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Hybrid Convolutional Optoelectronic Reservoir
Computing for Image Recognition

Philip Jacobson, Student Member, IEEE, Mizuki Shirao, Kerry Yu, Guan-Lin Su, and Ming C. Wu Fellow, IEEE

Abstract—Photonic delay-based reservoir computers (RC) have
emerged as an attractive high-speed, low-power alternative to
traditional digital hardware for AI. We demonstrate experimen-
tally a novel hybrid RC scheme in which input data is first
preprocessed through several convolutional layers, either trained
or untrained, digitally to generate novel feature maps. These
random feature maps are then processed through an optoelec-
tronic implementation of delay-based RC. Using the MNIST
dataset of handwritten digits, experiments of our proposed hybrid
scheme achieve classification error of 1.6% using untrained
convolutions, and an error of 1.1% using trained convolutions,
results comparable to that of state-of-the-art machine learning
algorithms. Additionally, our experimental implementation can
offer a potential 10× decrease in model training time, compared
to that of common digital alternatives.

Index Terms—reservoir computing, photonics, image classifi-
cation, convolutional neural networks

I. INTRODUCTION

RECENT advancements in machine learning and in par-
ticular, deep learning, have allowed neural network mod-

els to achieve impressive performance on a wide range of
tasks [1]–[3]. However, these increasingly complex models
require significant computing resources to train, with training
typically performed on large clusters of graphics processing
units (GPUs) or tensor processing units (TPUs) [4]. This has
resulted in a newfound demand for lightweight alternatives to
neural networks which can be deployed in edge computing
applications.

One method which has attracted significant research interest
lately is known as Reservoir Computing (RC) [5]–[7]. Reser-
voir computing draws inspiration from traditional Recurrent
Neural Networks (RNN), a variant of artificial neural networks
which include recurrent connections between nodes in the
hidden layers . RC similarly exploits this architecture, however
instead of a series of ordered hidden layers stacked one
upon the other, they are instead replaced by a “reservoir”,
a collection of nodes whose weights and connections are
initialized randomly. At training time, weights within the
reservoir are left untrained; instead, only the single output
layer has its weights updated, typically through a standard
linear regression routine, with optional regularization [8]. The
relative simplicity of this training procedure allows for a
significant reduction in required computation when compared
to that of a standard RNN.

The simplicity of the RC architecture has made it an ideal
candidate for implementation in hardware. Photonics is a

particularly attractive platform, due to the potential of fast
processing speeds and low power consumption [9]–[13]. How-
ever, implementation of large-scale spatial reservoirs remains
challenging, due to the difficulty of coupling a large number
of nonlinear optical elements. Reservoirs built with photonic
integrated circuits remain relatively small in scale (limited to
tens of nodes) [13]–[15], whereas using free space optics,
though able to incorporate a larger number of nodes, sacrifices
the compactness of an integrated solution [16], [17].

Because of this problem, an alternative to classical RC,
known as delay-based RC, has gained significant traction
recently [18]. As opposed to a spatial reservoir, delay-based
RC instead uses a fully temporal reservoir, where physi-
cal nodes are replaced with so-called virtual nodes, created
through time division multiplexing. These virtual nodes are
processed serially through a single physical node with delayed
feedback; more virtual nodes can be stored in the system
memory through simply increasing the length of the delay.
Optoelectronic [19]–[21] and fully optical [15], [22], [23]
implementations of delay-based RC have achieved strong
performance on several benchmark tasks, such as time series
prediction and voice recognition. However, the relative struc-
tural simplicity arising from the lack of full spatial coupling
(i.e. lack of connectivity between all nodes in the reservoir)
has made scaling delay-based RC to tackle more complex tasks
challenging.

Image recognition, a task central to machine learning and
computer vision, has remained relatively under-explored in the
RC literature because of these inherent limitations. With recent
advancements in deep learning, classical image processing
techniques using hand-crafted features have ceded ground to
convolutional neural networks (CNNs), which have been able
to achieve state-of-the-art performance on most tasks [1], [24].
CNNs are a class of neural networks which convolve input
images with trained weights to extract useful features for
classification, allowing the neural network to learn on its own
the most useful features, rather than relying on more traditional
feature engineering.

Our previous work introduced a new hybrid RC model
to leverage the power of CNNs [25]. In this model, images
undergo preprocessing through several convolutional layers
with untrained weights, mimicking the feature extraction pro-
cess of a CNN, but instead generating randomized feature
maps. Applying this novel method to classifying images in
the MNIST handwritten digit dataset, we are able to achieve a
nearly 1% test error in simulation, in-line with the performance
of CNN models. In this paper, we report three novel results:
first, we introduce a further variation of this model, in which
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we use weights trained through backpropagation within the
convolutional layers, achieving performance better than that
of a CNN in simulation. Second, we demonstrate the first
experimental implementation of this hybrid RC scheme based
on an optoelectronic delay-line reservoir computer, achieving
performance consistent with simulations results. Third, we
perform a timing analysis, showing that our proposed method
offers the potential for a 10× decrease in training time through
leveraging randomized convolutions in comparison to a CNN.

II. HYBRID RESERVOIR COMPUTING

A. Delay-Based RC

Broadly speaking, the architecture of a reservoir computer
can be described in three stages: the input layer, the reservoir,
and the output layer. In the temporal model, the input data to
the single physical node is created from raw pixels through
a process known as masking. In this work, we generate a 2-
dimensional mask matrix, typically a random sparse matrix, to
be matrix multiplied by the flattened images. The dimension of
this matrix is Nvirtual nodes×Nimage dimensionality, allowing
for the number of virtual nodes generated per image to be
adjusted through changing the dimension of the mask matrix
(the total number of virtual nodes stored in memory depends
on both the mask matrix and the delay length). In general,
virtual nodes can be stored across multiple delay lengths by
simply letting the reservoir circulate for longer, allowing for
scaling to a higher number of virtual nodes without directly
modifying the system hardware. This masked input is then
processed sequentially through the single node. The reservoir
response, x(t), is given as:

τf
dx(t)

dt
+ x(t) = Gloopf(x(t− τD) + uin(t) + Vbias) (1)

where f is the nonlinear activation of the physical node, τD
is the delay time, Gloop is the gain of the entire circulation,
uin(t) is the masked input data, and Vbias is a constant bias. A
low pass filter with time constant τf is used to effectively limit
the memory of the system. The continuous reservoir response
is sampled discretely to generate the virtual node values, X(k),
where k denotes discrete time. The final output layer is a linear
mapping of the virtual node values to the desired predicted
labels, Ŷ :

Ŷ =W optX(k) (2)

where W opt are the trained readout weights. For the task
of image classification, the true class labels Y are encoded
through one-hot encoding; i.e. Y is an Nsamples × Nclasses
matrix, with a binary encoding used to denote the true class
of a given image. Classification of the predicted labels Ŷ
is done with a winner-take-all approach, in which the class
with the highest value is chosen to be the model prediction.
Training is done using the ridge regression routine [26], where
the equation for W opt is given by:

W opt = argmin
W

||Y −WX(k)||2 + λ||W ||2 (3)

where λ is a regularization constant used to prevent overfitting.
This optimization is performed offline, after all of the input
data has been circulated through the reservoir.

B. Convolutional RC

Convolutional neural networks have convincingly sup-
planted traditional computer vision techniques for the majority
of image classification tasks [1], [3], [27]. The building blocks
of CNNs consist primarily of two types of hidden layers:
convolutional layers, used to extract useful features from input
images, and fully-connected layers, used to perform the actual
classification on the extracted features [28]. Pooling layers, a
type of hard-coded layer used to down-sample feature maps,
are often interspersed between convolutional layers to reduce
the dimensionality of feature maps.

To capture the power of convolutional layers’ feature extrac-
tion, we have introduced a new form of RC which combines
standard delay-based RC with preprocessing images through
convolutional layers [25]. After passing through the series of
convolutional and pooling layers, the output feature maps are
flattened row-wise into a single vector, which is then multi-
plied by the random mask matrix to generate the input nodes.
Thus, each input node becomes a random linear combination
of the output convolutional features, the exact nature of which
depends on the mask matrix. A comparison of our proposed
scheme with standard CNNs and RC is shown in Fig. 1.
Normally, the weights within convolutional layers are trained
through backpropagation to allow the CNN to learn the most
optimal features for classification. We consider two models
for our hybrid scheme: one which maintains the training of
convolutional layers through backpropagation, and another in
which we instead use convolutional layers which are randomly
initialized, but then left untrained. The latter method, instead of
extracting learned features, generates randomized feature maps
to preserve the fast training speed of RC. Several examples
of these random features are shown in Fig. 2. The number
of feature maps generated is controlled through the final
convolutional layer’s width. After passing through these layers,
all of the feature maps are flattened into a single feature vector
and multiplied with a mask matrix before being processed
through the reservoir computer itself.

C. Experimental Implementation

1) Digital preprocessing: The first phase of our hybrid RC
model is processing the input images through convolutional
layers, followed by input masking. This step is done entirely
in the digital domain on a standard laptop computer1. The
preprocessing scheme is implemented in Python using the
TensorFlow library, with the matrix masking performed using
a standard linear algebra package.

2) Optoelectronic RC: To implement the delay-based reser-
voir computer, we use a well-known implementation based
on the optoelectronic oscillator (OEO) model [20], [29]. A
schematic of our experimental testbed is shown in Fig. 3. The
experimental set-up consists of a 1550 nm distributed feedback
laser (Gooch & Housego DS-7009) modulated by a 40 Gb/s
LiNbO3 Mach-Zehnder modulator (Fujitsu FTM7937EZ). The
modulated signal passes through an optical delay line before
being converted to the electrical domain with a high-speed

1MacBook Pro, 2.6 GHz 6-Core Intel Core i7
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Fig. 1. (a) Prototypical CNN architecture with illustration of backpropagation training. (b) Standard delay-based RC architecture. (c) Architecture of our
proposed hybrid RC scheme, illustrating preprocessing through untrained convolutional layers followed by delay-based RC. Figure adapted from [25]

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 02,2021 at 23:44:38 UTC from IEEE Xplore.  Restrictions apply. 



0733-8724 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2021.3124520, Journal of
Lightwave Technology

JLT-28430-2021 4

Fig. 2. (a) Example image from MNIST dataset of digit “5”. (b) Several
feature maps generated by forward pass through two untrained convolutional
layers.

photodiode (MACOM P-18A). After passing through a low-
noise transimpedance amplifier and low-pass filter, the analog
signal is sampled by an analog-to-digital converter (ADC)
with 12 bit resolution attached to a field programmable gate
array (FPGA) mezzanine card (Zipcores FMC-DSP Rev. B).
The reservoir response is added digitally to the input signal
within the FPGA’s programmable logic, before being output
through a digital-to-analog converter (DAC) used to drive the
modulator input. The bandwidth of this system is limited by
the ADC/DAC, which have a 125 MSa/s sampling rate. For
the experiments in this paper, we use a virtual node spacing
is 80 ns, allowing for a total information processing speed of
12.5 MHz.

3) FPGA Design: To handle the data I/O of our system, we
use a PicoZed board with a Zynq-7000 system on a chip (SoC).
Preprocessed input data is transmitted from the PC to the board
via 1 Gbps ethernet, which interfaces directly with the on-chip
processing system (PS). The input data is stored in DRAM
memory until ready to be processed by the experiment. The
ADC/DAC module interfaces with the SoC through the chip’s
programmable logic (PL), where the input data is processed

Fig. 3. Schematic illustrating optoelectronic reservoir computer used in
experiments. Single wavelength distributed feedback laser is modulated by
a Mach-Zehnder modulator, before passing through a delay line. Photodiode
converts signal to electrical domain; FPGA sums input with feedback to drive
modulator.

through a custom DSP block to perform feedback addition
before being output through the DAC. The reservoir response
is measured through the ADC, where virtual node values
are computed through the averaging of 8 neighboring ADC
samples in the PL in order to reduce sensitivity to noise.
Virtual node samples are similarly stored in DRAM memory
until being transmitted back to the PC via ethernet to perform
the linear regression. Data transfer between the PS and PL is
done using a standard AXI DMA module. Because of limits
on the DRAM memory capacity, the input data is processed in
blocks of 4 MB, during which input data is sent to the FPGA,
the inputs are circulated through the reservoir, and virtual node
samples are sent back to the PC. Because only a fraction of
an image is stored in the reservoir memory at a given time,
we are able to forego resetting the reservoir between images
without degrading performance, allowing for faster processing.
This process is repeated until all of the input nodes are sent
through the reservoir. A diagram of our FPGA architecture is
shown in Fig. 4.

III. MNIST CLASSIFICATION: EXPERIMENTAL RESULTS

To experimentally demonstrate our proposed RC scheme,
we use the well-known MNIST handwritten digit classification
task. The MNIST dataset consists of 70000 (60000 training,
10000 test) grayscale 28×28 images of handwritten digits 0-
9; the goal of the task is to correctly identify the written
number [30]. We consider two benchmarks for this task: first
the LeNet-5 CNN, a well-known CNN architecture adapted
for this problem, which achieves a 0.95% test error [24].
Modern neural networks with even deeper architectures have
further improved accuracy on MNIST to a few fractions of a
percent [31], however these exceed the training capabilities of
a standard CPU and so are less useful to us as benchmarks.
Additionally, we also consider an Extreme Learning Machine
(ELM), a variant of neural network containing layers of
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Fig. 4. Block diagram of the FPGA configuration used in our experiments.

untrained neurons, as a benchmark [32]. We use an ELM
containing two convolutional layers and one fully-connected
layer with 15000 neurons, all of which are left untrained, to
serve as a memoryless corollary to our hybrid RC scheme.
This benchmark achieves a 1.4% test error on the MNIST
task.

A. Parameter Optimization

Our model has several adjustable parameters that need to be
optimized, both physical and digital. We explore these primar-
ily through experiments, running scaled-down experiments of
1000 virtual nodes per image to measure performance.

1) Convolutional Preprocessing: Within the convolutional
layers used to generate input feature maps, there are several
parameters we can adjust: the number of layers, the width
of the layers, convolutional kernel size, and the inclusion of
pooling layers. Unlike in trained CNN models, performance
improvements from adding more untrained convolutional lay-
ers level off relatively quickly; for this task, we use only two
layers. The width of the layers, representing the number of
convolutional kernels included within the layer, similarly has
a small effect on performance once a small threshold has been
passed. In our experiments, we use layers of width 32 and 64,
respectively. We use a 3×3 convolutional kernel within each of
these layers, consistent with many modern CNN models [33].
Additionally, we include a third 2×2 max-pooling layer as part
of this preprocessing scheme, as we found it to significantly
increase test accuracy while further reducing dimensions and
processing time. Processing images through these three layers
produces a flattened vector of dimension 9216 x 1.

2) Random Matrix Masking: The random mask matrix,
used to generate the input nodes to the reservoir computer
from the preprocessed feature maps, has several adjustable
parameters associated with it. The first of these, the matrix
density, denotes the number of non-zero elements in the
matrix, representing the fraction of matrix elements with non-
zero values. For this problem, a low matrix density of 0.01
is found to achieve optimal experimental performance. The

other parameter associated with the mask matrix is the random
distribution from which the non-zero elements are drawn from.
From experimentation, we used a uniform random distribution
with range (−1, 1). After the matrix is initialized, we perform
a row-wise normalization to limit the range of generated input
nodes.

3) Experimental Parameters: In addition to the param-
eters associated with preprocessing, there are also several
experimental parameters to be optimized in our optoelectronic
experimental testbed. First, we consider the delay-line length
and the low pass filter constant. Because the MNIST task does
not inherently require memory, we found that experimental
performance has a fairly weak correlation with the delay-line
length, with test accuracy obtained using a 100 meter and
2 meter delay being equivalent, as long as laser power is
increased to compensate for loss in the longer delay line. For
convenience, we use the short 2 meter delay in the rest of our
experiments. To validate the idea of using an RC (i.e. memory-
dependent) approach for a static image recognition task, we
also tried eliminating the system memory by simply removing
the feedback addition. In this case, we found a sizable decrease
in test accuracy of 0.7% from experiments in which memory
is included. Thus, while the inclusion of a memory mechanism
adds a small boost to performance from the introduction of a
further (random) degree of freedom, storing a larger number
of virtual nodes in a long delay-line has a minimal effect.
This result is as we expect, since individual virtual nodes have
little spacial relation between each other due to the random
masking process, meaning a large memory bank does not offer
a more meaningful global view of the image. We use a low
pass filter with a time constant approximately equal to one
times the virtual node spacing; longer time constants result in
degrading performance as a result of too much averaging [18].

Also within our experiment are several parameters used to
control the operating point of the dynamical system itself (i.e.
whether the system is in an oscillatory regime or not). In
the OEO model, these are typically captured by the single-
loop gain, i.e. the small-signal gain of a single circulation
through the entire system, and the modulator bias point [29].
The former can be most directly controlled through the power
of the laser source, whereas the latter is simply the DC
bias voltage of the Mach-Zehnder Modulator, in terms of
Vπ , with 1Vπ corresponding to the minimum transmission
of the modulator. We performed an experimental parameter
sweep of these two quantities, illustrated in Fig. 5. We find
that test accuracy is generally stable, except in the quadrant
corresponding to high laser power and low modulator bias.
This part of the parameter space is congruous with the OEO’s
oscillation regime, illustrating the deleterious effect of the
induced oscillation on the system’s performance. Thus, for
this task, we can choose the system’s operating point fairly
liberally while maintaining fairly consistent performance. For
the experiments in this paper, we used a modulator bias of 1Vπ
and a laser power of 3.5 mW, while driving the modulator at
0.4V.
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Fig. 5. Plot of experimental parameter sweep as a function of laser power
and modulator bias. A modulator bias of 0 corresponds to the peak of the
sinusoidal transfer function.

B. Untrained Hybrid RC

First, we discuss experimental results using untrained con-
volutional layers for our hybrid preprocessing scheme. The
main appeal of this approach is the minimization of processing
time; by using completely untrained convolutional layers,
the preprocessing stage is reduced to the time required to
randomly initialize the weights within the layers, followed by
performing a single forward pass. In this scheme, we randomly
initialize the weights using TensorFlow’s glorot_uniform
initializer, which draws weights from a random uniform
distribution whose interval is inversely proportional to the
sum of the input and output dimensions of the layer. We
performed simulations and experiments ranging in size from
1000 virtual nodes per image to 15000 virtual nodes per
image, with results shown in Fig. 6. In simulation, we achieved
test errors of 3.16% and 1.2%, respectively, at 1000 and
15000 virtual nodes [25], whereas we achieved 3.6% and
1.6% for for the same points in experiments. As benchmarks,
we also plot performance of a standard RC scheme (i.e. no
convolutional preprocessing) and a well-known CNN model,
LeNet-5 . For all reservoir sizes, our hybrid scheme, even with
random convolutions, improves test accuracy by more than a
percentage point in comparison to the standard implementation
in both experiment and theory. At 15000 virtual nodes, we find
our hybrid RC scheme comes close to the 0.95% test accuracy
achieved using LeNet-5 [24]. Additionally, simulations of our
scheme outperform the ELM baseline, indicating the added
benefit of including RC memory.

C. Trained Hybrid RC

As an alternative approach, we also consider ways of imple-
menting our hybrid RC scheme using trained weights in the
convolutional layers, rather than simply randomly initializing
them. The most straightforward way of achieving this is to
fully train a CNN using backpropagation, after which we
take the trained convolutional layer weights for use in our

Fig. 6. Test error on MNIST task plotted as a function of virtual nodes for
standard RC, hybrid untrained RC, and hybrid trained RC, both experiment
and simulation.

preprocessing procedure. For this purpose, we use a 6-layer
CNN, denoted MNIST convnet in Table I, containing the
aforementioned 2 convolutional layers and one max pooling
layer, followed by two fully-connected layers with 128 and
10 neurons, respectively for classification [34]. In total, this
CNN model contains 1.2 million trainable parameters, with
around 18000 of them contained within the two convolutional
layers. Training this model to convergence achieves around
1% test error, similar to that of LeNet-5. Using the two trained
convolutional layers and max pooling layer for preprocessing,
we replicate the experiments in Sec. III-B, also plotted within
Fig 6. In simulation, we achieve 2% and 0.8% test accuracy at
1000 and 15000 virtual nodes respectively, whereas we achieve
2.7% and 1.1% test accuracy in experiments. Particularly for
smaller numbers of virtual nodes, pre-training the convolu-
tional weights significantly improves test accuracy, as seen
in the large divergence between the red and blue curves in
Fig 6. We also note that at 15000 virtual nodes, our hybrid
scheme in simulation actually outperforms the CNN model
from which we have derived our trained weights from, as well
as outperforming the LeNet-5 benchmark. Experiments nearly
match these results, with test accuracy virtually indistinguish-
able from that of a CNN.

D. Experimental Comparison

In both the trained and untrained hybrid RC implementation,
we are able to achieve test accuracy nearly equal to that of
state-of-the-art CNN models for the MNIST task. Addition-
ally, our experimental optoelectronic implementation offers
further benefits compared to most digital machine learning
algorithms. Most salient of these is the potential for significant
increases in processing speed. The total processing time for
our untrained hybrid RC implementation can be broken down
into four parts: the convolutional preprocessing, the mask
matrix multiplication, the reservoir circulation, and the final
linear regression. Even for large reservoirs of 15000 nodes
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TABLE I
COMPARISON OF HYBRID RC APPROACH WITH VARIOUS OTHER MACHINE

LEARNING METHODS

Method Test Error Training Time*
Le-Net 5 CNN [24] 0.95% 1
MNIST Convnet 1.0% 1
Hybrid RC Untrained (Simulation) 1.2% 15
Hybrid RC Untrained (Experiment) 1.6% 0.1
Hybrid RC Trained (Simulation) 0.8% 15
Hybrid RC Trained (Experiment) 1.1% 1.1
Standard RC [25] 2.3% 0.1
ELM 1.4% 0.25
Linear Classifier [24] 7.6% 0.01

*Normalized to LeNet-5 CNN case

or more, the theoretical minimum processing time through
the reservoir computer is quite small, requiring only a few
seconds using a 125 MHz FPGA clock. To provide an estimate
of speed increase, we compare the processing time of these
four steps using our laptop’s CPU, versus fully training a
LeNet-5 network to convergence on the same CPU. Comparing
these, our hybrid scheme can offer a potential 10× increase
in processing speed compared to the training of the CNN,
with the processing speed bottleneck arising from the large
matrix multiplication required to produced the masked inputs.
The full breakdown of our calculated hybrid RC processing
time is as follows: 15% is spent performing convolutional
prepocessing, 55% is spent performing the random mask
matrix multiplication, 10% is spent circulating the virtual
nodes through the reservoir, and 20% is spent running the
ridge regression optimization. In total, the CNN training time
is 10 minutes, whereas our hybrid RC training routine can be
condensed down into as short as approximately one minute.

The trained hybrid RC scheme does not offer this same
speed advantage, given that it requires the training of a CNN
to select the desired weights. Thus, the trade-off between
these two approaches is between a very fast solution with
slightly worse performance, versus a slower solution, but with
performance even surpassing many state-of-the-art algorithms.
These results comparing processing speed and performance are
summarized in Table I. A potential middle ground exists in the
leveraging of transfer learning, in which convolutional layer
weights are taken from an already on-hand CNN model trained
for a different task, from which some feature extraction infor-
mation is still preserved [35]. We leave this for exploration in
future work.

IV. CONCLUSION

In this paper, we expound upon our previously introduced
hybrid reservoir computing scheme. This approach utilizes a
combination of preprocessing through convolutional layers and
a standard delay-based optoelectronic reservoir computer im-
plementation to adapt RC to tackle tasks within the computer
vision domain. We have built the first experimental demonstra-
tion of this system, based on an OEO-inspired implemnetation,
and have to date performed experiments ranging in size
from 1000 to 15000 virtual nodes per image on the MNIST
handwritten digit classification task. Within this approach,
we consider two ways of initializing the convolutional layers

used in our preprocessing step: in the first, we randomly
initialize the weights, and in the second, we select weights
from a CNN trained through backpropagation. Experimental
results have shown impressive performance using both of these
methods; the first sacrifices a small amount of performance
for processing speeds up to 10× faster than digital solutions,
whereas the second requires more time for training, but can
outperform even state-of-the-art CNN models. Our experimen-
tal demonstration, using a maximum of 15000 virtual nodes,
achieves a test error of 1.6% using untrained convolutions, and
a test error of 1.1% using trained convolutions, compared to
the 0.95% test error of the LeNet-5 CNN. With the promising
results obtained using our system, further scaling the system
to tackle more challenging image datasets, or tasks with more
explicit temporal dependence, such as video classification,
present interesting future directions for this line of work.
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