
Cassie Learning Dodging Skills: A Hierarchical

Reinforcement Learning Based Approach

Jesus Navarro
Koushil Sreenath, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-254

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-254.html

December 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research work is funded by the National Science Foundation Graduate
Research Fellowship Program. Much of the work of this project was done in
collaboration with Zhongyu Li. Additionally, I would like to thank my
research advisor Prof. K. Sreenath for his guidance and mentorship.

CASSIE LEARNING DODGING SKILLS: A
HIERARCHICAL REINFORCEMENT LEARNING BASED

APPROACH

Jesus Navarro

ABSTRACT

Bipedal locomotion presents a challenging set of control tasks that can be de-
composed as (1) primitive and (2) task-specific high-level tasks. There exists a
diverse set of data-driven and model-based controller optimization methods that
enable legged robots to perform well on primitive (low-level) tasks such as walk-
ing, standing, and jumping. Learning high-level legged locomotion tasks is gen-
erally modeled as a two-layer optimization problem with a high-level and low-
level control policy. We propose a similar and simple framework that uses Deep
Reinforcement Learning (RL) to learn a high-level task given a fixed and high-
performing low-level policy. State-of-the-art architectures are developed as end-
to-end frameworks where both the parameters of low-level and high-level policies
are optimized jointly during training. Our method decouples the learning proce-
dure of the high and low-level tasks as disjoint optimization problems, and uses a
curriculum learning based approach to optimize the high-level task. We demon-
strate the learning framework by teaching Cassie, a bipedal robot, to dodge a
rolling ball using a jumping and standing primitive controller.

1 INTRODUCTION

Primitive locomotion skills such as jumping, walking, and running are essential skills required for
human-sized bipedal robots to interact with the real world. Data-driven approaches, such as evolu-
tion strategies and reinforcement learning, enable us to develop task-specific policies that perform
well in a simulated environment. Methods such as Domain Randomization [1], enable the transfer
of the controllers from their simulated environment to the real world while remaining robust and
high-performing. Although traditional model-based approaches for humanoid locomotion also pro-
vide feasible and robust controllers, they are often highly constrained, overly-simplified, and require
a high-level of parameter tuning [2; 3; 4].

While model-free approaches provide several advantages over model-based controllers, modern
frameworks such as Deep Reinforcement Learning (RL) face many pitfalls and disadvantages. Deep
Reinforcement Learning algorithms generally use neural networks to model the controller thereby
introducing a large number of nested parameters into the system and usually require a lot of data and
training. Augmenting the input or action space of the system may be necessary to learn in different
environments, however, it requires either restarting the training process or applying some sort of
transfer learning and fine tuning which may lead to poor performance. Due to this characteristic of
neural networks, using a single policy for learning a hierarchical set of tasks is challenging. Bipedal
robotic systems fall in this category where many tasks rely on low-level skills such as walking,
jumping, or standing.

To address this problem Hierarchical Reinforcement Learning (HRL) makes use of multiple policy
controllers to achieve learning high-level tasks but are typically developed as end-to-end frame-
works where both low-level and high-level policies are jointly trained. This paper presents an HRL-
inspired training framework that uses a stationary pre-trained low-level policy to learn high-level
tasks. Specifically, we train a high-level policy to enable a bipedal robot to learn the high-level
task of dodging a rolling ball by deciding between jumping and standing primitive skills. Unlike
state-of-the-art HRL methods, our approach mitigates jointly training two policies.

1

2 RELATED WORK

Hierarchical Reinforcement Learning (HRL) [5; 6; 7; 8] introduced the problem of learning high
level and low-level tasks by decomposing the Markov Decision Process (MDP) into smaller sub-
problems. More recently, [9] proposed a general two-layered hierarchical architecture where the
low-level policies specialize sub-goals discovered and defined by the high-level policies. Hierarchi-
cal inspired approaches have demonstrated locomotion of a quadruped robot [10; 11] by representing
the behavior of a complex robotic machine as a set of tasks formulated as least squares problems
with a variety of priorities for motion, torque, and force optimization. An end-to-end Hierarchical
control framework is proposed by [12] for quadruped locomotion over rough terrain. HRL is applied
to legged locomotion in [13] to address challenging tasks that require a diverse set of primitive skills.
The proposed HRL frameworks decompose the complex quadruped legged locomotion task into a
set of high-level and low-level tasks, which are optimized using low-level and high-level policies.

Curriculum Learning [14; 15] (CL) is another method used to learn complex tasks by gradually
increasing the complexity of the learning task throughout training. CL has demonstrated improve-
ments across several different applications such as manipulation tasks, navigation, planning, and
bipedal locomotion [16; 17; 18; 17; 19]. Early applications of CL for robotics manipulation [20]
showed that gradually increasing the difficulty of tasks throughout training improved learning effi-
ciency and overall performance. Similarly, [21] introduces a skill-discovery approach in continuous
domains by constructing a chain of tasks that lead to end-of-task reward.

Recently, [22; 23] trained a set of walking-gait policies using a set of reference motions with dif-
ferent walking velocities and used policy distillation to construct a single policy capable of tracking
velocity commands. Later, [16] introduced a tailored CL method that increases the learning diffi-
culty using different target velocities with a single control policy.

Although CL and HRL methods have been shown to improve the learning efficiency and perfor-
mance of tasks that make use of primitive skills, their implementation embed knowledge of the final
desired behavior (end task). While knowledge of the end task is usually known, learning a new set
of end tasks may require retraining from scratch.

2.1 CONTRIBUTIONS

We propose a framework that trains a high-level policy network using reinforcement learning to
implicitly learn high-level skills using a high-performing primitive policy for the low-level task. We
apply our framework to teach a bipedal robot, Cassie, dodging skills. More specifically, we learn a
high-level policy πH that optimally selects which primitive skills to execute via the low-level policy
πL to avoid colliding with a rolling ball using a simple reward structure.

3 PRELIMINARIES

We introduced the problem of enabling Cassie to learn the high-level task of dodging a rolling ball
using primitive skills and discussed related work on Hierarchical Reinforcement Learning and Cur-
riculum Learning. In this section, we will outline our approach by first introducing the Cassie sim-
ulation environment. We will then present Reinforcement Learning preliminaries and the Proximal
Policy Optimization algorithm used to solve the RL problem.

3.1 CASSIE SIMULATOR

Cassie is a high-fidelity bipedal robot developed by Agility Robotics with 20 degrees of freedom
and 10 actuators. It is an underactuated robotic system as it contains unactuated spring joints and
several other unactuated degrees of freedom. Our methods and experiments are conducted using a
simulated environment of Cassie in Mujoco [24].

We use a similar design as [25] to model the RL environment, where the MuJoCo model of Cassie
represents the agent that the environment interacts with. The action space at ∈ R10 specifies
the 10 desired motor positions which are used as inputs into another low-level PD controller
implemented in MuJoCo. Given a reference trajectory, st specifies the state input at time t of

2

the policy, which is decomposed as a sequence of observable robot states qt ∈ R20, defined as,
st = [qt qt+1 qt+3 qt+7]. We provide future robot states to help the policy infer system
dynamics.

3.2 REINFORCEMENT LEARNING

Reinforcement learning is generally modeled as a Markov Decision Process (MDP) defined as a
tuple {S,A, p, γ,R} representing the state space, action space, dynamic transition function, discount
factor, and reward function of the system. Let us define a policy πθ with parameters θ such that
π : S → A where S ∈ Rn and A ∈ Rk. The reward function R : S × A → R returns a scalar
defined as the reward of the agent for taking an action at from state st at some time t in a specified
environment.

The goal of reinforcement learning is to find an optimal policy π such that it maximizes the expected
cumulative reward of an agent interacting with its environment, modeled by the MDP. Let us refer
to the general objective function as J(θ), thus the RL framework seeks to maximize J(θ):

max
θ
J(θ) = Eτ∼pθ(τ)

[T∑
t=0

γtrt
]

(1)

where πθ(τ) represents the trajectory distribution imposed by the parameters θ and policy πθ. The
parameter γ < 1 is the discount factor and represents the time-value of the reward. There exists a set
of novel off-policy and on-policy gradient algorithms for continuous Deep RL tasks [26; 27; 28; 29]
that perform well for robotic applications. We make use of the Proximal Policy Optimization (PPO)
algorithm [30] in our training framework.

3.2.1 PROXIMAL POLICY OPTIMIZATION

PPO is a model-free on-policy optimization algorithm that uses a stochastic policy whose learned
distribution parameters are used to sample actions. Specifically, πθ(at|st) is modeled as a Gaus-
sian distribution where the mean and variance of each action are learned. The stochasticity of the
policy induces noise into the sampled action and thus results in efficient exploration of the agent
throughout training. PPO has been applied to several continuous robotic tasks, including bipedal
locomotion [31; 10]. One of the main advantages of PPO compared to other state-of-the-art Deep
RL algorithms is relative robustness to hyper-parameter initialization and minimal fine-tuning. The
objective function is defined as the following,

LCLIP(θ) = Êt =
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(2)

where Ât is a sample based estimator of the advantage function used in the family of Actor-Critic
RL algorithms, rt(θ) =

πθ(at|st)
πθold (at|st)

denotes the probability ratio between the new and old policy at
time t. The probability ratio rt(θ) measures the deviation of the new policy relative to the state of
the previous policy. The clipping operation prevents the algorithm from taking a gradient step that
will deviate the policy too far from the previous policy using rt(θ).

4 METHODS

In the following section, we will detail our proposed training framework and define the high-level
action space, input space, and reward formulation of the high-level policy. We also discuss the role
of the low-level control policy and the different training setups.

4.1 TRAINING FRAMEWORK

We define the pre-trained low-level policy as πL with fixed parameters θL and the high-level policy
network as πH with learnable parameters θH . Similarly the action output of the low-level and

3

Figure 1: Diagram of our proposed training framework where the low-level policy πL remains
constant throughout training and outputs αd, the desired joint angle positions of Cassie. The high
level policy πH outputs two sets of actions aH and aL where aL is fed into the low-level policy and
aH is the selected jumping distance threshold. Note that aL is considered an input into the low-level
policy system and not an explicit component of the input observation oL. The policy πH receives a
reward and new observation oH from the environment.

high-level policy are denoted as aL and aH , respectively. We denote the observations and rewards
corresponding to the high-level and low-level policy using the subscripts L and H , respectively. At
each time t, we sample an action aH ∼ πH(aH |sH , sL, θH) . Similarly, at each time t, we sample
aL ∼ πL(aL|sL) for the low-level policy. For notation simplicity, the time subscript t is neglected
and assumed. The action space of πH is defined as aH = [aH1:3 aH4] and is composed of two
parts: (1) action values for the high-level task aH4 , and (2) action values used as inputs for the low-
level policy aH1:3 . We apply each action in the environment resulting in new states at time t+1, s′L
and s′H and a reward scalar rH for the high-level policy πH . A diagram of our training framework
is shown in Figure 1.

4.1.1 HIGH-LEVEL ACTION SPACE

The first three values of action aH ∈ R4 specify inputs to the low-level controller which include:
(1) reference trajectory selection aref , (2) desired x velocity, and (3) desired y velocity. Note that
for the high-level task of dodging a rolling ball, the reference trajectory selection is composed of
either standing or jumping reference motion, thus we can represent the reference selection action
value as boolean values using a threshold value of 0. The last action value aH4, represents the
relative distance between the ball and Cassie at which the high-level policy should select the jumping
reference motion. For clarity, we denote aH4 as adist.

4.1.2 HIGH-LEVEL STATE SPACE

The state space sH is composed of the global position of the ball pb, Cassie’s observable states
at time t, qt, and a history of reference trajectory selections, ball position, and distance thresholds
representing one second in simulation time. The frequency of the controller is 30Hz, so the size of
each of the history lists is of length 10, thus the values are sampled at every third simulation step.

4.1.3 HIGH-LEVEL REWARD FUNCTION

We formulate a very simple reward such that it outputs a 0 or 1 at each time step. We define the
relative global Euclidean distance between the ball at time t as drel = ||pb − qb[0:3] ||

2
2. The selected

jumping distance, or distance threshold, and reference trajectory selection of the high-level policy
are denoted as adist and aref . The reward function is computed as follows:

Rh(t+ 1) =

0 dt ≤ adist, aref ≤ 0
1 dt ≤ adist, aref ≥ 0
0 dt ≥ adist, aref ≥ 0
1 dt ≥ adist, aref ≤ 0

4

The reward function defines the goal of the policy πH , which is to select the standing reference
trajectory when the relative distance of the ball and Cassie, drel is greater than the selected jumping
distance threshold adist and select the jumping reference motion when the ball is within the selected
distance threshold. We add an additional terminal condition when there is contact between Cassie
and the rolling ball. The defined reward function and terminal condition allow the high-level policy
to implicitly learn to accomplish the high-level task. The agent’s incentive high-level policy will
be encouraged to select optimal jumping distance thresholds so that the agent avoids the terminal
condition and accumulates a higher episode reward.

We show in simulation that this simple reward formulation enables Cassie to learn dodging skills,
but we determine undesired and unstable action output of adist while Cassie is in the jumping phase,
which we discuss in the Conclusion section of the report.

4.2 LOW-LEVEL CONTROLLER POLICY

The lower-level control policy used in this paper was developed following a model-free RL frame-
work approach [32] and is trained with Domain Randomization [1] to improve the robustness of the
policy to enable sim2real transfer. The approach uses jumping gait reference motion trajectory de-
veloped using the Hybrid-Zero-Dynamics approach and is used to teach the RL controller to output
the desired motor positions to track the reference trajectory in simulation.

The jumping reference trajectory was modified to encourage Cassie to learn how to jump bilaterally
at different velocities and was trained by randomly sampling the desired bilateral velocities. In
parallel, the policy learned a nominal standing reference trajectory which enabled Cassie to perform
multiple jumps with varying standing times in between jumps.

The parameters of the low-level control policy are not updated throughout our training framework
and are run in parallel with the high-level policy. Note that the low-level policy entails an additional
state observation of its own used to sample aL ∼ πL(aL|sL). Our training framework specifies
the inputs to the low-level policy as desired parameters that are implicitly included in the state
observation. In other words, the inputs to the low-level policy defined by our training framework
aH0:3

are not explicitly fed into the state observation of the lower-level control policy but instead are
set as defined parameters of the agent.

4.3 TRAINING

In this section, we describe in detail different experimental setups conducted. We trained three
different models in simulation:

1. Random ball x position, constant vx
2. Random ball x position, random vx

3. Random ball x and y position, random velocity magnitude

We used Open AI’s Baseline Proximal Policy Optimization algorithm implementation, an on-policy
RL algorithm that performs well for continuous tasks, to train our high-level policy. Both the high-
level and low-level policies are running at 30Hz in simulation. The maximum number of steps per
episode is set to 1000 simulation steps and defines our maximum episode reward to 1000.

For (1) we set the the initial ball position p0 = [px, 0, 0] where px ∼ U [3.5, 10] (meters) and fix the
initial ball velocity, v0 = [1.75, 0, 0]. For case (2), the ball position is sampled randomly in the same
way as (1), but randomly sample vx ∼ U [1.75, 10] (meters per second) and set v0 = [vx, 0, 0].

Lastly, for setup (3) at the beginning of each training episode, the initial radial ball position and
velocity are uniformly sampled, r0 ∼ U [3.5, 10] and ||v0||22 ∼ U [1.75, r0]. The initial velocity
magnitude of the ball has an upper bound defined as the initial radial position of the ball to avoid
infeasible initial conditions such as having a very high-velocity magnitude and small initial radial
positions which will likely lead to a collision. We also sample φ ∼ U [0, 2π] to fully define the
initial position of the ball. The position is then transformed into Euclidean coordinates to set the
position in the simulator.

5

Figure 2: High-level policy action selection plots at each simulation step for the reference selection
(jumping flag), distance threshold, and the relative position of the ball and Cassie.

4.3.1 JUMPING DISTANCE THRESHOLD

We impose a constraint on the action value adist, which specifies the jumping distance threshold
by scaling the output by 10 meters. Therefore the range of possible distance thresholds is between
0 and 10 meters. We clip the lower limit from 0 meters to 1 meter since small jumping distance
thresholds are not feasible. Table 1 displays the range and definitions of the randomized parameters
during the start of each training episode.

4.3.2 SELECTING REFERENCE MOTION OF LOW-LEVEL POLICY

Since the high-level and low-level policies are running in parallel, we face the issue of the high-level
policy selecting the standing reference shortly after initializing the jumping phase early in training.
Since its physically infeasible to switch between jumping and standing gaits at high frequencies, the
jumping command is latched onto the lower-level policy until it has terminated jumping. However,
the reward signal considers the raw output and is used to optimize the high-level policy to select the
correct desired reference trajectory at each simulation step.

5 EXPERIMENT RESULTS

In this section we illustrate the results of the training setups discussed in the Methods section. We
include snapshot sequences of Cassie dodging a rolling ball and include action behavior plots for a
set of initial conditions. We vary the initial positions and velocity magnitude of the rolling ball.

5.1 NON-RANDOM VELOCITY MODEL

Figure 3 demonstrates a snapshot sequence of simulations using our trained high-level policy net-
work with no randomization of the initial ball velocity. Note that in this training setup, we also fix
the desired y velocity of Cassie to be 0 throughout training and testing. The left and right snapshot
of Fig. 3 illustrates the high-level policy outputting the standing reference position. Conversely, the
3 inner snapshots show instances of our high-level policy selecting the jumping reference trajectory
and successfully jumping over the ball.

We run an additional simulation test for 300 total sim steps and plot the reference trajectory selection
aref , jumping distance threshold adist, and distance between the ball and Cassie drel which are
shown in Figure 2. Given the reward function description we define the desired output of aref as,

aref =

{
0 adist ≤ drel
1 adist ≥ drel (3)

The output aref should be equal to 0 when adist < drel and 1 when adist ≥ drel. As shown from
Fig. 2, the output aref of our high-level policy behaves as expected. Note the interesting behavior
of the output adist, such that the initial intersection of adist and aref , there is a steep increase in

6

adist which also contains a higher variance. Also note that although we expect aref = 0 when
adist < drel, which occurs after the second intersection of adist and aref , aref = 1 for several time
steps. This occurs due to Cassie still being in the jumping phase.

5.2 RANDOM BALL VELOCITY AND X-POSITION MODEL

Figure 4: adist, athresh, and drel plots for models trained with initial ball conditions: 1.5 m/s 10m
(top left), 1.5 m/s 5m (top right), 5 m/s 5m (bottom left), and 9.5 m/s 9m (bottom right)

The high-level policy is trained using random initialization of the position and velocity of the ball in
x-direction (in front of Cassie). Specifically, we sample the radial distance (in meters) r0 ∼ U [3, 10],
φ = 0, and ||v||22 ∼ U [1.75, 10.0]. We ran a set of different tests to demonstrate the high-level’s
ability to find the optimal parameter adist such that the high-level task is accomplished by varying
the ball and velocity initialization. Figure 4 shows similar value plots of aref , adist, and drel of the
four tests described in Table 4.

As shown in Fig 4. and listed in Table 1, the policy learns to output larger values of adist for high
ball velocities, resulting in earlier jumping times and thus avoiding collisions. Conversely, the high-

Test# r0 ||v||22 adist
Test 1 10 m 1.5 m/s 1.9m
Test 2 3 m 1.5m/s 1.9m
Test 3 5 m 5.0 m/s 2.8m
Test 4 9.5 m 9.5 m/s 6.0m

Table 1: Initial radial position and velocity magnitudes of the ball for different test cases for the
model trained with random x and y positions and random velocity magnitudes.

7

Figure 3: A snapshot sequence of Cassie successfully hopping over the ball using setup (1) where the
initial ball position and velocity are constant in the x direction throughout training. The high-level
policy (left) is selecting the standing reference trajectory chooses the jumping reference trajectory
using the learned threshold (second image from left). After completing the jump, the high-policy
selects the standing reference trajectory for the remainder of the rollout.

level policy tends to output smaller values of adist when the magnitude velocity of the ball is small.
These values are depicted in the plots by the leftmost intersection of the adist and drel plot curves
and explicitly shown in Table 1.

A notable difference between the random and non-random trained high-level policies is the behavior
of adist. After the initial time that drel ≤ adist there is significantly larger variance in the behavior
of adist for the randomized trained policy. The larger variance causes a fluctuation in adist, and
unlike the non-random policy, adist fails to lie above drel throughout the jumping phase.

5.3 RANDOM VELOCITY, x, AND y POSITIONS

To demonstrate the learned behavior of the fully randomized training setup, Figure 4 shows a set
of snapshot sequence images of the simulated rollout episodes with different initial ball positions.
Specifically, the initial radial distance and velocity magnitude of the ball are randomized for evalua-
tion, and θ is varied using intervals of π4 . Note that the velocity vector is fixed to be in the direction
of Cassie, and in this training setup, the velocity parameters vx and vy for the low level policy are
learned as opposed to the previous setups where vy was set to zero.

As depicted by Figure 4, the high-level policy accomplishes the task of dodging the ball. Interest-
ingly, the policy learns to dodge the ball by jumping out of its trajectory, as opposed to jumping
directly over it as in previous training setups.

5.4 DISCUSSION

The high-level policy was capable of learning inputs to the low-level policy such that Cassie ac-
complishes the high-level task of dodging the ball. Our initial training setups (1 and 2), fixed
vy = 0 which forced our policy to learn inputs that resulted in Cassie hopping directly over the
ball. The policy was also able to learn the optimal distance threshold to accomplish this task. Un-
fortunately, during the jumping phase, we encountered unstable behavior of the policy which would
cause catastrophic issues if the jumping flag was not ’latched’ onto the low-level policy during the
entire jumping phase.

Conversely, training the model with randomized initial x and y ball position, the policy learned a
different maneuver to successfully dodge the ball. While it is not an unexpected behavior given
that it is easier to dodge something by moving out of the way as opposed to jumping over it, it is
surprising that the high-level policy implicitly learned the constraints of the low-level policy (i.e.
maximum feet position during jumping) and found a more feasible optimal point.

8

Figure 4: Snapshot sequences of Cassie dodging a rolling ball trained with randomized ball position
and velocity magnitudes. There are a total of 5 snapshot sequences each corresponding to a different
relative direction of the ball and Cassie, θ. We preset θ to 0, π4 ,

π
2 , π,

5π
4 ordered from top to bottom

with random radial distances and velocity magnitudes. In all cases, the policy has learned to dodge
the ball by maneuvering out of the way. Specifically, the high-level policy is generating higher vy
values which manages to successfully dodge the ball.

9

6 CONCLUSIONS AND FUTURE WORK

We used a combination of hierarchical and curriculum reinforcement learning to train a high-level
policy using a fixed low-level policy that enabled Cassie to learn a high-level task that relied on
primitive skills. Specifically, we used this approach to teach Cassie how to dodge a rolling ball by
selecting the optimal reference trajectory and velocity parameters at each point in time. In addition to
reference trajectory selection and desired velocity, the high-level policy learned an optimal distance
at which the jumping trajectory should be selected. This skill was achievable by using a relatively
simple reward function.

An interesting future direction of this work is imposing a set of different geometries and object tra-
jectories into the environment. For example, we could consider a long rolling cylinder which would
require learning a specific jumping direction and embedding the geometry of the object into the
observation space. Another exciting future direction is using advanced adversarial path trajectories
such that the high-level policy learns to continually dodge an object that is trying to collide with it.

6.1 ACKNOWLEDGEMENTS

This research work is funded by the National Science Foundation Graduate Research Fellowship
Program. Much of the work of this project was done in collaboration with Zhongyu Li. Additionally,
I would like to thank my research advisor Prof. K. Sreenath for his guidance and mentorship.

REFERENCES

[1] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomiza-
tion for transferring deep neural networks from simulation to the real world,” 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 23–30, 2017.

[2] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models, feedback control,
and open problems of 3d bipedal robotic walking,” Automatica, vol. 50, no. 8, pp. 1955–1988,
2014.

[3] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five years of its life.” I. J.
Humanoid Robotics, vol. 1, pp. 157–173, 2004.

[4] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based analysis and
control of legged locomotion, part 1: Theory and application to three simple gait models,” The
International Journal of Robotics Research, vol. 31, pp. 1094–1113, 2012.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The MIT
Press, 2018.

[6] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, and C. Boutilier, “Hierarchical solu-
tion of markov decision processes using macro-actions,” in UAI, 1998.

[7] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement learning,”
Discrete Event Dynamic Systems, vol. 13, p. 341–379, 2003.

[8] Z. Li, A. Narayan, and T. Leong, “An efficient approach to model-based hierarchical reinforce-
ment learning,” in AAAI, 2017.

[9] B. Bakker and J. Schmidhuber, “Hierarchical reinforcement learning based on subgoal dis-
covery and subpolicy specialization,” in Proceedings of the 8-th Conference on Intelligent
Autonomous Systems, IAS-8, 2004, pp. 438–445.

[10] W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-energy locomotion,” ACM Trans-
actions on Graphics, vol. 37, no. 4, p. 1–12, 2018.

[11] M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, and R. Siegwart,
“Quadrupedal locomotion using hierarchical operational space control,” Int. J. Rob. Res.,
vol. 33, no. 8, p. 1047–1062, 2014.

10

[12] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learning, planning, and
control for quadruped locomotion over challenging terrain,” I. J. Robotic Res., vol. 30, pp.
236–258, 2011.

[13] D. Jain, A. Iscen, and K. Caluwaerts, “Hierarchical reinforcement learning for quadruped loco-
motion,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 7551–7557, 2019.

[14] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings of
the 26th Annual International Conference on Machine Learning. Association for Computing
Machinery, 2009, p. 41–48.

[15] T. Sanger, “Neural network learning control of robot manipulators using gradually increasing
task difficulty,” IEEE Trans. Robotics Autom., vol. 10, pp. 323–333, 1994.

[16] D. Rodriguez and S. Behnke, “Deepwalk: Omnidirectional bipedal gait by deep reinforce-
ment learning,” 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
3033–3039, 2021.

[17] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Curriculum learning
for reinforcement learning domains: A framework and survey,” J. Mach. Learn. Res., vol. 21,
pp. 181:1–181:50, 2020.

[18] A. Karpathy and M. van de Panne, “Curriculum learning for motor skills,” in Advances in
Artificial Intelligence, L. Kosseim and D. Inkpen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 325–330.

[19] X. B. Peng, G. Berseth, K. Yin, and M. van de Panne, “Deeploco: Dynamic locomotion skills
using hierarchical deep reinforcement learning,” ACM Transactions on Graphics (Proc. SIG-
GRAPH 2017), vol. 36, no. 4, 2017.

[20] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive
survey on transfer learning,” Proceedings of the IEEE, vol. PP, pp. 1–34, 2020.

[21] G. Konidaris and A. Barto, “Skill discovery in continuous reinforcement learning domains
using skill chaining.” vol. Vol. 22, 2009, pp. 1015–1023.

[22] Z. Xie, G. Berseth, P. Clary, J. W. Hurst, and M. van de Panne, “Feedback control for cassie
with deep reinforcement learning,” 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1241–1246, 2018.

[23] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne, “Learning locomotion skills
for cassie: Iterative design and sim-to-real,” in Proc. Conference on Robot Learning (CORL
2019), 2019.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 5026–
5033.

[25] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforce-
ment learning for robust parameterized locomotion control of bipedal robots,” 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 2811–2817, 2021.

[26] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy
gradient algorithms,” in Proceedings of the 31st International Conference on Machine Learn-
ing, ser. Proceedings of Machine Learning Research, E. P. Xing and T. Jebara, Eds., vol. 32,
no. 1. Bejing, China: PMLR, 2014, pp. 387–395.

[27] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Mach. Learn., vol. 8, no. 3–4, p. 229–256, 1992.

11

[28] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in actor-
critic methods,” CoRR, vol. abs/1802.09477, 2018.

[29] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimiza-
tion,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Pro-
ceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France:
PMLR, 2015, pp. 1889–1897.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimiza-
tion algorithms,” ArXiv, vol. abs/1707.06347, 2017.

[31] N. M. O. Heess, T. Dhruva, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, S. M. A. Eslami, M. A. Riedmiller, and D. Silver, “Emergence of locomotion be-
haviours in rich environments,” ArXiv, vol. abs/1707.02286, 2017.

[32] Z. Li, C. Cummings, and K. Sreenath, “Animated cassie: A dynamic relatable robotic charac-
ter,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
3739–3746, 2020.

12

	Introduction
	Related Work
	Contributions

	Preliminaries
	Cassie Simulator
	Reinforcement Learning
	Proximal Policy Optimization

	Methods
	Training Framework
	High-Level Action Space
	High-Level State Space
	High-Level Reward Function

	Low-level Controller Policy
	Training
	Jumping Distance Threshold
	Selecting Reference Motion of Low-Level Policy

	Experiment Results
	Non-Random Velocity Model
	Random Ball Velocity And X-Position Model
	Random velocity, x, and y Positions
	Discussion

	Conclusions and Future Work
	Acknowledgements

