YouVerify: An Intermediate Representation and
Framework for Symbolic Execution

Griffin Prechter

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-261
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-261.html

December 17, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| am extremely grateful for the unwavering support of both my advisors,
Professors

Raluca Ada Popa and Koushik Sen, throughout the 5th Year Masters
program. | reached out before my senior year with no experience in
research, and both were extremely supportive and motivated me to get
involved and to pursue the masters.

Were it not for their support and the opportunity to do the program, | would
have

never been able to grow and pursue my interests in the way that | have. |
would like to thank Jeongseok Son and Rishabh Poddar for their
mentorship while working on ObliCheck, which inspired to me to investigate
symbolic execution for this project. Finally, | would like to thank Kevin
Laeufer for his support and guidance during my work on YouVerify.

YouVerify: An Intermediate Representation and Framework for
Symbolic Execution

by Griffin Prechter

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Rlepe

Professor Raluca Ada Popa
Research Advisor

December 15, 2021

(Date)

K sk sk sk sk ok ok

Heuslilod,

Professor Koushik Sen

Se7)nd Read]\P @2_ [

(Date

YouVerify: An Intermediate Representation and Framework for Symbolic Execution

by

Griffin Christian Prechter

A thesis submitted in partial satisfaction of the
requirements for the degree of
5th Year Masters of Science
in
Electrical Engineering and Computer Science
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Raluca Ada Popa, Co-chair
Professor Koushik Sen, Co-chair

Fall 2021

Abstract
YouVerify: An Intermediate Representation and Framework for Symbolic Execution
by
Griffin Christian Prechter
5th Year Masters of Science in Electrical Engineering and Computer Science
University of California, Berkeley
Professor Raluca Ada Popa, Co-chair

Professor Koushik Sen, Co-chair

Symbolic execution is a popular dynamic program analysis technique in which a program is
executed with symbolic, or variable, inputs in place of concrete ones. During the execution
of a program, multiple paths may be explored due to the presence of symbolic values, pro-
ducing several states. These states are guarded by path constraints, conditions that indicate
what values the symbolic inputs should take on to produce a given state. Symbolic execu-
tion has many applications ranging from testing and bug discovery to program analysis and
verification. Recently, leveraging domain specific knowledge, modified symbolic execution
algorithms have been utilized to solve computer security problems through program analy-
sis. One example, ObliCheck, implements novel symbolic execution techniques to efficiently
verify the obliviousness of algorithms modeled in a subset of JavaScript. In this report, I
identify two key challenges in implementing custom symbolic execution algorithms: First,
features in modern languages are often difficult to support in symbolic execution frameworks
due to the constraints imposed by underlying SMT solvers. Second, it is challenging and time
consuming to modify existing symbolic execution frameworks to rapidly prototype custom
symbolic execution algorithms. To address these challenges, I present YouVerify, an interme-
diate representation (IR) for symbolic execution built as an abstraction layer directly above
the SMT-Lib family of solvers. YouVerify provides a flexible API that separates the state
representation and exploration from the IR language and symbolic interpreter. I provide a
verified implementation of the framework with a default symbolic execution algorithm. I ad-
ditionally provide a prototype implementation of ObliCheck’s symbolic execution algorithm
modifications to demonstrate YouVerify’s effectiveness for prototyping symbolic execution
techniques.

For Kim and my parents, Daniela and Chris.

ii

Contents

Contents ii
List of Figures iv
List of Tables v

1 Introduction 1
1.1 Symbolic Execution oo 1
1.2 Applications of Symbolic Execution 4
1.3 YouVerify: An Intermediate Representation for Symbolic Execution 6

2 Background and Related Works 7
2.1 Symbolic Execution Tools and Solver-Aided Languages 7
2.2 MultiSE [20] 10
2.3 ObliCheck [21, 17] o 11

3 YouVerify 16
3.1 Design 16
3.2 Language Features 18
3.3 Syntax 27
3.4 Implementation Details 29
3.5 Symbolic Execution Algorithm 30
3.6 APL . . . 32

4 Testing and Verification 35
4.1 Overview of Tests 35
4.2 Testing Setup and Process o o 35
4.3 Evaluation on KLEE Test Cases 37
4.4 Framework Coverage Testing 38

5 Prototyping ObliCheck with YouVerify 39
5.1 Implementation Overview 39

5.2 Evaluation 40

6 Conclusion

Bibliography

iii

42

43

iv

List of Figures

\)

O U i W N+~

A sample program with all symbolic inputs. 2
States of program in Figure 1 after executing line 5. 3
States of program in Figure 1 after completion. 3
Value summaries for variables of program in Figure 1 after completion. 12
Main execution loop for YouVerify interpreter. 18
Comprehensive Example from YouVerify test case suite. 25
Comprehensive Example from YouVerify test case suite (continued). 26
YouVerify’s syntax for the set of sorts, S.. 27
YouVerify's syntax.o 28
Operational Semantics for the Default Symbolic Execution Implementation in

YouVerify. 31
Example test case for YouVerify arrays. 36

Expected final program state for test case in Figure 1. 37

List of Tables

1

1
2

Results from running KLEE test cases

ObliCheck Implementation Runtime Speedup

ObliCheck Implementation Accuracy

vi

Acknowledgments

I am extremely grateful for the unwavering support of both my advisors, Professors Raluca
Ada Popa and Koushik Sen, throughout the 5th Year Masters program. I reached out before
my senior year with no experience in research, and both were extremely supportive and
motivated me to get involved and to pursue the masters. Were it not for their support and
the opportunity to do the program, I would have never been able to grow and pursue my
interests in the way that I have. I would like to thank Jeongseok Son and Rishabh Poddar for
their mentorship while working on ObliCheck, which inspired to me to investigate symbolic
execution for this project. I would like to thank Vivian Fang, for her help and guidance
throughout the program. Finally, I would like to thank Kevin Laeufer for his support and
guidance during my work on YouVerify.

Chapter 1

Introduction

Symbolic execution is a popular dynamic program analysis technique where a program is
run with symbolic, or variable, inputs in place of concrete ones. During the execution of
the program, multiple paths may be followed due to the presence of symbolic values, pro-
ducing a number of states. These states are guarded by path constraints, conditions that
indicate what values the symbolic inputs should take on to produce a certain state. Symbolic
execution has a number of applications ranging from testing and verification, to analyzing
programs for validating certain properties Recently, leveraging domain specific knowledge,
modified symbolic execution algorithms have been utilized to efficiently solve computer secu-
rity problems through program analysis. In this paper, we will be particularly investigating
ObliCheck [21], a modified symbolic execution algorithm to verify the obliviousness of code
in JavaScript. In this paper, I identify two key challenges in implementing custom symbolic
execution algorithms: first, language features in modern languages are often difficult to sup-
port in symbolic execution frameworks due to the constraints imposed by underlying SM'T
solvers. Second, it is challenging and time consuming to modify existing symbolic execution
frameworks to rapidly prototype custom symbolic execution algorithms. To address these
challenges, in this paper I present YouVerify, and intermediate representation (IR) for sym-
bolic execution built as an abstraction layer directly above the SMT-Lib family of solvers. I
provide a verified implementation capable of symbolically executing complex programs writ-
ten in the IR. And I additionally provide a prototyped implementation of some techniques
presented in ObliCheck symbolic execution algorithm to demonstrate its effectiveness for
implementing symbolic execution algorithms.

1.1 Symbolic Execution

Symbolic execution [3, 10, 11, 12] is a dynamic program analysis technique, introduced in
the mid '70s, now used in a variety of applications from test generation and verification, to
validating computer security properties of programs [1]. Whereas a normal program is run
concretely, following a single control path through the code based on input values, symbolic

CHAPTER 1. INTRODUCTION 2

execution explores a variety of control paths, producing a richer model of the program’s
overall behavior. This is accomplished by substituting concrete values for symbolic, or
variable, ones. With certain values unbound to a singular concrete value, after encountering
conditional branching statements that depend on that symbolic value, multiple control paths
must be explored to account for the vast domain that the symbolic inputs could occupy. As
a running example of symbolic execution, in Figure 1, there is modified sample program
from the MultiSE [20] paper (a paper we will dive into later in the report):

1: wvar x: INT = $symbolic_input('x')
2: var r: INT = $symbolic_input('r')
3: wvar z: INT = $symbolic_input('z')
4: x =2 *xx

5: 1if x > 100:

6: if z ==

T: r=3

8: if r > 1:

9: z=1r -1

Figure 1: A sample program with all symbolic inputs.

In wanilla dynamic symbolic execution, the program execution begins with only a single
state, where (in our example) all the variables are only their symbolic inputs, and the path
constraint is true. The path constraint of a state in symbolic execution acts as a guard for
that specific state, specifying a condition that must be met in order for the variables to equal
the given values in the state. When the symbolic execution reaches line 4, because x is a
symbolic value, the new value of x becomes the symbolic expression 2 * x. However, the
symbolic execution begins to get particularly interesting when line 5 is reached. As we know,
the value of x is purely a symbolic expression, 2 * x, and thus could take on any integer
multiple of 2. When evaluating the condition of the if statement, the decision of whether or
not to enter the statement is unclear. The original input value of x could possibly be greater
than 50, or it could be less. The essence of symbolic execution is that, because neither path
is infeasible, both must be followed. This conditional statement causes the state to branch
into 2 new states, with updated path constraints.

Previously, the path constraint was trivially true because there was only one initial state.
However, now that the symbolic execution is following two separate paths, variables may
take on values that are exclusive to only a single path. The states after the if statement
is evaluated by the symbolic execution are shown in Figure 2; the program counter (pc)
indicates what line that state will execute next. Values of the form $<name> indicate the
initial symbolic input for that variable name. Note that only the pc differs between the two
states SO refers to the path in which the if statement was entered, and S1 refers to the path

CHAPTER 1. INTRODUCTION 3

if it was not. The symbolic execution continues until ultimately we arrive at the final state
shown in Figure 3. Each state has a path constraint that now guards unique sets of values
for the variables.

SO0: ((2 * $x) > 100): {pc: 6, x: (2 * $x), r: $r, z: $z}
S1: 1((2 * $x) > 100): {pc: 8, x: (2 * $x), r: $r, z: $z}

Figure 2: States of program in Figure 1 after executing line 5.

S0: ((2 * $x) > 100) & ($z==1) & (3 > 1): {pc: 10, x: (2 * $x), r: 3, z: 2}

S1: ((2 * $x) > 100) & ($z==1) & '(3 > 1): {pc: 10, x: (2 * $x), r: 3, z: $z}

S2: ((2 * $x) > 100) & !'($z==1) & ($r > 1): {pc: 8, x: (2 * $x), r: $r, z: $r - 1}
S3: ((2 * $x) > 100) & '($z==1) & '(r > 1): {pc: 8, x: (2 * $x), r: $r, z: $z}

S4: 1((2 * $x) > 100) & ($r > 1): {pc: 10, x: (2 * $x), r: $r, z: $r - 1}

S5: 1((2 * $x) > 100) & !'(3r > 1): {pc: 10, x: (2 * $x), r: $r, z: $z}

Figure 3: States of program in Figure 1 after completion.

SMT Solvers and SMT-Lib [2]

Now that the symbolic execution of the program from Figure 1 is completed, we can see all
6 end states in Figure 3. Observing state S1, we can notice something peculiar about that
state in particular: its path constraint is always false. Because its path constraint is the
conjunction of all conditional statements along its control flow, and one of those conditions
reduces to false, that path is infeasible and will never occur during the execution of the
program. This is because, when $z == 1 and ((2 * $x) > 100) are true, then the variable
r is assigned to 3. Thus, the third conditional on line 8 will always be true for that path.
Through determining the satisfiability of the path constraints we can prune unfeasible paths
from the final state, or during symbolic execution.

The task of determining the satisfiability of these path constraints, and for finding sym-
bolic variable assignments for each path is offloaded to Satisfiability Modulo Theories
(SMT) solvers, which solve the problem of determining whether or not these mathematical
formulas are solvable. An extension of boolean SAT problems, these first-order formulas
can include real numbers, integers, bit vectors, arrays, strings, and more. Each of these
types, or sorts belongs to a theory, which is a set of specialized methods for solving formu-
las containing that sort allowing for more efficient solving than traditional theorem prover
methods.

CHAPTER 1. INTRODUCTION 4

A particularly popular families of SMT Solvers fall under the international SMT-Lib
standard [2], created with the intention that common standards and a set of benchmarks
would facilitate the advancement, evaluation, and comparison of SMT solvers. Thanks to
the thorough description of the various theories provided by SMT-Lib, there are a number of
SMT-Lib compliant solvers that can be used interchangeably when solving formulae written
using the SMT-Lib theories. Two well known solvers in the SMT-Lib family are z3 and cvcA.

We can check the satisfiability of S4, to see that it is satisfiable, and using the z3 SMT
solver we can get a model that makes the formula satisfiable to produce valid inputs for that
state. Plugging the path constraint into z3, we get the model: {$x: 50, $r: 2, $z: 0}.
Plugging these values into the path constraint we can see that it is true. Next, we can
determine the values of the variables at the end of the program by plugging in the symbolic
values and simplifying the expressions: {x: 100, r: 2, z: 1}.

1.2 Applications of Symbolic Execution

A wealth of work has explored the applications of symbolic execution from test generation,
to the verification of program properties, like security requirements. We have discussed a
simple example of dynamic symbolic execution, and we’ve seen a simple example go through
an SMT solver to produce a model assigning the initial symbolic inputs. Now, we will look
into symbolic execution’s applications. Some of the tools mentioned will be explored more
in depth in the Related Works Section.

Test Generation and Bug Discovery

Due to symbolic execution’s, and similar technique’s, ability to explore the space of possible
program execution paths, it is a popular technique for test generation and for discovery
bugs and issues in programs. Works like EXE [6] and KLEE [5] use symbolic execution to
explore a program symbolically in order to discover a program path that leads to an error
or undefined behavior in C programs. In their paper, the authors of KLEE analyze popular
open source libraries and are able to discover a number of serious vulnerabilities. Through
symbolic execution, the authors are able to identify paths that lead to errors and can extract
the necessary model to generate an example input to reproduce the error through concrete
execution.

In the papers CUTE [18] and DART [9], a technique that merges concrete and symbolic
execution known as concolic execution is introduced. With concolic execution, path con-
straints for conditional statements are gathered during a round of concrete execution. With
this, it’s possible to discover new execution paths by modifying the gathered path constraint
and purposefully switching branching directions to generate inputs that will explore other
paths through the program, aiming for maximum code coverage.

http://smtlib.cs.uiowa.edu
https://github.com/Z3Prover/z3
https://cvc4.github.io

CHAPTER 1. INTRODUCTION 3

Program Analysis and Verification

BitBlaze [22] is a project at Berkeley that works on both the design of a Binary Analysis
Platform, and its application to real security problems. The effort works to leverage both
static and dynamic program analysis techniques to analyze real code at the bit level. Through
this the project strives to unveil malicious security exploits and better prevent future security
compromises. Symbolic Execution is one of the methods that is used in BitBlaze’s Binary
Analysis Platform.

The Binary Analysis Platform (BAP) [4] is an infrastructure for performing program
verification and analysis tasks on binary code. BAP exposes all side effects of assembly
instructions in an intermediate language, which enables analyses to be written in a syntax-
directed manner. BAP is capable of generating verification conditions, a boolean predicate
that is true if and only if some property holds over the program’s execution for a given input.
BAP is also packaged with various other analysis and optimizations involving the interme-
diate language. In their report, the authors showcase some of the particular applications
of the tool, such as generating and checking verification conditions to determine if overflow
flags would be set, or if return operations would be overwritten. The authors also perform
automatic exploit generation and malware analysis.

In their followup [14] to their initial paper, the authors of Gillian [8] utilize their multi-
language platform to verify both the JavaScript and C implementations of the AWS En-
cryption SDK message header deserialization module, and were able to identify 5 bugs in
total. This was achieved by first implementing a language-independent specification of the
message header decoder program, followed by a language specific specification for the C
and JavaScript implementations. Then, the necessary code annotations were added to the
implementations.

There have also been efforts to apply symbolic execution particularly to hardware de-
sign and generating or discovering exploits and vulnerabilities in hardware. In A Recursive
Strategy for Symbolic Ezxecution to Find Exploits in Hardware Design [25] the authors de-
fine a strategy for their recursive reasoning with hardware-oriented symbolic execution, and
they also showcase heuristics that they used to allow their strategy to succeed. The authors
demonstrate the effectiveness of the tool, demonstrating that it’s able to identify bugs in a
processor design that even industry level tools like Cadence could not identify. In Kronos
[15], the author produces a MicroTitan SoC that demonstrates a security property known as
output determinism, which can show that a system provides noninterference without requir-
ing an SoC’s state be fully reset, and utilizes techniques like symbolic execution to formally
verify the property.

In another recent work, ObliCheck [21], Son et. al. acknowledge one of symbolic execu-
tion’s weaknesses in the path explosion problem and devise a modified symbolic execution
algorithm leveraging domain specific knowledge. In ObliCheck, symbolic execution (partic-
ularly MultiSE [20]) is used to verify the obliviousness property of a number of algorithms
seen in computer security applications. Obliviousness is a property that a program does
not vary its trace with different private inputs, such that an attacker cannot leverage leaked

CHAPTER 1. INTRODUCTION 6

information to infer the contents of the private data. Understanding that only certain com-
ponents of the program are important when reasoning about the obliviousness of algorithms,
an aggressive merging and selective un-merging technique are utilized to increase efficiency;,
maintaining correct results.

1.3 YouVerify: An Intermediate Representation for
Symbolic Execution

Largely informed by my experience working on ObliCheck [21], in this project report, I
present YouVerify, which is a simple imperative intermediate representation for symbolic
execution, packaged with a framework for rapidly prototyping and testing symbolic execution
algorithms and optimizations. Two crucial lessons learned from working on

YouVerify was designed with a number of core principles in mind. First, YouVerify is
intended to be used as an intermediate representation for target languages to compile to.
The syntax of the language is three-address code, this representation is commonly used
by compilers in order to perform optimizations. Barring some exceptions, in YouVerify
most expressions have at most three atomic expressions in use. Second, YouVerify acts
as an abstraction layer directly above the popular families of SMT Solvers that fall under
the international SMT-Lib standard, rather than targeting a specific higher-level language’s
features, some of which may not be solvable by SMTLib constraint solvers. Third, YouVerify
was designed to be wholly modular and extensible.

Modularity and extensibility are at the core of YouVerify’s implementation and motiva-
tion. In this paper, I present the initial implementation of the YouVerify IR language, and
the YouVerify framework and API. Using the YouVerify framework I implemented vanilla
dynamic symbolic execution, in subsequent sections I utilize the API further to implement
another symbolic execution algorithm, MultiSE which uses a novel representation of state.
Finally, I modify the MultiSE implementation to implement a subset of the enhancements
presented in the ObliCheck paper.

The implementation for YouVerify presented in this paper is available on GitHub: https:
//github.com/gprechter/youverify

https://github.com/gprechter/youverify
https://github.com/gprechter/youverify

Chapter 2

Background and Related Works

Symbolic Execution, and similar techniques, are rich areas of research. There are a variety of
tools used for test generation, different symbolic execution algorithms, and some solver aided
languages or frameworks aiming to democratize access to implementing custom symbolic
execution algorithms. In this section we will cover some these related works and delve
deeper into one particular application of symbolic execution, ObliCheck, a project I worked
on that strongly motivated YouVerify. To give ObliCheck and it’s custom symbolic execution
algorithm more context, I will also delve deeper into MultiSE, an efficient symbolic execution
algorithm with a unique state representation.

2.1 Symbolic Execution Tools and Solver-Aided
Languages

EXE [6] and KLEE [5]

In EXE [6], the authors present an effective bug-finding tool that automatically generates
test inputs that lead to program crashes through the use of an additionally introduced
constraint solver: STP. By running programs symbolically, EXE solves the state’s path
constraint in order to find concrete input values to replicate the crash. The STP solver
is a decision procedure for particularly bitvectors and arrays, and makes strides in array
optimizations, as reasoning about arrays was a main bottleneck for EXE’s efficiency. Of
the many optimizations made to the symbolic execution algorithm for EXE, one of the
main enhancements is the use of constraint caching coupled with constraint independence.
EXE maintains a persistent cache of solver queries, saving time by avoiding repetitive,
and potentially very expensive, solver calls. To make the most of EXE’s caching scheme,
constraints are often divided into smaller, independent subsets when possible allowing for
unnecessary constraints to be discarded, and increasing cache hits especially if a symbolic
expression appears in multiple distinct larger constraints. Additionally, EXE introduces
additional search heuristics for exploring a program’s execution path space through

CHAPTER 2. BACKGROUND AND RELATED WORKS 8

encouraging the exploration of in-frequently visited statements when deciding between
different possible states.

In KLEF [5], a follow up to EXE, the authors build upon their previous work to introduce
a novel symbolic execution tool for test generation and bug detection. KLEE operates on
LLVM [13] byte code, interpreting the virtual instruction set. Most operations like addition,
simply perform their standard operations on symbolic expressions to create new symbolic
expressions. Conditional branches, if both branched states are feasible, clone the state and
explore both paths. For handling load and store operations, KLEE maps memory objects
to their own distinct STP array. When in the position of dereferencing a pointer that could
refer to N objects, KLEE opts to clone the state N times. Like with EXE, KLEE introduces
a variety of query optimizations and state scheduling techniques to increase performance.
Particularly, KLEE performs expression rewriting, which simplifies constraints, along with
constraint set simplification, in which equality constraints cause previous constraints involv-
ing the same variables to be rewritten and simplified.

KLEE also builds upon EXE’s solver query cache by introducing a counter-example
cache, which map constraints to counter examples. For example, a subset of an already
unsatisfiable constraint set, cannot be satisfiable; whereas a superset of a satisfiable one
is satisfiable. Through this optimization, time spent in the STP solver was reduced from
92% of execution time to only 41%. KLEE also makes enhancements to state scheduling by
maintaining a binary tree representing the program path followed by active states. KLEE’s
algorithm prefers states high in the branch tree, ones with less constraints, which favors
breadth rather than depth in path exploration. This also avoids starvation, where some
state space rapidly creates many new states. KLEE also favors states that are close to
uncovered instructions, in an effort to optimize code coverage in particular. KLEE was
able to automatically generate tests that on average covered 90% of code for 160 complex
examples. KLEE was also able to identify 56 serious bugs, 10 of which were in the COREUTILS
library.

DART [9], CUTE [18], and Concolic Execution

Concolic Execution is a strategy often used to generate test inputs and verify code. Concolic
Execution cleverly blends together concrete execution with symbolic execution to build and
understanding

In DART: Dynamic Automated Random Testing [9], the authors implement a tool for
automatically testing software. The tool first automatically statically analyzes a code to
determine its interface, with this model a test driver is automatically generated to randomly
test the code module. Dynamic program analysis is then used to understand how the program
behaves under random inputs in order to direct subsequent executions along different paths.

To gather knowledge about a program being executed, DART executes a program in
a manner called directed search. With initially random inputs, during execution an input
vector for the next round of execution is gathered, consisting of symbolic constraints from

https://github.com/coreutils/coreutils

CHAPTER 2. BACKGROUND AND RELATED WORKS 9

the branching statement conditions. With these predicates, DART can cleverly choose new
paths of the program to execute, with an overall goal of exploring all possible execution paths.
In cases where an SMT solver would be unable to solve a given symbolic expression, DART
instead falls back on the concrete evaluation of such an expression through maintaining both
a concrete memory and a symbolic memory. For interacting with the environment through
external functions, these functions will return a random value of their return type and be
treated as a ‘black-box’.

In CUTE: A Concolic Unit Testing Engine for C [18], the authors expand upon the
ideas and approach in DART, blending together concrete and symbolic execution for test
input generation. CUTE addresses the problem of generating test inputs using concolic
execution where a function contains pointer arguments and takes in a memory graph as its
input. First, CUTFE uses a logical input map, representing the memory graph, to generate a
concrete memory graph, and two symbolic states for the pointer values and primitive values.
The program is run concretely but symbolic constraints are collected during the execution,
by negating a constraint after execution, a new input map can be generated. Unlike DART,
CUTE does not generate random pointer graphs and instead assigns all new pointers to
NULL. CUTE also assumes that there are no external functions.

Rosette [24]

In the Rosette paper, the authors recognize the efficacy of applying solver-aided tools to
domain specific languages in particular due to a variety of factors. Namely, the authors
recognize that domain specific languages (DSLs) are especially popular in modern program-
ming, and that programs written with DSLs are typically smaller, and thus easier to be
optimized using domain specific knowledge and invariants. Rosette, is a host platform for
these solver-aided domain specific languages (SDSLs), as implementing these languages in
a host language that is solver-aided can ease the burden of translating constraints. [24, 23]
Rosette is implemented using Racket, and the authors demonstrate how it can be used to
host SDSLs without the need for constructing a complicated symbolic compiler.

Rosette features a lightweight design, and the decision to implement it in Racket allows
it to utilize a lot of that language’s meta-programming features. Rather than implementing
a compiler to create a solver-aided tool, a SDSL is embedded into Rosette, automatically
inheriting its features. One key design decision for Rosette is the idea of only compiling
a subset of Racket to constraints. This subset is known as the symbolic core. All Rosette
programs can make use of the underlying Racket’s features, as long as those features not
in the symbolic core are evaluated before symbolic compilation. In their paper, the authors
demonstrate Rosette’s effectiveness by implementing a number of solver-aided systems in
their framework in only a few weeks.

CHAPTER 2. BACKGROUND AND RELATED WORKS 10

Gillian [8]

Gillian [8] is an IR-based platform designed to make the development of symbolic-execution
tools more accessible. One of Gillian’s highlights is the intermediate language that the
authors implemented known as GIL, which operates over a parametric memory model of a
given target language. In order to use Gillian to operate symbolic execution over a given
target language, a developer would need to provide a concrete and symbolic memory model
along with a compiler from the target language to GIL preserving its memory semantics.

Gillian’s symbolic execution engine was implemented by the authors in OCaml. Gillian
also distinctly separates the variable store and the memory model of symbolic execution,
automatically handling the variable store and only leaving the concrete and symbolic memory
model for developers to handle. To demonstrate the effectiveness of the platform, the authors
employ Gillian to create symbolic testing tools for JavaScript and C: Gillian-JS and Gillian-
C respectively. In their follow-up paper Gillian Part 2 [14], both of these instantiations
of Gillian are exercised to find vulnerabilities in AWS code. In order to implement a new
compiler and memory model in Gillian, the authors suggest that a developer must have an
in-depth understanding of the language standard, a working knowledge of OCaml, and a
basic understanding of the Gillian interface.

2.2 MultiSE [20]

As mentioned previously, one of the most pernicious challenges with using symbolic execution
is the path explosion problem. With a symbolic execution engine that performs no path
merging, each state is split in two with each conditional expression that relies on symbolic
variables. Because of this, the complexity of symbolic execution exponentially increases
with the number of conditional expressions, like if statements. In MultiSE [20], the authors
propose a novel symbolic execution technique for incrementally merging state without the
need for any auxiliary variables.

State merging is a technique that attempts to mitigate path explosion by merging certain
paths at join points. This is done through the introduction of new symbolic values, referred
to as auxiliary variables. As an example, if there are two states where the a variable takes
on two distinct values, the values can be replaced with an auxiliary variable. Then, in the
path constraint, the old values of the variable can be represented. MultiSE identifies the
most significant of the problems facing the use of auxiliary variables as being their lack to
represent values outside of the domain of a constraint solver, as clearly these variables cannot
be added to the path constraint.

Addressing the weaknesses of merging through auxiliary variables, MultiSE proposes a
novel state representation through value summaries, which are guarded symbolic expressions.
Each value summary contains a variable, and then a mapping of path constraint, value
pairs. As an example, x => {(p, v1), (!p, v2)}is asimple value summary. It represents
two possible states for the variable x. If the predicate p is true, then x would take on

CHAPTER 2. BACKGROUND AND RELATED WORKS 11

the value vi1. Otherwise, x would be equal to v2. Bypassing auxiliary variables MultiSE
is capable of continuing symbolic execution even in the face of values without auxiliary
variables. Simplification, and concrete evaluation is also much simpler without auxiliary
variables, saving expensive time in a solver. With an auxiliary variable, even a variable
with only concrete values cannot be evaluated concretely. Additionally, MultiSE uses a new
algorithm for updating value summaries to perform merging incrementally.

When performing symbolic execution in MultiSE, first, the value summary for the pro-
gram counter is inspected. A predicate-value pair is chosen and then the statement in-
dicated by the value for the program counter is executed symbolically. First, let’s con-
sider the case that the statement is a conditional branch, if r > 1:. MultiSE would
then need to look at all the predicate-value pairs for the variable r. We will assume
that the value summary for r is {(!p5, $r), (p5, 3)}, plugging these into the condi-
tional expression we get: {(!p5, $r > 1), (p5, true)}. Now, the path constraints for
the program counter can be updated. Assuming the current path constraint is p3, Mul-
tiSE updates the path constraint using the predicate-value pairs from the conditional ex-
pression:p6 = p3 | ((!p5 & $r > 1) | (p5 & true)). The pc value summary is then
updated with the new pairs where the pc guarded with p6 is the taken state, and the pc
guarded with !'p6 is the not-taken state.

Other than conditional branching statements, the manner in which an assignment state-
ment changes state differs as well. Again, a program counter predicate-value pair is selected:
(p6, 10), now referring to an assignment statement: z = r - 1. We will again assume
that the value summary for r is {(!p5, $r), (p5, 3)}, plugging these into the expres-
sion we get: {(!'p5, $r - 1), (p5, 2)}. For this assignment expression though, since
the program counter is guarded by p6, the new values of z must also be guarded by p6.
The old values of z are thus guarded by !p6, and the updated value summary becomes:
{('p6, $2), (p6 & 'p5, $r - 1), (p6 & p5, 2)}. Another enhancement of MultiSE is
its use of binary decision diagrams to represent path constraints, which provides an efficient
way of avoiding exploring infeasible paths. A guard’s BDD representation is checked first to
determine if the boolean formula is false, before its satisfiability is checked by a solver.

To demonstrate how MultiSE differs from typical dynamic symbolic execution, we again
refer to the example in Figure 1 in the report’s introduction. The resulting state, in value
summary representation, in shown in Figure 1.

2.3 ObliCheck [21, 17]

Most distributed computer systems leverage encryption as a tool for transmitting sensitive
data over the network. In order to prevent attackers from inspecting the contents of messages,
strong encryption algorithms are used. While the content of this data may be occluded from
an attacker, there are many attributes about the data transfer that they could observe in
the clear. In fact, an attacker can actually infer information about private data by analyzing
network or disk traffic. Such attacks are known as access pattern leakage attacks. A family of

CHAPTER 2. BACKGROUND AND RELATED WORKS 12

{
pc —> {(true, 10)}
x > {(true, 2%$x)}
z > {(p1 | p3, $r - 1), (p2 | p4, $z), (p5, 2)}
r > {('p5, $r), (p5, 2)}
}

pl = 2$x <= 100 & $T > 1

p2 = 2$x <= 100 & $r <= 1
p3 = 28x > 100 & $z !'= 1 & $r > 1
p4d = 2%x > 100 & $z =1 & $r <=1
p3 = 2$x > 100 & $z == 1

Figure 1: Value summaries for variables of program in Figure 1 after completion.

algorithms that are data-oblivious algorithms protect against these kinds of attacks. These
data-oblivious algorithms aim to ensure that publicly available traces are independent of
private inputs in order to close these side channels and prevent against leakage. Oblivious
algorithms are already in use today. Before ObliCheck [21], traditional pen-and-paper proofs
were used to verify the obliviousness of these algorithms. It’s important to note that oblivious
algorithms can be difficult to design and understand, as algorithm developers must balance
efficiency and security. In ObliCheck [21], Son et. al. propose a tool for automatically
verifying the obliviousness of distributed data processing algorithms. The tool provides
an API enabling designers to implement their algorithm, and check its obliviousness. In
addition to determining the obliviousness of an algorithm, ObliCheck can provide a proof of
the algorithm’s obliviousness, or a counter-example. The tool is implemented using Jalangi
[19], a MultiSE symbolic execution framework. The tool is able to achieve up to 260x speed
increases over tradition symbolic execution methods, and does not sacrifice accuracy.

Since later in this paper, we will be implementing a subset of the ObliCheck symbolic
execution algorithm enhancements, I will demonstrate how those features work in more
detail below through following an example from my class report for ObliCheck[17]. For
example, below is a trivial oblivious program for demonstration purposes, shown with the
final program state after being run in unmodified MultiSE:

var privIn = readPrivatelInput();
var buf = [];
if (privIn)
buf . push(0) ;
else
buf . push(1);
encAndSend (buf) ;

CHAPTER 2. BACKGROUND AND RELATED WORKS 13

On the final line, an API call moves the private data from unobservable to observable
space, the symbolic execution state of the program is as follows:

{
pc = [{true, 7}],
privin = [{true, symO}],
buf = [{symO, [0]}, {!symO, [1]}],
buf len = [{true, 1}]
}

For this oblivious execution, regardless of the private input value, the length of the
buffer is always 1. Because of this, this algorithm is oblivious. Because of the path explosion

problem, as algorithms become more complex and the length of buffers increases the runtime
of MultiSE suffers.

Optimistic State Merging

In order to mitigate the path explosion problem and decrease the burden on one’s machine
when running symbolic execution, domain specific insights about the nature of the input
values and inner-workings of the programs was leveraged in order to increase efficiency. One
of the key contributions of ObliCheck is the recognition that the contents of the output
data will be encrypted and therefore is often not important to be retained, this can allow
symbolic execution to scale in a feasible way.

If a given variable will not contribute to the outcome of the obliviousness property, then
this information can be generalized to increase efficiency. In ObliCheck, such variables are
aggressively merged such that the number of states that are present is significantly less. In
the previous example that we saw, the new symbolic execution state would be as follows:

{
pc = [{true, 7}],
privin = [{true, symO}],
buf = [{true, [syml1l}],
buf len = [{true, 1}]

+

The value of the buffer is now a newly introduced symbolic variable, since we don’t need
to keep track of the original values. The number of states in the program has now halved;
as programs increase in complexity, the effect of reduced paths is more pronounced.

However, by aggressively merging, it’s possible to lose path specific information. It’s
possible that variable can be merged that isn’t directly involved in the trace for an algorithms
verification condition but that is still involved in the control flow of a program such that it
makes an algorithm not oblivious. This domain specific merging scheme on its own could

CHAPTER 2. BACKGROUND AND RELATED WORKS 14

incur a false positive, where the program is incorrectly flagged as being not oblivious. Take
the example program:

var privIn = readPrivateInput();
var buf = [];
if (privIn)
buf . push(0) ;
else
buf.push(1);

if (buf[0] == 0)
buf . push(1);
if (buf[0] == 1)
buf.push(0);

encAndSend (buf) ;

In this program, the second set of if statements depends on the value of the first element
pushed to the buffer. Note, however, that the length of the buffer is always the same. If
the value first added to the buffer was optimistically merged it would be impossible for the
symbolic execution framework to know that buf[0] was indeed either 0 or 1; it could believe
that the value falls outside of that narrow domain. The final state of the program is now as
follows:

{
pc = [{true, 7}1,
privin = [{true, symO}],
buf = [{true, [s1, s2, s3]}],
buf len = [{s1 != 0 && s1 == || s1 == 0 && s1 !'= 1, 2},
{s1 '=0 && s1 '= 1, 1}]
}

Iterative Un-merging

Domain specific merging could drastically reduce the memory and runtime used by sym-
bolic execution. The use of domain specific merging did however lead to false negatives, as
important information was lost that occluded the program’s true obliviousness. As seen in
the example from the previous sub-section, had the variable ’s1’ not been introduced, and
that value not had been merged, the program would have correctly been flagged as obliv-
ious. Un-merging and re-execution must be performed to determine the true status of the
program.

The first step in un-merging specific problematic auxiliary variables is by analyzing the
verification condition’s path constraints. Since, during symbolic execution, there is no way

CHAPTER 2. BACKGROUND AND RELATED WORKS 15

of knowing all of the ways that a variable will be used, it is unclear on wether or not a
variable should be merged. Fortunately, the variables that may have led to a false positive
case are present in the path condition of the verification condition. In the case of the prior
example, ’s1’ is present in the path condition for the buffer’s length. Symbolic variables
that were introduced by OSM present in the path condition denote that the result could be
a false negative. After identifying the target variables, they are flagged to not be merged,
and the program is re-executed. Once the program is flagged as oblivious, or there are no
more variables in the verification condition to un-merge, a conclusion can be made about
the obliviousness of the program.

{
pc = [{true, 7},
privin = [{true, symO}],
buf = [{symO, [0, 11}, {!symO, [1, 0]}],
buf _len = [{true, 2}]
}

In ObliCheck [21], optimistic state merging significantly mitigated the path explosion
problem, and iterative un-merging recovered any lost accuracy. With iterative un-merging,
since all variables are merged on the first execution, it is extremely fast to execute, even
symbolically.

16

Chapter 3

YouVerity

In ObliCheck [21], domain specific knowledge regarding the types of algorithms being an-
alyzed was leveraged in order to mitigate the path explosion problem facing symbolic ex-
ecution. For the ObliCheck project specifically, the symbolic execution framework Jalangi
[19] was augmented with ObliCheck’s custom algorithm involving aggressive optimistic state
merging and iterative state un-merging. Largely informed by my experience working on
ObliCheck, in this project report, I present YouVerify, which is a simple imperative inter-
mediate representation for symbolic execution, intended to be framework for rapidly proto-
typing and testing symbolic execution algorithms and optimizations.

3.1 Design

Design Principles

YouVerify was designed around a number of core principles. First, YouVerify is intended to
be used as an intermediate representation for target languages to compile to. The syntax
of the language is three-address code, this representation is commonly used by compilers
in order to perform optimizations. Barring some exceptions, in YouVerify most expressions
have at most three atomic expressions in use. Second, YouVerify acts as an abstraction layer
directly above the popular families of SMT Solvers that fall under the international SMT-Lib
2] standard, rather than targeting a specific higher-level language’s features, some of which
may not be solvable by SMTLib constraint solvers. Third, YouVerify was designed to be
wholly modular and extensible.

A limiting factor in the application of some symbolic execution algorithms to a broader
set of problems and programs is the language in which those programs are implemented in.
Many symbolic execution tools and frameworks operate only on a single target language,
whether that be C, JavaScript, or another language. For these tools and frameworks, the
benefits of their specific implementation optimizations and techniques can only be reaped
by analyzed programs in the target language. If one wanted to leverage MultiSE’s value

CHAPTER 3. YOUVERIFY 17

summary representation to symbolically execute C code for instance, they would not be able
to use the existing implementation, Jalangi. Instead, the algorithm must be implemented
fresh, or by modifying another existing symbolic execution tool. The benefit of utilizing an
intermediate representation like YouVerify is that the problem of target language can be
separated from the underlying symbolic execution algorithm.

The YouVerify language also is intended to be an abstraction layer directly above the
SMT-Lib [2] family of solvers, in order to avoid generating un-solvable constraints. Every
operator in YouVerify is directly reflected by the SMTLib standard, and thus supported
by all SMTLib compliant solvers. By adhering to this principle, all of the implemented
theories in YouVerify cover the complete set of operators available, and a user can decide
what solver to use as long as it supports the SMTLib standard. There is not concern that an
algorithm implemented in YouVerify will utilize some language feature that is not supported
by the underlying solver because every statement or expression written in the language
is supported by SMTLib. The ability to easily change out solvers also lends itself to the
frameworks interoperability and modularity, eliminating the reliance on a single solver.

Modularity and extensibility are at the core of YouVerify’s implementation and motiva-
tion. As mentioned earlier, it’s easy to swap out solvers using YouVerify. In addition to this,
it is also straightforward to add additional sorts and operators later on to the framework
if perhaps an unimplemented theory is desired or a new theory becomes available in the
SMTLib standard. For simple operators like unary and binary ones, there is easy support
for adding them using prefix and infix notation without the need for modifying the parser
or the framework itself. For more complex operators, it is just as straight forward to add
builtin functions.

The symbolic executor, which traverses through the state and executes statements, is
largely static, and is not intended to be modified or extended. However, the state itself is
fully modular and must only adhere to the provided API such that it is able to plug into the
symbolic executor. Because there is much variation in the way that the state in particular is
represented by different symbolic execution tools and algorithms, and how the path space of
a program is explored, these algorithm dependent decisions are left up to the state entirely
which the executor accesses through the API.

System Architecture

All YouVerify programs are interpreted as a series of statements that perform operations on
the program state. The state is at the heart of YouVerfiy’s architecture. As we’ve seen in our
discussion of background and related works, the manner in which state is represented varies
widely between different symbolic execution techniques and algorithms. In standard dynamic
symbolic execution, there are multiple states, all with their distinct symbolic variable stores
and state is copied when a branching statement is reached. On the other hand, with MultiSE,
there is a collection of value summaries for each variable that encodes the variety of program
states. In some implementations state can be merged, and in others it is not. Because of
this variety in the representation and management of state, YouVerify treats the state as

CHAPTER 3. YOUVERIFY 18

being separate from the symbolic interpreter and interacts with it through an API that will
be described in more detail below.

/YouVerify A
Interpreter State
\ ¢ /
SMTLib 2 Standard
; J
Z3 CvC4 STP e
&

This separation of responsibility allows the main execution loop for YouVerify to be very
simple, as it can be seen in Figure 1. In YouVerify, the symbolic execution of a program
will continue as long as the mext state’, retrieved from the state using the update_state
method returns a True value in Python. As shown in the exploration of various symbolic
execution techniques, how the state space is explored is a matter of interest when developing
symbolic execution algorithms. For instance, the approaches see in EXE [6] and KLEE [5]
use different heuristics in order to explore the program path space in order to achieve the
desired result.

while state.update_state():
stmt = state.current_statement
stmt.exec(state)

Figure 1: Main execution loop for YouVerify interpreter.

3.2 Language Features

Each YouVerify program (file extension .yvr) is composed as follows, divided into two sec-
tions:

CHAPTER 3. YOUVERIFY 19

<GLOBAL DECLARATIONS>

<STATEMENTS>

At the top of the program file, there are the global definitions consisting of global vari-
able declarations along with function declarations, and record type declarations.
Functions can only be declared globally. Below all of the declarations are the statements, or
the body of the program.

Variable Declarations

x: INT # Integer type declaration

b: BOOL # Boolean type declaration

bv: BV[32] # A bit vector of length 32 bits

arr: ARRAY{INT} # Array type declaration of array with integer elements
rec: point # record type declaration

A variable declaration is written using the following syntax:

<variable name> : <built-in sort | custom record type>

Theories and Sorts

By default, the Core, Integer, BitVector, and Array theories and their included sorts
are included and implemented in YouVerify.

Core Theory and Boolean Sort

The first theory that is implemented is the core theory, which consists of the Boolean sort
and various unary, binary, and the only ternary operator. Below is an example of declaring
two boolean variables and assigning them to the true and false constant.

t, f: BOOL
t = true
f = false

Integer Theory

The integer theory includes common arithmetic operators and the Integer Sort. Below is an
example of declaring an integer variable and assigning a constant to it.

x: INT
x = 2021

CHAPTER 3. YOUVERIFY 20

BitVector Theory

The BitVector theory includes the BitVector sort, along with many functions over bit vectors.
In YouVerify, all operators over bit vectors are implemented as built-in functions rather than
infix notation operators. When declaring a BitVector variable, and creating a BitVector
value, the length of the bit vector has to be specified as shown below:

x: BV[32]

y: BV[8]

x = BV{32, 2021}
y = BV{8, 31}

Array Theory

The Array theory is unique because it has an arity of two and is specified along with another
sort for its key type and its value type. In YouVerify, all arrays only have the Integer sort
for its key type. The value type must be specified when declaring a variables and allocating
a new array.

Declare and initialize an array of length 10 to bitvectors of width 8
and value O.

Declare a pointer to an array of integers.

Assign it to an array of undefined length.

x: ARRAY{BVI[8]}

y: INT*

x = ARRAY[10]{BV{8, 0}}
x = ARRAY[]{0}
Statements

Every statement can optionally be labeled: LABEL <LABEL NAME>: <STATEMENT>. Every
labeled statement is made available as a branch destination to be used by conditional and
unconditional branching statements. Within a given scope (i.e. global, function local), there
must not be duplicate label names. That is, each statement that is labeled within a scope
must have a unique name.

Assignment Statements

The most basic statement is the assignment statement which is written as follows:

<ASSIGNMENT TARGET> = <EXPRESSION>

CHAPTER 3. YOUVERIFY 21

The right hand side of an assign statement can be any valid expression, so long as it
evaluates to the same type as the assignment target.

The assignment target can be one of the following three:

1) An identifier which corresponds to a variable. x = 10.

2) An array index expression, which corresponds to storing into a certain index in an
array: arr[10] = 10.

3) A record index expression, which corresponds to assigning to an element in a record:
rec.x = 10.

4) A pointer dereference expression, which corresponds to storing it into the index of the
array the pointer is pointing to: *arr = 10.

Branching Statements

There are two flavors of branching statements conditional and unconditional.

Conditional Branching Statements

A conditional branch statement depends on a condition and will either increment the program
counter by one to the next statement if the condition is false and will set the program
counter to the line number of the labeled expression if the condition is true. The conditional
expression can be any valid expression that evaluates to the BOOL sort.

if <CONDITIONAL EXPRESSION> goto <LABEL NAME>

Unconditional Branching Statement

The unconditional branching statement is a short hand way of writting
if true goto <LABEL NAME>:

goto <LABEL NAME>

Function Call Statements

A function call is expressed not as an expression but rather as it’s own individual statement.
There are two flavors of the funciton call statement, the first is if the function call return
value is supposed to be assigned to a variable in the caller frame, and the second is if the
function call return value is not supposed to assign to a variable in the caller frame.

Function Call then Assign Statement
call <ASSIGNMENT TARGET> = <FUNCTION NAME> (<ARGUMENTS>)

CHAPTER 3. YOUVERIFY 22

Function Call with No Assign Statement
call <FUNCTION NAME> (<ARGUMENTS>)

Any function can be called using this notation.

Return Statements [Funcitons Only|

Depending on the desired behavior, a return statement can either have a value to return or
not.

return

return x

A return statement without a return value can be used to return from a function without
a declared return type. If a function has a return type, the return statement with a value of
the corresponding type must be used.

Assume Statements

An assume statement is utilized by appending a given condition to the path constraint, acting
as a conditional branching statement branching to the end of the program. The statement
following the assume keyword must evaluate to the BOOL sort.

assume <CONDITIONAL EXPRESSION>

Expressions
Atomic Expressions

There are a few atomic expressions that consist of the following categories:

Concrete Values

10 # Value of type INT sort

true # Value of type BOOL sort

false # Value of type BOOL sort

BV{4, 32} # Value of type BV sort, with value and length
ARRAY[]{INT} # An ARRAY sort of integers with indefinite length
ARRAY[10]{INT} # An ARRAY sort of integers with a fixed length of 10

CHAPTER 3. YOUVERIFY 23

Variable Identifier

X
b

point
factorial_value

Symbolic Values

$sym{BOOL} # A symbolic value of sort BOOL with a random unique name
$sym{b, BOOL} # A symbolic value of sort BOOL with the name 'b'

For symbolic values without a specified name, every time an atomic expression with no
name is evaluated a NEW symbol with a unique name is created.

Array Index Expressions

arr [<INDEX>] # Where INDEX must be an integer sort, and must be within bounds

Record Element Index Expression

<variable name> . <element name>

Pointer Dereference Expression

<variable name> x*

Unary Expressions

<UNARY OPERATOR> <ATOMIC EXPRESSION>

Binary Expressions

<ATOMIC EXPRESSION> <BINARY OPERATOR> <ATOMIC EXPRESSION>

Ternary Expressions

Only ite.

<ATOMIC EXPRESSION> ? <ATOMIC EXPRESSION> : <ATOMIC EXPRESSION>

CHAPTER 3. YOUVERIFY 24

Example Program

In this section we will cover one of the test cases in YouVerify that covers many of the afore-
mentioned language features, including all of the sorts (Boolean, Integer, Array, BitVector).
The example program can be seen in Figures 2 and 3. In the example, a player is playing a
game that consists of a one dimensional level. The level consists of 8-bit BitVector values,
which are the points that the player gets for landing on that tile of the level. If the tile is
equal to 0, then the level is over. The player can choose to either press or not press the
button to skip a tile whenever they choose. The function below_max_length determines
wether or not an array contains a character 0 in it using pointer arithmetic to navigate the
array. The function sum calculates the sum of an array. Both of these functions are used
to add assertions to a fully symbolic level. Next, a fully symbolic array of button presses
is generated and then the play_game function is called to calculate the score. To see this
example in more detail please view it on YouTube here.

https://youtu.be/jiDrGJQbbFw

CHAPTER 3. YOUVERIFY

define below_max_length(arg: BV[8]*, max_length: INT) -> BOOL:
null terminated, cond: BOOL
i: INT
val: BV[8]
null_terminated = false
i=20
LABEL LOOP: if i >= max_length goto END
val = *arg
i=1i+1
arg = arg + 1
cond = val == BV{0, 8}
null terminated = cond | null terminated
goto LOOP
LABEL END: return null terminated

define sum(arr: ARRAY{BV[8]}, len: INT) -> INT:

s, t, i: INT
elem: BV[8]
i=20

s =0

LABEL LOOP: if i >= len goto END
elem = arrl[i]

call t = bv2nat(elem)

s =8+t

i=1i+1

goto LOOP

LABEL END: i = 0

return s

Figure 2: Comprehensive Example from YouVerify test case suite.

CHAPTER 3. YOUVERIFY

define play_game(buttons: ARRAY{BOOL}, map: ARRAY{BV[8]}) -> BV[16]:
i: INT
map_elem: BV[8]
score, temp: BV[16]
cond: BOOL
i=20

score = BV{0, 16}

LABEL LOOP: map_elem = mapl[il
if map_elem == BV{0, 8} goto END_LOOP

cond = buttons[il

if cond goto END_COND

call temp = concat(BV{0, 8}, map_elem)
call score = bvadd(score, temp)

LABEL END COND: i =i + 1

goto LOOP

LABEL END_LOQOP: return score

buttons: ARRAY{BOOL}

level: ARRAY{BV[8]}
max_level length: INT
is_below_max_length: BOOL
level sum, final score: INT

level = $sym{level, ARRAY{BV[8]}}

max_level length =5

call is_below_max_length = below_max_length(level, max_level length)
call level_sum = sum(level, max_level_length)

assume is_below_max_length

assume level sum == 100

buttons = $sym{buttons, ARRAY{BOOL}}

call final score = play_game(buttons, level)

Figure 3: Comprehensive Example from YouVerify test case suite (continued).

CHAPTER 3. YOUVERIFY 27

3.3 Syntax

In this section I will cover the syntax of YouVerify. As mentioned later in the report, the
grammar was implemented in the parser generator ANTLR, and is available in the GitHub
project. Figure 4 describes the set of sorts that are currently available in YouVerify. As
mentioned previously, as of now only the core, integer, bit-vector, and array theories are
supported in YouVerify.

sort — simple_sort | ARRAY{simple_sort} | simple_sort*
ﬁ

simple__sort BOOL | INT | BV[int] | r

where
R is a set of records
r is an element of R
int is a positive integer

Figure 4: YouVerify’s syntax for the set of sorts, S.

The context free grammar for YouVerify is on the subsequent page in Figure 5.

CHAPTER 3. YOUVERIFY

program
global__decls
global__decl
var__decl
args

record

func

func_ body

stmts
stmt

params

expr

atomic__expr

=
=
]
@
@

&
@
» o3I wo N QIES

Ll

1

i

Ll

global__decls stmts

global__decls global__decl | global _decl
record | func | var_ decl

x :s|x

args , var_decl | var_ decl

r (args)

define f (args): func_body |

define f (args) -> var_decl: func_body

func_body stmt | func_body return | func_body return expr |
stmt | return | return atomic_ expr

stmts LABEL /: stmt | stmts stmt | LABEL /: stmt | stmt

y = expr | y[atomic_expr] = expr | z.e = expr | *y = expr |
if expr goto £ | goto £ |

call x = f (params) | call f (params) |

assume expr | assert expr

params , atomic_expr | atomic_expr

atomic_expr | o< atomic_expr | atomic_expr I atomic_expr |
atomic__expr 7 atomic__expr
x [atomic_expr] | z.e | *x

x|c|$sym{id, s} | $sym{ s}

: atomic__expr |

is a set of variables

is a set of functions

is a set of records

is the set of constants

is the set of statement labels
is the set of sorts

are elements of V

is an element in a record in R
is an element of F’

is an element of R

is an element of L

is an element of C'

is an element of S

Figure 5: YouVerify’s syntax.

CHAPTER 3. YOUVERIFY 29

3.4 Implementation Details

The YouVerify symbolic interpreter is implemented in Python, a widely used programming
language that has been consistently growing in popularity in the recent past. Python was
chosen for my implementation because of the familiarity that many developers have with
the language [7]. As YouVerify is intended to be easily accessible and modifiable, it was
important to choose a language that was easily accessible. Additionally, there are a wealth
of libraries to choose from during the implementation of the interpreter, and the many
libraries available could make future implementations and enhancements to the framework
easier.

The implementation of YouVerify is available publicly on GitHub here: https://github.
com/gprechter /youverify.

Lexing and Parsing with ANTLR

For generating the parser for the YouVerify language, I used the ANTLR [16] parser gener-
ator. This powerful tool was used to read and process .yvr files according to the specified
ANTLR grammar. The ANTLR parser generator is widely used by a variety of projects,
and has a wealth of options and developer support.

For YouVerify, a program is converted to a parse tree which is explored by a wvisitor,
which walks the program parsed by the generated parser in order to convert it to an abstract
syntax tree that will be interpreted later by the symbolic interpreter. The heart of the
parsing process is this walking of the parse tree using ANTLR’s automatically generated
tree walker. During the tree walking, the program’s functions, variables, records, labels, and
statements are all identified. Another important benefit of the ANTLR ecosystem is that an
ANTLR grammar can be used to generate a parser for any of the supported target languages.
While I chose to implement YouVerify in Python, it’s possible to utilize the implemented
ANTLR grammar if one were to develop a C++ or Java implementation.

Representing Symbolic Values and Expressions with pySMT

pySMT is a Python library that allows for the use of symbolic expressions and values that
comply with the SMT-Lib format. All of the major sorts, including those that were im-
plemented in YouVerify, have abstract representations in pySMT. When solving a symbolic
expression requiring the use of a solver, pySMT offloads that processing to a chosen solver.

One of the main benefits of using pySMT for the implementation of YouVerify is the
fact that pySMT is solver-agnostic, and does not rely on a given solver. The framework
supports a number of SMT-Lib solvers by interfacing with them through a standard API.
This falls closely inline with the design principles of YouVerify, allowing for modularity and
interoperability. If a new solver is to be integrated with YouVerify, as long as a developer
interfaced it properly with the API laid out by pySMT, and it adhered to the SMT-Lib
standard, then it could be used instead of another solver.

https://github.com/gprechter/youverify
https://github.com/gprechter/youverify
https://www.antlr.org
https://github.com/pysmt/pysmt

CHAPTER 3. YOUVERIFY 30

During symbolic execution, YouVerify uses pySMT to compose symbolic expressions and
make solver queries to check satisfiability. pySMT provides methods for converting its native
SMT formula abstractions into SMT-Lib formats. One benefit of pySMT is the way that
it represents symbolic expressions not as only trees, but as directed acyclic graphs (DAGs),
recurring sub-expressions are reused and not copied, conserving the memory space needed to
represent symbolic expressions. pySMT provides methods of emitting symbolic expressions
to SMT-Lib both as a DAG-ified version and as a standard tree based expression. As for
YouVerify, by default, SMT-Lib based expressions are printed without DAG-ification because
they are easier to read. However, optionally, the expressions can be printed in the optimized
format. It’s important to note however that, while the expressions are printed in an un-
optimized, easier to read format, behind the scenes, the symbolic expressions are maintained
in optimized form and when framework solver queries are made, pySMT, and YouVerify emit
the SMT-Lib expressions in the optimized format.

Framework Implementation

The YouVerify framework is implemented primarily as an abstract syntax tree that repre-
sents all of the various statements and expressions in the language, along with an execution
loop that invokes the actions that each statement takes. The main execution loop interacts
with the implemented symbolic execution algorithm through the state which implements the
State abstract class. Specifically, as long as the state provides a true value from having its
update_state method called, YouVerify will assume that there are additional statements
that need to be executed. The statement to be executed is retrieved from the state using
the current_statement method, during the execution of the statement, variables can be
retrieved and stored from and to the state. Finally, YouVerify will perform an action to
modify the program counter for the current state or cause the state to split due to a con-
ditional branch. These methods that modify the program counter of branch state are the
advance_pc, jump, and conditional_branch methods. The interaction between the main
execution loop, the AST for the YouVerify language and the abstract state is the core of
YouVerify’s implementation and extensibility.

3.5 Symbolic Execution Algorithm

In this section we will cover the operational semantics of a selection of statements for the
default symbolic execution algorithm, which is often referred to as vanilla dynamic symbolic
execution. I will describe the rules as modifying the symbolic execution state . X consists
of any non-negative number of sub-states that consist of the following (¢, pc, o), where ¢
is the path constraint for that sub-state, pc is the program counter, and o is a mapping
between identifiers and their values for that sub-state.

The symbolic execution algorithm traverses the program by selecting a sub-state from
the symbolic execution state and executing the statement that that sub-state is currently on,

CHAPTER 3. YOUVERIFY 31

which subsequently modifies the state. The initial value of the state, ¥, is {(true, 0, {})}.
The operational semantics for the different statements is shown in Figure 6. The current
statement is retrieved from the program Pgm using the program counter: Pgm(pc).

CONDITIONAL BRANCH UNCONDITIONAL BRANCH
(¢p,pc,0) € ¥ Pgm(pc) = (if e goto £) o(e) = be (¢,pc,0) € ¥ Pgm(pc) = (goto)
Y — (2 \(¢,pc,0)) U (P Abe,ly,0) U (A —be,pc+1,0) Y — (2 \(¢,pc,0))U(p,4,0)
ASSUMPTION

(¢p,pc,0) € ¥ Pgm(pc) = (assume e) o(e) = be
Y — (X \(¢,pc,0))U(pAbe,pc+1,0)

VARIABLE ASSIGNMENT
((b:pC?U) €X Pgm(pc) - (.T} = 6) 0'(6) = Ve
¥ — (X \(¢,pc,0)) U (¢, pc+ 1,0z — v])

ARRAY INDEX ASSIGNMENT
(¢,pc,0) € X Pgm(pc) = (z[y| =) o(e) =ve o(y) =1
Y — (X \(¢,pc,0))U(p,pc+ 1,0z — store(z,i,ve)])

Figure 6: Operational Semantics for the Default Symbolic Execution Implementation in
YouVerify.

The first rules we will cover is the VARIABLE ASSIGNMENT and ARRAY INDEX ASSIGN-
MENT rules. In both of these, the statement that the program counter is on is an assignment
to either an atomic variable or an array index respectively. In both situations, the program
counter is incremented once to the next statement, and the variable store o is updated to
either be the value of the expression e, v, or an SMT-Lib array where the value of the expres-
sion is stored into the array at the index 7. With these two statements, the path constraint
is unchanged.

Next, the CONDITIONAL BRANCH adds two additional sub-states to the state 3, where is
one case the path constraint is changed to be the logical and of the previous path constraint
and the boolean value of the expression b., and the new program counter for the sub state
is the destination of the label provided in the statement. The other sub-state is the logical
and of the previous path constraint and the negation of the boolean value, and the program
counter is simply incremented. The variable store of either new state is unchanged. The
UNCONDITIONAL BRANCH only results in one sub-state being added to >, where the new
program counter is the value of the label.

Finally, the ASSUMPTION statement is a mechanism of modifying the path constraint of
the current sub-state by conducting a logical and of the previous path constraint and the
value of the boolean expression, b,.

The symbolic execution algorithm will continue to traverse the program in this way until
there are no sub-states in the state for which the program counter is less than the number
of statements.

3.6 API

There are a number of components to the YouVerify API for implementing and modifying
symbolic execution algorithms. First we will look at the abstract State class which enables
a developer to implement custom symbolic execution algorithms. A developer can inherit
and modify the existing symbolic execution state, DefaultState, or they can implement
one from scratch as long as they implement all the abstract methods. The State class and
its abstract methods and their descriptions are shown on the following pages.

In addition to using the abstract State class to modify the way that state is represented
and the program execution path space is explored, a developer might want to modify how
certain operators function in YouVerify. As we will see in Chapter 5, implementing ObliCheck
in YouVerify required modifying functions to handle value summaries.

Modifying the behavior of individual operators is not supported out of the box, but
modifying the behavior of unary or binary functions as groups is supported. Of course,
because the project is open source, a developer could individually modify the functions
is desired. These wrappers are presented below as well, unary_operator_wrapper and
binary_operator_wrapper.

The API documentation was generated using Sphinx.

API Documentation

class State.State
Abstract class template for a representation of State in You Verify.

abstract advance_pc (i int)

This abstract method is invoked when the framework wants to advance
the program counter.

Parameters i — The number of statements to advance through.
Returns None

abstract assume(cond: object)

This abstract method is invoked when the framework wants to add an
assumption to the current state.

Parameters cond — The condition to be affixed to the path constraint.
Returns None

32

https://www.sphinx-doc.org

abstract conditional_branch(cond: object, destination: int)

This abstract method is invoked when the framework reaches a con-
ditional branching statement. Here, a developer would likely want to
implement state splitting.
Parameters

o cond — The condition guarding the branch.

e destination — The destination program counter for the branch.
Returns None

abstract property current_statement

This abstract property is invoked to retrieve the next statement to be
executed by the symbolic interpreter.

Returns The next Statement object to be ezecuted.
Return type Statement

abstract jump(destination: int)

This abstract method is invoked when the framework reaches an uncon-
ditional branching statement.

Parameters destination — The destination program counter for the
branch.

Returns None

abstract load_variable(var: str)

This abstract method is invoked when an identifier is evaluated and a
variable is to be fetched from the state’s variable store.

Parameters var — The identifier of the variable that will be retrieved.
Returns The value of the variable that was retrieved.

abstract store_variable(var: str, val: object)

This abstract method is invoked when the framework wants to assign a
value to a variable.
Parameters
o var — The identifier of the variable being assigned to.
e val — The value to be assigned to the variable.
Returns None

33

CHAPTER 3. YOUVERIFY

abstract update_state()

This abstract method is invoked by the framework when before the next
statement is to be executed. This gives the State object the opportunity
to modify the backend and setup for the next statement execution. A
developer would modify this to change how the paths of a program are
explored and how state is handled.

Returns True if there is more state to be executed, False otherwise.
Return type bool

Wrappers.unary_operator_wrapper (f: function)

The wrapper takes in the original unary operator as its parameter and op-
tionally returns a new function with the new behavior.

Parameters f — The unary function to be wrapped.

Returns A new unary function.

Wrappers.binary_operator_wrapper (f: function)

The wrapper takes in the original binary operator as its parameter and
optionally returns a new function with the new behavior.

Parameters f — The binary function to be wrapped.

Returns A new binary function.

34

35

Chapter 4

Testing and Verification

In order to verify the effectiveness of the framework and the correctness of the default
dynamic symbolic execution implementation, many unit tests were written for YouVerify.
All of these tests are available at the project GitHub here: https://github.com/gprechter/
youverify /tree /master /tests.

4.1 Overview of Tests

Concrete execution is made available in YouVerify through the simplification and concrete
evaluation of symbolic expressions. For each of the included sorts, Booleans, Integers, Bit
Vectors, and Arrays there are unit tests for each of the operators. Additionally there are
tests for additional YouVerify language features, such as functions, records, assume/asserts,
and pointers/pointer arithmetic for arrays.

There are also symbolic tests which test the functionality of the symbolic execution
in the face of branching state with the presence of symbolic inputs and symbolic input
dependent branching statements. Some of these symbolic tests were taken from popular
symbolic execution papers like KLEE, SAGE, and MultiSE. Finally, there are negative tests
to ensure that the framework handles issues involving invalid typing, division by zero, and
out-of-bounds array accesses.

4.2 Testing Setup and Process

Tests (files with the .yvr extension) are organized into folders by category and most tests
are paired with a companion .expected file. The YouVerify framework is packaged with
a testing framework in the TestUtil.py file. JSON objects are utilized to compare the
results of executing programs using YouVerify and the expected results. The .expected file
contains a string representing a JSON object that becomes de-serialized by the testing utility
and compared to the concrete output of the final program state produced by YouVerify.

https://github.com/gprechter/youverify/tree/master/tests
https://github.com/gprechter/youverify/tree/master/tests

CHAPTER 4. TESTING AND VERIFICATION 36

As an example, I have included an example test for the Arrays sort in Figure 1 and the
.expected file as well in Figure 2 that tests a complex program populating and reversing
an array.

To run a suite of tests, run the TestUtil.py file as follows, specifying the directory
containing the desired YouVerify and .expected files as the command-line argument:

python TestUtil.py \tests\<sub-directory>

Running the test utility will report the success of each of the tests and provide a summary
at the end of executing all of the tests.

arr: ARRAY{INT}

define populate(arr: ARRAY{INT}, len: INT):
i: INT
i=0
LABEL LOOP: if i >= len goto END
arr[i] =1
i=1+1
goto LOOP
LABEL END: return

define reverse(arr: ARRAY{INT}, len: INT) -> ARRAY{INT}:
i, j: INT
new_arr: ARRAY{INT}
new_arr = ARRAY[10]{0}
i=0
LABEL LOOP: if i >= len goto END
j=1len - 1
i=3-1
new_arr[jl = arr[i]
i=1i+1
goto LOOP
LABEL END: return new_arr

arr = ARRAY[10]{0}

call populate(arr, 10)
call arr = reverse(arr, 10)

Figure 1: Example test case for YouVerify arrays.

CHAPTER 4. TESTING AND VERIFICATION

"arr":

[9,8’7,6,5,4’3,2,110] }

Figure 2: Expected final program state for test case in Figure 1.

4.3 Evaluation on KLEE Test Cases

In order to further verify the default symbolic execution algorithm, a number of tests were
implemented from the KLEE [5] symbolic execution tool. These tests can be found on
GitHub here. The KLEE project executes each of the tests and then uses variables to test
and verify branch coverage, and also inspects the number of final states at the end of the
symbolic execution. This is done in the KLEE project to verify the correct functionality
of the symbolic execution. The tests ported from KLEE to YouVerify can be found here;
these tests cover many features of the YouVerify language including: Arrays, Bit Vectors,
Integers, Branching Statements, and Assumptions. The results from these tests are

shown in Table 1.

Table 1: Results from running KLEE test cases.

Test File

Final Valid Paths

Correct Coverage & Paths

test_and.yvr
test_cache.yvr
test_const_arr-idx.yvr
test_expr_complex.yvr
test_expr_mul.yvr
test_expr_simple.yvr
test_feasible.yvr
test_hybrid.yvr
test_mix.yvr
test_mixed_hole.yvr
test_multiindex.yvr
test_new.yvr
test_noncontiguous_idx.yvr
test_position.yvr
test_sub_index.yvr
test_update_list_order.yvr
test_var_idx.yvr

2

RPN~ o

NN DNNDNDNDDND

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

https://github.com/klee/klee/tree/master/test/ArrayOpt
https://github.com/gprechter/youverify/tree/master/tests/klee/array

CHAPTER 4. TESTING AND VERIFICATION 38

4.4 Framework Coverage Testing

For determining the code coverage of the test suite, I used the Coverage.py tool, which is
available here.

For calculating the coverage of the entire test suite over the source code and symbolic
execution implementation use the follow command line argument:

coverage run TestUtil.py \tests\
This command runs the entire test suite while gathering coverage information. The re-

sults of determining the coverage of the test suite for my default dynamic symbolic execution
implementation can be found on the GitHub page here.

https://coverage.readthedocs.io/en/6.2/
https://github.com/gprechter/youverify

39

Chapter 5

Prototyping ObliCheck with
YouVerity

To demonstrate YouVerify’s effectiveness for prototyping symbolic execution algorithms, I
implemented an algorithm taking advantage of domain specific knowledge similar to the one
presented in ObliCheck [21] using the framework and API. In order to do this, MultiSE’s [20]
state representation and incremental merging were implemented in YouVerify for a subset of
YouVerify’s statements and expressions; then additional changes were made to the symbolic
execution algorithm to implement techniques like Optimistic State Merging and Iterative
State un-merging from the ObliCheck paper.

5.1 Implementation Overview

The most significant change that needed to be made for implementing ObliCheck was im-
plementing MultiSE’s symbolic execution semantics and then modifying them in order to
implement the optimistic state merging and iterative un-merging techniques. For imple-
menting MultiSE, I utilized the PyEDA library for electronic design automation, available
here. This library provides an implementation for Binary Decision Diagrams which are used
in the implementation of MultiSE for representing the path constraints guarding values in
the value summaries.

As shown earlier in this report, MultiSE presents a novel state representation through
its value summaries, which allow for efficient, incremental state merging without the use of
auxiliary variables. Compared with the aforementioned default implementation of dynamic
symbolic execution, the state representation for MultiSE is drastically different. In YouVer-
ify these changes are easily made through implementing a new State class that adheres to the
necessary API that YouVerify provides. Particularly, the methods for store_variable(),
update_state() and condition_branch() are modified. Additionally, for the desired op-
erators, a wrapper must be added to handle the fact that operators now do not deal with
single values but rather value summaries (for instance in the case of binary operators).

https://pyeda.readthedocs.io/en/latest/

CHAPTER 5. PROTOTYPING OBLICHECK WITH YOUVERIFY 40

As for prototyping ObliCheck’s unique state merging semantics, a number of modifica-
tions were made. The first step of the ObliCheck algorithm I prototyped was the Optimistic
State Merging technique, which automatically merges variables aggressively by leveraging
the domain specific knowledge that the actual values of private data is hidden from an at-
tacker. To accomplish this, two new statements were added begin_merge and end_merge.
With these statements, it’s possible to specify which statements can merge variables and
which cannot. In the future, this would ideally be done automatically through control flow
analysis. In the store_variable API call, the method is modified to optimistically merge
values that are not the length of a buffer, as specified in the ObliCheck paper. Individual
merge points during execution needed to be tracked. When merging occurred, it’s possible
to record what statement caused that merging.

In the next_state method, responsible for the state exploration of the symbolic execu-
tion algorithm, it might be the case that due to Optimistic State Merging, the algorithm
resulted in a false positive due to missing information. This is shown in the ObliCheck
[21] paper through the Tag&Apply example. During the subsequent iterative un-merging
step, it’s also not necessary to change the main execution loop of YouVerify, as the API
provides all the necessary control over the execution to perform the required re-executions
and un-merging. The path constraints for the verification condition are inspected and the
variables are extracted; if the result was not-oblivious and a variable introduced through
optimistic state merging was present in the path constraint, it’s possible that the result is
a false negative. In this example, update_state flags the statements that introduced an
OSM variable and will re-execute not merging any flagged variables.

The implementation of Optimistic State Merging and Iterative State Un-merging us-
ing YouVerify can be found as a branch to the GitHub project here: https://github.com/
gprechter/youverify /tree/api oblicheck. Implementing the two techniques on top of Mul-
tiSE required 54 lines of code.

5.2 Evaluation

To evaluate my implementation of Optimistic State Merging (OSM) and Iterative State
Un-merging (ISU), a selection of slightly modified benchmarks from the ObliCheck paper
were ported to YouVerify and the following runtime statistics were gathered. Each of these
examples covers one of the common scenarios shown in the ObliCheck paper. One of the tests
is oblivious and will be identified correctly as oblivious with OSM and ISU. One of the tests
is not oblivious, and will be identified correctly with OSM and ISU. Finally, Tag&Apply.yvr
is an oblivious algorithm but important information is occluded during the OSM step, so
ISU needs to be introduced to un-merge, re-execute and achieve the correct result. The
length of the private data was 8 for each of the benchmarks.

https://github.com/gprechter/youverify/tree/api_oblicheck
https://github.com/gprechter/youverify/tree/api_oblicheck

CHAPTER 5. PROTOTYPING OBLICHECK WITH YOUVERIFY 41

Table 1: ObliCheck Implementation Runtime Speedup

Source File MultiSE | ObliCheck (OSM) | ObliCheck (OSM + IUM)
Tag.yvr (Oblivious) 70s 5.2s 5.4s
Tag.yvr (Not Oblivious) 49s 8.7s 38s
Tag&Apply.yvr (Oblivious) | 4409.1s 34.8s 2004.4s

In Table 2 MultiSE results in the correct result, either oblivious (O) or not oblivious
(X). In the Tag&Apply.yvr example, with OSM there is an erroneous false negative, but
this is corrected with OSM and TUM.

Table 2: ObliCheck Implementation Accuracy

Source File MultiSE | ObliCheck (OSM) | ObliCheck (OSM + IUM)
Tag.yvr (Oblivious) O O O
Tag.yvr (Not Oblivious) X X X
Tag&Apply.yvr (Oblivious) O X O

42

Chapter 6

Conclusion

In this project report, I presented YouVerify, a new IR and framework for developing cus-
tom symbolic execution tools and algorithms. Having learned about symbolic execution
and the process required for modifying symbolic execution algorithms through my work on
ObliCheck, I identified a number of features to strive for while developing the IR and frame-
work. Namely, YouVerify is purposefully a simple intermediate representation rather than
just a framework on an existing language to leave the door open to developers implementing
compilers from a target language to the IR. YouVerify is also designed to be directly sup-
ported by the underlying family of SMT-Lib solvers such that no language features cannot
be represented. Perhaps most importantly, YouVerify was designed to be modifiable and
extensible and is packaged with an API that is intended to give a developer a lot of control
on the symbolic execution algorithm without having to worry about the interpreter.
Another major component of the project was verifying the implementation of YouVerify
to ensure that it operated properly. I hope that the provided test suite is also able to help
developers guide and verify their own implementations of symbolic execution algorithms in
the future. Finally, some of the symbolic execution enhancements from ObliCheck (opti-
mistic state merging & iterative state un-merging) were implemented on-top of a MultiSE
implementation to demonstrate the effectiveness of the framework and its API.

Takeaways

I learned a lot working on YouVerify during my 5th Year Masters. One of the highlights of
working on the project was the emphasis placed on testing and verifying the functionality of
the framework. Test-driven development served as a north star to guide the implementation,
and I believe that focusing on testing has made me a better software engineer.

I also got a lot of exposure to symbolic execution and similar techniques. Having worked
on ObliCheck, that project inspired me to work on this project with the aim of enhancing
the experience of working with the technique, but actually having worked on the framework
and making decisions about the API was a very rewarding process and taught me a lot about
the different optimizations that symbolic execution tools use.

43

Bibliography

Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In: 51.3 (May
2018). 18sN: 0360-0300. pOTL: 10.1145/3182657. URL: https://doi.org/10.1145/3182657.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org. 2016.

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—a Formal System
for Testing and Debugging Programs by Symbolic Execution”. In: SIGPLAN Not.
10.6 (Apr. 1975), pp. 234-245. 18SN: 0362-1340. pot: 10.1145/390016.808445. URL:
https://doi.org/10.1145/390016.808445.

David Brumley et al. “BAP: A Binary Analysis Platform”. In: Computer Aided Verifi-
cation. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 463-469. 1SBN: 978-3-642-22110-1.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Auto-
matic Generation of High-coverage Tests for Complex Systems Programs”. In: Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and Implementation.
OSDI. San Diego, California: USENIX, 2008, pp. 209-224. URL: http://dl.acm.org/
citation.ctm?id=1855741.1855756.

Cristian Cadar et al. “EXE: Automatically Generating Inputs of Death”. In: ACM
Trans. Inf. Syst. Secur. 12.2 (Dec. 2008). 1SSN: 1094-9224. por: 10.1145 /1455518 .
1455522, URL: https://doi.org/10.1145/1455518.1455522.

Klint Finley. Python Is More Popular Than Ever. 2020. URL: https://www.wired.com/
story /python-language-more-popular-than-ever (visited on 11,/30,/2020).

José Fragoso Santos et al. “Gillian, Part i: A Multi-Language Platform for Symbolic
Execution”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2020. London, UK: Association for Com-
puting Machinery, 2020, pp. 927-942. 1SBN: 9781450376136. DOIL: 10.1145 /3385412,
3386014. URL: https://doi.org/10.1145/3385412.3386014.

https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/390016.808445
https://doi.org/10.1145/390016.808445
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://www.wired.com/story/python-language-more-popular-than-ever
https://www.wired.com/story/python-language-more-popular-than-ever
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014

BIBLIOGRAPHY 44

[9]

[10]

[11]

[12]

[13]

[17]

[18]

[19]

Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated Ran-
dom Testing”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’05. Chicago, IL, USA: Association for
Computing Machinery, 2005, pp. 213-223. 1SBN: 1595930566. DOI: 10.1145/1065010.
1065036. URL: https://doi.org/10.1145/1065010.1065036.

W.E. Howden. “Symbolic Testing and the DISSECT Symbolic Evaluation System”.
In: IEEE Transactions on Software Engineering SE-3.4 (1977), pp. 266-278. DOI: 10.
1109/TSE.1977.231144.

James C. King. “A New Approach to Program Testing”. In: SIGPLAN Not. 10.6 (Apr.
1975), pp. 228-233. 18sN: 0362-1340. por: 10.1145/390016.808444. URL: https://doi.
org/10.1145/390016.808444.

James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7
(July 1976), pp. 385-394. 1sSN: 0001-0782. DOT: 10.1145/360248.360252. URL: https:
//doi.org/10.1145/360248.360252.

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis Transformation”. In: Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-Directed and Runtime Optimization.
CGO ’04. Palo Alto, California: IEEE Computer Society, 2004, p. 75. 1SBN: 0769521029.

Petar Maksimovi¢ et al. “Gillian, Part II: Real-World Verification for JavaScript and
C”. In: Computer Aided Verification. Ed. by Alexandra Silva and K. Rustan M. Leino.
Cham: Springer International Publishing, 2021, pp. 827-850. ISBN: 978-3-030-81688-9.

Noah Moroze. “Kronos: Verifying leak-free reset for a system-on-chip with multiple
clock domains”. PhD thesis. Massachusetts Institute of Technology, 2021.

Terence Parr and Kathleen Fisher. “LL(*): The Foundation of the ANTLR Parser
Generator”. In: SIGPLAN Not. 46.6 (June 2011), pp. 425-436. 1sSN: 0362-1340. DOL:
10.1145/1993316.1993548. URL: https://doi.org/10.1145/1993316.1993548.

Griffin et al. Prechter. “CS 294-163 Final Paper — ObliCheck: An Automatic Verifi-
cation Tool for Oblivious Algorithms”. In: (2019).

Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing Engine
for C”. In: SIGSOFT Softw. Eng. Notes 30.5 (Sept. 2005), pp. 263-272. 1SSN: 0163-5948.
URL: https://doi.org/10.1145/1095430.1081750.

Koushik Sen et al. “Jalangi: A Selective Record-Replay and Dynamic Analysis Frame-
work for JavaScript”. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ESEC/FSE 2013. Saint Petersburg, Russia: Association for
Computing Machinery, 2013, pp. 488-498. I1SBN: 9781450322379. DOI: 10.1145/2491411.
2491447. URL: https://doi.org/10.1145/2491411.2491447.

https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1145/390016.808444
https://doi.org/10.1145/390016.808444
https://doi.org/10.1145/390016.808444
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1993316.1993548
https://doi.org/10.1145/1993316.1993548
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447

BIBLIOGRAPHY 45

[20]

[21]

[22]

[23]

[24]

[25]

Koushik Sen et al. “MultiSE: Multi-Path Symbolic Execution Using Value Summaries”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing. ESEC/FSE 2015. Bergamo, Italy: Association for Computing Machinery, 2015,
pp. 842-853. 1SBN: 9781450336758. DOI: 10.1145/2786805.2786830. URL: https://doi.
org/10.1145/2786805.2786830.

Jeongseok Son et al. “ObliCheck: Efficient Verification of Oblivious Algorithms with
Unobservable State”. In: 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 2219-2236. ISBN: 978-1-939133-24-3. URL: https:

/ /www.usenix.org/conference /usenixsecurity21/presentation /son.

Dawn Song et al. “BitBlaze: A New Approach to Computer Security via Binary
Analysis”. In: Proceedings of the 4th International Conference on Information Sys-
tems Security. ICISS ’08. Hyderabad, India: Springer-Verlag, 2008, pp. 1-25. ISBN:
9783540898610. DOT: 10.1007/978-3-540-89862-7 1. URL: https://doi.org/10.1007/
978-3-540-89862-7 1.

Emina Torlak and Rastislav Bodik. “A Lightweight Symbolic Virtual Machine for
Solver-Aided Host Languages”. In: SIGPLAN Not. 49.6 (June 2014), pp. 530-541.
ISSN: 0362-1340. DOL: 10. 1145 /2666356 . 2504340, URL: https://doi.org /10. 1145/
2666356.2594340.

Emina Torlak and Rastislav Bodik. “Growing Solver-Aided Languages with Rosette”.
In: Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming Software. Onward! 2013. Indianapo-
lis, Indiana, USA: Association for Computing Machinery, 2013, pp. 135-152. ISBN:
9781450324724. por: 10. 1145 /2509578 .2509586. URL: https:/ /doi.org/10.1145/
2509578.2509586.

Rui Zhang and Cynthia Sturton. “A Recursive Strategy for Symbolic Execution to
Find Exploits in Hardware Designs” In: Proceedings of the 2018 ACM SIGPLAN
International Workshop on Formal Methods and Security. FMS 2018. Philadelphia,
PA, USA: Association for Computing Machinery, 2018, pp. 1-9. 1SBN: 9781450358330.
DOI: 10.1145/3219763.3219764. URL: https://doi.org/10.1145/3219763.3219764.

https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2786805.2786830
https://www.usenix.org/conference/usenixsecurity21/presentation/son
https://www.usenix.org/conference/usenixsecurity21/presentation/son
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1145/2666356.2594340
https://doi.org/10.1145/2666356.2594340
https://doi.org/10.1145/2666356.2594340
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/3219763.3219764
https://doi.org/10.1145/3219763.3219764

	Contents
	List of Figures
	List of Tables
	Introduction
	Symbolic Execution
	Applications of Symbolic Execution
	YouVerify: An Intermediate Representation for Symbolic Execution

	Background and Related Works
	Symbolic Execution Tools and Solver-Aided Languages
	MultiSE multise
	ObliCheck oblicheck, cs294

	YouVerify
	Design
	Language Features
	Syntax
	Implementation Details
	Symbolic Execution Algorithm
	API

	Testing and Verification
	Overview of Tests
	Testing Setup and Process
	Evaluation on KLEE Test Cases
	Framework Coverage Testing

	Prototyping ObliCheck with YouVerify
	Implementation Overview
	Evaluation

	Conclusion
	Bibliography

