
Practical and Scalable Serverless Computing

Joao Menezes Carreira

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-238

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-238.html

December 1, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Practical and Scalable Serverless Computing

by

Joao Carreira

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Randy Katz, Co-chair
Professor Pedro Fonseca, Co-chair

Professor Joseph Gonzalez
Professor Fernando Pérez

Fall 2020



Practical and Scalable Serverless Computing

Copyright 2020
by

Joao Carreira



1

Abstract

Practical and Scalable Serverless Computing

by

Joao Carreira

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy Katz, Co-chair

Professor Pedro Fonseca, Co-chair

Serverless computing is a new paradigm for developing cloud applications popularized by
Amazon’s AWS Lambda service. In serverless computing, applications are decomposed
into fine-grained serverless functions developed in high-level languages such as Python and
Javascript. Developers can then submit these functions to serverless providers which then
deploy and execute them. Unlike VM-based platforms, in serverless computing applications
run inside containerized execution environments called lambdas or lambda functions, a term
popularized by AWS Lambda. Due to the lightweight and fine-grained nature of lambdas,
serverless computing can provide higher elasticity and higher resource utilization. Further-
more, in serverless computing infrastructure and operational aspects of running applications
in the cloud are delegated to the cloud provider, and this relieves developers from many
complex and onerous tasks. This paradigm shift towards serverless computing is poised to
radically change the way developers build cloud applications.

We identify two main challenges with leveraging serverless computing for highly-distributed
applications, such as Big Data Analytics and Machine Learning. The first challenge has to
do with automatic management of resources through higher-level abstractions for serverless
applications. The second has to do with the performance and scalability of distributed
network communication on serverless platforms. In this thesis we present two systems that
tackle both of these challenges. We solve the first one with a system, Cirrus, for automatic
serverless ML end-to-end workflows. We solve the second one with Zip, a system that
provides high-performance and scalable distributed primitives for inter-lambda serverless
communication.

In this thesis we show that it is possible to provide simple APIs to developers with sig-
nificantly better performance than today’s approaches. For instance, Cirrus provides 2 or-
ders of magnitude more updates per second in model training than when using PyWren, a



2

MapReduce serverless framework, because it provides a high-level API backed by a highly
optimized backend for ML tasks. Similarly, Zip provides 1.3-12x speedup for different com-
munication patterns compared to the next best alternative, using a memory-backed store for
inter-lambda communication.



i

To my parents and brother.



ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Cloud Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The Rise of Serverless Computing . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 The Missing Pieces in Serverless . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Abstractions for State/Compute Orchestration . . . . . . . . . . . . . 3
1.4.2 Serverless distributed communication . . . . . . . . . . . . . . . . . . 3

1.5 This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Dissertation Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Previous work 6
2.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 From IaaS to SaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Serverless Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Why Serverless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Serverless = FaaS + BaaS . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Limitations of Serverless Platforms . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Serverless Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Data Analytics: Map-Reduce and DAG computing . . . . . . . . . . 11
2.5.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Serverless Communication and Storage . . . . . . . . . . . . . . . . . . . . . 14
2.7 Improving Serverless Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7.1 Invocation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.2 Memory overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



iii

3 Automatic Management of ML Workflows 18
3.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Democratizing Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 End-to-end ML Workflow Challenges . . . . . . . . . . . . . . . . . . 22
3.3.2 Serverless Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Cirrus Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Cirrus Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 End-to-End ML Workflow Stages . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 System Usage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.2 Sparse Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7.3 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.5 The Benefits of ML Specialization . . . . . . . . . . . . . . . . . . . . 39
3.7.6 Microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Scalable Serverless Communication 44
4.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 The need for a serverless communication abstraction . . . . . . . . . . . . . 46

4.3.1 How Zip Addresses Serverless Limitations . . . . . . . . . . . . . . . 48
4.4 Zip’s Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Zip Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Communication primitives . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Zip design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 Zip Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 Channels and primitives . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.4 Resource sharing and isolation . . . . . . . . . . . . . . . . . . . . . . 55
4.5.5 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7.1 Distributed Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7.2 Micro-benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7.3 Controller scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



iv

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Open Research Challenges in Serverless 68
5.1 Faster Execution with Platforms-Runtimes Co-design . . . . . . . . . . . . . 68
5.2 Interactive Environments for Serverless . . . . . . . . . . . . . . . . . . . . . 70
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusion 72

Bibliography 74



v

List of Figures

2.1 PyWren example that computes the sum of squares of numbers from 1 to 100. The
example showcases PyWren’s map and reduce APIs for distributed computations. 11

2.2 Lambada DAG-based example. Lambada enables serverless-specific optimizations
through composition of tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Typical end-to-end machine learning workflow. (1) dataset preprocessing typi-
cally involves an expensive map/reduce operation on data. It is common to take
multiple passes over data, e.g., when normalization is required. (2) model train-
ing (parameter server). Workers consume data shards, compute gradients, and
synchronize with a parameter server. (3) hyperparameter optimization to tune
model and training parameters involves running multiple training instances, each
configured with a different set of tuning parameters. . . . . . . . . . . . . . . . 20

3.2 Distributed stochastic gradient descent training with parameter server. The pa-
rameter server iteratively computes a new model based on the model gradients it
receives from workers. Workers then compute new model gradients from a subset
of training data (minibatch) and the model distributed by the parameter server.
This iterative process continues until the model converges. . . . . . . . . . . . . 21

3.3 Cirrus system architecture. The system consists of the (stateful) client-side (left)
and the (stateless) server-side (right). The client-side contains a user-facing
frontend API and supports preprocessing, training, and tuning. The client-side
backend manages cloud functions and the allocation of tasks to functions. The
server-side consists of the Lambda Worker and the high-performance Data Store
components. The lambda worker exports the data iterator API to the client
backend and contains efficient implementation for a number of iterative training
algorithms. The data store is used for storing gradients, models, and intermediate
preprocessing results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Cirrus’s hyperparameter search dashboard for visualizing and controlling tuning
experiments. (a) plots loss over time for each hyperparameter search experiment
in real time. (b) shows the experiment control panel with a kill widget for diverg-
ing experiments. (c) Cirrus’s aggregate cost savings over time after terminating
diverging experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Cirrus API example. Cirrus supports different phases of ML development work-
flow: (a) preprocessing, (b) training, and (c) hyperparameter tuning. . . . . . . 32



vi

3.6 Cirrus worker runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Training performance comparison between Cirrus and Bosen, Tensorflow and

Spark for different workloads. (a) Loss over time comparison between Bosen and
Cirrus with different setups. The best loss=0.485 achieved by Bosen is reached
by Cirrus at least 5x faster (200sec vs. 1000sec). Cirrus can converge within
the lifetime of one or two lambdas (300-600sec) faster and with lower loss than
state-of-the-art ML training frameworks. (b) Convergence vs Time curve for
Tensorflow Criteo tft benchmark [49] and Cirrus. Tensorflow was executed on
a 32-core node (performed better than on 1 Titan V GPU) and Cirrus ran in
10 lambdas. We implemented the same dataset preprocessing in Cirrus. (c)
Curve showing the RMSE over time for Spark (ALS) and Cirrus when running
the Netflix dataset until convergence. Spark spends the first 4 minutes processing
data and terminates after converging (RMSE=0.85) in 5 iterations of ALS. Cirrus
converges more quickly to a lower RMSE (0.833). . . . . . . . . . . . . . . . . . 36

3.8 Scalability of AWS storage (GB/s), AWS serverless compute (gradients/sec), and
Cirrus data store (samples/sec). Each worker consumes 30MB/s of training data. 38

3.9 PyWren and Zip’s performance on a Sparse Logistic Regression workload when
running on 10 lambdas. Zip achieves 2 orders of magnitude more model updates
due to a combination of prefetching, reusing lambdas across model training iter-
ations, and efficient model sharing through Zip’s fast data store. In particular,
training data prefetching masks the high access latency to S3 which results in an
additional 10x more updates/second. . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Number of updates per second and cost per update of a single worker with dif-
ferent lambda sizes. We make an observation that, while cost grows linearly with
lambda size, the performance gains are sub-linear. This key enabling insight helps
Cirrus tap into significant performance per unit cost gains, leveraging its ability
to operate with ultra-lightweight resource footprint. . . . . . . . . . . . . . . . 41

4.1 Communication performance between lambdas when using AWS S3 for point-to-
point communication on shuffle workloads. . . . . . . . . . . . . . . . . . . . . . 47

4.2 Code samples illustrating the broadcast, reduce, and shuffle Zip APIs. Lambdas
join channels using the channel name. Zip automatically establishes connections
between lambdas in the channel, optimizes communication within and across
machines, and handles lambda arrival and departures. . . . . . . . . . . . . . . . 50

4.3 Zip architecture (without daemon). Lambdas run inside containers and connect
to each other to form a tree-shaped connection mesh. . . . . . . . . . . . . . . . 51

4.4 Broadcast, reduce and shuffle communication patterns in Zip. Zip organizes lamb-
das within a channel in a balanced tree of connected lambdas. Lambdas can par-
ticipate or leave communications within a channel by contacting the controller to
be attached/detached from the connections tree. . . . . . . . . . . . . . . . . . . 52

4.5 Zip’s recovery of a node failure. When a node failure is detected, the controller
updates the connections of the parent and children of the terminated worker. . . 56



vii

4.6 Sorting of 100GB dataset with 120 lambdas using different communication methods. 59
4.7 Sorting end-to-end performance and cost. . . . . . . . . . . . . . . . . . . . . . . 60
4.8 Reduce of 100 bytes numpy array across varying number of lambdas. . . . . . . 62
4.9 Reduce of 100MB numpy array across varying number of lambdas. . . . . . . . . 62
4.10 Broadcast of 100 bytes numpy array across varying number of lambdas. The

amount of broadcast data transmitted increases proportionally with the number
of lambdas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Performance-cost trade-off of 100MB broadcast between 64 lambdas. . . . . . . 64
4.12 Broadcast of 100MB numpy array across varying number of lambdas. The amount

of broadcast data transmitted increases proportionally with the number of lambdas. 65
4.13 Shuffle of 1M integers between varying number of workers with different commu-

nication methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Execution time of a sequence of identical serverless requests. Each request con-
structs and evaluates the same math expression. The code is written in JavaScript
running on GraalVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



viii

List of Tables

1.1 Major network challenges in serverless computing, identified by Jonas et al [63],
for 5 large application classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Comparison between serverless computing (FaaS) offerings. . . . . . . . . . . . . 9

3.1 Typical responsibilities ML users face when using a cluster of VMs. . . . . . . . 23
3.2 Cirrus’s data store provides a parameter-server style interface optimized for com-

munication of models and gradients. Cirrus’s interfaces to send gradients and get
model weights are specialized to each model to achieve the highest performance.
The data store also provides a general key-value interface for other intermediate
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Technical challenges of using lambda functions in Amazon AWS and Cirrus’s
design choices that address them. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Cirrus components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Comparison between different serverless communication approaches. . . . . . . . 47
4.2 Zip’s API. Zip provides communication primitives for 3 types of communication

patterns: broadcast, shuffle, and reduce. After a lambda joins a channel it can
communicate with other lambdas in the channel. . . . . . . . . . . . . . . . . . 48

4.3 Network bandwidth observed with the different data transfers mechanisms used
by Zip to communicate data between lambdas and with the Zip controller. We
also show the cost of serializing deserializing a numpy array before a network
transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Zip is designed for scalable and high-performance communication. . . . . . . . . 53
4.5 Complexity of Zip’s primitives for a channel with n lambdas, S shuffle senders,

R shuffler receivers and F mesh tree fan-out. New workers join the tree-mesh
as leaves. Broadcast requires asking controller for the address of the root of the
tree-mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Zip components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



ix

Acknowledgments

I am deeply indebted to my advisors, Randy Katz and Pedro Fonseca, for their guidance
during my PhD. Randy taught me how to methodically approach systems research through
careful systems design and evaluation methodologies. Pedro’s constant drive to continuously
seek simple answers to complex questions taught me how to approach research problems. To
them I owe a great deal.

None of this work is possible without the help of Alexey Tumanov. Alexey was one of
my first mentors in the RISELab. We first started doing research in the area of disaggre-
gated resources and eventually pivoted towards the topic of this thesis, serverless computing.
Alexey’s contagious energy and drive taught me one of the most important lessons in every
researcher’s career: to persevere after every rejection, never losing sight of the end goal.

One of the most rewarding aspects of my PhD was the opportunity to mentor brilliant
undergraduate and master’s students at UC Berkeley, Andrew Zhang, Andy Wang, Jeff Yu,
Neel Somani, Nikhil Athreya, Ryan Yang, Shea Conlon, Tyler Davis. It was an immense
satisfaction to work with them.

I am also indebted to Rodrigo Rodrigues for giving me the opportunity to do research in
the Max Plank Institute for Software Systems in Saarbrücken, Germany. It was there that I
took the very first steps in systems research. This experience has impacted my professional
trajectory more than anything else.

Lastly, I dedicate this dissertation to my parents and brother for their endless support
and encouragement.



1

Chapter 1

Introduction

1.1 Roadmap

In this chapter we introduce the main problem we solve in this dissertation: how to enable
simple and high-performance serverless computing for distributed applications. In Section 1.2
we provide a brief introduction to cloud computing and identify two problems with the
cloud model: complexity of resource management and the poor fit for highly interactive
workloads. In Section 1.3, we briefly introduce serverless computing and why it is a promising
model to address these problems. In Section 1.4 we identify challenges related to developing
distributed applications for serverless computing. In Section 1.5 we present the thesis of this
dissertation. In Section 1.6 we present the roadmap for the rest of this document.

1.2 The Cloud Revolution

The advent of Cloud computing in the late 2000s arose from the need to reduce the complexity
of managing physical hardware resources by developers and internet companies. Early cloud
providers, such as Amazon AWS [8], for the first time started providing hardware resources
as a utility to developers through an Infrastructure as a Service model based on virtualized
environments (Virtual Machines). The cloud revolution took several years of maturation
but eventually cloud computing became a great success story. The Cloud brought about a
number of radical changes to developers, such as an on-demand resource reservation model,
greater cost savings through economies of scale and simpler infrastructure operations [44].

While the cloud revolution has produced great strides in software development at large,
infrastructure operations remains a significant challenge for the development of applications.
For instance, to deploy an application in the cloud, developers still have to reserve indi-
vidual VMs, configure them with the necessary software dependencies, deploy their code
and data, and finally continuously monitor the VMs. These steps are highly onerous and
time-consuming to developers and impact their productivity.



CHAPTER 1. INTRODUCTION 2

Furthermore, while cloud platforms can scale to tens of thousands of VMs, they are not
a good fit for highly elastic workloads. For instance, for interactive use cases such as data
queries on a database generated by a business analyst, tasks need to be executed in a short
amount of time to provide good response times. This requires that the underlying platform
provides fast allocation and invocation of these tasks. When using VM-based platforms,
developers have to provision a number of idle servers that are in standby, ready to serve any
new requests. In such situations developers have to trade higher cost, due to underutilized
resources, for better response times.

1.3 The Rise of Serverless Computing

Serverless computing, an emerging paradigm for the Cloud, is a step towards reducing the
complexity of managing cloud infrastructure. The serverless computing model achieves this
by (a) leveraging lightweight and short-lived strongly isolated environments called lambda
functions (or just lambdas) and (b) delegating infrastructure operations to the cloud provider.
In serverless computing, developers design their applications as individual functions in high-
level languages such as Python or JavaScript. Developers then submit these functions to the
cloud to be executed. The cloud provider then schedules and executes these functions on one
of its VMs. Alternatively, developers can hook these functions to specific events (e.g., a file
gets uploaded) that triggers an execution of the function. Serverless computing is gaining
rapid adoption, and is available through many commercial [17, 48, 20, 6, 30, 95, 101, 92] and
open-source platforms employed in private clouds [10, 54, 79, 68].

The delegation of resource management to the cloud provider and the use of lightweight
runtimes are critical aspects of serverless computing. First, in serverless computing, the
provider is responsible for all the steps necessary to run the developer’s code from the mo-
ment it is submitted to the cloud provider. This obviates the need for developers to spend
their time in onerous tasks related to resource management. For instance, serverless com-
puting platforms allow on-demand fine-grained elasticity to serve requests/events without
the intervention of the developer. Furthermore, because resources are only reserved when
needed, developers don’t need to pay for resources when they are not being used. Secondly,
serverless lambda use less resources than their VM counterparts and are executed inside
lightweight isolated environments. This means that serverless platforms are more elastic
than typical VM platforms. For instance, in today’s serverless platforms, such as AWS
Lambda [17] we can launch thousands of lambdas in just a few seconds. This elasticity is
very valuable for highly interactive workloads that can require large number of resources,
such as data exploration workloads.

Despite the significant benefits of serverless computing, we argue that it has not yet
fulfilled its promise as a simple and scalable computing platform for distributed workloads.
First, current serverless computing platforms lack simple abstractions for automatic resource
management of workloads such as ML workflows. Second, modern serverless computing
platforms lack primitives for high-performance distributed communication between lambdas.



CHAPTER 1. INTRODUCTION 3

In the next section we explore these challenges in more detail.

1.4 The Missing Pieces in Serverless

1.4.1 Abstractions for State/Compute Orchestration

Serverless computing takes a step towards the disaggregation of storage and compute re-
sources. In terms of local storage, serverless functions have a limited amount of memory
(few GBs). Hence, developers resort to external storage system as a way to expand the
available storage for their working data. While the use of external storage is often a good
strategy for storing intermediate data, developers should make use of external storage judi-
ciously due to the extra read/write overheads when compared to local memory. For instance,
in our own system Cirrus, we mitigate these overheads by performing the computation of
gradients during ML training in parallel with the reading of data from remote storage. Simi-
larly. in terms of compute resources, each lambda can only use up to 1 CPU. This means that
developers cannot leverage common strategies and algorithms that take advantage of data
sharing across multiple cores. Developers are, again, forced to architect their applications to
meet this constraint.

The process of designing an application for serverless computing can be daunting due to
the complexities that arise from the fine-grained nature of lambdas. Poor system designs
for such applications can lead to unnecessary overheads in reading/writing data from ex-
ternal storage, overheads in sending message across lambdas or poor scalability. Serverless
developers desperately need good abstractions that can abstract many of the intricacies of
managing the state and compute aspects of particular workloads.

1.4.2 Serverless distributed communication

The scalable and elastic nature of serverless computing make it a promising model for dis-
tributed computing. However, many distributed workloads require communication and syn-
chronization across workers to execute tasks. For instance, SQL databases and map reduce
frameworks make use of distributed shuffles for GROUP BY SQL operations [11]. Similarly,
many ML training frameworks rely on distributed implementations of stochastic gradient
descent (SGD) [22] to train models. SGD is a widely used iterative ML training algorithm
that finds good model parameters by iteratively updating an initial model in small incre-
ments – gradients – towards a local or global minima. The distributed implementation of
SGD iteratively performs distributed broadcasts, in which the most up-to-date model is sent
to all workers, and distributed reduces, in which the systems sum all the gradients computed
in different machines, to train a model. In both workloads, distributed communication is
often times the most expensive part of the whole workload.

Adapting such frameworks to run on serverless computing is challenging. First, server-
less computing platforms do not allow direct network communication between two lambda



CHAPTER 1. INTRODUCTION 4

Application Class Serverless Network Challenges

Real-time
video
compression

Poor support for fine-grained communication

MapReduce Data shuffles scale poorly
Linear
algebra

Hard to implement efficient broadcast

ML
pipelines

Hard to implement efficient broadcast and aggregation

Databases Lack of support for inbound connectivity

Table 1.1: Major network challenges in serverless computing, identified by Jonas et al [63],
for 5 large application classes.

functions. The first generation of serverless platforms were designed for an overly restricted
class of applications in which functions perform a specific computation on a given input in
isolation. This limitation means that developers have to use external storage systems to
pass messages between lambdas. This results in scalability, performance and cost inefficien-
cies. Second, because serverless platforms abstract infrastructure details from developers,
serverless applications cannot take advantage of the topology of the deployment to optimize
communications. For instance, two serverless functions always incur the overheads of com-
municating through an external storage system even when running on the same machine.
This limitation prevents the use of optimizations such as local reduces, in which all the
workers processes in each machine compute the sum of their gradients before sending the
result to another machine through the network.

This problem is a major blocker for the adoption of serverless for wide classes of ap-
plications. For instance, the Berkeley View on Serverless Computing [63] analyzes a set
of applications (real-time video compression, MapReduce, linear algebra, ML pipelines, and
databases), each corresponding to a large class of applications, and lays out the most pressing
challenges of porting such applications to serverless (see Table 1.1). For all these applications,
distributed communication is listed as one of the main challenging aspects of developing them
in serverless.

1.5 This Dissertation

In this dissertation we demonstrate that it is possible to achieve the simplicity of the server-
less computing model with significantly better performance. To achieve the simplicity-
performance holy grail we present innovations in two areas: (1) workload-specific abstrac-
tions for serverless, such as serverless machine learning workflows, and (2) high-level high-



CHAPTER 1. INTRODUCTION 5

performance distributed communication APIs.
To solve the complexity of developing distributed workloads in serverless, we present

Cirrus, a high-level API and a system for end-to-end ML workflows. The Cirrus API is opti-
mized for serverless: it provides a system for intermediate data storage, an ultra-lightweight
runtime and ML-specific optimizations to mitigate the overheads of distribution in serverless.
Even though Cirrus is specialized to ML workflows, our approach can be applied to other
workloads.

To solve the problem of performance and scalability overheads in serverless for distributed
applications, we present Zip, an API and implementation that provides efficient distributed
communication between lambdas for 3 widely used distributed communication patterns:
reduce, broadcast and shuffle. Zip’s design is an extension to the design of modern serverless
platforms, such as Apache Openwhisk [10].

1.6 Dissertation Roadmap

The rest of the dissertation is organized as follows. Chapter 2 describes the background
of serverless computing and previous work in the areas of distributed serverless computing,
network communication and serverless storage. In this chapter we identify the progress made
in these areas of serverless computing, but also what aspects of serverless could be improved.

Chapter 3 describes a solution for automating ML workflows on top of serverless plat-
forms. In this chapter we propose Cirrus, a system that provides a simple ML interface for
the different stages of the ML workflows and leverage the properties of serverless to help
data scientists and ML researchers.

Chapter 4 describes a solution to the problem of distributed communication in serverless
computing. Here we propose Zip, a system that provides a distributed communication API
for functions.

Chapter 5 discusses current open challenges of serverless computing and presents some
directions for how to address them. In particular, we discuss the overheads that arise from
the lack of co-design between the serverless platforms and the runtimes on which the lambdas
are executed, and the opportunities for designing interactive computing environments backed
by serverless platforms.

Finally, in Chapter 6 we summarize this dissertation and conclude.



6

Chapter 2

Background and Previous work

2.1 Roadmap

In Section 2.2 we describe the history of the cloud and its different mutations over time.
We also provide definitions for the different types of cloud offerings, namely for the IaaS
(Infrastructure as a Service), PaaS (Platform as a Service), and SaaS (Software as a Service)
models. This section is critical to understand the reasons why cloud computing was such a
successful model, and its implications for the software development process for developers.

In Section 2.3 we start by analyzing the serverless computing model in abstract and then
dive into how it has been initially instantiated by large cloud providers such as Amazon,
Google and Microsoft. In this section we discuss the limitations of these current commercial
offerings, and how they impact the design, performance and usability of serverless computing
from a developers perspective. This section provides background information to understand
how applications can be designed to run on serverless computing, and how developers go
about making those design decisions.

In Section 2.4 we discuss the main limitations of the serverless computing model and of
today’s serverless platforms. These limitations create significant challenges for the develop-
ment of applications in serverless computing, in particular of distributed applications.

In Section 2.5 we discuss previous work on distributed computing systems for serverless.
Here we are particularly interested in workloads that are likely to benefit from the scalability,
elasticity and fine-grained resources of serverless, namely data analytics and distributed ML
training. For data analytics, serverless computing allows frameworks to elastically adapt
their resources to particular stages of the computation. For distributed ML, serverless enables
interactive exploration of models and scalability for training.

In Section 2.6 we look into current approaches for moving and storing data in serverless
platforms. Due to the stateless nature of serverless lambdas, developers have to rely on
external storage systems for the inputs, outputs and intermediate data of their computations.
Similarly, developers rely on such systems for communicating data between lambdas. In this
section we discuss these different alternatives and their pros and cons.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 7

Last, in Section 2.7 we discuss technical improvements to existing serverless platforms
in different aspects such as invocation latency and memory overheads. Related work in this
area exposes the gaps between the goals of the serverless computing model and the reality
of today’s serverless platforms. For instance, the fine-grained nature of lambdas can be a
useful property towards providing better resource utilization in the cloud. However, memory
overheads that arise due to the strong isolation between lambdas within a machine can
negate those benefits.

2.2 Cloud Computing

2.2.1 From IaaS to SaaS

Before the boom of cloud computing (before the late 2000s), internet companies were re-
sponsible for procuring, installing and configuring machines, networks, power supplies and
all the other necessary equipment necessary to run their online services. These tasks required
careful planning months in advance to predict how many resources would be necessary to
provide the service to a predicted number of users and traffic. Purchasing and installing
hardware also entailed waiting months for the equipment to be received, and weeks of instal-
lation, configuration and testing. Only once the service was up and running these companies
were able to test whether their product was having the user adoption they had initially
predicted. If user adoption was lower than initially expected, online companies would have
wasted precious money and time acquiring unnecessary hardware. On the other hand, if
user adoption was higher than expected, online companies had to wait a few more months
until they had the hardware capacity necessary to adjust to the unexpected demand. This
meant that delivery of new software features and services by software developers had to be
done in tight synchronization with hardware planning and management teams.

Cloud computing arose from the need to accelerate software delivery by decoupling the
software development cycle from the hardware procurement and management cycle. If hard-
ware was a utility resource, developers could tap into it only when needed. Developers would
not have to purchase, install and configure racks of compute and storage resources in advance
for an online service that could either be a commercial failure or a success.

The first generation of cloud computing offerings from the major cloud providers, Google [45],
Amazon [7], and Microsoft [74], were based on the Infrastructure-a-a-Service (IaaS) model.
In IaaS, cloud providers host and manage the hardware resources and expose them to de-
velopers in virtualized environments called Virtual Machines (VMs). These VMs carve out
resources (e.g., CPUs, memories, disks) from underlying physical machines in which they run
and expose them to developers, giving them the illusion of ownership of a single independent
physical machine.

At the same time that the IaaS model gained popularity, another time of cloud offer-
ing called Platform-as-a-Service (PaaS) competed as an alternative approach for developers
to move their applications into the cloud. Examples of PaaS products are Google App



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 8

Engine [46], Heroku [55], Parse [80], and Firebase [50]. In PaaS, cloud providers provide
platforms, i.e., a set of pre-configured environments, libraries, runtimes, services and tools.
Developers then develop their applications in these platforms. In this model, unlike in IaaS,
developers don’t have control over the underlying infrastructure. PaaS can provide lower
barriers to entry for developers in the cloud, at the cost of greater lock-in to a particular
platform or interface. Over the years, since the inception of the cloud, IaaS has gained
greater adoption compared to PaaS. It is possible that developers found the infrastructure-
level offerings of cloud providers IaaS a more familiar environment to port their applications
to. Furthermore, that approach presented lower risks in the scenario the cloud would not
end up gaining enough adoption and success.

Lastly, Software as a Service (SaaS) provides a different offering model for the cloud.
In SaaS, users access finished applications through the internet. Unlike PaaS, in SaaS
these products provide a set number of features. Examples of SaaS products are Google
Workspace [51] and Dropbox [38].

2.3 Serverless Computing

2.3.1 Why Serverless

Despite the wide benefits of cloud computing for developers, the complexity and time-
consuming nature of cloud infrastructure management tasks are still a reality in the practice
of software development today. For instance, consider the use case proposed by AWS upon
the launch of their serverless offering, AWS Lambda [17]. In this use case, a developer
wants to develop a simple service that transforms (e.g., compress the image and generate a
thumbnail) every image uploaded to a web server. For such a use case, the effort to setup
the necessary infrastructure, and guarantee the service availability and scalability, would
far outweigh the effort to develop the image transformation functionality. Serverless com-
puting arose from the need to provide developers with an easier way to deploy this type of
applications with simple and well-defined inputs and outputs.

2.3.2 Serverless = FaaS + BaaS

The first serverless computing commercial service was AWS Lambda, launched in 2015. In
AWS Lambda, users can register pieces of code written in high-level languages and configure
them to be executed with certain triggers (e.g., the upload of an image) or to be executed at
a simple invocation command by the developer. When such triggers or invocations occur, the
cloud provider instantiates a a lambda, in which the code is executed. In this model, lambda
functions are only billed for the time they run. FaaS (Functions as a Service) provides a
significantly more friendly environment to develop simple applications because the cloud
provider automatically handles all aspects of running the lambdas, such as autoscaling,
scheduling, fault tolerance, dependencies updates, and security.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 9

Azure Functions AWS Lambda Google Functions IBM Functions Cloudflare Workers

Max. Memory 14GB 10GB 2GB 2GB 128MB
Max. Runtime Unlimited 15 min. 9 min. 10 min 50ms
Max. Number of
Concurrent Lambdas

100
Hundreds of
Thousands

3000 1000 Unlimited

GPU Support No No No No No
Direct λ-to-λ
Communication
Support

No No No No No

Max. Function Size 100MB Terabytes Hundreds of MBs 48MB 1MB

Languages Natively
Supported

C#, JavaScript, F#,
Java, PowerShell,
Python, TypeScript

Java, Go,
PowerShell,
Node.js,
C#, Python, Ruby

Node.js, Python,
Go, Java, .NET

Node.js,
Python,
PHP

JavaScript,
WebAssembly,
Python

Table 2.1: Comparison between serverless computing (FaaS) offerings.

FaaS is not the only piece in serverless computing. Cloud providers also offer a set of
specialized services in a wide array of applications, such as storage (e.g., AWS S3 [18], AWS
Elasticache [13], DynamoDB [14], Cloud Firestore [28], Cloud Pub/Sub [29]), machine learn-
ing (e.g., AWS SageMaker [19]), data analytics (e.g., AWS EMR [15], Google BigQuery [47],
and Google Cloud Dataflow [27]). These services are categorized as BaaS (Backend as a
Service). Even though many of these services were already available when FaaS was just be-
coming available to the public, they can be considered specialized serverless services because
they also abstract developers from the underlying hardware resources they run on. Server-
less computing is the composition of the general FaaS platform and the support services of
BaaS. For instance, lambda functions often use BaaS storage services such as AWS S3 to
store their input and output data. For this reason, serverless computing is considered to be
the combination of FaaS and Baas.

2.4 Limitations of Serverless Platforms

In this section we describe the most significant limitations of current serverless platforms:
(a) explicit resource management of storage, (b) poor communication scalability, (c) no
indirect lambda-to-lambda communication allowed, (d) ad-hoc communication APIs, (e)
lack of predictable performance, and (f) lack of hardware accelerators.

Explicit resource management Some external storage systems used for communication
in serverless platforms, such as Redis [87], require explicit provisioning of VMs, configura-
tion, deployment, and monitoring. Crucially, the type and quantity of resources provisioned
for communication are critical to achieve good performance [84]. However, excessive allo-
cation of resources to these storage systems unnecessarily increases the cost of deployment.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 10

Alternatively, AWS S3 and Pocket can adapt their resources at run-time to meet the needs
of the application.

Poor communication scalability Approaches that rely on storage systems, such as AWS
S3, Redis, and Pocket, restrict the communication scalability to the scalability of the external
storage system. For instance, PyWren has been found to not scale for some data analytics
workloads [84] due to throughput throttling in AWS S3 (see Figure 4.1b). Similarly, systems
such as Redis or Pocket need careful provisioning to achieve good performance and cost.
Accurate provisioning of resources for such systems is hard to accomplish for many workloads.
This leads to developers either overprovisioning external storage services, which leads to
unnecessary cost, or undeprovisioning which hinders performance.

Indirect lambda-to-lambda communication Today’s serverless platforms do not allow
direct, lambda-to-lambda connections, thus any message between any two lambdas has to
pass through an external storage system before reaching its destination. This means that
messages have to traverse 2x network hops which incurs a higher end-to-end latency (see
Figure 4.1a).

Ad-hoc communication APIs Today there is no serverless framework/library developers
can leverage to perform distributed communication. Abstractions such as network sockets
and MPI [41]are widely used for network communication in the cloud but are a poor fit
for serverless platforms. For instance, network sockets are a low-level abstraction. This
leaves developers with the responsibility of developing non-trivial distributed communication
algorithms, and handling connections between ephemeral workers. MPI is a widely used
framework that provides higher-level communication abstractions such as distributed reduces
and broadcasts. However, MPI does not tolerate changes in the set of workers communicating
during runtime. This is an important limitation in the context of serverless computing where
lambdas can start and terminate at unpredictable times.

Lack of predictable performance Today’s serverless platforms provide little or no per-
formance guarantees for lambda invocations. Performance unpredictability on serverless
platforms arises from two aspects: (a) lambda invocation latency, and (b) uncertainty in the
underlying resources allocated to each lambda. Regarding invocation latency, we found that
for some serverless platforms, such as AWS Lambda, lambdas can take anywhere from less
than a second up to more than 1 minute to be launched. Results from ExCamera [42] indi-
cate that this problem arises primarily when the cloud provider cannot reuse active lambdas
to serve a request (cold starts). The second factor has to do with the uncertainty regarding
which particular hardware resources are allocated to each lambda. Today’s cloud providers
do not guarantee any specific resources to users, which providers them with greater flexibility
to utilize spare resources in the datacenter.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 11

Lack of hardware accelerators Serverless platforms today do not allow developers to use
hardware accelerators, such as GPUs, for their computations. This prevents serverless from
being used for applications such as ML training and ML serving of deep learning networks.

2.5 Serverless Distributed Computing

2.5.1 Data Analytics: Map-Reduce and DAG computing

The first generation of tools and frameworks for distributed computation on serverless plat-
forms focused on providing push-button solutions for embarrassingly parallel computations in
the cloud [64, 31, 40, 75]. More concretely, these frameworks provided a simple Map Reduce
interface for serverless platforms. For instance, PyWren, the first Map Reduce framework for
serverless, provides a map and a reduce APIs. The map allows developers to run a Python
function on a particular input, and the reduce allows the computation of a reduce function
on the results of previous map invocations (see Figure 2.1). Other frameworks with similar
designs, such as Corral and FaastJS, have also been proposed.

def map_square_function(value):

return value * value

def reduce_sum_function(squares):

return sum(squares)

exec = pywren.default_executor()

futures = exec.map(map_square_function, [x for x in _ range(1, 101)])

result = exec.reduce(reduce_sum_function, futures).result()

Figure 2.1: PyWren example that computes the sum of squares of numbers from 1 to 100.
The example showcases PyWren’s map and reduce APIs for distributed computations.

When using a map-reduce framework such as PyWren, the developer writes an appli-
cation that calls the map and reduce PyWren interface functions to achieve the desired
computation. Upon calling PyWren’s map function, PyWren launches the required number
of lambdas in AWS Lambda to run the map function. For instance, in Figure 2.1, PyWren
runs map square function 100 times in separate lambdas to process the 100 integers from the
input. Each one of these map invocations generates a result that is represented by the future
object in the application’s code. This future can then be passed to a the reduce PyWren
function to apply a function to the output of all the lambdas, in the example a sum of the
map outputs. PyWren greatly simplifies the process of developing and deploying applications



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 12

on serverless. As the example illustrates, PyWren is responsible for launching the lambdas,
passing the input data to the lambdas, getting the result of each lambda and running the
reduce computation locally.

Other systems such as Lambada [75] extend the map-reduce interface of PyWren and
provide a richer DAG-based computational model. For instance, Lambada provides primi-
tives for explicitly loading data from AWS S3 and allows more types of computations, such
as filters (see Example 2.2). In contrast with the PyWren model, in Lambada developers
compose different computations to build a pipeline. This allows the framework to under-
stand the end-to-end execution of the application, and thus allows it to platform-specific
optimizations. For instance, DAG-based systems such as Lambada can reorder and merge
operations to reduce the number of lambda invocations and amount of data transfers between
the lambda and external storage.

# count number of rows with 2nd column > 1

data = lambda.from_parquet("s3://path_to_data")

.filter(lambda x: x[0] > 1) # filter rows

.map(lambda x : 1) # filter 2nd column

.reduce(lambda x, y: x+y)

Figure 2.2: Lambada DAG-based example. Lambada enables serverless-specific optimiza-
tions through composition of tasks.

Alternatively, systems such as Lambdata [97] provide APIs for developers to make their
data access patterns explicit to the serverless platforms. This allows the platform to cache
data within each lambda, co-locate lambdas that access the same data, and enable pipelining
between stages of a computation. The authors find that this approach can result in an average
speedup of 1.5x.

2.5.2 Machine Learning

Machine learning is another large class of workloads that can potentially benefit from server-
less computing. Machine learning workloads are very diverse and can be categorized in many
ways, from model training and inference, to data analysis and model tuning. In this sub-
section we focus on model training and model serving since these two categories encompass
many of the most relevant ML workloads today. Next we explain each one of these types of
ML workloads in more detail, how they can benefit from serverless computing, and discuss
the challenges in doing so.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 13

2.5.2.1 ML Training

ML training is the process of training a model to perform a specific task, for example
training a model to check whether there is a STOP sign in a picture of a road. ML training
approaches can be very varied, but some of the most widely used models, such as deep
learning models, are trained in highly parallel and distributed environments with frameworks
such as Tensorflow [1], PyTorch [81] and Caffe [62]. The process of training ML models is
data and compute-intensive. In terms of data, models often are better trained with larger
datasets and they often require high throughput reads of input datasets. This means that
ML training setups need to provision large amounts of storage, close to where the data is
needed, to provide both the storage and throughput capacity required for these workloads.
In terms of compute, ML training often require complex computations. For instance, deep
learning networks can contain many large layers with millions, or even billions, of parameters.
Training for such models often requires specialized accelerators, such as GPUs. Another
common complementary strategy to improve the end-to-end times of ML training tasks is
to leverage the resources of multiple machines.

ML training has not yet received significant attention in the context of serverless comput-
ing because today’s serverless platforms are not able to meet the data and compute demands
of many such workloads. In terms of data, serverless lambdas are limited in storage and mem-
ory and thus cannot store large datasets. An alternative would be to store these datasets
in external storage systems, and read them into the lambda only when needed. However,
we find that in AWS Lambda lambdas can only receive data at most at a rate of 80MB/s,
which is not enough for the needs of these workloads. In terms of compute, today’s server-
less platforms do not provide support for hardware accelerators such as GPUs, and these are
critical for many modern ML training workloads.

This does not mean that serverless computing is an inadequate computational model
for ML training. However, for specific ML training workloads, such as distributed deep
learning training, current serverless platforms do not yet provide the necessary performance
to compete satisfactorily with traditional VM-based approaches.

2.5.2.2 ML serving

Another important category of ML workloads is ML serving (or ML inference). ML serving
is the process of running the model to make a prediction. For example, asking the model to
tell us whether there is a STOP sign on a given picture. Unlike ML training, ML serving
does not require large amounts of data and compute. In ML serving, the only elements
needed to make a prediction are the model and the input data (e.g., a picture). However,
in ML serving, the latency with which we can make a prediction is critical because this
prediction is often performed in the context of a real-time decision. For instance, whether to
stop the car in front of a STOP sign, or whether to show a specific user a certain online ad.
Clipper [32] defines 100ms as the maximum threshold for serving ML predictions in modern
online services.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 14

Serverless computing is a promising model for ML serving because it allows the instantia-
tion of computational units as needed to serve individual requests. The serverless computing
model already provides many of the components of VM-based serving systems, such as re-
quest routing, scheduling and auto-scaling.

However, previous work [61, 5] has found that today’s serverless platforms are not well
suited for serving ML predictions. The main challenges these works find have to do with
invocation overheads and overheads in setting up the prediction environment in the lambda.
First, invocation overheads are highly unpredictable and can often take several seconds or
even minutes [42]. Second, for every invocation the serving application needs to download
and setup the model locally. For instance, reading a medium-sized 100MB deep learning
model from S3 to a lambda takes more than 1 second. Other steps such as deserialization
make these overheads even higher.

2.6 Serverless Communication and Storage

Another aspect of serverless computing that has received attention is distributed commu-
nication for data analytics on serverless platforms. Data analytics workloads often times
require distributed shuffles to aggregate data. For instance, when calculating the average
per-day sales records of a set of stores, Map Reduce systems such as Apache Spark require
that all data of a particular store is sent to the same server in order to compute the store’s
average. Such operation rely on distributed shuffles for data aggregation.

Distributed shuffling in today’s serverless computing platforms is a challenging operation
because serverless computing platforms do not allow functions to establish network connec-
tions between each other. Furthermore, even if such network communications were allowed,
it would be challenging to perform data transfers between ephemeral workers that can die
at any point in time.

First-generation serverless frameworks such as PyWren [64], FaastJS [40] and numpy-
wren [93] relied on cloud storage systems such as AWS S3 for inter-lambda communication.
PyWren [64] showed that such storage systems are a good fit as secondary storage for in-
termediate data due to their high throughput scalability and thousands of reads/writes per
second. For instance, PyWren showed that AWS S3 can scale linearly up to 2.5K workers
and achieve 80GB/s of throughput. However, such systems can have high latency (10s of
milliseconds) and can throttle traffic for a high number of storage transactions per second.

In the context of data shuffles for data analytics, [84] concluded that throttling of requests
can severely limit the scalability of serverless workloads that require communication. To
address this problem, the authors propose a shuffling primitive for serverless computing
that leverages a mix of disk-based (slow) and memory-based (fast) storage for inter-function
communication. This way, applications can use slow storage for storing bulk data (e.g.,
input/output data) and use fast storage for performance-sensitive communication between
lambdas. The authors show that this combination can lead to 59% lower resource usage and
4-500x performance improvements over a solution that only leverages slow storage.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 15

However, this approach has several drawbacks. First, it requires developers to provision
and manage an external storage system for the sole purpose of communication. This negates
the serverless principle of delegating the resource management responsibilities to the cloud
provider. Furthermore, it requires developers to accurately predict the amount of resources
required for the storage system. If the developer overestimates, it ends up paying more than
necessary and if it underestimates it leads to poor end-to-end performance of the application.

To address this problem, Pocket [83] proposes a new abstraction for serverless storage
that does not require explicit resource management and can scale to the needs of the applica-
tion. To this end Pocket provides a key-value store architecture backed by different types of
storage resources (DRAM, Flash, disk). To transparently scale to the needs of the applica-
tion, the authors propose a right-sizing policy. This policy takes into account user-provided
performance hints (e.g., latency, aggregate throughput, capacity) and the utilization of the
resources to scale-up or scale-down the resources as needed.

Pocket is a good approach to solve the trade-off between performance and need for
explicit resource management that serverless developers have to make. However, Pocket
is an inadequate solution for workloads that require complex distributed communication
patterns or for applications with communication patterns that are hard to predict.

2.7 Improving Serverless Platforms

2.7.1 Invocation Latency

Most lambda functions are short-lived. For instance, Shahrad et al [92] find that on average
in Azure Functions, 50% of the lambdas last at most 1 second of execution and a staggering
90% last at most 10 seconds. For such short-lived function invocations, the overheads of
allocating resources, scheduling, and starting the runtime can easily surpass the useful time
of the lambda’s computation. Fast invocation latencies also open serverless computing to
a larger number of important latency-sensitive workloads, such as ML serving. To address
this problem, systems such as SOCK [78], Particle [98] and SEUSS [23] have proposed
different approaches. For instance, SOCK [78] identifies different sources of scalability and
performance bottlenecks, such as network and mount namespaces, cgroups primitives, and
downloading and installing lambda dependencies. To address these scalability issues, SOCK
leverages knowledge about the performance and scalability of Linux operations to optimize
the performance of the serverless platforms. Concretely, SOCK proposes (a) using bind
mounts to stitch together a root directory, (b) avoiding the use of network namespaces,
(c) reusing cgroups. The authors find that these strategies reduce the overall platform
overheads 2.8-5.3x when compared to AWS Lambda and Apache OpenWhisk [10]. This
seems to suggest that serverless platform are not yet fully optimized for the vast majority of
short-lived invocations.

Similarly, Particle [98] finds that configuring the virtual network of lambda containers
during the invocation of a lambda can take up to 84% of the total end-to-end time of an



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 16

invocation. Particle proposes a more efficient way of setting up the virtual network that
improves application runtime by 2.4-3x.

In SEUSS [23], the authors make the observation that many function lambdas execute
the exact same code before running a lambda function. For instance, all functions have to
construct the environment, initialize the runtime, import the code, generate the bytecode
and import run arguments. To avoid this source of repeated overhead, the authors propose
a system that takes snapshot of a function after each one of these steps. Afterwards, when a
new lambda is executed, it can be spawned from one of the previously constructed snapshots
to avoid these overheads. The authors show that this approach successfully reduces cold
starts by 10x. FAASM [94] also leverages snapshots for faster invocation of lambdas.

2.7.2 Memory overheads

Another source of overheads in serverless platforms has to do with the strong isolation
between lambdas. In a regular VM, processes share libraries, runtimes and other application
state (e.g., input data). In contrast, in serverless platforms each lambda instantiates its own
independent environment which prevents sharing.

For instance, Photons [39] finds that for a serverless image classification task, only be-
tween 6-29% of the memory cannot be shared between lambdas. To address this problem,
Photons [39] pushes data isolation up the stack, from the container level to the language
runtime level. This way, Photons uses the same runtime for different invocations with the
same function. This allows explicit sharing of data that should be shared, while keeping
the state private to each lambda isolated. The authors find that this approach reduces the
function memory consumption by 25-98%.

Alternatively, FAASM [94] allows functions running in the same address space to share
data through shared memory regions. This abstraction can be very useful for workloads in
which lambdas do computations on the same large data. For instance, in distributed SGD
training workers use the same large training dataset to train a model. For such workloads,
the authors find that FAASM can reduce the memory overheads by 10x.

This is particularly relevant to understand the design decisions in the proposals we make
in Chapters 3 and 4.

2.8 Summary

We started this chapter by explaining the evolution of the cloud and the different types
of cloud offerings available today (from IaaS to SaaS). Then we transitioned to the new
serverless computing paradigm that is aimed at simplifying resource management tasks that
developers are responsible for in the cloud. We discussed the different limitations of to-
day’s serverless platforms, and workloads of interest for this dissertation: data analytics and
machine learning. Within these workloads, we discussed existing approaches for comput-
ing them in serverless and in which ways those approaches don’t fully meet the needs of



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 17

developers. Additionally, we discussed the communication and storage aspects of serverless
computing and we surveyed related work on reducing lambda invocation latency and lambda
memory overheads.

In the next chapter we transition into concrete proposals and systems for addressing
some of the issues with today’s serverless computing. Concretely, we propose a system
that provides support for serverless end-to-end ML workflows and does not require explicit
management of resources.



18

Chapter 3

Automatic Management of ML
Workflows

3.1 Roadmap

The first missing piece of serverless computing is a set of workload-specific APIs that can
abstract the complexities of serverless for highly distributed workloads. In this chapter we
present the design, implementation and evaluation of a system, Cirrus, that addresses this
problem. Here we focus on a large class of applications, machine learning (ML) workflows,
but the principles and approach are applicable to other classes as well.

In Section 3.2 we introduce the problem of complexity of interactive ML workflows that
arises from resource over-provisioning and explicit resource management. We also explain
how serverless computing is a promising approach to address this complexity. At the end,
we provide a brief overview of how the limitations of serverless today’s serverless platforms
make the execution of ML workflows particularly challenging, and motivate how the Cirrus
system is designed to be able to overcome these limitations.

In Section 3.3 we dig deeper into the inherent challenges of executing ML workflows:
resource over-provisioning and explicit resource management. We also quickly summarize
the serverless computing limitations that impact ML workflows, such as unpredictable launch
times and lack of fast shared storage.

In Section 3.4 we propose the Cirrus design for serverless end-to-end ML workflows. We
discuss the two major building blocks of the Cirrus design, the stateful client side and the
stateless server side, and the respective sub-components (frontend, backend, dashboard, and
worker runtime). We also explain the Cirrus data store and how it helps with communication
and storage of intermediate data.

In Section 3.5 we illustrate the easiness of use of the Cirrus framework by showing an
example of a ML workflow executed with Cirrus. Additionally, we showcase the Cirrus
dashboard and how it can be used by the Cirrus users to track the progress of the Cirrus
tasks.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 19

In Section 3.6 we provide the details of the Cirrus implementation across the different
components. Here we emphasize the technical aspects related with the communication be-
tween the lambda workers and the data store. These aspects are critical to achieve a high
number of iterations per second during the training phases.

In Section 3.7 we demonstrate the application of Cirrus for distributed training of ML
models on serverless platforms. We evaluate Cirrus training performance in terms of training
loss when compared against other ML systems, such as Apache Spark, Tensorflow and Bosen.
We also evaluate our system in terms of its scalability during training and in terms of cost
per update.

In Section 3.9 we summarize our results and lessons and conclude.

3.2 Introduction

The widespread adoption of ML techniques in a wide-range of domains, such as image recog-
nition, text, and speech processing, has made machine learning one of the leading revenue-
generating datacenter workloads. Unfortunately, due to the growing scale of these workloads
and the increasing complexity of ML workflows, developers are often left to manually config-
ure numerous system-level parameters (e.g., number of workers/parameter servers, memory
footprint, amount of compute, physical topology), in addition to the ML-specific parameters
(learning rate, algorithms, and neural network structure).

Importantly, modern ML workflows are iterative and increasingly comprised of multi-
ple heterogeneous stages, such as (a) pre-processing, (b) training, and (c) hyperparameter
searching. As a result, due to the iterative nature and diversity of stages, the end-to-end
ML workflow is highly complex for users and demanding in terms of resource provisioning
and management, detracting users from focusing on ML specific tasks—the domain of their
expertise.

The complexity of ML workflows leads to two problems. First, when operating with
coarse-grained VM-based clusters, the provisioning complexity often leads to overprovision-
ing. Aggregate CPU utilization levels as low as 20% are not uncommon [88, 35]. Second,
the management complexity is increasingly an obstacle for ML users because it hinders the
interactive and iterative use-cases, degrading user productivity and model effectiveness.

We designed and developed Cirrus, a distributed ML training framework that addresses
these challenges by leveraging serverless computing. Serverless computing relies on the cloud
infrastructure, not the users, to automatically address the challenges of resource provision-
ing and management. This approach relies on the restricted unit of serverless computation,
lambda function, which is submitted by developers and scheduled for execution by the cloud
infrastructure. This obviates the need for users to manually configure, deploy, and manage
long-term compute units (e.g., VMs). The advantages of the serverless paradigm have pro-
moted its fast adoption by datacenters and cloud providers [17, 58, 48, 20, 6, 30] and open
source platforms [10, 54, 16, 79].



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 20

Dataset
Preprocessing

Model Training Hyperparameter
Tuning

Dataset
Shard

Worker

Figure 3.1: Typical end-to-end machine learning workflow. (1) dataset preprocessing typi-
cally involves an expensive map/reduce operation on data. It is common to take multiple
passes over data, e.g., when normalization is required. (2) model training (parameter server).
Workers consume data shards, compute gradients, and synchronize with a parameter server.
(3) hyperparameter optimization to tune model and training parameters involves running
multiple training instances, each configured with a different set of tuning parameters.

However, the benefits of serverless computing for ML hinge on the ability to run ML
algorithms efficiently. The main challenge in leveraging serverless computing is the sig-
nificantly small local resource constraints (memory, cpu, storage, and network) associated
with lambda functions, which is fundamental to serverless computation because the fine-
granularity of computation units enables scalability and flexibility. In contrast, existing ML
systems commonly assume abundant resources, such as memory. For instance, Spark [104]
and Bosen [102, 103] generally load all training data into memory. Similarly, some frame-
works require data to be sharded or replicated across all workers, implicitly assuming resource
longevity for the duration of long-running compute.

Frameworks specifically designed to deal with the resource limitations of serverless in-
frastructures have been proposed. However, we find that they face fundamental challenges
when used for ML training tasks out of the box; in addition to having no support for ML
workflows. As an example, PyWren [64] uses remote storage for intermediate computation
results, adding significant overheads to fine-grain iterative compute tasks which are typical
of ML workloads. Importantly, the reliance on external storage by such frameworks is funda-
mental to their design, enabling them to scale to large data-intensive jobs (e.g., map-reduce
computations). However, we observe that ML workflow computations are heterogeneous and
involve frequent fine-grained communication between computational nodes which requires a
novel design to ensure efficiency.

Importantly, Cirrus is designed to efficiently support the entire ML workflow. In partic-



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 21

Worker ...
model

Parameter
Server

Training
Data

model

model’ -= η model

Worker Worker

Figure 3.2: Distributed stochastic gradient descent training with parameter server. The
parameter server iteratively computes a new model based on the model gradients it receives
from workers. Workers then compute new model gradients from a subset of training data
(minibatch) and the model distributed by the parameter server. This iterative process con-
tinues until the model converges.

ular, Cirrus supports fine-grain, data-intensive serverless ML training and hyperparameter
optimization efficiently. Based on the parameter server model (see Figure 3.2), Cirrus pro-
vides a simple interface to perform scalable ML training leveraging the high scalability of
serverless computation environments and cloud storage. Cirrus unifies the benefits of spe-
cialized serverless frameworks with the benefits of specialized ML training frameworks and
provides a simple interface (3.5) that enables typical ML training workflows and supervised
learning algorithms (e.g., Logistic Regression, Collaborative Filtering) for end-to-end ML
workflows on serverless infrastructure.

Cirrus builds on three key design properties. First, Cirrus provides an ultra-lightweight
(∼80MB vs 800MB for PyWren’s runtime) worker runtime that adapts to the full range of
lambda granularity, providing mechanisms for ML developers to find the configuration that
best matches their time or cost budget. Second, Cirrus saves on the cost of provisioning large
amounts of memory or storage—a typical requirement for ML training frameworks. This is
achieved through a combination of (a) streaming training minibatches from remote storage
and (b) redesigning the distributed training algorithms to work robustly in the serverless
environment. Third, Cirrus adopts stateless worker architecture, which allows the system
to efficiently handle frequent worker departure and arrival as expected behavior rather than
an exception. Cirrus provides the best of both serverless-specialized and ML-specialized
frameworks through the combined benefit of different contributions, e.g., a data prefetching
iterator (10x speedup). This yields a 3.75x improvement on time-to-accuracy compared
to the best-performing configuration ML specialized frameworks [102, 1] (3.7.2) and 100x
compared to the best-performing configuration of PyWren (3.7.5).



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 22

3.3 Democratizing Machine Learning

3.3.1 End-to-end ML Workflow Challenges

Machine learning researchers and developers execute a number of different tasks during the
process of training models. For instance, a common workflow consists of dataset preprocess-
ing, followed by model training and finally by hyperparameter tuning (3.1). In the dataset
preprocessing phase, developers apply transformations (e.g., feature normalization or hash-
ing) to datasets to improve the performance of learning algorithms. Subsequently, in the
model training phase, developers coarsely fit a model to the dataset, with the goal of finding
a model that performs reasonably well and converges to an acceptable accuracy level. Fi-
nally, in the hyperparameter tuning phase, the model is trained multiple times with varying
ML-parameters to find the parameters that yield best results.

ML training tasks have been traditionally deployed using systems designed for clusters
of virtual execution environments (VMs) [104, 1, 26, 2, 102]. However, such designs create
two important challenges for users: (a) they can lead to over-provisioning (b) they require
explicit resource management by users.

Over-provisioning. The heterogeneity of the different tasks in an ML workflow leads to
a significant resource imbalance during the execution of a training workflow. For instance,
the coarse-granularity and rigidity of VM-based clusters, as well as the design of the ML
frameworks specialized for these environments, causes developers to frequently over-provision
resources for peak consumption, which leads to significant waste of datacenter resources [88,
35]. The over-provisioning problem is exacerbated by the fact that, in practice, developers
repeatedly go back and forth between different stages of the workflow to experiment with
different ML parameters.

Explicit resource management. The established approach of exposing low-level VM
resources, such as storage and CPUs, puts a significant burden on ML developers who are
faced with the challenge of provisioning, configuring, and managing these resources for each
of their ML workloads. Thus, systems that leverage VMs for machine learning workloads
generally require users to repeatedly perform a series of onerous tasks we summarize in
Table 3.1. In practice, over-provisioning and explicit resource management burden are tightly
coupled—ML users often resort to over-provisioning due to the difficulty and human cost of
accurately managing resource allocation for the different stages of their training workflow.

3.3.2 Serverless Computing

Serverless computing is a promising approach to address these resource-provisioning chal-
lenges [63, 53]. It simultaneously simplifies deployment with its intuitive interface and pro-
vides mechanisms to avoid over-provisioning, with its fine-grain serverless functions that can
run with as few as 128MB of memory (spatial granularity) and time out in a few minutes



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 23

User responsibility Description

Sharding data Distribute datasets across VMs
Configuring storage systems Setup a storage system (e.g., NFS)
Configuring OS/drivers Choosing OS and drivers
Deploying frameworks Install ML training frameworks
Monitoring Monitor VMs for errors
Choosing VM configuration Choosing VM types
Setup network connections Make VMs inter-connect
Upgrading systems Keep libraries up-to-date
Scaling up and down Adapt to workload changes

Table 3.1: Typical responsibilities ML users face when using a cluster of VMs.

(temporal granularity). This ensures natural elasticity and agility of deployment. However,
serverless design principles are at odds with a number of design principles of existing ML
frameworks today. This presents a set of challenges in adopting serverless infrastructures for
ML training workflows. This section discusses the major limitations of existing serverless
environments and the impact they have for machine learning systems.

Small local memory and storage. Lambda functions, by design, have very limited
memory and local storage. For instance, AWS lambdas can only access at most 3GB of local
RAM and 512MB of local disk. It is common to operate with lambdas provisioned for as
little as 128MB of RAM. This precludes the strategy often used by many machine learning
systems of replicating or sharding the training data across many workers or of loading all
training data into memory. These resource limitations prevent the use of any computation
frameworks that are not designed with these resource constraints in mind. For instance, we
have not been able to run Tensorflow [1] or Spark [104] on AWS lambdas or VMs with such
resource-constrained configurations.

Low bandwidth and lack of P2P communication. Lambda functions have limited
available bandwidth when compared with a regular VM. We find that the largest AWS
Lambda can only sustain 60MB/s of bandwidth, which is drastically lower than 1GB/s
of bandwidth available even in medium-sized VMs. Further restrictions are imposed on the
communication topology. Serverless compute units such as AWS Lambdas do not allow peer-
to-peer communication. Thus, common communication strategies used for datacenter ML,
such as tree-structured or ring-structured AllReduce communication [82], become impossible
to implement efficiently in such environments.

Short-lived and unpredictable launch times. Lambda functions are short-lived and
their launch times are highly variable. For instance, AWS lambdas can take up to several



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 24

minutes to start after being launched. This means that during training, lambdas start at
unpredictable times and can finish in the middle of training. This requires ML runtimes for
lambdas to tolerate the frequent departure and arrival of workers. Furthermore, it makes
runtimes such as MPI (used, for instance, by Horovod [91] and Multiverso [76]) a bad fit for
this type of architecture.

Lack of fast shared storage. Because lambda functions cannot connect between them-
selves, shared storage needs to be used. Because ML algorithms have stringent performance
requirements, this shared storage needs to be low-latency, high-throughput, and optimized
for the type of communications in ML workloads. However, as of today there is no fast
serverless storage for the cloud that provides all these properties.

3.4 Cirrus Design

Cirrus is an end-to-end framework specialized for ML training in serverless cloud infrastruc-
tures (e.g., Amazon AWS Lambdas). It provides high-level primitives to support a range of
tasks in ML workflows: dataset preprocessing, training, and hyperparameter optimization.
This section describes its design and architecture.

3.4.1 Design Principles

Adaptive, fine-grained resource allocation. To avoid resource waste that arises from
over-provisioning, Cirrus should flexibly adapt the amount of resources reserved for each
workflow phase with fine-granularity.

Stateless server-side backend. To ensure robust and efficient management of serverless
compute resources, Cirrus, by design, operates a stateless, server-side backend (3.3). The
information about currently deployed functions and the mapping between ML workflow tasks
and compute units is managed by the client-side backend. Thus, even when all cloud-side
resources become unavailable, the ML training workflow does not fail and may resume its
operation when resources become available again.

End-to-end serverless API. Model training is not the only important task an ML re-
searcher has to perform. Dataset preprocessing, feature engineering, and parameter tuning
are other examples of tasks equally important for yielding good models. Cirrus should pro-
vide a complete API that allows developers to run these tasks at scale with minimal efforts.

High scalability. ML tasks are highly compute intensive, and thus can take a long time
to complete without efficient paralellization. Hence, Cirrus should be able to run thousands
of concurrent workers and hundreds of concurrent experiments.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 25

Client Frontend

Python API

Preproc. Training Tuning

Lambda Worker

Minibatch bu�er
Sparse LR

Data store client API

Data store

SGD Adagrad

Momentum

Mat. Fact. LDA

PS API Key-value API

Models
Key-values

Data iterator API

Client side
(stateful)

Server side
(stateless)

Task
Scheduler

Client Backend
Lambda
Manager

put
(gradient)

get
(model)

Create/Stop Task

Dashboard

Figure 3.3: Cirrus system architecture. The system consists of the (stateful) client-side (left)
and the (stateless) server-side (right). The client-side contains a user-facing frontend API
and supports preprocessing, training, and tuning. The client-side backend manages cloud
functions and the allocation of tasks to functions. The server-side consists of the Lambda
Worker and the high-performance Data Store components. The lambda worker exports the
data iterator API to the client backend and contains efficient implementation for a number
of iterative training algorithms. The data store is used for storing gradients, models, and
intermediate preprocessing results.

3.4.2 Cirrus Building Blocks

Cirrus makes use of three system building blocks to achieve the aforementioned principles
(see Figure 3.3). First, Cirrus provides a Python frontend for ML developers. This frontend
has two functions: a) provide a rich API for all stages of ML training, and b) execute
and manage computations at scale in serverless infrastructure. Second, to overcome the
lack of offerings for low-latency serverless storage, Cirrus provides a low-latency, distributed
data store for all intermediate data shared by the workers. Third, Cirrus provides a worker
runtime that runs on serverless lambdas. This runtime provides efficient interfaces to access
training datasets in S3 and intermediate data in the distributed data store.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 26

3.4.2.1 Python frontend

Cirrus provides an API for all stages of the ML workflow that is practical and easy-to-use by
the broader ML community for three reasons. First, the API is totally contained within a
Python package. Because many existing frameworks are developed in Python or have Python
interfaces (e.g., Tensorflow, scikit-learn), developers can transition easily. Second, the Cirrus
API provides a high-level interface that abstracts the underlying system-level resources. For
instance, developers can run experiments with thousands of concurrent workers without
having to provision any of those resources. Last, the Cirrus Python package provides a user
interface through which developers can visualize the progress of their work.

The Cirrus Python API is divided in three submodules. Each submodule packages all
the functions and classes related to each one of the stages of the workflow.

Preprocessing. The preprocessing submodule allows users to preprocess training datasets
stored in S3. This submodule allows different types of dataset transformations: min-max
scaling, standardization, and feature hashing.

Training. Cirrus’s training submodule supports ML models that can be trained with
stochastic gradient descent (SGD) [22]. Currently Cirrus supports Sparse Logistic Regres-
sion, Latent Dirichlet Allocation, Softmax and Collaborative Filtering.

Hyperparameter optimization. The hyperparameter optimization submodule allows
users to run a grid search over a given set of parameters. Cirrus allows users to vary both
ML training parameters (e.g., learning rate, regularization rate, minibatch size) as well as
system parameters (e.g., lambda size, # concurrent workers, filtering of gradients). Cirrus
can parallelize this task.

3.4.2.2 Client-side backend

The Python frontend provides an interface to Cirrus’s client backend. This backend sits
behind the frontend and does a number of tasks: parse training data and load it to S3,
launch the Cirrus workers on lambdas, manage the distributed data store, keep track of
the progress of computations, and return results to the Python frontend once computations
complete.

There is a module in the backend for every stage of the workflow (preprocessing, training,
and hyperparameter optimization). These modules have logic specific to each stage of the
workflow and know which tasks to launch. They also delegate to the low-level scheduler the
responsibility to launch, kill and regenerate tasks. The low-level scheduler keeps track of the
state of all the tasks.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 27

API Description

int send gradient X(ModelGradient* g) Sends model gradient
SparseModel get sparse model X(const std::vector<int>& indices) Get subset of model
Model get full model X() Get all model weights

set value(string key, char* data, int size) Set intermediate state
std::string get value(string key) Get intermediate state

Table 3.2: Cirrus’s data store provides a parameter-server style interface optimized for com-
munication of models and gradients. Cirrus’s interfaces to send gradients and get model
weights are specialized to each model to achieve the highest performance. The data store
also provides a general key-value interface for other intermediate state.

3.4.2.3 Worker runtime

Cirrus provides a runtime that encapsulates all the functions that are shared between the dif-
ferent computations the system supports. This simplifies the development of new algorithms.
The system runtime meets two goals: 1) lightweight, to run within memory-constrained
lambdas, and 2) high-performance, to mitigate communication and computation overheads
exacerbated by serverless infrastructures.

The worker runtime provides two interfaces. First, it provides a smart iterator for training
datasets stored in S3. This iterator prefetches and buffers minibatches in the lambda’s local
memory in parallel with the worker’s computations to mitigate the high-latency (>10ms) of
accessing S3. Second, it provides an API for the distributed data store. This API implements:
data compression, sparse transfers of data, asynchronous communication and sharding across
multiple nodes.

3.4.2.4 Distributed data store

Cirrus’s data store serves the purpose of storing intermediate data to be shared by all workers.
Because inter-communication between lambdas is not allowed in existing offerings, lambdas
require a shared storage. A storage for serverless lambdas needs to meet three goals. First,
it needs to be low-latency (we achieve as low as 300µs) to be able to accommodate latency-
sensitive workloads such as those used for ML training (e.g., iterative SGD). Second, it needs
to scale to hundreds of workers to take advantage of the almost linear scalability of serverless
infrastructures. Third, it needs to have a rich interface (Table 3.2) to support different ML
use cases. For instance, it’s important that the data store supports multiget (3.7.5), general
key/value put/get operations, and a parameter-server interface.

To achieve low-latency, we deploy our data store in cloud VMs. It achieves latencies as low
as 300µs versus ≈ 10ms for AWS S3. This latency is critical to maximize system updates/sec
for model updates during training. We use sparse representations for gradients and models
to achieve up to 100x compression ratio for data exchange with the store. Furthermore,



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 28

Cirrus also supports computing multiple gradients every iteration locally on each lambda
before communicating them with the Cirrus data store.

To achieve high scalability Cirrus includes the following mechanisms: (1) sharded store,
(2) highly multithreaded, (3) data compression, (4) gradient filters, and (5) asynchronous
communication.

3.4.3 End-to-End ML Workflow Stages

This section describes in detail the computations Cirrus performs. We structure this accord-
ing to the different stages of the workflow.

3.4.3.1 Data Loading and Preprocessing

Cirrus assumes training data is stored in a global store such as S3. For that reason, the very
first step when using Cirrus is to upload the dataset to the cloud. The user passes the path of
the dataset to the system which then takes care of parsing and uploading it. In this process,
Cirrus transforms the dataset from its original format (e.g., csv) into a binary format. This
compression eliminates the need for deserialization during the training and hyperparameter
tuning phases which helps reduce the compute load in the lambda workers. Second, Cirrus
generates similarly-sized partitions of the dataset and uploads them to an S3 bucket.

Cirrus can also apply transformations to improve the performance of models. For in-
stance, for the asynchronous SGD optimization methods Cirrus implements, training is typi-
cally more effective after features in the dataset have been normalized. Because normalization
is a recurrent data transformation for the training models Cirrus provides, the system allows
users to do different types of per-column normalization such as min-max scaling.

For these transformations, Cirrus launches a large map-reduce job – one worker per input
partition. In the map phase, each worker computes statistics for its partition (e.g., mean and
standard deviation). In the reduce phase, these local statistics are aggregated to compute
global statistics. In the final map-phase, the workers transform each partition sample given
the final per-column statistics. For large datasets, the map and reduce phase aggregates
per-column statistics across a large number of workers and columns. This generates a large
number of new writes and reads per second, beyond the transactions throughput supported
by S3. For this reason, we use Cirrus’s low-latency distributed data store to store the
intermediate results of the maps and reduces.

3.4.3.2 Model training

For model training Cirrus uses a distributed SGD algorithm. During training workers run
on lambda functions and are responsible for iteratively computing gradient steps. Every
gradient computation requires two inputs: a minibatch and the most up-to-date model. The
minibatches are fetched from S3 through the Cirrus’s runtime iterators. Because the iterator
buffers minibatches within the worker’s memory, the latency to retrieve a minibatch is very



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 29

AWS Lambda Challenges Zip System Design

Limited lifetime (e.g., 15 min) Stateless workers coordinate through data store
Memory-constrained (e.g., 128MB) Runtime prefetches minibatches from remote store
High-variance start time Runtime tolerates late workers
No P2P connections Stateful frontend coordinates workers through data store
Lack of low-latency serverless storage
with rich API for ML

Data store with parameter-server and key-value API

Table 3.3: Technical challenges of using lambda functions in Amazon AWS and Cirrus’s
design choices that address them.

low. The most up-to-date model is retrieved synchronously from the data store using the
data store API (get sparse model X ).

For every iteration each worker computes a new gradient. This gradient is then sent
asynchronously to the data store (send gradient X ) to update the model.

3.4.3.3 Hyperparameter optimization

Hyperparameter optimization is a search for model parameters that yield the best accuracy.
A typical practice is to perform a grid search over the multi-dimensional parameter space.
The search may be brute-force or adaptive. It is common to let the grid search run to
completion in its entirety and post-process the results to find the best configuration. This
is a costly source of resource waste. Cirrus obviates this over-provisioning over time by
providing a hyperparameter search dashboard. Cirrus hyperparameter dashboard provides
a unified interface for monitoring a model’s loss convergence over time. It lets the user
select individual loss curves and terminate the corresponding training experiment. Note
that this scopes the termination to the appropriate set of serverless functions, and provides
immediate cost savings. Thus, Cirrus offers (a) the API and execution backend for launching
a hyperparameter search, (b) the dashboard for monitoring model accuracy convergence, (c)
the ability to terminate individual tuning experiments and save on over-provisioning costs.

3.4.4 Summary

Serverless compute properties, such as spatiotemporal fine-granularity of compute, make it
a compelling candidate for transparent management of cloud resources for scalable, iterative
ML training workflows. The benefits of those properties are eclipsed by the challenges they
create (Table 3.3) for existing ML training frameworks that assume (a) abundant compute
and memory resources per worker and (b) fault-tolerance as an exception, not a rule. Cirrus,
by design, addresses these challenges by (a) embracing fault-tolerance as a rule with its state-
less server-side backend, (b) tracking the scalability afforded by cloud-provided serverless
functions with a low overhead, high-performance worker runtime and the data store. Cirrus
obviates the need to over-provision by leveraging fine-grain serverless compute as well as an



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 30

interactive dashboard to track and manage costs at a higher, application level for the hyper-
parameter optimization stage. To the best of our knowledge, Cirrus is the first framework
that is simultaneously specialized for ML training and serverless execution environments,
morphing the benefits of both.

3.5 System Usage Model

Cirrus provides a lightweight Python API for ML users. Its API lets users perform a wide-
range of ML tasks, such as: (1) dataset loading, with support for commonly used data
formats, (2) dataset preprocessing, (3) model training, and (4) hyperparameter tuning at
scale, from within a single, integrated framework.

To this end, we designed Cirrus’s API with four goals in mind. First, the API should
be simple and easy-to-use. Our interface should abstract users away from the underlying
hardware. Second, the API should cover computations from the beginning to the end of
a workflow. Third, the API should facilitate experimentation with different model and
optimization parameters because ML users generally spend a significant amount of their
time and effort on model and parameter exploration. Fourth, the API should be general, to
enable extensibility to other use cases, such as ML pipelines.

We demonstrate the capabilities of the Cirrus API with an example – the example in
Figure 3.5 consists of developing an efficient model for the prediction of the probability of a
user clicking an ad for a dataset of display ads. This example is based on the Criteo Kaggle
competition [37].

The first step in the workflow with Cirrus is to load the dataset and upload it to S3. For
instance, the user can call the load libsvm method to load a dataset stored in the LIBSVM [25]
format. Behind the scenes Cirrus parses the data, automatically creates partitions for it and
then uploads it to S3. The front-end partitions datasets in blocks of roughly 10MB. We
chose this size because data partitions in Cirrus are the granularity of data workers transfer
from S3. We have found this size allows lambda workers to achieve good network transfer
bandwidth. In addition, this keeps the size of each worker’s minibatch cache small.

Once the data is loaded into S3 it can be immediately preprocessed. Cirrus provides a
submodule with different preprocessing functions. For instance, the user can normalize the
dataset by calling the cirrus.normalize function with the path of the dataset in S3. Once
the data is loaded, the user can train models and see how they perform (with a real-time
user interface running on a Jupyter notebook) and subsequently tune the model through
hyperparameter search.

3.6 Implementation

The Cirrus implementation is composed of four components: (1) python frontend, (2) client
backend, (3) distributed data store, and (4) worker runtime. The frontend and client backend



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 31

Lock Camera

Current Cost: $0.01

($0.00028/sec)

Num Lambdas: 114

Mem Usage: 126

MBs

Show All

Show Best Five

Show W orst

Five

Nothing selected!

K I L L  A L L

Loss vs. Time ×

20 40 60 80 100

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time Elapsed (sec)

Lo
ss

(a) Convergence monitoring panel

(b) Experiment control panel

Lock Camera

Current Cost: $0.06
($0.00028/sec)
Num Lambdas: 30
Mem Usage: 126 MB

Show All
Show Best Five
Show Worst

Nothing selected!

Kill All

Cost/Second ×

0 100 200 300 400 500
0.00014

0.00017

0.00020

0.00023

0.00028

C
os

t (
$ 

/ s
ec

)

Time Elapsed (sec)

(c) Aggregate cost panel

Figure 3.4: Cirrus’s hyperparameter search dashboard for visualizing and controlling tuning
experiments. (a) plots loss over time for each hyperparameter search experiment in real
time. (b) shows the experiment control panel with a kill widget for diverging experiments.
(c) Cirrus’s aggregate cost savings over time after terminating diverging experiments.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 32

import cirrus

import numpy as np

local_path = "local_criteo"

s3_input = "criteo_dataset"

s3_output = "criteo_norm"

cirrus.load_libsvm(local_path, s3_input)

cirrus.normalize(s3_input, s3_output,

MIN_MAX_SCALING)

(a) Pre-process
params = {

'n_workers': 5,

'n_ps': 1,

'worker_size': 1024,

'dataset': s3_output,

'epsilon': 0.0001,

'timeout': 20 * 60,

'model_size': 2**19,

}

lr_task = cirrus.LogisticRegression(params)

result = lr_task.run()

(b) Train
# learning rates

lrates = np.arange(0.1, 10, 0.1)

minibatch_size = [100, 1000]

gs = cirrus.GridSearch(

task=cirrus.LRegression,

param_base=params,

hyper_vars=["learning_rate", "minibach_size"],

hyper_params=[lrates, minibatch_size])

results = gs.run()

(c) Tune

Figure 3.5: Cirrus API example. Cirrus supports different phases of ML development work-
flow: (a) preprocessing, (b) training, and (c) hyperparameter tuning.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 33

Component Lang. LOC

Data store C++ 1070
Client backend Python 977
Python frontend and shared components Python/C++ 7017
Worker runtime C++ 1065

Table 3.4: Cirrus components.

were implemented in Python for ease of use and to enable the integration of Cirrus with
existing machine learning processes. The distributed data store and workers runtime were
implemented in C++ for efficiency. Table 3.4 lists the different components implemented
as well as their size and implementation language. The worker runtime code includes the
iterators interface and the data store client implementation. The worker’s runtime and the
datastore communicate through TCP connections. We implemented a library of shared
components, which includes linear algebra libraries, general utilities, and ML algorithms
that are shared by all system components. We have released publicly the implementation
with an Apache 2 open source licence1.

Python frontend. The frontend is a thin Python API that, by default, abstracts all
the details from developers but also provides the ability to override internal configuration
parameters (e.g., optimization algorithm) through parameters to the API. This flexibility is
important because machine learning requires a high degree of experimentation. The frontend
also provides a user interface running on Plotly [59] for users to monitor the progress of the
workloads and start/stop tasks.

Client backend. The client backend abstracts the management of lambdas from the fron-
tend algorithms. Internally, the client backend keeps a list of the lambdas currently active
and keeps a list of connections to the AWS Lambda API (each one used to launch a lambda).
Lambdas that are launched during training are relaunched automatically when their lifetime
terminates (every 15 minutes). Launching hundreds of lambdas quickly from a single server
can be challenging due to the specifics of the lambda API. To address this, the backend
keeps a pool of threads that can be used for responding to requests for new lambda tasks.

Distributed data store. Cirrus’s distributed data store provides an interface that sup-
ports all the use cases for storing intermediate data in the ML workflow. This interface
supports a key-value store interface (set/get) and a parameter-server interface (send gradi-
ent / get model).

A key goal of our data store is to provide very fast access to shared intermediate data
by Cirrus’s workers. We implemented several optimizations to achieve this performance

1https://github.com/ucbrise/cirrus



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 34

goal. First, to update models with high throughput we developed a multithreaded server
that distributes work across many cores. We found that utilizing multiple cores allows the
datastore to serve 30% more updates per second for a Sparse Logistic Regression workload.
However, eventually the server becomes bottlenecked by the network and adding more cores
does not improve performance. Second, to reduce pressure on the network links of the store
we implement data compression for the gradients and models transferred to/from the store.
Our experiments show this optimization reduces the amount of data transferred by 2x. Last,
our data store further optimizes communication by sending and receiving sparse gradient
and model data structures. This reduces the amount of data to transfer by up to 100x. The
modular design of the data store allows users to change, or even add, new ML optimization
algorithms (e.g., Adam) easily.

Worker runtime. Cirrus’s runtime (3.6) provides a) general abstractions for ML compu-
tations and b) data primitives to access training data, parameter models and intermediate
results. These can be used to add new ML models to Cirrus. To ease the development of new
algorithms, the runtime provides a set of linear algebra routines. Initial versions of Cirrus
used external linear algebra libraries such as Eigen [52] for gradient computations. To re-
duce the amount of time spent serializing and deserializing data to be processed by Eigen, we
ended up developing our own routines. For data access, the runtime provides a minibatch-
based iterator backed by a local memory ring-buffer that allows workers to access training
minibatches with low latency. In addition, it provides an efficient API to communicate with
the distributed data store.

3.7 Evaluation

This section compares Cirrus with tools specialized for ML training under traditional exe-
cution environments (3.7.2 and 3.7.3) and with PyWren, a framework for general serverless
infrastructure computation (3.7.5). We complement our evaluation with a discussion on
Cirrus’s scalability (3.7.4), an ablation study (3.7.5), and a microbenchmark (3.7.6).

3.7.1 Methodology

For our evaluation, we ran serverless systems, Cirrus and PyWren, on AWS Lambda [17]. In
all experiments with serverless systems the training dataset was stored on AWS S3. Unless
otherwise noted, we used the largest-sized lambdas (3GB of memory) for better performance.
In one of the experiments (3.7.5) we used a cache.r4.16xlarge Redis AWS instance (32 cores,
203GB of RAM, 10 Gbps NIC) to store intermediate results used by PyWren. To deploy
Cirrus’s distributed datastore, unless otherwise noted, we used a single m5.large instance (2
CPUs, 8GB of RAM, 10Gbps NIC). The datastore and Cirrus’s workers were all deployed
on the same AWS region (us-west-2).



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 35

Centaur Runtime

Send
gradient

Get
Model

Asynchronous
Synchronous Get

minibatches

Sparse logistic Regression Collaborative Filtering

Latent Dirichlet Allocation Softmax

Training Data Iterator

Parameter server Interface

Figure 3.6: Cirrus worker runtime
. Minibatches are asynchronously prefetched and cached locally within each lambda’s

memory (depending on the size of the lambda used). Similarly, gradients are sent to the
parameter server asynchronously. The model is retrieved from the parameter server

synchronously every iteration.

To run Apache Spark we deployed three m5.xlarge (4 cores, 16.0GB of RAM, and 10
Gbps NIC) VMs from AWS. To run Bosen we used a varying number of m5.2xlarge Amazon
AWS instances. For both systems we split the datasets evenly across the VMs before the
start of the experiments.

For the Sparse Logistic Regression and Collaborative Filtering problems we used Cirrus’s
asynchronous SGD [86] implementation. For these experiments we configured all the systems
to use a minibatch size of 20 samples.

3.7.2 Sparse Logistic Regression

We compared Cirrus’s Sparse Logistic Regression implementation against two frameworks
specialized for VM-based ML training: TensorFlow [1], and Bosen [102].

TensorFlow is an open-source framework developed at Google and specialized for deep
learning workloads. It is today the most widely used framework for deep learning. It provides
a simple but general interface for building neural networks, and a highly-optimized backend
that can train the networks in a parallel and distributed fashion. Bosen is a distributed and
multi-threaded parameter server, developed at CMU and commercialized by Petuum [103],
that is optimized for large-scale distributed clusters and machine learning algorithms with
stale updates.

Logistic regression is the problem of computing the probability of any given sample be-



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 36

0 500 1000
Time (sec)

0.48

0.49

0.50

0.51

Lo
ss

Cirrus 10 workers
Cirrus 5 workers
Bosen 1 server 8 workers
Bosen 2 server 16 workers
Bosen 4 server 32 workers

(a) Bosen

0 500 1000 1500
Time (sec)

0.45

0.46

0.47

0.48

Lo
ss

Cirrus
Tensorflow

(b) Tensorflow

250 300 350
Time (sec)

0.85

0.90

0.95

RM
SE

Cirrus
Spark

(c) Spark

Figure 3.7: Training performance comparison between Cirrus and Bosen, Tensorflow and
Spark for different workloads. (a) Loss over time comparison between Bosen and Cirrus
with different setups. The best loss=0.485 achieved by Bosen is reached by Cirrus at least
5x faster (200sec vs. 1000sec). Cirrus can converge within the lifetime of one or two lambdas
(300-600sec) faster and with lower loss than state-of-the-art ML training frameworks. (b)
Convergence vs Time curve for Tensorflow Criteo tft benchmark [49] and Cirrus. Tensorflow
was executed on a 32-core node (performed better than on 1 Titan V GPU) and Cirrus
ran in 10 lambdas. We implemented the same dataset preprocessing in Cirrus. (c) Curve
showing the RMSE over time for Spark (ALS) and Cirrus when running the Netflix dataset
until convergence. Spark spends the first 4 minutes processing data and terminates after
converging (RMSE=0.85) in 5 iterations of ALS. Cirrus converges more quickly to a lower
RMSE (0.833).



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 37

longing to two classes of interest. In particular, for our evaluation we compute the probability
that a website ad is clicked, and evaluate the learning convergence as a function of time.
We use the Criteo display ads dataset [33]. This dataset contains 45M samples and has
11GB of size in total. Each sample contains 13 numerical and 26 categorical features. Before
training we normalized the dataset and we hashed the categorical features to a sparse vector
of size 220. This hashing results in a highly-sparse dataset – all the systems we run in this
experiment have support for sparse data. Each training sample has a 0/1 label indicating
whether an ad was clicked or not.

To evaluate Bosen we use 1, 2 and 4 m5.2xlarge Amazon AWS instances (each with 8
CPUs and 32GB of RAM). We configure it to use all the 8 available cores on each instance.
For each experiment with Bosen, we partitioned the dataset across all machines. To evaluate
Cirrus we used Amazon AWS lambdas for workers, m5.large instances (2 CPUs, 8GB of
RAM, 10Gbps networks) for the parameter server, and AWS S3 storage for training data
and periodic model backups. We report the best result obtained from trying a range of
learning rates for both systems. For Bosen, we only vary learning rate and number of
workers. All the other configuration parameters were left with default values.

Figure 3.7a shows the logistic test loss achieved over time with varying numbers of servers
(for Bosen) and AWS lambdas (for Cirrus). The loss was obtained by evaluating the trained
model on a holdout set containing 50K samples. We find that Cirrus is able to converge
significantly faster than Bosen. For instance, Cirrus with 10 lambdas (size 2048MB) reaches
a loss of 0.49 and 0.48 after 12 and 46 seconds, respectively. On the other hand, Bosen with
2 servers (16 threads) reaches this loss only after 600 seconds and a loss of 0.48 after 4600
seconds. Through profiling, we found that Bosen’s performance suffers from contention to
a local cache shared by all workers that aggregates gradients before sending them to the
parameter server; this design leads to slower convergence.

In Figure 3.7b, we compare Cirrus with TensorFlow using the same dataset and the
same pre-processing steps. Similarly, Cirrus reaches the best loss TensorFlow achieves by
t = 1500s 3.75x faster (by t = 400 seconds).

3.7.3 Collaborative Filtering

We also evaluate a second model supported by Cirrus: collaborative filtering (see Figure 3.7).
Collaborative filtering is a technique used to make recommendations to a user, based on her
and other users’ preferences.

We evaluate Cirrus on the ability to predict the ratings users give to other movies they
have not seen. We use the Netflix dataset [77] for this experiment.

To solve this problem, Cirrus implements a collaborative filtering SGD learning algorithm
that builds a matrix U of size nusers ×K and a matrix M of size nmovies ×K. We chose K
to be 10. Our metric of success for this experiments is the rate of convergence (3.7c). This
dataset contains 400K users and 17K movies and a total of 100 million user-movie ratings.

We find that Cirrus converges faster and achieves a lower test loss than Spark (3.7c).
Through profiling, we observe that Spark’s ALS implementation suffers from expensive RDD



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 38

1 10 100 1000
Number of Workers

10 1

100

101

Ag
g.

 T
hr

.p
ut

 (G
B/

s)

Ideal Linear Scaling

(a) AWS S3

1 10 100
Number of Workers

101

102

103

Gr
ad

ie
nt

s /
 se

c

Ideal Linear Scaling

(b) Lambda

1 10 100 600
Number of Workers

101
102
103
104
105
106
107
108

# 
Sa

m
pl

es
 / 

se
c

Ideal Linear Scaling

(c) Param. Server

Figure 3.8: Scalability of AWS storage (GB/s), AWS serverless compute (gradients/sec),
and Cirrus data store (samples/sec). Each worker consumes 30MB/s of training data.

overheads, as Spark loads the whole dataset to memory. This causes Spark to spend more
than 94% of the time doing work not directly related to training the model. In contrast,
Cirrus streams data from S3 continuously to the workers which allows them to start com-
puting right away.

3.7.4 Scalability

Finally, scalability is an important property for ML workflow support. We show that the
choice of serverless infrastructure rests on its impressive scalability (3.8) and that Cirrus
scales linearly leveraging that advantage. We accomplish this level of scalability by designing
the system to scale across 3 dimensions: storage of training data with S3, compute with
lambdas, and shared memory with a distributed parameter server.

Scaling serverless compute for high-intensity ML workloads can be challenging as S3
quickly becomes the bottleneck at a high number of requests per second [64].

Storage scalability. Cirrus addresses this issue by splitting training datasets in S3 into
medium-sized objects. We use 10MB objects because we find this size achieves good network
utilization, while being small enough for even the smallest sized lambdas. By using large
objects we reduce the number of requests per second. As a result, we are able to scale S3
throughput linearly to 1000 of Cirrus workers (3.8a), when each worker consumes 30MB/s
of training data from S3.

While doing this experiment, we found that when launching a large number of lambdas
(e.g., >3K) AWS Lambda often times takes tens of minutes until all the lambdas have started.
This suggests the need for frameworks such as Cirrus that can handle the unpredictable
arrival of workers.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 39

Compute scalability. A second challenge is to be able to run a large number of workers
that perform a compute-intensive operation such as the computation of a model gradient.
We did an experiment to figure out how well the Cirrus workers can scale when the training
dataset is backed by S3 (3.8b) – with no synchronization of models and parameters (we
explore that case in the next experiment). Cirrus can achieve linear compute scalability by
streaming input training data and computing gradients in parallel.

Parameter server scalability. At the parameter server level, the challenge arises from
the limited network bandwidth of each VM as well as the compute required to update the
model and serve requests from workers. Cirrus solves this problem with 1) model sharding, 2)
sparse gradients/models, 3) data compression, and 4) asynchronous communication. Cirrus
achieves linear scalability up to 600 workers (3.8c).

3.7.5 The Benefits of ML Specialization

To evaluate the advantages of a specialized system for ML, we compare Cirrus against
PyWren [64]. PyWren is a map-reduce framework that runs on serverless lambdas. It
provides map and reduce primitives that scale to thousands of workers. These PyWren
primitives have been used to implement algorithms in fields such as large-scale sorting, data
queries, and machine learning training. PyWren’s runtime is optimized to run on AWS
Lambdas, the same serverless platform we used for all Cirrus experiments.

To perform this comparison we initially implemented a synchronous SGD training al-
gorithm for Logistic Regression on PyWren. Our code uses PyWren to run a number of
workers on lambdas (map tasks) and the gradients returned by these tasks are aggregated
and then used to update the model (in the PyWren driver). The driver iteratively updates
and communicates the latest model to workers through S3.

We take a step further and implement a set of optimizations to our PyWren baseline
implementation. We compute the loss curve of the system after implementing each op-
timization (3.9a). The optimizations we implement are (cumulatively): (1) each lambda
invocation executes multiple SGD iterations + asynchronous SGD, (2) minibatch prefetch-
ing and sparse gradients, (3) using a low-latency store (Redis) instead of S3. Additionally,
we also evaluate the contribution of the Cirrus’s data prefetching iterator to the performance
of Cirrus.

Despite the optimizations that we implemented using Pywren, which improved its average
time per model update by 700x (from 14 seconds to 0.02) it still achieves a significantly
lower number of model updates per second (3.9b) and converges significantly slower (3.9a)
than Cirrus. We attribute this performance gap to the careful design and high-performance
implementation of Cirrus that specializes both for the serverless environments (e.g., data
prefetching, lightweight runtime) and for the iterative ML training workloads with stringent
performance requirements (e.g., sparse gradients, optimized data copying, multi-threaded
data store).



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 40

0 200 400 600 800
Time (sec)

0.50

0.55

0.60

0.65

0.70

Te
st

 L
os

s
PyWren
+ Reuse Lambdas + Async.
+ Sparse Grad. + Pref.
+ Redis
Cirrus (wo/ Pref.)
Cirrus (w/ Pref.)

(a) Convergence over time.

PyWren Cirrus
(wo/ Pref.)

Cirrus
(w/ Pref.)

100

101

102

103

104

M
od

el
 u

pd
at

es
 / 

se
c

(b) Model updates per second.

Figure 3.9: PyWren and Zip’s performance on a Sparse Logistic Regression workload when
running on 10 lambdas. Zip achieves 2 orders of magnitude more model updates due to a
combination of prefetching, reusing lambdas across model training iterations, and efficient
model sharing through Zip’s fast data store. In particular, training data prefetching masks
the high access latency to S3 which results in an additional 10x more updates/second.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 41

(a) Updates/sec (b) Cost/update

Figure 3.10: Number of updates per second and cost per update of a single worker with
different lambda sizes. We make an observation that, while cost grows linearly with lambda
size, the performance gains are sub-linear. This key enabling insight helps Cirrus tap into
significant performance per unit cost gains, leveraging its ability to operate with ultra-
lightweight resource footprint.

3.7.6 Microbenchmark

One of the system parameters Cirrus abstracts from users is the size of the lambda functions
used for Cirrus’s workers. Larger lambdas – measured in the size of available memory –
result in more available CPU power and consequently in higher performance.

To understand how the performance of Cirrus varies with the size of the lambda functions,
we performed the Sparse Logistic Regression workload (Section 3.7.2) with four lambda
sizes (128MB, 1GB, 2GB and 3GB). The performance of each individual Cirrus’s worker –
measured in updates per second – with varying lambda sizes can be seen in Figure 3.10.
Our results show that Cirrus’s workers running on bigger lambdas can achieve a higher
throughput. However, when we plot the cost per update with different lambdas sizes we see
that small lambdas achieve the best cost per update. This explains why we get the best
performance/cost configuration when Cirrus makes use of small lambdas.

3.8 Related Work

In this section we discuss and revisit related work that pertains to the goal of providing
interactive ML workflows in serverless. Here we discuss alternative approaches for running
distributed serverless computations in serverless, existing serverless storage systems used for
λ-to-λ communication, ML training systems designed for VMs and the challenges of porting
them to serverless, and how ideas from hardware disaggregated architectures can be used for
this problem.



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 42

Serverless computing. Previous systems, such as PyWren, ExCamera and gg, allow run-
ning large-scale distributed jobs running on serverless functions. ExCamera [42] is a library
to leverage lambdas to compute intensive video-encoding tasks in a few minutes. gg [43]
is a framework for serverless parallel threads that has been used for software compilation,
unit tests, video encoding, and object recognition. These systems focus on supporting em-
barrassingly parallel jobs that don’t require synchronization. Cirrus focuses instead on ML
workloads, which require synchronization and have more stringent performance requirements.
Other work [78, 100, 4] has focused on understanding and improving the performance of
serverless architectures. Serverless systems, including our own, build on this work to in-
crease efficiency.
Serverless storage. Several proposals for serverless storage systems have emerged. For
instance, Pocket [67, 83] is an elastic storage system for serverless workloads. Unlike Cirrus’s
data store, Pocket’s API is not able to transfer sparse data structures (or multiget), and does
not support ML-specific logic on the server side. These properties are critical to provide
high-performance storage for ML serverless workloads.
ML parameter servers. Past works have mostly focused on developing general-purpose
large-scale parameter-server systems specialized for commodity cloud hardware. None of
these existing systems is a good fit for serverless environments. For instance, Tensorflow’s [1]
runtime has high memory overhead and Bosen [102] loads all training data into memory.
These design choices make these systems inefficient for running in lambdas, which only
have available a few hundreds MBs of RAM. Other systems, such as Multiverso [76] and
Vowpal Wabbit [2], leverage MPI as a runtime, making them a bad fit for an environment
where tasks are ephemeral and need to be terminated and restarted frequently. Last, unlike
Cirrus, systems such as [72, 71] shard the training data across all workers. Thus, each
worker requires a large amount of local disk capacity or otherwise many server nodes need
to be allocated. Cirrus, on the other hand, has minimal local disk requirements because it
continuously streams training data from remote storage.
Other ML Frameworks. General distributed computing frameworks such as Spark [104],
and Hadoop [9] have also been used to implement large-scale distributed machine learning
algorithms such as those used in our work. In contrast with these systems, Cirrus is optimized
for both serverless and machine learning workloads. Cirrus achieves better performance by
combining an ultra-lightweight runtime and a scalable distributed data store. Recent work on
developing a prototype of Spark on AWS Lambda confirms that porting existing frameworks
to lambdas requires significant architectural changes [85]. For instance, the current prototype
of Spark on AWS Lambda does not support ML workloads and takes 2 minutes to start a
Spark Executor inside the lambda.
Disaggregated architectures Recent work on disaggregated architectures has been pro-
posed by both industry (e.g, HP [56], Intel [60], Huawei [57], and Facebook [36]) and aca-
demics (e.g., Firebox [12], Microsoft Research [89], VMWare [3] and others [66]). Disaggre-
gated architectures are a promising path for accelerating large-scale serverless computations,
such as ML workflows, through novel hardware/network platforms. For instance, Aguilera
et al [3] propose a refreshable vector abstraction for keeping a stale data vector cached on



CHAPTER 3. AUTOMATIC MANAGEMENT OF ML WORKFLOWS 43

each worker. Vectors on each worker get updated through sparse data communication. This
abstraction can be used for caching and updating ML models, akin to what Cirrus’s software
data store interface provides. Similarly, a high-bandwidth high-radix network such as the
one proposed by Firebox [12] can accelerate the communication between lambdas. Such ar-
chitecture can be beneficial for large shuffles and reduces, commonly used during the initial
preprocessing phase of the ML workflow. Last, Firebox’s heterogeneous architecture enables
hardware specialization for the different stages of ML workflows. Serverless systems such as
Cirrus can build on top of such hardware architectures.

3.9 Summary

In this chapter we presented a system, Cirrus, that is aimed at addressing the complexities
of serverless platforms for end-to-end ML workflows. Cirrus is a distributed ML workflow
framework for serverless infrastructure that aims to support and simplify the end-to-end ML
user workflow by providing an easy button for ML workflow lifecycle.

Cirrus leverages a number of properties of serverless disaggregated infrastructure, par-
ticularly, the ease of use, low-latency lambda instantiation, and attractive performance per
unit cost. Cirrus leverages a number of key observations we make about ML training work-
loads as well: training data consumption bandwidth is a good fit for streaming bandwidth
provided by Amazon’s S3, training data access patterns that make it possible to iterate and
stream the remote dataset, and the ability to converge with asynchronous gradient updates.
The latter makes it possible to deploy the inherently stateful ML training workload on a fleet
of ephemeral serverless compute resources and robustly handle their churn. End-to-end ML
workflow on serverless infrastructure needs a system that specializes in both. Cirrus outper-
forms a state-of-the-art ML training framework [102] in terms of time to best convergence as
well as performance per unit cost, motivating the need for specialized ML training framework
designed specifically to work on serverless infrastructure. Cirrus also outperforms a state-
of-the-art general serverless framework [64] on ML training workloads, motivating the need
for a specialized serverless framework designed specifically for iterative ML training work-
loads. Thus, we demonstrate both the need for and the feasibility of a serverless ML training
framework that specializes in both, while dramatically simplifying the data scientists’ and
ML practitioners’ model training workflow.

In the next chapter we focus our attention in the second missing piece of serverless: the
lack of a high-performance and scalable abstraction for distributed communication.



44

Chapter 4

Scalable Serverless Communication

4.1 Roadmap

The second missing piece of serverless computing is a high-performance and scalable abstrac-
tion for distributed communication in serverless. To address this problem, in this Chapter
we present Zip. Zip is a serverless framework that enables large-scale high-performance and
scalable communication across lambdas. Zip achieves higher performance by extending the
design of existing serverless platforms with high-level abstractions and a runtime for lambda
communication. Furthermore, Zip implements a per-machine daemon that opportunistically
optimizes performance by exploiting lambda locality.

In Section 4.2 we explain the challenges of performing distributed communication in
serverless platforms and provide an overview of how Zip overcomes them.

In Section 4.3 we make the case for a new communication model for serverless applications
that (a) allows direct network connections between lambdas, (b) provides a high-level API for
distributed communication, and (c) optimizes communication within and across machines.

In Section 4.4 we present Zip’s programming model and API for lambda communica-
tion based on Zip channels. We discuss how lambdas can join channels to perform specific
distributed communication patterns and illustrate with an example.

In Section 4.5 we present the design and architecture of Zip. Here we show how Zip ex-
tends the design of existing serverless platforms, namely by adding a controller, and lambda
library. We also discuss the per-machine daemon that optimizes specific types of communi-
cation within each machine.

In Section 4.6 we discuss the implementation details of the system. Here we emphasize
the careful C++ backend to achieve high-throughput low-latency message passing. We also
discuss optimizations aimed at avoiding unnecessary data copies and serialization of data for
widely used Python data types such as numpy arrays.

In Section 4.7 we evaluate Zip. Here we demonstrate that it is possible to provide simple
extensions to existing serverless platforms to provide significantly better performance for
distributed communication. Here we show that, for a distributed sorting workload, Zip can



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 45

provide a 1.4x speedup and 4.8x lower cost compared to the second fastest alternative. We
also perform micro-benchmarks and show that Zip performs up to 12x faster than the second
best alternative. Even if for some alternative approaches Zip occasionally performs similarly,
unlike those approaches Zip does not require explicit resource management.

In Section 4.8 we discuss how Zip compares to some of the related work. In particu-
lar, survey work that leverages external storage systems for communication, and previous
attempts at enabling serverless communication.

In Section 4.9 we summarize the main takeaways of this chapter, including the perfor-
mance and cost improvements provided by Zip.

4.2 Introduction

Serverless is a compelling model for highly distributed workloads because of its fine-grained
elasticity. For instance, the problem of training and optimizing a machine learning model
consists of a sequence of three sub-tasks: (1) data preprocessing and augmentation, (2)
model training, and (3) model hyper-parameter tuning. On a traditional platform, develop-
ers provision their resources to handle the most compute-intensive task but typically leave
resources underutilized during the other tasks.

Despite the wide-range of promising applications for serverless computing, today’s server-
less platforms remain a poor fit for many important distributed applications. One important
problem is that serverless platforms lack support for direct lambda-to-lambda communication.
As a result, developers rely on external storage systems, such as AWS S3 [18], Redis [87],
and Pocket [83], that are inefficient for the purpose of passing messages between lambdas.
This ad-hoc communication method presents a number of problems in serverless platforms.
First, it is inefficient because data has to be transferred through two hops and it leads to
duplication of data (e.g., lambda sending same data to group of lambdas). Second, it re-
quires time-consuming deployment, configuration, and management of a separate system
which negates the easiness of deployment promised by the serverless model. Last, it ties the
scalability of the application to the scalability of the external storage system.

A major goal of the serverless model is to significantly simplify the development of cloud
applications, however, the current model lacks a high-level communication model. This
limitation forces developers to rely on their own ad-hoc communication mechanisms using
external storage systems. In addition, existing communication abstractions, such as sock-
ets and MPI [41], are challenging to use in the serverless environment due to the frequent
arrival and departure of workers. This prevents the adoption by developers of traditional
communication frameworks [41] in serverless environments. Furthermore, lambda isolation
mechanisms combined with the lambda “schedule anywhere” approach of serverless model
wastes communication optimization opportunities. Notoriously, lambda co-location and data
sharing are some important performance optimizations that are excluded by existing server-
less models.



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 46

This chapter proposes Zip, a serverless framework that extends the current serverless
model with direct, scalable, and serverless inter-lambda communication. For developers, Zip
provides a high-level communication API for communication between lambdas that allows
1:1, 1:many, and many:1 group communication. Specifically, Zip provides a broadcast,
reduce and shuffle functions, which are fundamental building blocks for many distributed
workload, such as data analytics[104, 9, 84], distributed ML[1, 70], and others[34]. Zip
provides a highly-optimized runtime that manages all aspects of communication, such as
network connections, group membership, and failure handling.

Zip relies on a scalable distributed channel implementation to allow efficient and fault-
tolerant direct lambda communication. The channels data path is implemented using a mesh
of direct connections between lambdas in order to achieve high scalability that can support
thousands of workers. In turn, a scalable centralized cluster controller allows workers to
establish and maintain channels even in the presence of lambda arrival, departures, and
failures. Last, Zip implements a per-machine daemon that exploit locality to de-duplicate
messages between lambdas within the same VM, which significantly reduces communication
cost for broadcast and reduce operations.

Zip extends the design of existing serverless platforms, such as Apache Openwhisk [10],
to enable higher performance and scalable communication. We evaluated Zip using several
macro and micro-benchmarks. Our analysis considered both the end-to-end performance
and cost when running Zip in comparison with alternative communication approaches, in
particular, AWS S3, Redis and Pocket. We found that Zip can provide up to 4.8x lower cost
and 1.4x speedup for a distributed sorting workload, compared to the best memory-based
store alternative.

This chapter makes the following contributions:

• A high-level serverless communication model that directly supports broadcast, reduce,
and shuffle operations.

• The design and implementation of Zip, a serverless framework that lets developers
build scalable and fully-serverless applications that communicate efficiently.

• An approach that exploits serverless communication locality and a per-machine com-
munication daemon to increase communication scalability and performance.

• A performance and cost evaluation, for distributed serverless workloads, of Zip and
existing approaches.

4.3 The need for a serverless communication

abstraction

Recently there has been a proliferation of distributed frameworks for serverless comput-
ing [93, 64, 24, 40, 31, 43, 84, 75, 90]. These frameworks provide computational abstractions



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 47

System
Server-

less
Comm.
scalab.

λ-to-λ
High-level

comm. API
Speed

AWS S3 [18] Yes Low No No Slow
Redis [87] No Med. No No Med.
Pocket [83] Yes Med. No No Med.
Zip [this paper] Yes High Yes Yes High

Table 4.1: Comparison between different serverless communication approaches.

(a) Distribution of end-to-end communication
bandwidth between two lambdas through AWS
S3 with 1MB and 100MB messages

(b) End-to-end time of shuffle between 100,
200, 300, and 400 lambdas using AWS S3

Figure 4.1: Communication performance between lambdas when using AWS S3 for point-
to-point communication on shuffle workloads.

for distributed serverless applications in domains such as map-reduce, DAG-based com-
putations, and big data analytics. However, whenever communication between lambdas is
required, these frameworks resort to external storage systems such as AWS S3 [18], Redis [87]
or Pocket [83].

Although existing frameworks can leverage large amounts of computational resources for
a wide range of applications, a number of limitations arise from their reliance on external
storage systems and APIs that were not designed for serverless workloads (see Table 4.1).
Specifically, communication through such storage systems suffers from a combination of the
following drawbacks: (1) requirement to explicitly manage and provision resources for the
storage system, (2) (indirect) communication requires an extra hop (Figure 4.1a), (3) lack
of scalability (Figure 4.1b), (4) and lack of high-level communication API (see Section 2.4).



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 48

Channel Primitive Description

Broadcast
BroadcastChannel(name) Creates handle and joins channel.
send(data) Broadcasts data to all lambdas in the channel.
data = receive() Receives broadcast data.

Shuffle

ShuffleChannel(name, role)
Creates handle and joins channel. Developer needs to specify
role (whether lambda just sends, just receives, or does both).

shuffle send(data, hash function)
Send data to lambdas. data is a list of objects. Objects are
distributed by lambdas according to the hash function provided.

data = shuffle receive() Receive data from shuffle senders.
data = shuffle send receive(data,

hash function)
Send and receive data.

Reduce
ReduceChannel(name, reduce f=0,

handler=0)

Creates handle and joins channel. reduce f function is used
to reduce data. One lambda per channel can specify a handler
to receive the
result of the reduce.

reduce(data) Sends data to be reduced.

Table 4.2: Zip’s API. Zip provides communication primitives for 3 types of communication
patterns: broadcast, shuffle, and reduce. After a lambda joins a channel it can communicate
with other lambdas in the channel.

4.3.1 How Zip Addresses Serverless Limitations

Zip addresses the communication limitations in serverless by leveraging a combination of
techniques. First, Zip allows lambdas to establish direct network connections between each
other. This obviates the need for a separate storage system and allows 1-hop communication
between any two lambdas. Second, Zip provides a high-level API that provides primitives
for widely used communication patterns and abstracts developers away from the complexi-
ties of doing distributed serverless communication, such as handling worker failures. Last,
Zip improves end-to-end performance and scalability by optimizing communication between
lambdas within each machine.

4.4 Zip’s Programming Model

Zip provides a simple programming model for high-performance and scalable communication
between lambdas. This section discusses the Zip channel abstraction and Zip’s communica-
tion primitives and their semantics.

4.4.1 Zip Channels

Lambda execution time is generally limited in serverless computing (e.g., max. 15 minutes
in AWS Lambda [17]). As a result, in contrast with serverful environments, the arrival and
departure of lambdas is a common occurrence in serverless platforms. This makes distributed
communication particularly challenging. For instance, the traditional MPI approach assumes



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 49

that the number of workers does not change during execution [41]. Network sockets on the
other hand provide high flexibility, but are low-level and require developers to address a
wide-range of low-level details, which negate the simplicity goal of the serverless model.

To address the problem of worker churn, Zip relies on Zip channels (see Table 4.2). A
Zip channel is a named group of lambdas that intend to communicate with each other. The
membership set of a channel is dynamic and there are no restrictions on joining and leaving
a channel, on the number of channels, or number of channel members. This flexibility allows
developers to create channels for 1-to-many, many-to-many and many-to-1 communication.
Once a lambda joins a channel, the lambda can participates in all the communications within
the channel.

4.4.2 Communication primitives

Zip provides three major classes of inter-lambda communication primitives: broadcast,
shuffle, and reduce (see Figure 4.2). These classes are included in Zip to simplify the devel-
opment of a wide range of data-intensive distributed systems, such as MapReduce and ML
workloads, that often rely on these patterns, and simultaneously exploit their semantic to
allow system-level optimizations.

Broadcast A single lambda (broadcast sender) sends a copy of data to all the remaining
lambdas (broadcast receivers) in the channel. For every broadcast communication there can
only be one sender, but the sender can change between consecutive invocations of a broadcast
channel.

Shuffle Zip shuffle channels let lambdas distribute data across all members according to a
hash function provided by the developer.

Reduce The reduce operation performs a data reduce across all lambdas in the channel.
The computation used to reduce data is specified by the developer. In reduce, one of the
workers (reduce receiver) can register to receive the result of the reduce.

4.5 Zip design

Zip’s architecture consists of three major components: the library, the controller, and the
machine daemon (see Figure 4.3). The Zip’s developer library exposes and implements the
Zip API. The library is packaged with the application code, and runs with the application
inside a container. These containers are deployed onto VMs. The Zip cluster-wide controller
is responsible for managing the membership of lambdas in channels, managing the logical
and physical connections between lambdas, and handling failure recovery. The controller is
deployed as a single process in a separate machine and can serve many clients simultaneously.
The Zip daemon is a per-machine process that runs on every machine in the cluster and is
responsible for optimizing the communication between lambdas within and across machines.



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 50

from zip import BroadcastChannel

bc = BroadcastChannel(ch_name)

def sender():

bc.send(data=my_data)

def receiver():

data = bc.receive()

(a) Broadcast
from zip import ReduceChannel

def root(list_ints):

def receive_result(result, num_lambdas):

print("reduce result is: ", result)

rc = ReduceChannel(ch_name, handler=receive_result)

rc.reduce()

def worker(data):

rc = ReduceChannel(ch_name, sum)

rc.reduce(data)

(b) Reduce
from zip import ShuffleChannel

def hash_ints(data, num_lambdas):

return data % num_lambdas

def sender(data):

sc = zip.ShuffleChannel(ch_name, role=SENDER)

result = sc.shuffle_send(list_ints, hash_function=hash_ints)

def receiver(data):

sc = zip.ShuffleChannel(ch_name, role=RECEIVER)

result = sc.shuffle_receive()

(c) Shuffle

Figure 4.2: Code samples illustrating the broadcast, reduce, and shuffle Zip APIs. Lambdas
join channels using the channel name. Zip automatically establishes connections between
lambdas in the channel, optimizes communication within and across machines, and handles
lambda arrival and departures.



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 51

Server #0

Zip
Controller

Serverless
Infrastructure

Server #2

Lambda
     #1

Channel
metadata transfer

Zip

Network data
transfer

Zip
Lib.

Lambda
     #2

Zip
Lib.

Lambda
     #3

Zip
Lib.

Server #1

Lambda
     #1

Zip
Lib.

Lambda
     #2

Zip
Lib.

Lambda
     #3

Zip
Lib.

.....

Figure 4.3: Zip architecture (without daemon). Lambdas run inside containers and connect
to each other to form a tree-shaped connection mesh.

4.5.1 Zip Overview

Controller The Zip controller manages all the information about channels and lambdas,
and manages the connections between lambdas. At the channel level, the controller manages
which lambdas belong to which channel, and manages the connections between lambdas
within a channel. To join a channel, lambdas send a request to the controller asking to
join the channel. Then, the controller determines to which lambdas the new lambda should
connect to. These connections between lambdas within a channel form a connection mesh
that is then used for distributed communication. The controller then helps the lambda
establish a connection with the channel’s connection mesh. When there are unexpected
lambda failures, or when a lambda graciously terminates, the controller updates the channel’s
connection mesh to maintain the correctness of communication within the channel.

Library The Zip library provides lambdas with an API for inter-lambda communication.
This library is packaged into every lambda and can be imported to the application by devel-
opers. Under the hood, the Zip library communicates with the controller to join channels,
to get information about a channel, and (c) to inform the controller of a lambda failure.

Daemon Zip uses a daemon that is responsible for leveraging more efficient ways for com-
munication between lambdas within each machine (see Table 4.3). Specifically, the Zip



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 52

Sender

Controller

(a) Broadcast

Reduce
Root

Controller

(b) Reduce

Shu�e

Controller

(c) Shuffle

Figure 4.4: Broadcast, reduce and shuffle communication patterns in Zip. Zip organizes
lambdas within a channel in a balanced tree of connected lambdas. Lambdas can par-
ticipate or leave communications within a channel by contacting the controller to be at-
tached/detached from the connections tree.

Task Bandwidth (MB/s)

Ser. + deserializing numpy array 650
Network transfer (local) 1500
Network transfer (remote) 625
Shared mem. transfer 4300

Table 4.3: Network bandwidth observed with the different data transfers mechanisms used
by Zip to communicate data between lambdas and with the Zip controller. We also show
the cost of serializing deserializing a numpy array before a network transfer.

daemon provides two optimizations. For communication within a single server, it provides
very fast message passing through shared memory. For communication across servers, it
deduplicates repeated data that gets transferred through the network for the reduce and
broadcast primitives. The Zip daemon only affects the performance of communication, not
the correctness, and is an optional component of Zip.

4.5.2 Design principles

Sporadic lambda-controller communication Lambdas communicate with the controller
in 2 cases: (a) when they join/leave channels, (b) to retrieve channel metadata required to
execute a communication primitive. Case (a) is challenging if there are many lambdas in
the channel, or many concurrent clients creating channels. Similarly, case (b) is challenging
for workloads that execute a high number of collective communications per second (e.g.,
iterative distributed SGD training). Zip provides scalability for situation (a) by making the



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 53

Goals Zip’s mechanisms

Sporadic lambda-controller
communication

Updates to channel membership require communication with small number of lambdas.
Peers/channel metadata cached in each lambda.

High-throughput
communication

Non-blocking communication between lambdas.

Fast inter-lambda communication
Co-located lambdas communicate through shared memory.
Broadcast data is deduplicated within machine by the daemon.

Table 4.4: Zip is designed for scalable and high-performance communication.

event of a lambda joining a channel impact a small fraction of peer lambdas in the channel.
This saves the controller from having to contact many lambdas every time a lambda joins or
leaves a channel. Zip is design to scale for case (b) by designing communication primitives
such that they rarely (or not at all) require to communicate with the controller.

High-throughput communication Zip maximizes work throughput by allowing lambdas
to start communicating as soon as possible. To achieve this, Zip allows lambdas to receive
data from other lambdas even before they have called into Zip to receive data. This way no
lambda is blocking waiting for another lambda. Furthermore, Zip’s design allows concurrent
transfer of data from and to lambdas to maximize network utilization.

Fast inter-lambda communication Data communication between lambda lambdas should
be at least as fast as communication between two lambdas in two distinct VMs. To achieve
this goal, Zip is designed in the following way. First, with Zip communication between
lambdas is done directly between VMs. Second, Zip leverages the information about the
location of data and lambdas. Zip only sends data destined to two or more lambdas in the
same VM once. As soon as the data arrives at the destination VM it is copied to the lambda.
This can reduce substantially the amount of inter-VM communication.

4.5.3 Channels and primitives

4.5.3.1 Zip Channel

Zip groups lambdas that communicate with each other into channels. Lambdas within a
channel establish connections with each other to form a tree-shaped mesh of connections
(see Figure 4.4), which lets Zip maintain efficient and scalable distributed communications
(see Table 4.5) while tolerating lambda churn.

Joining a channel Lambdas join a channel by getting a handle to it from the Zip API
(see Figure 4.2). When lambdas get a handle to the channel the Zip backend contacts the
controller to register the lambda in the channel. This way, the controller can keep track
of all the channels created in the system and which lambdas participate in which channels.
The controller then replies to the lambda with a list of lambdas to connect to, i.e., with its
parent and children ports and IP addresses. Similarly, the controller also informs the parent



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 54

Operation # Msg
# Controller

Messages
Latency

Complexity
Description

Join /
Leave Channel

2 2 O(1)
1 msg. to controller,
1 msg. to parent

Broadcast n 0 O(logF (n))
1 message to root,
and then tree-broadcast

Reduce (Tree) n− 1 0 O(logF (n)) Tree-reduce

Shuffle n+ SR 0 O(logF (n)) +O(R)
Broadcast disseminates shuffle
information. Every worker sends
a message to every worker

Table 4.5: Complexity of Zip’s primitives for a channel with n lambdas, S shuffle senders,
R shuffler receivers and F mesh tree fan-out. New workers join the tree-mesh as leaves.
Broadcast requires asking controller for the address of the root of the tree-mesh.

of the new lambda of its new child.

Leaving a channel Lambdas can also leave channels when they no longer want to par-
ticipate in the channel’s communication. When a lambda leaves a channel it notifies the
controller. In case of failure, if the controller detects that the lambda is not active (see
Section 4.5.5), the controller proceeds in the same way.

4.5.3.2 Broadcast

A broadcast is used to send data from a single server to one or more receivers. A broadcast
in Zip works in the following way. First, before participating in the broadcast, the lambda
needs to get a handle to a BroadcastChannel. This handle can then be used to perform
multiple executions of broadcast in that channel. When the handle to the channel is created,
the lambda Zip’s runtime automatically communicates with the controller to register the
lambda in the channel. During this registration step, the controller informs the new lambda’s
runtime of its peers in the channel’s tree-mesh. This way, the lambda can participate in the
peer-to-peer communications in that channel. Second, once a lambda has generated a handle
to the channel it can participate in that channel’s broadcast as a receiver or as a sender (see
Figure 4.4). In every broadcast round, there can only be one sender.

Sender lambdas can use the channel to broadcast data using the send method. The send
method works as follows. First, the Zip runtime retrieves from the controller the address of
the root of the channel mesh. To avoid incurring the cost of this communication for every
broadcast, the runtime caches this address. Next, the sender sends the broadcast data to
the channel’s root. Then, the root lambda initiates the broadcast by transmitting the data
from the top to the bottom of the tree mesh.

Receiver If the lambda is a receiver, it calls the receive method. This method blocks waiting



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 55

for the lambda to receive the broadcast data. Once the lambda has received this data from
one of its peers, the Zip runtime forwards the data to the lambda’s peers and returns the
data to the receive caller.

4.5.3.3 Reduce

Another primitive supported by Zip is reduce. In a distributed reduce, data from all lambdas
is combined according to a user-provided reduce function.

4.5.3.4 Shuffle

A shuffle allows a group of lambdas (senders) to distribute data across a group of lambdas
(receivers) according to a user provided function.

Zip’s shuffle primitive works in three stages. First, lambdas create a handle to a Shuf-
fleChannel and specify their role in the shuffle: receiver, sender or receiver+sender. This role
indicates whether the lambda just sends data during the shuffle, just receives data, or does
both. Second, when a shuffle starts, the list of all lambdas and their roles is broadcasted to
all participating lambdas. To perform this broadcast, the root of the channel mesh contacts
the controller to retrieve the list of lambdas currently in the channel and then broadcasts
this information to all the lambdas in the channel. Third, once a lambda has received this
list, it can start executing the shuffle.

4.5.4 Resource sharing and isolation

Serverless platforms are shared by many concurrent clients. For this reason, serverless plat-
forms need to provide strong isolation between lambdas and share resources (CPU, network,
memory, and disk) among all running lambdas.

Zip ensures lambdas are executed within containerized environments. Within each con-
tainer, a lambda is assigned 1 virtual CPU and a limited amount of memory and disk
(configured by the developer when the lambda function is created). Another resource that
requires isolation is the per-server memory that Zip allocates for lambda-to-daemon com-
munication. Our implementation currently does not isolate this shared memory between
lambdas from different users. However, tampering can be prevented by creating a separate
shared memory region per channel within each server. This memory region can be made
only accessible to the containers of lambdas belonging to the same channel. This guarantees
that only lambdas from the same user can read and write to the shared memory.

4.5.5 Fault tolerance

Zip can detect and recover from individual or multiple lambda failures to guarantee that
subsequent communications within a channel can terminate successfully. Upon the detec-
tion of a lambda failure, Zip updates the connections between lambdas within a channel.



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 56

Controller Controller

Figure 4.5: Zip’s recovery of a node failure. When a node failure is detected, the controller
updates the connections of the parent and children of the terminated worker.

Furthermore, periodically Zip checks it the mesh of connections is balanced. If not, Zip
re-balances the mesh.

Updating channel connections The unexpected termination of a lambda is detected in
Zip by one of its peers, by the controller or by the daemon. Upon the detection of the
failure, a message is sent to the Zip controller to inform it of the failure. Once this message
is received, the Zip controller starts the recovery process to ensure that all the lambdas in
the channel mesh remain connected and that subsequent communications can still occur. To
accomplish this, the controller removes the failed lambda from the mesh tree and sends a
message to its neighbors informing them of their new parents and children (see Figure 4.5).
While this recovery is happening, other lambda failures might occur that lead to the lambda
having to reconstruct the tree. The Zip controller continuously updates the tree until there
are no more failures. In order to make failure recovery scalable, the recovery algorithm of Zip
only updates the connections of the lambdas directly connected to the terminated lambda,
a small fraction of the total number of lambdas. This means that for each failure Zip sends
at most O(|children|) messages.

Re-balancing connections After a number of failures, the per-channel tree of connections
might become unbalanced which can result in sub-optimal distributed communication. To
mitigate this problem, the controller keeps track of how balanced the tree of each channel is
during execution. To accomplish this, the Zip controller maintains the depth of every node.
When the controller finds that the tree depth between two paths differs by more than a
developer-configured value, it can start the re-balancing process. To re-balance the channel
mesh, the controller communicates with all the lambdas to suspend the execution in the
channel while the re-balancing occurs.

4.6 Implementation

The implementation of Zip consists of four components: the frontend, the backend, the
daemon, and the controller (see Table 4.6). Both the frontend and backend run inside the



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 57

Component Language LOC

Frontend Python 523
Backend Python & C++ 2430
Daemon C++ 1004
Controller C++ 403

Total 4360

Table 4.6: Zip components.

lambda.

Frontend The frontend is implemented as a thin Python layer that provides the Zip API
for application developers. It is responsible for passing the input data and function (e.g.,
shuffle hash or reduce functions) parameters to the Zip C++ backend.

Backend The backend implements the bulk of the Zip primitives. It maintains the con-
nections with other components (controller, daemon) and peer lambdas, and executes the
communication calls received by the frontend library. The backend makes use of a back-
ground thread so that it can maintain the connections from the lambda to its peers and to
achieve high performance by transferring data in the background. For instance, when one of
the lambda’s child terminates unexpectedly, the backend is notified to update its connections
without the application involvement. Similarly, when a broadcast is initiated by a separate
lambda on the same channel, a lambda can receive that data, store it locally and forward it
even before the application calls the receive API.

The backend is implemented in C++ to avoid the performance and memory overheads of
the Python runtime. Our experience revealed that this is crucial to achieve low end-to-end
latency, specially for small messages, and to keep the lambda memory usage low. When
needed, the backend can execute an upcall into the frontend to execute functions provided
by the application. For instance, during a reduce the backend calls the application-specific
reduce function asynchronously.

As an optimization, when transferring numpy arrays the backend transfers the raw bytes
of the arrays along with metadata about the numpy array (shape and type of the array
entries). This obviates the need for expensive serialization and deserialization steps, which
can be up to 5x more expensive than just copying the array to the daemon’s shared memory.

Daemon The daemon maintains socket connections to all lambdas within the same machine,
its daemon parent and its daemon children in remote machines. The daemon implementation
leverages shared memory between lambdas within the same machine to provide high data
transfer speeds for large messages. Whenever a lambda wants to send data to the daemon,
it asks the daemon for a range of available memory within the daemon’s shared memory.
The daemon then allocates the memory and sends its address back to the lambda. Once the



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 58

lambda receives the position in the shared memory it copies its data to the shared memory.
Finally, the lambda can send a message to the daemon with a pointer to this data. Upon
receiving the message, the daemon can copy this data into its own local memory or use that
data directly. As an optimization, Zip uses the data directly for numpy arrays to avoid data
copies. Once the daemon no longer needs this data, it deallocates the corresponding range
of memory.

Controller We implemented the controller as a multi-threaded server that listens for con-
nections from lambdas and serves requests from those connections. The controller maintains
a ChannelMetadata data structure for every channel in the system. This data structure con-
tains the channel metadata, such as the topology of connections between all the lambdas,
the type of channel, and its name. The controller updates this metadata when lambdas join
or leave the channel. For such events, the controller determines which other lambdas need
to update their connections and informs them.

4.7 Evaluation

This section evaluates Zip using macro and micro-benchmarks and compares with other
existing storage-based approaches. First, it evaluates the performance and cost for a dis-
tributed sorting application. Second, it analyzes the performance and cost of individual Zip
operations: broadcast, reduce, and shuffle.

Evaluation setup All experiments ran on AWS EC2 in the us-west-2 AWS availability
zone. We used AWS ElastiCache [13] managed Redis service for the Redis experiments.
Zip’s lambdas were deployed within docker containers (Docker version 19.03.8) configured
with limits of 1 CPU, and 3GB of DRAM. These resource limits are consistent with those
of traditional serverless platforms such as AWS Lambda and Google Functions. All the
experiments in the evaluation run on m5.2xlarge, including Redis and Pocket, AWS EC2
instances unless otherwise noted.

For the experiments that use the shuffle communication pattern we ran Zip without the
daemon because Zip does not use the daemon for shuffle, since it does not improve or degrade
the shuffle performance. For the Zip experiments with the daemon, we launched the daemon
process on every EC2 server. We set up the daemon to create a 1GB shared memory region
that was shared among all the lambdas to accelerate communication.

To make our experimental results reproducible and avoid the high time variance of launch-
ing docker containers, we started measuring the experiments time only after containers were
all running. For all Zip experiments, a Zip controller was deployed on a separate t2.xlarge
instance. In our evaluation we do not consider the cost of this instance because it is only
used for the control path, hence it uses very little resources, and it can scale to serve many
clients simultaneously (see Section 4.7.2.3). For similar reasons, we also do not consider the
costs of the controller and metadata nodes in the Pocket experiments.

For experiments involving external storage systems, i.e., AWS S3, Redis, and Pocket,



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 59

AWS S3 Redis
(24xlarge)

Redis
(2*24xlarge)

Redis
(3*24xlarge)

Pocket
(3*24xlarge)

Zip
(w/o daemon)

0

50

100

150

200
Ti

m
e 

(s
ec

)
Download S3
Shuffle
Sorting
Upload S3

Figure 4.6: Sorting of 100GB dataset with 120 lambdas using different communication meth-
ods.

we implemented a separate Python communication library. This library provides the same
API as Zip but internally uses the APIs of the respective storage service to perform lambda
communication. For the Redis and Pocket experiments, we varied the number and type of
VM instances to assess the impact of the distributed store performance in the end-to-end
performance of the workload.

4.7.1 Distributed Sorting

Distributed sorting is the process of sorting a dataset by leveraging multiple machines.
Distributed sorting requires a mix of compute and communication heavy phases and can scale
to many workers. For these reasons it is a standard benchmark for distributed systems [34,
34, 83, 84]. This workload has roughly 3 stages: (a) downloading the dataset to the lambdas,
(b) parsing and shuffling the dataset across the lambdas, and (c) sorting the data within
each lambda. Step (b) takes the largest fraction of the end-to-end time because it requires
the coordination of all the workers to perform an all-to-all shuffle of the dataset between
lambdas.

Experiment setup To evaluate this workload we used a dataset of randomly generated
100-byte strings, totalling 100GB (the same setup used in the evaluation of Pocket [83]).
We split the dataset in blocks of 100MB and stored them in AWS S3. We also used S3 to
store all the final results of the experiment, but vary the system used for the intermediate
data shuffle (i.e., Zip, S3, Redis, Pocket). To accelerate the hashing computations during the
shuffle for all the experiments, we implemented the hashing function in C++. This increased
the performance of hashing by approximately 3x.

Results Our experiment confirms that most of the lambda execution time on the sort work-
load is spent on shuffling data between lambdas (see Figure 4.6). For instance, for the Pocket



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 60

0 50 100 150 200 250
End-to-end time (sec)

0

5

10

15

20

25

30

C
os

t (
$)

         Zip
(w/o daemon)

AWS S3

       Redis
(m5.24xlarge)

        Redis
(2*m5.24xlarge)

        Redis
(3*m5.24xlarge)

       Pocket
(3*m5.4xlarge)AWS S3

Redis
Pocket
Zip

Figure 4.7: Sorting end-to-end performance and cost.

experiment shuffling takes 63% of the total time, substantially higher than downloading the
dataset to the lambdas (16%), sorting (11%) and uploading the dataset (10%).

We found that Zip reduces the end-to-end sorting time by 28% (best Redis configuration),
40% (AWS S3), and 42% (Pocket). Zip outperforms Redis, AWS S3, and Pocket because data
transfers are made directly between lambdas and do not have to pass through a centralized
system. In fact we observe that with Zip on average each lambda transfers data at 299 MB/s,
which is higher than with AWS S3 (87 MB/s), Redis (152 MB/s) and Pocket (95MB/s). Even
though we configured Pocket to store all the data in memory, its performance is lower than
Redis. Upon code inspection, we found that Pocket sends an RPC to the metadata node
for every 65K data block that is stored which results in a lower end-to-end throughput. Our
results for Pocket and Redis are 2x the results in the Pocket paper [83] when using 250
lambdas (60s of end-to-end time). We attribute this difference to the fact that we used
roughly half the number of lambdas (120 in our experiment).

We further analyzed the cost-performance for all the systems (see Figure 4.7). Our
measurements demonstrate that Zip attains the best cost of all the configurations. Unlike
the other systems, Zip does not incur any extra cost on top of that necessary for the VMs
that are used to deploy the lambdas. AWS S3 incurs the cost of PUT/GET calls and data
transfers (depending on size and destination of the transfer). This leads to a small extra
cost (+8% compared to Zip) for the S3 PUT/GETs request issued during the shuffle during
the workload. However, with Redis the end cost of the workload can be substantially higher
due to the cost of provisioning the Redis servers (up to 4x in our experiments).

Last, we evaluated the impact of varying the Redis instances on end-to-end performance.



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 61

We found that from 1 to 2 instances, the shuffle time reduced by roughly 2x which indicates
that the network capacity of the Redis cluster was a bottleneck. Adding a third Redis
instance reduced the shuffle time by another 33% which indicates diminishing returns. We
found that even with 3 instances, Zip is 40% faster than Redis and costs 4.8x less.

4.7.2 Micro-benchmarks

This sections provides a detailed evaluation of the performance, cost, and scalability of each
individual communication primitive provided by Zip (i.e., reduce, broadcast, and shuffle). It
evaluates the scalability of the Zip controller.

4.7.2.1 Reduce

Experiment setup We measured the end-to-end completion time of a distributed reduce
of a numpy array (Figure 4.8 and 4.9). This experiment ran with a small, 100 bytes, and a
large, 100MB, array to determine Zip’s performance and the other systems’ performance.

In this experiment, each lambda generates an array of 8-byte integers with the pre-
determined size and subsequently all lambdas perform a distributed sum of all the arrays
using a reduce operation. Most of the time is spent in the data communication phase in
this workload because the reduce computation is relatively quick to complete. In our reduce
implementation with Redis, Pocket, and AWS S3 the lambdas initially store their input data
in the respective system. Then one of the lambdas, assigned to do the reduce, is responsible
for iteratively downloading the data to its local memory and reducing it. As an optimization,
our implementation keeps track of which objects are already available to be downloaded, to
start the download phase as soon as possible (polling). To achieve this, we use storage APIs
that allow us to list the objects in the store.

Results We find that Zip achieves the best performance for both the 100 byte and 100MB
experiments. For the experiment with 100 bytes, Zip with and without daemon has similar
performance. For small data sizes, the faster data-path and local reduce of the daemon
does not provide a speedup. However, for 100MB the daemon takes 40% less time (2.8s
vs 4.6s) than the experiment without daemon. Here we observe a 2-3x higher transfer
throughput between a lambda and a local daemon when compared to two co-located lambdas
communicating through sockets (Zip without daemon).

The reduce experiment with Pocket performs the worse, even when compared to AWS S3.
We attribute Pocket’s poor performance to the fact that it sends an RPC to the metadata
node to allocate storage space, for every 65K data block. Secondly, AWS S3 also scales
poorly. This occurs because (a) AWS S3 has a lower per-lambda transfer throughput, and
(b) all accesses to the store (including listing the store contents) have a higher overhead than
the other systems. For instance, we find that listing an AWS S3 bucket takes on average
40ms, as opposed to under 2ms for Redis. On Redis the 100-byte reduce takes 2.4x and
1.7x longer than Zip with daemon and without daemon, respectively. This difference can be



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 62

8 16 32 64
# Lambdas

0

1

2

3

4

5
C

om
pl

et
io

n 
tim

e 
(s

ec
)

AWS S3
Redis
Zip (w/ daemon)
Zip (w/out daemon)
Pocket

Figure 4.8: Reduce of 100 bytes numpy array across varying number of lambdas.

8 16 32 64
# Lambdas

0

50

100

150

200

C
om

pl
et

io
n 

tim
e 

(s
ec

)

AWS S3
Redis
Zip (w/ daemon)
Zip (w/out daemon)
Pocket

Figure 4.9: Reduce of 100MB numpy array across varying number of lambdas.



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 63

8 16 32 64
# Lambdas

0.00

0.05

0.10

0.15

0.20
C

om
pl

et
io

n 
tim

e 
(s

ec
)

AWS S3
Pocket
Zip (w/out daemon)
Redis
Zip (w/ daemon)

Figure 4.10: Broadcast of 100 bytes numpy array across varying number of lambdas. The
amount of broadcast data transmitted increases proportionally with the number of lambdas.

attributed to the extra hop required to move data from the senders to the final reducer. For
the 100MB experience Redis takes 3.7x longer than Zip with daemon with 8 lambdas and
12.3x longer with 64 lambdas. This sharp increase is caused by the increase in the number of
simultaneous writes to Redis. With a large number of lambdas, Redis gets congested. This
shows the additional effort required when using external storage systems for communication
– developers need to carefully provision the storage system to meet the performance demands
of the application.

4.7.2.2 Broadcast

Experiment setup We evaluated the end-to-end completion time of a distributed broadcast
(Figure 4.10 and 4.12). In this workload, a single lambda transmits a numpy array to all
other lambdas, i.e., every lambda receives the full data broadcasted. We varied the array
sizes by running experiments with 100 byte and 100MB arrays. For the non-Zip experiments,
one of the lambdas initially stores the broadcast data into the respective data store. Next,
all other lambdas download that data. For these experiments lambdas continuously poll the
data store to start the transfer.

Results We found that for the 100-byte broadcast, all the systems except AWS S3 have
similar performance (within 30% of each other). Similarly to the reduce micro-benchmark,
AWS S3’s end-to-end time is considerably worse due to its high fixed cost for each data access
(5-10ms). For the 100MB broadcast, at 64 lambdas, Zip is up to 3.4x faster than Redis, up to



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 64

5 10 15
End-to-end time (sec)

0

10

20

30

40
C

os
t (

$)

        Zip
(w/ daemon)

        Zip
(w/o daemon)

AWS S3

    Redis
(2*2xlarge)

    Redis
(4*2xlarge)

    Redis
(1*2xlarge)

    Redis
(5*24xlarge)

    Pocket
(r4.2xlarge)

AWS S3
Redis
Pocket
Zip

Figure 4.11: Performance-cost trade-off of 100MB broadcast between 64 lambdas.

6.3x faster than S3, and up to 7x faster than Pocket. As the number of servers increases, the
end-to-end times increase except for AWS S3. AWS S3 maintains its end-to-end time even at
64 lambdas because it can auto-scale to meet the read throughput required by the lambdas.
With Zip (with and without daemon) we observe a slight increase in completion time with
the number of lambdas due to the extra number of hops required to traverse the channel
communication tree. In contrast, Redis and Pocket run out of available bandwidth and
their performance drops as the number of lambdas increases. This problem illustrates the
importance of accurately estimating and provisioning the number of Redis servers required
when using traditional approaches. In contrast, the Zip approach obviates the need for this
complex and time-consuming task and additionally offers good end-to-end performance.

4.7.2.3 Shuffle

Experiment setup We also evaluated the performance of data shuffles with Zip, AWS
S3, Pocket, and Redis. In this workload, a group of lambdas shuffles a list of 1M integers
with each other according to a hash function. The hash function we used for this workload
performs the modulo of a number in the list by the number of workers in the workload;
hence, each worker sends a similar fraction of its input to other workers.

Results We measured the end-to-end time of this workload for Zip (without daemon), AWS
S3, Pocket, and Redis. We found that Zip and Redis perform similarly with varying numbers
of lambdas we used. In contrast, Pocket’s performance is lower. This results from the fact
that the Pocket API only receives Python strings, which requires an extra step to transform



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 65

8 16 32 64
# Lambdas

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
om

pl
et

io
n 

tim
e 

(s
ec

)

Redis
Pocket
AWS S3
Zip (w/out daemon)
Zip (w/ daemon)

Figure 4.12: Broadcast of 100MB numpy array across varying number of lambdas. The
amount of broadcast data transmitted increases proportionally with the number of lambdas.

8 16 32 64
# Lambdas

0

10

20

30

C
om

pl
et

io
n 

tim
e 

(s
ec

) AWS S3
Pocket
Redis
Zip (w/out daemon)

Figure 4.13: Shuffle of 1M integers between varying number of workers with different com-
munication methods.

the shuffle data into this format before storing it into Pocket. Nonetheless, Pocket also
maintains a constant end-to-end time up to 64 lambdas. Lastly, AWS S3 end-to-end time
increases roughly linearly with the number of lambdas. We attribute this to the high fixed



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 66

overhead for each PUT operation into AWS S3.

4.7.3 Controller scalability

Experiment setup To evaluate the scalability of the controller we measured the attained
throughput when workers make many requests to the controller to join channels. In this
situation, for every channel a lambda wants to join it sends a request to the controller. In
turn, the controller adds the lambda to the channel (or creates one if it does not exist)
and replies with metadata information about the channel (e.g., address of the channel root
lambda) and pertaining to the lambda requesting to join (e.g., addresses of parent and
children). To this end, we deployed 8 lambdas in one server and in another we deployed
the controller. We made each lambda join 20K uniquely named channels and recorded the
throughput each lambda was able to achieve.

Results We observed that each lambda on average was able to join 5.5K channels per
second. Similarly, we measured the same throughput but this time in the case when all the
lambdas create 20K separate handles to the same channel, which generates a channel with
160K members. In this case the overall throughput dropped to an average of 3.5K joins per
second. As the number of members in the channel increases, the controller has to traverse a
longer path until it can create a leaf node for the new member.

4.8 Related Work

In this section we discuss and revisit related work in the areas of distributed communication
in serverless. Here we try to explain the differences between our system Zip, and previous
approaches in this space.

Serverless platforms There is a large number of commercial [17, 20, 48, 30, 58, 6] and open-
source [54, 79, 10] serverless platforms. These platforms provide similar APIs for specifying
and launching lambdas. Zip design is applicable to existing platforms. Other work focuses
on optimizing different aspects of existing serverless platforms (e.g.,[78, 4, 23]). For instance,
SOCK [78] and SAND [4] propose ways for improving the boot time of lambdas. SAND also
improves on the performance of message passing between lambdas. Zip extends, rather than
replaces, this work.

Storage systems Developers have in the past leveraged different cloud storage systems
for storing application state and lambda communication, such as AWS S3[18], Redis[87],
and Pocket/Apache Crail [83]. These systems are critical to today’s serverless architectures
because they enable scalable storage for the state of serverless applications. However, when
used for lambda communication they can suffer from several issues, such as lack of scalability,
need for manual resource provisioning and higher message passing latency.

Data and compute locality Previous work [105, 69] have proposed shipping computations
closer to the data. For instance, the Shredder storage system can receive JavaScript functions



CHAPTER 4. SCALABLE SERVERLESS COMMUNICATION 67

which can interact with data locally without incurring network overheads. To achieve the
goal of reducing network overhead for communication, Zip leverages data locality within
each server through the Zip daemon.

Serverless network communication The ability to perform direct lambda-to-lambda
communication in the AWS cloud by using off-the-shelf NAT traversal techniques has been
previously discussed in GG [43] and instantiated in an open-source framework library [99].
Similarly, SAND [4] proposes a hierarchical message bus to provide higher-performance func-
tion chaining. Compared to these approaches, Zip also leverages direct lambda-to-lambda
communication for better distributed communication performance. However, unlike previous
work, Zip provides an entire API-to-backend stack.

Serverless frameworks Other work has proposed frameworks for running serverless work-
loads in a wide range of domains, such as map reduce [64, 40, 31], distributed sorting [84],
linear algebra [93], machine learning workflows [24], and code compilation [43]. In designing
Zip we leveraged the lessons of this previous work. For instance, PyWren’s [64] scalability
is limited by the scalability of AWS S3, which throttles traffic to just a few thousands of
writes/second. Similarly, Cirrus [24] and Locus both require manually provisioned VMs to
achieve scalability and performance. Cirrus deploys the parameter server on VMs during ML
training because parameter servers have stringent requirements in terms of network (high
bandwidths) and the ability to perform specialized optimization methods (e.g., Adagrad)
on the data. These requirements are hard to achieve with other systems such as AWS S3,
Redis or Pocket. Similarly, Locus leverages a deployment of VMs running Redis to provide
a scalable and efficient data shuffle.

4.9 Summary

This chapter presents Zip, a system that addresses the lack of a high-performance and scal-
able abstraction for distributed communication in serverless. Zip provides developers with
a simple high-level API, backed by a high-performance backend that seamlessly optimizes
communication and recovers from failures. Zip’s design outperforms approaches that use
external storage systems for communication in terms of performance, ease of development,
and deployment cost.

Our evaluation demonstrates that for a distributed sorting application, Zip provides up to
1.4x speedup and 4.8x lower cost compared to the fastest memory-based store configuration,
and 1.73x speedup and 8% lower cost compared to using AWS S3. For specific communication
patterns, we show that Zip provides up to 1.33x (shuffle), 4.4x (broadcast), and 12x (reduce)
speedups when compared to the second fastest alternative.

In the next chapter, we discuss open challenges in serverless computing and propose
research directions to address them.



68

Chapter 5

Open Research Challenges in
Serverless

Just like in the first years of infancy of cloud computing, serverless computing is rapidly
evolving and claiming its space within the cloud ecosystem. To win the adoption of users
and organizations, the current generation of serverless platforms needs to (a) provide perfor-
mance that more closely matches that of traditional VM-based platforms, and (b) provide
significantly better support for use cases and workloads that are challenging to execute with
traditional VM-based platforms.

In this chapter we discuss two concrete open challenges, and possible research directions to
address them, that illustrate this. In Section 5.1 we discuss the need for serverless platforms
to take advantage of language runtimes capabilities for compiling code in order to provide
faster code execution. In Section 5.2 we discuss how interactive environments such as Jupyter
Notebooks [65] can evolve to provide a more seamless integration with serverless computing
platforms for interactive tasks.

5.1 Faster Execution with Platforms-Runtimes

Co-design

JavaScript and Python are the two most used languages in today’s serverless platforms.
These two interpreted languages alone account for almost 90% of the total number of func-
tions submitted to AWS Lambda according to estimates from Dashbird [96]. This class of
languages are supported by the vast majority of serverless platforms today (see Table 2.1
in Chapter 2). This support comes in the form of up-to-date runtimes, large and well-
maintained set of dependencies and libraries, and native APIs for all the BaaS services.
Such languages provide a number of benefits when compared to unmanaged languages, such
as higher portability and ease of development.

Python and JavaScript developers do not have to compile their code to execute it. To
mitigate the performance overheads due to interpreting code, modern runtimes are equipped



CHAPTER 5. OPEN RESEARCH CHALLENGES IN SERVERLESS 69

0 10 20 30 40 50 60 70
Request Number

103

104
La

te
nc

y 
(m

s)

Figure 5.1: Execution time of a sequence of identical serverless requests. Each request
constructs and evaluates the same math expression. The code is written in JavaScript
running on GraalVM.

with a just-in-time (JIT) compiler that can identify pieces of code that are executed fre-
quently and compile them down to the underlying hardware to produce more efficient code.
Furthermore, some runtimes, such as the JVM [73] and GraalVM [21], can leverage infor-
mation gathered during the execution of a program – code profiling – to generate further
optimizations.

We found these two compilation stages to produce significant improvements in code
efficiency when compared to just running interpreted code. For instance, when running a
simple JavaScript program on top of GraalVM (see Figure 5.1) and without restarting the
environment, the execution time of each individual request can vary significantly. We observe
that the first few requests take significantly long because the code is being interpreted. After
few requests, once the runtime has been given enough time to compile the code down to
binary, the execution time decreases by 6x. After roughly 50 requests, we observe another
significant decrease ( 2x) in the execution time of each request, this time due to the profiling
compiler, generating additional optimizations on the code of our function. These results
illustrate the importance of JIT and profiling compilers for developers of managed languages
such as Python and JavaScript.

Unfortunately, today’s serverless computing execution model is not well suited to take
advantage of these optimizations. For instance, when running a MapReduce map stage



CHAPTER 5. OPEN RESEARCH CHALLENGES IN SERVERLESS 70

that requires many lambdas, each lambda is going to be executed in a newly constructed
container. Since the runtime has just been constructed for this execution, the performance
of this task will be running at the lowest possible performance (left side of the graph in
Figure 5.1). Because this map stage is going to be run only once, the runtime will never
have the chance to compile the code, firstly using the JIT compiler and secondly using the
profiler compiler, and achieve the optimal execution time.

This problem suggests that serverless platforms need to be redesigned to take advantage
of the runtimes compilation features for better performance.

5.2 Interactive Environments for Serverless

In Chapter 3 we showed how Cirrus leverages serverless computing for interactive ML work-
flows spanning 3 types of tasks: dataset preprocessing, ML training and ML hyperparameter
tuning. Cirrus provides better interactivity than other approaches because it leverages the
fast invocation of lambdas for the different ML stages, which saves time for users. Further-
more, Cirrus provides a dashboard that provides some introspection into the computations
being performed in the serverless platform.

Cirrus is a first step towards interactive workflows backed by serverless. Here we discuss
ways in which interactivity with serverless could be improved, in particular by augmenting
interactive environments, such as Jupyter Notebooks, to provide a more productive experi-
ence for users. Our discussion is agnostic to the particular programming model being used
– it could be a specialized API such as the one provided by Cirrus, MapReduce provided
PyWren, or other – and focus instead on the integration between the interactive environment
and the serverless platform.

We start with the premise that serverless platforms should feel more like an extension
of the data scientists laptop, rather than a distant separate system. This mental model
can help simplify the way data scientists use serverless platforms. Since it provides an
experience that is familiar for data scientists, it will help the transition towards shifting
some of their computations to serverless platforms. Within this model, we identify 3 goals
that interactive environments should move towards to provide simpler and more efficient
utilization of serverless: state introspection, interactivity and seamless connectivity.

First, data scientists should be able to access the program state on the serverless side in
the same way they do when accessing the state within their local Python runtime, even when
the state is being modified. This allows data scientists to inspect, and debug the state of
computations. In the current version of Cirrus users have to stop or wait until termination
to see the result of the computation, and even then users cannot inspect other variables of
interest. Second, environments should provide first-class support for asynchronous remote
tasks. For instance, consider a ML training task running on serverless. In this situation, the
data scientist might want to inspect the current version of the model being trained and test
its performance on a separate test set while training has not yet terminated. In this case, the
environment needs to allow temporarily pushing to the training task to the background while



CHAPTER 5. OPEN RESEARCH CHALLENGES IN SERVERLESS 71

the data scientist proceeds with the performance analysis. Lastly, environments should be
designed to gracefully tolerate failures on serverless. Interactive workloads are more prone to
failures because the number of potential failures is greater. Potential sources of failures are:
local to remote disconnections, hardware and software failures arising from the serverless
platform or from the users computations.

5.3 Summary

In this chapter we proposed and discussed two research directions aimed at improving the
performance and usability of serverless computing platforms. First, we proposed designing
co-designing platforms and runtimes in a way that allows platforms to take advantage of
the decades of research on runtime compilation and optimization of code. Our preliminary
results show that runtimes can be very effective at optimizing user’s code by (a) compiling
high-level code down to machine code (JIT), and (b) gathering statistics about the code
execution and generating optimizations from those statistics (profile-guided optimizations).
Second, we proposed redesigning interactive environments currently used by data scientists
to provide tighter integration between those environments and the serverless platforms. This
can simplify the adoption of serverless computing for interactive and exploratory workloads.



72

Chapter 6

Conclusion

The history of the Cloud is largely a history of relentless simplification of the process of
software development and deployment. The Cloud has significantly simplified the process
of planing, purchasing and setting up hardware. As a consequence, software developers no
longer have to align their application development processes with the slow and expensive
cycles of hardware purchasing, shipping, installation and testing. This has dramatically
accelerated software development cycles, and software innovation.

However, software developers still face the burden of managing cloud resources for their
applications. For instance, developers today still have to choose, deploy and manage VMs.
Aspects such as fault-tolerance, scalability, configuration and security are still largely the
responsibility of developers, on top of the already time-consuming aspects of application
development.

Serverless computing provides a step towards abstracting these responsibilities from de-
velopers. The serverless computing model based on a FaaS+BaaS has the potential to
simplify many important classes of applications. In this thesis, we focused our attention on
the class of highly distributed applications because they are one of the most compelling cases
for serverless computing. Distributed applications are inherently complex, and have strong
demands in terms of scalability and performance.

We have shown through analysis and experimentation that highly distributed applica-
tions are challenging to implement in serverless largely due to complexities inherent to the
serverless model, such as limited resources, and due to the lack of support for distributed
communication.

To address the challenge of serverless computing complexities, we proposed a system,
Cirrus, that allows data scientists and ML practitioners to easily run ML workflows by
abstracting them from the underlying cloud resources. At the same time, Cirrus can leverage
serverless computing to elastically scale its resources to the needs of each stage of the ML
workflow.

Designing and developing Cirrus was our gateway to understand the complexities of de-
veloping data and compute-intensive workloads in serverless. On one hand, it was with
Cirrus that we understood how serverless computing can satisfy the need for highly inter-



CHAPTER 6. CONCLUSION 73

active and scalable systems. The very fast invocation times for thousands of functions, the
easy process for developing and submitting a single function and the scalability of the cloud
storage systems were some of the ingredients we early on identified as critical for the future
of serverless. On the other hand, developing Cirrus was also challenging due to the limited
hardware resources in many important aspects such as CPUs, memory and network. We also
found modern serverless platforms to lack good tools for debugging and monitoring the exe-
cution in lambdas. We expect to see significant improvements in many of these operational
aspects in the next couple of years.

The Cirrus design provides a blueprint for future interactive frameworks for serverless.
The combination of a stateful frontend and a stateless backend, per-stage provisioning, and
simple APIs with a dashboard are key ingredients for providing future interactive computing
on serverless.

It was during the design and development of Cirrus that we realized the pressing need of
better support for distributed communication in serverless platforms for workloads such as
ML training. This led us to design and implement Zip. Zip tackles the problem of lack of
support for distributed communication in serverless, one of the most critical shortcomings of
serverless. Zip provides an API for widely used communication patterns and is backed by a
high-performance and scalable backend. Zip’s architecture nicely extends the design of exist-
ing serverless platforms to provide significantly better performance than current approaches
for serverless distributed communication.

The problem of serverless communication, the focus of Zip, is a major barrier to the
adoption of serverless for many workloads. For this reason, we expect Zip to be a significant
contribution to serverless by bringing its benefits to workloads such as ML training, data
analytics, scientific computing, and others. We hope that serverless providers will move
towards platform redesigns that provide such support.

To conclude, in this dissertation we tackled major problems of serverless computing and
modern serverless platforms. We designed and developed two systems, Cirrus and Zip, that
make serverless distributed computing for ML, data analytics and workloads more easily
accessible and efficient. We hope that our work can pave the way for future work in these
areas.



74

Bibliography

[1] Martıén Abadi et al. “Tensorflow: A system for large-scale machine learning”. In:
OSDI. 2016.

[2] Alekh Agarwal et al. “A reliable effective terascale linear learning system”. In: The
Journal of Machine Learning Research 15.1 (2014).

[3] Marcos K. Aguilera et al. “Designing Far Memory Data Structures: Think Outside
the Box”. In: HotOS. New York, NY, USA: ACM, 2019.

[4] Istemi Ekin Akkus et al. “SAND: Towards High-Performance Serverless Computing”.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). 2018.

[5] Ahsan Ali et al. “Batch: Machine Learning Inference Serving on Serverless Platforms
with Adaptive Batching”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’20. 2020.

[6] Alibaba Functions. https://www.alibabacloud.com/products/function-compute.

[7] Amazon. www.amazon.com. 2020.

[8] Amazon AWS. https://aws.amazon.com/. 2020.

[9] Apache. Apache Hadoop. http://hadoop.apache.org.

[10] Apache OpenWhisk. https://openwhisk.apache.org/.

[11] Michael Armbrust et al. “Spark sql: Relational data processing in spark”. In: SIG-
MOD. 2015.

[12] Krste Asanović. FireBox: A Hardware Building Block for 2020 Warehouse-Scale Com-
puters. FAST. 2014.

[13] AWS. AWS ElasticCache. https://aws.amazon.com/elasticache/.

[14] AWS DynamoDB. https://aws.amazon.com/dynamodb/.

[15] AWS EMR. https://aws.amazon.com/emr/.

[16] AWS Greengrass. https://aws.amazon.com/greengrass/.

[17] AWS Lambda. https://aws.amazon.com/lambda/.

[18] AWS S3. https://aws.amazon.com/s3/.

[19] AWS SageMaker. https://aws.amazon.com/sagemaker/.



BIBLIOGRAPHY 75

[20] Azure Functions. https://azure.microsoft.com/en-us/services/functions/.

[21] Daniele Bonetta. “GraalVM: Metaprogramming inside a Polyglot System (Invited
Talk)”. In: META 2018. Boston, MA, USA, 2018.

[22] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization Methods for Large-
Scale Machine Learning. 2018.

[23] James Cadden et al. “SEUSS: Skip Redundant Paths to Make Serverless Fast”. In:
EuroSys. 2020.

[24] Joao Carreira et al. “Cirrus: A Serverless Framework for End-to-End ML Workflows”.
In: SoCC. 2019.

[25] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: a library for support vector ma-
chines”. In: ACM transactions on intelligent systems and technology (TIST) (2011).

[26] Tianqi Chen et al. “Mxnet: A flexible and efficient machine learning library for het-
erogeneous distributed systems”. In: arXiv preprint (2015).

[27] Cloud Dataflow. https://cloud.google.com/dataflow.

[28] Cloud Firestore. https://firebase.google.com/docs/firestore.

[29] Cloud Pub/Sub. https://cloud.google.com/pubsub.

[30] Cloudflare Workers. https : / / www . cloudflare . com / products / cloudflare -

workers/.

[31] Corral. https://github.com/bcongdon/corral.

[32] Daniel Crankshaw et al. “Clipper: A Low-Latency Online Prediction Serving System”.
In: NSDI. 2017.

[33] Criteo Dataset. http://labs.criteo.com/2014/02/kaggle-display-advertising-
challenge-dataset/.

[34] Databricks. Apache Spark the fastest open source engine for sorting a petabyte. https:
//databricks.com/blog/2014/10/10/spark-petabyte-sort.html. 2014.

[35] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-efficient and QoS-
aware Cluster Management”. In: ASPLOS. 2014.

[36] Disaggregated Rack. http://www.opencompute.org/wp/wp-content/uploads/
2013/01/OCP_Summit_IV_Disaggregation_Jason_Taylor.pdf. OpenCompute
Summit. 2013.

[37] Display Advertising Challenge. https://www.kaggle.com/c/criteo-display-ad-
challenge.

[38] Dropbox. https://www.dropbox.com/.

[39] Vojislav Dukic et al. “Photons: Lambdas on a Diet”. In: SoCC. 2020.

[40] FaastJS: Serverless batch computing made simple. https://faastjs.org/.



BIBLIOGRAPHY 76

[41] Message P Forum. MPI: A Message-Passing Interface Standard. Tech. rep. Knoxville,
TN, USA, 1994.

[42] Sadjad Fouladi et al. “Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads”. In: NSDI. 2017.

[43] Sadjad Fouladi et al. “From Laptop to Lambda: Outsourcing Everyday Jobs to Thou-
sands of Transient Functional Containers”. In: USENIX ATC. 2019.

[44] Armando Fox et al. “Above the clouds: A berkeley view of cloud computing”. In:
(2009).

[45] Google. www.google.com. 2020.

[46] Google AppEngine. https://cloud.google.com/appengine.

[47] Google BigQuery. https://cloud.google.com/bigquery.

[48] Google Cloud Functions. https://cloud.google.com/functions/.

[49] Google cloudml-samples. https://github.com/GoogleCloudPlatform/cloudml-
samples.

[50] Google Firebase. https://firebase.google.com/.

[51] Google Workspace. https://workspace.google.com/.

[52] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[53] Joseph M Hellerstein et al. “Serverless computing: One step forward, two steps back”.
In: arXiv preprint arXiv:1812.03651 (2018).

[54] Scott Hendrickson et al. “Serverless computation with openlambda”. In: Elastic ().

[55] Heroku. https://www.heroku.com/.

[56] HP. HP The Machine. https://www.labs.hpe.com/the-machine. [Online; accessed
20-Jan-2017]. 2017.

[57] Huawei DC 3.0. www.huawei.com/ilink/en/download/HW_349607&usg=AFQjCNE0m-
KD71dxJeRf1cJSkNaJbpNgnw&sig2=opyc-KxWX3Vb7Jj11dyaMA. [Online; accessed 20-
Jan-2017]. 2017.

[58] IBM Functions. https://console.bluemix.net/openwhisk/.

[59] Plotly Technologies Inc. Collaborative data science. 2015. url: https://plot.ly.

[60] Intel Rack Scale Architecture. http://www.intel.com/content/www/us/en/

architecture-and-technology/rack-scale-design-overview.html. 2017.

[61] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. “Serving deep learn-
ing models in a serverless platform”. In: IC2E. 2018.

[62] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: arXiv preprint arXiv:1408.5093 (2014).



BIBLIOGRAPHY 77

[63] Eric Jonas et al. “Cloud Programming Simplified: A Berkeley View on Serverless
Computing”. In: arXiv preprint arXiv:1902.03383 (2019).

[64] Eric Jonas et al. “Occupy the Cloud: Distributed Computing for the 99%”. In: CoRR
abs/1702.04024 (2017). url: http://arxiv.org/abs/1702.04024.

[65] Jupyter Notebook. http://www.https://jupyter.org/.

[66] Ana Klimovic et al. “Flash Storage Disaggregation”. In: EuroSys. 2016.

[67] Ana Klimovic et al. “Understanding Ephemeral Storage for Serverless Analytics”.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, 2018, pp. 789–794.

[68] Kubeless. https://kubeless.io/.

[69] Chinmay Kulkarni et al. “Splinter: Bare-Metal Extensions for Multi-Tenant Low-
Latency Storage”. In: OSDI. 2018.

[70] John Langford. Allreduce (or MPI) vs. Parameter server approaches. https://hunch.
net/?p=151364. 2014.

[71] Mu Li et al. “Communication efficient distributed machine learning with the param-
eter server”. In: NIPS. 2014.

[72] Mu Li et al. “Scaling Distributed Machine Learning with the Parameter Server”. In:
2014.

[73] Tim Lindholm et al. The Java Virtual Machine Specification, Java SE 8 Edition. 1st.
Addison-Wesley Professional, 2014. isbn: 013390590X.

[74] Microsoft. www.microsoft.com. 2020.

[75] Ingo Müller, Renato Marroquıén, and Gustavo Alonso. “Lambada: Interactive Data
Analytics on Cold Data Using Serverless Cloud Infrastructure”. In: SIGMOD. 2020.

[76] Multiverso. https://github.com/Microsoft/Multiverso.

[77] Netflix Dataset. https://www.kaggle.com/netflix-inc/netflix-prize-data.

[78] Edward Oakes et al. “SOCK: Rapid Task Provisioning with Serverless-Optimized
Containers”. In: USENIX ATC. 2018.

[79] OpenFaaS. https://www.openfaas.com/.

[80] Parse. https://parseplatform.org/.

[81] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: NeurIPS. 2019.

[82] Pitch Patarasuk and Xin Yuan. “Bandwidth optimal all-reduce algorithms for clusters
of workstations”. In: Journal of Parallel and Distributed Computing (2009).

[83] Pocket: Elastic Ephemeral Storage for Serverless Analytics. https://web.stanford.
edu/~anakli/pdf/pocket.pdf.



BIBLIOGRAPHY 78

[84] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. “Shuffling, Fast and Slow: Scalable
Analytics on Serverless Infrastructure”. In: NSDI. 2019.

[85] Qubole Announces Apache Spark on AWS Lambda. https://www.qubole.com/blog/
spark-on-aws-lambda/.

[86] Benjamin Recht et al. “Hogwild: A lock-free approach to parallelizing stochastic gra-
dient descent”. In: NIPS. 2011.

[87] Redis. Redis. https://redis.io/.

[88] Charles Reiss et al. “Heterogeneity and dynamicity of clouds at scale: Google trace
analysis”. In: SoCC. 2012.

[89] Microsoft Research. Rack Scale Computing. https://www.microsoft.com/en-

us/research/project/rack-scale-computing/. 2017.

[90] Josep Sampé et al. “Serverless data analytics in the ibm cloud”. In: Proceedings of
the 19th International Middleware Conference Industry.

[91] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed deep
learning in TensorFlow”. In: arXiv preprint arXiv:1802.05799 (2018).

[92] Mohammad Shahrad et al. “Serverless in the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud Provider”. In: USENIX ATC. 2020.

[93] Vaishaal Shankar et al. “Serverless Linear Algebra”. In: SoCC. 2020.

[94] Simon Shillaker and Peter Pietzuch. “Faasm: Lightweight Isolation for Efficient State-
ful Serverless Computing”. In: USENIX ATC. 2020.

[95] Spotinst Functions. https://spotinst.com/products/spotinst-functions/.

[96] State of Lambda functions in 2019 by Dashbird. https://dashbird.io/blog/state-
of-lambda-functions-2019/. 2019.

[97] Yang Tang. “Lambdata: Optimizing Serverless Computing by Making Data Intents
Explicit”. In: 2020.

[98] Shelby Thomas et al. “Particle: Ephemeral Endpoints for Serverless Networking”. In:
SoCC. 2020.

[99] Tim Wagner. ServerlessNetworkingClients - Client SDKs for ServerlessNetworking.
https://networkingclients.serverlesstech.net/. 2020.

[100] Liang Wang et al. “Peeking Behind the Curtains of Serverless Platforms”. In: USENIX
ATC. 2018.

[101] Weblab. https://weblab.io/.

[102] Jinliang Wei et al. “Managed communication and consistency for fast data-parallel
iterative analytics”. In: SoCC. 2015.

[103] Eric P Xing et al. “Petuum: A new platform for distributed machine learning on big
data”. In: IEEE Transactions on Big Data (2015).



BIBLIOGRAPHY 79

[104] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: HotCloud.
2010.

[105] Tian Zhang et al. “Narrowing the Gap Between Serverless and Its State with Storage
Functions”. In: SoCC. 2019.


