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Abstract

Current machine learning models suffer from evasion at-
tacks such as adversarial examples. This introduces security
and safety concerns that lack any clear solution. Recently,
the use of random transformations (RT) has emerged as a
promising defense against adversarial examples. However, it
has not been rigorously evaluated, and its effectiveness is not
well-understood. In this paper, we attempt to construct the
strongest possible RT defense through the informed selection
of transformations and the use of Bayesian optimization to
tune their parameters. Furthermore, we attempt to identify
the strongest possible attack to evaluate our RT defense. Our
new attack vastly outperforms the naive attack, reducing the
accuracy of our model by an additional 30%. In the process
of formulating our defense and attack, we perform several
ablation studies for both problems, drawing insights that we
hope will broadly benefit scientific communities that study
stochastic neural networks and robustness properties.

1. Introduction

Today, deep neural networks are widely deployed in
safety-critical settings such as autonomous driving and cyber-
security. Despite their effectiveness at solving a wide-range
of challenging problems, they are known to have a major
vulnerability. Tiny crafted perturbations added to inputs (so
called adversarial examples) can arbitrarily manipulate the
outputs of these large models, posing a threat to the safety
and privacy of the millions of people who rely on existing
ML systems. The importance of this problem has drawn
substantial attention, and yet we have not devised a concrete
countermeasure as a research community.

Adversarial training [33] has been the foremost approach
for defending against adversarial examples. While adver-
sarial training provides increased robustness, it results in a
loss of accuracy on benign inputs. Recently, a promising
line of defenses against adversarial examples has emerged.

These defenses randomize either the model parameters or the
inputs themselves [28, 23, 36, 31, 48, 51, 3, 30, 8, 12, 18].
Introducing randomness into the model can be thought of as
a form of smoothing that removes sinuous portions of the
decision boundary where adversarial examples frequently
lie [22]. Among these randomization approaches, Raff et
al. [36] propose Barrage of Random Transforms (BaRT), a
new defense which applies a large set of random image trans-
formations to classifier inputs. They report a 24× increase
in robust accuracy over previously proposed defenses.

Despite these promising results, the research community
still lacks a clear understanding of how to properly evalu-
ate random defenses. This is concerning as a defense can
falsely appear more robust than it actually is when evaluated
using sub-optimal attacks [1, 43], most of which are devel-
oped for deterministic models without input transformations.
Therefore, in this work, we improve existing attacks on ran-
domized defenses, and use them to rigorously evaluate BaRT
and similar schemes. We find that sub-optimal attacks have
led to an overly optimistic view of these random defenses.
For instance, we show that BaRT is much less secure than
previously thought, formulating a new attack that reduces its
security (from 56% to 27% robust accuracy, on Imagenette).
Moreover, we demonstrate how to improve random trans-
form defenses and present a new trade-off between clean
and robust accuracy (our scheme: 89% clean accuracy, 29%
robust accuracy; vs adversarial training: 78% clean accu-
racy, 37% robust accuracy). To summarize, we make the
following contributions:

• We show that non-differentiable transforms impede op-
timization during an attack and that even the state-of-
the-art technique (BPDA [1]) for circumventing non-
differentiability is not sufficiently effective.

• We evaluate methods for attacking randomized defenses
and identify a new method that results in a large im-
provement over the current state-of-the-art attack on
schemes with random image transformations.

• We explain the success of the attacks through the vari-



ance of their gradients.
• We show how to use Bayesian optimization for hyper-

parameter tuning to improve this class of defenses.

2. Background and Related Works
2.1. Adversarial Examples

Adversarial examples are carefully perturbed inputs de-
signed to fool a machine learning model [42, 5, 15]. An ad-
versarial perturbation δ is typically constrained to be within
some `p-norm ball with a radius of ε. The `p-norm ball is a
proxy to the “imperceptibility” of δ and can be thought of
as the adversary’s budget. In this work, we primarily use
p = ∞. Finding the worst-case perturbation δ∗ requires
solving the following optimization problem:

xadv = x+ δ∗ = x+ argmax
δ:‖δ‖p≤ε

L(x+ δ, y) (1)

where L : Rd × RC → R is the loss function of the target
model which, in our case, is a classifier which makes predic-
tions among C classes. Projected gradient descent (PGD) is
often used to solve the optimization problem in Eqn. 1.

2.2. Randomization Defenses

A number of recent papers have proposed defenses
against adversarial examples which utilize inference-time
randomization. One common approach is to sample weights
of the network from some probability distribution [30, 23,
31, 3]. In this paper, we instead focus on defenses that apply
random transforms to the input [36, 48, 51, 8]. Many of
these defenses claim to achieve state-of-the-art robustness.
Unlike prior evaluations, we test these defenses using a wide
range of white-box attacks as well as a novel stronger attack.
A key issue when evaluating these schemes is that PGD at-
tacks require gradients through the entire model pipeline,
but many defenses use non-differentiable transforms. As we
show later, this can cause evaluation results to be misleading.

Different works have tried applying different random
transformations to their inputs. Xie et al. randomly resize
and pad images [48]. While this defense ranked second in
the NeurIPS 2017 adversarial robustness competition, their
security evaluation did not consider adaptive attacks where
the adversary has full knowledge of the transformations.

Zhang et al. [51] add Gaussian noise to the input and then
quantize it. They report that this defense outperforms all of
the NeurIPS 2017 submissions. For their attack, Zhang et
al. approximate the gradient of the transform, which could
lead to a sub-optimal attack. In this paper, we use the exact
gradients for all transformations when available.

More recently, Raff et al. [36] claim to achieve a state-of-
the-art robust accuracy 24× better than adversarial training
using a random transformation defense known as Barrage
of Random Transforms (BaRT). BaRT involves randomly
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Figure 1: Diagram illustrating components of RT.

sampling a large set of image transformations and applying
them to the input in a random order. Because many transfor-
mations are non-differentiable, BaRT evaluates their scheme
using an attack that approximates the gradients of the trans-
forms. In Section 4.2, we show that this approximation is
ineffective, giving overly optimistic impression of BaRT’s
robustness, and we re-evaluate BaRT using a stronger attack
which utilizes exact transform gradients.

3. Random Transformation Defense

We focus in this paper on an architecture we call random
transformation defense (RT).

3.1. Description of RT

RT repeatedly applies a randomly chosen transform to
the input, uses a neural network to make a prediction, and
then averages the softmax prediction scores:

g(x) := Eθ∼p(θ) [σ (f (t(x; θ)))] (2)

where σ(·) is the softmax function, f : Rd → RC a neural
network (C is the number of classes), and the transformation
t(·; θ) : Rd → Rd is parameterized by a random variable θ
drawn from some distribution p(θ).

In practice, we approximate the expectation in Eqn. 2
with n Monte Carlo samples per one input x:

g(x) ≈ gn(x) :=
1

n

n∑
i=1

σ (f(t(x; θi))) (3)

We then define the final prediction as the class with the
largest softmax probability: ŷ(x) = argmaxc∈[C] [gn(x)]c.
Note that this decision rule is different from most previous
works that use a majority vote on hard labels, i.e., ŷmaj(x) =

argmaxc∈[C]

∑n
i=1 1

{
c = argmaxj∈[C] fj(x)

}
[36, 8].

We later show in Appendix E.1 that our rule is empirically
superior to the majority vote. From the Law of Large Num-
bers, as n increases, the approximation in Eqn. 3 converges
to the expectation in Eqn. 2. Fig. 1 illustrates the structure
and the components of the RT architecture.



In practice t(·; θ) may represent a sequence of S image
transformations, where θ = {θ(1), . . . , θ(S)} and θ(s) de-
notes the parameters for the sth transformation.

t(x; θ) = tθ(S) ◦ tθ(S−1) ◦ · · · ◦ tθ(1)(x) (4)

Each θ(s) is a random variable comprised of three compo-
nents which dictate the properties of a transformation:

1. The type π of transformation to apply (e.g., rotation,
JPEG compression, etc.), which is randomly drawn,
without replacement, from a pool of K transformation
types.

2. A boolean indicating whether the transformation will
be applied. This is a Bernoulli random variable with
probability p ∈ [0, 1] (Bern (p)).

3. The strength of the transformation (e.g., rotation angle,
JPEG quality, etc.) following a predefined distribution
which depends on the transformation type and is param-
eterized by α ∈ [0, 1].

Specifically, for each of the n RT samples, we sample a
permutation of size S out of K transformation types in total,
i.e. {π(1), . . . , π(S)} ∈ Perm(K,S). Then the boolean
and the strength of the s-th transform are drawn from the
distributions pπ(s) and απ(s). A different set of S transforms
are applied to each of the n copies of the input in parallel.

3.2. Choices of Transformations

In this work, we use a pool of K = 33 different image
transformations. Our 33 transformations include 19 differ-
entiable and 2 non-differentiable transforms taken from the
30 BaRT transforms [36] (counting each type of noise in-
jection as its own transform). We replace non-differentiable
transformations with a smooth differentiable alternative [39].
The transformations fall into seven groups: noise injection
(7 transforms), blur filtering (4 transforms), color-space al-
teration (8), edge detection (2), lossy compression (3), geo-
metric transformation (5), and stylization (4). All transforms
are described in Appendix A.

4. Attacks on RT

4.1. Adversarial Objective

The problem of finding adversarial examples for an RT
model can be framed as the following optimization problem
where f , t, and p(θ) are as defined in Section 3.1, (x, y) is
an image-label pair, and L : RC ×RC → R outputs a loss
given the predicted logits and true label.

max
‖δ‖p≤ε

L

(
E

θ∼p(θ)
[f (t(x+ δ; θ))] , y

)
(5)

We estimate the expectation by Monte Carlo sampling. We
denote this approximate loss as Llogit

n :

Llogit
n (x, y) := L

(
1

n

n∑
i=1

f (t(x+ δ; θi)) , y

)
(6)

Another way to approximate this objective, often referred to
as Expectation over Transformation (EoT), is to move the
expectation and the average outside of the loss [2].

Leot
n (x, y) :=

1

n

n∑
i=1

L (f (t(x+ δ; θi)) , y) (7)

≈ E
θ∼p(θ)

[L (f (t(x+ δ; θ)) , y)] (8)

Note that Leot
n is different from the true objective we are

optimizing in Eqn. 5. On the other hand, Llogit
n is a biased

estimator of the true objective [37]. We empirically compare
these formulations in Section 5.2.

4.2. Non-Differentiability and BPDA

To solve Eqn. 5, we need to compute gradients of the ap-
proximate objective (either Eqn. 6 or Eqn. 7) with respect to
the perturbation δ. This can be computed through backpropa-
gation and requires the Jacobian of the transform t(·; θi) with
respect to its input. However, some transformations are in-
nately non-differentiable (e.g., JPEG compression, precision
reduction, etc.), rendering first-order methods nonviable.

To circumvent this problem, Raff et al. uses backward-
pass differentiable approximation (BPDA) [1] to estimate
the “derivatives” of a non-differentiable function by first
approximating the function with a neural network and using
the derivative of the neural network instead. To approximate
a transformation, we train a model t̃φ that minimizes the
Euclidean distance between the transformed image and the
model output:

min
φ

∥∥t̃φ(x; θ)− t(x; θ)∥∥2 (9)

We evaluate the BPDA approximation below in a series of
experiments that compare the effectiveness of the BPDA
attack to an attack that uses exact gradients.

4.3. Experimental Setup

Our experiments use Imagenette [24], a ten-class sub-
set of ImageNet. While CIFAR-10 is the most common
benchmark in the adversarial robustness domain, some im-
age transformations work poorly on such small pixelated
images. The large and realistic images from Imagenette
more closely resemble real-world usage.

All models are pre-trained on ImageNet to speed up train-
ing and boost performance. Since RT models are stochastic,
we report their average accuracy together with the 95% con-
fidence interval from ten independent runs. Appendix B



Transform set
Adv. acc. with different gradient approximations (ε = 16/255, 40 steps)

Clean Exact BPDA Identity Combo

BaRT full 88.10± 0.16 n/a 52.32± 0.22 36.49± 0.25 25.24± 0.16
BaRT diff. 87.43± 0.28 26.06± 0.21 65.28± 0.25 41.25± 0.26 n/a

Table 1: Comparison of attacks using different gradient approximations. Exact uses the exact gradient, BPDA uses the BPDA
gradient for most transforms and the identity for a few, Identity uses the identity gradient, and Combo uses exact gradient for
differentiable transforms and BPDA gradient otherwise. The defense BaRT full uses a nearly complete set of BaRT transforms
(K = 26), and BaRT diff. uses a subset of differentiable transforms (K = 21). The attack uses PGD with EoT and CE loss.

(a) Original (b) Exact crop (c) BPDA crop

Figure 2: Comparison of crop transform output and output
of BPDA network trained to approximate crop transform.

has more details on the experiments (network architecture,
hyperparameters, etc.).

4.4. BPDA is Not Sufficiently Strong

We re-implemented and trained a BaRT model on these
datasets, and then evaluated the effectiveness of BPDA at-
tacks against this model. First, we evaluate a full BaRT
model (which uses both differentiable and non-differentiable
transforms), comparing an attack that uses a BPDA approx-
imation (as Raff et al. did [36]), vs an attack that uses the
exact gradient for differentiable transforms and BPDA for
non-differentiable transforms. Empirically, we observe that
attacks using BPDA gradient approximations are far weaker
than the equivalent attack using exact gradient approxima-
tions (Table 1). Similarly, on a variant BaRT model that
uses only the subset of differentiable transforms, the BDPA
attack is worse than an attack that uses the exact gradient
for all transforms. BPDA is surprisingly weaker than even a
naive attack which approximates all transform gradients with
the identity. There are a few possible explanations for the
inability of BPDA to approximate transformation gradients
well:

1. As Fig. 2 illustrates, BPDA struggles to approximate
some transforms accurately. This might be partly be-
cause the architecture Raff et al. [36] used (and we use)
to approximate each transform has limited functional
expressivity: it consists of five convolutional layers
with 5x5 kernel and one with 3x3 kernel (all strides
are 1), so a single output pixel can only depend on the
input pixels fewer than 11 spaces away in any direc-
tion (5 · b52c + 1 · b 32c = 11). Considering the inputs
for Imagenette are of size 224× 224, some transforms
like “crop” which require moving pixels much longer

distances are impossible to approximate with such an
architecture.

2. The BPDA network training process for solving Eqn. 9
may only find a sub-optimal solution, yielding a poor
approximation of the true transformation.

3. During the attack, the trained BPDA networks are given
partially transformed images, yet the BPDA networks
are only trained with untransformed inputs.

4. Since we are backpropagating through several trans-
forms, one poor transform gradient approximation
could ruin the overall gradient approximation.

Appendix B.1 has more details on these experiments. These
results show that BaRT’s evaluation was overly optimistic
and BaRT is not as robust as previously thought.

5. Stronger PGD Attacks on RT
5.1. Effect of the Permutation of the Transforma-

tions

As described in Section 3.1, when computing gn, we ran-
domly sample n independent sequences of transformations
(random types and random order). However, our experi-
ments suggest that the attack performs best when the order
of transforms is the same for all n images within a batch gra-
dient computation (i.e., a PGD step), and only the boolean
and the strength are randomly sampled differently for each
image. Table 3 compares these methods on two different
attacks, Linear+MB and Linear+Adam, which will be ex-
plained in later parts of this section, showing that fixing the
order within each batch performs better than sampling it for
each image or fixing it across all batches.

The “fixed per PGD step” sampling may seem counter-
intuitive as it introduces a biased sampling of θ and so yields
a biased estimator of the gradients. We hypothesize that it
is beneficial to the attack because it yields gradients that
have smaller variance. Later, we verify this hypothesis and
discuss it in more detail in Section 5.5 (Fig. 3). We use this
sampling method for the rest of the paper.

5.2. Effect of the Loss Function

We experiment with two loss functions that are commonly
used for generating adversarial examples: cross entropy loss



Attacks
Adv. acc. with varying attack steps (n = 10) Adv. acc. with varying n (attack steps = 200)

50 200 800 5 10 20

CE (EoT) 82.81± 0.43 72.86± 0.37 65.44± 0.39 75.00± 0.47 72.96± 0.55 71.30± 0.29
CE (softmax) 82.37± 0.39 71.05± 0.36 65.06± 0.39 73.82± 0.35 70.71± 0.53 68.51± 0.33
CE (logits) 80.79± 0.29 66.68± 0.38 57.72± 0.55 69.94± 0.66 66.65± 0.46 62.68± 0.36
Linear 80.67± 0.50 66.11± 0.58 58.26± 0.62 70.67± 0.41 66.59± 0.57 62.48± 0.41

Linear+MB 78.51± 0.45 72.66± 0.50 65.28± 0.41 72.47± 0.39 72.51± 0.55 71.06± 0.32
Linear+LinBP 82.90± 0.50 70.57± 0.32 65.15± 0.43 75.24± 0.35 72.73± 0.40 70.02± 0.31
Linear+SGM 80.10± 0.43 63.75± 0.21 51.68± 0.35 66.93± 0.43 62.57± 0.31 59.61± 0.55
Linear+TG 80.78± 0.56 68.70± 0.34 59.69± 0.57 71.72± 0.41 67.84± 0.50 65.63± 0.50

Linear+SGD+Momentum 75.14± 0.32 73.56± 0.46 73.84± 0.28 76.88± 0.53 73.31± 0.42 70.76± 0.55
Linear+SGD+Nesterov 74.95± 0.29 74.37± 0.38 74.60± 0.39 77.15± 0.49 73.88± 0.54 71.63± 0.41
Linear+Adam 80.62± 0.43 62.76± 0.54 46.03± 0.62 67.20± 0.62 63.18± 0.56 58.59± 0.51

Linear+Adam+SGM 78.03± 0.53 59.60± 0.49 38.35± 0.31 67.14± 0.48 63.03± 0.64 57.72± 0.51

Table 2: Comparison of different attack techniques on our best RT model. Lower means stronger attack.

Transform Permutation
Method during Attack

Adv. Acc.
(Linear+MB)

Adv. Acc.
(Linear+Adam)

All random 83.07± 0.38 68.23± 0.56
Fixed per PGD step 71.05± 0.45 58.59± 0.51
All fixed 81.45± 0.19 80.17± 0.52

Table 3: Adversarial accuracy of an RT model under attacks
using different permutation methods of the transformations
for the gradient computation.

(CE) and linear loss (Linear). We consider three variants of
the CE loss, based on how we take the expectation over n
samples: (1) average of the n losses, (2) loss of the average
of the softmax probability, which is proposed by Salman et
al. [37], and (3) loss of the average of the n logits. Using the
formulation in Section 4.1, Leotn is equivalent to case (1) of
CE loss and Llogitn to case (3) of CE loss. Finally, the linear
loss is simply the logit of the true class:

Llinear(x, y) :=

[
E

θ∼p(θ)
[f (t(x+ δ; θ)])

]
y

(10)

Linear or hinge loss is a popular choice of objective function
and has been used in several attacks to avoid the vanishing
gradient problem caused by the softmax layer [7, 52]. Due
to its linearity, taking the average either before or after com-
puting the loss, case (2) and (1) respectively, is equivalent.

The first four rows of Table 2 compare these loss func-
tions. Different attack methods are compared at varying
number of PGD steps and RT samples n. The widely used
EoT method performs the worst of the four. CE loss on
average softmax probability performs better than EoT, con-
firming the observation made by Salman et al. [37]. Linear
loss and CE loss on average logits are even better and are
consistently the strongest attacks, across multiple choices of
n and number of PGD steps. For the rest of this paper, we

adopt the linear loss as the main objective function which
gets combined with other techniques. In the interest of space,
results on the combinations with the other losses are included
in Appendix D.

5.3. Ensemble Perspective and Transferability

RT can be regarded as an ensemble, with each member
using a differently sampled sequence of transforms: the
n samples in gn(·) are equivalent to an ensemble with n
random members with partially shared parameters. Since the
RT ensemble is stochastic, we may view a white-box attack
on RT as a transfer attack from one ensemble to another with
very similar structure and some shared parameters.

Given this interpretation, we apply four techniques de-
signed to enhance the transferability of adversarial examples
to improve the attack success rate on RT. We tried momen-
tum boosting (MB) [13], modifying backward passes to treat
activations as linear (LinBP) [19] or to prefer the gradient
through skip connections (SGM) [47], and simply using a tar-
geted attack with the linear loss function (Linear+TG) [52].
Results in Table 2 (5th – 8th rows) show that SGM con-
vincingly outperforms the other three techniques across all
settings.

5.4. SGD Perspective and Acceleration

The output of RT in Eqn. 2 is an expectation which can
be regarded as an infinite sum over the samples of θ. As
mentioned in Section 5.1, the Monte Carlo approximation
of the expectation in Eqn. 2 gives unbiased but potentially
high-variance gradients which undermines the convergence
rate of naive SGD. Thus, we hypothesized that the attack
could benefit from techniques aimed at speeding up the
convergence of SGD. To test this hypothesis, we experiment
with Nesterov acceleration on SGD [41] and an optimizer
with an adaptive learning rate such as Adam [27].
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Figure 3: Three metrics comparing the normalized spread of
the gradients of different attack objectives. CE: CE (EoT),
CS: CE (softmax), CL: CE (logit), LR: Linear with all ran-
dom perm., L: Linear, LS: Linear+SGM.

Additionally, Yin et al. [49] show that the Adam optimizer
also improves the transferability of adversarial examples
which may further improve the attack as explained by the
fact that RT model acts like an ensemble (Section 5.3). We
also find that normalizing the gradients to have a unit `p-
norm before scaling by the step size, as is done in the normal
PGD attack, is crucial to the success of the attacks. Not
normalizing the gradients or using the change of variable
trick in Carlini and Wagner [7] results in weaker attacks.

The last three rows of Table 2 compare these three op-
timizers. Adam outperforms SGD both with and without
Nesterov acceleration in all cases apart from one.

Finally, we combine all the best techniques found so
far, i.e. the linear loss, Adam optimizer, and skip connec-
tion backward pass, into one attack, Linear+Adam+SGM.
As shown in the last row of Table 2, Linear+Adam+SGM
achieves the highest attack success rate of any method,
and outperforms all other methods given enough attack
steps. Compared to the naive EoT attack with CE loss,
Linear+Adam+SGM improves the attack success rate by a
large margin of up to 27%.

5.5. Attacks’ Effectiveness and Variance

In this section, we explain the success of some of the
above attack objectives by analyzing the variance of their
respective gradients. Classical convergence analysis of SGD
on convex functions states that the convergence rate is in-
versely proportional to the variance of the gradient estima-
tor [34, 17]. Thus, we naturally prefer gradients with smaller
variance, even though they may be biased, which is in fact
the principle behind many well-known variance reduction
techniques [25, 11, 38, 16].

Now consider the estimated objective Llogit
n (Eqn. 3) and

a sample of its estimated gradient (indexed by j) given by

∇Llogit
n,j (x, y) := ∇xL

(
1

n

n∑
i=1

f(t(x; θj,i)), y

)
(11)

Note that Eqn. 11 is a biased estimator of the true gradi-
ent [37]. The sample mean and the sample variance (aver-

aged over dimension) of this estimator are then given by

µm,n := ∇Lm,n =
1

m

m∑
j=1

∇Ln,j (12)

σ2
m,n :=

1

d

1

m− 1

m∑
j=1

∥∥∇Ln −∇Ln,j∥∥22 (13)

where the dependence on (x, y) is dropped to declutter. For
a given loss function, using larger n reduces σ2

m,n as ex-
pected, but comparing between different loss functions is less
straightforward since the norms of the gradients scale differ-
ently (top-left plot in Fig. 3). To this end, we compute three
other metrics that measure the spread of the gradient sam-
ples and are invariant to scaling, namely scale-normalized
variance, coefficient of variation (CV), and cosine similarity
between each ∇Ln,j and the mean µm,n. Fig. 3 confirms
our hypothesis that small normalized variance (small CV
and large cosine similarity) implies a stronger attack. The
trends and ranking match exactly with those of the adversar-
ial accuracy shown in Table 2 and Table 3. We also observe
that the estimated gradients are extremely noisy which might
be the key limitation of the naive first-order attack. In Ap-
pendix D.1, we describe how we compute these metrics and
present more plots with different values of n.

This observation suggests that optimization techniques
that reduce gradient variances enable stronger attacks against
randomized defenses. However, most variance-reduced SGD
methods are specific to the finite-sum problem [25, 11, 38,
16], whereas our objective is an infinite sum. Some tech-
niques may be adapted to our problem, but we leave this
direction to future works.

6. Hyperparameter Tuning
One major challenge in implementing RT is selecting the

defense hyperparameters which include the K transforma-
tion types, the number of transformations to apply (S), and
their parameters (α and p). To improve the robustness of RT
defense, we use Bayesian optimization (BO), a well-known
black-box optimization technique, to fine-tune the two real-
valued parameters, α and p [40]. In this case, BO models the
hyperparameter tuning as a Gaussian process where the ob-
jective function takes in α and p, trains a neural network for
RT, and outputs adversarial accuracy under some pre-defined
`∞-budget ε as the metric used for optimization.

Since BO quickly becomes ineffective as we increase the
dimensions of the search space, we choose to tune either α
or p, never both, for each of the K transformation types. For
transformations that have a tunable α, we fix p = 1 (e.g.,
noise injection, affine transform). For the transformations
without an adjustable strength α, we only tune p (e.g., Lapla-
cian filter, horizontal flip). Additionally, because BO does
not natively support categorical or integral variables, we ex-



0 500 1000 1500 2000 2500 3000
Number of Attack Steps

0

20

40

60

80

100

Ad
v.

 A
cc

ur
ac

y 
(R

∞
,1

6/
25

5
)

(a) Varying attack steps.

0 10 20 30 40 50 60 70 80
Number of RT Samples (n)

0

20

40

60

80

100

Ad
v.

 A
cc

ur
ac

y 
(R

∞
,1

6
/
2
55

)
(b) Varying n

Figure 4: Adversarial accuracy of the final RT model under
a wide range of (a) attack steps and (b) n.

periment with different choices for K and S without the use
of BO. Therefore, our BO problem must optimize over K
(up to 33) variables, far more than are typically present when
doing model hyperparamter tuning using BO.

Mathematically, the objective function ψ is defined as

ψ : [0, 1]K → R∞,ε ∈ [0, 1] (14)

where the input is K real numbers between 0 and 1, and
R∞,ε denotes the adversarial accuracy or the accuracy on
xadv as defined in Eqn. 1. Since ψ is very expensive to
evaluate as it involves training and testing a large neural
network, we employ the following strategies to reduce the
computation: (1) only a subset of the training and validation
set is used, (2) the network is trained for fewer epochs with
a cosine annealing learning rate schedule to speed up con-
vergence [32], and (3) the attack used for computingR∞,ε
is weaker but faster. Even with these speedups, one BO run
still takes approximately two days to complete on two GPUs
(Nvidia GeForce GTX 1080 Ti). We also experimented
with other sophisticated hyperparameter-tuning algorithms
based on Gaussian processes [4, 26, 14] but do not find them
more effective. We summarize the main steps for tuning and
training an RT defense in Algorithm 1.

7. Evaluations on RT Defense
7.1. Adversarial Robustness of RT Defense

Finding best RT model. BO generally finds a good con-
figuration of hyperparameters for RT, but the optimality
deteriorates as the number of variables or tuned hyperparam-
eters increases. To mitigate this problem, we come up with
the following procedure. We run multiple BO experiments
(Algorithm 1) on different subsets of transformation types
to identify which transformations are most/least effective in
order to reduce K as well as the number of hyperparameters
our final run of BO has to tune. We then repeat Algorithm 1
initialized with the input-output pairs from the prior runs
of BO to obtain a new set of hyperparameters. Finally, we
remove the transformations whose p or α has been set to zero
by the first run of BO, and we run BO once more with this fil-
tered subset of transformations. At the end of this expensive

Algorithm 1: Tuning and training RT defense.
Input: Set of transformation types, n, p, ε
Output: g∗(·),R,Rp,ε
Data: Training data

(
Xtrain,Y train

)
, test data(

Xtest,Y test
)

// Starting Bayesian optimization (BO)

1 Sub-sample
(
Xtrain,Y train

)
and split it into BO’s

training data
(
Xtrain

BO ,Y train
BO

)
and validation data(

Xval
BO,Y

val
BO

)
.

2 R∗p,ε ← 0 // Best adversarial accuracy

3 {(p∗i , α∗i )}Ki=1 ← 0 // Best RT hyperparameters

4 for step← 0 to MAX BO STEPS do
// Running one trial of BO

5 BO specifies {(pi, αi)}Ki=1 to evaluate.
6 Train an RT model on

(
Xtrain

BO ,Y train
BO

)
with

hyperparameters {(pi, αi)}Ki=1 to obtain g.
7 Test g by computingRp,ε on

(
Xval

BO,Y
val
BO

)
using a

weak but fast attack.
8 ifRp,ε > R∗p,ε then
9 R∗p,ε ←Rp,ε

10 {(p∗i , α∗i )}Ki=1 ← {(pi, αi)}Ki=1

11 else if No improvement for some steps then
12 break;

// Full training of RT

13 Train an RT model on
(
Xtrain,Y train

)
with best

hyperparameters {(p∗i , α∗i )}Ki=1 to obtain g∗.
14 Evaluate g∗ by computingR andRp,ε on

(
Xtest,Y test

)
using a strong attack.

Models Clean Acc. Adv. Acc.

Normal 95.40 0.00
AT 78.20 37.10
TRADES 78.60 20.50
RT 89.08 28.82

Table 4: Clean and adversarial accuracy at ε = 16/255 for
multiple models. All models apart from RT is evaluated by
AutoAttack [9], a strong ensemble of four attacks.

procedure, we obtain the best and final RT model that we use
in the experiments throughout this paper. This model only
has 18 transformation types out of the original 33. More
details on this final model are provided in Appendix C.1.

This RT model is evaluated against the best attack (Lin-
ear+Adam+SGM) under a large number of steps and samples
n (Fig. 4). As expected, the adversarial accuracy drops as
we increase the number of PGD steps and n until it plateaus
after around 1600 steps. The adversarial accuracy at 3000
steps is reported in Table 4 along with the accuracy of a
normal network and other well-known defenses against ad-
versarial robustness including adversarial training (AT) [33]
and TRADES [50]. All models are pre-trained on Ima-
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Figure 5: Adversarial accuracy of multiple defenses under a
range of `∞-norm of the perturbation.

Omitted Transformations Clean Acc. Adv. Acc.

Noise injection 92.27± 0.16 31.96± 0.54
Blur filter 89.04± 0.34 38.43± 0.68
Color space 90.65± 0.27 47.08± 0.53
Edge detection 87.12± 0.45 15.58± 0.22
Lossy compression 88.19± 0.19 16.14± 0.31
Geometric transforms 86.87± 0.57 43.68± 0.56
Stylization 85.71± 0.52 13.26± 0.34

Table 5: RT’s performance when each of the transformation
groups is removed.

geNet similarly to RT, and they are trained and tested using
ε = 16/255. Fig. 5 further compares the robustness given
varying `∞-norm ε budgets for the perturbation. Here, we
use Linear+Adam+SGM with 1000 steps to attack RT. It
is clear that our best RT model is still less robust than AT
at most of the perturbation sizes and performs better than
AT only on clean samples and on adversarial examples with
small ε.

7.2. Ablation Studies

Effect of the Number of Transformations. Fig. 12 (Ap-
pendix E.3) shows that more transformations (larger S) in-
crease robustness but lower accuracy on benign samples.
The improvement on the robustness plateaus after S = 16,
but the clean accuracy keeps decreasing, suggesting that after
a certain point, there is no benefit for increasing S.

Effect of Transformation Groups. Choosing the best set
of transformation types to use is a computationally expensive
problem. There are many more transformations that can be
applied outside of the 33 types we choose, and the number
of possible combinations grows exponentially. BO gives us
an approximate solution but is by no means perfect. Here,
we take a step further to understand the importance of each
transformation group. Table 5 shows performance of RT
models obtained from BO after removing one group of trans-
formations at a time. Without stylization, edge detection,
and lossy compression, RT performs significantly worse than

Choice of Randomness in RT Clean Acc. Adv Acc.

Random perm. & param 89.08± 0.32 58.59± 0.51
Fixed perm. & random param 87.93± 0.44 56.80± 0.40
Fixed perm. & fixed param 88.40 14.70
No transformation 93.20 0.00

Table 6: Effects of randomness on RT. Adv. acc. is computed
with the Linear+Adam+SGM attack (200 steps, n = 20).

when all transformation groups are present, implying that
they play a crucial role in offering robustness. We also con-
duct more experiments attempting to quantify the relative
importance of the transformation groups in Appendix E.2.

Does randomness matter? Table 6 compares the same
RT model under four scenarios. The first row is the normal
scenario where the transformations are randomly permuted
and their parameters (boolean and strength) are randomly
sampled. When the permutation is fixed, the adversary al-
ways sees the same set of transformations with either ran-
dom (2nd row) or fixed parameters (3rd row). Table 6 shows
that only fixing the permutation barely affects the accuracy
and the robustness, while fixing both significantly drops the
robustness. In the fourth row, where no transformation is ap-
plied, the model has the highest clean accuracy as it is given
a clean non-corrupted input, but is not at all robust. This
indicates that randomness, as expected, clearly contributes
to the robustness of RT.

Combining RT with Adversarial Training Using the
same hyperparameters as the best RT model, we adversar-
ially train an RT +AT model using 10-step PGD with the
linear loss (n = 4). Since the use of RT makes the training
process approximately four times longer than normal AT or
40 times longer than normal training, we can only afford this
relatively weak attack. This attack is so weak that it is only
able to reduce the accuracy by 2− 3% and therefore fails to
noticeably boost model robustness. The final model does not
end up generalizing well to adversarial examples not seen
during training. Compared to the best RT model, the RT+AT
model performs slightly better on PGD with linear loss but
slightly worse on the strongest attack.

8. Conclusion
While recent papers report state-of-the-art robustness

with RT defenses, our evaluations show that RT generally
under-performs existing defenses like AT when met with a
stronger attack, even after fine-tuning the hyperparameters
of the defense. Through our experiments, we found that non-
differentiability and high-variance gradients can seriously
inhibit adversarial optimization, so we recommend using
exact gradients and variance reduction techniques where
possible in the evaluation of future RT defenses.
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son, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio
Roli. Evasion attacks against machine learning at test time.
In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen,
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A. Details on the Image Transformations
The exact implementation of RT models and all the trans-

formations will be released. Here, we provide some details
on each of the transformation types and groups. Then, we
describe how we approximate some non-differentiable func-
tions with differentiable ones.

A.1. List of Transformation Types

Noise injection

• Erase: Set the pixels in a box with random size and
location to zero.

• Gaussian noise: Add Gaussian noise to each pixel.
• Pepper: Zero out pixels with some probability.
• Poisson noise: Add Poisson noise to each pixel.
• Salt: Set pixels to one with some probability.
• Speckle noise: Add speckle noise to each pixel.
• Uniform noise: Add uniform noise to each pixel.

Blur filtering

• Box blur: Blur with randomly sized mean filter.
• Gaussian blur: Blur with randomly sized Gaussian

filter with randomly chosen variance.
• Median blur: Blur with randomly sized median filter.
• Motion blur: Blur with kernel for random motion an-

gle and direction.

Color-space alteration

• HSV: Convert to HSV color-space, add uniform noise,
then convert back.

• LAB: Convert to LAB color-space, add uniform noise,
then convert back.

• Gray scale mix: Mix channels with random propor-
tions.

• Gray scale partial mix: Mix channels with random
proportions, then mix gray image with each channel
with random proportions.

• Two channel gray scale mix: Mix two random chan-
nels with random proportions.

• One channel partial gray: Mix two random channels
with random proportions, then mix gray image with
other channel.

• XYZ: Convert to XYZ color-space, add uniform noise,
then convert back.

• YUV: Convert to YUV color-space, add uniform noise,
then convert back.

Edge detection

• Laplacian: Apply Laplacian filter.
• Sobel: Apply the Sobel operator.

Lossy compression

• JPEG compression: Compress image using JPEG to
a random quality.

• Color precision reduction: Reduce color precision to
a random number of bins.

• FFT perturbation: Perform FFT on image and re-
move each component with some probability.

Geometric transforms

• Affine: Perform random affine transformation on im-
age.

• Crop: Crop image randomly and resize to original
shape.

• Horizontal flip: Flip image across the vertical.
• Swirl: Swirl the pixels of an image with random radius

and strength.
• Vertical flip: Flip image across the horizontal.

Stylization

• Color jitter: Randomly alter the brightness, contrast,
and saturation.

• Gamma: Randomly alter gamma.
• Sharpen: Apply sharpness filter with random strength.
• Solarize: Solarize the image.

Non-differentiable (for BPDA Tests Only)

• Adaptive histogram: Equalize histogram in patches
of random kernel size.

• Chambolle denoise: Apply Chambolle’s total varia-
tion denoising algorithm with random weight (can be
implemented differentiably but was not due to time
constraints).

• Contrast stretching: Pick a random minimum and
maximum pixel value to rescale intensities (can be im-
plemented differentiably but was not due to time con-
straints).

• Histogram: Equalize histogram using a random num-
ber of bins.

Unused transforms from BaRT

• Seam carving: Algorithm used in Raff et al. [36] has
been patented and is no longer available for open-source
use.

• Wavelet denoising: The implementation in Raff et
al. [36] is incomplete.

• Salt & pepper: We have already used salt and pepper
noise separately.

• Non-local means denoising: The implementation of
NL means denoising in Raff et al. [36] is too slow.



A.2. Differentiable Approximation

Some of the transforms contain non-differentiable opera-
tions which can be easily approximated with differentiable
functions. Specifically, we approximate the rounding func-
tion in JPEG compression and color precision reduction,
and the modulo operator in all transformations that require
conversion between RGB and HSV color-spaces (HSV al-
teration and color jitter). Note that we are not using the
non-differentiable transform on the forward pass and a dif-
ferentiable approximation on the backward pass (like in
BPDA). Instead, we are using the differentiable version both
when performing the forward pass and when computing the
gradient.

We take the approximation of the rounding function from
Shin and Song [39] shown in Eqn. 15.

bxeapprox = bxe+ (x− bxe)3 (15)

For the modulo or the remainder function, we approximate it
using the above differentiable rounding function as a basis.

mod(x) =

{
x− bxe if x > bxe
x− bxe+ 1 otherwise

(16)

To obtain a differentiable approximation, we can replace
the rounding operator with its smooth version in Eqn. 15.
This function (approximately) returns decimal numbers or a
fractional part of a given real number, and it can be scaled to
approximate a modulo operator with any divisor.

Note that these operators are step functions and are dif-
ferentiable almost everywhere, like ReLU. However, their
derivatives are always zero (unlike ReLU), and so a first-
order optimization algorithm would still fail on these func-
tions.

B. Detailed Experimental Setup

All of the experiments are evaluated on 1000 randomly
chosen test samples. Since we choose the default n to be
40 for inference and 20 for the attacks, the experiments
are at least 20 times more expensive than usual, and we
cannot afford enough computation to run a large number of
experiments on the entire test set.

The networks used in this paper are ResNet-34 [20] for
Imagenette and Pre-activation ResNet-18 [21] for CIFAR-
10. In all of the experiments, we use a learning rate of 0.01,
batch size of 128, and weight decay of 0.0005. We use cosine
annealing schedule [32] for the learning rate with a period of
20 epochs which also doubles after every period. All models
are trained for 140 epochs, and we save the weights with the
highest accuracy on the held-out validation data (which does
not overlap with the training or test set).

Figure 6: Fully-convolutional BPDA network from Raff
et al. [36]. The network has six convolutional layers. All
layers have a stride of 1. The first five layers have kernel
size of 5 and padding size of 2, and the last layer has a
kernel size of 3 and padding size of 1. The input consists
of more than 5 channels, 3 of which are for the image RGB
channels, 2 of which are CoordConv channels that include
the coordinates of each pixel at that pixel’s location, and the
remaining channels are the parameters for the transformation
copied at each pixel location. The network contains a skip
connection from the input to each layer except the final layer.

B.1. Details on BPDA Experiments

We used the following setup for the differentiability re-
lated experiments conducted in Section 4.4:

• Each accuracy is an average over 10 trials on the same
set of 1000 Imagenette images.

• The defense samples S = 10 transforms from the full
set of K transforms.

• The image classifier uses a ResNet-50 architecture like
in Raff et al. [36] trained on transformed images for 30
epochs.

• The attack uses 40 PGD steps of size 4/255 with an
ε = 16/255 to minimize the EoT objective.

The BPDA network architecture is the same used by Raff
et al. [36] and is outlined in Figure 6. Here are more details
on BPDA training:

• All BPDA networks were trained using Adam with a
learning rate of 0.01 for 10 epochs.

• All networks achieve a per-pixel MSE below 0.01. The
outputs of the BPDA networks are compared to the true
transform outputs for several different transform types
in Figure 7.

The specific set of transforms used in each defense are the
following:

• BaRT all: adaptive histogram, histogram, bilateral blur,
box blur, Gaussian blur, median blur, contrast stretch-
ing, FFT, gray scale mix, gray scale partial mix, two
channel gray scale mix, one channel gray scale mix,
HSV, LAB, XYZ, YUV, JPEG compression, Gaussian
noise, Poisson noise, salt, pepper, color precision reduc-
tion, swirl, Chambolle denoising, crop.

• BaRT diff: all of the BaRT all transforms excluding
adaptive histogram, histogram, contrast stretching, and
Chambolle denoising.



(a) Original

(b) Adaptive histogram (c) Box blur

(d) Poisson noise (e) HSV color alteration

(f) FFT (g) Crop

Figure 7: Comparison of the true transformed outputs (top row) and outputs of respective BPDA networks (bottom row) for
six different transformation types.

C. Details on Bayesian Optimization

We use the Ray Tune library for RT’s hyperparameter
tuning in Python [29]. The Bayesian optimization tool is
implemented by Nogueira [35], following analyses and in-
structions by Snoek et al. [40] and Brochu et al. [6]. As
mentioned in Section 6, we sub-sample the data to reduce
computation for each BO trial. Specifically, we use 10% and
20% of the training samples for Imagenette and CIFAR-10
respectively (Algorithm 1, line 1). The models are trained
with the same transformations and hyperparameters used dur-
ing inference, and here, n is set to one during training, just
as is done during standard data augmentation. We use 200

samples to evaluate each BO run in line 7 of Algorithm 1,
and the attack we use in this step (the “weak but cheap” at-
tack) is still our best version (Linear+Adam+SGM) but with
only 100 steps and n = 10.

One BO experiment executes two BO’s in parallel. The
maximum number of BO runs is 160, but we terminate the
experiment if no improvement has been made in the last
40 runs after a minimum of 80 runs have taken place. The
runtime depends on S and the transformation types used. In
our typical case, when all 33 transformation types are used
and S = 14, one BO run takes almost an hour on an Nvidia
GeForce GTX 1080 Ti for Imagenette. One BO experiment
then takes about two days to finish.



Attacks
Adv. acc. with varying attack steps (n = 10) Adv. acc. with varying n (attack steps = 200)

50 200 800 5 10 20

CE+MB (softmax) 80.16± 0.34 74.11± 0.53 67.19± 0.62 73.38± 0.52 74.18± 0.68 74.05± 0.27
CE+MB+VR (softmax) 80.32± 0.26 74.06± 0.47 66.97± 0.38 73.60± 0.42 74.76± 0.61 74.40± 0.47
Linear+MB+VR 79.31± 0.39 73.01± 0.54 64.60± 0.57 72.41± 0.60 72.13± 0.42 70.91± 0.51

Table 7: Comparison of the adversarial accuracy (ε = 16/255) when using additional attack methods that we did not include
in Table 2 on our best RT model. We evaluate the attacks at varying number of attack iterations (first three columns) and
varying n (last three columns). Lower means stronger attack.

In line 13 and 14 of Algorithm 1, we now use the full
training set and 1000 test samples as mentioned earlier. Dur-
ing the full training, n is set to four which increases the
training time by approximately four times. We find that
using a larger n is beneficial to both the clean and the ad-
versarial accuracy, but n larger than four does not make any
significant difference.

C.1. Details on the Final RT Model

We have described the procedure which we used to ob-
tain our best RT model in Section 7.1. The final set of 18
transformation types used in this model are color jitter, erase,
gamma, affine, horizontal flip, vertical flip, Laplacian filter,
Sobel filter, Gaussian blur, median blur, motion blur, Poisson
noise, FFT, JPEG compression, color precision reduction,
salt noise, sharpen, and solarize. S is set to 14.

D. Additional Experiments on the Attacks
Table 7 includes a few more attack techniques that we

did not include in Table 2. “VR” denotes our experimen-
tal variance reduction technique inspired by Cutkosky and
Orabona [10]. We adapted this technique to work with mo-
mentum boosting (MB) [13], but due to computational con-
straints, we make an approximation by saving the previous
gradient instead of recomputing a new one with a new set of
random samples. This technique boosts the performance of
MB alone slightly but is still far inferior to our best attack.

We further compare the baseline attack on RT models
to our best attack at different numbers of steps in Fig. 8.
The baseline (CE loss with EoT and fully random trans-
form permutation) only reduces the accuracy to around 71%
which plateaus after approximately 1000 steps. On the other
hand, our best attack (Linear+Adam+SGM), which is used
throughout the paper, achieves adversarial accuracy of 28%
at 3000 steps, improving from the baseline by 43%. This is
an enormous gap that indicates inadequate evaluations and a
significant overestimate of the robustness in previous works.

D.1. Variance of Gradients

We have described how we compute the sample variance
of the gradients in Section 5.5. Here, we provide detailed
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Figure 8: Adversarial accuracy achieved by the baseline
attack (CE loss with EoT and fully random transform per-
mutation) and our best attack (Linear+Adam+SGM) under
ε = 16/255, n = 20 on Imagenette dataset.

calculations of the other three metrics using the same nota-
tion from Eqn. 12 and Eqn. 13. First, the cosine similarity is
computed between the mean gradient and all m samples and
then averaged.

cosm,n(L) :=
1

m

m∑
j=1

〈∇Ln,j , µm,n〉
‖∇Ln,j‖2 · ‖µm,n‖2

(17)

The scaled-normalized variance is simply the normal vari-
ance divided by the squared `2-norm of the mean gradient:

σ2
norm-m,n :=

σ2
m,n

‖µm,n‖22
(18)

and lastly, the coefficient of variation (CV), which is a nor-
malized measure of spread based on standard deviation, is
given as an average of the element-wise standard deviations
divided by the mean:

CVm,n :=
1

d

d∑
i=1

(
1

m−1
∑m
j=1 ([∇Ln,j ]i − [µm,n]i)

2
) 1

2

|[µm,n]i|
(19)
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(d) n = 32

Figure 9: Comparisons of six different attack objectives on four measurements of the spread of their gradients. The gradients
are also computed with different numbers of Monte Carlo samples n = 4, 8, 16, 32 corresponding to (a),(b),(c), and (d)
respectively. CE: CE loss (EoT), CS: CE loss (softmax), CL: CE loss (logit), LR: Linear loss with all random transform
permutations, L: Linear loss, LS: Linear loss combined with SGM. The gradients of RT models are generally very noisy and
can vary in multiple orders of magnitude. To compute meaningful metrics, we trim 10% of the gradients with the largest and
the smallest norm.

where [v]i denotes the i-th index of the vector v, and d is the
number of input dimensions.

Fig. 9 includes all four metrics at different values of n.
Roughly speaking, we can sort five out of the six given
attacks from strongest to weakest in this order: LS > L ≈
CL> CS> CE, according to Table 2. LR uses a full random
permutation rule instead of fixed-per-PGD-step like the rest,

so it should be compared to L only and is, in fact, worse
than L (Table 3). Stronger attacks are generally associated
with higher cosine similarity, because if subsequent gradient
directions agree more, then the optimization trajectory will
be less erratic. Similarly, stronger attacks are also correlated
with lower normalized variance and lower CV, indicating
that there is less (normalized) variation among their gradient



Source/Target Models Normal AT RT

Normal 0.00 79.50 84.52± 0.45
AT 80.20 44.30 77.00± 0.46
RT 78.10 78.30 29.94± 0.40

Table 8: The accuracy of three models, a normally trained
model (Normal), AT, and RT, on adversarial examples gen-
erated on the other two models (transfer attacks) as well
as itself (white-box attack). We use ε = 16/255, and the
adversarial examples for Normal and AT are generated via
1000-step PGD attack with two random restarts.

samples.
On the other hand, the un-normalized variance plot in

Fig. 9 is not indicative of this relationship because different
adversarial objectives have different scales and so do their
gradients. However, among the same loss function (CE vs.
CS vs. CL or LR vs. L), the correlation between stronger
attacks and smaller variance is still present. Additionally,
note that for a given attack objective, increasing n leads to
smaller normalized variance and CV as well as larger cosine
similarity as we would expect.

D.2. Transfer Attacks

Table 8 shows that RT models are very robust against
black-box transfer attacks from normal and AT models. This
is additional proof that our implementation of RT does not
suffer from severe gradient obfuscation. Adversarial exam-
ples generated by attacking RT also transfer slightly better
than adversarial examples generated with the other two at-
tacks.

E. Additional Experiments on the RT Model

E.1. Effects of Decision Rules and the Number of
Monte Carlo Samples

Fig. 10 and Fig. 11 compare three different decision rules
that aggregate the n outputs of the RT model to produce the
final prediction ŷ(x) given an input x. We choose the average
softmax probability rule for all of our RT models because
it provides a good trade-off between the clean accuracy and
the robustness. Majority vote has poor clean accuracy, and
the average logits have poor robustness.

E.2. Additional Experiments on the Transformation
Groups’ Importance

Table 9 gives an alternative way to gauge the contribution
of each transformation group. Table 5 in the main paper
compares the performance when one group of transforma-
tions is omitted. Here, Table 9 compares the performance
when only one group is used. According to this experiment,
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Figure 10: Clean accuracy of our best RT model computed
with three decision rules for obtaining the final prediction
from the n output samples. The rules are majority vote
(red), average softmax probability (blue), and average logits
(green). The shaded areas represent the 95% confidence
interval for each decision rule.
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Figure 11: Adversarial accuracy (ε = 16/255) of our best
RT model computed with three decision rules for obtaining
the final prediction from the n output samples. The rules
are majority vote (red), average softmax probability (blue),
and average logits (green). The shaded areas represent the
95% confidence interval for each decision rule. We use the
same set of adversarial examples for all the rules, and they
are generated with our best attack (Linear+Adam+SGM) run
for 1600 steps.

noise injection appears most robust followed by lossy com-
pression and geometric transformations. However, this result
is less informative compared to Table 5 since most of the
groups have zero adversarial accuracy, and the rest are likely
to also reduce to zero given more attack steps. This result
also surprisingly follows the commonly observed robustness-
accuracy trade-off [45].

We do not present the average values of fine-tuned α or p
because there is no straightforward way to relate their values
to the strength of each transformation. For example, an α



Used Transformations Clean Acc. Adv. Acc.

Noise injection 80.93± 0.44 8.35± 0.20
Blur filter 97.32± 0.20 0.00± 0.00
Color space 94.40± 0.53 0.00± 0.00
Edge detection 97.64± 0.09 0.00± 0.00
Lossy compression 83.56± 0.66 3.56± 0.26
Geometric transforms 88.42± 0.28 0.83± 0.21
Stylization 98.31± 0.09 0.00± 0.00

Table 9: RT’s performance when only one of the transforma-
tion groups is applied. The attack is Linear+Adam+SGM
with 200 steps and n = 20.
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Figure 12: Adversarial accuracy of RT models obtained after
running Algorithm 1 for different values of S.

of 0.5 for transform A might “change” the original image
more than transform B with the same α. As a general rule
of thumb, we set the range of α such that α = 1 is the
most extreme parameter choice and completely destroys the
image. For instance, α = 1 for uniform noise would stretch
the range to [−1, 1], or α = 1 for pepper noise would return
an image with all zero pixels. On the other hand, setting
α = 0 means that output is always the original image.

E.3. Effects of the Number of Transformations

We test the effect of the transform permutation size S on
the clean and the robust accuracy of RT models (Fig. 12).
We run Bayesian optimization experiments for different val-
ues of S using all 33 transformation types, and all of the
models are trained using the same procedure. As mentioned
in Section 7.2, a larger S generally increases the robustness
but decreases the clean accuracy. The improvement on the
robustness plateaus after some value of S (16 for Imagenette
when sampling from all of our transformation types). We be-
lieve that the small bump at S = 18 is due to some variations
in the performance of Bayesian optimization.

E.4. Combination with Adversarial Training

In an attempt to further improve the robustness of our
best RT model, we combine it with the adversarial training
scheme. Specifically, we train an RT model with the best
set of hyperparameters on adversarial examples generated
with a 10-step PGD attack and n = 4. We use 10 PGD steps
to follow the approaches taken by previous works as well
as to be consistent with AT and TRADES models in this
work. Due to computational constraints, it is difficult for us
to use a stronger attack with more steps or a larger n. We
also found that with the given number of steps and value of
n, the adversarial objectives that we experimented with all
perform roughly the same.

Table 10 compares our best RT model to its adversari-
ally trained version (RT+AT). As mentioned in Section 7.2,
we can see that RT+AT “overfits” to the specific attack it
is trained on (PGD with linear loss) and achieves a slightly
higher adversarial accuracy against that same attack. How-
ever, on the strongest attack, RT+AT is, in fact, less robust
than the RT model alone by a considerable margin. Surpris-
ingly, this result contradicts prior observations of normal
neural networks whose robustness always improves with
adversarial training even when the attack is extremely weak
such as FGSM [46].

Our hypothesis is that the network will “memorize” or
“overfit” to the few adversarial examples the weak attack is
able to produce for the already defended RT model. This
same phenomenon is also observed by Tramèr et al. [44]
and Wong et al. [46] when an AT model overfits to FGSM
attacks that are initialized incorrectly and produce a limited
set of all possible adversarial examples. Given more time
and compute, this hypothesis can be verified by adversarial
training with a much stronger attack. Nonetheless, such a
procedure would not be scalable unless we devise a much
more efficient attack. We believe that this is an interesting
future direction to further improve both the robustness of the
attack and the RT model simultaneously.



Attacks Models
Adversarial Accuracy (R∞,16/255) at Different PGD Steps

100 200 500 800 1000

Linear
RT 71.63± 0.35 63.03± 0.37 58.19± 0.57 55.46± 0.39 54.08± 0.44
RT+AT 71.11± 0.62 62.97± 0.26 59.37± 0.46 56.61± 0.49 55.28± 0.49

Linear+Adam+SGM
RT 66.95± 0.47 58.16± 0.47 44.17± 0.56 38.68± 0.44 36.91± 0.54
RT+AT 66.97± 0.61 54.38± 0.45 39.47± 0.44 34.38± 0.24 33.21± 0.68

Table 10: Comparison of our best RT model and its combination with adversarial training (RT +AT) under two attacks. RT
+AT model is trained with PGD attack with the linear loss (n = 4 and 10 steps).


