions.

We can also define the notion of CPT Nash equilibrium (with reference points r̃i) as
follows: For any mixed strategy profile µ ∈ ∆∗(A), where ∆∗(A) is defined in equation (3.2.2),
the reference point for each player i is given by r̃i(µ−i), where µ−i =

∏
j 6=i µj. If player i

decides to deviate and play a mixed strategy µ̃i while the rest of the players continue to play
µ−i, then define the average CPT value for player i by

Ãi(µ̃i, µ−i) :=
∑
ai∈Ai

µ̃i(ai)V
r̃i(µ−i)
i (Li(µ−i, ai)).
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The best response set of player i to a mixed strategy profile µ ∈ ∆∗(A) can now be defined
as

B̃Ri(µ) :=
{
µ∗i ∈ ∆(Ai)|∀µ̃i ∈ ∆(Ai), Ãi(µ

∗
i , µ−i) ≥ Ãi(µ̃i, µ−i)

}
=

{
µ∗i ∈ ∆(Ai)|supp(µ∗i ) ⊂ arg max

ai∈Ai
V
r̃i(µ−i)
i (Li(µ−i, ai))

}
.

A mixed strategy profile µ∗ ∈ ∆∗(A) is a CPT Nash equilibrium (with reference points r̃i)
of Γ iff

µ∗i ∈ B̃Ri(µ
∗) for all i.

We observe that CPT Nash equilibrium (with reference points r̃i) as defined here is a
special case of CPT Nash equilibrium as defined in [74]. To see this, notice that, for any
mixed strategy profile µ ∈ ∆∗(A), the reference point r̂i is a function of the mixed strate-
gies µi,∀i ∈ [n], whereas r̃i is a function of the mixed strategies of the opponents, namely,
µj,∀j 6= i. Thus, when we restrict our attention to mixed strategy profiles µ ∈ ∆∗(A), the
reference points r̃i are a special case of the reference points r̂i. From this observation and the
existence of CPT Nash equilibrium (with reference points r̂i) established in [[]Theorem 1]ke-
skin2016equilibrium, we conclude that, for any game Γ, there exists a CPT Nash equilibrium
(with reference points r̃i).

Further, it can be shown that the set of all CPT Nash equilibria of a game Γ with CPT
players with reference points given by r̃i : ∆(A−i) → R is equal to C̃(Γ) ∩ ∆∗(A). The
proof of this is identical, with the obvious modifications, to the one given in Proposition 1 of
[74] for the notion of CPT correlated equilibrium considered there, i.e. where the reference
points are determined by the functions r̂i : ∆(A) → R. Thus, we get that the set C̃(Γ) is
non-empty.

In a mediated game, the best response set of player i as defined in Equation 3.2.4, can be
modified as follows: For a mediated game Γ̃ = (Γ, (Bi)i∈[n]), the best response set of player i
(with reference points r̃i) to a randomized strategy profile σ and a mediator distribution ψ
is defined as

B̃Ri(ψ, σ) :=

{
σ∗i : Bi → ∆(Ai)

∣∣∣∣ for all bi ∈ supp(ψi),

supp(σ∗i (bi)) ⊂ arg max
ai∈Ai

V
r̃i(µ̃−i(a−i|bi))
i

(
{µ̃−i(a−i|bi), xi(ai, a−i)}a−i∈A−i

)}
,

where µ̃−i(a−i|bi) is as defined in equation (5.3.2), namely,

µ̃−i(a−i|bi) =
∑

b−i∈B−i

ψ−i(b−i|bi)
∏

j∈[n]\i

σj(bj)(aj),

A randomized strategy profile σ is said to be a mediated CPT Nash equilibrium (with ref-
erence points r̃i) of a mediated game Γ̃ = (Γ, (Bi)i∈[n]) with respect to a mediator distribution
ψ ∈ ∆(B) if

σi ∈ B̃Ri(ψ, σ) for all i ∈ [n].
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A probability distribution µ ∈ ∆(A) is said to be a mediated CPT correlated equilibrium
(with reference points r̃i) of a game Γ if there exist a signal system (Bi)i∈[n], a mediator
distribution ψ ∈ ∆(B), and a mediated CPT Nash equilibrium (with endogenous reference
points r̃i) σ such that µ = η(ψ, σ). Let D̃(Γ) denote the set of all such equilibria. It can be
seen that D̃(Γ) contains C̃(Γ), by considering the special case where the signal sets Bi are
equal to the respective action sets Ai, the mediator distribution is in C̃(Γ), and the strategy
of each player is to play the action suggested by the mediator. Hence D̃(Γ) is nonempty.

As before, we can define for any i, ai, ãi ∈ Ai, the set C̃(Γ, i, ai, ãi) of all probability
vectors π−i ∈ ∆(A−i) such that

V
r̃i(π−i)
i (Li(π−i, ai)) ≥ V

r̃i(π−i)
i (Li(π−i, ãi)).

Let
C̃(Γ, i, ai) := ∩ãi∈AiC̃(Γ, i, ai, ãi),

and
C̃(Γ, i) := {µ ∈ ∆(A)|µ−i(·|ai) ∈ C̃(Γ, i, ai),∀ai ∈ supp (µi)}.

Similarly to Lemma 5.3.3, we can show that

C̃(Γ) = ∩i∈[n]C̃(Γ, i),

and

D̃(Γ) = ∩i∈[n] co(C̃(Γ, i)).

Lemma 5.3.3 and its proof extends verbatim if we replace C(Γ, i, ai), C(Γ, i), and D(Γ) by
C̃(Γ, i, ai), C̃(Γ, i), and D̃(Γ), respectively.

Similarly to Theorem 5.4.1, we can show that in a repeated game when each player’s
assessments are calibrated with respect to the sequence of action profiles of the other players
and at each step she plays the best reaction to her assessment (the best reaction map now
depends on the function r̃i), then the empirical distribution of action play converges to
the set D̃(Γ). The proof of Theorem 5.4.1 extends verbatim to this setting if we replace
C(Γ, i, ai), C(Γ, i), and D(Γ) by C̃(Γ, i, ai), C̃(Γ, i), and D̃(Γ), respectively, and interpret the
set Ri(ai) ⊂ ∆(A−i) of all joint distributions µ−i for which action ai is player i’s best reaction
as per the CPT preferences of player i with endogenous reference point r̃i.

Along similar lines, we can extend Proposition 5.4.4 and its proof by replacing C(Γ, i, ai),
C(Γ, i), and D(Γ) by C̃(Γ, i, ai), C̃(Γ, i), and D̃(Γ), respectively. The analog of Proposi-
tion 5.4.5, however, remains aloof, and we leave it for future work.

5.C Generalized Signal Spaces

We now allow the signal set Bi to be an arbitrary Polish space (a complete separable metric
space) for all i ∈ [n]. The product spaces B :=

∏
i∈[n] Bi and B−i :=

∏
j 6=iBj, for all i ∈ [n],
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are then also Polish spaces because a countable product of Polish spaces is a Polish space. Let
Bi,B and B−i denote the σ-algebra of Borel sets on the spaces Bi, B and B−i respectively.
Let the mediator be characterized by a probability distribution ψ on (B,B). Let ψi denote
the marginal probability distribution on Bi induced by ψ. Let ψ−i : Bi ×B−i → [0, 1] be a
function which satisfies:

1. ψ−i(bi, ·) is a probability distribution on (B−i,B−i), for all bi ∈ Bi,

2. ψ−i(·, X) is a measurable function on (Bi,Bi), for all X ∈ B−i,

3. for all X ∈ B−i and Y ∈ Bi,

ψ(Y ×X) =

∫
Y

ψ−i(y,X)ψi(dy). (5.C.1)

The function ψ−i is called a regular conditional probability. For a proof of its existence, see
[29, Theorem 1] (this theorem needs to be used in the framework of [29, Example 2]).

Let a randomized strategy for any player i be given by a measurable function σi : Bi →
∆(Ai) with respect to the Borel σ-algebra on ∆(Ai), and let σ = (σ1, . . . , σn) denote the
randomized strategy profile as before. Let σ−i :=

∏
j 6=i σj : B−i → ∆(A−i). Let ν−i(bi) be

the push forward probability distribution of ψ−i(bi, ·) with respect to the function σ−i, and
let

µ̃−i(a−i|bi) :=

∫
∆(A−i)

p(a−i)ν−i(bi)(dp). (5.C.2)

Note that µ̃−i(·|bi) ∈ ∆(A−i). Let ν(ψ, σ) be the push forward probability distribution of ψ
with respect to the function σ :=

∏
i∈[n] σi : B → ∆(A), and let

η(ψ, σ)(a) :=

∫
∆(A)

p(a)ν(ψ, σ)(dp). (5.C.3)

Note that η(ψ, σ) ∈ ∆(A).
Let the best response set of player i to a randomized strategy profile σ and a mediator

distribution ψ be given by

BRi(ψ, σ) :=

{
σ∗i : Bi → ∆(Ai) a measurable function

∣∣∣∣ for all bi ∈ supp(ψi),

supp(σ∗i (bi)) ⊂ arg max
ai∈Ai

Vi

(
{µ̃−i(a−i|bi), xi(ai, a−i)}a−i∈A−i

)}
, (5.C.4)

where supp(ψi) is the smallest closed set Y ⊂ Bi with ψi(Bi\Y ) = 0.
We can now define, exactly as in Definition 5.3.1, the notion of a mediated CPT Nash

equilibrium for the mediated game Γ̃ := (Γ, (Bi)i∈[n]) with respect to a probability distribu-
tion ψ on (B,B), where now (Bi,Bi)i∈[n] are arbitrary Polish spaces. Let Σ∗(Γ, (Bi)i∈[n], ψ)
denote the set of such mediated CPT Nash equilibria. We can also define, exactly as in
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Definition 5.3.2, the notion of a mediated CPT correlated equilibrium (which is a proba-
bility distribution in ∆(A), as before) in this extended setting where the signal spaces are
allowed to be arbitrary Polish spaces. Let D∗(Γ) denote the set of mediated CPT correlated
equilibria in this extended sense. Let C(Γ, i, ai) and C(Γ, i) be defined as before.

Lemma 5.C.1. For any game Γ, we have

D∗(Γ) ⊂ ∩i∈[n] co(C(Γ, i)).

Proof. Let µ ∈ D∗(Γ).Then there exists a signal system comprised of Polish spaces (Bi,Bi)i∈[n],
a mediator distribution ψ which is a probability distribution on (B,B), and a mediated CPT
Nash equilibrium σ ∈ Σ∗(Γ, (Bi)i∈[n], ψ) such that µ = η(ψ, σ). Fix i ∈ [n]. For bi ∈ supp(ψi)
and ai ∈ supp (σi(bi)), we have µ̃−i(·|bi) ∈ C(Γ, i, ai), from equations (5.C.4) and (5.3.4).
Let ai be such that µi(ai) > 0. We have

µ−i(·|ai) =

∫
Bi

σi(bi)(ai)

µi(ai)
µ̃−i(·|bi)ψi(dbi).

Also, since σ is the product function
∏

i∈[n] σi and µ is the push forward probability distri-
bution of ψ with respect to σ, we have that µi is the push forward probability distribution
of ψi with respect to the function σi, i.e.

µi(ai) =

∫
Bi

σi(bi)(ai)ψi(dbi).

Since the set co(C(Γ, i, ai)) is closed, we have µ−i(·|ai) ∈ co (C(Γ, i, ai)). Since this holds for
all i ∈ [n], we have µ = η(ψ, σ) ∈ ∩i∈[n] co(C(Γ, i)). This completes the proof.

Since a finite set Bi is a Polish space with respect to the discrete topology, we have
D(Γ) ⊂ D∗(Γ). From the above lemma and Lemma 5.3.3 we have D∗(Γ) = D(Γ). Hence,
it is enough to restrict our attention to signals Bi that are finite sets. In fact, it suffices to
restrict attention to signal sets Bi of size at most |A| (see Remark 5.3.5).

5.D Proof of Lemma 5.3.3

Fix i ∈ [n]. Note that, since the sets C(Γ, i) and C(Γ, i, ai) for each ai ∈ Ai are closed, the
convex hulls of these sets are closed. Suppose µ = λµ1 + (1 − λ)µ2 where µ1, µ2 ∈ C(Γ, i)
and 0 < λ < 1. If ai ∈ supp(µi), then one of the following three cases holds:

Case 1 [ai ∈ supp(µ1
i ), ai ∈ supp(µ2

i )]. Then, µ1
−i(·|ai), µ2

−i(·|ai) ∈ C(Γ, i, ai) and we
have,

µ−i(·|ai) =
λµ1

i (ai)µ
1
−i(·|ai) + (1− λ)µ2

i (ai)µ
2
−i(·|ai)

λµ1
i (ai) + (1− λ)µ2

i (ai)
.

Let θ = (λµ1
i (ai))/(λµ

1
i (ai) + (1 − λ)µ2

i (ai)). Then µ−i(·|ai) = θµ1
−i(·|ai) + (1 − θ)µ2

−i(·|ai)
and hence µ−i(·|ai) ∈ co (C(Γ, i, ai)).
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Case 2 [ai ∈ supp(µ1
i ), ai /∈ supp(µ2

i )] Here µ−i(·|ai) = µ1
−i(·|a1). Hence µ−i(·|ai) ∈

C(Γ, i, ai).
Case 3 [ai /∈ supp(µ1

i ), ai ∈ supp(µ2
i )] This can be handled similarly to case 2.

Also, the above argument can be easily extended to when µ is a convex combination of
any finite number of distributions. Since all our sets are compact subsets of finite dimensional
Euclidean spaces, Caratheodory’s theorem applies, and hence we need to consider only finite
convex combinations.

This shows that the set on the left hand side is contained in the set on the right hand
side of the equation in (i) for the given fixed i ∈ [n].

To prove the inclusion in the other direction, fix i ∈ [n] and let µ belong to the set on the
right hand side of the equation in (i). If ai ∈ supp(µi), then µ−i(·|ai) is a linear combination
of |A−i| joint distributions (allowing repetitions), call them

ζ1
−i,ai , . . . , ζ

mi
−i,ai , . . . , ζ

|A−i|
−i,ai ∈ C(Γ, i, ai),

with coefficients θmii,ai , 1 ≤ mi ≤ |A−i| respectively (where 0 < θmii,ai ≤ 1 for all 1 ≤ mi ≤ |A−i|
can be ensured because we allow repetitions). For each ζmi−i,ai , construct a distribution µmii,ai ∈
∆(A) by µmii,ai(ãi, ã−i) = 1{ãi = ai}ζmi−i,ai(ã−i). Then µmii,ai ∈ C(Γ, i). Let λmii,ai := µi(ai)θ

mi
i,ai

,
for all i,mi, ai such that µi(ai) > 0. One can now check that µ =

∑
mi,ai

λmii,aiµ
mi
i,ai

for the
given fixed i ∈ [n]. Thus µ ∈ co (C(Γ, i)).

Statement (ii) follows directly from the definition of CPT correlated equilibrium.
For statement (iii), let µ ∈ ∆(A) be such that µ ∈ co(C(Γ, i)) for all i. For any ai such

that µi(ai) > 0, by (i), we have, µ−i(·|ai) ∈ co (C(Γ, i, ai)). As above, let µ−i(·|ai) be a
convex combination of |A−i| joint distributions (allowing repetitions), call them

ζ1
−i,ai , . . . , ζ

mi
−i,ai , . . . , ζ

|A−i|
−i,ai ∈ C(Γ, i, ai),

with coefficients θmii,ai , 1 ≤ mi ≤ |A−i| respectively (where 0 < θmii,ai ≤ 1 for all 1 ≤ mi ≤ |A−i|
can be ensured because we allow repetitions). For all i, let Bi := Ai ×Mi, where Mi :=
{1, . . . , |A−i|}. Let the mediator distribution be given by

ψ ((a1,m1), . . . , (an,mn)) =


µ(a)

∏n
i=1{θmii,aiζ

mi
−i,ai

(a−i)}∑
m̃i,i∈[n]

n∏
i=1

{
θ
m̃i
i,ai

ζ
m̃i
−i,ai

(a−i)
} , if µ(a) > 0,

0, otherwise.

(5.D.1)

It is useful to note that ∑
m̃i,i∈[n]

n∏
i=1

{
θm̃ii,aiζ

m̃i
−i,ai(a−i)

}
=

n∏
i=1

µ−i(a−i|ai), (5.D.2)

and that, for every i ∈ [n],

ψi((ai,mi)) :=
∑

(aj ,mj),j∈[n]\i

ψ ((a1,m1), . . . , (an,mn)) = µi(ai)θ
mi
i,ai
. (5.D.3)
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Let the strategy for each player i be

σi(ai,mi)(ãi) =

{
1, if ãi = ai,

0, otherwise.
(5.D.4)

From equations (5.3.3), (5.D.1) and (5.D.4) we have

η(ψ, σ)(a) =
∑

(ãi,mi)∈Bi,i∈[n]

ψ ((ã1,m1), . . . , (ãn,mn))
∏
i∈[n]

σi ((ãi,mi)) (ai)

=
∑

mi,i∈[n]

ψ ((a1,m1), . . . , (an,mn))

= µ(a)
∑

mi,i∈[n]

n∏
i=1

{
θmii,aiζ

mi
−i,ai(a−i)

}
∑

m̃i,i∈[n]

n∏
i=1

{
θm̃ii,aiζ

m̃i
−i,ai(a−i)

}
= µ(a).

From equations (5.3.2), (5.D.1), (5.D.2), (5.D.3) and (5.D.4) we have

µ̃−i(a−i|(ai,mi)) =
∑

(ãj ,mj)∈Bj ,j∈[n]\i

ψ−i(((ãj,mj), j ∈ [n]\i) |(ai,mi))

×
∏

j∈[n]\i

σj((ãj,mj))(aj)

=
∑

mj ,j∈[n]\i

ψ−i(((aj,mj), j ∈ [n]\i) |(ai,mi))

=

∑
mj ,j∈[n]\i ψ ((a1,m1), . . . , (an,mn))

ψi((ai,mi))

= ζmi−i,ai(a−i).

Thus we have µ̃−i(·|(ai,mi)) ∈ C(Γ, i, ai). Hence µ ∈ D(Γ). We have established that
∩i∈N co(C(Γ, i)) ⊂ D(Γ).

For the other direction of statement (iii), let µ ∈ D(Γ). Then there exists a signal system
(Bi)i∈[n], a mediator distribution ψ ∈ ∆(B), and a mediated CPT Nash equilibrium σ ∈
Σ(Γ, (Bi)i∈[n], ψ) such that µ = η(ψ, σ). Fix i ∈ [n]. For bi ∈ supp(ψi) and ai ∈ supp (σi(bi)),
we have µ̃−i(·|bi) ∈ C(Γ, i, ai), from equations (5.3.1) and (5.3.4). But

µ−i(·|ai) =
∑

bi∈supp(ψi)

ψi(bi)σi(bi)(ai)

µi(ai)
µ̃−i(·|bi).

Hence µ−i(·|ai) ∈ co (C(Γ, i, ai)). Since this holds for all i ∈ [n], we have µ = η(ψ, σ) ∈
∩i∈[n] co(C(Γ, i)). This completes the proof.



CHAPTER 5. MEDIATED CORRELATED EQUILIBRIUM 121

5.E Proof of Theorem 5.4.1

Consider the sequence of empirical distributions ξt. Since the simplex ∆(A) of all joint
distributions over action profiles is a compact set, every such sequence has a convergent
subsequence. Thus, it is enough to show that the limit of any convergent subsequence of ξt

is in D(Γ). Let ξtk be such a convergent subsequence and denote its limit by ξ̂.
Let ai be an action of player i such that ξ̂i(ai) > 0. Let Ri(ai) ⊂ ∆(A−i) be the set of all

joint distributions µ−i for which action ai is player i’s best reaction. Note that Ri(ai) forms
a partition of the simplex ∆(A−i). Let µt−i ∈ ∆(A−i) denote player i’s assessment at step t,

and let Qt
i denote the set of assessments made by her up to step t. Since ξ̂i(ai) > 0, there

exists an integer k0 ≥ 1 and an ε > 0 such that, for all k ≥ k0, we have ξtki (ai) > ε. For all
k ≥ k0, we have

ξtk−i(a−i|ai)ξ
tk
i (ai)tk =

∑
τ≤tk

s.t. µτ−i∈Ri(ai)

1{aτ−i = a−i}

=
∑

q∈Ri(ai)∩Q
tk
i

∑
τ≤tk

s.t. µτ−i=q

1{aτ−i = a−i}

=
∑

q∈Ri(ai)∩Q
tk
i

ρ(q, a−i, tk)N(q, tk)

=
∑

q∈Ri(ai)∩Q
tk
i

q(a−i)N(q, tk)

+
∑

q∈Ri(ai)∩Q
tk
i

(ρ(q, a−i, tk)− q(a−i))N(q, tk).

Using

ξtki (ai)tk =
∑

q∈Ri(ai)∩Q
tk
i

N(q, tk),

we get, for all k ≥ k0,

ξtk−i(a−i|ai) =

∑
q∈Ri(ai)∩Q

tk
i
q(a−i)N(q, tk)∑

q∈Ri(ai)∩Q
tk
i
N(q, tk)

+
1

ξtki (ai)

∑
q∈Ri(ai)∩Q

tk
i

(ρ(q, a−i, tk)− q(a−i))
N(q, tk)

tk
.

Since player i is calibrated with respect to the sequence of action profiles of her opponents,
the second term in the last expression goes to zero as k → ∞ (here, we use the fact that
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ξtki (ai) > ε > 0 for all k ≥ k0). Further, we have, for all k ≥ 1,∑
q∈Ri(ai)∩Q

tk
i
qN(q, tk)∑

q∈Ri(ai)∩Q
tk
i
N(q, tk)

∈ co (Ri(ai)) .

Taking the limit as k → ∞ we have, ξ̂−i(·|ai) ∈ c̄o (Ri(ai)), where c̄o(·) denotes the closed
convex hull. Note that Ri(ai) ⊂ C(Γ, i, ai) and C(Γ, i, ai) is closed. Thus ξ̂−i(·|ai) ∈
co (C(Γ, i, ai)) for all ai ∈ Ai such that ξ̂i(ai) > 0. By Lemma 5.3.3, we have ξ̂ ∈ co (C(Γ, i)),
and since this is true for all players i, we have ξ̂ ∈ D(Γ).

5.F Proof of Corollary 5.4.3

Let player i be the forecaster and let all the opponents together form Nature from the point
of view of the player. Thus Nature’s action set is A−i. By the [49] result, there exists a
randomized assessment scheme for player i such that, whatever the randomized strategy
that Nature uses, the sequence of assessments of player i is calibrated almost surely with
respect to the sequence of actions of Nature. Let player i use such a randomized scheme to
determine her assessments. From Remark 5.4.2, it follows that the empirical distribution of
play converges to the set co (C(Γ, i)) almost surely. If each player follows such a strategy,
then we get almost sure convergence to D(Γ).

5.G Proof of Proposition 5.4.4

Since µ ∈ D(Γ), as noted in Remark 5.3.5, there exists a signal system (Bi)i∈[n] where Bi

can be identified with Ai × A−i, a mediator distribution ψ ∈ ∆(B), and a mediated CPT
Nash equilibrium σ ∈ Σ(Γ, (Bi)i∈[n], ψ) such that µ = η(ψ, σ), where σ is a pure strategy
profile. With an abuse of notation, let σi(bi) denote the unique element in the support of
σi(bi). Let (b1, b2, . . . ) be a sequence of signal profiles such that the empirical distribution
of these signal profiles converges to ψ and such that ψ(bt) > 0 for all t ≥ 1. At step t, let
player i predict her assessment µ̃−i(·|bi) (as defined in equation (5.3.2)) and play σi(bi). The
sequence of assessments of each player is calibrated with respect to the sequence of action
profiles of her opponents. To see this, fix a player i, let q ∈ ∆(A−i) be one of the assessments
made by her, and let G = {bi ∈ Bi|µ̃−i(·|bi) = q}. Let tk(bi) denote the step when player
i receives signal bi for the kth time. By construction, the empirical average of the action
profiles of the opponents of player i over the steps (tk(bi))k≥1 converges to µ̃−i(·|bi). As a
result, the empirical average of the action profiles of the opponents of player i over the steps
when player i receives a signal bi ∈ G converges to q. Since this holds for any assessment
q made by player i, her assessments are calibrated. Further, by construction, the empirical
distribution of action play converges to µ.

If µ̃−i(·|bi) = µ̃−i(·|b̃i) implies σi(bi) = σi(b̃i), for all bi, b̃i ∈ Bi, i ∈ [n], then we can
define σi(bi) as the best reaction to the assessment µ̃−i(·|bi) and the claim is proved. If
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there exist bi, b̃i such that µ̃−i(·|bi) = µ̃−i(·|b̃i) but σi(bi) 6= σi(b̃i), then there is a problem
in defining the best reaction to the assessment µ̃−i(·|bi). We now describe a way to get
around such a situation, analogous to the scheme used in [50] to resolve the same kind of
issue. Let ζ∗−i := µ̃−i(·|bi) = µ̃−i(·|b̃i) and let a∗i := σi(bi) 6= σi(b̃i). By the assumption

that the set C(Γ, i, a∗i ) does not have any isolated points, there exists a sequence (ζ̂ l−i)l≥1

of distinct probability distributions in C(Γ, i, a∗i ) such that ζ̂ l−i → ζ∗−i and (ζ̂ l−i)l≥1 are all

distinct from the distributions (µ̃−i(·|bi), ∀bi ∈ Bi). Further, let the sequence (ζ̂ l−i)l≥1 be

such that |ζ̂ l−i(a−i) − ζ∗−i(a−i)| < 1/l, for all a−i ∈ A−i, i.e. ζ̂ l−i is within 1/l of ζ∗−i in the
sup norm, for all l ≥ 1. We will now replace the assessments ζ∗−i at the steps (tk(bi))k≥1 by

the assessments (ζ̂ l−i)l≥1, with each ζ̂ l−i repeated sufficiently many times that the empirical
distribution of the action profiles of the opponents over the steps that player i’s assessment
is ζ̂ l−i is within 1/l of ζ∗−i in the sup norm. To achieve this, start by replacing the assessment

at step t1(bi) by ζ̂1
−i. Next replace the assessments at steps tk(bi), k = 2, 3, . . . with ζ̂2

−i until
the empirical distribution of the action profiles of the opponents over these steps is within
1/2 of ζ∗−i in the sup norm. In general, keep replacing the assessments at steps tk(bi) with

ζ̂ l−i until the empirical distribution of the action profiles of the opponents over these steps

is within 1/l of ζ∗−i in the sup norm, and then switch to replacing by ζ̂ l+1
−i . Note that each

assessment ζ̂ l−i will be used only for a finite number of steps since the empirical distribution
of the action profiles of the opponents over the steps (tk(bi))k≥1converges to ζ∗−i. Thus, the
empirical distribution of the action profiles of the opponents over the steps when player i
makes assessment ζ̂ l−i is within 2/l of ζ̂ l−i in the sup norm. We know that if a sequence of
probability distributions (st)t≥1 on A−i converges to a probability distribution s on A−i, then
the sequence of the running averages St = (1/t)

∑t
τ=1 sτ , t ≥ 1, also converges to s. Using this

fact, we observe that the sequence of player i’s assessments continues to be calibrated with
respect to the sequence of action profiles of her opponents even after the above replacement.
Since the assessments {ζ̂ l−i} are distinct from the assessments (µ̃−i(·|bi),∀bi ∈ Bi), we can

define action a∗i as the best reaction to ζ̂ l−i for all l ≥ 1. The above trick can be used to

resolve all instances where µ̃−i(·|bi) = µ̃−i(·|b̃i) but σi(bi) 6= σi(b̃i). Each time taking the
corresponding sequence {ζ̂ l−i} distinct from all previously used assessments. This solves the
problem of defining the best reaction map of each player and completes the proof.

5.H Proof of Proposition 5.4.5

For each of the players i ∈ [n], let us fix the CPT features ri, v
ri
i , w

±
i such that (vrii )−1 is

absolutely continuous. We also fix the action set Ai for each of the players i ∈ [n]. Since n
and |Ai|,∀i are finite, it is enough to show that for any fixed i ∈ [n] and ai ∈ Ai the set of
all games Γ for which the set C(Γ, i, ai) has an isolated point is a null set. Since the set of
all games for which any two payoffs of player i are equal, i.e. xi(a) = xi(ã), a 6= ã, is a null
set, we can restrict our attention to games where all the payoffs for player i corresponding
to her playing ai are distinct. Let (πi(1), πi(2), . . . , πi(|A−i|)) be a permutation of A−i such
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that
xi(ai, πi(1)) > xi(ai, πi(2)) > · · · > xi(ai, πi(|A−i|)).

Suppose we fix xj(a) ∈ R for all j 6= i, and xi(ãi, a−i) ∈ R for all ãi 6= ai, a−i ∈ A−i.
Then the game Γ is completely determined by the vector of payoffs (xi(ai, a−i))a−i∈A−i . Let
S denote the set of all (xi(ai, a−i))a−i∈A−i for which the set C(Γ, i, ai) has isolated points.
We will show that S is a null set with respect to the Lebesgue measure on R|A−i|. Then, by
Tonelli’s theorem, we have the required result.

Recall that Yi ⊂ R denotes the range of vrii and that Yi is an open interval because vrii
is assumed to be continuous and strictly increasing on R. Also recall that λ∗i is the measure
on Yi that is the push forward of the Lebesgue measure on R under vrii , λ̂i denotes Lebesgue
measure restricted to Yi, and that the assumption that (vrii )−1 is absolutely continuous implies

that λ∗i is absolutely continuous with respect to λ̂i. Consider the function f : R|A−i| → Y
|A−i|
i

given by
f
(
(xi(ai, a−i))a−i∈A−i

)
:= (vrii (xi(ai, a−i)))a−i∈A−i

Let yi(a−i) := vrii (xi(ai, a−i)) ∈ Yi for all a−i ∈ A−i. Since vrii is strictly increasing, the

mapping f is a bijection between (xi(ai, a−i))a−i∈A−i ∈ R|A−i| and (yi(a−i))a−i∈A−i ∈ Y
|A−i|
i .

Also, we have
yi(πi(1)) > yi(πi(2)) > · · · > yi(πi(|A−i|)).

Suppose we could show that the set f(S) is a null set with respect to the Lebesgue measure

on Y
|A−i|
i . Since the Lebesgue measure on Y

|A−i|
i is the completion of (λ̂i)

|A−i|, this would

imply that there exists a subset S∗ such that f(S) ⊂ S∗ ⊂ Y
|A−i|
i and (λ̂i)

|A−i|(S∗) = 0. Since

λ∗i � λ̂i, we have (λ∗i )
|A−i| � (λ̂i)

|A−i| and hence we would have (λ∗i )
|A−i|(S∗) = 0. Since λ∗i is

the push forward of the Lebesgue measure λi under vrii , we would have (λi)
|A−i|(f−i(S∗)) = 0,

and hence S is a null set with respect to the Lebesgue measure on R|A−i|.
We will now show that the set f(S) is a null set with respect to the Lebesgue measure

on Y
|A−i|
i . The vector (yi(a−i))a−i∈A−i is completely determined by choosing each of the

following:

(i) a permutation (πi(1), πi(2), . . . , πi(|A−i|)) of A−i,

(ii) the differences yi(πi(t))− yi(πi(t+ 1)) > 0 for all 1 ≤ t < |A−i|,

(iii) yi(πi(|A−i|)) ∈ Yi such that

yi(πi(1)) = yi(πi(|A−i|)) +

|A−i|−1∑
t=1

yi(πi(t))− yi(πi(t+ 1)) ∈ Yi.

Consider the product measure of the following:

(1) the uniform distribution on the set of permutations of A−i,
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(2) Lebesgue measure on yi(πi(t))− yi(πi(t+ 1)) > 0 for all 1 ≤ t < |A−i|,

(3) Lebesgue measure on yi(πi(|A−i|)) ∈ R, restricted to yi(πi(|A−i|)) belonging to the in-
terval such that yi(πi(|A−i|)) ∈ Yi and

yi(πi(1)) = yi(πi(|A−i|)) +

|A−i|−1∑
t=1

[yi(πi(t))− yi(πi(t+ 1))] ∈ Yi.

Now take the push forward of this product measure to the space Y
|A−i|
i with respect to the

mapping described above. Then, we observe that the completion of this measure is given by

the Lebesgue measure on Y
|A−i|
i .

We will now show that for any fixed permutation (πi(1), πi(2), . . . , πi(|A−i|)) and any fixed
positive differences yi(πi(t))−yi(πi(t+1)) > 0 for all 1 ≤ t < |A−i|, the set of all yi(πi(|A−i|))
such that (yi(a−i))a−i∈A−i ∈ f(S) is a null set with respect to the one-dimensional Lebesgue
measure.

Let (δ, δ) be the largest open interval such that if yi(πi(|A−i|)) = δ for any δ ∈ (δ, δ),
then yi(πi(|A−i|)), yi(πi(1)) ∈ Yi. Note that the interval (δ, δ) could be empty depending on
the fixed positive differences yi(πi(t))− yi(πi(t+ 1)) > 0 for all 1 ≤ t < |A−i|. For δ ∈ (δ, δ),
let Γδ denote the game defined by letting yi(πi(|A−i|)) := δ. In particular, for the game Γδ,
the payoffs corresponding to player i and action ai are given by

xδi (ai, a−i) := (vrii )−1(yi(a−i)),

for all a−i ∈ A−i, where

yi(ai) = δ +

|A−i|−1∑
t=π−1

i (a−i)

[yi(πi(t))− yi(πi(t+ 1))] .

Consider the function Gai
i : ∆(A−i)× (δ, δ)→ R, given by

Gai
i (µ−i, δ) := max

ãi 6=ai
Ri[{(µ−i(a−i), xi(ãi, a−i), xδi (ai, a−i))}a−i∈A−i ],

where the regret function Ri[·] is as defined in equation (5.5.2). Since the probability weight-
ing functions and the value function for player i are assumed to be continuous, the CPT
value function Vi(L) is continuous with respect to the probabilities and the outcomes in the
lottery L. Thus, the regret function Ri[·] is continuous in its arguments, and hence we get
that the function Gai

i is continuous in its arguments.
Now observe that, for any fixed δ ∈ (δ, δ), the outcomes (xδi (ai, a−i))a−i∈A−i are divided

into gains and losses depending on the reference point ri. Hence, for some 0 ≤ tr ≤ |A−i|, we
have the outcomes xδi (ai, πi(t)),∀t ≤ tr, as gains, and the outcomes xδi (ai, πi(t)), ∀t > tr, as
losses, where tr = 0 corresponds to the case where all the outcomes (xδi (ai, a−i))a−i∈A−i
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are losses. As a result, the interval (δ, δ) can be partitioned into sub-intervals (δ, δ1),
[δ1, δ2), . . . , [δs, δ), where δ < δ1 < δ2 · · · < δs < δ, such that over any subinterval I the out-
comes are divided into gains and losses at the same point tr. Here 0 ≤ s ≤ |A−i|, with the case
s = 0 corresponding to the scenario where the division of the outcomes (xδi (ai, a−i))a−i∈A−i
into gains and losses is the same throughout (δ, δ). Note that such an interval I could be
open or half-open and half-closed. In the following argument it will not matter whether the
subinterval is open or half-open and half closed.

Let us now consider the function Gai
i restricted to ∆(A−i) × I for a fixed subinterval I.

Let 0 ≤ tr ≤ |A−i| be the point that divides the outcomes (xδi (ai, a−i))a−i∈A−i into gains
and losses. Suppose we could show that the set of δ ∈ I such that (yi(a−i))a−i∈A−i ∈ f(S)
is a null set with respect to the one-dimensional Lebesgue measure. Since this would be
true for each of the subintervals I, and there are only finitely many such subintervals in the
partitioning of (δ, δ) above, we would get the desired result.

We first prove the following useful property: For any δ, δ̃ ∈ I, and µ−i ∈ ∆(A−i), we have

Gai
i (µ−i, δ)−Gai

i (µ−i, δ̃) = Wi(µ−i)(δ̃ − δ), (5.H.1)

where

Wi(µ−i) := w+
i

(
tr∑
t=1

µ−i(πi(t))

)
+ w−i

 |A−i|∑
t=tr+1

µ−i(πi(t))

 .

To see this, write

Gai
i (µ−i, δ) =

(
max
ãi 6=ai

Vi({(µ−i(a−i), xi(ãi, a−i))}a−i∈A−i)
)

− Vi({(µ−i(a−i), xδi (ai, a−i))}a−i∈A−i),

which gives

Gai
i (µ−i, δ)−Gai

i (µ−i, δ̃) = Vi({(µ−i(a−i), xδ̃i (ai, a−i))}a−i∈A−i)
− Vi({(µ−i(a−i), xδi (ai, a−i))}a−i∈A−i).

Equation (5.H.1) then follows from equation (1.3.9).
Note that Wi(µ−i) > 0 always. Indeed, since

tr∑
t=1

µ−i(πi(t)) +

|A−i|∑
t=tr+1

µ−i(πi(t)) = 1,

at least one of these two summations is positive, and w±i (p) > 0 for p > 0 from the assump-
tions on the probability weighting functions.

For any δ ∈ I, we have µ−i ∈ C(Γδ, i, ai) if and only if Gai
i (µ−i, δ) ≤ 0. If Gai

i (µ−i, δ) < 0
then, by the continuity of the function Gai

i , we will have a neighborhood around the point
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µ−i that belongs to C(Γδ, i, ai). Since the domain ∆(A−i) itself does not have any isolated
points, it prevents µ−i from being an isolated point of C(Γδ, i, ai). Thus, the fact that µ−i
is an isolated point of C(Γδ, i, ai) implies that Gai

i (µ−i, δ) = 0. If µ−i is not a strict local
minimum of Gai

i (·, δ), then there exists a sequence of points (µt−i)t≥1 converging to µ−i such
that Gai

i (µ−i, δ) ≤ 0, for all t ≥ 1. Then the sequence (µt−i)t≥1 belongs to the set C(Γδ, i, ai),
contradicting the fact that µ−i is an isolated point in the set C(Γδ, i, ai). We have shown
that if µ−i is an isolated point in the set C(Γδ, i, ai), this implies that Gai

i (µ−i, δ) = 0 and
that µ−i is a strict local minimum of Gai

i (µ̃−i, δ) as a function of µ̃−i ∈ ∆(A−i).
To complete the proof of the proposition, it is enough to show that the set of all δ ∈ I

for which there exists µ−i ∈ ∆(A−i) such that Gai
i (µ−i, δ) = 0 and µ−i is a strict local

minimum of Gai
i (·, δ) is a null set with respect to one dimensional Lebesgue measure. Let

T ⊂ ∆(A−i)× I be the set of all pairs (µ−i, δ) such that Gai
i (µ−i, δ) = 0 and µ−i is a strict

local minimum of Gai
i (·, δ). We will prove that the set T is countable. To see this, for each

pair (µ−i, δ) ∈ T , there exists a pair of vectors with rational elements, (pµ−i,δ(a−i))a−i∈A−i
and (qµ−i,δ(a−i))a−i∈A−i , such that

pµ−i,δ(a−i) < µ−i(a−i) < qµ−i,δ(a−i), for all a−i ∈ A−i,

and for any µ̃−i ∈ ∆(A−i) such that

pµ−i,δ(a−i) < µ̃−i(a−i) < qµ−i,δ(a−i), for all a−i ∈ A−i,

we have Gai
i (µ̃−i, δ) > Gai

i (µ−i, δ). Suppose there are two distinct pairs (µ′−i, δ
′), (µ′′−i, δ

′′) ∈ T
such that pµ′−i,δ′(a−i) = pµ′′−i,δ′′(a−i) =: p(a−i) and qµ′−i(a−i) = qµ′′−i(a−i) =: q(a−i) for all
a−i ∈ A−i. We note that in this case we must have δ′ 6= δ′′. Let δ′ < δ′′ without loss of
generality. We have Gai

i (µ′−i, δ
′′) ≥ 0 because

p(a−i) < µ′−i(a−i) < q(a−i), for all a−i ∈ A−i.

From equation (5.H.1), we have

Gai
i (µ′−i, δ

′)−Gai
i (µ′−i, δ

′′) = Wi(µ
′
−i)(δ

′′ − δ′) > 0.

This implies Gai
i (µ′−i, δ

′) > 0 contradicting (µ′−i, δ
′) ∈ T . Thus we have an injective map

from the set T to the set Q2|A−i|. Hence the set T is countable. Thus the set of all δ ∈ I, for
which there exists a µ−i such that (µ−i, δ) ∈ T is also countable and hence a null set. This
completes the proof.

5.I Proof of proposition 5.5.1

Since ∆(A) is a compact set, ξt converges to the set C(Γ) iff for every convergent subsequence
ξtk , say, converging to ξ̂, we have ξ̂ ∈ C(Γ). Let ξtk → ξ̂ be a convergent subsequence. For
each player i, and for every ai, ãi ∈ Ai, ai 6= ãi such that ξ̂i(ai) > 0, we have

Ktk
i (ai, ãi)→ ξ̂i(ai)Ri

[{(
ξ̂−i(a−i|ai), xi(ãi, a−i), xi(ai, a−i)

)}
a−i∈A−i

]
, (5.I.1)
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by continuity of Vi(p, x) as a function of the probability vector p for a fixed outcome profile
x. The result is immediate from the definition of CPT correlated equilibrium.

5.J Proof of Lemma 5.5.4

We will first use the fact that player 2 is randomizing over her actions I and III, independently
at all the steps (tlodd)l≥1, and show that for sufficiently large l, vlodd(0, I) and vlodd(0, III) are
almost equal with high probability. To see this, observe that the sequence (Ml, l ≥ 1) is a
martingale, where

Ml := l × (νlodd(0,I)− νlodd(0,III)).

Indeed, letting M l
1 := (M1, . . . ,Ml), we have

E[Ml+1 −Ml|M l
1] = E[Ml+1 −Ml|M l

1, a
tl+1
odd

1 = 0]P (a
tl+1
odd

1 = 0|M l
1)

+ E[Ml+1 −Ml|M l
1, a

tl+1
odd

1 = 1]P (a
tl+1
odd

1 = 1|M l
1)

= E[1{at
l+1
odd = (0, I)} − 1{at

l+1
odd = (0, III)}|M l

1, a
tl+1
odd

1 = 0]P (a
tl+1
odd

1 = 0|M l
1) + 0

=
1

2
− 1

2
= 0,

where the last line follows from the fact that player 2 plays σodd at each of the steps tlodd
independently. Thus, for example by the Azuma-Hoeffding inequality, for any δ > 0, there
exists an integer l

(1)
δ > 1, such that for all l ≥ l

(1)
δ , equation (5.5.7) holds. Similarly, there

exist integers l
(2)
δ , l

(3)
δ , l

(4)
δ > 1, such that for all l ≥ l

(2)
δ , equation (5.5.8) holds, for all l ≥ l

(3)
δ ,

equation (5.5.9) holds, and for all l ≥ l
(4)
δ , equation (5.5.10) holds. This taking

lδ := max{l(1)
δ , l

(2)
δ , l

(3)
δ , l

(4)
δ },

we get the required result.

5.K Proof of Proposition 5.5.3

Here are two simple technical lemmas that we will use repeatedly in the rest of the discussion
in this section. The proof of each of these lemmas is elementary, and is therefore omitted.

Lemma 5.K.1. If P (F1) > α and P (F2) ≥ β such that α + β > 1, then

P (F1|F2) ≥ P (F1 ∩ F2) > α− (1− β).

�
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Lemma 5.K.2. If δ > 0, and x, y, a, b are real numbers such that x+y ∈ [a, b] and |x−y| < δ,
then

x, y ∈ ((a− δ)/2, (b+ δ)/2).

�

Let Ek
1 denote the event that the following inclusion holds:

ξT
k+1

(1, ·) ∈
[(

1− fk+1
3

2
, 0,

1− fk+1
3

2
, 0

)]
δ1

. (5.K.1)

Lemma 5.K.3. Recall that k0 is defined in equation (5.5.17). For any k ≥ k0, if P (fk+1
3 <

1− δ2) > 1/4, then
P (Ek

1 |fk+1
3 < 1− δ2) > 1/4− δ1. (5.K.2)

Proof. Fix k ≥ k0. From inequality (5.5.18) and the assumption T > 2/δ1, we have

ξT
k+1

(1,II) + ξT
k+1

(1,IV) <
2

T
< δ1, (5.K.3)

and hence each term is strictly less than δ1, i.e.

ξT
k+1

(1,II), ξT
k+1

(1,IV) ∈ [0, δ1). (5.K.4)

Since k ≥ k0, from (5.5.17) and (5.5.8), for l := max{l : tlodd ≤ T k+1}, we have

P
(
|ξTk+1

(1,I)− ξTk+1

(1,III)| < δ1

)
= P

(
|νlodd(1,I))− νlodd(1,III)|(1− fk+1

1 ) < δ1

)
≥ P

(
|νlodd(1,I))− νlodd(1,III)| < δ1

)
> 1− δ1,

In Lemma 5.K.1, taking F1 to be the event{
|ξTk+1

(1,I)− ξTk+1

(1,III)| < δ1

}
,

and F2 to be the event {fk+1
3 < 1 − δ2}, we have P (F1) > 1 − δ1, P (F2) > 1/4. Since

δ1 < 1/4, we have

P
(
|ξTk+1

(1,I)− ξTk+1

(1,III)| < δ1

∣∣∣fk+1
3 < 1− δ2

)
> 1/4− δ1. (5.K.5)

Since
ξT

k+1

(1,I) + ξT
k+1

(1,II) + ξT
k+1

(1,III) + ξT
k+1

(1,IV) = 1− fk+1
3 ,

combined with (5.K.3), we have

ξT
k+1

(1,I) + ξT
k+1

(1,III) ∈
[
1− fk+1

3 − δ1, 1− fk+1
3

]
. (5.K.6)
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From (5.K.5), (5.K.6) and Lemma 5.K.2, we have

P

(
ξT

k+1
(1,I), ξT

k+1
(1,III) ∈

(
1− fk+1

3 − δ1

2
− δ1

2
,
1− fk+1

3

2
+
δ1

2

)∣∣∣∣∣fk+1
3 < 1− δ2

)
> 1/4− δ1.

Combined with (5.K.4), we get (5.K.2) and this completes the proof of the lemma.

Lemma 5.K.4. For any k ≥ k0, if P (fk+1
3 < 1− δ2) > 1/4, then

P
(

[KTk+1

1 (1,0)]+ > δ2c1

)
>

1

4

(
1

4
− δ1

)
. (5.K.7)

Proof. From (5.5.18), we know that player 2 plays σodd for at least a fraction 1 − 2
T

of the
steps up to step t = T k+1. Since action 1 is not a best response of player 1 for σodd, we will
now show that, if player 1 does not play action 0 for a sufficiently high fraction of steps up
to step t = T k+1, then she will have a significant regret KTk+1

1 (1,0). More precisely, for any
k ≥ k0, if fk+1

3 < 1− δ2 and the inclusion (5.K.1) holds, then we can write

ξT
k+1

−1 (·|1)ξT
k+1

1 (1) ∈
[(

1− fk+1
3

2
, 0,

1− fk+1
3

2
, 0

)]
δ1

⇐⇒ ξT
k+1

−1 (·|1)(1− fk+1
3 ) ∈

[(
1− fk+1

3

2
, 0,

1− fk+1
3

2
, 0

)]
δ1

⇐⇒ ξT
k+1

−1 (·|1) ∈
[(

1

2
, 0,

1

2
, 0

)]
δ1/(1−fk+1

3 )

=⇒ ξT
k+1

−1 (·|1) ∈ [σodd] δ1
δ2

.

Hence, from (5.5.16) and (5.5.15), we have

KTk+1

1 (1,0) = ξT
k+1

1 (1)R1

[{(
ξT

k+1

−1 (·|1), x1(0, ·), x1(1, ·)
)}]

> δ2c1,

on the event where fk+1
3 < 1 − δ2 and the inclusion (5.K.1) holds. Thus for any k ≥ k0, if

P (fk+1
3 < 1− δ2) > 1/4, then we have

P
(

[KTk+1

1 (1,0)]+ > δ2c1

)
= P

(
[KTk+1

1 (1,0)]+ > δ2c1

∣∣∣fk+1
3 < 1− δ2

)
P (fk+1

3 < 1− δ2)

≥ P
(
Ek

1 |fk+1
3 < 1− δ2

)
P (fk+1

3 < 1− δ2)

>
1

4

(
1

4
− δ1

)
,

where the last but one inequality follows from the fact that Ek
1 and {fk+1

3 < 1 − δ2} imply
[KTk+1

1 (1,0)]+ > δ2c1, and the last inequality follows from the condition P (fk+1
3 < 1− δ2) >

1/4 and Lemma 5.K.3.
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I II III IV
0 0.25 0.25fk+1

4 0.25 0.25fk+1
4

1 0 0.25(1− fk+1
4 ) 0 0.25(1− fk+1

4 )

Table 5.K.1: Empirical distribution µ̂ in Example 5.5.2.

Consider now the probability distribution µ̂ shown in Table 5.K.1. Recall that fk+1
4 is

the fraction of times player 1 plays action 0 among the steps from step T k+1 + 1 to step
2T k+1. Note that, since fk+1

4 is a random variable, so is µ̂.

Lemma 5.K.5. For all k ≥ k0, if P (fk+1
3 < 1− δ2) ≤ 1/4, then

P (ξ2Tk+1 ∈ [µ̂]δ2|fk+1
3 ≥ 1− δ2) > 1/4− 3δ1. (5.K.8)

We also recall that δ1 < 1/16, so the lower bound in (5.K.8) is strictly positive.

Proof. Since player 2 plays σeven from step T k+1 + 1 to step 2T k+1, if fk+1
3 ≥ 1− δ2, then

ξ2Tk+1

(1,I) + ξ2Tk+1

(1,III) ≤ ξT
k+1

1 (1)/2 = (1− fk+1
3 )/2 ≤ δ2/2. (5.K.9)

This means that each term is strictly less than δ2, so we have

ξ2Tk+1

(1,I), ξ2Tk+1

(1,III) ∈ [0, δ2). (5.K.10)

Further, from equation (5.5.19) and the assumption T > 2/δ1, we have

ξ2Tk+1

(0,I) + ξ2Tk+1

(0,III) + ξ2Tk+1

(1,I) + ξ2Tk+1

(1,III)

= 1− fk+1
2 ∈ [0.5− 1/T, 0.5] ⊂ [0.5− δ1, 0.5].

Combining this with (5.K.9), we have

ξ2Tk+1

(0,I) + ξ2Tk+1

(0,III) ∈ [0.5− δ1 − δ2/2, 0.5], (5.K.11)

on the event where fk+1
3 ≥ 1 − δ2. Since k ≥ k0, from (5.5.17) and (5.5.7), for l := max{l :

tlodd ≤ 2T k+1}, we have

P
(
|ξ2Tk+1

(0,I)− ξ2Tk+1

(0,III)| < δ1

)
= P

(
|νlodd(0,I))− νlodd(0,III)|(1− fk+1

2 ) < δ1

)
≥ P

(
|νlodd(0,I))− νlodd(0,III)| < δ1

)
> 1− δ1.

In Lemma 5.K.1, taking F1 to be the event{
|ξ2Tk+1

(0,I)− ξ2Tk+1

(0,III)| < δ1

}
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and F2 to be the event {fk+1
3 ≥ 1 − δ2}, we have P (F1) > 1 − δ1, P (F2) ≥ 3/4. Since

δ1 < 1/4, we have

P
(
|ξ2Tk+1

(0,I)− ξ2Tk+1

(0,III)| < δ1

∣∣∣fk+1
3 ≥ 1− δ2

)
> 3/4− δ1. (5.K.12)

Form (5.K.11), (5.K.12) and Lemma 5.K.2, we have

P
(
ξ2Tk+1

(0,I), ξ2Tk+1

(0,III) ∈ (0.25− δ1 − δ2/4, 0.25 + δ1/2)
∣∣∣fk+1

3 ≥ 1− δ2

)
> 3/4− δ1.

Here we note that 0.25− δ1 − δ2/4 > 0. Since ε1 < 0.5 and δ1 = ε1δ2, we have

P
(
ξ2Tk+1

(0,I), ξ2Tk+1

(0,III) ∈ (0.25− δ2, 0.25 + δ2)
∣∣∣fk+1

3 ≥ 1− δ2

)
> 3/4− δ1. (5.K.13)

From (5.5.18) and the assumption T > 2/δ1, we have

ξ2Tk+1

(0,II) + ξ2Tk+1

(0,IV) ∈ [0.5fk+1
4 , 0.5fk+1

4 + 0.5fk+1
1 ]

∈ [0.5fk+1
4 , 0.5fk+1

4 + δ1]. (5.K.14)

Since k ≥ k0, from (5.5.17) and (5.5.9), for l := max{l : tleven ≤ 2T k+1}, we have

P
(
|ξ2Tk+1

(0,II)− ξ2Tk+1

(0,IV)| < δ1

)
= P

(
|νleven(0,II))− νleven(0,IV)|(fk+1

2 ) < δ1

)
≥ P

(
|νleven(0,II))− νleven(0,IV)| < δ1

)
> 1− δ1.

In Lemma 5.K.1, taking F1 to be the event{
|ξ2Tk+1

(0,II)− ξ2Tk+1

(0,IV)| < δ1

}
and F2 to be the event {fk+1

3 ≥ 1 − δ2}, we have P (F1) > 1 − δ1, P (F2) ≥ 3/4. Since
δ1 < 1/4, we have

P
(
|ξ2Tk+1

(0,II)− ξ2Tk+1

(0,IV)| < δ1

∣∣∣fk+1
3 ≥ 1− δ2

)
> 3/4− δ1. (5.K.15)

From (5.K.14), (5.K.15) and Lemma 5.K.2, we have

P
(
ξ2Tk+1

(0,II), ξ2Tk+1

(0,IV) ∈ (0.25fk+1
4 − δ1, 0.25fk+1

4 + δ1)
∣∣∣fk+1

3 ≥ 1− δ2

)
> 3/4− δ1, (5.K.16)
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Note that here 0.25fk+1
4 −δ1 could be negative. From (5.5.18) and the assumption T > 2/δ1,

we have

ξ2Tk+1

(1,II) + ξ2Tk+1

(1,IV) ∈ [0.5(1− fk+1
4 ), 0.5(1− fk+1

4 ) + 0.5fk+1
1 ]

∈ [0.5(1− fk+1
4 ), 0.5(1− fk+1

4 ) + δ1]. (5.K.17)

Since k ≥ k0, from (5.5.17) and (5.5.10), for l := max{l : tleven ≤ 2T k+1}, we have

P
(
|ξ2Tk+1

(1,II)− ξ2Tk+1

(1,IV)| < δ1

)
= P

(
|νleven(1,II))− νleven(1,IV)|(fk+1

2 ) < δ1

)
≥ P

(
|νleven(1,II))− νleven(1,IV)| < δ1

)
> 1− δ1.

In Lemma 5.K.1, taking F1 to be the event{
|ξ2Tk+1

(1,II)− ξ2Tk+1

(1,IV)| < δ1

}
and F2 to be the event {fk+1

3 ≥ 1 − δ2}, we have P (F1) > 1 − δ1, P (F2) ≥ 3/4. Since
δ1 < 1/4, we have

P
(
|ξ2Tk+1

(1,II)− ξ2Tk+1

(1,IV)| < δ1

∣∣∣fk+1
3 ≥ 1− δ2

)
> 3/4− δ1. (5.K.18)

Form (5.K.17), (5.K.18) and Lemma 5.K.2, we have

P
(
ξ2Tk+1

(1,II), ξ2Tk+1
(1,IV) ∈ (0.25(1− fk+1

4 )− δ1, 0.25(1− fk+1
4 ) + δ1)

∣∣∣fk+1
3 ≥ 1− δ2

)
> 3/4− δ1. (5.K.19)

Note that 0.25(1 − fk+1
4 ) − δ1 could be negative. From (5.K.13), (5.K.16), (5.K.19) and

(5.K.10) we get (5.K.8), and this completes the proof.

We now consider two scenarios based on whether fk+1
4 < 1− δ3 or fk+1

4 ≥ 1− δ3.

Lemma 5.K.6. For any k ≥ k0, if fk+1
4 < 1 − δ3 and ξ2Tk+1 ∈ [µ̂]δ2, then K2Tk+1

1 (1,0) >
0.5δ3c2.

Proof. If fk+1
4 < 1−δ3, then ξ2Tk+1 ∈ [µ̂]δ2 implies that ξ2Tk+1

−1 (·|1) ∈ [σeven](2δ2)/(0.5δ3). Indeed,

since ξ2Tk+1

1 (1) ≥ (1− fk+1
4 )/2 > 0.5δ3, normalizing ξ2Tk+1

(1, ·) by ξ2Tk+1

1 (1), we get

ξ2Tk+1

−1 (I|1), ξ2Tk+1

−1 (III|1) ∈ [0, 2δ2/δ3), (5.K.20)

and

|ξ2Tk+1

−1 (II|1)− ξ2Tk+1

−1 (IV|1)| < 4δ2

δ3

. (5.K.21)
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Since
ξ2Tk+1

−1 (I|1) + ξ2Tk+1

−1 (II|1) + ξ2Tk+1

−1 (III|1) + ξ2Tk+1

−1 (IV|1) = 1,

we have,

ξ2Tk+1

−1 (II|1) + ξ2Tk+1

−1 (IV|1) ∈
[
1− 4δ2

δ3

, 1

]
. (5.K.22)

From (5.K.21), (5.K.22) and Lemma 5.K.2, we have

ξ2Tk+1

−1 (II|1), ξ2Tk+1

−1 (IV|1) ∈
(

1

2
− 4δ2

δ3

,
1

2
+

2δ2

δ3

)
, (5.K.23)

and hence ξ2Tk+1

−1 (·|1) ∈ [σeven](4δ2)/δ3 . Then, from the assumption (5.5.14) we have ξ2Tk+1

−1 (·|1) ∈
[σeven]ε2 , and hence from (5.5.13) we have

K2Tk+1

1 (1,0) = ξ2Tk+1

1 (1)R1

[{(
ξ2Tk+1

−1 (·|1), x1(0, ·), x1(1, ·)
)}]

> 0.5δ3c2. (5.K.24)

Lemma 5.K.7. For any k ≥ k0, if fk+1
4 ≥ 1 − δ3, fk+1

3 ≥ 1 − δ2 and ξ2Tk+1 ∈ [µ̂]δ2, then
K2Tk+1

1 (0,1) > (1− δ3)c3.

Proof. If fk+1
4 ≥ 1− δ3 and fk+1

3 ≥ 1− δ2, then ξ2Tk+1 ∈ [µ̂]δ2 implies that

ξ2Tk+1

−1 (·|0) ∈ [σunif ] δ3/4+δ2+δ3/8+δ2/8
1−δ3/2−δ2/2

. (5.K.25)

To see this, note that fk+1
4 ≥ 1− δ3 and ξ2Tk+1 ∈ [µ̂]δ2 imply that ξ2Tk+1

(0, ·) ∈ [σunif ]δ3/4+δ2 .

We have ξ2Tk+1

1 (0) = fk+1
3 /2 + fk+1

4 /2 ≥ 1 − δ3/2 − δ2/2. Let κ := (1 − ξ2Tk+1

1 (0))/4. Thus
0 ≤ κ ≤ δ3/8 + δ2/8. Let σunif − κ := (0.25− κ, 0.25− κ, 0.25− κ, 0.25− κ). Then we have

ξ2Tk+1

(0, ·) ∈ [0.25− κ, 0.25− κ, 0.25− κ, 0.25− κ]δ3/4+δ2+κ.

Normalizing σunif − κ with 1 − 4κ = ξ2Tk+1

1 (0) gives us σunif . As a result, normalizing

ξ2Tk+1
(0, ·) with ξ2Tk+1

1 (0) gives (5.K.25). Then, from the assumptions ε3 < 1, ε2 < 1, δ2 =
ε2δ3/4 and δ3 = ε3/2, we have

δ3/4 + δ2 + δ3/8 + δ2/8

1− δ3/2− δ2/2
≤ δ3

1− δ3

≤ ε3.

Thus, ξ2Tk+1

−1 (·|0) ∈ [σunif ]ε3 , and hence from (5.5.11) we have

K2Tk+1

1 (0,1) = ξ2Tk+1

1 (0)R1

[{(
ξ2Tk+1

−1 (·|0), x1(1, ·), x1(0, ·)
)}]

(5.K.26)

> (1− δ3/2− δ2/2)c3 > (1− δ3)c3. (5.K.27)
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Lemma 5.K.8. For any k ≥ k0, if P (fk+1
3 < 1− δ2) ≤ 1/4, then

P
(
K̄k > min{0.5δ3c2, (1− δ3)c3}

)
>

3

4

(
1

4
− 3δ1

)
, (5.K.28)

where K̄k is defined in equation (5.5.4).

Proof. From Lemma 5.K.6 and Lemma 5.K.7 we obtain the following: if fk+1
3 ≥ 1 − δ2

and ξ2Tk+1 ∈ [µ̂]δ2 , then K̄k > min{0.5δ3c2, (1 − δ3)c3}. As a result, from Lemma 5.K.5, if
P (fk+1

3 < 1− δ2) ≤ 1/4, then

P
(
K̄k > min{0.5δ3c2, (1− δ3)c3}

)
≥ P

(
K̄k > min{0.5δ3c2, (1− δ3)c3}|fk+1

3 ≥ 1− δ2

)
P (fk+1

3 ≥ 1− δ2)

≥ P
(
ξ2Tk+1 ∈ [µ̂]δ2|fk+1

3 ≥ 1− δ2

)
P (fk+1

3 ≥ 1− δ2)

>
3

4

(
1

4
− 3δ1

)
.

Proof of Proposition 5.5.3. Take

ε̃ = min {δ2c1, 0.5δ3c2, (1− δ3)c3}

and

δ̃ = min

{
1

4

(
1

4
− δ1

)
,
3

4

(
1

4
− 3δ1

)}
.

From Lemma 5.K.4 and Lemma 5.K.8 it follows that for all k ≥ k0,

P
(
K̄k > ε̃

)
> δ̃1,

and this concludes the proof.

Notes
15Also known as the internal regret or the conditional regret.
16Foster and Vohra [50] refer to it as the best response. In order to avoid confusion with the best response

set defined in Chapter 3, we prefer to use the term best reaction.
17Foster and Vohra [49] prove the existence of a randomized forecasting scheme that makes the forecaster’s

calibration score, i.e. the expression in equation (5.4.1), tend to zero in probability. However, as noted in
[27], the same argument proves that the convergence of the calibration score holds, in fact, almost surely.
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Chapter 6

Mediated Mechanism Design for CPT
Players

6.1 Introduction

In nearly every application of mechanism design, the decision-making entities are predomi-
nantly human beings faced with uncertainties. These uncertainties, for example, could arise
from a combination of one or more factors from the following: (i) lack of information about
the outcomes (e.g. oil lease auctions, kidney-exchange, insurance markets), (ii) each player
having uncertainty about other players’ behavior (e.g. voting behavior in elections, incli-
nation to getting vaccinated in immunization programs), (iii) strategic interactions between
the players (e.g. players could employ randomized strategies to hedge their market returns),
(iv) randomness introduced by design (e.g. Tullock contests, where the probability of win-
ning a prize depends on the amount of effort an agent puts into it). Naturally, to realize the
mechanism designer’s objectives, it is beneficial to consider as accurate and general models
for human preference behavior under uncertainty as possible. Our goal here is to study
mechanism design when players exhibit CPT preferences.

We are interested in situations where the agents participating in the system have private
types (comprised of private information and preferences). The system operator 18 is in a
position to set the rules of communication and can control the implementation in the system.
It aims to achieve certain goals, such as social welfare or revenue generation, without getting
to directly observe the types of the players. Studying these systems when agents have CPT
preferences requires modifications to the formal structures commonly encountered in classical
mechanism design [58, 90, 93, 88, 83]. But before engaging in a systematic discussion of these
issues, let us briefly describe our key result.

This starts with the observation that if the players are assumed to have CPT preferences
instead of expected utility theory (EUT) preferences, then the revelation principle [92], one
of the fundamental principles in mechanism design, does not hold anymore. A related obser-
vation was made in [71], where the authors show that in a second-price sealed-bid auction the
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revelation principle holds in general if and only if the players have EUT preferences. Chew
[35] provides an example to show that the revelation principle fails in a second-price sealed-
bid auction when the players have preferences given by implicit weighted utility theory [40,
34].

The classical mechanism design framework is comprised of a fixed number of players, an
allocation set, a set of types for each player, and a signal set for each player. (In this chapter,
we will be concerned with the setting where all these sets are assumed to be finite.) The
system operator commits to an allocation function, i.e. a function from the signal profile of
the players to an allocation (see (6.2.11) for the formal definition).

The mechanism operates as follows:

1. Each player sends a signal strategically to the system operator based on its type (which
is private knowledge to the player).

2. The system operator implements the allocation based on the signals from all the players
in accordance to the allocation function that it committed to.

If we assume a prior over the types of the players which is common knowledge to all the
agents and the system operator, and we assume that the signal sets of all the players, the
allocation set and the allocation mapping are also common knowledge, then this constitutes a
Bayesian game and one studies the outcome of such a game through its Bayes-Nash equilibria
(see (6.2.15) for the formal definition). The revelation principle states that for the question
of implementability of social choice functions (see (6.2.2) and (6.2.16) for formal definitions
of social choice functions and their implementability), it is enough to assume the signal set
to be the same as the type set for each player and confine attention to the equilibrium in
which each player reports her type truthfully.

We propose a modification to the above framework that we call a mediated mechanism.
We introduce a new stage where the system operator acts like a mediator and sends each
player a private message sampled from a certain joint distribution on the set of message
profiles. The allocation chosen by the system operator can now depend on both the message
profile and the signal profile. Further, we explicitly allow the choice of the allocation to
be randomized, which turns out to have no advantage in the classical mechanism design
framework but can lead to benefits with CPT agents.

A mediated mechanism is therefore comprised of a fixed number of players, an allocation
set, a set of types for each player, a message set for each player, and a signal set for each
player, all of which are generally assumed to be finite sets. The system operator commits
to a mediator distribution, which is a probability distribution on the set of message profiles.
It also commits to a mediated allocation function, which maps each pair of signal profile
and message profile to a probability distribution on allocations (see (6.4.2) for the formal
definition).

The mechanism operates as follows:

1. The system operator samples a message profile from the declared mediator distribution
and sends the individual messages to each player privately.
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2. Each player receives her mediator message and, based on this message and her privately
known type, sends a signal strategically to the system operator.

3. Based on the signals collected from all the players and the sampled message profile, the
system operator samples the allocation in accordance to the probability distribution
on allocations resulting from the mediated allocation function that it committed to.

Similarly to the previous setting we assume a prior over the types of the players that
is common knowledge to all the agents and the system operator. We also assume that the
message sets and the signal sets of all the players, the mediator distribution, the alloca-
tion set, and the allocation-outcome mapping are common knowledge. This along with the
mechanism operation stated above constitutes a Bayesian game and we study the outcome
of such a game through its Bayes-Nash equilibria (see (6.4.7) for the formal definition). With
this modified framework, we recover a form of the revelation principle which states that it is
enough to assume the signal set to be the same as the type set for each player and confine
our attention to the equilibrium in which each player reports her true type irrespective of
the private message she receives from the mediator. (See statement (i) of Theorem 6.4.1.)

As the mediator message sets could be arbitrary, it might seem that the problem of
designing the signal sets has been transformed into the problem of designing the message
sets. Although this is true, notice that the revelation principle allows us to restrict our
attention to truthful strategies for each player, which have a simple form, thus resolving the
difficult task of finding all the Bayes-Nash equilibria of the resulting game. Further, the fact
that truthful reporting does not depend on the private message received by a player makes
it a practical and natural strategy for the players.

We now resume our discussion of the different aspects involved in the study of mechanism
design when agents have CPT preferences. The majority of the mechanism design literature
has been restricted to EUT modeling of individual decision-making under uncertainty. In-
deed, EUT has a nice normative interpretation and provides a useful and insightful first-order
approximation (see, for example, [120]). However, systematic deviations from the predictions
of EUT have been observed in several empirical studies involving human decision-makers [3,
48, 68] (see [124] for an excellent survey). With the advent of e-commerce activities and the
ever-growing online marketplaces such as Amazon, eBay, and Uber, where the participating
agents are largely human beings, who exhibit behavior that is highly susceptible to these
deviations from EUT, it has become crucial to account for such behavioral deviations in
the modeling of these systems. (For example, the paper [103] discusses the phenomenon
of premium prices showing up in online marketplaces such as eBay to differentiate among
sellers based on their reputation and buyers’ perceived risks.)

A typical environment in the traditional mechanism design setup consists of a set of
players that have private information about their types and an allocation set listing the
possible alternatives from which the system operator chooses one that is best suited given
the players’ types. As mentioned earlier, we assume that the system operator controls the
implementation and the players do not have separate decision domains. (Recall that by
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private decision domains we mean possible actions for the player that directly affect the
outcomes.) This is typical in several online marketplaces. For example, in online advertising
platforms such as Google Ads, the platform has complete control over where to place which
ads. Note that although the agents can affect the implementation of the system through
their bids, these signals fall under the communication protocol set by the system, leaving the
ultimate implementation in the hands of the system operator. In online matching markets
such as eBay and Uber, the platform matches the buyers to sellers as in eBay, or riders to
drivers as in Uber.19

Even if the system operator has complete control over the implementation, it wants the
implementation to depend on the types of the agents. However, it does not have access to
these types, and hence needs to design a mechanism to achieve this goal. Thus the system
implementation indirectly depends on the choices of the participating agents. Note that the
e-commerce applications mentioned above—Amazon, eBay, and Uber—fit well in this setup.
Indeed, these are instances of a delivery system, an auction house, and a clearinghouse,
which have been topics of interest for several years in mechanism design. However, the
nature of these applications, and the presence of vast data corresponding to several repeated
short-lived interactions of the system with any given user, makes it feasible to incorporate
the behavioral features displayed by the users.

It has been a convention to assume that the outcome set for each player is identical to
the allocation set, and hence the type for each player is assumed to capture her preferences
over the allocation set (see, for example, [129]). However, in principle, the outcome set for
any player need not be the same as the allocation set. Indeed the allocation set is a list of the
alternatives available to the system operator to implement, whereas the outcome set consists
of the outcomes realized by the players, and these can be quite different. For example, in
the case of Amazon, the allocation set consists of alternative resource allocations to fulfill
the delivery of purchased products, whereas the outcome set of a buyer consists of features
such as time of delivery, place of delivery, etc. It makes sense to consider the preferences of a
player over her outcome set, and any consideration of her preferences over the allocation set
should be thought of as a pullback or a precomposition of her preferences over the outcome
set with respect to the (possibly random) function that maps allocations to outcomes for
this player.

We allow the above mapping from allocations to outcomes for any player to be random-
ized. Indeed, more often than not, the system operator does not have complete control over
the outcomes of the players due to intrinsic uncertainties present in the system. For example,
fixed resource allocations by Amazon can lead to uncertainty in the delivery times, possibly
due to factors not part of the system model. In the case of Uber, upon matching the riders
with the drivers in a certain way and choosing their corresponding routes, the arrival times
and the riding experience of the users remain uncertain. In an auction setting such as eBay,
if we consider the outcome set for any player to indicate if she receives the item or not,
then the mapping from allocation to outcomes is deterministic. However, if we model the
outcome set to indicate whether the player is satisfied with the item she receives, then we
have to allow the mapping to be randomized.
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Furthermore, the system operator might not be able to observe the outcome realization,
for example the ride experience of a passenger. It can only try to learn this in hindsight
through customer feedback. Besides, the outcome set for any single player is typically small as
compared to the allocation set and the product of the outcome spaces of all the participating
agents. Thus, treating each player’s outcome set separately would enable us to focus on
the preference behavior of an individual player and have better models for this player’s
preferences.

The (random) mapping from allocations to outcomes for any player induces a lottery L
on the outcome set of this player for each allocation. EUT satisfies the linearity property
which states that U(αL1 + (1 − α)L2) = αU(L1) + (1 − α)U(L2), where 0 ≤ α ≤ 1, L1, L2

are two lotteries, and U(·) denotes the expected utility of the lottery within the parentheses.
This property of EUT allows us to model the type of a player by considering her utility
values for each allocation. For any lottery L over her outcomes that is induced by a lottery
over the allocations µ, we can evaluate her utility U(L) by taking the expectation over her
utility values of the allocations with respect to the distribution µ. CPT on the other hand
does not satisfy this linearity property (see, for example, [127]), and hence it is important
that we consider the general model with separate outcome sets.

We formalize this general setup and provide preliminary background on CPT preferences
in Section 6.2. Then, we consider the traditional mechanism design framework where each
player knows her (private) type and strategically sends a signal to the system operator. The
system operator collects these signals and implements a lottery over the allocation set.

We define a social choice function as a function mapping each type profile into a lottery
over the product of the outcome sets for each player (see (6.2.2) for the formal definition).
As an intermediate step, we consider an allocation choice function (i.e. a function that
maps type profiles into lotteries over the allocation set, see (6.2.4)). Each allocation choice
function uniquely defines a social choice function through the allocation-outcome mapping
(see (6.2.5)), which we think of as a mapping from allocations to probability distributions
on the product of the outcome sets of the agents. Note that there can be multiple allocation
choice functions that give rise to the same social choice function. We define the notion of
implementability for an allocation choice function in Bayes-Nash equilibrium (see (6.2.16)).
We say that a social choice function is implementable in Bayes-Nash equilibrium if there
exists an allocation choice function that is implementable in Bayes-Nash equilibrium and
induces this social choice function.

We similarly define the notions of implementability in dominant equilibrium. Here,
we identify an additional notion of implementability that we call implementable in belief-
dominant equilibrium. Roughly speaking, a dominant strategy is a best response to all the
strategy profiles of the opponents (see (6.2.18)), and a belief-dominant strategy is a best
response to all the beliefs over the strategy profiles of the opponents (see (6.2.20)). Under
EUT, the notion of a dominant strategy is equivalent to that of a belief-dominant strategy.
However, this is not true in general when the agents have CPT preferences, thus making it
necessary to distinguish between these two notions of equilibrium.

In Section 6.3, we define the notions of direct mechanism (see (6.3.1)) and truthful im-
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plementation (see (6.3.2)). We then give an example that highlights the shortcoming of
restricting oneself to direct mechanisms when the players have CPT preferences, as opposed
to EUT preferences. In particular, we consider a 2-player setting where the players have CPT
preferences that are not EUT preferences. Example 6.3.1 gives an allocation choice function
for which the revelation principle does not hold for implementation in Bayes-Nash equilib-
rium. We then introduce the framework of mediated mechanism design in Section 6.4. We
define the corresponding notions of Bayes-Nash equilibrium (see (6.4.7)), dominant equilib-
rium (see (6.4.11)), and belief-dominant equilibrium (see (6.4.12)) for mediated mechanisms.
In Theorem 6.4.1, we recover the revelation principle under certain settings (see Table 6.1).

6.2 Mechanism Design Framework

Preliminaries

Let [n] := {1, 2, . . . , n} be the set of players participating in the system. Let A denote
the set of allocations for this system. We assume unless stated otherwise that the set of
allocations is finite, say A := {α1, . . . , αl}. For example, in the sale of a single item (or
multiple items), it could represent the allocation of the item(s) to the different individuals.
In a routing system, such as traffic routing or internet packet routing, it could represent
the different routing alternatives. More generally, in a resource allocation setting it could
represent the assignment of resources to the participating agents (with their corresponding
payments) that respect the system (and budget) constraints. In a voting scenario, it could
represent the winning candidate. Thus, we imagine the allocations α ∈ A as being the
various alternatives available to the system operator to implement.

Traditionally, each player is assumed to have a value for each of the allocations, and this
defines the type of this player. It describes the preferences of a player over the allocations,
and further, by assuming EUT behavior, we get her preferences over the lotteries over these
allocations. Here, instead, we assume that for each player i ∈ [n], we have a finite set of
outcomes Γi := {γ1

i , . . . , γ
ki
i }, and player i’s type is defined by her CPT preferences over

the lotteries on this set Γi. We imagine the set Γi to capture the outcome features that are
relevant to player i. Thus the outcome set Γi allows us to separate out the features that affect
player i from the underlying allocations that give rise to these outcomes. We capture this
relation between the allocation set and the outcome sets through a mapping ζ : A → ∆(Γ)
that we call the allocation-outcome mapping, where Γ :=

∏
i Γi. Let ζi : A → ∆(Γi) denote

allocation-outcome mapping for player i given by the marginal of ζ on the set Γi.
From a behavioral point of view it is natural to model a player’s preferences on the

outcome set Γi rather than the allocation set A. Then why is it that the sets Γi and
the mapping ζ are usually missing from the mechanism design framework prevalent in the
literature? At the end of this section after setting up the relevant notation, we will show
that under EUT, from the point of view of the typical goals of the mechanism designer,
it is enough to consider a transformation of the system where Γi = A, for all i, and the
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allocation-outcome mappings are trivial, namely, ζi(α) = α, for all α ∈ A, i ∈ [n] (this is
shown formally in Appendix 6.C). We will also show that this does not hold in general when
the players do not have EUT preferences, and in particular when they have CPT preferences.

We model the preference behavior of the players using cumulative prospect theory. Sup-
pose Γi is the outcome set for player i, who is associated with a value function vi : Γi → R
and two probability weighting functions w±i : [0, 1]→ [0, 1]. The value function vi partitions
the set of outcomes Γi into two parts: gains and losses ; an outcome γi ∈ Γi is said to be a
gain if vi(γi) ≥ 0, and a loss otherwise. The probability weighting functions w+

i and w−i will
be used for gains and losses, respectively. The probability weighting functions w±i are as-
sumed to satisfy the following: (i) they are strictly increasing, (ii) w±i (0) = 0 and w±i (1) = 1.
We say that (vi, w

±
i ) are the CPT features of player i.

Mechanism design framework

For each i, let Θi denote the set from which the permissible types for player i are drawn.
Corresponding to any type θi for player i, let vi : Γi → R be her value function, and
w±i : [0, 1]→ [0, 1] be her probability weighting functions. Let V θi

i (Li) denote the CPT value
of the lottery Li ∈ ∆(Γi) for player i having type θi. Thus, the type θi completely determines
the preferences of player i over lotteries on her outcome set Γi.

20 We will assume that the
sets Θi are finite for all i.

Let θ := (θ1, . . . , θn) denote the profile of types of the players, and let Θ :=
∏

i Θi. We
assume that each player knows her type but cannot observe the types of her opponents.

Let the set of players [n], their corresponding type sets Θi, i ∈ [n], the allocation set
A, and the outcome spaces Γi, i ∈ [n], together with the mapping ζ form an environment,
denoted by

E :=
(
[n], (Θi)i∈[n], A, (Γi)i∈[n], ζ

)
. (6.2.1)

A social choice function
g : Θ→ ∆(Γ) (6.2.2)

determines a lottery over the product of the outcome sets of the individual players given the
type profile θ of all the players. The outcome choice function for player i corresponding to
the social choice function g is

gi : Θ→ ∆(Γi), (6.2.3)

given by the restriction of g to the set Γi, and represents the lottery faced by player i given
the type profile θ of all the players. We will treat the social choice function g as the goal of
the mechanism designer, i.e, the goal is to design a mechanism to implement a social choice
function g without having knowledge of the true types of the players.

Let an allocation choice function

f : Θ→ ∆(A) (6.2.4)

represent the choice of the allocation to be implemented by the system operator given a
type profile θ ∈ Θ. Note that f(θ) is a probability distribution over the allocations A.
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Thus we allow the system operator to implement a randomized allocation. A deterministic
allocation choice function maps each type profile to a unique allocation. Since the mapping ζ
is fixed and a part of the environment description, the allocation choice function f effectively
captures the goal of a mechanism designer. More precisely, let F (g) denote the set of all
allocation choice functions that induce the social choice function g, i.e. for all θ ∈ Θ, g(θ)
is the mixture probability distribution of the probability distributions (ζ(α), α ∈ A) with
weights f(α|θ). We note that the set F (g) is non-empty if and only if

g(θ) ∈ co{ζ(α) : α ∈ A},

for all θ ∈ Θ. We wish to design a mechanism that would implement an allocation choice
function in F (g). Thus a social choice function is implementable if and only if we can
implement an allocation choice function f that satisfies

g(γ|θ) =
∑
α∈A

f(α|θ)ζ(γ|α), (6.2.5)

for all γ ∈ Γ, θ ∈ Θ. This raises the main question in mechanism design, namely whether we
can design a game that results in the implementation of some given allocation choice function
f under certain rationality conditions on the players even when the system operator cannot
observe the players’ types.

First, let us look at the the relationship between lotteries on allocations and lotteries on
the outcome set of a given player. Any lottery µ ∈ ∆(A) induces a lottery Li(µ) ∈ ∆(Γi)
given by

Li(γi|µ) :=
∑
α∈A

µ(α)ζi(γi|α). (6.2.6)

Given that player i has type θi, we know that the CPT value of lottery Li(µ) is V θi
i (Li(µ)).

This induces a value for player i with type θi on the lottery µ denoted by

W θi
i (µ) := V θi

i (Li(µ)). (6.2.7)

This defines a utility function W θi
i : ∆(A) → R that gives the preference relation over the

lotteries µ ∈ ∆(A) for a player i having type θi. Let

uθii (α) := V θi
i (ζi(α)) = W θi

i (α) (6.2.8)

be the CPT value of the lottery for player i corresponding to allocation α.21 If player i has
EUT preferences, then we have that

W θi
i (µ) =

∑
α∈A

µ(α)uθii (α). (6.2.9)

We now consider a mechanism

M0 := ((Ψi)i∈[n], h0), (6.2.10)
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consisting of a collection of finite signal sets Ψi, one for each player i, and an allocation
function

h0 : Ψ→ ∆(A), (6.2.11)

where Ψ :=
∏

i∈[n] Ψi. Note that the allocation function is allowed to be randomized. Let

ψi denote a typical element of Ψi, and ψ := (ψi)i∈[n] denote a typical element of Ψ, called a
signal profile.

It is straightforward to incorporate the feature that the outcome sets Γi might be different
from the allocation set A, and the corresponding allocation-outcome mapping ζ, so as to
extend the definition of a Bayes-Nash equilibrium strategy profile for the mechanism M0

and the implementability of an allocation choice function f in Bayes-Nash equilibrium. To
do this, assume that the types of the individual players are drawn according to a prior
distribution F ∈ ∆(Θ) and that this distribution is common knowledge among the agents
and the system operator. Let Fi ∈ ∆(Θi) denote the marginal of F on Θi. Suppose player
i has type θi. Then the belief of player i about the types of other players is given by the
conditional distribution

F−i(θ−i|θi) :=
F (θi, θ−i)

Fi(θi)
, for all θ−i ∈ Θ−i, θi ∈ suppFi,

where θ−i := (θj)j 6=i is the profile of types of all players other than player i, Θ−i :=
∏

j 6=i Θj.
Recall that ψi denotes a typical element of Ψi, and ψ := (ψi)i∈[n] denotes a typical element

of Ψ. Let Ψ−i :=
∏

j 6=i Ψj with a typical element denoted by ψ−i. Let

σi : Θi → ∆(Ψi) (6.2.12)

be a strategy for player i, and let σ := (σ1, σ2, . . . , σn) denote a strategy profile. Let σ−i :=
(σj)j 6=i denote the strategy profile of all players other than player i. For any type θi (such that
Fi(θi) > 0) and signal ψi, consider the probability distribution µi(θi, ψi; M0, F, σ−i) ∈ ∆(A)
given by

µi(α|θi, ψi; M0, F, σ−i) :=
∑

θ−i∈Θ−i

F−i(θ−i|θi)
∑

ψ−i∈Ψ−i

∏
j 6=i

σj(ψj|θj)h0(α|ψ), (6.2.13)

for all α ∈ A. Suppose player i has type θi (such that Fi(θi) > 0), and she chooses to signal
ψi. Then, by Bayes’ rule, the lottery faced by player i is given by

Li (µi(θi, ψi; M0, F, σ−i)) .

This comes from the assumption that player i knows her type θi, the common prior F , the
strategies σj, j 6= i of her opponents, and the mapping ζi. Given that player i has type θi,
her CPT value for the lottery Li(µi(θi, ψi; M0, F, σ−i) is given by

W θi
i (µi(θi, ψi; M0, F, σ−i)) = V θi

i (Li(µi(θi, ψi; M0, F, σ−i)) ,
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where we recall that W θi
i (µ) is the CPT value of player i with type θ for the lottery Li(µ) ∈

∆(Γi) induced by the distribution µ ∈ ∆(A). Let the best response strategy set BRi(σ−i) for
player i to a strategy profile σ−i of her opponents consist of all strategies σ∗i : Θi → ∆(Ψi)
such that

W θi
i (µi(θi, ψi; M0, F, σ−i)) ≥ W θi

i (µi(θi, ψ
′
i; M0, F, σ−i)), (6.2.14)

for all θi ∈ suppFi, ψi ∈ suppσ∗i (θi), ψ
′
i ∈ Ψi. The rationale behind this definition is that a

player’s best response strategy σ∗ should not assign positive probability to any suboptimal
signal ψi given her type θi.

A strategy profile σ∗ is said to be an F -Bayes-Nash equilibrium for the environment E
and common prior F with respect to the mechanism M0 if, for each player i, we have

σ∗i ∈ BRi(σ
∗
−i). (6.2.15)

We will refer to σ∗ simply as a Bayes-Nash equilibrium when the respective environment E ,
the common prior F , and mechanism M0 are clear from the context.

We say that the allocation choice function f is implementable in F -Bayes-Nash equilib-
rium by a mechanism if there exists a mechanism M0 and an F -Bayes-Nash equilibrium σ
such that f is the induced distribution, i.e. for all θi ∈ suppFi, α ∈ A, we have

f(α|θ) =
∑
ψ∈Ψ

∏
i∈[n]

σi(ψi|θi)

h0(α|ψ). (6.2.16)

An alternative notion is that of an allocation choice function f being implementable in
dominant equilibrium. The traditional notion states that a strategy σi is a dominant strategy
for player i if the signals in the support of σi(θi) are optimal given player i’s type θi and any
signal profile ψ−i of the opponents. More precisely, if we let

µi(θi, ψi; M0, ψ−i) := h0(ψi, ψ−i), (6.2.17)

then σ∗i is a dominant strategy if, for all θi ∈ θi, ψi ∈ suppσ∗i (θi), ψ
′
i ∈ Ψi, and ψ−i ∈ Ψ−i,

we have
W θi
i (µi(θi, ψi; M0, ψ−i)) ≥ W θi

i (µi(θi, ψ
′
i; M0, ψ−i)). (6.2.18)

Thus, if player i employs a dominant strategy, then regardless of the signal profile of the
opponents she always signals a best response given her type. A dominant equilibrium is one
in which each player plays a dominant strategy. We say that an allocation choice function
f is implementable in dominant equilibrium if there exists a mechanism M0 and a strategy
profile σ∗ = (σ∗1, . . . , σ

∗
n) where each σ∗i is a dominant strategy (equivalently, σ∗ is a dominant

equilibrium) such that (6.2.16) holds for all θi ∈ Θ, α ∈ A.
Under EUT, if a signal ψi is a best response of player i for all of the opponents’ signal

profiles, then it is also a best response for any belief G−i ∈ ∆(Ψ−i) of player i over her
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opponents’ signal profiles. However, under CPT, this need not hold. (See Example 6.2.1.)
This observation leads us to the following stricter notion of dominant strategies under CPT.
We call a strategy σi a belief-dominant strategy for player i if the signals in the support of
σi(θi) are optimal given player i’s type θi and any belief G−i ∈ ∆(Ψ−i) she has on the signal
profile of her opponents. If we let

µi(θi, ψi; M0, G−i) :=
∑
ψ−i

G−i(ψ−i)h0(ψi, ψ−i), (6.2.19)

then ψ∗i is a belief-dominant strategy for player i if, for all θi ∈ θi, ψi ∈ suppσ∗i (θi), ψ
′
i ∈ Ψi,

and G−i ∈ ∆(Ψ−i), we have

W θi
i (µi(θi, ψi; M0, G−i)) ≥ W θi

i (µi(θi, ψ
′
i; M0, G−i)). (6.2.20)

It is straightforward to check that under EUT a strategy is dominant if and only if it is belief-
dominant. A belief-dominant equilibrium is one in which every player plays a belief-dominant
strategy. We say that an allocation choice function f is implementable in belief-dominant
equilibrium if there exists a mechanism M0 and a strategy profile σ∗ = (σ∗1, . . . , σ

∗
n) where

each σ∗i is a belief-dominant strategy (equivalently, σ∗ is a belief-dominant equilibrium) such
that (6.2.16) holds for all θi ∈ Θ, α ∈ A.

Note that if σ∗ is a belief-dominant strategy profile, and thus a belief-dominant equi-
librium, then it is a dominant strategy profile, i.e. a dominant equilibrium, and also an
F -Bayes-Nash equilibrium with respect to any prior distribution F on type profiles.

Example 6.2.1. Let n = 2. Let Θ1 = Θ2 = {UP,DN}. LetA = {a, b, c}, Γ1 = {I, II, III, IV,V},
and Γ2 = A. Let the allocation-outcome mapping be given by the product distribution of the
marginals ζ1 and ζ2, given by ζ1(a) = {(1/2, I); (1/2,V)}, ζ1(b) = {(1/2, II); (1/2, IV)}, ζ1(c) =
{(1, (III))}, and ζ2(α) = α, ∀α ∈ A. Let the probability weighting functions for gains for the
two players be given by

w+
1 (p) = exp{−(− ln p)0.5}, w+

2 (p) = p,

for p ∈ [0, 1]. In this example, we consider only lotteries with outcomes in the gains domain,
and hence an arbitrary probability weighting function for the losses can be assumed. Here,
for player 1’s probability weighting function, we employ the form suggested by Prelec [113]
(see Figure 6.1). Note that player 2 has EUT preferences. Let the value functions v1 and v2

be given by

v1 I II III IV V
UP 2x x+ 1 1.99 1 0
DN 0 0 1 0 0

v2 a b c
UP 1 0 2
DN 0 1 2

where x := 1/w+
1 (0.5) = 2.2992. Note that 2x = 4.5984 and x+ 1 = 3.2992. We have,

V UP
1 (L1(a)) = 2xw+

1 (0.5) = 2,

V UP
1 (L1(b)) = 1 + xw+

1 (0.5) = 2,
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Figure 6.1: The solid curve shows the probability weighting function w+
1 for player 1 from

Example 6.2.1 and Example 6.4.2. The dotted curve shows the probability weighting func-
tion w+

2 for player 2 in Example 6.2.1 and Example 6.4.2, which is the linear function
corresponding to EUT preferences.

and,

V UP
1 (0.5L1(a) + 0.5L1(b)) = w+

1 (0.75) + xw+
1 (0.5) + (x− 1)w+

1 (0.25)

= 1.9851.

(Here, we have w+
1 (0.25) = 0.3081, w+

1 (0.5) = 0.4349, and w+
1 (0.75) = 0.5849.) Consider the

mechanism M = ((Ψi)i∈[n], h0), where Ψ1 = Ψ2 = {UP,DN}, and h0 is given by

h0(UP,UP) = a, h0(UP,DN) = b, h0(DN,UP) = c, h0(DN,DN) = c.

Consider the strategies
σi(UP) = UP, and σi(DN) = DN,

for both the players i. It is easy to see that these strategies are dominant for both the
players. However, if player 1 has type UP and believes that there is an equal chance of
player 2 reporting her strategy to be UP and DN, then player 1’s best response is to report
DN. Thus, σ1 is not a belief-dominant strategy for player 1.

We will now look at the remark made earlier about the absence of the distinction between
the allocation set and the outcome sets in classical mechanism design, and why it is important
to consider this distinction under CPT. In Appendix 6.C, we show that under EUT it suffices
to consider the scenario where the outcome set of each player is the same as the allocation
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set by the simple expedient of interpreting each type θi ∈ Θi in terms of the utility function
on allocations that it defines via (6.2.8).

While equation (6.2.9) holds under EUT, under CPT in general it does not hold, and in
general the utility function W θi

i is not completely determined by the values uθii (α),∀α ∈ A.
Thus, we can either characterize the type of a player by her utility function W θi

i or by her
CPT features which, combined with the mapping ζi, together define the utility function W θi

i .
In any given setting, it is more natural to put behavioral assumptions on the CPT features
(vi, w

±
i ) than on the utility function W θi

i .22 Hence, we include the sets Γi and the mappings
ζi, for all i, in our system model under CPT.

6.3 The Revelation Principle

A mechanism M0 = ((Ψi)i∈[n], h0) is called a direct mechanism if Ψi = Θi, for all i. Let
M d

0 := ((Θi)i∈[n], h
d
0) denote a direct mechanism, where

hd0 : Θ→ ∆(A) (6.3.1)

is the direct allocation function. Corresponding to a direct mechanism, let σdi : Θi → Θi

denote the truthful strategy for player i, given by

σdi (θi) = θi, (6.3.2)

for all θi ∈ Θi. An allocation choice function f is said to be truthfully implementable in F -
Bayes-Nash equilibrium (resp. dominant equilibrium or belief-dominant equilibrium) if there
exists a direct mechanism M d

0 such that the truthful strategy profile σd is an F -Bayes-Nash
equilibrium (resp. dominant equilibrium or belief-dominant equilibrium), and it induces f .

The revelation principle23 says that if an allocation choice function is implementable in
Bayes-Nash equilibrium (resp. dominant equilibrium or belief-dominant equilibrium) by
a mechanism, then it is also truthfully implementable in Bayes-Nash equilibrium (resp.
dominant equilibrium or belief-dominant equilibrium) by a direct mechanism. When the
players are restricted to have EUT preferences and the outcome set of each player is assumed
to be the same as the allocation set with the trivial allocation-outcome mapping, Myerson
[93] proved that the revelation principle holds for both the versions - Bayes-Nash equilibrium
and dominant equilibrium (and hence also for belief-dominant equilibrium, since dominant
strategies are equivalent to belief-dominant strategies under EUT). It is easy to extend this
result to the general setting where some of the individual outcome sets might differ from
the allocation set, provided the players are restricted to have EUT preferences. Indeed, in
Appendix 6.C it is proved that, under EUT, an allocation choice function f is implementable
in F -Bayes-Nash (resp. dominant or belief-dominant) equilibrium by a mechanism M0 for
the environment E with the equilibrium strategy σ, if and only if, for the corresponding
environment E ′ (defined in Appendix 6.C), the corresponding allocation choice function
f ′ is implementable in F ′-Bayes-Nash (resp. dominant or belief-dominant) by the same
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mechanism M0 with the corresponding equilibrium strategy σ′. We now observe that M0 is a
direct mechanism for environment E if and only if it is a direct mechanism for environment E ′.
Also, σi is the truthful strategy with respect to the environment E and a direct mechanism
M0, if and only if, the corresponding strategy σ′i is the truthful strategy with respect to the
environment E ′ and the same direct mechanism M0. These observations together give us
the required revelation principle under EUT for the setting where the outcome sets of some
of the players can differ from the allocation set.

The following example shows that the revelation principle need not hold when players
have CPT preferences. We will consider implementability in Bayes-Nash equilibrium in this
example.

Example 6.3.1. Let there be two players, i.e. n = 2. Let each player belong to one of the three
types: Mildly Favorable (MF), Unfavorable (UF), and Super Favorable (SF), i.e. Θ1 = Θ2 =
{MF,UF, SF}. Let the outcome sets for both the players be Γ1 = Γ2 = {I, II, III, IV,V}.
Let the value functions v1 and v2 for both the players be as shown below.

I II III IV V
MF 13.616 8.616 5.816 3.8 0
UF −190 −100 −1K −50 0
SF 0 0 1M 0 0

Observe that a player with type MF has mild gains for all the outcomes, a player with type
UF has medium losses for all outcomes except outcome III, where she has a big loss, and a
player of type SF has a huge gain for outcome III and zero gains otherwise.

Let the probability weighting functions for both the players, for all of their types, be
given by the following piecewise linear functions:

w+(p) =


(8/7)p, for 0 ≤ p < (7/32),

(1/4) + (2/3)(p− 7/32), for (7/32) ≤ p < 25/32,

(5/8) + (12/7)(p− 25/32), for (25/32) ≤ p < 1,

for gains, and

w−(p) =


(3/2)p, for 0 ≤ p < (1/8),

(3/16) + (1/2)(p− 1/8), for (1/8) ≤ p < 3/4,

(1/2) + 2(p− 3/4), for (3/4) ≤ p < 1,

for losses. See Figure 6.1.
Let the prior distribution F be such that the types of the players are independently

sampled with probabilities,

P(MF) = 1/2,P(UF) = 3/8,P(SF) = 1/8. (6.3.3)
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Figure 6.1: Probability weighting functions for the players in Example 6.3.1.

Let A = {a, b, c} be the allocation set, and let the allocation-outcome mapping be given
by

ζ(a) = {(1/2, (I, I)); (1/2, (V,V))},
ζ(b) = {(1/2, (II, II)); (1/2, (IV, IV))},
ζ(c) = (III, III).

Consider the allocation choice function f ∗ given by

f ∗(SF, θ2) = f ∗(θ1, SF) = c, ∀θ1 ∈ Θ1, θ2 ∈ Θ2,

f ∗(UF, θ2) = f ∗(θ1,UF) = {(1/2, a); (1/2, b)}, ∀θ1 ∈ {MF,UF}, θ2 ∈ {MF,UF},
f ∗(MF,MF) = {(1/2, a); (1/2, b)}.

We will now show that f ∗ is not truthfully implementable in F -Bayes-Nash equilibrium by
a direct mechanism. However, if we do not restrict ourselves to direct mechanisms, then we
will show that it is possible to implement f ∗ in F -Bayes-Nash equilibrium. We will then
conclude that the revelation principle does not hold for Bayes-Nash implementability when
the players have CPT preferences.

We observe that if either of the players is of type SF then under the allocation c the players
with type SF get the maximum possible reward, i.e. 1M. This motivates implementing
allocation c if either of the players is of type SF. Now suppose none of the players has type
SF. If player 1 is of type UF, then in Claim 6.3.2, we show that player 1’s CPT value for
the lottery Li(µ) corresponding to a distribution µ ∈ ∆(A) is maximized when

µ = {(1/2, a); (1/2, b); (0, c)}. (6.3.4)
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Thus, if at least one of the players has type UF and none of the players have type SF, then
the distribution in (6.3.4) gives the best CPT value for the players with type UF. This
motivates the following definition: we will call an allocation choice function f special if it
satisfies

f(SF, θ2) = f(θ1, SF) = {(1, c)},∀θ1 ∈ Θ1, θ2 ∈ Θ2, (6.3.5)

and
f(UF, θ2) = f(θ1,UF) = {(1/2, a); (1/2, b)},∀θ1, θ2 ∈ {MF,UF}. (6.3.6)

Note that f ∗ is special.
After proving Claim 6.3.2, we will show that it is impossible to truthfully implement any

special allocation choice function in F -Bayes-Nash equilibrium by a direct mechanism. In
particular, this would imply that f ∗ is not truthfully implementable by a direct mechanism.
We will then give a mechanism M0 that implements f ∗ in F -Bayes-Nash equilibrium.

Claim 6.3.2. The CPT value V UF
1 (L1(µ)) is maximized when µ is given by (6.3.4).

Proof of Claim 6.3.2. Consider a lottery

µ = {(x, a); (y, b); (z, c)},

where x, y, z are nonnegative numbers with x + y + z = 1. Then the outcome lottery for
player 1 is

L1(µ) = {(x/2, I); (y/2, II); (z, III); (y/2, IV); (x/2,V)}.
CPT satisfies strict stochastic dominance [30], i.e. shifting positive probability mass from
an outcome to a strictly preferred outcome leads to a strictly preferred lottery. This implies
that z = 0 in the optimal solution. Taking z = 0 and y = 1− x, from (1.3.9), we have

E(x) := V UF
1 ({(x/2, I); (1/2− x/2, II); (0, III); (1/2− x/2, IV); (x/2,V)})

= −90w−(x/2)− 50w−(1/2)− 50w−(1− x/2).

We can verify that this function is maximized at x = 1/2. See Figure 6.2.

Suppose we have a direct mechanism M d
0 = hd0 that truthfully implements a special

allocation choice function f . Then the allocation function hd0 must be equal to the allocation
choice function f . Since f satisfies (6.3.5) and (6.3.6), the only freedom left is in the choice
of f(MF,MF). Let

hd0(MF,MF) = f(MF,MF) = {(x′, a); (y′, b); (z′, c)},

where x′, y′, z′ are nonnegative numbers with x′ + y′ + z′ = 1. The lottery faced by a player
of type MF signaling truthfully would then be

L1(µ1(MF,MF; M d
0 , F, σ

d
−i)) = {(3/32+x′/4, I); (3/32 + y′/4, II);

(1/8 + z′/2, III); (3/32 + y′/4, IV); (3/32 + x′/4,V)}.
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Figure 6.2: Plot of expression E(x) in Claim 6.3.2.

We obtain this by using the belief F−1(·|MF) of player 1 on the type of player 2 given by
(6.3.3), the truthful strategy σd2 for player 2, and the allocation function hd0 in (6.2.13).

Claim 6.3.3. For any nonnegative x′, y′, z′ such that x′ + y′ + z′ = 1, we have

V MF
1 (L1(µ1(MF,MF; M d

0 , F, σ
d
−i))) < 5.816.

Proof of Claim 6.3.3. We have

V MF
1 L1(µ1(MF,MF; M d

0 , F, σ
d
−i)) =3.8w+(29/32− x′/4) + 2.016w+(18/32 + z′/4)

+ 2.8w+(14/32− z′/4) + 5w+(3/32 + x′/4).

We observe that the expression,

E1(z′) := 2.016w+(18/32 + z′/4) + 2.8w+(14/32− z′/4),

is maximized at z′ = 0 with value E1(0) = 2.0743. See Figure 6.3.
We can therefore set z′ = 0, since this choice would also lead to the least constrained

problem of maximizing the expression

E2(x′) := 3.8w+(29/32− x′/4) + 5w+(3/32 + x′/4) + 2.0743,

which we can see is maximized at x′ = 0 and x′ = 1. At z′ = 0, and either x′ = 0 or x′ = 1,
we have V MF

1 L1(µ1(MF,MF)) = 5.7993. See Figure 6.4.
This establishes the claim.
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Figure 6.3: Plot of expression E1(z′) in Claim 6.3.3.
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Figure 6.4: Plot of expression E2(x′) in Claim 6.3.3.
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Thus, player 1 will defect from the truthful strategy and report SF when her true type
is MF, because if she does so the allocation c will be implemented by the system operator,
which results in her outcome being III, hence giving her a value of 5.816. Hence, truthful
strategies do not form a Bayes-Nash equilibrium under the allocation function hd0. And
hence, any allocation choice function f that satisfies (6.3.5) and (6.3.6) is not truthfully
implementable by a direct mechanism.

We will now show that the allocation choice function f ∗ is implementable in Bayes-Nash
equilibrium. Consider the mechanism M0 = ((Ψi)i, h0) with the signal sets for the players
being Ψ1 = Ψ2 = {MFa,MFb,UF, SF}, and the allocation function h0 given by

h0(SF, ψ2) = h0(ψ1, SF) = c, ∀ψ1 ∈ Ψ1, ψ2 ∈ Ψ2,

h0(UF,UF) = {(1/2, a); (1/2, b)},
h0(UF,MFa) = a,

h0(UF,MFb) = b,

h0(MFa,UF) = a,

h0(MFb,UF) = b,

h0(MFa,MFa) = a,

h0(MFb,MFb) = b,

h0(MFa,MFb) = h0(MFb,MFa) = {(1/2, a); (1/2, b)}.

Now consider the strategies σ∗1 and σ∗2 given by

σ∗i (SF) = SF,

σ∗i (UF) = UF,

σ∗i (MF) = {(1/2,MFa); (1/2,MFb)}, (6.3.7)

for i = 1, 2.
One can check that the allocation function h0 and the strategy profile σ∗ induce the

allocation choice function f ∗ defined above. We will now verify that σ∗ is a Bayes-Nash
equilibrium and thus conclude that f ∗ is implementable in Bayes-Nash equilibrium.

If player i has type SF then clearly SF is a best response signal for her. To see this,
observe that amongst all the lotteries Li ∈ ∆(Γi), V

SF
i (Li) is maximized when Li = III

(this follows from the first order stochastic dominance property of CPT preferences). Since
signaling SF produces the lottery III for player i, we get that it is her best response. If player
i has type UF, then signaling UF dominates signaling SF. To see this, note that amongst
all the lotteries Li ∈ ∆(Γi), V

UF
i (Li) is minimized when Li = III (this follows from the first

order stochastic dominance property of CPT preferences). Since signaling SF produces the
lottery III for player i, we get that it is dominated by all other strategies, in particular,
signaling UF. As for comparing with signaling MFa or MFb, if she signals UF then she will
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face the lottery

Li(µi(UF,UF; M0, F, σ
∗
−i)) = {(7/32, I); (7/32, II); (1/8, III); (7/32, IV); (7/32,V)}.

If she signals MFa, then she will face the lottery

Li(µi(UF,MFa; M0, F, σ
∗
−i)) = {(3/8, I); (1/16, II); (1/8, III); (1/16, IV); (3/8,V)}.

If she signals MFb, then she will face the lottery

Li(µi(UF,MFb; M0, F, σ
∗
−i)) = {(1/16, I); (3/8, II); (1/8, III); (3/8, IV); (1/16,V)}.

The CPT values in each of these scenarios are as follows:

V UF
i (Li(µi(UF,UF; M0, F, σ

∗
−i)))

= −50w−(25/32)− 50w−(18/32)− 90w−(11/32)− 810w−(4/32)

= −227.0312,

V UF
i (Li(µi(UF,MFa; M0, F, σ

∗
−i)))

= −50w−(20/32)− 50w−(18/32)− 90w−(16/32)− 810w−(4/32)

= −227.8125,

and,

V UF
i (Li(µi(UF,MFb; M0, F, σ

∗
−i)))

= −50w−(30/32)− 50w−(18/32)− 90w−(6/32)− 810w−(4/32)

= −235.6250.

Thus, signaling UF is the best response of a player with type UF.
Finally, let player i have type MF. Depending on what she signals, we have the following

lotteries:

Li(µi(MF,MFa; M0, F, σ
∗
−i)) = {(3/8, I); (1/16, II); (1/8, III); (1/16, IV); (3/8,V)},

Li(µi(MF,MFb; M0, F, σ
∗
−i)) = {(1/16, I); (3/8, II); (1/8, III); (3/8, IV); (1/16,V)},

Li(µi(MF,UF; M0, F, σ
∗
−i)) = {(7/32, I); (7/32, II); (1/8, III); (7/32, IV); (7/32,V)},

Li(µi(MF, SF; M0, F, σ
∗
−i)) = III.

The corresponding CPT values are as follows:

V MF
i (Li(µi(MF,MFa; M0, F, σ

∗
−i)))

= 3.8w+(20/32) + 2.016w+(18/32) + 2.8w+(14/32) + 5w+(12/32)

= 5.8243,
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V MF
i (Li(µi(MF,MFb; M0, F, σ

∗
−i)))

= 3.8w+(30/32) + 2.016w+(18/32) + 2.8w+(14/32) + 5w+(2/32)

= 5.8243,

V MF
i (Li(µi(MF,UF; M0, F, σ

∗
−i)))

= 3.8w+(25/32) + 2.016w+(18/32) + 2.8w+(14/32) + 5w+(7/32)

= 5.6993,

and,

V MF
i (Li(µi(MF, SF; M0, F, σ

∗
−i))) = 5.816.

Thus σ∗i (MF) has support on optimal signals, and hence is a best response. This completes
the verification that σ∗ is a Bayes-Nash equilibrium. With this, we end our example.

In the previous example, let us focus on the behavior of player i when she has type MF.
For any mechanism with the signal sets for the players being Ψ1 = Ψ2 = {MFa,MFb,UF, SF}
as above (the mechanism M0 = ((Ψi)i, h0) considered above is an instance of such a mecha-
nism), the signals MFa and MFb allow this player to play so that the lotteries faced by her
are L′i := Li(µi(MF,MFa); M , F, σ−i) and L′′i := Li(µi(MF,MFb); M , F, σ−i) respectively,
where F denotes the prior distribution on types (i.e. the product distribution with marginals
given as in (6.3.3) above) and σ−i denotes the strategy of the other player. The lotteries L′i
and L′′i are equally preferred by player i when she has type MF, and they are preferred over
the lotteries corresponding to signaling UF or SF, when the mechanism is M0 = ((Ψi)i, h0) as
considered in Example 6.3.1, and the other player plays according to the strategy prescribed
in (6.3.7). Under the equilibrium strategy σ∗i , as defined in (6.3.7), when player i has type
MF she signals MFa or MFb each with probability half.

We can think of player 1 as tossing a fair coin to decide whether to signal MFa or MFb

when her type is MF, and similarly for player 2. The outcome of the coin toss is private
knowledge to the player tossing the coin. The equilibrium strategies in (6.3.7) correspond
to each player signaling UF or SF truthfully if that is her type, while if her type is MF then
she signals MFa or MFb depending on the outcome of her coin toss. From our analysis in
the above example, we have that these strategies form an F -Bayes-Nash equilibrium for this
game and induce the allocation choice function f ∗.

An alternate viewpoint is to think of the coins being tossed at the beginning as before,
but now let us assume that the system operator observes the outcomes of both the coins. We
continue to assume that each player does not observe the result of the coin toss of the other
player. Suppose each player only has the option to signal from {MF,UF, SF}. The system
operator collects these signals and implements a lottery on the allocation set according to
the following rule: If player i signals UF or SF then let ψ′i = UF or ψ′i = SF respectively. If
player i signals MF then, depending on the outcome of coin toss i, let ψ′i = MFa or MFb.
The system operator implements h0(ψ′1, ψ

′
2). Now consider the strategy where each player
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reports her type truthfully. We observe that this strategy is an F -Bayes-Nash equilibrium
for this game and induces f ∗.

Thus the issue with the revelation principle is superficial in the sense that the reason that
it does not hold is not that player i does not wish to reveal her type, but rather that she
would like to have an asymmetry in the information of the players. In the above example,
this asymmetry comes from the coin tosses and, as seen in the latter viewpoint, these coin
tosses can be thought of as shared between each individual player and the system operator,
so one could even think of the coins as being tossed by system operator, with the result of
each individual coin toss being shared with the respective player. To capture this intuition,
we propose a framework where there is a mediator who sends messages to each individual
player before collecting their signals. As we will see now, this way we can recover a form of
the revelation principle.

6.4 Mediated Mechanisms and the Revelation

Principle

We now lay out the framework for a mechanism with messages from the mediator, along the
lines of the augmented framework for mechanism design motivated by the example above.
Let Φi be a finite message set for each player i, with a typical element denoted by φi, and let
Φ :=

∏
i Φi. Let D ∈ ∆(Φ) denote a mediator distribution from which the mediator draws a

profile of messages φ := (φ1, . . . , φn). Let Di ∈ ∆(Φi) denote the marginal of D on Φi. For
any φi ∈ suppDi, let the conditional distribution be given by

D−i(φ−i|φi) :=
D(φi, φ−i)

Di(φi)
, for all φ−i ∈ Φ−i, (6.4.1)

where φ−i := (φj)j 6=i and Φ−i :=
∏

j 6=i Φj. Let Ψi be a finite set of signals as before. Let

h : Φ×Ψ→ ∆(A) (6.4.2)

be a mediated allocation function. The message sets Φi, i ∈ [n], a mediator distribution
D ∈ ∆(Φ), and a mediated allocation function h together constitute a mediated mechanism,
denoted by

M := ((Φi)i∈[n], D, (Ψi)i∈[n], h). (6.4.3)

The mediator first draws a profile of messages φ from the distribution D. Each player i
observes her message φi, and then sends a signal ψi to the mediator. The mediator collects
the signals from all the players and then chooses an allocation according to the probability
distribution h(φ, ψ). A strategy for any player i is thus given by

τi : Φi ×Θi → ∆(Ψi). (6.4.4)

Let τi(ψi|φi, θi) denote the probability of signal ψi under the distribution τi(φi, θi). Let
τ := (τ1, . . . , τn) denote the profile of strategies. Suppose player i has received message
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φi and has type θi (thus, φi ∈ suppDi, and θi ∈ suppFi), and she chooses to signal ψi
(so ψi ∈ supp τi(φi, θi)); then consider the probability distribution µi(φi, θi, ψi; M , F, τ−i) ∈
∆(A) given by

µi(α|φi, θi, ψi; M , F, τ−i) :=
∑
φ−i

D−i(φ−i|φi)
∑
θ−i

F−i(θ−i|θi)

×
∑
ψ−i

∏
j 6=i

τj(ψj|φj, θj)h(α|φ, ψ). (6.4.5)

The best response strategy set BRi(τ−i) of player i to a strategy profile τ−i of her oppo-
nents consists of all strategies τ ∗i : Φi ×Θi → ∆(Ψi) such that

W θi
i (µi(φi, θi, ψi; M , F, τ−i)) ≥ W θi

i (µi(φi, θi, ψ
′
i; M , F, τ−i)), (6.4.6)

for all φi ∈ suppDi, θi ∈ suppFi, ψi ∈ supp τ ∗i (φi, θi), ψ
′
i ∈ Ψi.

A strategy profile τ ∗ is said to be an F -Bayes-Nash equilibrium for the environment E
with respect to the mediated mechanism M if for each player i we have

τ ∗i ∈ BRi(τ
∗
−i). (6.4.7)

We will say that an allocation choice function f : Θ → ∆(A) is implementable in F -
Bayes-Nash equilibrium by a mediated mechanism if there exists a mediated mechanism M
and an F -Bayes-Nash equilibrium τ with respect to this mediated mechanism such that f is
the induced allocation choice function, i.e. for all θ ∈ suppF, α ∈ A, we have

f(α|θ) =
∑
φ

D(φ)
∑
ψ

(∏
i

τi(ψi|φi, θi)

)
h(α|φ, ψ). (6.4.8)

A mediated mechanism M = ((Φi)i∈[n], D, (Ψi)i∈[n], h) is called a direct mediated mecha-
nism if Ψi = Θi for all i, and we write it as M d = ((Φi)i∈[n], D, (Θi)i∈[n], h

d), where

hd : Φ×Θ→ ∆(A)

is the corresponding direct mediated allocation function.
For a direct mediated mechanism, the truthful strategy τ di for player i should satisfy

τ di (φi, θi) = θi, for all φi ∈ Φi, and θi ∈ Θi. Thus, if player i receives a message φi and
has type θi, she reports her true type θi irrespective of her received message. In a way, the
messages are present only to align the beliefs of the players appropriately so that truth-telling
is an equilibrium strategy (depending on the type of equilibrium under consideration, i.e.
Bayes-Nash, dominant, or belief-dominant equilibrium). Note that in the definition of the
truthful strategy τ di for player i we require τ di (φi, θi) = θi, for all θi ∈ Θi and φi ∈ Φi, and
not just for θi ∈ suppFi (when discussing an F -Bayes-Nash equilibrium) and φi ∈ suppDi.
This is done to make the notion of a truthful strategy uniquely defined.
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An allocation choice function f is said to be truthfully implementable in mediated F -
Bayes-Nash equilibrium if there exists a direct mediated mechanism M d such that the truth-
ful strategy profile τ d is a mediated F -Bayes-Nash equilibrium and it implements f .

Let us now extend the notion of dominant equilibrium and belief-dominant equilibrium
to the mediated mechanism framework. Let

µi(φi, θi, ψi; M , ψ−i) :=
∑
φ−i

D−i(φ−i|φi)h(φ, ψ), (6.4.9)

denote the lottery faced by player i with type θi, who has received message φi (thus, φi ∈
suppDi) and believes that her opponents are going to report ψ−i. Similarly, let

µi(φi, θi, ψi; M , G−i) :=
∑
φ−i

D−i(φ−i|φi)
∑
ψ−i

G−i(ψ−i)h(φ, ψ), (6.4.10)

denote the lottery faced by player i with type θi, who has received message φi ∈ suppDi

and has belief G−i ∈ ∆(Ψ−i) over her opponents’ signal profiles. We define strategy τ ∗i to
be dominant if, for all φi ∈ suppDi, θi ∈ Θi, ψi ∈ supp τ ∗i (φi, θi), ψ

′
i ∈ Ψi, and ψ−i ∈ Ψ−i,

we have
W θi
i (µi(φi, θi, ψi; M , ψ−i)) ≥ W θi

i (µi(φi, θi, ψ
′
i; M , ψ−i)). (6.4.11)

Similarly, we define strategy τ ∗i to be belief-dominant if, for all φi ∈ suppDi, θi ∈ Θi,
ψi ∈ supp τ ∗i (φi, θi), ψ

′
i ∈ Ψi, and G−i ∈ ∆(Ψ−i), we have

W θi
i (µi(φi, θi, ψi; M , G−i)) ≥ W θi

i (µi(φi, θi, ψ
′
i; M , G−i)). (6.4.12)

An allocation choice function f is said to be implementable in dominant equilibrium by
a mediated mechanism if there is a mediated mechanism M and a dominant equilibrium τ
(i.e. a strategy profile comprised of dominant strategies for the individual players) such that
f is the allocation choice function induced by τ under M , i.e. (6.4.8) holds for all θ ∈ Θ and
α ∈ A. f is said to be truthfully implementable in dominant equilibrium by a direct mediated
mechanism if there is a directed mediated mechanism M d such that the truthful strategy
profile is a dominant equilibrium and induces f under M d. The notions of implementability
by a mediated mechanism and truthful implementability by a direct mediated mechanism of
an allocation choice function in belief-dominant equilibrium can be similarly defined.

If the message set Φi is a singleton for each player i, then we get back the original
mechanism design framework. Thus, the mediated mechanism design framework defined
above is a generalization of the mechanism design framework. This generalization allows us
to establish a form of the revelation principle even when players have CPT preferences.

A special case of the mediated mechanism design framework is when the mediator message
profile φ is publicly known. That is, each player knows the entire message profile instead of
privately knowing only her own message. This would happen if Φi = Φ∗, for all i ∈ [n], and
D is a diagonal distribution, i.e. D(φ) = 0 for all message profiles φ = (φi)i∈[n] such that
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φi 6= φj for some pair i, j ∈ [n]. Let Φ∗ denote the common message set and let D∗ ∈ ∆(Φ∗)
denote the mediator distribution on this set. Let

M∗ := (Φ∗, D∗, (Ψi)i∈[n], h∗)

denote such a mediated mechanism with common messages, where now

h∗ : Φ∗ ×Ψ→ ∆(A).

We will call M∗ a publicly mediated mechanism. The notions of an allocation choice function
being implementable in publicly mediated Bayes-Nash equilibrium, publicly mediated domi-
nant equilibrium, or publicly mediated belief-dominant equilibrium can be defined similarly
to the corresponding earlier definitions that were made for general message sets. The notions
of an allocation choice function being truthfully implementable in direct publicly mediated
Bayes-Nash equilibrium, direct publicly mediated dominant equilibrium, or direct publicly
mediated belief-dominant equilibrium can also be defined similarly to the corresponding
earlier definitions that were made for general message sets.

We are now in a position to state one of our main results.

Theorem 6.4.1 (Revelation Principle). We have the following three versions of the revela-
tion principle:

(i) If an allocation choice function is implementable in Bayes-Nash equilibrium by a me-
diated mechanism, then it is also truthfully implementable in Bayes-Nash equilibrium
by a direct mediated mechanism.

(ii) If an allocation choice function is implementable in dominant equilibrium by a publicly
mediated mechanism, then it is also truthfully implementable in dominant equilibrium
by a direct publicly mediated mechanism.

(iii) If an allocation choice function is implementable in belief-dominant equilibrium by a
mediated (resp. publicly mediated) mechanism, then it is also truthfully implementable
in belief-dominant equilibrium by a direct mediated (resp. direct publicly mediated)
mechanism.

We prove this theorem in Appendix 6.A. Theorem 6.4.1, in particular, implies that if an
allocation choice function is implementable in Bayes-Nash equilibrium by a non-mediated
mechanism then it is truthfully implementable in Bayes-Nash equilibrium by a direct me-
diated mechanism. Similarly, if an allocation choice function is implementable in dominant
strategies (resp. belief-dominant strategies) by a non-mediated mechanism, then it is truth-
fully implementable in dominant strategies (resp. belief-dominant strategies) by a direct
publicly mediated mechanism. Table 6.1 summarizes the different implementability settings
under which the revelation principle does and does not hold. Example 6.3.1 shows that
the revelation principle does not hold for the setting with Bayes-Nash equilibrium and non-
mediated mechanism. In Example 6.4.2, we show that the revelation principle does not hold
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Non-mediated Publicly Mediated Mediated
Bayes-Nash Equilibrium 8 8 4

Dominant Equilibrium 8 4 8

Belief-dominant Equilibrium 8 4 4

Table 6.1: Settings in which the revelation principle holds.

for the settings with dominant equilibrium or belief-dominant equilibrium and non-mediated
mechanism. In Example 6.4.3, we show that the revelation principle does not hold for the
settings with Bayes-Nash equilibrium and publicly mediated mechanism. Finally, in Exam-
ple 6.4.4, we show that the revelation principle does not hold for the setting with dominant
equilibrium and mediated mechanism.

Example 6.4.2. Consider the setting from Example 6.2.1 with two players. Recall that
Θ1 = Θ2 = {UP,DN}, A = {a, b, c}, Γ1 = {I, II, III, IV,V}, Γ2 = A. The allocation-outcome
mapping is given by the product distribution of the marginals ζ1 and ζ2, given by ζ1(a) =
{(1/2, I); (1/2,V)}, ζ1(b) = {(1/2, II); (1/2, IV)}, ζ1(c) = {(1, (III))}, and ζ2(α) = α, ∀α ∈ A.
The probability weighting functions for gains for the two players are

w+
1 (p) = exp{−(− ln p)0.5}, w+

2 (p) = p,

for p ∈ [0, 1] (see Figure 6.1). Let the value functions v1 and v2 be given by

v1 I II III IV V
UP 2x x+ 1 1.99 1 0
DN 0 0 1 0 0

v2 a b c
UP 1 0 2
DN 0 1 2

where x := 1/w+
1 (0.5) = 2.2992.

Consider a mechanism M0 = {(Ψ1,Ψ2), h0}, where Ψ1 = {a, b, c}, Ψ2 = {UP,DN}, and

h0(a, ψ2) = a,

h0(b, ψ2) = b,

h0(c, ψ2) = c,

for all ψ2 ∈ Ψ2. The CPT values for player 1 having type UP for the lotteries over her
outcomes corresponding to the different allocations are given by

V UP
1 (L1(a)) = 2xw+

1 (0.5) = 2,

V UP
1 (L1(b)) = w+

1 (1) + xw+
1 (0.5) = 2,

V UP
1 (L1(c)) = 1.99.

Further, the CPT values for player 1 having type DN for the above lotteries are given by

V DN
1 (L1(a)) = 0, V DN

1 (L1(b)) = 0, V DN
1 (L1(c)) = 1.
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Since the allocation choice function h0 does not depend on the signal of player 2, from the
above the above calculations, we observe that the strategy σ1 given by

σ1(·|0) = {(0.5, a); (0.5, b)},
σ1(·|1) = c,

is a dominant strategy. and a belief-dominant strategy. Let σ2 be the truthful strategy for
player 2. Again, since the allocation choice function h0 does not depend on the signal of player
2, σ2 is trivially a dominant strategy and a belief-dominant strategy. Thus σ = (σ1, σ2) is
a dominant equilibrium and a belief-dominant equilibrium. The corresponding social choice
function f is given by

f(UP, θ2) = {(0.5, a); (0.5, b)},
f(DN, θ2) = c.

Thus, the allocation choice function f is implementable in dominant (resp. belief-dominant)
equilibrium. Suppose there were a direct mechanism M d

0 = hd0 that truthfully implements
the allocation choice function f in dominant (resp. belief-dominant) equilibrium. Then,
hd0 = f . As observed in Example 6.2.1, the CPT value for player 1 having type UP for the
lottery corresponding to {(0.5, a); (0.5; b)} is

V UP
1 (L1({(0.5, a); (0.5; b)})) = 1.9851.

If player 1 has type UP and believes that player 2’s type report is UP (or equivalently,
any other distribution over player 2’s type report), then player 1 would deviate from her
truthful strategy and report DN instead, because it gives her a higher CPT value. Hence
the truthful strategy σd1 is not a dominant (resp. belief-dominant) equilibrium for the direct
mechanism M d

0 . Thus f is not truthfully implementable in dominant (resp. belief-dominant)
equilibrium by a direct mechanism.

We will now show that the revelation principle does not hold for the setting with Bayes-
Nash equilibrium and publicly mediated mechanism. Let us first make an observation re-
garding the allocation choice functions that are truthfully implementable in F -Bayes-Nash
equilibrium by a direct publicly mediated mechanism. Let f be an allocation choice function
that is truthfully implementable in F -Bayes-Nash equilibrium by a direct publicly mediated
mechanism

M d
∗ = (Φ∗, D∗, (Θi)i∈[n], h

d
∗), (6.4.13)

where
hd∗ : Φ∗ ×Θ→ ∆(A), (6.4.14)

is the direct mediated allocation function for this direct publicly mediated mechanism. Since
truthful strategies τ d are an F -Bayes-Nash equilibrium, for each φ∗ ∈ suppD∗, we have

W θi
i (µi(φ∗, θi, θi; M

d
∗ , F, τ

d
−i)) ≥ W θi

i (µi(φ∗, θi, θ̃i; M
d
∗ , F, τ

d
−i)), (6.4.15)
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for all θi ∈ suppFi, θ̃i ∈ Θi, i ∈ [n], where

µi(φ∗, θi, θ̃i; M
d
∗ , F, τ

d
−i) =

∑
θ−i

F−i(θ−i|θi)hd∗(φ∗, θ̃i, θ−i),

is the lottery induced on the allocations for player i receiving message φ∗, having type θi,
and deciding to report type θ̃i. Now, fix φ∗ ∈ Φ∗ with D∗(φ∗) > 0, and consider a non-
mediated direct mechanism M d

0 := ((Θi)i∈[n], h
d
0), with its direct allocation function being

hd0(·) := hd∗(φ∗, ·) : Θ → ∆(A). It follows from (6.4.15) that truthful strategies correspond-
ing to mechanism M d

0 form an F -Bayes-Nash equilibrium. Thus, we note that hd∗(φ∗, ·)
is the allocation function truthfully implemented by the non-mediated direct mechanism
M d

0 . Since mechanism M d
∗ truthfully implements the allocation function f in F -Bayes-Nash

equilibrium, we have that

f(θ) =
∑
φ∗

D∗(φ∗)h
d
∗(φ∗, θ),

for all θ ∈ suppF . From these two observations, we conclude that if f is an allocation choice
function that is truthfully implementable in F -Bayes-Nash equilibrium by a direct publicly
mediated mechanism, then f is a convex combination of allocation choice functions each of
which is truthfully implementable in F -Bayes-Nash equilibrium by a non-mediated direct
mechanism. It is easy to see that the converse of this statement is also true.

In the following example, we will use this observation to establish that the revelation
principle does not hold for the setting with Bayes-Nash equilibrium and publicly mediated
mechanism.

Example 6.4.3. Let there be two players, i.e. n = 2. Let Θ1 = Θ2 = {UP,DN}. Let
Γ1 = Γ2 = {I, II, III, IV,V}. Let the value function v1 for player 1 be as shown below

v1 I II III IV V
UP 80 57 34 17 0
DN 0 0 100 0 0

and let the value function v2 for player 2 be as shown below

v2 I II III IV V
UP −79 −56 −33 −17 0
DN 0 0 100 0 0

Let the probability weighting functions for both the players, for both types, for gains and
losses, be given by the following piecewise linear function:

w±1 (p) = w±2 (p) = w(p) =


(8/7)p, for 0 ≤ p < (7/32),

(1/4) + (2/3)(p− 7/32), for (7/32) ≤ p < 25/32,

(5/8) + (12/7)(p− 25/32), for (25/32) ≤ p < 1,
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(See the probability weighting function for gains in Figure 6.1.) Let the prior distribution F
be such that the types of the players are independently sampled with probabilities,

P(UP) = 3/4,P(DN) = 1/4. (6.4.16)

Let A = {a, b, c}. Let

ζ(a) = {(1/2, (I, I)); (1/2, (V,V))},
ζ(b) = {(1/2, (II, II)); (1/2, (IV, IV))},
ζ(c) = (III, III).

Consider the allocation choice function f ∗ given by

f ∗(DN, θ2) = f ∗(θ1,DN) = c, ∀θ1 ∈ Θ1, θ2 ∈ Θ2

f ∗(UP,UP) = {(1/2, a); (1/2, b)}.

We will now show that f ∗ is implementable in F -Bayes-Nash equilibrium by a publicly
mediated mechanism. In fact, we will show that f ∗ is implementable in F -Bayes-Nash
equilibrium by a non-mediated mechanism. We will then show that f ∗ cannot be a convex
combination of allocation choice functions each of which is truthfully implementable by a
non-mediated direct mechanism. This will give us that f ∗ is not truthfully implementable in
F -Bayes-Nash equilibrium by a direct publicly mediated mechanism. We will then conclude
that the revelation principle does not hold for the setting with Bayes-Nash equilibrium and
publicly mediated mechanism.

Consider the mechanism M0 = ((Ψi)i∈[n], h0), where Ψ1 = {UPa,UPb,DN}, Ψ2 =
{UP,DN}, and the allocation function h0 is given by

h0(DN, ψ2) = h0(ψ1,DN) = c, ∀ψ1 ∈ Ψ1, ψ2 ∈ Ψ2,

h0(UPa,UP) = a,

h0(UPa,UP) = b.

Consider the strategy σ1 for player 1 given by

σ1(UP) = {(1/2,UPa); (1/2,UPb)},
σ1(DN) = DN,

and the strategy σ2 for player 2 given by

σ2(UP) = UP,

σ2(DN) = DN.

It is easy to see that this induces the allocation choice function f ∗.
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We will now verify that σ is an F -Bayes-Nash equilibrium for M0. If player 1 has type
UP, then the CPT values of the lotteries faced by her corresponding to her signals are as
follows:

WUP
1 (µ1(UP,UPa; M0, F, σ−1)) = V UP

1 ({(3/8, I); (0, II); (1/4, III); (0, IV); (3/8,V)})
= 46w(3/8) + 34w(5/8)

= 34.

WUP
1 (µ1(UP,UPb; M0, F, σ−1)) = V UP

1 ({(0, I); (3/8, II); (1/4, III); (3/8, IV); (0,V)})
= 23w(3/8) + 17w(5/8) + 17

= 34.

WUP
1 (µ1(UP,DN; M0, F, σ−1)) = V UP

1 (III) = 34.

Thus player 1 is indifferent between all signals when she has type UP and so the strategy of
signaling σ1(UP) = {(1/2,UPa); (1/2,UPb)} is optimal for her.

If player 1 has type DN, then III is the best outcome and she receives this lottery if she
signals DN. Thus DN dominates any other strategy, in particular, signaling UPa or UPb.

If player 2 has type UP, then the CPT values of the lotteries faced by her corresponding
to her signals are as follows:

WUP
2 (µ1(UP,UP; M0, F, σ−2)) = V UP

1 ({(3/16, I); (3/16, II); (1/4, III); (3/16, IV); (3/16,V)})
= −23w(3/16)− 23w(3/8)− 16w(5/8)− 17w(13/16)

= −32.94.

WUP
2 (µ1(UP,DN; M0, F, σ−2)) = V UP

1 (III) = −33.

Hence the strategy of signaling σ2(UP) = UP is optimal for player 2 when she has type UP.
If player 2 has type DN, then III is the best outcome and she receives this lottery if she

signals DN. Thus DN dominates any other strategy, in particular, signaling UP.
This shows that σ is an F -Bayes-Nash equilibrium for M0, and hence establishes that f ∗

is implementable in F -Bayes-Nash equilibrium by a non-mediated mechanism.
Suppose f ∗ were a convex combination of allocation choice functions each of which is

truthfully implementable by a non-mediated direct mechanism. Let f be one of the allocation
choice functions in this convex combination. Since f ∗(DN, θ2) = f ∗(θ1,DN) = c for all θ1, θ2,
and since {c} is an extreme point of the simplex ∆(A), we get that

f(DN, θ2) = f(θ1,DN) = c, ∀θ1 ∈ Θ1, θ2 ∈ Θ2. (6.4.17)

Similarly, since f ∗(UP,UP) lies on the line joining the vertices {a} and {b} of the simplex
∆(A), we get that

f(UP,UP) = {(x, a); (1− x, b)}, (6.4.18)
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Figure 6.1: Plot of expression E3(x) in Example 6.4.3.

where 0 ≤ x ≤ 1.
Let f be truthfully implementable in F -Bayes-Nash equilibrium by the non-mediated

direct mechanism M d
0 = hd0. Then hd0 = f . If player 1 has type UP, then the lottery faced

by her if she reports UP is given by

L1(µ1(UP,UP; M d
0 , F, σ

d
−1)) = {(3x/8, I); (3(1−x)/8, II); (1/4, III); (3(1−x)/8, IV); (3x/8,V)},

where σd−1 = σd2 is the truthful strategy of player 2. Let

E3(x) := 23w

(
3x

8

)
+ 23w

(
3

8

)
+ 17w

(
5

8

)
+ 17w

(
1− 3x

8

)
,

for x ∈ [0, 1]. We observe that E3(x) is maximum at x = 0 and x = 1, and for all x ∈ (0, 1),
E3(x) < 34. (See Figure 6.1.)

Now, unless x = 0 or x = 1, player 1 will defect from the truthful strategy and report
DN when her true type is UP, because if she does so the allocation c will be implemented by
the system operator, which results in her outcome III, hence giving her a value of 34. Thus,
x = 0 or x = 1.

If player 2 has type UP, then the lottery faced by her if she reports UP is given by

L2(µ2(UP,UP; M d
0 , F, σ

d
−2)) = {(3x/8, I); (3(1−x)/8, II); (1/4, III); (3(1−x)/8, IV); (3x/8,V)},

where σd−2 = σd1 is the truthful strategy of player 1. If x = 0, then the CPT value for player
2 is given by

V UP
2 ({(0, I); (3/8, II); (1/4, III); (3/8, IV); (0,V)}

= −23w(3/8)− 16w(5/8)− 17

= −33.48.
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If x = 1, then the CPT value for player 2 is given by

V UP
2 ({(3/8, I); (0, II); (1/4, III); (0, IV); (3/8,V)}

= −46w(3/8)− 33w(5/8)

= −33.48.

Now, if x = 0 or x = 1, player 2 will defect from the truthful strategy and report DN when
her true type is UP, because if she does so the allocation c will be implemented by the
system operator, which results in her outcome III, hence giving her a value of −33. Thus
x cannot be 0 or 1, leading to a contradiction. Thus, f ∗ cannot be a convex combination
of allocation choice functions each of which is truthfully implementable by a non-mediated
direct mechanism. This completes the argument.

Example 6.4.4. We will now show that in the setting with dominant equilibrium and mediated
mechanism, the revelation principle does not hold. This happens even when the players have
EUT preferences. Let there be two players, i.e. n = 2. Let Θ1 = {UP,DN}, Θ2 = {UN}.
Let Γ1 = Γ2 = A = {I, II, III}. Let the value functions v1 and v2 be given by

v1 I II III
UP 5 −10 10
DN 0 0 10

v2 I II III
UN 5 −10 −5

Both the players have EUT preferences (i.e, their probability weighting functions are identity
functions).

Consider the allocation choice function f given by

f(UP,UN) = I and f(DN,UN) = III.

We claim that this allocation choice function cannot be implemented by any direct mediated
mechanism in truthful dominant equilibrium. To see this, suppose there exists a direct
mediated mechanism M d = ((Φ1,Φ2), D, h) that truthfully implements the allocation choice
function f in dominant equilibrium. Consider the lottery

µ1(φ1, θ1, θ
′
1; M d,UN) =

∑
φ2

D−1(φ2|φ1)h(φ, θ′1,UN),

for player 1 when she receives message φ1, has type θ1, chooses to report θ′1 (and trivially
believes that player 2 reports type UN since that is the only type for player 2). Note that
µ1(φ1, θ1, θ

′
1; M d,UN) does not depend on the type θ1 of player 1. For any message φ1,

consider the function π1(φ1, ·) : Θ→ ∆(A) given by

π1(φ1, θ1,UN) := µ1(φ1, θ1, θ1; M d,UN).

Note that π1(φ1, ·) is an allocation choice function. Since M d truthfully implements f , we
have

f(θ1,UN) =
∑
φ1

D1(φ1)πi(φ1, θ1,UN),
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for θ1 = UP and DN. Thus, the allocation choice function f is a convex combination of the
functions {π1(φ1, ·)}φ1 . Since f is an extreme point of the convex set of all allocation choice
functions, we get that π1(φ1, ·) = f(·) for all φ1. Since truthful strategies are assumed to
form a dominant equilibrium, we should have

W θ1
1 (µ1(φ1, θ1, θ1; M ,UN)) ≥ W θ1

1 (µ1(φ1, θ1, θ
′
1; M ,UN)),

for θ1 = UP and DN. However,

WUP
1 (µ1(φ1,UP,UP; M ,UN)) = WUP

1 (π1(φ1,UP,UN))

= WUP
1 (f(UP,UN))

= WUP
1 (I) = 5 < 10 = WUP

1 (III)

= WUP
1 (f(DN,UN))

= WUP
1 (π1(φ1,DN,UN))

= WUP
1 (µ1(φ1,UP,DN; M ,UN)).

This is a contradiction, and hence, we conclude that the allocation choice function f is not
truthfully implementable by a direct mediated mechanism in dominant equilibrium.

We will now show that the allocation choice function f can be implemented by mediated
mechanism in dominant equilibrium if we use the message sets Φ1 = {C},Φ2 = {L,R} and
the signal sets Ψ1 = {UP,DN},Ψ2 = {L,R}. Let the mediator distribution be given by
D(C,L) = D(C,R) = 1/2. Let the mediated allocation function h : Φ×Ψ→ ∆(A) be given
by

h(C,L,UP, L) = I,

h(C,L,UP, R) = I,

h(C,L,DN, L) = III,

h(C,L,DN, R) = II,

h(C,R,UP, L) = I,

h(C,R,UP, R) = I,

h(C,R,DN, L) = II,

h(C,R,DN, R) = III.

Let M = ((C, (L,R)), D, h) be the mediated mechanism. Now, consider the strategies
σ1 : Φ1 ×Θ1 → ∆(Ψ1) and σ2 : Φ2 ×Θ2 → ∆(Ψ2) given by

σ1(C,UP) = UP and σ1(C,DN) = DN,

σ2(L,UN) = L and σ1(R,UN) = R.
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We will now verify that these strategies form a dominant equilibrium and implement the
allocation choice function f . Let us first verify that σ1 is a dominant strategy. We have,

WUP
1 (µ1(C,UP,UP; M , L)) = 0.5vUP

1 (h(C,L,UP, L)) + 0.5vUP
1 (h(C,R,UP, L)) = 5,

WUP
1 (µ1(C,UP,DN; M , L)) = 0.5vUP

1 (h(C,L,DN, L)) + 0.5vUP
1 (h(C,R,DN, L)) = 0,

WUP
1 (µ1(C,UP,UP; M , R)) = 0.5vUP

1 (h(C,L,UP, R)) + 0.5vUP
1 (h(C,R,UP, R)) = 5,

WUP
1 (µ1(C,UP,DN; M , R)) = 0.5vUP

1 (h(C,L,DN, R)) + 0.5vUP
1 (h(C,R,DN, R)) = 0.

Thus, when player 1 has type UP, it is in her best interest to report UP in both the cases
corresponding to her belief about the report by player 2, namely, L and R. On the other
hand, when player 1 has type DN, we have

WDN
1 (µ1(C,DN,UP; M , L)) = 0.5vDN

1 (h(C,L,UP, L)) + 0.5vDN
1 (h(C,R,UP, L)) = 0,

WDN
1 (µ1(C,DN,DN; M , L)) = 0.5vDN

1 (h(C,L,DN, L)) + 0.5vDN
1 (h(C,R,DN, L)) = 5,

WDN
1 (µ1(C,DN,UP; M , R)) = 0.5vDN

1 (h(C,L,UP, R)) + 0.5vDN
1 (h(C,R,UP, R)) = 0,

WDN
1 (µ1(C,DN,DN; M , R)) = 0.5vDN

1 (h(C,L,DN, R)) + 0.5vDN
1 (h(C,R,DN, R)) = 5.

Thus, when player 1 has type DN, it is in her best interest to report DN in both the cases
corresponding to her belief about the report by player 2, namely, L and R. Hence, σ1 is a
dominant strategy for player 1. For player 2, we have

WUN
2 (µ2(L,UN, L; M ,UP)) = vUN

2 (h(C,L,UP, L)) = 5,

WUN
2 (µ2(L,UN, R; M ,UP)) = vUN

2 (h(C,L,UP, R)) = 5,

WUN
2 (µ2(L,UN, L; M ,DN)) = vUN

2 (h(C,L,DN, L)) = −5,

WUN
2 (µ2(L,UN, R; M ,DN)) = vUN

2 (h(C,L,DN, R)) = −10.

Hence, σ2 is a dominant strategy for player 1.
Thus, σ is a dominant equilibrium. It is easy to verify that it implements the allocation

choice function f for the mechanism M . We thus conclude that the revelation principle does
not hold in the setting with dominant equilibrium and mediated mechanism.

6.5 Summary

In this chapter, we considered mechanism design for CPT players and in this process we
discovered several important concepts that have gone unnoticed in the classical setting with
EUT players. Namely, we saw that it is important to treat the allocation set and the outcome
set of each player separately, both from theoretical as well as behavioral point of view. We
also saw that we need to be careful while considering the notion of dominant strategies
with CPT players and we need to treat the two notions of dominant equilibrium and belief-
dominant equilibrium separately. Next, we saw that the generalized framework of mediated
mechanisms recovers the coveted revelation principle.
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Notice that in Table 6.1, we have a tick mark in each row. This tells us that anything
that can be implemented by a non-mediated mechanism (possibly with general signals) can
be truthfully implemented by a direct (publicly or general) mediated mechanism. Indeed,
if a social choice function is implementable in Bayes-Nash equilibrium by a non-mediated
equilibrium, then it is truthfully implementable in Bayes-Nash equilibrium by a direct me-
diated mechanism. Further, the setting for implementability in Bayes-Nash equilibrium by
mediated mechanisms is favorable in the sense that the revelation principle holds here and
we can restrict our attention to truthful implementability by direct mediated mechanisms.
In the setting for implementability in dominant equilibrium, if a social choice function is
implementable in dominant equilibrium by a non-mediated equilibrium, then it is truthfully
implementable in dominant equilibrium by a direct publicly mediated mechanism. And,
the setting for implementability in dominant equilibrium by publicly mediated mechanisms
is favorable in the sense that the revelation principle holds here and we can restrict our
attention to truthful implementability by direct publicly mediated mechanisms. Finally,
in the setting of implementability in belief-dominant equilibrium, if a social choice func-
tion is implementable in belief-dominant equilibrium by a non-mediated equilibrium, then
it is truthfully implementable in belief-dominant equilibrium by a direct publicly mediated
mechanism. Besides, the revelation principle holds for both publicly mediated and mediated
mechanisms in the setting of belief-dominant equilibrium.

It is worthwhile to repeat the importance of truthful implementability of social choice
functions by direct (mediated) mechanisms, namely, we can restrict our attention to truthful
strategies. We will now see some of the benefits of the revelation principle and truthful
strategies that make applications of mechanism design practical for large-scale implementa-
tion with participants who can be both, humans and machines.

Generally in the settings where agents exhibit deviations from expected utility behavior,
one would expect that the participating agents do not possess large computational power.
Hence, truthful strategies are especially suitable for such settings in contrast to the more
complicated strategies that are permitted by the concept of Bayes-Nash equilibrium. On
the other hand, if our participating agents do not possess large computational power, then
it is natural to question if they have the ability to exhibit strategic behavior, in particular
the requirement that the strategies form a Bayes-Nash equilibrium (or dominant equilibrium
or belief-dominant equilibrium). However, there can also be agents in the system who do
possess large computational power. Indeed, most of the systems such as online auctions
and marketplaces or networked-systems such as transportation networks, Internet routing
networks, etc. are comprised of players having varying degrees of computational and strategic
abilities. For example, a firm participating in an online marketplace has the resources to
estimate the common prior and other players’ strategies through extensive data collection,
and thus can develop optimal strategies. On the other hand, individual agents participating
in the same system often lack such resources. When truthful strategies are in equilibrium,
we get the best of both the worlds – it is easy for the players with limited resources to
implement optimal strategies and at the same time there is no incentive for the players with
large resources to deviate from these strategies.
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Consider the setting when players have independent types, i.e. the common prior F on
the type profiles has a product distribution F =

∏
i Fi. Let M d = ((Φi)i∈[n], D, (Θi)i∈[n], h

d)
be a direct mediated mechanism in such a setting. We note that the lottery induced on the
outcome set of player i when she receives a message φi, has type θi, and decides to report θ̃,
is independent of her own type θi. This is because her belief F−i(·|θi) on the type profiles of
her opponents is independent of her type θi. With an abuse of notation, let us denote this
belief by F−i ∈ ∆(Θ−i). Then the lottery induced on the outcome set of player i when she
receives a message φi ∈ suppDi, and decides to report θ̃, is given by

Lφi,θ̃ii (γi) :=
∑
φ−i

D−i(φ−i|φi)
∑
θ−i

F−i(θ−i)
∑
α

hd(α|φ, θ̃, θ−i)ζi(γi|α), γi ∈ Γi.

We will now interpret the message profile as determining the menu of options to be presented
to each player. For example, if the message profile φ ∈ Φ is drawn from the distribution D,
then player i would be presented with the menu comprised of lotteries, one for each type
θ̃i ∈ Θi of the player. Let

Li(φi) := {Lφi,θ̃ii }θ̃i∈Θi
,

denote the list of lotteries presented to player i when her message is φi ∈ Φi. Depending on
the player’s type, she chooses the lottery that gives her maximum CPT value. If truthful
strategies form an F -Bayes-Nash equilibrium, then the lottery Lφi,θii is indeed the best option
for a player with type θi.

In several practical situations, the players are unaware of the type sets of other players
Θj, j 6= i, the allocation set A, the allocation-outcome mapping ζ, and the common prior F .
It might also be preferable to relieve the players from the burden of knowing the message
sets and the mediator distribution D. Note that the system operator has enough knowledge
to construct the list of lotteries Li(φi) for each player i based on her sampled message φi.
Now, using the knowledge of her own type θi, namely her preferences on the lotteries over
her outcome set, player i can select the lottery that is optimal for her from the list Li(φi).
This provides a way to operate the mechanism M d under reasonable assumptions on the
players’ information.

Further, it is beneficial to limit the complexity of the list Li(φi) presented to the players.
A way to do this would be to limit the size of the list and the complexity of each individual
lottery in the list. The complexity of each individual lottery can be restricted, for example,
by limiting the size of the outcome set Γi and by restricting the probabilities of each outcome
to belong to a grid {k/K : 0 ≤ k ≤ K}, where K > 0 determines the granularity of the grid.
Our framework with separate allocation and outcome sets is helpful in imposing restrictions
on the size of the outcome set Γi. Subsequently, for any lottery Li ∈ ∆(Γi), we can find an
approximate lottery L̃i = {(pi(γi), γi)}γi∈Γi such that pi(γi) ∈ {k/K : 0 ≤ k ≤ K} for all
γi ∈ Γi.

On the other hand, the size of the list Li(φi) is same as the size of the type set Θi in the
worst case. This could make things practically infeasible. For example, when considering
type spaces comprised of general CPT preferences, it might be impossible in practice to
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elicit the probability weighting functions from the agents. Restricting the type space can
lead to inefficient social choice functions. The mediated mechanism design framework could
allow us to limit the size of menu options and at the same time have diversity in the social
choice function across different types of the players, facilitated by the messaging stage. Such
multiple communication rounds have been studied under EUT and there is an extensive lit-
erature concerning the communication requirements in mechanism design. (See [86] and the
references therein. See also the literature on computational mechanism design [36].) Given
that the non-EUT preferences can reliably be applied only to non-dynamic decision-making,
we are especially interested in mechanisms that have a single stage of mediator messages to
which the participating agents respond optimally by choosing their best option. It would be
interesting to study the design of mechanisms that optimally elicit CPT preferences under
communication restrictions such as limiting the size of the menu options. For example, we
could consider mechanism designs where the mediated allocation function hd for a direct
mediated mechanism has to satisfy |{Li(φi}| ≤ B, for all messages φi, for some bound B.

In this chapter, we focused on the mechanism design framework and the revelation prin-
ciple for agents having CPT preferences. It is just the first step towards mechanism design
for non-EUT players, with several interesting directions for future work. In the next chapter,
we will discuss some of these directions.

Appendix

6.A Proof of the Revelation Principle

We will first consider the revelation principle in the setting of mediated mechanisms. This
corresponds to statement (i) and a part of statement (ii) of Theorem 6.4.1. In this setting
we will show that if an allocation choice function f is implementable in Bayes-Nash equi-
librium (resp. belief-dominant equilibrium) by a mediated mechanism then it is truthfully
implementable in Bayes-Nash equilibrium (resp. belief-dominant equilibrium) by a direct
mediated mechanism. We will then consider the setting of publicly mediated mechanisms
and show that if an allocation choice function f is implementable in dominant equilibrium
(resp. belief-dominant equilibrium) by a publicly mediated mechanism then it is truthfully
implementable in dominant equilibrium (resp. belief-dominant equilibrium) by a direct pub-
licly mediated mechanism. This will complete the proof of statement (ii) and the remaining
part of statement (iii) of Theorem 6.4.1.

For the first setting, let

M = ((Φi)i∈[n], D, (Ψi)i∈[n], h),

be a mediated mechanism and let τ be a strategy profile that induces f for this mechanism.
Consider now the direct mediated mechanism

M d = ((Φ′i)i∈[n], D
′, (Θi)i∈[n], h

d),
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where the message set is given by

Φ′i := Φi × (Ψi)
Θi , (6.A.1)

with a typical element denoted by

φ′i := (φi, (ψ
θ′i
i )θ′i∈Θi), (6.A.2)

and the mediator distribution D′ is given by

D′(φ′) := D(φ)
∏
i∈[n]

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)
for all φ′ ∈ Φ′. (6.A.3)

The modified mediator messages and the mediator distribution can be interpreted as encap-
sulating the randomness in the strategies of the players for each of their types into their
private messages.

We now observe that

D′i(φ
′
i) = Di(φi)

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)
, (6.A.4)

and ∑
φ′i∈Φ′i

D′i(φ
′
i) =

∑
φ′∈Φ′

D′(φ′) = 1.

Thus, D′ ∈ ∆(Φ′) is indeed a valid distribution. Equation (6.A.4) can be formally proved as
follows:

D′i(φ
′
i) =

∑
φ′−i∈Φ′−i

D′(φ′i, φ
′
−i)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

(ψ
θ′j
j )θ′

j
∈Θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj

∏
j 6=i

∏
θ′j∈Θj

τj

(
ψ
θ′j
j |φj, θ′j

) ∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)∏
j 6=i

∏
θ′j∈Θj

∑
ψ
θ′
j
j ∈Ψj

τj

(
ψ
θ′j
j |φj, θ′j

)
=

∑
φ−i∈Φ−i

D(φi, φ−i)
∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)∏
j 6=i

∏
θ′j∈Θj

1
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= Di(φi)
∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)
.

Let the direct mediated allocation function be given by

hd(φ′, θ′) := h

(
φ,
(
ψ
θ′i
i

)
i∈[n]

)
for all φ′ ∈ Φ′, θ′ ∈ Θ. (6.A.5)

Note that the construction of the direct mediated mechanism is independent of the prior
distribution F .

The modified mediator messages and the direct mediated allocation function hd essen-
tially transfer the randomness in the strategies of the players to the mediator messages, thus
allowing each player to simply report her type. We observe that the truthful strategies

τ di (θ̃i|φ′i, θi) = 1{θ̃i = θi},
for all players i, implement the allocation choice function f for the direct mediated mechanism
M d. Here is a formal proof.

Let us compute the distribution on the allocation set induced by the truthful strategy
for the direct mediated mechanism. For any fixed θ ∈ Θ and α ∈ A, we have∑

φ′∈Φ′

D′(φ′)
∑
θ̃∈Θ

∏
i∈[n]

τ di (θ̃i|φ′i, θi)

hd(α|φ′, θ̃)

=
∑
φ′∈Φ′

D′(φ′)
∑
θ̃∈Θ

∏
i∈[n]

1{θ̃i = θi}

hd(α|φ′, θ̃)

... because τ d is a truthful strategy

=
∑
φ′∈Φ′

D′(φ′)hd(α|φ′, θ)

=
∑
φ′∈Φ′

D(φ)

∏
i∈[n]

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)hd(α|φ′, θ)

... from (6.A.3)

=
∑
φ∈Φ

D(φ)
∑

(ψ
θ′i
i )θ′

i
∈Θi,i∈[n]

∈
∏
i∈[n](Ψi)

Θi

∏
i∈[n]

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)hd(α|φ′, θ)

... from (6.A.2)

=
∑
φ∈Φ

D(φ)
∑

(ψ
θ′i
i )θ′

i
∈Θi,i∈[n]

∈
∏
i∈[n](Ψi)

Θi

∏
i∈[n]

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)h
(
α
∣∣φ, (ψθii )i∈[n]

)
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... from (6.A.5)

=
∑
φ∈Φ

D(φ)
∑

(ψ
θi
i )i∈[n]

∈
∏
i∈[n] Ψi

∑
(ψ
θ′i
i )θ′

i
6=θi,i∈[n]

∈
∏
i∈[n](Ψi)

Θi\θi

∏
i∈[n]

∏
θ′i 6=θi

τi

(
ψ
θ′i
i |φi, θ′i

)

×

∏
i∈[n]

τi
(
ψθii |φi, θi

)h
(
α
∣∣φ, (ψθii )i∈[n]

)

=
∑
φ∈Φ

D(φ)
∑

(ψ
θi
i )i∈[n]

∈
∏
i∈[n] Ψi

∏
i∈[n]

τi
(
ψθii |φi, θi

)h
(
α
∣∣φ, (ψθii )i∈[n]

)

×
∑

(ψ
θ′i
i )θ′

i
6=θi,i∈[n]

∈
∏
i∈[n](Ψi)

Θi\θi

∏
i∈[n]

∏
θ′i 6=θi

τi

(
ψ
θ′i
i |φi, θ′i

)

=
∑
φ∈Φ

D(φ)
∑

(ψ
θi
i )i∈[n]

∈
∏
i∈[n] Ψi

∏
i∈[n]

τi
(
ψθii |φi, θi

)h
(
α
∣∣φ, (ψθii )i∈[n]

)

×

∏
i∈[n]

∏
θ′i 6=θi

∑
ψ
θ′
i
i ∈Ψi

τi

(
ψ
θ′i
i |φi, θ′i

)
=
∑
φ∈Φ

D(φ)
∑

(ψ
θi
i )i∈[n]

∈
∏
i∈[n] Ψi

∏
i∈[n]

τi
(
ψθii |φi, θi

)h
(
α
∣∣φ, (ψθii )i∈[n]

)∏
i∈[n]

∏
θ′i 6=θi

1


... because τi(·|φi, θ′i) ∈ ∆(Ψi)

=
∑
φ∈Φ

D(φ)
∑
ψ∈Ψ

∏
i∈[n]

τi (ψi|φi, θi)

h
(
α
∣∣φ, ψ)

= f(α|θ) if θ ∈ suppF

... from (6.4.8).

This confirms that the truthful strategy profile implements the social choice function for the
direct mediated mechanism M d.

We will now show that if τ is an F -Bayes-Nash equilibrium for M , then τ d is an F -
Bayes-Nash equilibrium for M d. We will then show that if τ is a belief-dominant equilibrium
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for M , then τ d is a belief-dominant equilibrium for M d. To prove these two statements,
we first make the following observation concerning the lottery induced over the allocations
for player i in the setting of the direct mediated mechanism M d, when she receives the

message φ′i := (φi, (ψ
θ′i
i )θ′i∈Θi) ∈ suppD′i, has type θi ∈ Θi, has a belief G′−i ∈ ∆(Θ−i) on

the opponents’ type reports (which are the signals of the opponents in this direct mediated
mechanism), and decides to report θ̃i. The lottery induced over the allocations for player i
satisfies

µ′i(φ
′
i, θi, θ̃i; M

d, G′−i) :=
∑

φ′−i∈Φ′−i

D′−i(φ
′
−i|φ′i)

∑
θ−i∈Θ−i

G′−i(θ−i)h
d(φ′, θ̃i, θ−i)

=
∑

φ−i∈Φ−i

D−i(φ−i|φi)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑
ψ−i

(∏
j 6=i

τj (ψj|φj, θj)

)
h
(
φ, ψθ̃ii , ψ−i

)
. (6.A.6)

We give a formal proof of this in Appendix 6.B. Let us see how this observation helps us prove
the two statements above, namely, τ d is an equilibrium (F -Bayes-Nash or belief-dominant
resp.) of M d given that τ is an equilibrium (F -Bayes-Nash or belief-dominant resp.) of M .

Suppose F is the common prior and τ is an F -Bayes-Nash equilibrium for the mediated
mechanism M . Let φ′i ∈ suppD′i and θi ∈ suppFi. From (6.A.4), we know that D′i(φ

′
i) > 0

implies Di(φi) > 0 and τi(ψ
θ′i
i |φi, θ′i) > 0, for all θ′i ∈ Θi, (and in particular, we have

τi(ψ
θi
i |φi, θi) > 0). Since τ is a Bayes-Nash equilibrium for M , we have

W θi
i

(
µi(φi, θi, ψ

θi
i ; M , F, τ−i)

)
≥ W θi

i

(
µi(φi, θi, ψ̃i; M , F, τ−i)

)
,

for all ψ̃i ∈ Ψi. (Note that ψθii ∈ supp τi(·|φi, θi), φi ∈ suppDi, θi ∈ suppFi.) Taking
G′−i = F−i(·|θi) in (6.A.6), we get that

µ′i(φ
′
i, θi, θ̃i; M

d, F, τ d−i) = µi(φi, θi, ψ
θ̃i
i ; M , F, τ−i), (6.A.7)

for all θ̃i ∈ Θi, and thus,

W θi
i

(
µ′i(φ

′
i, θi, θi; M

d, F, τ d−i)
)

= W θi
i

(
µi(φi, θi, ψ

θi
i ; M , F, τ−i)

)
≥ W θi

i

(
µi(φi, θi, ψ

θ̃i
i ; M , F, τ−i)

)
= W θi

i

(
µ′i(φ

′
i, θi, θ̃i; M

d, F, τ d−i)
)
, (6.A.8)

for all θ̃i ∈ Θi. This establishes that the truthful strategy τ d is an F -Bayes-Nash equilibrium
for M .
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Now suppose τ is a belief-dominant strategy for M . Let φ′i ∈ suppD′i and θi ∈ Θi. Again,
this implies Di(φi) > 0 and ψθii ∈ supp τi(φi, θi). Corresponding to a belief G′−i ∈ ∆(Θ−i),
consider the belief G−i ∈ ∆(Ψ−i) given by

G−i(ψ−i) :=
∑

φ−i∈Φ−i

D−i(φ−i|φi)
∑

θ−i∈Θ−i

G′−i(θ−i)

(∏
j 6=i

τj (ψj|φj, θj)

)
(6.A.9)

Then, from (6.A.6), we have that

µ′i(φ
′
i, θi, θ̃i; M

d, G′−i) = µi(φi, θi, ψ
θ̃i
i ; M , G−i) (6.A.10)

Noting that ψθ̃ii ∈ supp τi(φi, θ̃i) for all θ̃i ∈ Θi and φi ∈ suppDi, and τi being a belief-
dominant strategy, we get that

W θi
i

(
µ′i(φ

′
i, θi, θi; M

d, G′−i)
)
≥ W θi

i

(
µ′i(φ

′
i, θi, θ̃i; M

d, G′−i)
)

(6.A.11)

for all θ̃i ∈ Θi. Thus, the truthful strategy τ d is a belief-dominant strategy for M d.
This completes the proof of statement (i) in Theorem 6.4.1 and part of statement (iii)

corresponding to mediated mechanisms. We now consider the setting of publicly mediated
mechanisms and establish the rest of the theorem.

Let
M∗ = (Φ∗, D∗, (Ψi)i∈[n], h∗)

be a publicly mediated mechanism and for each player i let τi : Φ∗ × Θi → ∆(Ψi) be her
strategy such that the strategy profile τ induces the allocation choice function f for this
mechanism. We now consider the direct publicly mediated mechanism

M d
∗ := (Φ′∗, D

′
∗, (Θi)i∈[n], h

d
∗),

where the message set is given by

Φ′∗ := Φ∗ ×
n∏
i=1

(Ψi)
Θi ,

with a typical element denoted by

φ′∗ := (φ∗, (ψ
θ′i
i )θ′i∈Θi,i∈[n]), (6.A.12)

and the mediator distribution D′∗ is given by

D′∗(φ
′
∗) := D∗(φ∗)

∏
i∈[n]

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)
for all φ′ ∈ Φ′. (6.A.13)
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Similar to the previous setting, here the modified mediator messages and the mediator dis-
tribution can be interpreted as encapsulating the randomness in the strategies of the players
for each of their types into the public messages. We can similarly verify that D′∗ is indeed
a probability distribution on Φ′∗. The direct mediated allocation function hd∗ in the direct
publicly mediated mechanism M d is given by

hd∗(φ
′
∗, θ
′) := h∗

(
φ∗,
(
ψ
θ′i
i

)
i∈[n]

)
for all φ′∗ ∈ Φ′∗, θ

′ ∈ Θ. (6.A.14)

We can similarly verify that the truthful strategies

τ d(φ′∗, θi) = θi

implement the allocation choice function f for M d
∗ .

Fix φ′∗ ∈ suppD′∗. Note that

hd∗(φ
′
∗, θ̃i, θ−i) = h∗(φ∗, ψ

θ̃i
i , (ψ

θj
j )j 6=i), (6.A.15)

for all θ̃i ∈ Θi. From (6.A.13), we have φ∗ ∈ suppD∗ and ψθii ∈ supp τi(φ∗, θi) for all θi ∈ Θi.
Now suppose τ is a dominant equilibrium for M∗. The lottery induced over the allocations

for player i when she receives a publicly mediated message φ′∗, has type θi, believes that the
opponents are reporting θ−i, and decides to report θ̃i is given by

µ′i(φ
′
∗, θi, θ̃i; M

d
∗ , θ−i) = hd∗(φ

′
∗, θ̃i, θ−i). (6.A.16)

We get this from (6.4.9) by considering the special case of publicly mediated mechanisms.
From (6.A.15), we get that this is equal to the lottery induced over the allocations for player
i when she receives a publicly mediated message φ∗, has type θi, believes that the opponents
are reporting ψ

θj
j , j 6= i, and decides to report ψθ̃i , namely,

µi(φ∗, θi, ψ
θ̃
i ; M∗, (ψ

θj
j )j 6=i) = h∗(φ∗, ψ

θ̃
i , (ψ

θj
j )j 6=i).

Since τi is a dominant strategy, φ∗ ∈ suppD∗, and ψθii ∈ supp τi(φ∗, θi), we have

W θi
i (µi(φ∗, θi, ψ

θi
i ; M∗, (ψ

θj
j )j 6=i)) ≥ W θi

i (µi(φ∗, θi, ψ̃i; M∗, (ψ
θj
j )j 6=i)),

for all ψ̃i ∈ Ψi. Hence, we have

W θi
i (µ′i(φ

′
∗, θi, θi; M

d
∗ , θ−i)) ≥ W θi

i (µ′i(φ
′
∗, θi, θ̃i; M

d
∗ , θ−i)),

for all θ̃i ∈ Θi. Thus, τ d is a dominant equilibrium of M d
∗ .

Now suppose that τ is a belief-dominant equilibrium for M∗. Consider the fixed message

φ′∗ = (φ∗, (ψ
θ′i
i )θ′i∈Θi,i∈[n]) ∈ suppD′∗,
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as before. Corresponding to a belief G′−i ∈ ∆(Θ−i), consider G−i,∗ ∈ ∆(Ψ−i) given by

G−i,∗(ψ̃−i) :=
∑

θ−i∈Θ−i

s.t.ψ
θj
j =ψ̃−i,∀j 6=i

G′−i(θ−i), (6.A.17)

for all ψ̃−i ∈ Ψ−i, where ψ
θj
j are the signals corresponding to the types as defined by the

message φ′∗.
As observed in equation (6.A.16), the lottery induced over the allocations for player i,

when she receives message φ′∗, has type θi, believes that the opponents’ are reporting θ−i,
and decides to report θ̃i is given by hd∗(φ

′
∗, θ̃i, θ−i). Now suppose that she has belief G′−i on

her opponents’ type report instead. Then, the induced lottery over the allocations for player
i is given by

µ′i(φ
′
∗, θi, θ̃i; M

d
∗ , G

′
−i) =

∑
θ−i∈Θ−i

G′−i(θ−i)h
d
∗(φ
′
∗, θ̃i, θ−i)

=
∑

θ−i∈Θ−i

G′−i(θ−i)h∗(φ∗, ψ
θ̃i
i , (ψ

θj
j )j 6=i)

... from (6.A.15)

=
∑

ψ̃−i∈Ψ−i

h∗(φ∗, ψ
θ̃i
i , ψ̃−i)

∑
θ−i∈Θ−i

s.t.ψ
θj
j =ψ̃−i,∀j 6=i

G′−i(θ−i)

=
∑

ψ̃−i∈Ψ−i

h∗(φ∗, ψ
θ̃i
i , ψ̃−i)G−i,∗(ψ̃−i)

... from (6.A.17)

= µi(φ∗, θi, ψ
θ̃i
i ; M∗, G−i,∗).

Since τ is a belief-dominant equilibrium, φ∗ ∈ suppD∗, and ψθii ∈ supp τi(φ∗, θi) for all
θi ∈ Θi, we have

W θi
i (µi(φ∗, θi, ψ

θi
i ; M∗, G−i,∗) ≥ W θi

i (µi(φ∗, θi, ψ̃i; M∗, G−i,∗),

for all ψ̃i ∈ Ψi. Hence, we have

W θi
i (µ′i(φ

′
∗, θi, θi; M

d
∗ , G

′
−i)) ≥ W θi

i (µ′i(φ
′
∗, θi, θ̃i; M

d
∗ , G

′
−i)),

for all θ̃i ∈ Θi. Thus, τ d is a belief-dominant equilibrium of M d
∗ .

This completes the proof of the theorem.
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6.B Proof of Equation (6.A.6)

Let us recall the first setting considered in Appendix 6.A. We have a mediated mechanism

M = ((Φi)i∈[n], D, (Ψi)i∈[n], h),

and a corresponding strategy profile τ . We had constructed a direct mediated mechanism

M d = ((Φ′i)i∈[n], D
′, (Θi)i∈[n], h

d),

given by (6.A.1), (6.A.2), (6.A.3), and (6.A.5). We are interested in the situation when player

i receives message φ′i := (φi, (ψ
θ′i
i )θ′i∈Θi) ∈ suppD′i, has type θi ∈ Θi, and belief G′−i ∈ ∆(Θ−i)

on the opponents’ type reports, and decides to report θ̃i. Since D′(φ′i) > 0 by assumption,
we have ∑

φ′−i∈Φ′−i

D′−i(φ
′
−i|φ′i)

∑
θ−i∈Θ−i

G′−i(θ−i)h
d(φ′, θ̃i, θ−i)

=

∑
φ′−i∈Φ′−i

D′(φ′i, φ
′
−i)
∑

θ−i∈Θ−i
G′−i(θ−i)h

d(φ′, θ̃i, θ−i)∑
φ′−i∈Φ′−i

D′(φ′i, φ
′
−i)

.

Let the denominator be denoted by

C1 :=
∑

φ′−i∈Φ′−i

D′(φ′i, φ
′
−i) = D′i(φ

′
i).

We now focus on the numerator, to get∑
φ′−i∈Φ′−i

D′(φ′i, φ
′
−i)

∑
θ−i∈Θ−i

G′−i(θ−i)h
d(φ′, θ̃i, θ−i)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

(ψ
θ′j
j )θ′

j
∈Θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj

∏
j 6=i

∏
θ′j∈Θj

τj

(
ψ
θ′j
j |φj, θ′j

) ∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)

×
∑

θ−i∈Θ−i

G′−i(θ−i)h
d(φ′, θ̃i, θ−i)

... from (6.A.3)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

(ψ
θ′j
j )θ′

j
∈Θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj

∏
j 6=i

∏
θ′j∈Θj

τj

(
ψ
θ′j
j |φj, θ′j

)∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)
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×
∑

θ−i∈Θ−i

G′−i(θ−i)h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)
... from (6.A.5)

=

∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

) ∑
φ−i∈Φ−i

D(φi, φ−i)
∑

(ψ
θ′j
j )θ′

j
∈Θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj

∏
j 6=i

∏
θ′j∈Θj

τj

(
ψ
θ′j
j |φj, θ′j

)

×
∑

θ−i∈Θ−i

G′−i(θ−i)h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)
Let

C2 :=
∏
θ′i∈Θi

τi

(
ψ
θ′i
i |φi, θ′i

)
.

We have,

∑
φ−i∈Φ−i

D(φi, φ−i)
∑

(ψ
θ′j
j )θ′

j
∈Θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj

∏
j 6=i

∏
θ′j∈Θj

τj

(
ψ
θ′j
j |φj, θ′j

)

×
∑

θ−i∈Θ−i

G′−i(θ−i)h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)
∑

(ψ
θ′j
j )θ′

j
∈Θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj

∏
j 6=i

∏
θ′j∈Θj

τj

(
ψ
θ′j
j |φj, θ′j

)

× h
(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)
=

∑
φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑

(ψ
θj
j )j 6=i
∈(Ψj)j 6=i

∑
(ψ
θ′j
j )θ′

j
∈Θj\θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj\θj

∏
j 6=i

∏
θ′j∈Θj\θj

τj

(
ψ
θ′j
j |φj, θ′j

)

×

(∏
j 6=i

τj

(
ψ
θj
j |φj, θj

))
h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)
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=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑

(ψ
θj
j )j 6=i
∈(Ψj)j 6=i

(∏
j 6=i

τj

(
ψ
θj
j |φj, θj

))
h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)

×
∑

(ψ
θ′j
j )θ′

j
∈Θj\θj ,j 6=i

∈
∏
j 6=i(Ψj)

Θj\θj

∏
j 6=i

∏
θ′j∈Θj\θj

τj

(
ψ
θ′j
j |φj, θ′j

)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑

(ψ
θj
j )j 6=i
∈(Ψj)j 6=i

(∏
j 6=i

τj

(
ψ
θj
j |φj, θj

))
h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)

×

∏
j 6=i

∏
θ′j∈Θj\θj

∑
ψ
θ′
j
j ∈Ψj

τj

(
ψ
θ′j
j |φj, θ′j

)
=

∑
φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑

(ψ
θj
j )j 6=i
∈(Ψj)j 6=i

(∏
j 6=i

τj

(
ψ
θj
j |φj, θj

))
h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)

×

∏
j 6=i

∏
θ̃′j∈Θj\θj

1


=

∑
φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑

(ψ
θj
j )j 6=i
∈(Ψj)j 6=i

(∏
j 6=i

τj

(
ψ
θj
j |φj, θj

))
h

(
φi, φ−i, ψ

θ̃i
i ,
(
ψ
θj
j

)
j 6=i

)

=
∑

φ−i∈Φ−i

D(φi, φ−i)
∑

θ−i∈Θ−i

G′−i(θ−i)
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×
∑
ψ−i

(∏
j 6=i

τj (ψj|φj, θj)

)
h
(
φi, φ−i, ψ

θ̃i
i , ψ−i

)
= Di(φi)

∑
φ−i∈Φ−i

D−i(φ−i|φi)
∑

θ−i∈Θ−i

G′−i(θ−i)

×
∑
ψ−i

(∏
j 6=i

τj (ψj|φj, θj)

)
h
(
φi, φ−i, ψ

θ̃i
i , ψ−i

)
.

We recall that Di(φi)C2/C1 = 1 from (6.A.4), and hence, we get (6.A.6).

6.C Outcome Sets can be Identified with the

Allocation Set under EUT

Consider a setting in which all the players have EUT preferences for all their types. For this
restricted setting, we will now construct an environment

E ′ :=
(
[n], (Θ′i)i∈[n], A, (Γ

′
i)i∈[n], ζ

′) ,
that we call the reduced environment corresponding to the environment (as defined in (6.2.1))

E :=
(
[n], (Θi)i∈[n], A, (Γi)i∈[n], ζ

)
.

From (6.2.9), we observe that, since we are dealing with EUT preferences, the utility
function W θi

i is completely determined by the values uθii (α),∀α ∈ A. Suppose the mechanism
designer models the outcome set of each player i by Γ′i = A instead of the true outcome set
Γi, with the trivial allocation-outcome mapping ζ ′i instead of the original allocation-outcome
mapping ζi. Let ζ ′ denote the product of the trivial allocation-outcome mappings ζ ′i, i ∈ [n].
Corresponding to a type θi ∈ Θi for player i, the mechanism designer models her type by
θ′i, which is characterized by the utility function uθii : Γ′i → R as defined in (6.2.8). Since
the players are assumed to have EUT preferences, the probability weighting functions under
each type θ′i are modeled to be w±i (p) = p,∀p ∈ [0, 1]. Let Θ′i denote the set comprised of all
types θ′i corresponding to the types θi ∈ Θi. Let Ti : Θi → Θ′i denote the function for this
correspondence. Suppose the mechanism designer treats the environment as if given by

E ′ :=
(
[n], (Θ′i)i∈[n], A, (Γ

′
i)i∈[n], ζ

′) .
Let Θ′ :=

∏
i Θ
′
i. Let T : Θ → Θ′ denote the product transformation defined by the

functions Ti, i ∈ [n]. Notice that the function Ti is a bijection since, as pointed out earlier,

even if uθii = uθ̃ii for some θi 6= θ̃i, we will treat Ti(θi) and Ti(θ̃i) as different elements of Θ′i.
For any prior F ∈ ∆(Θ), let F ′ ∈ ∆(Θ′) be the corresponding prior induced by the bijection
T .
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Note that, for any player i, having any type θi, and any lottery µ ∈ ∆(A), we have

W θi
i (µ) = W

Ti(θi)
i (µ). (6.C.1)

(Here, W
Ti(θi)
i should be interpreted as the utility function for player i with type θ′i = Ti(θi)

corresponding to the reduced environment E ′.) Let f ′ : Θ′ → A be an allocation choice
function that is implementable in F ′-Bayes-Nash equilibrium σ′ := (σ′i)i∈[n] (where σ′i : Θ′i →
∆(Ψ′i)) for the mechanism

M0 = ((Ψi)i∈[n], h0).

Now suppose the system operator uses the same mechanism M0 in environment E . Con-
sider the allocation choice function f : Θ→ ∆(A) given by

f(θ) = f ′(T (θ)).

For each player i, consider the strategy σi : Θi → ∆(Ψi) given by

σi(θi) = σ′i(Ti(θi)).

Similar to (6.2.13), for any θ′i ∈ suppF ′i and signal ψi, let

µ′i(θ
′
i, ψi; M0, F

′, σ′−i) :=
∑

θ−i∈Θ−i

F ′−i(θ−i|θi)
∑

ψ−i∈Ψ−i

∏
j 6=i

σj(ψj|θ′j)h0(ψ), (6.C.2)

be the belief of player i on the allocation set corresponding to the reduced environment E ′.
Note that

µi(θi, ψi; M0, F, σ−i) = µ′i(Ti(θi), ψi; M0, F
′, σ′−i).

From observation (6.C.1) and the definition of F -Bayes-Nash equilibrium in (6.2.14) and
(6.2.15), we get that the allocation choice function f is implementable in F -Bayes-Nash
equilibrium by the mechanism M0 with the equilibrium strategy σ.

On the other hand, suppose we have an allocation choice function f : Θ → ∆(A).
Consider the corresponding allocation choice function f ′ : Θ′ → ∆(A) given by

f ′(θ′) = f(T −1(θ)).

We now observe that if f is implementable in F -Bayes-Nash equilibrium by a mechanism
M0 and an F -Bayes-Nash equilibrium σ, then so is f ′ by the same mechanism M0 and the
F ′-Bayes-Nash equilibrium σ′ comprised of

σ′i(θ
′
i) = σi(T

−1
i (θ′i)),

for all i ∈ [n], θ′i ∈ Θ′i.
We can similarly show that if f ′ is implementable in dominant (resp. belief-dominant)

equilibrium by a mechanism M0 with the equilibrium strategy profile σ′ for the reduced
environment E ′, then so is f by the same mechanism M0 with the corresponding equilibrium
strategy profile σ for the environment E , and vice versa.

Hence, under EUT, from the mechanism designer’s point of view, it is enough to model
the types of player i by setting the outcome set Γ′i = A, assuming the trivial allocation-
outcome mapping ζ ′i, and the types θ′i ∈ Θ′i.
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Notes
18 Myerson [93] refers to the mechanism design framework as a generalized principal-agent problem. In

contrast to our framework, Myerson is interested in problems where the agents have private decision domains
in addition to private information. Here, by private decision domains, we mean possible actions for the player
that directly affect the outcomes. For example, in employment contracts the actions of the employee directly
affect the outcome. These actions should not be confused with the signals of the player in the communication
protocol set up by the system operator. We prefer to call the entity in control as the system operator instead
of the principal to emphasize that the system operator alone controls the system implementation. We restrict
ourselves to situations where agents do not have private decision domains because such situations involve
dynamic decision-making, and non-EUT models face several issues in such situations (see Section ?? for
more on this). Thus our model cannot account for moral hazard.

19 Here, strictly speaking, given a matching by the platform, the users can refuse to go through with the
matching. Although these decisions fall under the separate decision domains of the agents, they are rare and
can be accounted for separately.

20 Since we have assumed that the type of a player completely determines her CPT features, we are implic-
itly assuming private preferences, i.e. the preference over lotteries on the outcome set for each player is her
private information and does not depend on other players’ information or types, also known as informational
externalities (see [134]).

21 Even if uθii = uθ̃ii for some θi 6= θ̃i it is sometimes convenient to retain the connection to the underlying
type. Notice that we have allowed different types of player i to have the same CPT features. Later, when
we discuss mechanism design with a common prior, which is a distribution on the types of all the players, it
will let us differentiate between the types of players that have identical CPT features but distinct beliefs on
the opponents’ types. Mechanism design often focuses on “naive type sets”, that is, the type set Θi for each
player i is assumed to be comprised of exactly one element for each “preference type” of the player. Here,
by preference type of a player we mean the preferences of the player on her outcome set. We borrow the
expression “naive type sets” from [20]. In this chapter, we do not assume the type sets to be naive. Such an
assumption would entail a bijective correspondence between the types θi and the CPT features (vi, w

±
i ) for

each player i. This distinction is relevant because besides having a preference type, a player can also have a
“belief type”. For example, the prior F could be such that F−i(θi) 6= F−i(θ̃i) even when the value function
and the probability weighting functions corresponding to the types θi and θ̃i coincide. (For more on this,
see [15, 80], and Chapter 10 of [19].)

22 Note that, in general, the preferences defined by the utility function W θ
i over the lotteries over the

allocation set may not be given by CPT preferences directly, i.e. there need not exist any probability
weighting functions w̃±i such that, for all µ ∈ ∆(A), W θi

i (µ) is equal to the CPT value corresponding to

the value function uθii on A and the probability weighting functions w̃±i . To see this, consider a type θi
for player i such that V θii (L′i) = V θii (L′′i ) > V θii (0.5L′i + 0.5L′′i ), for lotteries L′i, L

′′
i ∈ ∆(Γi). See [106] for

an example of CPT preferences and lotteries (over 4 outcomes) that satisfy the above condition. Let there
be two allocations α′ and α′′ such that ζi(α

′) = L′i and ζi(α
′′) = L′′i . If W θi

i were to correspond to any
CPT preference directly on the allocation set then, by the first order stochastic dominance property of CPT,
we would get W θi

i (0.5α′ + 0.5α′′) = W θi
i (α′) = W θi

i (α′′). But, since this is not true for the setting under

consideration, we get that W θi
i cannot correspond to any CPT preference directly over A.

23 This is the version of the revelation principle commonly referred to in the mechanism design context.
Another version of the revelation principle appears in the context of correlated equilibrium [6, 5]. This is
concerned with an n-player non-cooperative game in normal form. A mediator draws a message profile,
comprised of a message for each player, from a fixed joint probability distribution on the set of message
profiles, and sends each player her corresponding message. The joint distribution over message profiles used
is assumed to be common knowledge between the mediator and all the players. Based on her received
signal, each player chooses her action (possibly from a probability distribution over her action set). When
the message set for each player is the same as her action set and the probability distribution on the set of
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message profiles (or equivalently action profiles) is such that truthful strategy, i.e. the strategy of choosing
the action that is received as a message from the mediator, is a Nash equilibrium, then such a probability
distribution is said to be a correlated equilibrium. Under EUT, the set of all correlated equilibria of a
game is characterized as the union over all possible message sets and mediator distributions, of the sets of
joint distributions on the action profiles of all players, arising from all the Nash equilibria for the resulting
game. See [106] for a discussion on the revelation principle for correlated equilibrium when players have CPT
preferences. Myerson [91] has considered a further generalization to games with incomplete information in
which each player first reports her type. Analyzing such settings under CPT would entail dynamic decision
making and is beyond the scope of this chapter.
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Chapter 7

Concluding Remarks and Directions
for Future Work

Civilization advances by
extending the number of
important operations which we
can perform without thinking
about them.

Alfred Whitehead

7.1 Introduction

EUT has been the backbone of almost every development in economics and game theory. It
feels natural to extend these achievements to more general and better models of behavior if
possible. CPT is an excellent tool to make progress in this direction. In my experience, CPT
often introduces several modeling complications, however, in most cases, as is evident from
this thesis, it is possible to extend the results from game theory and economics to players
with CPT preferences. In each instance, we had to make special provisions either to the
underlying framework or define appropriate notions - new ones or old ones with modified
interpretations. This portrays the richness of this pursuit and a cue for future undertakings
along these lines.

By no means this means that CPT can solve all the problems observed due to behavioral
factors and deviations from EUT. For example, in [102], Nwogugu points out that “human
beings and human decision making are subject to emotions, fairness considerations, ethical
considerations, implied or actual constraints, personal aspirations, philosophical differences,
regret, regret aversion, social pressure, peer pressure, phobias, perception of incentives, differ-
ences in cognition, biological differences in neural activity, willingness to defer, reciprocation,
and willingness to use risk management tools, all of which result in significant departures
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from rationality and traditional models of humans in decision making.” Some of these as-
pects can be accounted for by CPT and some cannot. This doesn’t mean that we should
abandon the approach based on theories of rationality. Indeed, principled approaches based
on fundamental theoretical developments have often helped in guiding real-world applica-
tions. Here is an excerpt from [118] stated in another context that illustrates the value of
theoretical pursuits in applied fields:

Consider the design of suspension bridges. The Newtonian physics they embody
is beautiful both in mathematics and in steel, and college students can be taught
to derive the curves that describe the shape of the supporting cables. But no
bridge could be built based only on this elegant theoretical treatment, in which
the only force is gravity, and all beams are perfectly rigid. Real bridges are built
of steel and rest on rock and soil and water, and so bridge design also concerns
metal fatigue, soil mechanics, and the forces of waves and wind. Many design
questions concerning these real-world complications cannot be answered analyt-
ically but, instead, must be explored using physical or computational models.
Often these involve estimating magnitudes of phenomena missing from the sim-
ple Newtonian model, some of which are small enough to be of little consequence,
while others will cause the bridge to fall down if not adequately addressed. Just
as no suspension bridges could be built without an understanding of the under-
lying physics, neither could any be built without understanding many additional
features, also physical in nature, but more varied and complex than addressed
by the simple model. These additional features, and how they are related to
and interact with that part of the physics captured by the simple model, are the
concern of the scientific literature of engineering. Some of this is less elegant than
the Newtonian model, but it is what makes bridges stand. Just as important, it
allows bridges designed on the same basic Newtonian model to be built longer,
stronger, and lighter over time, as the complexities and how to deal with them
become better understood.

Roth and Peranson
“The redesign of the matching market for American physicians: Some

engineering aspects of economic design.” In: American economic review (1999).

Such an engineering approach is essential in behavioral economics too. Today, behavioral
economics is often seen as a magician’s tool used to manipulate human choices and responses
in contrast to the mainstream developments in economics and game theory. For example,
one of the most frequently cited examples of a nudge is the etching of the image of a housefly
into the men’s room urinals at Amsterdam’s Schiphol Airport, which is intended to “improve
the aim.” Some of the behavioral economists have often expressed their discomfort in this
approach. For example, David Gal, a professor of marketing at the University of Illinois
at Chicago, says in an article that appeared in the New York Times with the title “Selling
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Behavioral Economics”: “There is nothing wrong with achieving small victories with mi-
nor interventions. The worry, however, is that the perceived simplicity and efficacy of such
tactics will distract decision makers from more substantive efforts—for example, reducing
electricity consumption by taxing it more heavily or investing in renewable energy resources.
It is great that behavioral economics is receiving its due; the field has contributed signifi-
cantly to our understanding of ourselves. But in all the excitement, its important to keep an
eye on its limits.” George Loewenstein, a professor of economics and psychology at Carnegie
Mellon University and Peter Ubel, a professor of business and public policy at Duke and the
author of “Free Market Madness: Why Human Nature Is at Odds With Economics,” say in
an article that appeared in the New York Times with the title “Economics Behaving Badly”:
“Behavioral economics should complement, not substitute for, more substantive economic
interventions. If traditional economics suggests that we should have a larger price differ-
ence between sugar-free and sugared drinks, behavioral economics could suggest whether
consumers would respond better to a subsidy on unsweetened drinks or a tax on sugary
drinks. But thats the most it can do. For all of its insights, behavioral economics alone is
not a viable alternative to the kinds of far-reaching policies we need to tackle our nations
challenges.”

In my view, behavioral economics need not be limited as an addendum, but instead we
must try to bring behavioral economics to the same level of rigor as classical economics.
In this work, we have just scratched the surface in this regard. Already we saw several
benefits of using CPT to model the players’ behavior. For example, in Chapter 2 we saw the
benefits of lotteries in resource allocation which cannot be explained by EUT. Furthermore,
the fact that optimal resource allocation can be achieved in a market-based setting with real-
time signals between the players and the system operator would enable its implementation
in real-world scenarios. In Chapter 6, we saw the use of the messaging stage to recover
the revelation principle. In this chapter, we will discuss few directions for future work
where behavioral economics would play a huge role if applied in the spirit of the engineering
approach mentioned above. Besides, to include behavioral features not explained by CPT,
we will have to incorporate other behavioral theories (some of which exist today, and some
which will be developed in the future). It is important that these behavioral theories have a
nice mathematical formulation. By a nice mathematical formulation, I mean something that
can be used to model, study, and develop applications and algorithms for social systems.

Until now in this thesis, I have mainly restricted to making concrete statements about
abstract theoretical ideas. In this chapter, at the expense of making half-baked proposals
or impractical claims, I will attempt to unwrap some of the theoretical insights developed
in this thesis, and provide a version of how they could play out in real-world applications.
Finally, to express my intention towards this thesis and the spirit in which this work and
the work to follow should be interpreted, I would like to quote Professor Rummel from his
1975 book “Understanding Conflict and War, Vol. 1: The Dynamic Psychological Field,”

I offer a word about my overall orientation toward this effort. I believe that
to know ourselves we must focus on ourselves as individuals and in society, not
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on our concrete environment, physical nature, or objective vehicles. The proper
study is of our meanings, values, motives, perceptions, inner complexes, and
powers. But we can know ourselves only through a particular perspective, a
point of view. Whether this perspective is True, we cannot know.

However, whether my field view is the proper perspective, whether my efforts
have born fruit, whether I have deluded myself about the importance of what
I now have to say, should be a matter for discussion, critical evaluation, and
debate. What I am offering is not Truth or the Way, but my contributions to
the Struggle of Ideas out of which a better future may be forged. Our knowledge
and our ability to handle our problems progress through the open conflict of
ideas, through the tests of phenomenological adequacy, inner consistency, and
practical-moral consequences. Reason may but err, but it can be moral. If we
must err, let it be on the side of our creativity, our freedom, our betterment.

Rudolf Joseph Rummel
“Understanding Conflict and War, Vol. 1: The Dynamic Psychological Field.”

(1975)

7.2 Role of Communication, Data Analytics and

Artificial Intelligence in Resource Allocation

The network resource allocation problem considered in Chapter 2 and the mechanism design
framework discussed in Chapter 6 have several features in common. They comprise of a
set of players which have preferences over their outcomes known privately to them. In the
network resource allocation problem, the outcome for a player is the amount of resource al-
located to that player, for example, bandwidth over the Internet. Resource allocation more
generally would include things such as transportation units in vehicle routing or delivery
systems, servers in computation networks, advertising space or visibility in social networks,
or contract provisioning in financial networks or labor markets. On the other hand, player
outcomes could take various forms as the delay experienced by a driver or a customer receiv-
ing a delivery, the quality of the goods or services provided to the users, or it could be the
financial gains or prospects associated with the outcome. The system operator is primarily
responsible for allocating resources. In the network resource allocation problem, the system
operator is assumed to allocate resources to each player provided they satisfy the capacity
constraints. But more generally, as considered in the mechanism design framework (Chap-
ter 6), it implements an allocation from the set of available allocations and the implemented
allocation in turn influences the outcomes for each player.

The system operator is central to this setup to facilitate optimal resource allocation. It
communicates with each player, sending messages that provide important system related
information to the player which affect the players beliefs and actions. These messages could
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take the form of providing available options to the players, their corresponding prices, and
the uncertainty associated with different outcomes. For example, a ride hailing platform
provides the riders with different traveling options with estimates about their delays, service
experience, and associated prices. The players respond to these messages through appro-
priate signaling channels provided by the system operator. These responses are governed
by the players’ private information about their types and their surroundings. For example,
in the ride hailing example, their flexibility with time of arrival or departure, their budget,
their knowledge about the people around them seeking transportation services, etc. Their
responses are also affected by the behavioral traits displayed by them and the players around
them and as well as their strategic policies. The system operator aggregates all these signals
from the players and then allocates resources accordingly. Additionally, the system operator
also maintains information about the environment and in conjunction with the information
collected from the players, it is able to allocate resource more efficiently. It is evident that
for the proper functioning of a system under this setup is closely tied to the communication
protocols provided by the system operator and its ability to learn from them.

Notice that we are focusing our attention over markets where there is a central planner
(or what we are calling a system operator) who is deciding the underlying mechanics of the
system within the physical constraints and providing communication channels to the players
to indicate their individual needs and preferences. Although the communication protocol
often leads to a decentralized market-based mechanism, the freedom of choice for the users
is restricted to the options provided by the system operator, and it is important that we
maintain caution in designing these protocols. Having a central planner definitely brings
the perks of improved efficiency due to potentially better planning opportunities but this is
conditioned on the availability of enough relevant information. Hayek argues:

If we can agree that the economic problem of society is mainly one of rapid
adaptation to changes in the particular circumstances of time and place, it would
seem to follow that the ultimate decisions must be left to the people who are
familiar with these circumstances, who know directly of the relevant changes and
of the resources immediately available to meet them. We cannot expect that this
problem will be solved by first communicating all this knowledge to a central
board which, after integrating all knowledge, issues its orders. We must solve
it by some form of decentralization. But this answers only part of our problem.
We need decentralization because only thus can we ensure that the knowledge of
the particular circumstances of time and place will be promptly used. But the
“man on the spot” cannot decide solely on the basis of his limited but intimate
knowledge of the facts of his immediate surroundings. There still remains the
problem of communicating to him such further information as he needs to fit his
decisions into the whole pattern of changes of the larger economic system.

Friedrich Hayek
“The Use of Knowledge in Society.” (1945).
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In the years following the period Hayek made this remark, communication technologies
have made huge progress. Data collection and signaling delays have gotten reduced to
microseconds with the advent of the Internet, and indeed we are seeing a lot of centralized
markets in the form of big online marketplaces. But there are still several bottlenecks
showing up in the form of learning useful information from all the signals and data. Besides,
incorporating behavioral features in the design of these systems in a principled manner
can go a long way. For example, we saw in Chapter 6, that a mediated mechanism which
includes a messaging stage from the system provider to the players can help implement social
choice functions which are not implementable otherwise (plus implement them truthfully by
direct mechanisms). More practically, this would transform into artificial indicators from
the system provider to the players that help align the players beliefs. For example, consider
a food delivery platform that allows customers to order food from restaurants through their
app. The platform can initiate a program where they randomly select some users and provide
them with discounted service for long distance orders. As the players use this app repeatedly,
they start modifying their strategies in response to this program. For example, a user would
restrict his orders to local restaurants and order from far away restaurants only when he gets
the message that he is among the lucky chosen customers. This is an example of a nudge
provided by the platform to alter customer behavior. It is possible that such strategies would
naturally come out of our mechanism design framework. Besides, our framework will help
answer the question of exactly for what purpose are these nudges or incentive programs being
used - How do they affect the welfare of customers? How do they affect the revenue of the
platform?

When applied to real-world scenarios, it is very likely that the solution coming out from
theory would require a complex signaling scheme between the system operator and the play-
ers. Naturally, human players would not be able to maneuver if such complex signaling
schemes are implemented in practice. Additionally, many times the system operator does
not have access to all the necessary information related to resource availability and implemen-
tation. We will now discuss ways in which these communication protocols and information
collection activities can be implemented in practice. Developments in Artificial Intelligence
(AI) would play a key role in these aspects.

Today, big data analytics is a hot topic that has found applications in several domains
such as manufacturing, commerce, healthcare, financial services, safety and security. It is
being used to:

• Predict equipment failure: Machine data such as its year of manufacturing, make,
model, log entries, sensor data, error messages, engine temperature, and other factors
can be used to deploy maintenance more efficiently and predict the remaining optimal
life and state of systems and components.

• Assess resource availability: In situations where it is hard to get direct access to re-
source data, information from other sources such as user feedback can be analyzed to
access this information.
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• Anticipate customer demand: Data from focus groups, social media, and customer
feedback, which comes in varying formats, can be used for product development, re-
source deployment, and operation fine-tuning to improve customer experience.

• Identify high-value customers: Insights from customer choices and spending patterns
can be used to identify types of customers and use this information to target marketing
strategies accordingly.

• Optimize merchandising: Analyzing data from mobile apps, in-store purchases, and
geolocations will help improve inventory management and consequently encourage cus-
tomers to complete purchases.

• Perform pricing analytics: Transaction data and information about supply and demand
will help improve pricing strategies.

• Provide personalized recommendations: Data collected from repeated interactions with
the customers can be used to provide offers that are fine-tuned to their requirements.

• Detect irregularity: Data from past behavior patterns can be used to detect fraud
by identifying irregular transactions, to avoid accidents by detecting irregular driving
patterns, or to caution customers against decisions they might consider irresponsible
if they were in a different emotional state.

Notice how most of these tasks can be conveniently stated in our framework based on
game theory, economics and behavioral psychology. Indeed, predicting equipment failure
and assessing resource availability are related to the system operator gathering information
about the environment such as capacity constraints in the model discussed in Chapter 2 or
the allocation set and the mappings from allocation to outcomes in the mechanism design
framework discussed in Chapter 6. Optimizing merchandising is a related task where the
system operator actively influences the resource availability. Anticipating customer demand
and identifying high-value customers relates to learning the type of players. Personalized
recommendations and pricing are a part of the communication protocol between the players
and the system operator. Detecting irregularity and fraud are a by-product of our behavioral
approach that would help improve safety and security.

The learning tasks above such as gathering information about the environment or the
players behavior and needs will involve taking advantage of the huge data collected through
repeated interactions between the players and the systems, data coming from sensors and
other unstructured sources like natural language or images. AI techniques such as Machine
Learning (ML) and Reinforcement Learning (RL) algorithms aim to solve these problems.
These algorithms require the designer to provide an objective function to maximize or a loss
function to minimize. Also the communication framework is often assumed fixed exogenously
either in an ad hoc fashion or relying on the designer’s experience. Our holistic approach
will not only guide the design of these objective functions and communication protocols
but it will also incorporate the network effects coming from strategic interaction between
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the players that are often missing from AI studies. Rarely is it true that the decisions and
policies matter to a single individual without affecting other players in the system. Our
framework will allow us to approach these problems in a principled manner and give rise
to end-to-end solutions that are interpretable, efficient, and robust. Ideally, we want AI to
be an accessory that would help implement the market-based strategy coming out of our
framework in a practical manner by circumventing the complexity in the proposed solution.
This will necessarily give rise to approximate solutions and methods from approximation
theory, computation theory, and complexity theory that have gained prominence in computer
science will of special interest.

7.3 Fairness and Ethical Considerations

Fairness in and of itself isn’t, and shouldn’t be, the goal toward which we strive.
It’s simply the most obvious result of a far more complex interplay of needs and
systems. Vox magazine - Fairness - May 2021

In Chapter 2, our system problem based on Kelly’s work follows a utilitarian approach
where the objective function is designed to maximize the total social welfare. (Another
example related to the framework of mechanism design discussed in Chapter 6 is the Vickrey-
Clarke-Groves (VCG) mechanism, which aims to implement a social choice function that
maximizes the social welfare for each type profile.) CPT value allows us to incorporate the
perceived happiness or satisfaction of the individuals when faced with uncertain prospects.
In contrast to the EUT based model, it is able to capture psychological factors such as the
lure of winning or the fear of losing. In addition, the reference point dependence property
of CPT value provides a way to capture the behavioral expectations of the individuals such
as social norms in their group or neighborhood, which is an important consideration in
distributive justice. These behavioral features have significant implications to aspects such
as fairness and social welfare in resource allocations problems and a detailed study based
on CPT models would be very beneficial. (See [72] for the notion of proportional fairness
considered in the classical setting of network resource allocation with EUT players.) We
leave this for future work.

The rich structure of CPT towards capturing probabilistic sensitivity of the players pro-
vides additional flexibility in allocating resources based on individual preferences and needs.
For example, our framework allows players to indicate their varying preferences towards
different probabilities of winning as opposed to simply their valuation of winning (with
certainty). In terms of markets, this implies that players can now compete for marginal
probabilities of gaining resources. To appreciate the importance of this, consider the times
when due to surge pricing many individuals with limited budget are capped out from the
market. Often, this dissuades the smaller players from participating in these markets leading
to less diverse markets. A lottery based approach would provide a chance for the smaller
participants to remain in the markets even under peak-price conditions. Surely, they will
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have to pay a premium rate to access the partial chance of winning, but they can do so by
staying within their budget limits. For example, suppose the budget of an individual is $100
and the current price of the item is $2000. The individual however is ready to pay $50 for
a 2% chance of winning the item. This puts him in a competitive position as compared to
an EUT player who values the item at $2000 and has unlimited budget. (Because the EUT
player would be ready to pay only $40 for a 2% chance of winning the item.)

One method used to assign bands to users is auctions, since FCC found this
method to be the most profitable as they earned millions of dollars through
auctions. . . . A potential problem of this method is that smaller companies may
be priced out of the market and unable to compete with large firms. This would
reduce the number of points of view in the communications industry, which would
violate one of the principles of the FCC, to protect the public interest. Another
method used to allocate bands of frequencies was lotteries. Lotteries were used by
the FCC in the 1980s. A benefit of lotteries was that it gave all parties a chance
at winning, unlike auctions which favor parties with more money. By giving all
parties a chance it was believed that it served the public interest better.

Networx Security, Augsburg, Germany.

Our framework organically combines lotteries and auctions and it can help address the
above features in a unified manner. A related problem associated with the use of lotteries
is the verification that the announced lotteries are indeed implemented. Methods from
cryptography can be used to achieve this. Algorithms developed in computer science will be
of particular use. Alternatively, in a repeated interaction setting one could use the notion of
calibration (as considered in Chapter 5) to check the consistency of the allocations with the
proposed lotteries. For example, a customer who participates in such lotteries repeatedly
would expect that among all the times she was promised a 10% lottery, she won the lottery
with a frequency not too lower than 10%. This raises several interesting questions such as can
the system operator deviate from the promised lotteries and still end up being calibrated. If
yes, then it can potentially use such tactics to increase its revenue. There are other notions of
calibration similar to the one considered in Chapter 5 and different metrics of calibratedness.
One could ask similar questions with these notions providing another interesting direction
for future work.

Finally, we consider some of the ethical considerations that relate to the use of lotteries
which are often associated with negative connotations. For example, they are often perceived
as preying on the emotional and psychological aspects of the players. As identified by
Kahneman and Tversky, framing effects and emotional response by the individuals are a norm
rather than an exception. Since there is no way of avoiding them, it is better we understand
them and incorporate them in our models. Besides, offering lotteries and making use of
richer frameworks as proposed in this thesis would allow for more flexibility in catering to the
preferences of the individuals. Any statement regarding the social benefits of these general
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methods would depend on further deliberation and on that particular instance. Nonetheless,
it is definitely worth considering these lottery-based methods for resource allocation.

In this regard, recall the hyper-parameter k used in the discretization trick in Chapter 2.
This way we restricted the probabilities offered to the players to be an integral multiple
of 1/k. For example, when k = 100, this amounts to showing integral percentages to the
players. This is in contrast to the lotteries where the chance of winning is less than one
in a million or lotteries where the true probabilities are obscured. Such lotteries often take
advantage of the difficulty the players face in comprehending the true probabilities. By fixing
k within reasonable limits depending on the situation, one could potentially avoid taking
advantage of the players’ limited rationality.

Another feature of market-based mechanisms that are designed to align with each indi-
viduals preferences is that it creates differentiated pricing and opportunity discrimination.
This arises purely from the demand for resources and congestion in the market as well as the
behavioral preferences and needs of the individuals. Any influence of factors such as race,
color, religion, or sex will be accompanied by the approximations introduced by the use of
AI to reduce complexities in our framework. This issue related to the use of AI is often
referred to as bias in AI.

7.4 Conclusion

Combined efforts from fields such as game theory, behavioral economics, psychology, network
economics, and computer science are needed to develop social systems for optimal allocation
of resources, improved social welfare, and algorithmically assisted decision-making. In this
thesis, we saw that CPT is an excellent tool for the study of behavioral network economics.
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randomization, 96

action profile, 50
agent

see also player 136
agent-network decomposition, 14
Allais paradox, 7
allocation (mechanism design), 141
allocation choice function, 142
allocation function, 137, 144

mediated, 137, 157
allocation-outcome mapping, 139, 141, 147
Artificial Intelligence (AI), 192

Machine Learning (ML), 193
Reinforcement Learning (RL), 193

assessment, 96
auction, 20

second-price sealed bid, 16

Bayes-Nash equilibrium, 137
mechanism design, 145, 158

Bayesian game, 137
belief, 77

conjecture, 77
belief-dominant strategy, 146
best reaction, 96

map, 96
best response

action set, 77
best response black-box strategy set, 78

best response strategy set
for mechanism design, 145, 158

betweenness, 15, 71, 74
weak, 74

big data analytics, 192
black-box strategies, 15
black-box strategy, 72
black-box strategy Nash equilibrium, 73
Blackwell approachability, 95
Braess’ paradox, 2
budget signals, 14, 28

calibrated, 97
calibrated learning, 95
capacity constraints, 21
correlated equilibrium, 50
CPT correlated equilibrium, 51
CPT features

probability weighting functions, 9
reference point, 9
value function, 9

CPT Nash equilibrium, 52
cumulative prospect theory (CPT), 7, 9

CPT preferences, 11
CPT value, 9
decision weights, 10

diminishing sensitivity to returns, 9
direct allocation function, 148
direct mechanism, 148
direct mediated mechanism, 158
discretization trick, 24, 171, 196
dominant strategy
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endowment effect, 3
ex-ante utility, 22
expected utility theory (EUT), 7

EUT preferences, 7
expected utility, 7
utility function, 7

games with communication, 95

implementability, 140
Bayes-Nash equilibrium, 145
belief-dominant equilibrium, 146
dominant equilibrium, 145
truthful, 148

independence axiom, 71, 74

learning in games, 94
calibrated learning, 95
fictitious play, 111
follow the perturbed leader, 111

lottery
pointwise dominance, 53
similarly ranked, 53

lottery pricing, 14, 27
lottery, prospect, 7
lottery-based allocation

optimal structure, 36
lottery-based allocations, 20

mechanism design, 17
mediated CPT correlated equilibrium, 16,

102
mediated CPT Nash equilibrium, 101
mediated game, 95, 101
mediated mechanism, 137

direct, 158
mediator distribution, 101

mechanism design, 137, 157
message set, 137, 157
mixed black-box strategy Nash equilibrium,

73

mixed Nash equilibrium, 73

Nash equilibrium, 50, 72
network externality, 3
network problem, 23, 27
normal form game, 50
NP-hard, 33
nudge, 17

outcome, 7
for mechanism design, 141

outcome choice function, 142

payoff function, 50
permutation, 9, 21

optimum, 30
structure, 25

player, 1, 50, 141
probabilistic sensitivity, 9, 21
prospect theory (PT), 13
publicly mediated mechanism, 160
pure Nash equilibrium, 73

rank dependent utility (RDU), 13, 21, 76
regret, 53, 94

CPT regret, 106
repeated game

action play, 96
assessment, 96
empirical distribution of action play, 95
history, 96
stage game, 96

revelation principle, 16, 95, 136, 137, 148,
160

signal set, 137, 144
social choice function, 140, 142
strategy

mechanism design, 144
normal form game, 50
randomized, 101
repeated game, 96

strict monotonicity, 13, 54, 56
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system operator, 136
system problem, 23

average see also relaxation 33
duality gap, 33
equilibrium, 28
relaxation, 31

traffic shaping, 4
Transmission Control Protocol (TCP), 4,

14
truthful implementation, 148
type, 136

user problem, 23, 27
user-network decomposition

see also agent-network decomposition
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utilitarian, 22
utility function

for mechanism design, 143


