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Abstract

Speaking Truth to Power

by

Noah Klugman

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Associate Professor Prabal Dutta, Chair

Professor Eric Brewer, Co-chair

Electricity is increasingly considered to be a human right. However, in much of the world,
basic data about power outages and voltage quality is not available, making it difficult to
ensure reliable service. Smart meters are difficult to deploy and slow to be adopted in
lower-resourced areas, the same areas where frequent outages and voltage sags most impede
economic growth.

In this work, I present evidence that by aggregating simple measurements from networked
sensors installed at outlets in households and businesses, we can detect both large and small
power outages and power-quality issues, enabling a utility-independent, agile, high-resolution,
and low-cost system well suited for deployment in under-instrumented areas.

I design, deploy, and operate a large network of sensors—called PowerWatch—at outlets in
households and businesses across Accra, Ghana. I show that this deployment, when coupled
with cloud-based analytics, matches utility-reported rates of high- and medium-voltage outages
at a fraction of the cost. Further this methodology provides a good estimate of low-voltage
outages, potentially filling a critical data gap present in most countries.

The deployment methodology developed allows for longitudinal data to be gathered inde-
pendently from the utility. Utility engineers are not required for sensor installation, and
permission is not required as utility property is not impacted. I describe a number of novel
measurement and analysis opportunities enabled by this independent deployment method-
ology, many of which are being piloted by nLine, the company I co-founded to continue
improving this work.

Data from PowerWatch is being used by multiple governments and research institutions,
including as a primary source for the Monitoring and Evaluation of the $315 Million USD
MCC led Ghana Power Compact.
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“My holy of holies is the human body, health,
intelligence, talent, inspiration, love

and absolute freedom – freedom from violence and falsehood,
no matter how the last two manifest themselves.”

also

“Reason and justice tell me there’s more love for humanity
in electricity and steam than in chastity or

vegetarianism.”

— Anton Chekhov
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2.35 textbfU.N. Energy Compact Stakeholders. Figure is a screen capture from the
“Energy Compact Overview” by the United Nations, as of October 26, 2021 [177] 41

2.36 Utility applications enabled by different temporal resolution data. Figure
is a screen capture from The U.S. Department of Energy document “2018 Smart
Grid System Report: 2018 Report to Congress” [13]. In this timeline, different
utility applications are shown based on their required temporal resolution. Power-
Watch, which currently achieves temporal resolution in the seconds, is therefore
suited for supporting utility applications from the center of this timeline forward. 42

2.37 Table to support utility cost/benefit analysis of reliability data. Table
from “Guidebook for Cost/Benefit Analysis of Smart Grid Demonstration Projects,”
by the Electric Power Research Institute for the U.S. Department of Energy [49]. 43

2.38 Table to support customer cost/benefit analysis of reliability data. Table
from “Guidebook for Cost/Benefit Analysis of Smart Grid Demonstration Projects,”
by the Electric Power Research Institute for the U.S. Department of Energy [49]. 44

2.39 Regulators are present in most countries reporting SAIDI and SAIFI
in Sub-Saharan Africa. Figures remade from “Digitalization and the Use of
Technology in the Electricity Sector” published by the World Bank Malaysia Hub
in 2020, see [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.40 Discussions about climate change impact willingness to pay. Figure
captured from “Discussion Sways Participants On Climate Change,” by NORC
at the University of Chicago [189]. Across all demographic groups considered, a
discussion on climate change improved willingness to use less electricity and pay
more in taxes and energy costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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2.43 Two-way mobile communication offered by Kenya Power and Light
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2.44 An estimated 300K to 1.5M people search “power outage” each month
in the United States. Figure is a screen capture from the Moz Keyword Explorer
[202]. We see a large monthly volute for the search term “power outage” and that
this volume is driven by traffic to outage maps at large utilities [202]. . . . . . . 52

2.45 Voltage problems change purchasing patterns. Figure is a screen capture
from Jumia, a popular online retailer in Kenya, after a keyword search for “fridge
guard” [205]. These devices provide stability for important appliances and are often
necessary purchases. On December 17, 2021, the day this Figure was captured, 1
USD was 113 KSh [206]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.46 Research framework compiled from survey of recent academic publica-
tions. From ”Electric grid reliability research” in Energy Informatics [209]. This
framework was built from a review of 503 recent papers on electricity reliability.
The authors explain: “The first theme, energy efficiency, drives the evolution
of smart energy-saving systems. The second theme, renewable-energy supply,
drives the advancement of smart grids. Finally, the third additional theme, service
reliability, drives smart-grid reliability and resiliency” [209]. . . . . . . . . . . . 55

2.47 Upcoming research and development needs to modernize the grid. Figure
is a screen capture from the US Department of Energy “Quadrennial Technology
Review 2015” [210]. This table contains the steps needed to transition to a modern
grid in the US as well as and the research directions required to take these steps
[210]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.48 Table to support cost/benefit analysis of applications often consid-
ered beneficial for addressing climate change. Table from “Guidebook for
Cost/Benefit Analysis of Smart Grid Demonstration Projects,” by the Electric
Power Research Institute for the U.S. Department of Energy [49]. The blue
“Benefits” columns describes, from the utility perspective, economic, reliability,
environmental, and safety benefits available. The purple “Application” categories
describe different applications often proposed as part of a climate change solution
[238]. Of the three applications, Electricity Storage has the most indicated benefit
to reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.49 Electricity plays a significant role in emissions. Figure from the U.S. Envi-
ronmental Protection Agency, see [236]. Better efficiency will reduce energy that
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2.50 Africa contributes around 3% of global CO2 emissions. Figures from
“Each Country’s Share of CO2 Emissions” published by the Union of Concerned
Scientists[ucs] Emissions causing climate change largely stem from outside of
Africa and South America. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.51 A striking number of countries in Africa do not report per capita energy
consumption from renewable generation. Figure from Our World In Data,
see [251]. Data on renewable usage is critical for ensuring long-term sustainability
and can not be another generation of technology away if aggressive climate and
social justice goals are to be met (many of which are targeting countries in Africa
specifically) [se4all˙behind, 4, 5, 180]. . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 An ad for the Ghana Power Compact This ad, funded by the Ghana Power
Compact, was one of many placed around Accra to raise awareness and support
for the work underway[264]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Treatment and Control Sites Distribution of treatment and control sites across
Achimota district. Locations were chosen in part based on information about
where SMEC will be injecting new transformers during their low-voltage line
bifurcation project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Overview of deployment. To support the goals of the deployment, our team
selected sites that were being improved by the Ghana Power Compact and selected
control sites. The technology was deployed in both sites along with surveys at the
beginning and end of the deployment. This deployment strategy allowed us to
meet our goals of evaluating the impact of grid improvements on power reliability
and the socioeconomic impact of that reliability on consumers. . . . . . . . . . . 72

3.4 The dataflow for the deployment. While traditional surveying methods have
a linear data flow where data is exported for later analysis, the integration of
continuous sensing in the deployment generated feedback loops which created
more places where state was stored and greater need to communicate this state,
and amplified issues with errors during surveying. We implemented a deployment-
management system to alleviate these problems. Red arrows show data flows
that we first attempted to perform manually and later automated or facilitated
with a deployment management tool. Blue arrows show data flows that we
automated from the beginning because we anticipated their complexity before the
medium-scale deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Some of the deployment meta systems. In (a) we see a method used to ensure
field officers received and properly notated a participant’s phone number, a critical
step because this was how incentives were transferred and sensor maintenance
was scheduled. In (b) we see an blank view into the deployment-management
system, where field officers could view the state of the deployment in real time
and autonomously schedule participant check ups. . . . . . . . . . . . . . . . . 74
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3.6 A typical site We deploy 3 PowerWatch in each site and data can be grouped so
that only data collected in this site is analyzed. Sites are selected using criteria
described across Evaluation Design Reports of Mathematica Policy Research
[mathematica-edr] and UC Berkeley[ucb-edr] . . . . . . . . . . . . . . . . . . 75

3.7 PowerWatch Deployment Area. Sensors were deployed in three of 26 districts
in Accra. The deployment covered an area of approximately 130 square kilometers.
This deployment was subsequently increased to 1,400 sensors and a much wider
area by nLine, a startup I co-founded. . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Deployment methodology of sensors. By randomly sampling households and
firms under a transformer, sensors can detect high-voltage (HV), medium-voltage
(MV), and a significant portion of low-voltage (LV) outages. Sensors might not
detect single phase outages, as in the bottom outage of (d), because our sampling
did not guarantee sensors were distributed across all possible phases in practice,
due to both the difficulty of identifying the phase(s) to which a service was
connected and manual phase switching by a household or firm. Sensors estimate
the average frequency and duration of outages, which include both single-phase
and service-level outages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Field officers in uniform. Branding and messaging was especially important
as the quality of our sample depends on long term positive relationships with
participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 PowerWatch as deployed. (a) PowerWatch PCB with cellular radio, SD card,
and sensing circuits. (b) Assembled PowerWatch sensors with QR code scanned at
installation to associate the sensor with a participant. (c) A field officer installing
a PowerWatch sensor at a household outlet. . . . . . . . . . . . . . . . . . . . . 80

4.2 PowerWatch System Architecture. PowerWatch measures the grid by plugging
in at outlets in homes or businesses, transmitting data about power quality over
the cellular network, and clustering the data based on temporal and spatial
characteristics of power outages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Evolution of PowerWatch with each deployment. PowerWatch revision
A consisted of an off-the-shelf compute/communication module and enclosure
(A.1) and paired with a custom sensor front-end (A.2). Data from this revision
informed the need for a better enclosure and more casing in revision B, which
consisted of a custom sensing and communication board (B.1), enclosure with
externally plugged power supply (B.2), and a separate grid voltage and frequency
sensor (B.3). While the separate grid voltage and frequency sensor allowed for
easier assembly, its complications led us to build revision C, a completely-encased
custom sensor which plugs directly into the wall, to sense grid voltage and frequency. 82
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4.4 Early Engineering Dashboard This is accessed using a web browser. The table
towards the top of the screen lists all sensors, the time since the last data received,
the total time it has been deployed, and its current battery life. The bottom graph
shows a time series representation of all PowerWatch devices. The orange line is
all of the devices. The green line is all devices that believe the power is on. The
blue line is all devices that believe the power is off. There are two outages present
in this view, which can be seen as a spike in the blue line as more devices report
that the power is off and a dip in the green line as less devices report power is
on. While not the most aesthetically pleasing, it allowed us to handle medium to
large scale deployments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 PowerWatch data visualization Figure is screen capture from nLine’s data
visualization system[nline-dataviz] With the goal of supporting non-technical
users, this dashboard was developed to allow for spatial and temporal queries to
be trivially run, visualized, and analyzed across the PowerWatch dataset. nLine
has since performed multiple training’s with utility and regulator stakeholders in
Ghana on using this tool and will be making it available over the next year. . . 85

4.6 Two testbeds. In (a) we see an early, small test bed, and in (b) we see our
testbed from two years later. As the technology has developed, supporting systems
had to improve (see Chapter 6) and opportunities for further optimization like
the tighter timing shown in Figure 4.8 arose frequently. . . . . . . . . . . . . . . 86

4.7 Time range of testbed outages. A testbed of sensors and programmable outlets
generated two hundred outages of various sizes in a controlled setting. We observed
the precision of outage timestamping, noting that for any given outage sensors
may report that the same outage occurred up to 100 s apart. This allowed us
to parameterize clustering algorithms used to detect outages in the field. Newer
firmware reduces temporal variance to less than 10 s. . . . . . . . . . . . . . . . 87

4.8 Time range of testbed outages with improved firmware. Improved firmware
decreased the variance to closer to what would be expected, although leaving
room for improvement in firmware optimization. . . . . . . . . . . . . . . . . . . 87

4.9 Number of sensors reporting throughout the deployment. Failures are
either user unplugs (sensed by the accelerometer), sensors dying due to unsensed
unplugs (such as those that occur when the wall switch is flipped), or unknown
failures (likely also due to participants unplugging or turning off the sensors, as we
observed no hardware or long-term software failure in collected sensors). Initial
deployments occurred in June 2018, with some sensors retrieved in December 2018.
Additional sensors were deployed in February and April 2019. Field staff actively
attempted to maintain reliability from April to June 2019, greatly reducing the rate
of sensor failure. Even without field staff support, the rate of failure lessened over
time, demonstrating that our deployment methodology is sustainable if properly
over-provisioned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xv

4.10 Packet Reception Rate (PRR). PRR was calculated by comparing each
sensor’s expected reporting interval and sequence numbers with data received.
Jumps in sequence number, or periods sensors did not report when expected,
indicated a transmission failure due to lack of cellular connection or bugs in
the firmware. Sensors were not included after permanent failure, and PRR was
increased by local queuing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11 Time to acquire first successful GPS fix. Note CDF axis stops at 0.8. From
462 sensor deployments, over 17% achieved a fix within the first hour after their
deployment began, and over 29% within the first day. Over 65% achieved a fix
within 30 days. The remaining 11% that achieved a fix were spread over 300
additional days. In 23.2% of the deployments the sensors never achieved a GPS fix. 90

5.1 PowerWatch captured an outage reported in the news. PowerWatch sen-
sors and clustering algorithms perfectly captured a power outage event (“dumsor”)
reported by GhanaWeb, a popular news source, to have occurred “around 21:00”
on March 14, 2019 [291]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 PowerWatch captured a period of instability under investigation by the
Public Utilities Regulatory Commission of Ghana (PURC). (a) is a screen
capture of a public notice posted by PURC about the launch of an investigation
into a period of disruption that occurred from 06/02/21 to 06/09/21. (b) shows
data collected by PowerWatch. On the left of the display, SAIDI and SAIFI from
the same week-long period the prior year (06/02/20 to 06/09/20) is shown to be
much less than SAIDI and SAIFI from the week under investigation. . . . . . . 94

5.3 Distribution of times between individual sensor unplug reports. Over
40% of sensor unplugs occurred within 100 seconds (102) of another unplug report.
Additionally, the flat section in the middle of the graph indicates that sensor
unplug reports occurred largely in two modes: those highly correlated in time
with other unplug events, and those occurring much more randomly in time. We
believe the temporal correlation is due to outages, and that the presence of this
correlation can be used to separate true unplug events from those not caused by
grid failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Voltage, frequency, and number of WiFi networks before and after an
outage. We time-aligned and averaged the voltage, frequency, and number of
WiFi networks observed by PowerWatch sensors during small (clusters of 3 sensors)
and large (clusters of 40 sensors) power outages and restorations. Sensors were
“near” an outage if they were in the same site as a sensor in the outage. Voltage
and frequency were not measured for sensors experiencing an outage. As cluster
size increased, we observed that sensors not near an outage detected changes in
frequency and voltage in response to the change in demand associated with an
outage or restoration event. The change in number of nearby WiFi signals was
similar–decreasing on outage and increasing on restoration. Together these signals
corroborated that outages detected by PowerWatch were true outages. . . . . . 97
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5.5 Comparison of PowerWatch S-SAIFI to the utility-reported SAIFI in
quarter 3 of 2018. Our large outage clusters closely compared to the combined
medium- and high-voltage SAIFI reported by ECG, while low-voltage outages
(small outage clusters) sensed by PowerWatch greatly exceeded low-voltage SAIFI
reported by ECG. This provides evidence of the extent of under-sampling by the
utility at the low-voltage level of the grid. . . . . . . . . . . . . . . . . . . . . . 99

5.6 Calculated S-SAIDI ± one standard deviation as sites are removed
from the dataset between June and August 2019. To evaluate whether
PowerWatch covered a sufficient sample of the grid to compute a representative
S-SAIDI, we removed sites from the dataset in 30 rounds and observed the effect
on S-SAIDI. We saw that as sites were removed, standard deviation of S-SAIDI
remained relatively low and the mean value of S-SAIDI dropped slightly. . . . . 101

5.7 Coverage dropout study from June to August 2019. To evaluate the outage
detection coverage of PowerWatch, we performed a dropout study, removing sites
from our dataset and observing the impact of those removals. Specifically, we
looked at the number of “additional sensors” that had been part of an outage
cluster prior to the dropout, but which were no longer after a site was dropped.
Intuitively, if removing a site causes many outages to either not be formed or
shrink significantly in size, that would indicate that the site was essential to detect
the correct extent of an outage and that we might be undersampling. During this
time period, with no sites removed, there were 1,383 reports from sensors involved
in outages of size ≤ 3; 1,030 reports from sensors involved in outages of size > 3
and ≤ 10; and 3,969 reports from sensors involved in outages of size > 10. We
observed that for outages containing more than three sensors, nearly 20 sites could
be removed from our dataset before we started missing reports from additional
sensors. This indicated we had deployed sufficient sensors to detect medium- and
high-voltage outages, but, as expected, we did not have a high degree of coverage
on the low-voltage network and needed to rely on sampling to estimate its reliability.102

5.8 Number of sensors reporting outages in a densely-instrumented site. To
better understand the limits of our low-voltage sampling, we deployed 25 sensors
in a single site (under a single transformer) for two months and observed the
results. We saw two groups of outages: larger outages, which impacted all or a
significant portion of the site, and smaller outages, which might be a single phase
or smaller. Larger outages comprised about 60% of the outages at this site, while
smaller outages made up about 40%. This suggested that our primary deployment
strategy of three sensors per site detected many, but not all, low-voltage outages. 103



xvii

5.9 All outages PowerWatch detected from June 2018 to September 2019.
The outages are visualized on a timeline where the y axis shows the size of the
outage (as the number of sensors impacted) on a log scale. Small perturbations
are added to the location of the lines to make it easier to distinguish outages of
the same size. PowerWatch detected 3,123 outages with an average duration of
1.7 hours. The longest outage lasted over 48 hours. The largest outage impacted a
nearly-80 km2 area, representing two-thirds of our deployed sensors. . . . . . . . 104

5.10 The number of hours respondents experienced below the target voltage
band (207Vrms) per day. These measurements contain both the periodic 2
minute measurements as well as measurements taken on outage and restoration
across 420 PowerWatch detects that 18% of voltages sensed are outside the desired
range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.11 Frequency in sample is unstable. We see that while a majority of our samples
are within the acceptable range around the nominal 50 HZ, there are still a
significant number of readings that represent deviations beyond the acceptable
range of 49.8 to 50.2 HZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.12 The average voltage (V) for participants, by month, in each district of
Accra with PowerWatch sensors. Includes data collected by the initial Power-
Watch deployments described in this work and in the 2019 COMPASS paper [297],
as well as additional data, analysis, and text produced by nLine from a commercial
deployment of about 1,400 PowerWatch in Accra [updated-inception-report,
298]. Sensor voltage levels are averaged per participant, then collected and plotted
as box plots for each month in each district. Outlier bars represent minimum and
maximum average voltages, the green triangle represents the mean of the dataset,
and the orange line represents the median. Seasonal trends are observed, as well
as long-term voltage level improvements in Achimota and Kaneshie, especially
for the lower quartile of participants. More analysis is necessary to attribute the
underlying cause of these improvements. . . . . . . . . . . . . . . . . . . . . . . 106
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5.13 Daily Hours Undervoltage per Respondent (hours below 207 Vrms) vs
Time (year-month) by District of Accra This includes data collected by the ini-
tial PowerWatch deployments described in this work and in the COMPASS 2019 pa-
per[297] as well as additional data, analysis, and text produced by nLine from a com-
mercial deployment of around 1400 PowerWatch in Accra[updated-inception-report,
298]. The average number of hours per day under the target voltage (207 Vrms)
experienced by participants every month in each district. The number of hours
per day under target voltage is calculated every day for each participant, then
collected and plotted as box plots each month in each district. Outlier bars
represent minimum and maximum average hours, the green triangle represents
the mean, and the orange line represents the median of the dataset. Hours under
target voltage better captures the performance of the grid under peak load than
the average voltage. As with the average voltage, seasonal trends are observed, as
well as long-term voltage stability improvements in Achimota and Kaneshie. More
analysis is necessary to attribute the underlying cause of these improvements.
Mampong has notably stable voltage with the exception of a few outliers, with
nearly all Mampong participants receiving voltage consistently within the target
range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.14 Lorenz curves show us power-quality fairness across our participants.
Work in progress from “Disaggregated power quality data reveal systemic inequality”
by Adkins et. al (including myself) [299]. Lorenz curves for the four power-
reliability and -quality metrics across the analysis sites exhibit inequality similar
to those reported in other countries, and over larger geographic regions in Sub-
Saharan Africa [301]. We note that as power quality worsens, so to does inequality
of that measurement. We hypothesize that this is due to low power quality
consistently impacting specific pieces of infrastructure. . . . . . . . . . . . . . . 108

5.15 Heterogeneity in socioeconomic and power-quality indicators. Work in
progress from “Disaggregated power quality data reveal systemicinequality” by
Adkins et. al (including myself) [299]. Examples of power reliability, population,
and demographic data split into analysis sites. The presence of inequality in
power-reliability and -quality metrics is clear, and some visual correlation can be
drawn between power measurements and demographic indicators. . . . . . . . . 109

5.16 Exploring “reliability climates” and the impact of aggregated metrics
like SAIDI and SAIFI. Work in progress from “Disaggregated power quality
data reveal systemic inequality,” by Adkins et. al ( including myself) [299]. This
figure shows the error between per-site number and duration of outages and SAIFI
and SAIDI metrics aggregated to the district level. We note that the distribution
of sites below the mean is wider than those above the mean, indicating that a
relatively small proportion of the population experiences significantly worse power.109
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6.2 The PowerWatch assembly line. Over the course of four weeks, 10 undergrad-
uates worked 110 person-hours to assemble 295 PowerWatch sensors. They were
responsible for assembling the plug; screwing together the enclosure; attaching
the circuit board; connecting the battery, antenna, SIM card and SD card; and
provisioning the device with base firmware. They worked from team-created
assembly manuals and training materials. . . . . . . . . . . . . . . . . . . . . . . 118

7.1 COVID-19 vaccine doses administered per 100 people. Figure is a screen
capture from “ published by Our World In Data [319]. The gap across Africa is
striking and brings to mind similar patterns in figures about grid reliability (like
Figures Figure 2.51 and Figure 2.12). . . . . . . . . . . . . . . . . . . . . . . . 123
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5.1 Number of powered sensors within the convex hull of an outage. Across all
sizes of outages, very few powered sensors–at most 2–fall within the convex hull of
a detected outage. This gave us confidence that outages detected by PowerWatch
were true outages as we would not expect sensors within an outage area to be
powered beyond anomalies such as the presence of a generator or concave grid
shapes where separately-powered infrastructure encroached into the convex hull
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5.2 Co-reporting rates and voltage correlation scores of sensors under
the same infrastructure. We identified sensors under the same infrastructure
using maps available for a subset of the grid. We found that sensors under the
same infrastructure experience higher rates of outage co-reporting. Similarly, a
correlation on the first-differences of the reported voltage increased for sensors
located under more-local infrastructure. This provided evidence that electrical
connections were discernible from our data stream, and that applications such
as automated topology detection and subsequent root-cause analysis might be
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5.3 Equality of power reliability and quality metrics when comparing across
four population weights and various demographic metrics. Work in
progress from “Disaggregated power quality data reveal systemic inequality,” by
Adkins et. al (including myself) [299]. We evaluate the ratio between the highest
and lowest quartiles (75-25) and the Gini index for four population weights and a
variety of demographic metrics. For all demographic metrics, sites are weighted by
census population, then ordered by the demographic metric before performing the
analysis. Therefore, the census population results serve as a baseline for all demo-
graphic metrics further down the table (marked with a *), and no demographic
metric can exceed the inequality of this first row. We pull out several key findings
from this analysis: (1) power quality is more unequal than power reliability; (2)
low levels of inequality are observed in our dataset with respect to number and
duration of outages; and (3) demographic metrics that are intuitive predictors of
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6.1 Pain points of different scales. At each scale of deployment we ran into pain
points—complexities that we perceived to be more difficult than would be expected
by a simple increase in deployment size. We encountered many at the transition
to medium scale, when local capacity needed to be built, expenses to operate the
technology increased, lack of technical reliability became much more apparent,
and systems that could once be human-operated had to be automated. Large scale
brought new problems, the most notable being the inability to track deployment
state without automated deployment management tools. . . . . . . . . . . . . . 112
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Chapter 1

Introduction

Electricity has fundamentally and dramatically impacted human history. While the oldest
living generation in the United States may remember their first grid connection, their
grandchildren likely can’t imagine a life without access to lights, refrigeration, television,
computers, and modern medicine. Each of these essential services depends on electricity.
Reliable and affordable electricity has become such a prerequisite for economic growth and
personal well-being that there are increasing calls for electricity to be considered a fundamental
human right [1].

If a reliable grid is something that should be available everywhere, it follows that the data
needed to ensure grid reliability should also be available to quantify the quality of the service.
Basic data about the duration and frequency of power outages helps decision-makers estimate
the cost of power outages to the economy and to society as a whole, and take informed actions
to improve the reliability of the power supply [2]. Further, this data empowers citizens and
allows them “to hold electricity providers accountable” [2]. About 80% of countries collect
data on the frequency and duration of power outages, but of those, only two thirds publish it
[2]. Unsurprisingly, wealthier regions are more likely to both collect and publish this data,
reflecting an economic barrier to entry (shown in Figure 1.1).
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(a) Percent calculating SAIDI and SAIFI (b) Percent publishing SAIDI and SAIFI

Figure 1.1: Although many countries collect data on power outages, very few make
that data public, especially those located in Sub-Saharan Africa. Figures remade
from “Digitalization and the Use of Technology in the Electricity Sector,” published by the
World Bank Malaysia Hub in 2020 [3]. In (a) we can see that High Income OECD economies
are nearly twice as likely to be calculating SAIDI and SAIFI than economies in Sub-Saharan
Africa. In (b) we see that this data is even less likely to be published– only 2/3 of the
population calculating SAIDI and SAIFI in (a) publish data. This reluctance to publish is
seen even in the wealthiest economies. When researchers, regulators, and rate payers can not
access this data, it limits the important roles they play in ensuring reliability [4, 5].

This dissertation presents a scalable and cost-effective method for measuring grid reliability
as experienced by customers, that is, at households and businesses anywhere on earth. Here,
by grid reliability, we mean whether the power is on or off, and if on, the voltage and
frequency at the customer site. But data alone isn’t enough to ensure grid reliability; that
requires proactive actions from stakeholders. To maximize the likelihood that the data
collected will inspire such actions, this work also describes techniques for deploying reliability
sensors, extracting insights from the data stream, and presenting the right insights back to
stakeholders.

1.1 The Importance of Reliability

Electric grids power economic activity throughout the world. However, frequent power outages
and voltage fluctuations leave many consumers and businesses with only a fraction of the
benefits of electrification [6–9]. Neglecting reliability is associated with a reduction in the
demand, utilization, and social benefit of electricity [10].

There is often a line drawn between the needs of developing regions and those of more
developed ones, but regardless of GDP, the need for reliable electricity is palpable. Grid
reliability is intuitively important. Every reader will have experienced at least moderate
inconvenience due to a power outage at some point in life. While even infrequent power
outages and voltage swings have significant costs, a grid that is systemically unreliable—a
reality in much of the developing world and an emerging reality in developed countries (see
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(a) (b)

Figure 1.2: Poor grid reliability quickly impacts popular culture. Picture (a) shows a
recent article about the best tools to purchase for power outages from popular New York
Times-owned recommendation blog Wirecutter [16]. Picture (b) is a photo I took of a billboard
beside a major highway running through downtown San Francisco. Once you start looking, it
is easy to find signs in popular media that energy reliability is something people care about.

Section 2.7)—can have consequences that range from the destruction of appliances to the
destabilization of governments [5, 11–13].

We do not need to look beyond the Electrical Engineering and Computer Science De-
partment at UC Berkeley to observe serious problems caused by grid unreliability. Berkeley
residents began experiencing “public safety power outages” in 2019, designed to help prevent
wildfires. These power outages led to class cancellations [14]. In her 2020 blog post from the
Haas Energy Institute at UC Berkeley, Catherine Wolfram described early results of survey
work conducted at UC Berkeley exploring the costs of the public safety shut-offs. Along with
high monetary costs from increases in generator purchases (nearly 15% of respondents paid
on average $1800 for a generator in the 6 months following the first outages), the survey
found serious non-monetary costs, including “an elderly woman who was hospitalized after
she fell grasping for her flashlight in the dark” and “a couple who couldn’t access their cell
phone to report a medical emergency during the outage” [15].

Elsewhere in the United States, power outages have dramatically impacted health, safety,
and economic development. The largest grid failure in the U.S. is still occurring in Puerto
Rico, four years after Hurricane Maria hit in 2017 [17]. Due to a nearly unbelievable series of
factors, including limited resources, political and bureaucratic missteps, and blatant corruption
[18], much of the island remains plagued by unreliable grids and high cost per kilowatt [19].
Recently, in October 2021, nearly 4,000 people protested, wearing T-shirts that read, “Go to
hell, Luma” (the private utility company tasked with improving the grid in 2018) [20]. The
protesters “clapped or banged on pots while walking behind huge speakers on pickups that
blasted slogans such as, ‘My power went out, damn it, and now my fridge will be ruined’
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(a) (b)

Figure 1.3: Images of frustration due to grid reliability. In (a), protesters demand
better power four years after the grid in Puerto Rico was devastated by Hurricane Maria [23].
Picture (b) is an image posted on the Facebook page of Todos Somos Pueblo, a collection
of 30 Puerto Rican community groups focused on solving the lingering energy crisis on the
island [24].

” [20]. The people of Puerto Rico have real cause to be frustrated; while over $2.4 billion
has been spent to restore the grid since Hurricane Maria, power problems still significantly
impact the ability to do business on the island [21] and, more alarmingly, mortality on the
island has spiked [22].

As horrific as the situation in Puerto Rico is, in the aggregate the U.S., like other wealthy
nations, experiences largely reliable power compared to the rest of the world [reliability, 2, 4,
25]. Still, in an effort aimed in part at improving grid reliability, President Biden signed the
Infrastructure Investment and Jobs Act, H.R. 3684, in 2021 [26]. The $1.2 trillion package
includes nearly $65 billion to subsidize upgrades to domestic power infrastructure [27]. This
type of investment is a promising step toward addressing parts of the U.S. grid that are
nearing the types of system failures, like those experienced by Puerto Rico, that are otherwise
not addressed by the market.

For the utilities and governments that can afford it, large and broadly-targeted investments
like the Infrastructure Investment and Jobs Act, which liberally replace and modernize
equipment, can greatly increase reliability for long periods. We can get a sense of the grid
maintenance costs associated with such a blanket investment strategy by considering that
utility companies in the United States invested approximately $144 billion on their networks
in 2016 alone, an investment equivalent to the 55th largest GDP that year [13].

This level of capital is not available in most countries. In lower-income economies,
investments have mostly focused on improving access to the grid, nearly ignoring reliability
all together until recently (outcomes of which are shown in Figure 1.4) [4, 10, 28, 29]. While
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(a) % Access vs Population (log) (b) % Reliability vs Population (log)

Figure 1.4: Access vs Population, and Reliability of Connection vs Population.
Figure from “Electricity Reliability and Economic Development in Cities: A Microeconomic
Perspective,” see [10]. We see that access, in (a), is clustered more tightly around 100% than
reliability, in (b), indicating a global need either to broaden priorities to include reliability or
improve existing strategies for achieving reliability [10, 30].

access has improved, reliability has not followed, and customers have been slow to adopt
(shown in Figure 2.41).

Even in the wealthiest countries, however, the approach to grid maintenance of large,
non-targeted investments is likely not sustainable [2, 13]. Richard Negrin, a Vice President
of ComEd in Chicago, offers a rather vivid explanation of why periodic infusions of money
alone are not the solution to grid reliability, saying, “The power grid is a living organism. If
you are not building and working on it and giving it the care that it needs, it is dying over
time” [31].

In developing and developed regions alike, grid infrastructure is not getting the care it
needs, and performance is trending downward. Unfortunately, regions with fewer resources
experience worse power on average, with the highest concentration of reliability issues observed
in Sub-Saharan Africa [2, 30]. The African Development Bank observes that “energy sector
bottlenecks and power shortages cost Africa between 2% and 4% of GDP” annually and that
this is “undermining economic growth, employment creation and investment” [32]. In some
countries, including Tanzania and Ghana, the African Development Bank observes 15% GDP
losses “as a result of power outages” [32]. In aggregate across twenty-three countries in Africa,
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power problems increase unemployment by nearly 35%, rising to 55% when considering only
employment in the non-farm sector [33].

Voltage measurements and household surveys support the conclusion that having electricity
access is not the same as having reliable electricity service; the quality of electricity shapes
people’s ability to realize the promised benefits of their “access” [11]. Anecdotally, frequent
outages constrain economic well-being by reducing the benefits from welfare-improving
appliances like fans and refrigerators or income-generating assets like sewing machines.
Voltage fluctuations do the same: sags diminish the value of household appliances, decrease
appliance lifespans, and increase costs, while sudden spikes can break appliances [34]. In
a survey of 151 participants in Zanzibar, households across the socioeconomic spectrum
reported lights that were too dim to be useful and fridges that could not reliably store food
[11]. One participant “reported that his fridge had broken after a power surge. Another
agreed, noting that after a power outage, he came home to a broken television and fridge.
Asked about the lifespan of light bulbs, one participant replied, ‘usually they last about three
months. Electricity goes up and down, up and down. . . so they never last [as advertised].’
Many interviewees echoed this observation. An electric appliance shopkeeper noted that
when customers purchased a fridge without a voltage stabilizer, they often returned to the
store, fridge broken” [11].

The consequences of unreliable electricity extend far beyond economic costs, manifesting
in innumerable ways. For example, nearly 1 billion people are estimated to not have access to
adequate healthcare in low- and middle-income countries due to energy poverty [35]. Ninety
million children go to primary schools without electricity and millions have no light to study
at night. Students in Sudan improved pass rates on their exams from 57% to 97% after one
year with electric lights [36]. Three billion people lack access to electric cooking, forcing them
to rely on polluting alternatives estimated to contribute to over 3.8 million deaths annually
[36]. Much of this harm is preventable, but reliability must improve significantly in the most
resource-constrained areas [37].

1.2 Reliability Requires Grid-Performance Data

Unfortunately, when a grid is systemically unreliable, there is often no quick and easy fix.
Grids are extraordinarily complicated, and the underlying problems causing performance
issues may be difficult to track down using manual processes. Further, investing in improving
service reliability is expensive, and if investments made on reliability do not sufficiently address
underlying problems, there may not be another chance to afford additional improvements for
many years [13].

Many electrical utilities, investors, and energy regulators are already under-resourced
for the enormously complex and expensive task of planning, extending, and operating their
current systems; they cannot easily launch programs to collect the data needed for increasing
reliability [38]. To remedy this, governments and global development organizations are
prioritizing investments to improve electricity reliability in low- and middle-income countries
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(LMICs) [39, 40]. While it is true that power problems are often more likely in lower-income
countries [30], many of the same fundamental improvements to reliability data are equally
needed across high- and low-income countries. Better grid performance data is anticipated
to improve efficiency and reliability in the power sector to such an extent that the United
Kingdom Department of Energy calls this data “fundamental to the future of our economy”
[5].

For many years, the transition to “smart grids,” which include components that auto-
matically collect and respond to data, has been championed as a critical part of improving
reliability [13]. Although the global market for ‘smart’ technologies is forecasted to reach
$92 billion [41], adoption of these technologies has been slow, especially in more financially-
constrained geographies. The U.S. alone spent $10 billion last year on smart meters, while
the sum of spending across all emerging and developing economies was $2 billion [42]. As
a consequence, basic measurements of reliability—the number of outages, the duration of
outages, the number of customers impacted—remain unavailable in many countries, creating
an additional barrier to improving reliability in the countries that suffer the most unreliable
grids [2, 5].

Even in countries with good data on grid performance, plenty of opportunities exist for
improvement. The U.S. Department of Energy delivers a report to Congress every two years
describing key advances in technology that are needed to ensure a more operationally-efficient,
reliable, and resilient power grid. The most recent report identifies the need for better
“modeling and analysis tools for both planning and operations purposes” [43]. Even in the
U.S., where 88% of the population has “smart meters” [43], these new modeling and analysis
tools will depend on “vastly greater amounts of data” [13].

1.3 Thesis Statement

If reliable electricity is really a human right, and ensuring grid reliability and efficiency requires
reliability data, then gathering, analyzing, and reporting this datastream should be important
stakeholders everywhere. However, for many utilities, measurement cost remains prohibitive
and the increased transparency may bring unwanted scrutiny. This leaves stakeholders
dependent on poor estimates of critical data points, including the number of power outages,
the duration of power outages, the location of power outages, the average voltage served, and
the number of voltage spikes and sags in their networks [5]. With high-powered microcontrollers
and low-cost cellular networks both priced for pocket change, the fact that simple but essential
reliability data is often not collected represents a lost opportunity. I therefore present the
following thesis statement:

By aggregating simple, noisy measurements from networked sensors installed at outlets
in households and businesses at the edge of the grid, we can detect large and small power
outages and power-quality issues, enabling a utility-independent, agile, high-resolution, and
low-cost system well suited for deployment in under-instrumented areas.
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I will demonstrate that this technique matches utility-reported rates of high- and medium-
voltage outages at a fraction of the cost. Further, this technique allows for a good estimate of
low-voltage outages, filling a large data-gap. In this way, this work demonstrates a financially-
viable path toward high- and medium-voltage monitoring for the most resource-constrained
utilities.

This thesis is supported by the fact that our sensor deployment in Accra, Ghana, has
been repeatedly extended and expanded by stakeholders. Further, after commercializing
turn-key deployments of our sensor system–called PowerWatch–in 2019, I have successfully
used PowerWatch to gather reliability data in five other countries in Sub-Saharan Africa,
supporting actions of various multilateral energy stakeholders.

Thus, this thesis has been evaluated in multiple contexts and geographies, offering a
blueprint to make automated monitoring of critical infrastructure performance more readily
and equitably available.

1.4 Dissertation Roadmap

The rest of this work is divided into the following chapters:
Chapter 2 gives more background to this work, briefly introducing grids and grid reliability,

current methods of collecting reliability data, and techniques similar to PowerWatch. I discuss
the different stakeholder interests in reliability data, which I have not seen aggregated outside
of this work and which are helpful for understanding some of the constraints influencing
PowerWatch. I conclude by addressing the intersection of reliability data and climate change.

Chapter 3 describes the context in which PowerWatch was developed and deployed, and
the goals of the deployment. I emphasize design decisions in PowerWatch that prioritize scale
over accuracy, including the decision to install the sensors at outlets to maintain independence
from the utility and to reduce deployment costs.

Chapter 4 presents the system architecture of PowerWatch as well as an evaluation of
performance in the laboratory. I again emphasize design decisions in PowerWatch that priori-
tize scale over perfect accuracy, including the decision to use some off-the-shelf components
to bootstrap reliability.

Chapter 5 evaluates the performance of the sensor in the field, demonstrating that a
large-scale PowerWatch deployment is able to match utility-collected ground truth for medium-
and high-voltage outages. I also present early results using data collected by the PowerWatch
deployment. This deployment has been scaled to 1,400 devices and has been running for
nearly 3 years. It is now being used as the highest-resolution data for evaluating a nearly-$500
million USD investment in improving grid reliability in Accra, Ghana.

Chapter 6 describes some lessons learned for conducting similar deployments. Deploying
PowerWatch at scale required significantly more automation than originally anticipated.
I hope this chapter will be broadly useful for avoiding some of those surprises in future
deployments.
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Finally, Chapter 7 describes some takeaways of this work, including new, high-impact
applications enabled by PowerWatch that remain to be explored.
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Chapter 2

Background

This chapter contains much of the technical context referenced in later chapters. This includes
basic definitions, including the definition of reliability, an overview of the structure of the
electric grid, and standard metrics used to measure reliability. I go on to discuss current
sources of data on reliability, including the use of manual tools like surveys and customer calls,
and automated tools like smart meters. I then outline the various stakeholders interested in
data on power outages and power quality. I conclude this chapter by describing the value of
reliability data for both slowing the pace of climate change and preparing for its effects.

2.1 Definitions

While this work is about measuring grid reliability, a task that can be extremely complex,
the following definitions provide enough context to follow the remainder of this dissertation.
Because this dissertation measures grid reliability in Accra, Ghana, I take care to include
and adopt the definition from Ghana when possible.

2.1.1 The Grid

A typical grid encompasses electricity generation (using traditional power plants and/or
renewables), the transmission network (high-voltage lines), and distribution (medium- and
low-voltage lines), as well as transformers to step the voltage up or down. A very simple
model of the grid showing the generation, transmission, and distribution hierarchy, as well as
the high voltage (HV), medium voltage (MV), and low voltage (LV) designations, is shown
in Figure 2.1. Figure 2.2 shows some of the individual components modeled in Figure 2.1 as
photographed in Accra.

In the United States, the American National Standard for Electric Power Systems and
Equipment—Voltage Ratings, or ANSI C84.1, defines low voltage as between 240 V and
600 V; medium voltage as between 2.4 kV and 69 kV; high voltage as between 115 kV and
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230 kV; extra-high voltage as between 345 kV and 765 kV; and ultra-high voltage as 1.1 MV
[44, 45].

In Ghana, the National Grid Code defines low voltage as between 0 V to 1 kV, medium
voltage as from 1 kV to 36 kV, and high voltage as greater than 36 kV [46]. The Ghanaian
definitions are used in this dissertation.

Figure 2.1: Basic model of the grid. In this model we see the grid hierarchy as a function
of voltage level. A few high-voltage lines each serve a large section of the grid; then more-
numerous medium-voltage feeder lines serve smaller subsections of the grid; and then myriad
low-voltage distribution lines serve individual households and businesses through the meter
installed at the service connection. This simple model omits details that are less important for
our primary sensing methodology including phases, customer segments, and the distinction
between transmission and distribution networks.

2.1.2 Power Outages

A power outage is “an interruption in the supply of electricity” [47]. A power outage ends
when the supply of electricity is returned. The duration of the power outage is the length
of time supply was interrupted. The Energy Commission of Ghana defines a disturbance
as: “an unplanned event that produces an abnormal system condition or any occurrence that
adversely affects normal power flow in a system” [48].

The location of the outage can mean two things. The first is the location that the outage
was observed either by a meter or customer, and this is often how outages are discussed
for operations and management applications [13, 49]. The second is the location of the
infrastructure that failed as it relates to the energy-supply hierarchy. This location will be
assigned to the level of the failure (i.e., a high-voltage outage would represent an outage that
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(a) LV, MV, and future HV lines (b) An HV transformer

(c) A 3-phase LV transformer (d) A pre-paid meter

Figure 2.2: Various parts of the energy supply chain that I photographed in Accra.
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occurred due to a failure of a high voltage (33 kV) line, even though this resulted in medium-
and low-voltage infrastructure failing downstream).

2.1.3 Voltage and Frequency

Voltage and frequency standards are set most often at a national level [30, 50]. Around the
world, grids use voltage and frequency combinations of 220-240 V and 50 Hz; 220-240 V
and 60 Hz; 100-127 V and 60 Hz; and 100-127 V and 50 Hz. The two most common grid
configurations are the 100-127 V and 60 Hz configuration used in North America and parts of
South America and the 220-240 V and 50 Hz configuration used across Africa and Asia [51].

The “IEEE Recommended Practice for Monitoring Electric Power,” or IEEE-1159, contains
a summary of power-quality definitions as well as discussions on areas where definitions
are not well standardized [52]. IEEE-1159 is, however, focused on the United States and
may not generalize. The “IEEE Standard Dictionary of Electrical and Electronic Terms,” or
ANSI/IEEE Std 100-1992, is also a valuable resource for a broad range of definitions and
explanations [53].

Voltage

In the United States, ANSI C84.1 provides a national standard for voltage regulation and
defines the nominal voltage range for the U.S. 120 V system as +5% and -3.5%, or 114 V to
124 V [45]. In Ghana, the National Grid Code defines nominal voltage for its 240 v system
as +/-5%, or 228 V to 252 V [46].

A transient voltage disturbance is when the line voltage drops for less than one half cycle
of the waveform. A voltage sag is when the line voltage drops for a duration greater than
one half cycle of the waveform to 500 ms. An event greater than 500 ms is considered an
undervoltage condition [52]. The most common cause of voltage sags is thought to be large
load changes, potentially caused by induction motors [11, 52, 54].

IEEE C62.41.2 “Recommended Practice on Characterization of Surges in Low-Voltage
(1000 V and less) AC Power Circuits” defines voltage surges as: 1) either periodic or random
events, 2) having a duration not to exceed one half-cycle of the normal mains waveform, 3)
able to appear in any combination of line, neutral, or grounding conductors, and 4) able to
“cause equipment damage or operational upset” [55].

Frequency

Frequency stability can be defined as “the ability of a power system to maintain steady
frequency following a severe system upset resulting in a significant imbalance between
generation and load” [56]. This happens when supply (generation) and demand (transmission
and distribution) are not balanced, a condition that often occurs when there are severe system
upsets [56]. Ghana defines a nominal frequency as between 49.8 and 50.2 Hz at all times
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[57]. Grid frequency will become increasingly important to measure as distributed generation
sources become more popular [58].

2.2 Standard Reliability Metrics

Different metrics are appropriate for different system topology, operating conditions, and
research questions, leading to the observation that there is no single best, universal metric of
reliability [59].

Two common metrics of energy reliability are the System Average Interruption Duration
Index (SAIDI) and the System Average Interruption Frequency Index (SAIFI) [60]. These are
key performance indicators for the Ghana Power Compact and therefore the main indicators
estimated in this work. The construction of SAIDI and SAIFI is shown as Equation (2.1)
and Equation (2.2).

SAIDI =
Total duration of sustained interruptions in a year

Total number of consumers
(2.1)

SAIFI =
Total number of sustained interruptions in a year

Total number of consumers
(2.2)

Calculation of SAIFI and SAIDI often requires isolating the metric for a specific stakeholder,
for example a distribution company may calculate SAIDI and SAIFI by first removing any
power-supply interruption caused by a failure or outage (planned or unplanned) in the
generation or transmission networks [61].

SAIDI and SAIFI are relatively coarse metrics. Other common metrics include weighting
outages by customers (such as in the Customer Average Interruption Duration Index, or
CAIDI) or looking at different definitions of outages (such as in the Momentary Average
Interruption Frequency Index, or MAIFI) [62]. Broadly, we find that reliability metrics can
even be different for the household [63–66] and for the firm [59, 63, 67, 68]. Figure 2.3 shows
a slightly modified spreadsheet used by the Electricity Company of Ghana when calculating
SAIDI and SAIFI.
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Figure 2.3: Tool provided by the Electricity Company of Ghana (ECG) as used
to calculate SAIDI and SAIFI for Achimota in September 2018. Figure modified
from data provided by ECG [pilot-report]. The district rarely reports 33 KV and 11 KV
events in these reports. Instead, these are collected at the head office for the entire Accra
West region. Note the SAIFI of 0.03 and SAIDI of 0.01 from LV interruptions, which are 166
times lower than PowerWatch measurements (see Figure 5.5). The format of the spreadsheet
gives hints of other common aggregations (i.e., HV, MV, LV).

In this dissertation, I modify SAIDI and SAIFI by changing the total number of consumers
to be equal to the participants in the outage. The logic behind this, and the new metrics
Subsampled-SAIDI (3.1) and Subsampled-SAIFI (3.2), are described in Chapter 5.

2.2.1 Good Reliability

In their paper “Measuring ‘Reasonably Reliable’ Access to Electricity Services,” Ayaburia
et al. use World Bank SAIDI and SAIFI data from 179 countries to find an average annual
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global SAIDI of 84 hours and SAIFI of 52 [69]. (There are, however, problems with the
accuracy of the World Bank SAIDI and SAIFI estimates which likely impact this average [70,
71].) The authors then propose a 12 hour a year 12 outage SAIDI threshold for “reasonable”
reliability, and calculate that 3.5 billion people live in areas that do not meet this standard [69].
They do not claim that this threshold is correct, in fact they say it likely is not, rather, the
contribution of this work is really in exploring the consequences of selecting some threshold
value of reasonable reliability.

The World Bank proposed a five-tier system using tiers that each are a “combination of
attributes that reflect the performance of the energy supply” (shown in Figure 2.4). Adding
dimensionality to energy metrics collected is widely believed to have been an important and
necessary step for the World Bank to have taken [72]. This work, however, has been highly
controversial due to the World Bank’s choice of attributes, the number of tiers, and other
metholodological issues, slowing down wide-spread adoption [72–74].

Figure 2.4: . Simplified multi-tier matrix of energy access Figure is a screen capture
from “Capturing the Multi-Dimensionality of Energy Access” from the World Bank and
ESMAP [74]. The World Bank proposed this multi-tier framework in 2013. The goal was to
create a weighted index of access to energy for a given geographical area based on multiple
factors. This effort has been praised but its implementation has been controversial [73].

While both the World Bank and Ayaburia et al. proposed thresholds, there is still no global
standard for what “reliable” means. “Resilience Metrics Development for Power Systems”
has a very good discussion of on-going work to define appropriate metrics for reliability that
extend beyond SAIDI and SAIFI to take into account higher-resolution data sources as well
as the concerns of a wide variety of stakeholders.

Metric design is important for protecting and advancing the goals emerging under the
banner of “energy justice” [isa, 75, 76]. SAIDI and SAIFI have been identified as insufficient
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(a) (b)

Figure 2.5: Subsections of two regulations in Ghana. (a) is a screen capture from L.I.
1935 [82] and (b) is a screen capture from L.I. 2413 [83]. In (a), L.I. 1935 specifies the
number of hours annually that power outages are not to exceed for consumers in different
areas. In (b), L.I. 2412 provides the schedule of reports generated by the utility for regulators.

for many pro-consumer applications [77–79]. Higher-resolution data allows for metrics that
incorporate more dimensions of reliability and therefore may be more accurate [5, 13, 73, 80].

Given the lack of clarity around what constitutes “good enough” for number and length
of power outages (in practice meaning “good enough” SAIDI and SAIFI [69]), power quality,
a harder to measure set of signals, is often not prioritized or overlooked entirely [11, 13, 29,
80, 81].

2.2.2 Good Reliability Data

Figure 2.5 shows two regulations from Ghana relating to power outages. Figure 2.5a shows
the order of magnitude for which annual SAIDI and SAIFI raises alarms for regulators. We
can see the time resolution (hours) and the space resolution (distinguishing between cities,
rural, and peri-urban areas). While this does not apply more generally, it does give us a
concrete sense of what is “good enough” in one market.

Figure 2.5b describes the reporting requirements for public utilities, including the specific
reports generated by the utility for the regulator. This fairly significant reporting overhead
motivates the need to make data simple to access and process for busy utilities.

In July 2020, Sustainable Energy for All (SEforALL) hosted a workshop on improving and
standardizing data used by governments and their partners for integrated energy planning
2020 [30]. This conversation appears to have made meaningful progress in advancing the
conversation about reliability data for all regions. I excerpt the resulting report here in



CHAPTER 2. BACKGROUND 18

Figure 2.6: Recommendations for evaluating reliability data quality. Figure is a screen
capture from “Data Standards for Integrated Energy Planning,” see [30]. These takeaways are
from a July 2020 meeting hosted by SEforALL with 65 participants across 28 energy-planning
organizations involved in generating, analyzing, or using energy data [30]. Many of these
recommendations are more achievable using PowerWatch than other available systems.

Figure 2.6 and strongly recommend the full report for further reading.

2.3 Causes of Performance Problems

Overloaded systems are one major source of unreliable power [63]. Overload occurs when a
grid is asked to deliver more power than it is able, typically causing components in the grid
to break and resulting in the loss of service. Overload paired with environmental conditions
has been the root cause of many of the most significant power outages around the world [84].

Outages are frequently caused deliberately by utilities that are unable to meet demand,
in order to prevent harm to the grid [64, 85]. These blackouts, although scheduled, do little
to solve the greater problem of access to reliable power, and they will get worse in the face of
increasing demand [86].
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Figure 2.7: Causes of blackouts in the United States Table from ”Weather-Related
Power Outages and Electric System Resiliency” for the Congressional Research Service, see
[87].

2.4 Existing Data Sources

There are several popular methods of gathering basic reliability data. Manual methods include
relying on customer calls to a call center; directly surveying customers; and performing spot
measurements with handheld tools or with installed, simple analog meters. Automated
methods include placing sensors on infrastructure or using “smart meters” to automatically
collect and transmit billing and power-quality data back to a utility company.

While utilities in high-income countries have augmented grids with increasingly advanced
sensors and utilities in lower-income economies have limited instrumentation due to budget
constraints, across the income spectrum data is not as available as it needs to be [13, 29, 30,
49, 88]. Figure 2.8 shows the availability of specific datasets–datasets that PowerWatch can
measure–in the countries tracked by SE4All [30].
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Figure 2.8: Low-voltage monitoring is a global problem. Figure shows a portion of a
table from “Data Standards for Integrated Energy Planning,” by U.N. Sustainable Energy for
All and U.K. Aid, see [30]. This table shows the current global availability of the datasets
PowerWatch is able to measure, as collected across countries tracked by SE4All, and SE4All’s
comments about these datasets.

Even if data is collected, data accessibility and compatibility remain major bottlenecks
[5, 13, 29]. Some utilities have been working to make the data they collect not just publicly
available, but also useful and approachable for non-technical stakeholders [89]. This is an
important part of the task, and closed data is a common problem for many stakeholders [5,
13, 24, 49].

A high-quality outage dashboard is shown in Figure 2.9. This particular dashboard is
provided by DTE, a private U.S.-based utility with a large smart meter roll-out. DTE has
improved this dashboard significantly over the years since I started this dissertation work.

(a) (b)

Figure 2.9: Customer-facing outage system from DTE Energy. In (a), we see a very-
high-resolution map of on-going outages tracked and displayed by DTE as screen captured
from their website on December 11, 2021 [89]. In (b), screen captured from DTE’s website at
the same time, we note that even though the utility has very-high-resolution maps, they still
revert to asking customers to report the root cause of outages, going as far to display (b) to
all users as a pop-up when their map is first loaded.

However, data gaps clearly still exist even for the most advanced grids. Figure 2.10 shows
a discussion from the July 2017 Meeting Minutes from the IEEE PES Distribution Reliability
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Working Group about a recent survey of utilities in 30 U.S. states [90]. The survey results
reflect the diversity of reliability metrics across states. It is also worth noting the use of IEEE
2.5 beta, which has been controversial due to this metric’s unexpected sensitivity to historic
data [ieee-beta].

Figure 2.10: Meeting Minutes from the July 2017 IEEE PES Distribution Reliability
Working Group showing that utilities in the U.S. use multiple reliability metrics.
The above meeting-minutes excerpt describes results from a 30-state survey of mostly investor-
owned utilities [90].

2.4.1 Meters

By measuring consumption, meters allow generation utilities to bill transmission and distri-
bution utilities, and transmission and distribution utilities to bill individuals and businesses.
Reducing the cost of human meter readers is the primary motivation for utilities to upgrade
analog meters [29, 70].

Supervisory control and data acquisition (SCADA) systems use sensors placed on utility
infrastructure and operated by the utility to provide data on consumption and reliability.
SCADA systems also allow the utility to control the configuration of their network remotely,
creating a single point of coordination for network operation for the parts of the network
where SCADA is present.
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Figure 2.11: Approximate SCADA coverage in Accra. ECG has installed SCADA on
the high-voltage networks and some of the medium-voltage networks [91].

Many countries, including most low- and middle-income countries, report grid reliability
data that is primarily from sensors within the SCADA network and is therefore limited by
where this network stops [5, 13, 29]. In Accra, like in many cities, SCADA covers only the
HV network and parts of the MV network (shown in Figure 2.11) [4, 9, 91]. SCADA systems
are very expensive and are often justified based on the need for billing between separate
generation, transmission, and distribution utilities, as well as on their ability to enable some
coarse control. The value-add of LV reliability data is likely not enough to justify the cost of
SCADA expansion [3, 4, 29, 41, 70].
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Figure 2.12: Global Smart Meter (Energy and Water) Penetration by Region.
Figure adopted from “Smart Meter Market 2019,” from IoT Analytics [92]. Smart meters
have been on the market for many years but adoption remains low, especially in Africa and
South America [30, 92].

At the distribution tier, state-of-the-art instrumentation—“smart meters”—have existed
commercially for decades. Smart meters average and transmit consumption, voltage, and
frequency data in relatively infrequent (e.g., 15 minute) reports [93]. The first smart meter
entered the market in 1977, introducing a tool for measuring power quality at the household to
an already-broad toolbox of methodologies for monitoring grid performance at the transmission
and high-voltage distribution levels [94, 95]. But global adoption of smart meters has been
exceptionally slow in many regions (see Figure 2.12) [92, 96]. Even in the U.S., adoption of
smart meters varies widely by state, as shown in Figure 2.13.
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Figure 2.13: Smart metering has not been equally distributed across the United
States. Figure is a screen capture from the U.S. Department of Energy’s “Smart Grid System
Report: 2018 Report to Congress,” see [13]. This map shows the relatively unequal roll out
of smart meters within the U.S., indicating that complex factors are involved in smart-meter
adoption. Smart meters provide a very sparse sample of the low-voltage network in some
states.

Utilities in low- and middle-income countries have been particularly slow adopters of
smart grid technology, citing significant barriers to entry, including large deployment costs,
frequent procurement delays, and difficult integration with existing utility systems [29, 41,
97]. By 2020, over 40 years after smart meters entered the market, adoption in Africa and
the Middle East was estimated to be at 5% [96].

Smart meter technology is often hard to use, increasing deployment costs and decreasing
benefits, especially for non-technical stakeholders [49]. An example modern “smart grid”
interface is shown in Figure 2.14. This is more than an aesthetic concern, and data visualization
and analysis is regularly pointed out as a key improvement needed for Smart Grids to provide
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the benefits they offer [5, 13, 49].

Figure 2.14: A UI for a smart grid system in Florida. Figure is a screen capture from
the U.S. Department of Energy’s “Smart Grid System Report: 2018 Report to Congress,” see
[13]. While this particular display from 2018 may now be outdated, this type of dashboard
represents the average, clunky user interface present in many public reports [5, 13, 49].

Pre-paid meters, which activate only when a customer purchases credit (reducing the need
for meter readers), provides better information about consumption but little to no additional
information about reliability [41, 70, 98]. Adopting smart meters is particularly challenging
due to large investments recently made by many countries installing pre-paid meters, which
can be difficult to justify replacing [70]. For example, the two major electric utilities in
Ghana have made the deployment of prepaid meters a cornerstone of their strategic efforts
to reduce electricity theft and improve collection ratios [99]. While pre-paid meters do not
communicate with the utility [100], large pre-paid meter purchases in low- and middle-income
countries still decrease the likelihood of rapid smart-meter adoption in the near future [101].
Work has been done to retrofit non-GSM-connected meters with GSM radios in developing
countries, but this also has yet to scale due in part to cost [102].
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2.4.2 Call Centers

Many utilities, including the Electricity Company of Ghana (ECG), depend on customer
calls to estimate the numerator for both SAIDI and SAIFI at the low-voltage level. Analysis
of data collected from the national call center in Accra suggests this data stream is sparse
and noisy: dips in reporting occur during the day when people are at work and few reports
occur during the night when people are asleep (if people call at all, see Figure 2.15). While
some of these patterns may reflect an underlying reality (a grid may fail more often when it
is operating at capacity, which is more likely in the middle of the day [103]), customer-call
data is still likely under-sampling outages, particularly in the context where frequent outages
and slow repair response times may reduce a willingness to report outages. Additionally, few
customers call about power restoration, making duration for SAIDI difficult to estimate.

Figure 2.15: Average number of calls per user in a district in Accra from a 421-
participant survey. Despite the fact that, as shown in this figure, most people do not call
to report power outages, the total annual cost of calls to ECG is not insignificant. Using an
average cost per minute of 0.1132 Ghana Cedis (approx. 0.03 USD) [104], and an average call
time of 2.33 minutes calculated from ECG call center data, we can estimate that an average
call costs 0.264 Cedis (approx. 0.06 USD). We can then estimate that the total cost of calls
ECG received in 2017 (with a cumulative time of 14.6 person years) would have been 870,548
Cedis (approx. 193, 000 USD), or .00045% of Ghana’s GDP [105].

Calls also may represent real costs in some regions. Based on a survey we conducted with
some of our participants in Accra, the average call length, which we collected from the ECG
call center, and the average cost per minute for a phone call in Ghana, we can estimate that
the user who called 45 times–seen at the far right of Figure 2.15–would have a total of 11.88
Cedis (approx. 2.64 US Dollars) [104]. Even for the average caller who calls only once, the
expense of calling likely represents a barrier to reporting. There are conflicting models about
average earnings in Ghana. At the low end, the Ghanaian governmental organization Ghana
Statistical Service reported an average daily earning of 14 Cedis in 2014 [106]. More recently,
the World Bank estimated an average daily earning of 17 Cedis in Accra [105]. In the first
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case, a single call would represent 1.88% of a caller’s daily earning; in the second, 1.55%.
This cost unfortunately disproportionately effects rural areas, where earnings are less and
power quality is lower.

2.4.3 Surveys

A common method of collecting information about grid reliability used by all stakeholders is
through directly surveying consumers [13, 29]. Two examples are shown in Figure 2.16 and
Figure 2.43. However, depending on consumers is expensive and frequently error-prone, and
therefore samples are infrequent, limiting trend analysis [30]. Further, survey data, which
depends on consumers recalling the number and duration of power outages, may be more
subject to noise than previously thought [107, 108].

Figure 2.16: A flier mailed to my house in Ann Arbor, Michigan, around 2016.
This type of direct-to-consumer data collection is often recommended as a scalable way for
collecting energy data [5, 13], but it has many downsides when compared to automated
metering [5, 13, 109]. It is worth mentioning that my house at the time had a smart meter,
making this data potentially already available, and my utility company, DTE, was piloting
technology to give customers better access to their consumption data, indicating a willingness
by the utility company to be transparent with consumers [89].
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The World Bank Ease of Doing Business Survey contains the best data on global grid
reliability (a statement that likely still stands even in light of the serious problems recently
uncovered with that program [110]) [29, 30]. In some cases, countries started collecting SAIDI
(Equation (2.1)) and SAIFI (Equation (2.2)) due to the positive impact it would have on
their Ease of Doing Business Ranking [111]. Because of the high incentive to report SAIDI
and SAIFI provided by the World Bank, it is likely that the countries not reporting data do
not have methods of collecting and reporting reliability data in place [30].

Figure 2.17: The homepage of the Afrobarometer Survey. Figure is a screen capture
from [112]. Afrobarometer uses surveys to “collect and publish high-quality, reliable statistical
data on Africa which is freely available to the public.” They also provide data-access and
analysis tools, as well as their own research output.

Afrobarometer markets itself as “the world’s leading source of high-quality data on
what Africans are thinking” and describes its structure as a non-partisan, pan-African
research institution [113]. They regularly survey 30+ countries about topics including energy
reliability [112, 114]. Additionally, they provide an impressive data-access tool as well as
regular research findings available for free on their website. While Afrobarometer certainly
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provides an interesting model for higher-frequency survey data, surveys are not the perfect
tool for all data collection [11, 70, 73, 107, 108].

While reliability is challenging to measure, the extreme unreliability in Accra recently
motivated the Dumsor Report, shown in Figure 2.18, a two-week study of the actual grid
“on-off” around the city [115]. The Dumsor Report was a very effective political tool, but its
relatively short study period makes it difficult to use to inform necessary large-scale system
investments, nor is it effective for evaluating improvements. The costly methodology of paying
individuals to precisely record outages does not scale well beyond such a small study.

Figure 2.18: The Dumsor Report. Figure is a screen capture from the Dumsor Report [115].
One of the most accurate in-field reports of actual grid performance is from a two-week study
conducted by collecting outage and activation reports from citizens around Accra, Ghana
[114]. The methodology lay somewhere between crowdsourcing and sensing, as participants
were paid to carefully record the precise time of every power outage and return over the
two-week window [115].
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2.4.4 Non-Traditional Sensors

Utilities, investors, researchers, and individuals have all developed new technologies capable
of measuring power quality. Even in the U.S., which has a relatively well-monitored grid at
the distribution level (see Figure 2.13), it is estimated that complete metering coverage is
at least 20 years away [116], likely encouraging work on alternative methods of measuring
reliability.

The distribution grid has many measurement points beyond the high-voltage transmission
level, creating challenges for metering at scale. Some prior works address this problem with
innovations around new sensor front-ends better able to scale, including transformer-mounted
or substation-mounted sensors [117, 118], sparsely deployed micro-synchrophasors [119–
121], circuit and load-level meters [50, 122, 123], social media mining [30, 124], and even
mobile-phone-based1 side-channels [128, 129].

There have been large improvements in the price and features of both professional-level
and consumer-level power meters, shown in Figure 2.19a and Figure 2.19b, respectively [130,
131]. While these meters enable individuals to take measurements, they are often not easily
aggregated due to siloed systems [dte-energy-insite, 132].

(a) (b)

Figure 2.19: Professional and low-cost meters. In (a) we see a selection of professional
power-quality meters on the market, screen captured from “MyFlukeStore.com” [133]. In
(b) we see an emerging low-cost sensor market, screen captured from “Amazon.com” after a
search for “power meter” in the United States [130].

A similar work to PowerWatch, developed concurrently, comes from the Prayas group,
which designed and deployed a sensor to measure grid reliability by plugging in at outlets
[134]. Along with partners in Kenya, this group has deployed hundreds of sensors, maintains
an online map of power quality based on these deployments, and has published early results
[134–136]. While this work is inspiring, it does not go as far as PowerWatch in using space-time
clustering to filter the data stream, does not explore deployment management tools, and has
been deployed less densely [135].

1Mobile-phone-based techniques, however, have been limited by recent privacy-preserving changes made
by both Android and iOS [125, 126] as well as other OS challenges [127])
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Work exists that evaluates the deployment methodology used in this dissertation in a
different context [137], in which the “Grid Alert” system is used in 18 households in Kenya.
This system collects the same data as PowerWatch and provides some additional, interesting
features that may increase value to participants, including the ability for the sensor to act as a
surge protector. The authors compare the sensed results against a survey asking participants
to recall the number of outages they have experienced, finding that the sensors reported
outages that roughly aligned with recall. This work goes further to describe aspects of the
deployment methodology the participants found valuable, reporting that many people found
particular value in measuring appliance consumption, a feature not currently present in
PowerWatch [137].

Others have explored directly monitoring grids with small-scale sensor deployments.
In 1994, 20 low-voltage data loggers were placed in customer residences to monitor the
distribution feeder systems in Buffalo, New York, USA [138]. But this did not continue past
a one-off deployment. More recent work proposes a sensor system for measuring low-voltage
grid current and voltage at high rates [139]. While this provides an interesting high-resolution
dataset on grid performance, its cost and complexity limit wide-area deployment. In [11], a
small number of voltage sensors were installed in Zanzibar and used to explore low-voltage
reliability and power quality in two villages on the island, resulting in a data series better
reflecting the lived experience than more-aggregated SAIDI and SAIFI metrics.

Inexpensive IoT-class sensors promise added automated sensing in developing regions, but
these have yet to be proven at scale [29, 41, 128, 140]. This is surprising. Over the course
of my PhD work, embedded systems have become much more user friendly, to the point
that nearly everyone reading this could buy an Arduino or Sparkfun (as I have done many
times) and hook up a sensor that can take measurements similar to PowerWatch having never
programmed or designed hardware before [141–143]. However, the same people who built the
world’s most complicated machine–the grid–have not yet figured out how to build a low-cost
system well-suited for scale.
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(a)

(b) (c)

Figure 2.20: Internet of Things devices are ubiquitous and capable of measuring
grid reliability. In (a) we see a screen capture from Microsoft’s “2019 Manufacturing Trends
Report” showing that IoT device sales have skyrocketed in the past five years [144]. Many
of these devices could measure power outages. In (b) and (c) we see screenshots of Ring
notifications. In (b) the Ring alarm reports a power outage and in (c) the restoration is
reported, providing a clear side channel for using these devices to coarsely measure outage
duration.

Any on-the-ground sensor deployment requires a subset of stakeholders to give permission
for installation and potentially to become involved in sensor maintenance and operation.
The deployment methodology used in this work, to maintain independence, relies only
on individuals deciding to participate, sidestepping the regulator and utility if need be.
Individuals are frequently used by utilities and regulators to collect data about the grid (see
Figure 2.16 and [5, 13, 29, 49]). Examples like the DumsorReport [115] and the frequent
willingness to take to the street when power is bad [23, 24, 145] show people’s willingness
to organize around taking important measurements when they believe these measurements
matter.

“Off-the-ground,” or remotely collected, data can also be used to coarsely measure grid
reliability. Common data sources include satellite imagery [146–148], internet scanning
[149–153], and IoT side channels [154, 155]. These techniques have yet to be used at scale,
although efforts like IoDA [153], AtlasAI [156], and Censys [152] may push the market forward,
and early results are promising for applications that benefit from HV monitoring [146].

Satellite images, especially during the night, have been shown to be reasonable indicators
of both the presence and usage of electricity in a region [146, 150, 157, 158]. This insight has
led to satellite imagery being used successfully to study electrification in Vietnam [146], to
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study the sharp rise in electricity usage accompanying military action [159], and to model the
frequency of power outages in India [160, 161]. Unfortunately, there is a lack of good satellite
data; by definition nightlight data is only available during the night, leading to limited utility
for daytime satellite images, and current satellite data made available by sources like NASA
is not high-enough resolution for household-level analysis [146–148]. An on-going project
involving researchers at nLine, UMass Amherst, the Colorodo School of Mines, and Atlas AI
uses PowerWatch to improve the accuracy of nightlight-based techniques for measuring grid
stability in Accra [162].

2.5 Value of Utility-Independent Measurements

There is both a national-security interest and a human- rights interest in having independently-
collected data about grid stability [13, 30, 50]. In Ghana, the Ministry of Energy released a
statement saying the “Government believes that the nation’s energy security is based on the
security and diversity of fuel supply, reliability of energy infrastructure, and the Financial
Viability of the energy sector.” The United States designated climate change a national
security threat in an 2018 amendment to the National Defence Authorization Act, largely
due to threats to grid reliability [163, 164].

Where basic reliability data does not exist, for some applications the benefits of collecting
this data may far exceed the costs of a reasonably-priced measurement [49]. If data exists but is
not readily available, in some cases regulators may want to sidestep utilities to directly measure
grid reliability. Further, if data is urgently and unexpectedly needed, any measurement system
must be able to be deployed quickly and, ideally, inexpensively.

2.5.1 National Security

Grids are prime targets in an invasion and are worth defending [50, 163, 164]. Destroying
grids is a common tactic used by large and small forces because grids often have a single
point of failure and the disruption can be catastrophic [13, 50, 163].

Ground zero of the latest confrontation between Ukraine and Russia was a sea of
mud and not much else on Wednesday. About half a dozen fighters, their boots
sinking into a sodden field, were guarding the downed electricity pylons that were
blown up last weekend, plunging much of the disputed Crimean peninsula and
the Kherson region of mainland Ukraine into darkness. Activists from the Tatar
minority and Ukrainian nationalists attacked the first repair crews and their police
escorts seeking to restore the felled pylons, driving them away.

Figure 2.21: Quote from “Russia and Ukraine in a Standoff Over Crimea Power
Outage,” in The New York Times, November 26, 2015 [165].
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Basic automated meters on HV and MV lines can help correlate events with changes in
reliability, which may be important for protecting against large attacks. However, this analysis
may be difficult to convince a utility to conduct [49]. The benefit of having higher-resolution
monitoring techniques able to detect attacks is demonstrated in Figure 2.29 [13, 163, 166].

Early last summer, Chinese and Indian troops clashed in a surprise border battle
in the remote Galwan Valley, bashing each other to death with rocks and clubs.
Four months later and more than 1,500 miles away in Mumbai, India, trains
shut down and the stock market closed as the power went out in a city of 20
million people. Hospitals had to switch to emergency generators to keep ventilators
running amid a coronavirus outbreak that was among India’s worst.

Figure 2.22: Quote from “China Appears to Warn India: Push Too Hard and the
Lights Could Go Out,” in The New York Times, February 28, 2021 [166].

“As of Feb. 26, Tajik state energy company has made unscheduled use of 84
million kilowatt hours of electricity,” the state-owned Kazakhstan Electricity Grid
Operating Company said.

Figure 2.23: Quote from “Power shortage hits Central Asia,” in The New York Times,
February 26, 2009 [167].

After the Department of Homeland Security announced publicly that the American
power grid was littered with code inserted by Russian hackers, the United States
put code into Russia’s grid in a warning to President Vladimir V. Putin.

Figure 2.24: Quote from “China Appears to Warn India: Push Too Hard and the
Lights Could Go Out,” in The New York Times, February 28, 2021 [166].

Grids are often held hostage, an effective strategy for both nation states and smaller
organizations based on the impact of power outages and the relative weakness of the grid
system [163]. An example of power being held hostage is show in Figure 2.25.
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The Tatars, a Turkic Muslim minority that now numbers about 300,000, have
memories of crushing brutality under Stalin’s rule; thousands were forced into
exile and returned to Crimea only after the fall of the Soviet Union. Many said
that their people again faced systematic repression, and the initial demands to
restore power [in Crimea] included that all activists be released from jail, that the
independent Tatar news media be restored and that international human rights
monitors be allowed to operate. maybe combine this quote with the prior one about
them cutting power, for better context for this quote. As it is, I had a hard time
on first read seeing how it was related.

Figure 2.25: Quote from “Russia and Ukraine in a Standoff Over Crimea Power
Outage,” in The New York Times, November 26, 2015 [165].

2.5.2 Targeted Actions

Short-term data on reliability collected quickly from unexpectedly at-risk areas could poten-
tially prove valuable for something as small as catching a small number of bad actors during
sabotage (Figure 2.27) to catching nation states impacting each other’s populations through
disrupting power flow either actively (Figures 2.29, 2.24) or passively (Figure 2.26).

Kazakhstan announced Thursday that it was pulling out of the Central Asian
power grid to protect its energy supplies, a move that forced rolling blackouts and
electricity rationing on its tiny neighbor Kyrgyzstan. Kazakhstan said it had to
withdraw from the power grid because Tajikistan - another small and cash-strapped
Central Asian nation - was taking more energy from the grid than it was producing,
threatening to disrupt supplies in Kazakhstan.

Figure 2.26: Quote from “Power shortage hits Central Asia,” in The New York Times,
February 16, 2009 [167].

It is worth specifically mentioning that some reliability data could potentially help catch
even very small actors (Figure 2.27). Taking longitudinal measurements of reliability in a
hyper-targeted region is not easy with smart meters; if not already installed, installation
is slow and expensive, and the data has to be exported (not sure I understand this second
point).
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The federal authorities are investigating whether three recent attacks against the
power grid in Arkansas are linked, and utility officials have asked residents to
remain alert to the threat of more trouble.

Figure 2.27: Quote from “Power Grid Is Attacked in Arkansas,” in The New York
Times, October 9, 2013 [168].

2.5.3 Higher-Resolution Adherence Checks

All sides of a resolving conflict involving grid stability would likely have an interest in ensuring
grid stability had been restored [13, 49, 167]. An example threshold of success to measure
against is shown in Figure 2.28.

Longitudinal studies or measures that include a high-frequency or high-dimensional samples
may allow for more nuanced adherence checks than otherwise possible (and the most likely
method of surveying may not be affordable or safe) [isa-fairness, 5, 29, 30, 169].

The fighters were allowing some repair work to proceed on one pylon to restore
power to about 200,000 customers in the immediate vicinity, work that the state-
run electric company, Ukrenergo, said would be completed as early as Thursday.

Figure 2.28: Quote from “Russia and Ukraine in a Standoff Over Crimea Power
Outage,” in The New York Times, November 26, 2015 [165].

Changes in the grid may stem from causes thousands of miles away. To make these
correlations, higher-frequency data is useful, letting investigators better align timelines
between potentially causal events [13, 170]. An example alarm pattern can be derived from
Figure 2.29.

Now, a new study lends weight to the idea that those two events may well have
been connected — as part of a broad Chinese cybercampaign against India’s power
grid, timed to send a message that if India pressed its claims too hard, the lights
could go out across the country. The study shows that as the standoff continued
in the Himalayas, taking at least two dozen lives, Chinese malware was flowing
into the control systems that manage electric supply across India, along with a
high-voltage transmission substation and a coal-fired power plant.

Figure 2.29: Quote from “China Appears to Warn India: Push Too Hard and the
Lights Could Go Out,” in The New York Times, February 28, 2021 [166].
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2.5.4 Public Benefit

There are significant benefits to providing populations with data about safety and security
[13, 15, 30, 171]. A lack of data can make a hard situation harder by making it difficult for
regulators and utilities to plan energy rations (Section 2.5.4).

The Kazakh move means Kyrgyzstan must ration supplies in the northern half of
the country, including the capital Bishkek, to avoid overloading the domestic grid,
according to a spokeswoman for Kyrgyz power, Ulyana Konvalova.

caption Quote from “Power shortage hits Central Asia,” in The New York Times,
February 16, 2009 [167].

Individuals also need to plan around electricity availability. As shown in “Erratic electricity
supply (Dumsor) and anxiety disorders among university students in Ghana: a cross sectional
study,” which reports across 578 college students at the University of Ghana, “nearly 26% of
students interviewed felt nervous, anxious or on edge almost every day due to the erratic
power supply” during the Dumsor period (see Chapter 3) [171]. A lack of communication in
situations like that in Figure 2.30 would only add to the stress of those populations.

The situation has been at an impasse . . . with more than 1.2 million people in
Crimea without power and no sign of any repair crews.

Figure 2.30: Quote from “Russia and Ukraine in a Standoff Over Crimea Power
Outage,” in The New York Times, November 26, 2015 [165].

However, as Figure 2.31 demonstrates, public knowledge also carries risks [13, 30]. Data
governance (not sure what you mean by this) continues to be a major problem between
stakeholders [5, 30]. This should likely be formalized, as this data has significant political
impacts and is often collected by 3rd parties (Figure 2.32).
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Figure 2.31: Misinformation presents a threat. Figure is a screen capture from a Google
Domains search for “outage” restricted to results ending with “.com” [172]. The opportunity,
indicated here by red boxes, for malicious parties to spread misinformation about power
outages is present and hard to protect against as long as data remains highly distributed [13,
30].

The flow of malware was pieced together by Recorded Future, a Somerville, Mass.,
company that studies the use of the internet by state actors. It found that most
of the malware was never activated. And because Recorded Future could not get
inside India’s power systems, it could not examine the details of the code itself,
which was placed in strategic power-distribution systems across the country. While
it has notified Indian authorities, so far they are not reporting what they have
found.

Figure 2.32: Quote from “China Appears to Warn India: Push Too Hard and the
Lights Could Go Out,” in The New York Times, February 28, 2021 [166].

2.6 Stakeholders in Grid-Performance Data

Grid-performance data enables new operational paradigms that increase reliability, improve
efficiency, and reduce costs [5]. Each type of stakeholder could potentially benefit from data
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on reliability, motivating a high-level need for better data governance between stakeholders
[5, 13, 173]. This is because, even within the same electricity market, data is used differently
by, and has different value for, different stakeholders:

1. utilities wish to improve their efficiency and reliability and lower their operating costs;

2. regulators want sources of data independent of those provided by the businesses they
are regulating;

3. investors in the grid want to maximize their investment returns;

4. researchers are interested in developing new or improved grid technologies and in
understanding the impact of different operational, political, or social scenarios on
reliability; and

5. individuals who depend on the grid for their health, education, and productivity may
want to act to improve the performance of a grid or to anticipate grid-performance
problems to minimize their impact.

The complicated relationships between stakeholders are shown at a high level in Figure 2.33
for the U.S. energy market and in more detail in Figure 2.34 for the Ghanaian energy market.
While these markets provide mechanisms for give and take between stakeholders, much of the
data necessary for public- and private-sector stakeholders is only available from the utility,
creating a conflict of interest for the utility [5, 30, 82, 83, 174].

Figure 2.33: Key stakeholders in the U.S. energy market. Figure is a screen capture
from “Electricity Evolution: Meet the Ringmasters” [174].
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Figure 2.34: Energy stakeholders in Ghana. Figure is a screen capture from “The
Electricity Situation in Ghana: Challenges and Opportunities” [175].

The U.N. recently launched a global call for “Energy Compacts” [176]. They define
Energy Compacts as “voluntary commitments from Member States and all other stakeholders,
such as companies, regional/local governments, NGOs and others, with the specific actions
they will take to advance progress on SDG7 and net-zero emissions, designed to be fully in
line with SDG Acceleration Actions and Nationally Determined Contributions under the
Paris Agreement” [177]. The resulting list of stakeholders provides a view into the makeup of
large-dollar stakeholders in the markets experiencing the worst reliability [37, 177].
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Figure 2.35:
textbfU.N. Energy Compact Stakeholders. Figure is a screen capture from the “Energy
Compact Overview” by the United Nations, as of October 26, 2021 [177]

. Note the diversity of stakeholders involved with meeting the goals of SDG7.

2.6.1 Utility Companies

The data needs of a utility depend on the applications of the data within the utility. Different
utility decisions require different temporal fidelity (shown in Figure 2.36). PowerWatch takes
samples with order minute accuracy, placing PowerWatch in the middle of Figure 2.36’s
timeline.

Utilities are most often structured in one of three ways: as publicly owned; as a privately
owned, regulated monopoly; or as a community-owned cooperative [178]. Privately owned
utilities are more likely in wealthy countries, while the majority of utilities in the developing
world are publicly owned [179].
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Figure 2.36: Utility applications enabled by different temporal resolution data.
Figure is a screen capture from The U.S. Department of Energy document “2018 Smart Grid
System Report: 2018 Report to Congress” [13]. In this timeline, different utility applications
are shown based on their required temporal resolution. PowerWatch, which currently achieves
temporal resolution in the seconds, is therefore suited for supporting utility applications from
the center of this timeline forward.

The right observations could enable utilities to enhance day-to-day operations (e.g., where
to dispatch repair trucks) as well as long-term infrastructure planning (e.g., where to add
transformers) [180, 181]. However, wealthier utilities—or utilities that receive more subsidies
from wealthier governments—have more freedom to make larger, non-targeted infrastructure
improvements [5]. They may therefore depend on data less, potentially slowing market
support for innovation in data-collection techniques [5].

Using data provided by our partners IBM Research Africa and Kenya Power and Light
Company (KPLC), we learned that 1/6 of trucks dispatched to repair an outage are not
able to locate an outage, and 1/8 of trucks dispatched arrive after power is back on. These
unnecessary or slow truck deployments waste large amounts of resources and leave customers
in the dark for longer than necessary. In the U.S., DTE Energy estimates that it saves 76,000
unnecessary truck deployments annually using information from its 725,000 smart meters,
resulting in an annual savings of approximately one million dollars [182].

Benefits for the utility based on various interventions are broken out in Figure 2.37 and
Figure 2.38.
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Figure 2.37: Table to support utility cost/benefit analysis of reliability data. Table
from “Guidebook for Cost/Benefit Analysis of Smart Grid Demonstration Projects,” by the
Electric Power Research Institute for the U.S. Department of Energy [49].
This table shows possible data-driven interventions for the transmission network, distribution
network, and on substations. The blue columns show how each intervention benefits a utility

company.
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Figure 2.38: Table to support customer cost/benefit analysis of reliability data.
Table from “Guidebook for Cost/Benefit Analysis of Smart Grid Demonstration Projects,” by
the Electric Power Research Institute for the U.S. Department of Energy [49].

2.6.2 Regulators

Regulators, who play an important role in enforcing national reliability standards, can use
grid-performance measurements to hold utilities accountable for system performance [9, 183],
and can use targeted, higher-frequency measurements to evaluate the impact of a policy or
program (as was done with the PowerWatch data, see Section 3.1.3).

There is a positive correlation between a country having a utility regulator and a country
reporting power-outage and tariff information, shown as Figure 2.39. Globally, 89 percent
of economies that publish data on outages have a utlility regulator [3]. Regulators play an
important role in promoting accountability, and governments commonly task regulators with
monitoring providers directly [13, 30].
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Figure 2.39: Regulators are present in most countries reporting SAIDI and SAIFI
in Sub-Saharan Africa. Figures remade from “Digitalization and the Use of Technology in
the Electricity Sector” published by the World Bank Malaysia Hub in 2020, see [3]

All major utilities in the U.S. are required to publicly report past performance indices to
independent regulators, but these reports are often highly aggregated [59]. In Britain, annual
reports are made by utilities to the Office of Electricity Regulation, but these reports are also
highly aggregated (i.e., 88 per 100 customers experienced an outage, 88.3% of faults were
restored in three hours) [184]. Some publicly available, larger, household-level datasets do
exist, typically in the thousands of households scale, but these are made available infrequently
and generally cover only developed countries [185]. We were unable to find any public
household-level datasets from utilities in developing countries. Based on datasets from the
U.S., the authors of [186] found that a utility’s reliance on manual measurement methods
under-reports reliability when compared to ground-truth data gathered from an automated
outage management system. Further, the authors of [186] found that trusting only utility
reliability measurements can introduce bias in measurement.

Smart-meters and other advanced metering infrastructure offer new opportunities to
measure the efficacy of policies aimed at decreasing consumption (policies which, in turn,
increase reliability). For example, the authors in [187] use smart-meter ground truth to show
that in California, a 5% reduction in consumption is achieved with a subsidy program for
energy-efficient AC units, providing evidence about where to set the socially-optimal marginal
price. Many U.S. utilities gather information about reliability regardless of the presence of
smart meters, although this effort is often highly aggregated [186]. Even in the presence of
aggregated data or smart-meter data, there are few studies of large and representative sample
sizes that can characterize patterns of usage across a region, in part because utilities rarely
share data [5, 49, 185].
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Information Changes Behavior

Part of the role of a regulator is to share information with other stakeholders, often with the
goal of adjusting behaviors [30]. In the United States, a majority of Americans surveyed said
they would be willing to spend an extra $25 per year for more renewable energy; support
drops once the cost reaches $50 per family per year [188]. However, the impact of sharing data
on willingness to pay can be significant, as shown in Figure 2.40. As individuals may be most
interested in individual-level data on outages (i.e. does the school have power rather than
does the city have power), reliability data that reaches the LV network might be particularly
valuable.
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Figure 2.40: Discussions about climate change impact willingness to pay. Figure cap-
tured from “Discussion Sways Participants On Climate Change,” by NORC at the University
of Chicago [189]. Across all demographic groups considered, a discussion on climate change
improved willingness to use less electricity and pay more in taxes and energy costs.

Data Can Reveal Corruption

Regulators also need data to protect the public against those not acting in the public interest.
Large-scale corruption may be on display in Puerto Rico where the Chief Executive of Luma,
a private Canadian-American consortium tasked with improving the reliability of the grid,
was just arrested due to his unwillingness to provide data to regulators [18]. Small-scale
corruption is a major barrier to energy access [7, 11, 37]. In an interview published on the
blog of the National Bureau of Asian Research, Dr. Charles K. Ebinger, the Director of the
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Energy Security Initiative at the Brookings Institution, said:

India must also enforce regulations against energy and electricity wastage and
cheating. Often it is the wealthy landlords who waste free and cheap electricity
rather than the poor farmers it was intended to help. Bribes are often paid
to meter-readers, and many government and military buildings and offices pay
no electricity fees at all. Providing regulators with enforcement capacity would
dramatically curb consumption and increase efficiency [12].

To measure the corruption like that described by Dr. Ebinger, a regulator will need data
that is independently collected. For example, it is easy to imagine using PowerWatch to
collect data to ensure that reliability is the same across wealthy and poor areas (we start to
explore using PowerWatch for various fairness metrics in Section 5.2.3).

Protecting Vulnerable Consumers

Giving consumers greater access to their energy data may not, however, help some of the
most vulnerable consumer populations [169]. For example, an investigation of tariff rates
conducted by the U.K.’s National Audit Office found that customers who had to pre-pay for
their electricity due to previously unpaid bills (roughly half of whom had an annual income
below £18,000) paid disproportionately more for their electricity than other customers because
they did not have access to cheaper energy tariffs [190]. Further, there is a strong correlation
between some dimensions of vulnerability (e.g., income, age, and physical disability) and
some vulnerable consumers may not be confident using digital tools [169]. These consumers
may need additional support networks to help them make use of available data [169].

2.6.3 Ratepayers

Individuals and businesses seek reliability measurements as a key input when deciding to enter
an electricity market market [40, 191, 192], but the best publicly-available measurements of
grid reliability are typically only at the country scale [193, 194]. Barriers to Electrification
for “Under Grid” Households in Rural Kenya examines ratepayer-level grid connections in
rural Kenya. The author finds a very low level of electricity adoption (5% and 22% of rural
households and businesses, respectively) and identifies features of their dataset that emerge
as predictors of adoption rates, including electrification rates over time, proximity to the
network, and economic strength [195]. In areas with high variance in grid performance, the
decision to enter the market would particularly benefit from higher-resolution data. As seen
in Figure 2.41, as grid reliability decreases, so does willingness to pay to connect to the grid.
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Figure 2.41: People do not buy into a bad grid
Figure is screen capture from TODO In [10]

Commercial Ratepayers

Outage costs in the industrial and commercial sectors stem from four variables: 1) foregone
profits, 2) lower productivity, 3) damage to materials, and 4) payments to labor without
output. The duration and frequency of outages impacts the effect of these variables. For
example, the cost of outages in the Netherlands, which occur for a household for only two
hours every four years, has been estimated to be greater than $50 million USD [196]. If
the distributions of these variables is known, models can be created to help minimize costs
[197]. Britain annually calculates the value of lost load, and this information is used when
determining the optimal level of supply reliability and when setting prices [184].

Costs may also be different depending on industry. In “The Impact of Power Outage
(Dumsor) on the Hotel Industry: Evidence from Ghana”, costs stemming from larger-than-
normal outages were estimated through interviews with staff at hotels located in major cities
in Ghana [198]. As shown in Figure 2.42, the impact of reliability on revenue is significant.
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Figure 2.42: Cost incurred by hotels due to grid outages.
Figure is a screen capture from “The Impact of Power Outage ‘Dumsor’ on the Hotel

Industry: Evidence from Ghana” [198].

Large power consumers have enough influence to drive pro-consumer change. For example,
Google just announced multiple investments in energy, including a pilot of Time-based Energy
Attribute Certificates, which track how, where, and when electricity is produced to “bring
transparency to granular clean electricity production data and consumer claims.” Similarly,
Google gave 1,000,000 GBP to electricityMap [199] with the express purpose of “supporting
efforts to expand access to electricity data globally,” and noting that by “bringing new data
to the platform and making electricity data more accessible” this tool will “help policy
makers, academic researchers and the private sector understand the key factors of sustainable
electricity consumption, and drive demand for carbon-free solutions” [200].

Individual Ratepayers

Individuals engage with power-outage data because power outages have a real cost. Technology
like the USSD-based system deployed by Kenya Power and Light and advertised in Figure 2.43
have been quickly adopted. Similarly, people regularly turn to the internet and social media
to learn about power outages Figure 2.44, and most utilities with the capacity host live
outages maps [71]. It is not unreasonable to believe that a high-resolution outage map would
be a popular service around the world for mitigating some of the individual costs associated
with poor reliability.
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Figure 2.43: Two-way mobile communication offered by Kenya Power and Light
Company (KPLC) [201]. I took this picture in Kenya in 2016. Based on conversations
with KPLC, this service was provided based on demand. It also allowed KPLC to collect
data from their participants.
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Figure 2.44: An estimated 300K to 1.5M people search “power outage” each month
in the United States. Figure is a screen capture from the Moz Keyword Explorer [202].
We see a large monthly volute for the search term “power outage” and that this volume is
driven by traffic to outage maps at large utilities [202].

Unequal Costs

More disaggregated reliability data, matched with socioeconomic data, allows for a more
nuanced exploration into costs incurred by specific groups of individuals due to poor grid
reliability. Further, viewing the relative reliability experienced by one group against another
could help quantify where one group is being treated unfairly [203].

For some populations, power outages are more costly due to environmental factors. For
example, after Hurricane Ida knocked out power in Norco, Louisiana, experts pointed to a
dangerous combination of widespread power outages and chemical leaks across 138 impacted
industrial sites. The presence of these industrial sites makes the outage more costly for nearby
residents both in the short term with risk of catastrophic failures at the sites and in the long
term with the risk of chemical runoff [204].

In countries where the grid is systemically unreliable, costs may also include the need
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for extra purchases like fridge guards, devices that protect large appliances from voltage
instability. Typical fridge guards are shown Figure 2.45. For less-wealthy consumers, these
purchases represent a greater burden [10]. Reliability data might help minimize this burden
by helping an individual decide whether to make these purchases.

Figure 2.45: Voltage problems change purchasing patterns. Figure is a screen capture
from Jumia, a popular online retailer in Kenya, after a keyword search for “fridge guard” [205].
These devices provide stability for important appliances and are often necessary purchases.
On December 17, 2021, the day this Figure was captured, 1 USD was 113 KSh [206].

In the U.S., compared to Caucasian and Asian households, Black households spend the
most on energy and, along with Latinx households, suffer from higher energy insecurity and
energy poverty [207]. Black and Latinx households in the U.S. are therefore the most likely to
have to make choices between electricity or other essential expenses [203]. Policies attempting
to remedy this inequality could benefit from a method to ensure that the level of service to
households is maintained after program implementation [207].

2.6.4 Investors

A lack of reliability data makes it difficult for investors to track outcomes of investments
aimed at improving reliability [mathematica-edr, berkeley-edr, 30, 66, 198]. This can be
significant disincentive to invest [30, 177, 208].

For many years, a large amount of international aid was focused on increasing access to
electricity by expanding the reach of the grid. Improvements in electricity reliability can
be harder to achieve than improvements in access. However, in practice, poor reliability
was found to reduce demand, utilization, and social benefit of electricity to the point where
the power lines being run had little value [10, 74, 207]. Reassuringly, the importance of
grid reliability is increasingly being recognized: the UN Sustainable Goals now specify that
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access to electricity must also be reliable [39]. However, there is still no good guide for how
grid-reliability outcomes should be measured before, during, and after intervention.

2.6.5 Researchers

Figure 2.46 shows a research taxonomy built from a review of 503 recent academic works
relating to electricity reliability. The authors identify 4 common research questions:

• How does one assess or evaluate reliability of the power grid?

• How does one improve or enhance the reliability of the electric-power system?

• How should one plan reliability of the smart grid?

• What are the impacts of changes, including adding distributed-energy resources, new
regulations, and investment projects, on the reliability of the electric-power system?
[209]

Similarly, the U.S. Department of Energy compiled their views on the research and devel-
opment needs for modernizing the grid in a 2015 Report to Congress (shown in Figure 2.47)
[210].

Some research has investigated the major costs that businesses and households incur due
to unreliable power. This research has found broadly that households experience a range of
costs due to unreliable power, and that the exact cost a specific type of household might incur
is hard to predict [64, 66, 211, 212]. Some types of firms incur higher costs from unreliable
power than others, and the magnitude this cost can be predicted [59, 160, 213, 214]. Firms use
a variety of techniques to mitigate costs due to grid failures, making it difficult to anticipate
mitigation cost per firm [160, 214, 215]. Firms that provide their own generators are able to
free themselves from many of the costs of unreliable power, in some cases reducing costs to a
sub-percentage of revenue [214].

Reliability data traditionally has been difficult for researchers to access [5, 30]. Perhaps as
a consequence, there is a relatively small amount of academic work specific to modeling energy
adoption as it relates to reliability. This is surprising when compared to the large corpus
of work related to the social and economic benefits of access to electricity [66, 216–220],
energy markets in general [221–223], customer willingness-to-pay [224–227], and demand
estimation [228, 229].

Energy data is becoming more available to researchers, in part due to new online tools.
The World Bank provides a popular series of dashboards to allow for analysis across multiple
indicators [230]. MCC is one of many U.S. federal agencies promoting open data [231].
Large data releases have been organized by the academy [232]. Smaller groups such as
PRAYAS [136], Powermap.us citepowermap-us, the DumsorReport [115], electricityMap.org
[199], Afrobarometer [112], Our World In Data [233], and the Catalyst Cooperative [234]
have all released novel and influential data on grid reliability. Se4All has been pushing this
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Figure 2.46: Research framework compiled from survey of recent academic publica-
tions. From ”Electric grid reliability research” in Energy Informatics [209]. This framework
was built from a review of 503 recent papers on electricity reliability. The authors explain:
“The first theme, energy efficiency, drives the evolution of smart energy-saving systems. The
second theme, renewable-energy supply, drives the advancement of smart grids. Finally, the
third additional theme, service reliability, drives smart-grid reliability and resiliency” [209].

further, leading discussions across multiple stakeholders and countries about best practices in
data governance as more data sources emerge [30].

2.7 The Grid and Climate Change

While current suffering due to unreliable grids is more than sufficient motivation to address
the problem, a changing climate adds urgency to the pursuit of grid reliability. Grid reliability
data will play a critical role in both reducing the rate of climate change and ensuring that,
as the climate warms, grids continue to operate as expected.

When the UN Secretary-General Ban Ki-Moon announced the Sustainable Energy for
All initiative in 2012, he explained his belief that energy will be central for both helping to
end poverty and addressing climate change [28]. The World Resources Institute reports that
energy consumption (including generation) accounts for 76% of greenhouse gases worldwide
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Figure 2.47: Upcoming research and development needs to modernize the grid.
Figure is a screen capture from the US Department of Energy “Quadrennial Technology Review
2015” [210]. This table contains the steps needed to transition to a modern grid in the US as
well as and the research directions required to take these steps [210].
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[235]. In the United States, electricity generation represents 25% of the overall sources of
greenhouse gasses [236]. Globally that number rises to 31.9% [235]. By increasing reliability,
utilities can increase energy efficiency, leading to fewer harmful emissions, and can better
prepare the grid for integrations with new green energy sources.

2.7.1 Slowing Climate Change by Increasing Grid Efficiency

In the United States, roughly 40% of all the energy consumed is used to generate and distribute
electricity [237]. Thus, there are large potential emissions savings from increases in efficiency
in grid management [237]. In fact, the smart grid market is now considered to be driven by
regulatory pressure to reduce carbon emission, a change from the more traditional application
of reducing operational cost [41].
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Figure 2.48: Table to support cost/benefit analysis of applications often considered
beneficial for addressing climate change. Table from “Guidebook for Cost/Benefit
Analysis of Smart Grid Demonstration Projects,” by the Electric Power Research Institute
for the U.S. Department of Energy [49]. The blue “Benefits” columns describes, from the
utility perspective, economic, reliability, environmental, and safety benefits available. The
purple “Application” categories describe different applications often proposed as part of a
climate change solution [238]. Of the three applications, Electricity Storage has the most
indicated benefit to reliability.

Better Models of System and Load

Specifically, two of the best tools for helping to reduce line loss include system models and load
flow analysis, both of which require relatively high-frequency reliability data [49]. With better
system models, decisions can be based on real-time and longitudinal information, and the
impact of these decisions can be simulated [5, 239]. With better load flow analysis, operators
can detect what infrastructure is causing network congestion, allowing for better decisions
about maintenance and replacement timelines, as well as long-term network topologies [240].
In 2006 the President and CEO of Duke Energy, James E. Rodgers, described the importance
of better data for increasing efficiency [241]:
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“Going digital will allow us to monitor a lot of points in the system from a central point,
which you can’t today. It’s kind of like fine-tuning or focusing in on a spot or a target. That’s
better than how the grid operates today. And we lose somewhere between 8 and 9 percent of
the electricity we produce on the grid. That’s called line loss. As we develop our capability to
operate the grid, it will be a step in the direction of allowing us to try to reduce the amount
of line loss. That’s a lot of energy.”

Figure 2.49: Electricity plays a significant role in emissions. Figure from the U.S.
Environmental Protection Agency, see [236]. Better efficiency will reduce energy that is
generated only to be lost on the network, potentially helping to reduce this share over time.

The lowest-income countries experience the highest percentage of transmission and distri-
bution losses on their networks. These transmission and distribution losses could likely be
addressed, at least to some degree, using techniques well-established in wealthier countries.
Reclaiming electricity lost in the transmission and distribution networks may reduce the
amount of generation required to serve demand, decreasing generation emissions overall
[13, 29, 32, 242]. Further, better-managed distribution systems would allow this loss to be
converted into profit, so targeted interventions could increase the likelihood of affordable and
reliable electricity while simultaneously reducing waste [243].

For countries with a relatively low total emissions, such as those in the developing world
(shown in Figure 2.50, reducing emissions from a climate perspective may reasonably be less
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persuasive [238].

Figure 2.50: Africa contributes around 3% of global CO2 emissions. Figures from
“Each Country’s Share of CO2 Emissions” published by the Union of Concerned Scientists[ucs]
Emissions causing climate change largely stem from outside of Africa and South America.

Demand Response

Another large potential efficiency saving is through the implementation of pricing and behavior
modification policies that involve customer decision making. Perhaps the policy with the
most promise is demand response (DR) [13]. This is because “almost everywhere, marginal
reductions in energy result in marginal reductions in coal and gas consumption” [49]. I discuss
the specific interests of demand response for ratepayers in Section 2.6.3.

Demand response has long been a popular academic idea and is now being implemented
successfully in pilot programs in a number of countries [244]. Its popularity is well-founded, as
many estimates place potential energy savings in the double digit percentages of system-wide
savings [jay, buildings, 236, 244–246]. Further, these estimates are likely low, as in many
parts of the world estimating demand is its own relatively-unsolved problem [susanna, 2,
247, 248].

Demand response, like the data-driven techniques that best reduce line loss, requires fairly
sophisticated technology, including high-resolution measurements of individual consumption,
a real challenge for networks without smart meter deployments [249]. This complexity, along
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with the additional complexity of educating customers, has led to slow scale adoption by
even utilities familiar with cutting edge techniques [5].

2.7.2 Slowing Climate Change by Enabling Clean Generation

“Clean energy” technologies for generating electricity will be essential for slowing climate
change. These include wind, solar, nuclear, biogas, and hydroelectric power. Renewable
generation has been expensive to implement: the U.S. alone is forecast to spend $370
billion on renewable generation in 2021, a massive 70% of the country’s total spending on
generation capacity [250]. While some parts of the world have made large investments in these
technologies, globally they remain largely out of reach [2]. Consequently, “clean” technologies
account for only about 11% of global energy generation [251]. The spread of these technologies,
and the markets they have not yet reached, is striking when visualized in Figure 2.51. Clearly,
adoption has a long way to go, especially in Africa.

Figure 2.51: A striking number of countries in Africa do not report per capita
energy consumption from renewable generation. Figure from Our World In Data, see
[251]. Data on renewable usage is critical for ensuring long-term sustainability and can not be
another generation of technology away if aggressive climate and social justice goals are to be
met (many of which are targeting countries in Africa specifically) [se4all˙behind, 4, 5, 180].
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“Clean” generation introduces operational complexities by changing the traditional struc-
ture of the grid from single, large sources of generation to multiple, small, and periodically-
available sources [5, 13]. (For a simple model of the grid, which may help with clarity, see
Figure 2.1). Wind and solar especially have challenged the traditional model of a grid, as
both provide bursty power into distribution networks, making grids more difficult to balance
[bursty]. For example, if wind picks up during a period of peak demand, a naive distribution
network may start to provide more power than it is able to support, overloading and damaging
equipment and leading to unplanned outages [109].

However, because “clean” generation is needed to slow climate change, the risk to reliability
introduced by new sources of generation is necessary and, if acknowledged and anticipated,
can likely be mitigated [renewables]. It will, therefore, be important that anywhere planning
to incorporate “clean” generation also has the capacity to measure the impact this has on
reliability [5]. It will also be important that the right data exists to inform new operational
and long-term planning complexities [5]. Collecting reliability data will likely be a barrier to
entry for large-scale integration of particular renewable generation models, an unfortunate
fact for already-financially-burdened countries that do not currently collect reliability data
due to cost [5, 32, 252].

2.7.3 Operational Challenges Caused by Climate Change

As the threat of climate change becomes more present, there has been increased global focus
on ensuring our current grids will remain reliable in new and more dynamic environments.
Already we see grids failing more often, and the call is getting louder and more urgent for
new techniques to mitigate climate impact on grid reliability [5, 13, 23, 42, 253]. However,
addressing the upcoming climate-related risk to grid reliability involves many of the same
data-driven activities that are already employed to improve efficiency and better balance the
transmission and distribution networks [13, 109, 164]. This overlap can be seen in Figures
2.37, 2.48, and 2.38. There is a clear and rare opportunity for significant investments in
improving reliability to simultaneously improve the grid today while shoring against an
increasingly-present but still hard-to-quantify risk caused by coming changes to the climate
[13, 30].

Over the past few years, real impacts of climate change–which have included “storm
surges that can knock out substations,” “heat waves that can cause power plants to falter,”
and even rises in animal-related outages as habitats merge [164, 170, 254]– have made the
threat hard to ignore. Investments in grid reliability are likely not coming fast enough to
prevent further large-scale outages [13, 23, 164, 242]. On-the-record responses after recent
storms took down the grid in Texas indicate an industry unprepared to deal with climate
change. For example, one energy consultant stated frankly: “It’s fair to say there was this
widespread assumption that the impacts of climate change and extreme weather would unfold
more gradually, and there would be more time to prepare, but in the past few years, the
entire industry has really been smacked upside the head” [242].
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Oklahoma provides another example of the potential unpreparedness of the energy indus-
try:, In Oklahoma, a large U.S. energy producer and the 3rd most disaster-prone stater, the
State Energy Office is entirely federally funded and has only a single employee charged with
constructing the state’s plan for energy emergencies [163].

In 2018, the United States designated climate change a national security threat in an
amendment to the National Defence Authorization Act, largely due to threats to grid reliability
[163]. In a report commissioned by Sandia National Laboratory titled “Improving Electric
Utility and Community Grid Resilience Planning,” consultants from Synapse Energy described
a mitigation technique where a stakeholder prioritizes resilience actions by considering three
different, and potentially mutually-exclusive, optimizations:

1. avoiding or reducing consequences to key electric infrastructure;

2. avoiding or reducing consequences to priority customers; and

3. avoiding or reducing consequences in key geographic areas.

They point out that ensuring performance in one circumstance over the other can have
“economic, social, and/or national security consequences” [164].

2.8 Summary

This chapter has provided some background information on the structure of grid itself, on
SAIDI and SAIFI–two metrics of grid reliability–and on the previously-existing sources
for reliability data. It outlined the varied interests of stakeholders in reliability data and
concluded by describing the importance of this data in the face of climate change. In the next
two chapters, I present PowerWatch, the sensor I developed to gather utility-independent,
agile, high-resolution, and low-cost reliability data. Chapter 3 describes the context in which
PowerWatch was designed and deployed and the methodology for deploying PowerWatch.
Chapter 4 then presents the architecture underlying the PowerWatch system and an evaluation
of the sensor’s performance in the lab and in the field.
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Chapter 3

The Deployment

In this chapter, I introduce PowerWatch. PowerWatch is a system that combines plug-in
sensors and an outage-detection algorithm to provide high-resolution, utility-independent
measurement of distribution grids. These measurements are supporting the monitoring and
evaluation of a $498 million USD investment by the Millennium Challenge Corporation
(MCC), a U.S. Government organization chartered to invest in infrastructure to reduce
poverty and encourage economic growth. In 2014, MCC and the Government of Ghana
signed the Ghana Power Compact, a $498 million investment designed to improve the grid
generation, transmission, and distribution systems in Ghana, to be implemented by the newly
created Millennium Development Authority (MiDA) [255].

As independent evaluators of the Ghana Power Compact, we worked with MiDA and
MCC while designing PowerWatch to distil the requirements of the sample. With them we
scoped the sample to measuring power outage frequency and duration, voltage fluctuations,
and frequency instabilities at the low-voltage level of the distribution grid in Accra, Ghana.
Our interdisciplinary team included economists evaluating the socioeconomic impacts of these
investments and engineers building the PowerWatch system to provide the data requirements
of that evaluation.

This chapter also describes the local context in Ghana surrounding our design and
deployment of PowerWatch. In particular, our methodology was impacted by Ghana’s history
of poor electricity reliability and lack of ground-truth data on reliability. I then present the
goals of the PowerWatch deployment that informed our design and deployment methodology,
specifically the goals of improving the accuracy of reliability metrics while maintaining
independence from the utility and using our data to explore the socioeconomic impacts of
reliability. Then I describe our deployment methodology, including how we selected the homes
and businesses where PowerWatch sensors would be deployed and the team of local staff who
conducted the deployment.
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3.1 Ghana Context

Ghana is a West African country with a population of 30.8 million and a per-capita GDP of
US$2,266 in 2020 [256]. The grid has roughly 4,740,000 connections and experiences a peak
load of 2,881MW, a supply capacity of 4,695MW, and an estimated 24.7% distribution loss
rate as of 2019 [48]. The Electricity Company of Ghana (ECG) is the distribution utility in
Ghana’s capital city of Accra [257]. It is important to consider both the electrical and social
constraints in Accra to contextualize the PowerWatch system design.

3.1.1 History of Poor Electricity Reliability

Electricity has the potential to provide substantial social and economic benefits [39, 258,
259]. In Ghana, however, the grid at times falls short of providing these promised benefits,
resulting in customer frustrations that have culminated in civil unrest [8, 260]. From 2013
until 2015, the country experienced drastic electricity shortages, resulting in outages of six to
24 hours during 159 days of 2015. This period is known as “Dumsor,” a Twi word meaning
“off-on.”

In April 2017, Ghanaian President Nana Addo discussed Dumsor at a National Policy
Summit, stating, ”A signification number of small, medium and large scale operators were all
brought to their knees as a result of four years of dumsor induced by the mismanagement of
the energy sector” [261]. He cited figures from Ghana’s Institute of Statistical, Social and
Economic Research showing that the country lost about GHc618 million in economic activity,
or 2% of its GDP, in 2014 alone, with a cumulative loss of more than $3 billion in economic
activity over four years [261]. President Addo stated that, due to Dumsor, ”the industrial
sector has suffered one of the most significant setbacks in our history over the past few years”
and ”thousands of Ghanaians lost their jobs” [261].

While Dumsor has been largely mitigated with the introduction of new generation capac-
ity [262], Ghana still reports longer and more frequent outages than countries with similar
GDPs [263].

Partially in response to the Dumsor crisis, the country recently embarked on significant
reforms to the entire electric grid, including adding new generation capacity, expanding
the transmission network, and re-configuring the distribution network. These efforts have
multiple goals, including cutting operational costs, reducing transmission and distribution
losses, increasing affordable access to grid connections, and improving reliability. The country’s
current work to improve grid reliability motivated our selection of Ghana as the deployment
venue for PowerWatch [40].
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Figure 3.1: An ad for the Ghana Power Compact This ad, funded by the Ghana Power
Compact, was one of many placed around Accra to raise awareness and support for the work
underway[264].

3.1.2 Ground Truth Not Available

To improve reliability, it is important to measure it [60, 192]. To understand how well infras-
tructure investments improve reliability, it is important to have baseline measurements [40].
In Accra, however, high-resolution measurements are limited. The highest spatial- and
temporal-resolution measurements come from the ECG SCADA system. This system covers
only high-voltage transmission lines and some portion of the medium-voltage distribution
network [265].

Measurements of low-voltage outages come primarily from customer calls, a sparse and
noisy data source for the reasons described in Section 2.4.3. To improve monitoring, ECG has
recently started to deploy smart meters, but economic and social challenges create barriers to
achieving broad smart-meter coverage in the short term [266–268]. ECG recently completed a
much larger effort to install pre-paid meters, but these meters do not collect or communicate
power quality measurements [91, 269].
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3.1.3 Evaluation Goals

In this subsection we provide brief introductions to the two evaluations that will use the data. It
is outside the scope of this document to present these evaluations in detail, instead refer to the
Evaluation Design Reports by University of California Berkeley[berkeley-edr], Mathematica
Policy Research[mathematica-edr], and MCC directly[270]. The format of this subsection
and some of the text is borrowed from the Updated GridWatch Inception Report produced for
partners in Ghana by nLine (Section 7.1) and UC Berkeley [updated-inception-report].

Mathematica Policy Research

Borrowing heavily from their Evaluation Design Report, we see how Mathematica Policy
Research plans on using the data collected by PowerWatch.

The evaluation of the Ghana Power Compact will provide evidence on a range of
interventions intended to improve utility functioning and financial health, electricity
policy and regulation, electricity quality, access to legal electricity connections, and
electricity demand profile. The evaluation will provide much-needed evidence on the
effectiveness of a private concession in improving the performance of a struggling
utility, in a context in which electricity quality and pricing is a highly charged
political issue. The evaluation will also answer important implementation and
performance questions about tariff setting, the enabling environment for private
investment, and the utilities’ financial position. Finally, the evaluation may be
able to estimate impacts of an energy efficiency intervention on energy use in
large government buildings in Ghana. [mathematica-edr].

To achieve these goals they will:

use mixed-methods approaches to assess the program logic for the compact overall
and for each of the component projects, and to address the research questions
related to program implementation and the contribution of compact activities to
key outcomes. We will also develop lessons learned for future investments in power
sector reform programs and evaluate the sustainability of the projects over time
[mathematica-edr].

It is outside the scope of this document to enumerate the methods that they propose
to meet these goals. Instead, we focus on how they will consume the data generated by
PowerWatch.

The performance evaluations will make use of two types of data: longitudinal
quantitative data and qualitative data. The longitudinal data will cover numerous
key outcomes coming from administrative sources (financial and grid-based), elec-
tricity quality and reliability (that is, outage and voltage fluctuations) data from
GridWatch, and a household and enterprise survey
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Using administrative and GridWatch data, including PowerWatch, we may be
able to update the level and pace of outage reductions assumed in the model to
match realized reductions across Greater Accra. In addition, we plan to use
the GridWatch results to update the estimated impacts of outages on economic
outcomes by business type (self-sufficient, vulnerable, and non-users of electricity).

We will use our household and enterprise survey and our proposed IV results
to adjust the GridWatch impact estimates so that they can be used to estimate
impacts for Greater Accra and for the different types of investments being made. . . .
This adjustment will be done by using the GridWatch impact results by subgroup
(for example by enterprise size) and multiplying those by the subgroup percentages
found in our survey data for Greater Accra, and by doing something similar based
on our IV results. [mathematica-edr].

UC Berkeley Economics

The UC Berkeley led impact evaluation includes faculty at the The University of Pennsylvania
Wharton School, The Department of Economics at Texas A and M University, and The
Department of Agricultural and Resource Economics at UC Berkeley, and the Hass School of
Business and Energy Institute at UC Berkeley.

At the highest level, in their evaluation this team aims to measure primary Compact
outcomes, including the frequency (SAIFI) and duration (SAIDI) of outages, and voltage level
irregularities and then evaluate the socioeconomic impacts of improvements in those outcomes
due to the Compact. Their study first establishes that there is variation in reliability across
geographic areas - either between priority and non-priority feeder areas or between areas
served by new transformers injected as part of the LV bifurcation work and areas without new
transformers. The more treatment sites (i.e. newly injected transformers or areas with known
priority feeders), the more confidence there is that differences measured are attributable to
differences in reliability of the underlying infrastructure as opposed to inherent differences
between the geographic areas. These sites are shown in Figure 3.2. This fine-grained of an
analysis would not be possible with current utility class data collection methods in Accra.
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Figure 3.2: Treatment and Control Sites Distribution of treatment and control sites
across Achimota district. Locations were chosen in part based on information about where
SMEC will be injecting new transformers during their low-voltage line bifurcation project.

3.2 PowerWatch Goals

The high-level goals for the PowerWatch deployment were (1) to improve the accuracy of
key performance metrics being tracked as part of the Ghana Power Compact (S-SAIDI and
S-SAIFI as defined in Section 3.2.1), (2) while maintaining independence from the utility,
and (3) to use this data which is less aggregated than other sources to more deeply explore
the socioeconomic impacts of reliability. These closely map to the Evaluation goals presented
in Section 3.1.3.

3.2.1 Improving Energy-Reliability Data Quality

The two common metrics of energy reliability described in Section 2.2–System Average
Interruption Duration Index (SAIDI) and the System Average Interruption Frequency Index
(SAIFI)–are also key performance indicators for the Ghana Power Compact.

Accurately calculating SAIDI and SAIFI requires information about the grid’s performance
(the numerator) and underlying electrical configuration and customer make-up (the denomi-
nator). PowerWatch improves the estimate of the numerator; improving the accuracy of the
denominator remains future work. In Ghana, the denominator cannot be easily determined
due to a lack of accurate grid-infrastructure and customer maps. These information gaps are
not uncommon, and many projects are ongoing around the world to map infrastructure and
customers to improve the operation of utilities and the reporting of reliability metrics [157,
271, 272].
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To quantify grid performance without estimating the number of customers impacted by a
sensed outage, we defined two new indices: Subsampled SAIDI (S-SAIDI) and Subsampled
SAIFI (S-SAIFI) as Equation (3.1) and Equation (3.2).

S-SAIDI =
Total duration of sustained interruptions in subsample

Total size of subsample
(3.1)

S-SAIFI =
Total number of sustained interruptions in subsample

Total size of subsample
(3.2)

As the size of the subsample increases and becomes more proportionate to population
density, S-SAIDI and S-SAIFI approach SAIDI and SAIFI.

The PowerWatch sensor needed to detect the loss of power to calculate S-SAIFI and to
detect the restoration of power to calculate S-SAIDI. To accurately capture power restorations,
the sensor had to be able to keep time while not receiving power from the grid. For all
timestamps, the sensor had to maintain temporal resolution in seconds. We assumed that
this was sufficiently fast to observe grid behavior because outages impact the grid on the
order of minutes [273]. Sensors also needed to report their location within tens of meters to
allow PowerWatch to estimate the extent of an outage without relying on maps of underlying
grid infrastructure. Finally, PowerWatch sensors had to detect grid voltage and frequency,
features requested by stakeholders.

Currently, the Electric Company of Ghana (ECG), the power utility operating in Accra,
depends on customer calls to estimate the numerator for both SAIDI and SAIFI at the
low-voltage level–a method that suffers from the problems described in Section 2.4.3–and
uses a supervisory control and data acquisition (SCADA) system that contains sensors on
feeder lines, substations, and transmission lines to estimate the numerator for outages that
occur at medium and high voltages.

Our deployment aimed to improve the estimation of the numerator of both SAIDI and
SAIFI by placing sensors in the field that automatically report the location and duration of
power outages.

3.2.2 Developing an Independent Measurement Methodology

To understand how well infrastructure improvements impact reliability, it is important to
have utility-independent measurements [263]. Many widely-used tools, including SCADA and
smart meter technologies, are dependent on utility participation, in part because they directly
interface with utility property. From an academic perspective, independence is important
as it allows for unbiased research output. Independence is often desired by regulators and
investors as well, who may want to verify measurements provided by the utility, as the utility
has incentives to report favorable reliability metrics.

Our deployment was designed to evaluate the feasibility and efficacy of a novel sensing
methodology for monitoring the reliability of the electricity grid while working independently
of the utility. Before PowerWatch, there existed no high-resolution source of independent data
about grid reliability in Accra. Even if ECG were to deploy a wide-scale roll-out of advanced
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metering infrastructure, PowerWatch’s ability to provide independent data provides value.
This independence, along with PowerWatch’s low-voltage monitoring capacity, contributed to
MCC and their local implementing partner, the Millennium Development Agency (MiDA),
choosing to use PowerWatch as a primary source of data for their monitoring and evaluation
efforts [274].

To maintain independence from the utility, we could not rely on the utility to attach
sensors to their infrastructure; doing so could introduce sampling bias if the utility made
only some infrastructure available [274]. Our physical sensor, PowerWatch, was designed to
be installed at outlets in households and business. We also piloted an app, DumsorWatch,
that was designed for personal smartphones[128]. Both PowerWatch and DumsorWatch were
designed to be deployed and debugged by non-experts. This allowed us to choose deployment
sites and deploy sensors without utility involvement. The data returned from our deployment
is truly independent.

3.2.3 Exploring Socioeconomic Impacts of Reliability

The causal relationship between electricity reliability and socioeconomic well-being is not well
understood. Anecdotally, frequent outages constrain economic well-being by reducing the
benefits from welfare-improving appliances like fans and refrigerators or income-generating
assets like sewing machines. The deployment was designed in part to generate reliability and
socioeconomic data for an ongoing economic study that exploits two quasi-random sources of
variation in reliability in Accra. By comparing households and firms whose socioeconomic
characteristics are identical in expectation, and that differ only in terms of the quality and
reliability of power they receive, we can estimate the causal effect of these attributes on
socioeconomic outcomes such as well-being, productivity, and health for the residents of
Accra.

A socioeconomic survey of approximately 60 minutes in length accompanied the deployment
of each PowerWatch device with a respondent, and a shorter survey was administered to
respondents who did not receive PowerWatch but did download DumsorWatch. All surveys
were completed using SurveyCTO and participants were incentivized for their time. Surveys
were verified using high-frequency checks to address any obvious data quality issues. Example
data collected includes:

1. Demographics: name, age, education, income.

2. Electricity attributes: appliance and surge protector ownership, usage of electricity and
generators.

3. Recall of power quality in the past 2, 7, and 30 days.

4. Social media usage and perceptions of the energy crisis.

Along with providing data, the survey was used to support the development and deployment
of the technology itself. For example, we recorded in the survey a unique code for the
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PowerWatch device and DumsorWatch app deployed with each respondent, and their phone
number and GPS location, so that the sensors could later be associated to individuals. To
inform DumsorWatch debugging, we asked about the way that residents of Accra employ
their mobile phones, how many phones and SIM-cards they use, and how frequently they
upgrade their phones. To inform the deployment of the PowerWatch device, we recorded
whether the respondent turns off their electricity mains at night and whether they had any
safety concerns about PowerWatch.

3.3 Methodology

We designed a deployment methodology to achieve the goals described in Section 3.2. Our
methodology deployed our data-collection instruments at specific locations on the grid both
to monitor the success of grid improvements performed in the Ghana Power Compact and to
compare socioeconomic indicators across differing levels of reliability. We also designed and
deployed deployment-management tools to assist implementation of the methodology.
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Figure 3.3: Overview of deployment. To support the goals of the deployment, our team
selected sites that were being improved by the Ghana Power Compact and selected control
sites. The technology was deployed in both sites along with surveys at the beginning and
end of the deployment. This deployment strategy allowed us to meet our goals of evaluating
the impact of grid improvements on power reliability and the socioeconomic impact of that
reliability on consumers.

While I describe three deployments in Chapter 6, each with a differing level of scale, the
overall structure of the deployment methodology remained consistent across these deployments.
First, we developed criteria for site selection that allowed us to answer specific socioeconomic
questions. Second, we devised a sampling scheme that gave sufficient coverage of each selected
site, as well as sufficient redundancy to enable cross-validation of the new measurement
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technology. Finally, we worked with a team of field officers to deploy in the selected sites,
employing deployment-management tools to maintain and monitor the system.

As scale increased it became impossible to effectively record, connect, and correct critical
deployment metadata. We had not anticipated the complexity of managing data about
participants, devices, and app installs, each of which was collected by different systems, and
some of which informed each other. This led to an ad-hoc sharing of information through our
encrypted shared drive.
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Figure 3.4: The dataflow for the deployment. While traditional surveying methods have
a linear data flow where data is exported for later analysis, the integration of continuous
sensing in the deployment generated feedback loops which created more places where state
was stored and greater need to communicate this state, and amplified issues with errors
during surveying. We implemented a deployment-management system to alleviate these
problems. Red arrows show data flows that we first attempted to perform manually and later
automated or facilitated with a deployment management tool. Blue arrows show data flows
that we automated from the beginning because we anticipated their complexity before the
medium-scale deployment.
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(a) (b)

Figure 3.5: Some of the deployment meta systems. In (a) we see a method used to
ensure field officers received and properly notated a participant’s phone number, a critical
step because this was how incentives were transferred and sensor maintenance was scheduled.
In (b) we see an blank view into the deployment-management system, where field officers
could view the state of the deployment in real time and autonomously schedule participant
check ups.

3.4 Site Selection

Accra is segmented into 26 districts; we deployed in three, shown in Figure 3.7. We chose our
deployment sites based on the anticipated locations of new transformers, provided by the
utility [267], to allow our data to be used in a formal impact evaluation being conducted by
our collaborators Section 3.1.3.

We selected a subset of the sites where infrastructure upgrades were planned (‘treatment
sites’) and then quasi-randomly selected a set of sites that were comparable in observable
characteristics (‘control sites ’) (see Section 3.1.3. For each site, we then defined a geographic
surveying area that was the intersection of a 200 meter radius from the centroid of the site,
and a 25 meter region extending from the low-voltage network being measured. This analysis
was performed using GIS tools operating on a map of the grid in Accra provided to us by an
independent contractor implementing the grid-improvement work.
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Figure 3.6: A typical site We deploy 3 PowerWatch in each site and data can be grouped
so that only data collected in this site is analyzed. Sites are selected using criteria described
across Evaluation Design Reports of Mathematica Policy Research [mathematica-edr] and
UC Berkeley[ucb-edr]

.

Once the specific sites were selected, we targeted a deployment of three PowerWatch
devices at each site. Using the GIS technology described above, we produced a series of
maps marking the geographic area bounding each site. Field officers used these maps, along
with the GPS coordinates for the sites, to identify the surveying area and deploy sensors
accordingly.
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Figure 3.7: PowerWatch Deployment Area. Sensors were deployed in three of 26 districts
in Accra. The deployment covered an area of approximately 130 square kilometers. This
deployment was subsequently increased to 1,400 sensors and a much wider area by nLine, a
startup I co-founded.

3.5 Sampling Strategy

We deployed our sensors with residents of Accra, either at their home or place of work (or
both, if these were co-located), with an attempted 50% split between households and firms.
Installing PowerWatch at consumer plugs allowed us to not depend on direct access to utility
infrastructure, such as transformers or lines, and to measure power quality without utility
participation at the point where it is least understood: the customer.

Our strategy was built around redundant sampling such that multiple sensors were placed
under a single transformer. When all sensors in a group reported an outage at the same
time, we could be confident it was due to an issue affecting the transformer rather than a
single customer. Further, when we observed sensors below multiple transformers reporting
outages simultaneously, we could infer the outage occurred at a higher level of the grid. This
sampling strategy is shown in Figure 3.8.
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(a) Nominal (b) HV outage

(c) MV outage (d) LV outage

Figure 3.8: Deployment methodology of sensors. By randomly sampling households
and firms under a transformer, sensors can detect high-voltage (HV), medium-voltage (MV),
and a significant portion of low-voltage (LV) outages. Sensors might not detect single phase
outages, as in the bottom outage of (d), because our sampling did not guarantee sensors were
distributed across all possible phases in practice, due to both the difficulty of identifying the
phase(s) to which a service was connected and manual phase switching by a household or
firm. Sensors estimate the average frequency and duration of outages, which include both
single-phase and service-level outages.

3.6 Deployment and Surveying Team

We developed a local staff structure that, compared to traditional survey work, uniquely
supports our continuously operating deployment. This involves employing a full-time local
field manager to oversee the initial roll-out and on-going maintenance of the system, and an
auditor to follow up with participants who report problems over the phone and with sensors
no longer functioning.

To implement our medium and large scale deployments, we temporarily employ an
additional team of 10 field officers and three team leads. The field officers screen the
occupants of potential sensor locations (called participants) to ensure their home or business
is connected to and using the grid. After being informed about the collection, storage, and
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use of data, participants provide consent to our collection of their personal data and data
from PowerWatch. All participant interactions are approved by our IRB protocol.

After a participant consents, the field officer uses SurveyCTO [275] to collect information
about the participant, the deployment location, and the sensor being deployed. Field officers
plug in the sensor at the participant’s home or business or, more recently due to COVID-
19, instruct participants to plug the sensor into an available outlet. We conduct multiple
training exercises with the entire team where each member learns about the technologies
being deployed, and practices completing the survey and deploying the technologies.

Figure 3.9: Field officers in uniform. Branding and messaging was especially important
as the quality of our sample depends on long term positive relationships with participants.

Field officers visit sites in groups of two to alleviate safety concerns. We provide team
uniforms to make it clear they are part of an official project, as shown in Figure 3.9. We
also provide backpacks to carry supplies, tablets for the survey, WiFi hotspots to upload the
survey, flashlights for safety, and feature phones to verify the phone numbers of participants
to ensure we know where to send the participation incentives.

The placement of PowerWatch sensors directly in homes and firms—-where participants
can unplug them, run generators, or fail to pay their meter-—increases the noise of our data
relative to a deployment on utility-owned equipment such as transformers. In a preemptive
attempt to decrease the noise caused by a sampling strategy, we screen participants for specific
criteria, including owning a phone with Android version 4.1–8.1 and being an active customer
on the grid. We explain the goals, risks, and benefits of the project, and seek written consent.
Finally, we provide a phone number if participants have any questions or concerns.

To further encourage continuous participation, we compensate participants with airtime
credits on their mobile phone. Participants receive a small amount of airtime for initial
recruitment, and they are automatically transferred 5 GHC (around US$1) monthly as an
incentive to keep the sensor installed and to offset any electricity costs incurred by participating.
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Additionally, participants are provided a power strip to ensure the sensor does not take up a
needed outlet.

Deployment costs were $100,000 for just over one year of operation, including fieldwork
for deployment and maintenance, a full-time project manager, and participant incentives. To
reduce participant-incentive and maintenance costs, we developed the idea for an app that
shows participants reliability information (e.g., alert them when there is an outage at their
home) as an incentive to (continue to) participate and keep their sensors plugged into the
grid.

3.7 Summary

In this chapter, I described PowerWatch, our system of networked sensors installed at outlets
in households and businesses at the edge of the grid. I presented information on the context in
Ghana that informed our deployment and on the high-level goals of the deployment, including
the need for the system to be independent of the utility and gather sufficiently-high-resolution
data to improve the accuracy of the performance metrics for the Ghana Power Compact and
to study the socioeconomic impacts of reliability. I then describe the deployment methodology
we designed to accomplish those goals. In the next chapter, I will describe the architecture of
PowerWatch in more detail, discussing the design decisions made to ensure the system was
utility-independent, agile, high resolution, and low cost.
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Chapter 4

The Device

In this chapter, I describe the basic sensing hypothesis and architecture of PowerWatch.
PowerWatch consists of an outage-detection sensor that plugs into an outlet and is installed
in homes and businesses. It reports the state of the grid in near-real-time over a cellular
back-haul to the cloud. The deployment methodology for PowerWatch is uniquely suited for
applications that require utility independence, markets that require low-cost, high-resolution
measurements of power outages and voltage quality, and stakeholders that have short timelines
to deploy or need to take small, targeted samples (i.e., exploring reliability at health care
clinics).

(a) PowerWatch PCB.
(b) PowerWatch sensors.

(c) Installation.

Figure 4.1: PowerWatch as deployed. (a) PowerWatch PCB with cellular radio, SD card,
and sensing circuits. (b) Assembled PowerWatch sensors with QR code scanned at installation
to associate the sensor with a participant. (c) A field officer installing a PowerWatch sensor
at a household outlet.

Every two minutes, the PowerWatch sensor takes a reading of power state, grid voltage,
grid frequency, GPS location and time, and cellular quality. Newer sensor versions interrupt
on power-state change and record the timestamp (from an RTC) and acceleration (to help
filter out user-unplug events). These measurements are stored locally on an SD card and
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transmitted to the cloud when a cellular connection is available. A cloud-based analytics
system searches for outage reports from multiple devices to ensure the validity of an outage,
clustering outage reports into density-based clusters in both space and time to reject noise
from a single sensor (i.e., a single participant unplugging a device or a pre-paid meter running
out of credit) and ensure that only true outages are reported by the system. I conclude this
chapter by describing the tests we performed in the lab to select the time and space parameters
for the density-based outage-report clusters, and the tests we performed to evaluate the
physical sensor’s performance in the field. In the following chapter, I describe the tests
performed to evaluate whether the PowerWatch deployment successfully extracted outages
from the data our sensors collected.

4.1 Architecture

The GridWatch architecture, shown in Figure 4.2, consists of: (1) an outage-detection sensor,
PowerWatch, that is deployed in utility customer homes and businesses, (2) a cellular network
link to the cloud, and (3) cloud-based data analytics that cluster reports from multiple sensors
into outages.

Figure 4.2: PowerWatch System Architecture. PowerWatch measures the grid by plugging
in at outlets in homes or businesses, transmitting data about power quality over the cellular
network, and clustering the data based on temporal and spatial characteristics of power
outages.

4.1.1 Sensor

The PowerWatch sensor, shown in Figure 4.1, plugs into an outlet and reports the state of the
grid over a cellular backhaul through a Particle Electron modem [276]. We selected a cellular
backhaul before entering the field given the relatively high percentage of mobile phone users
in Accra. Residents have an average of 1.37 mobile subscriptions and 90.0% own a mobile
phone [277, 278].
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Figure 4.3: Evolution of PowerWatch with each deployment. PowerWatch revision
A consisted of an off-the-shelf compute/communication module and enclosure (A.1) and
paired with a custom sensor front-end (A.2). Data from this revision informed the need
for a better enclosure and more casing in revision B, which consisted of a custom sensing
and communication board (B.1), enclosure with externally plugged power supply (B.2), and
a separate grid voltage and frequency sensor (B.3). While the separate grid voltage and
frequency sensor allowed for easier assembly, its complications led us to build revision C, a
completely-encased custom sensor which plugs directly into the wall, to sense grid voltage
and frequency.

Every two minutes, the sensor takes a high-frequency sample of the voltage waveform at
the outlet to calculate grid RMS voltage and frequency. It also records the number of nearby
WiFi signals as secondary validation, as wireless hotspots may be grid powered. In addition,
upon changes in power state, the device records the timestamp (from an on-board real-time
clock) and current acceleration. Acceleration signals that a participant is interacting with
the device, making it likely that any charge-state change at that time is a false positive and
allowing us to more easily reject the data point.

The two-minute sampling interval was chosen as a tradeoff between data resolution and
communication costs. This interval is more frequent than the 15-minute sampling rate used
by most smart meters, which are considered state-of-the-art in calculating SAIDI and SAIFI.
Additionally, for sensors with outage timestamping functionality, the sensor can report outages
with second-level precision and of less than one minute duration, sufficient for detecting the
IEEE’s definition of a sustained interruption [60].

The measurements are stored locally on an SD card and transmitted to the cloud when a
cellular connection is available. The sensor contains a 2000mAh battery, which can run the
sensor for several days, longer than most outages in Accra. When the sensor is on battery
power, it still reports data at the same frequency to our servers, a feature necessary for
calculating outage duration.

Because PowerWatch sensors would not necessarily be collected at the end of the deploy-
ment, and the data they collect might be used in real-time in the future, the sensor needed to
have a reliable wide-area network connection, with capacity measured in the low megabytes
per month. This connection was used to collect data, to track system health parameters, and
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to perform over-the-air firmware updates. Short network outages were tolerable because data
could be stored locally and sent when the network returned.

4.1.2 Cloud

The core of the PowerWatch cloud receives data from PowerWatch sensors and stores that
data in a PostgreSQL/TimescaleDB database [279]. Data is then joined with deployment
metadata for further analysis. Data is not deleted from the sensor until the sensor receives
confirmation the data was stored in the database.

Additional cloud services supporting PowerWatch include dashboards to monitor the
deployment and inform field officers of non-functioning sensors, systems to transfer incentives
to participants, and visualizations of outage data.

4.1.3 Outage Clustering

Outage reports from multiple sensors are combined to ensure the validity of an outage. We
consider two co-reporting sensors sufficient to indicate an outage. To perform this clustering
we use STDBSCAN [280], which clusters outage reports into density-based clusters in both
time and space.

To select the time parameter for STDBSCAN, we created a testbed, described in detail
in Section 4.2.1, to generate artificial outages and observed the time distribution of outage
reports. Because the time range of the outage reports varied up to 100 s, we conservatively
used 100 s as the time parameter for STDBSCAN, allowing the algorithm to cluster two
sensors with a reporting-time discrepancy of up to 100 s.

To derive the spatial parameter for STDBSCAN, we explored the spatial distribution
of sensors within our deployment. We observed that adjacent sites would likely, but not
necessarily, experience an outage at the same time [8, 273]. Therefore, for all sites we
calculated the maximum distance between any site and its second-nearest site. Doing this—
and excluding outliers whose second-nearest site is beyond 3x the inter-quartile range of the
distribution—yielded a spatial clustering parameter of 2.4 km.

4.1.4 Cost

The PowerWatch sensor was originally optimized for reliability and ease of manufacturing at
small quantities, rather than cost, and was made available to funding agencies for US$187 per
unit. The largest contributors to this cost were the populated PCB with power supply, GPS,
and sensing circuitry ($87), the Particle Electron ($38), the enclosure ($20), and assembly
($10). Unoptimized communication and cloud infrastructure cost $8 per sensor per month.
Newer sensor designs, which maintain the same or greater functionality, are projected to cost
$30-$40, and optimized communication and cloud costs should be less than $1 per sensor per
month.
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4.1.5 Deployment Management Tool

We developed three software subsystems to support the deployment. These subsystems
include (1) an automated incentive system to transfer the airtime incentives; (2) a deployment
management system to a) keep track of sensor and participant state and b) display deployment
health to the field management team; and (3) a data-visualization and analysis system. These
subsystems were developed as a result of our experiences as the development scaled over time,
discussed in Chapter 6.

4.1.6 Visualizations

We developed a number of different dashboard visualizations of the course of our deployments.
Two of these are shown in Figures Figure 4.4 and Figure 4.5.

Figure 4.4: Early Engineering Dashboard This is accessed using a web browser. The
table towards the top of the screen lists all sensors, the time since the last data received, the
total time it has been deployed, and its current battery life. The bottom graph shows a time
series representation of all PowerWatch devices. The orange line is all of the devices. The
green line is all devices that believe the power is on. The blue line is all devices that believe
the power is off. There are two outages present in this view, which can be seen as a spike in
the blue line as more devices report that the power is off and a dip in the green line as less
devices report power is on. While not the most aesthetically pleasing, it allowed us to handle
medium to large scale deployments.
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Figure 4.5: PowerWatch data visualization Figure is screen capture from nLine’s data
visualization system[nline-dataviz] With the goal of supporting non-technical users, this
dashboard was developed to allow for spatial and temporal queries to be trivially run,
visualized, and analyzed across the PowerWatch dataset. nLine has since performed multiple
training’s with utility and regulator stakeholders in Ghana on using this tool and will be
making it available over the next year.

4.2 Device Performance

In all we have deployed 3 generations of PowerWatch sensors as UC Berkeley (and 1 further
generation as nLine). With nLine we are now running 1400 sensors in Accra, as well as
110 PowerWatch deployment in Kenya, in 3 healthcare clinics in Rwanda, and in markets
in Nigera. Over the three years of deploying PowerWatch we have not experienced any
catastrophic failures of the device (i.e. no fires, no participant harm).

4.2.1 In-Lab Testbed

We evaluated the performance of the sensors in the lab by using a testbed to create artificial
outages. STDBSCAN [280], which we use to combine outage reports from multiple sensors to
ensure the validity of an outage, clusters outage reports into density-based clusters in both
time and space. STDBSCAN requires parameters to specify the minimum number of points
within a density-based cluster and the maximum distance between points in both time and
space.
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(a) (b)

Figure 4.6: Two testbeds. In (a) we see an early, small test bed, and in (b) we see our
testbed from two years later. As the technology has developed, supporting systems had to
improve (see Chapter 6) and opportunities for further optimization like the tighter timing
shown in Figure 4.8 arose frequently.

To select the time parameter for STDBSCAN, we created a testbed to generate artificial
outages of various sizes and observe the time distribution of outage reports in this controlled
setting. The testbed consisted of three programmable outlets with 2, 8, and 30 sensors
connected to each outlet, respectively. Because sensors were connected to the same outlet,
we could ensure they experienced an artificial outage at the same time. Testbed sensors were
programmed with the firmware version that contained the least precise outage timestamping.
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Figure 4.7: Time range of testbed outages. A testbed of sensors and programmable
outlets generated two hundred outages of various sizes in a controlled setting. We observed
the precision of outage timestamping, noting that for any given outage sensors may report
that the same outage occurred up to 100 s apart. This allowed us to parameterize clustering
algorithms used to detect outages in the field. Newer firmware reduces temporal variance to
less than 10 s.

The resulting times from this experiment are shown in Figure 4.7. In 200 artificial outages,
all sensors set up to experience an outage successfully reported that an outage occurred. For
a given outage, the time range of the outage reports varied up to 100 s (that is, a sensor
reported that the outage occurred not more than 100 s after it actually occurred). We therefore
conservatively used 100 s as the time parameter for STDBSCAN, allowing the algorithm to
cluster two sensors with a reporting-time discrepancy of up to 100 s. Data from more recent
versions of the sensor report all outages within 4 s of one another, which will allow us to
further reduce the clustering time parameter. This improved timing is shown in Figure 4.8.

Figure 4.8: Time range of testbed outages with improved firmware. Improved
firmware decreased the variance to closer to what would be expected, although leaving room
for improvement in firmware optimization.
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4.2.2 In-Field Analysis

We evaluated the performance of the sensors in the field by examining the sensor uptime,
packet reception rate, and spatial and temporal accuracy of the sensors and the deployment.
The sensor instrument performed as designed, staying alive and precise over long periods in a
challenging environment.

Uptime

Uptime across the PowerWatch deployment is shown in Figure 4.9. We measured average
uptime across the deployment to be 73.6% with suspected unplug failures occurring 2.3%
of the time, suspected sensor switch-offs occurring 5.2% of the time, and unknown failures
occurring the remaining 18.9% of the time. Further, we found that at least two sensors (the
minimum number for our outage detection algorithm to detect an outage localized at that
site) are reporting per-site on 85.3% of site-days.

Figure 4.9: Number of sensors reporting throughout the deployment. Failures are
either user unplugs (sensed by the accelerometer), sensors dying due to unsensed unplugs
(such as those that occur when the wall switch is flipped), or unknown failures (likely also
due to participants unplugging or turning off the sensors, as we observed no hardware or
long-term software failure in collected sensors). Initial deployments occurred in June 2018,
with some sensors retrieved in December 2018. Additional sensors were deployed in February
and April 2019. Field staff actively attempted to maintain reliability from April to June
2019, greatly reducing the rate of sensor failure. Even without field staff support, the rate of
failure lessened over time, demonstrating that our deployment methodology is sustainable if
properly over-provisioned.

While we would like to collect more information about the causes of unknown failures, we
note that when our field team called participants and asked them to re-plug-in their sensors,
such as in May 2019, the sensor reporting rate increased significantly. This, along with the
fact that we found all re-collected sensors to be functional when operated in a controlled
setting, leads us to believe that most unknown failures are due to participant behavior.
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Packet Reception Rate

To measure the quality of the cellular backhaul we calculated the per-sensor packet reception
rate (PRR) based on packet sequence numbers and their expected reporting interval, excluding
sensors if they permanently fail. We saw a mean PRR of 97.4%, and that 95% of sensors
had a PRR over 95%.

Figure 4.10: Packet Reception Rate (PRR). PRR was calculated by comparing each
sensor’s expected reporting interval and sequence numbers with data received. Jumps in
sequence number, or periods sensors did not report when expected, indicated a transmission
failure due to lack of cellular connection or bugs in the firmware. Sensors were not included
after permanent failure, and PRR was increased by local queuing.

GPS Performance Indoors

Because our sensors are deployed indoors, reception is a concern. The rate of GPS fix is
low, with 44% of reports containing a GPS fix sufficient to get GPS time and 42.9% of
reports containing a GPS fix sufficient for localization. Because the sensors are stationary,
infrequent fixes are acceptable, especially when paired with a GPS point taken with a tablet
at the time of deployment. 78.0% of sensors get a valid GPS fix at some point during their
deployment. The wide variance in the time for each sensor to acquire its first GPS fix is
shown in Figure 4.11. We conclude that while GPS is moderately successful indoors, it should
not be depended on to be quick or universally present.
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Figure 4.11: Time to acquire first successful GPS fix. Note CDF axis stops at 0.8. From
462 sensor deployments, over 17% achieved a fix within the first hour after their deployment
began, and over 29% within the first day. Over 65% achieved a fix within 30 days. The
remaining 11% that achieved a fix were spread over 300 additional days. In 23.2% of the
deployments the sensors never achieved a GPS fix.

Spacial Resolution

The location of a sensor is collected both at deployment by the field team and during the
deployment by the sensor’s on-board GPS. As discussed above, 78.0% of sensors obtained a
valid GPS fix at some point during their deployment, which was used to verify and correct
locations collected by the field team. All locations were collected to 10m accuracy.

Temporal Resolution

In the experimental setup for Figure 4.7, we detected 100% of our over 100 simulated outages
of various sizes using the first generation of our sensor, which had the least-precise outage
timestamping ability of our sensors (no RTC). To measure the accuracy of our timestamping
in the wild, we compared the reported timestamp to the GPS timestamp reported when a
GPS fix is acquired, true for 44.0% of sensor reports. We found that over 99% of timestamps
were within 10 s of GPS time and over 99.9% were within 60 s of GPS time.

4.3 Summary

In this chapter I described how PowerWatch takes simple measurements–outage reports and
voltage and frequency fluctuations–at outlets in households and businesses at the edge of grid
and aggregates those measurements by clustering them. I then presented our in-lab tests and
in-field analysis of the PowerWatch sensor itself, which we used to inform our outage clustering.
In the next chapter I will describe the methods we used to evaluate the effectiveness of the
overall deployment at detecting large and small outages and other power-quality issues.
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Chapter 5

The Data

In this chapter I describe the methods used to validate that PowerWatch was, in fact,
accurately detecting both large and small power outages including by finding anecdotal
confirmation of large outages and through using spacial and temporal patterns in sensor
reports. In the absence of ground truth on the accuracy of our outage-detection algorithm,
we evaluated our sampling methodology with statistical and numerical methods. We conclude
that our PowerWatch deployment does enable high-resolution measurements that improve
existing measures of grid reliability in Accra. I conclude the chapter by presenting some of
outage and power-quality data gathered by the deployment and some takeaways about how
this data can be used in under-instrumented areas.

5.1 Deployment Data

We examined the performance of PowerWatch by considering both the methods used for
extracting outages from a noisy datastream of outage reports and the suitability of our sample
for estimating S-SAIFI and S-SAIDI.

Other evaluations of large-scale sensor networks deployed in the wild discuss challenges
related to reliability, networking, node placement, security, and filtering noise introduced by
leaving the lab [281–287]. We evaluate our system against similar considerations, particularly
reliability, node placement, and filtering noise from our data stream. While the deployment in
customer homes and businesses introduced significant noise—participants unplugged sensors,
individual prepaid meters ran out of credit, and generators artificially restored power—we
hypothesized that, with careful filtering, we could extract patterns from our data to give us
confidence that a sensor was part of a true outage and that we were roughly measuring both
the spatial extent of the outage and the grid voltage level at which the outage occurred.

Specifically, we looked for spatially- and temporally-related changes in power state across
two or more sensors to classify an event as an outage, and we deployed three sensors at each
site so outages would still be detected if a single sensor failed. By requiring a space-time
cluster before classifying an outage, we filtered out noise created by placing sensors with
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end-users. However, by not considering single-sensor reports as true outages, we did reject
small outages that only affected one sensor.

To determine where in the grid hierarchy an outage occurred, we measured the number
of sensors that observed an outage. Given a cluster of only two or three sensors, the point
of failure was most likely on low-voltage infrastructure. Given an outage spanning multiple
deployment sites, the point of failure was likely in a higher tier of the grid.

We then used measurements gathered by ECG’s SCADA system and numerical and
statistical models to evaluate whether we deployed enough sensors to accurately calculate
our S-SAIDI and S-SAIFI measurements. We concluded that our deployment sample was
sufficient.

5.1.1 Extracting Outages

PowerWatch extracts outages from aggregated single-sensor reports by finding space-time
clusters. Evaluating this technique would be a comparatively simple task with the presence of
ground truth measurements; however, only limited ground truth exists from the utility at the
high- and medium-voltage levels, and nearly no usable ground truth exists at the low-voltage
levels (see Section 3.1.2).

PowerWatch is not the first deployment that lacks ground truth. Techniques to overcome
this deficiency include methods that give confidence that a sample is representative [288] and
unsupervised learning techniques that extract patterns. Both methods are common in Earth
Science, where, like the grid, large-scale phenomena such as forest growth [289] or ocean eddy
tracking [290] cannot be directly verified.

The limited ground-truth data that does exist—SCADA data for high- and medium-
voltage outages, and customer calls and truck logs for medium- and low-voltage outages—was
either not made available to our team or did not contain precise-enough space and time
information to validate individual outage events.

Therefore, our evaluation augmented the limited ground-truth data that we did have with
evaluations of the spatial-temporal relationships between sensor reports that we would only
expect to see in true outages.

Initial Checks

We first searched for anecdotal confirmation that outages similar to those sensed were actually
occurring in Accra. Large outages were sometimes reported in the news and were detected
by PowerWatch (shown in Figure 5.1) [291].
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Figure 5.1: PowerWatch captured an outage reported in the news. PowerWatch
sensors and clustering algorithms perfectly captured a power outage event (“dumsor”) reported
by GhanaWeb, a popular news source, to have occurred “around 21:00” on March 14,
2019 [291].

We can also see anecdotal confirmation in our estimate of S-SAIDI (Equation (3.1)) and
S-SAIFI (Equation (3.2)) in Figure 5.2. Figure 5.2a shows a PURC announcement of an
investigation into a week-long period of grid instability. Figure 5.2b is a screen capture from
PowerWatch’s Data Visualization System (described in Section 4.1.6). In Figure 5.2b we see
that S-SAIDI and S-SAIFI are much higher during that week then they were during the same
week a year earlier.
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(a) (b)

Figure 5.2: PowerWatch captured a period of instability under investigation by
the Public Utilities Regulatory Commission of Ghana (PURC). (a) is a screen
capture of a public notice posted by PURC about the launch of an investigation into a
period of disruption that occurred from 06/02/21 to 06/09/21. (b) shows data collected by
PowerWatch. On the left of the display, SAIDI and SAIFI from the same week-long period
the prior year (06/02/20 to 06/09/20) is shown to be much less than SAIDI and SAIFI from
the week under investigation.

Additionally, while the utility-reported repair logs were not precise enough to validate indi-
vidual outages, we could compare their relative number to the outages sensed by PowerWatch.
The repair logs we obtained indicated 1,449 repairs in just over five months in one district,
while in that same time and district PowerWatch detected 575 outages. While PowerWatch
detected fewer outages, this is as expected because PowerWatch is only covering part of the
grid. By linearly extrapolating our coverage to the entire district, we predicted PowerWatch
would have detected 1,801 outages in that period, similar to the number recorded in the logs.

Temporal Patterns with Sensor Reports

When there was a power failure, the entire downstream network rapidly de-energizes. Thus,
in the event of a true outage, we expected to see multiple PowerWatch sensor outage reports
very close to one another in time. Conversely, we expected to see outage reports relatively
randomly distributed in time in the event of a false outage caused, for example, by a participant
unplugging a sensor or by a prepaid meter expiring. We expected the transition between
these two temporal groupings to occur around the maximum time cluster of sensors reporting
a true outage, about 100 s, as explored in Figure 4.7.

To test this hypothesis we considered the CDF of the time between an outage report
and its next closest outage report, shown in Figure 5.3. In line with expectations, we saw a
bimodal distribution of inter-sensor outage reporting times, with a transition between these



CHAPTER 5. THE DATA 95

two modes occurring around 100 s. This supported our hypothesis that true outages are
distinguishable in the time domain.

Figure 5.3: Distribution of times between individual sensor unplug reports. Over 40%
of sensor unplugs occurred within 100 seconds (102) of another unplug report. Additionally,
the flat section in the middle of the graph indicates that sensor unplug reports occurred
largely in two modes: those highly correlated in time with other unplug events, and those
occurring much more randomly in time. We believe the temporal correlation is due to outages,
and that the presence of this correlation can be used to separate true unplug events from
those not caused by grid failure.

Spacial Patterns with Sensor Reports

We expected most true outages to be spatially dense, as the spatial distribution of outages
(especially small outages) is contiguous. Further, we did not expect to see many powered
sensors within the extent of a detected outage, although some are possible due to generators
and concave grid structures.

To test whether these properties were true in the PowerWatch dataset, we evaluated the
number of powered sensors within the convex hull of the detected outages in Table 5.1. We
found that, for all sizes of outages, the number of powered sensors within the convex hull
was low, with no more than two powered sensors within the convex hull of any outage. The
absence of powered sensors within the convex hull indicated that PowerWatch was sensing
true outages.
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Number of powered sensors
within convex hull of an

outage

Outage Size Mean Mean % Max Max %
3-10 Sensor Outages 0.03 0.33% 2 20%
10-30 Sensor Outages 0.09 0.51% 2 11.76%
30+ Sensor Outages 0.31 0.60% 2 4.65%

Table 5.1: Number of powered sensors within the convex hull of an outage. Across all
sizes of outages, very few powered sensors–at most 2–fall within the convex hull of a detected
outage. This gave us confidence that outages detected by PowerWatch were true outages as
we would not expect sensors within an outage area to be powered beyond anomalies such as
the presence of a generator or concave grid shapes where separately-powered infrastructure
encroached into the convex hull of an outage.

Same City Same Feeder Same TX

Percent co-reporting 4.5% 11.22% 11.64%

Correlation of voltage
first differences

0.04 0.11 0.14

Table 5.2: Co-reporting rates and voltage correlation scores of sensors under the
same infrastructure. We identified sensors under the same infrastructure using maps
available for a subset of the grid. We found that sensors under the same infrastructure
experience higher rates of outage co-reporting. Similarly, a correlation on the first-differences
of the reported voltage increased for sensors located under more-local infrastructure. This
provided evidence that electrical connections were discernible from our data stream, and that
applications such as automated topology detection and subsequent root-cause analysis might
be possible even without maps of the grid.

Other Corroborating Signals

To further confirm that the outages extracted by our clustering algorithm were true outages,
we examined other signals collected by PowerWatch for signs that an outage occurred. In
Figure 5.4 we analyzed the voltage, frequency, and number of WiFi networks detected by
sensors near an outage and by sensors not near, and thus not impacted by, the outage.
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Figure 5.4: Voltage, frequency, and number of WiFi networks before and after
an outage. We time-aligned and averaged the voltage, frequency, and number of WiFi
networks observed by PowerWatch sensors during small (clusters of 3 sensors) and large
(clusters of 40 sensors) power outages and restorations. Sensors were “near” an outage if they
were in the same site as a sensor in the outage. Voltage and frequency were not measured
for sensors experiencing an outage. As cluster size increased, we observed that sensors not
near an outage detected changes in frequency and voltage in response to the change in
demand associated with an outage or restoration event. The change in number of nearby
WiFi signals was similar–decreasing on outage and increasing on restoration. Together these
signals corroborated that outages detected by PowerWatch were true outages.

In sensors near small outage events, we saw a distinct rise in voltage after an outage and
a distinct drop in voltage at the time of restoration. In larger outages, we saw similar effects
impacting the entire network of sensors, as well as an increase in frequency throughout the
entire network immediately after an outage. These changes in voltage and frequency were
consistent with expectations about the impact of a sudden change in electric load, such as an
outage, on voltage and frequency.

For both large and small outages, we saw a drop in the number of WiFi networks at the
time of an outage and an increase in the number of WiFi networks at the time of a restoration,
consistent with the loss of power to nearby WiFi access points.

5.1.2 Sampling Evaluation

While we did not have ground truth to tell us the exact accuracy of our outage-detection
algorithms, the presence of both spatial and temporal relationships between reports collected
by individual sensors in the field, described in Section 5.1.1 and Section 5.1.1, respectively,
and the presence of expected voltage and frequency changes near an outage, described in
Section 5.1.1, were best explained by a failure of the grid.

Using the presence of these relationships to bolster our assumption that outage events
detected by PowerWatch were true outages, we moved forward to evaluate the ability of
PowerWatch to sample the grid sufficiently to estimate S-SAIFI and S-SAIDI.
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An optimal sampling strategy would have placed sensors such that they captured a
representative view of the grid. Unfortunately, this could not be achieved easily in Accra,
as there were few available high-resolution observations of the grid’s performance and the
available infrastructure maps were incomplete. Therefore, we evaluated our deployment
methodology post-hoc, attempting to answer the following two questions: (1) whether we
had deployed enough sensors to correctly detect and capture the extent of most high- and
medium-voltage outages, and (2) whether we had deployed a sufficient subsample to trust
our S-SAIDI and S-SAIFI calculations.

To answer these questions, we first compared our S-SAIFI measurements against the
best available measurement of SAIFI, gathered by the ECG SCADA system, and then used
both numerical and statistical methods to evaluate the predictive power of our subsample for
estimating S-SAIDI.

Comparing Against Ground Truth

We compared S-SAIFI against the SAIFI reported by the Electric Company of Ghana (ECG)
in Q3 2018, the only SAIFI information we were able to collect. This ECG Q3 report included
few low-voltage outages because there was no low-voltage automated monitoring. Some
medium-voltage feeders were also not monitored by ECG’s SCADA system. The ECG report
was aggregated by district, allowing us to directly compare with the one district we had
instrumented at the time of our analysis. Finally, ECG’s calculation of SAIFI depended on
ECG’s knowledge of customer service connections in each district, but this data was not
available to us.

To compare against the ECG Q3 report, in Figure 5.5 we compared the district-wide
ECG-measured SAIFI to S-SAIFI measured by PowerWatch. The PowerWatch measurement
was split into contributions from small clusters of fewer than ten sensors and large clusters of
ten or more sensors. We expected the large clusters to correlate with the high- and medium-
voltage outages in the ECG report and the small clusters to correlate with ECG-reported
low-voltage outages.

When PowerWatch’s S-SAIFI was calculated for larger outages, it closely matched the
SAIFI reported by ECG. PowerWatch also detected a substantial number of smaller outages
that were not detected by ECG. This data suggested ECG was under-sampling the grid and
under-reporting smaller outages that affect customers.
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Figure 5.5: Comparison of PowerWatch S-SAIFI to the utility-reported SAIFI in
quarter 3 of 2018. Our large outage clusters closely compared to the combined medium-
and high-voltage SAIFI reported by ECG, while low-voltage outages (small outage clusters)
sensed by PowerWatch greatly exceeded low-voltage SAIFI reported by ECG. This provides
evidence of the extent of under-sampling by the utility at the low-voltage level of the grid.

Combinatoric Method for Evaluating Coverage

While agreement with ECG’s SAIFI figures increased confidence in our sampling methodology,
we further explored the power of our sample with statistical and numerical methods. We
began by verifying that our deployment could cover a significant portion of the high- and
medium-voltage grid.

We did not have accurate maps of the infrastructure in our deployment areas, but we did
have the relative counts of infrastructure elements at each level of the grid. This provided
sufficient information to construct a simple model that estimated the likelihood that our
deployment would observe any given high- or medium-voltage failure.

To create this model, we assumed: (1) within each district, transformers were evenly
distributed between substations, and (2) for every site, each transformer not yet instrumented
had an equal chance of being selected. We then framed the coverage question as an urn
problem that yielded the likelihood we had chosen at least one site from each substation
(high voltage) and/or feeder (medium voltage) after selecting x sites, without replacement, in
a given district.

The probability that our site excludes one or more substations is 1−P (S1 ∪S2 ∪ · · · ∪Sn),
where Sx represents the proposition that the sample includes the xth site and Sx, that the
sample excludes that site.

Since the union of n propositions can be expressed as a sum of their intersections [292],
we can write:

P (
n⋃

i=1

Ai) = X1 −X2 +X3 − ...+ (−1)n+1Xn,

where Xk, in our case, is the sum, taken over all combinations of precisely k substations, of
the probabilities that all those k substations were excluded from the sample.
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Since we assume that each substation has the same number of sites beneath it and that
sites are IID, this collapses to:(

n
1

)
P (S1)−

(
n
2

)
P (S1 ∩ S2) + · · ·+ (−1)n+1

(
n
n

)
P (S1 ∩ · · · ∩ Sn),

where P (Sn) =
(
transformers

x

)−1( transformers
substations

×(substations−n)
x

)
.

We find that of the many ways to choose 85 sites in Achimota (
(
461
85

)
≃ 2.4 × 1094),

Dansoman (
(
157
38

)
≃ 4.0× 1036), and Kaneshie (

(
343
28

)
≃ 1.0× 1041), in all three districts, fewer

than .01% excluded any substations, giving confidence that we should observe all high-voltage
outages. Substituting feeders for substations in the equation above, we find that a random
draw of 85 sites in Achimota will include all medium-voltage feeders with 44% probability.

Dropout Study for Evaluating S-SAIDI

To determine whether our sample was large enough to capture the range of grid performance
in Accra and estimate S-SAIDI, we conducted a similar dropout study to Section 5.1.2. We
performed thirty rounds of dropout, randomly selecting sets of sites to remove and observing
the effect of each site removal on S-SAIDI.

Had the distribution of outage durations changed significantly as we dropped out sites, we
would have seen S-SAIDI vary widely, suggesting that we might be over- or under-sampling
from parts of the grid with different interruption experiences. However, as seen in Figure 5.6,
that was not the case. As we dropped out sites, there was a downward trend in the mean
S-SAIDI, reflecting that the overall distribution of outage durations was asymmetric, with
a tail containing a few long low-voltage outages; nevertheless, even as we dropped out 60+
sites, we did not see S-SAIDI deviate significantly from our unaltered dataset (41 hours).

This indicated that the PowerWatch deployment adequately sampled from the range of
reliability present at our deployment sites.

As we removed sites, we also compared the distributions of outage durations between our
full dataset and the sub-sample, using energy distance [293]. We used the implementation of
the permutation test for equal distribution [294, 295] available from the EUGENE library [296].
The distributions did not significantly differ, meaning that the combined distribution did not
change as a function of sites removed, further supporting that our sample was adequate to
estimate S-SAIFI.
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Figure 5.6: Calculated S-SAIDI ± one standard deviation as sites are removed
from the dataset between June and August 2019. To evaluate whether PowerWatch
covered a sufficient sample of the grid to compute a representative S-SAIDI, we removed
sites from the dataset in 30 rounds and observed the effect on S-SAIDI. We saw that as sites
were removed, standard deviation of S-SAIDI remained relatively low and the mean value of
S-SAIDI dropped slightly.

Dropout Study for Evaluating Coverage

We verified our coverage model from our data by observing that if there was sufficient sensor
coverage of a certain level of the grid, removing a small number of sensors from our dataset
should not significantly impact either the number or size of outages detected at that level.
We tested this hypothesis by performing a dropout study: removing sites from our dataset
and observing the impact of the removals on the number and extent of outages detected by
PowerWatch.

When removing a site in this study, we expected one of three outcomes: an outage might
no longer be detected, the cluster size might become smaller, or a larger outage might become
partitioned into two or more smaller outages. Without sufficient coverage, in each case we
would expect that removing a single site would cause an outage to shrink by more than
just the site dropped for the study; this would indicated that the removed site played a
non-redundant role in our coverage.

We increasingly removed sites and counted the additionally-impacted sensors. Our results
are shown in Figure 5.7.



CHAPTER 5. THE DATA 102

Figure 5.7: Coverage dropout study from June to August 2019. To evaluate the
outage detection coverage of PowerWatch, we performed a dropout study, removing sites
from our dataset and observing the impact of those removals. Specifically, we looked at the
number of “additional sensors” that had been part of an outage cluster prior to the dropout,
but which were no longer after a site was dropped. Intuitively, if removing a site causes
many outages to either not be formed or shrink significantly in size, that would indicate
that the site was essential to detect the correct extent of an outage and that we might be
undersampling. During this time period, with no sites removed, there were 1,383 reports from
sensors involved in outages of size ≤ 3; 1,030 reports from sensors involved in outages of size
> 3 and ≤ 10; and 3,969 reports from sensors involved in outages of size > 10. We observed
that for outages containing more than three sensors, nearly 20 sites could be removed from
our dataset before we started missing reports from additional sensors. This indicated we had
deployed sufficient sensors to detect medium- and high-voltage outages, but, as expected, we
did not have a high degree of coverage on the low-voltage network and needed to rely on
sampling to estimate its reliability.

While, as we knew, our deployment was not dense enough to detect all low-voltage outages,
our testing showed it was sufficient for estimating S-SAIDI and S-SAIFI. For all but the
smallest outages, we had to remove more than 20 sites before the removed sites were no longer
redundant. This suggested that we had sufficient coverage to cluster high- and medium-voltage
outages in our deployment areas.

For small outages with three or fewer sensors, we saw signs of insufficient coverage
immediately—as soon as a single site was removed from our dataset, small outages occurring
outside of that site were no longer detected. This was unsurprising since, as shown in
Figure 5.8, outages commonly occurred that only impacted parts of a site.
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Figure 5.8: Number of sensors reporting outages in a densely-instrumented site.
To better understand the limits of our low-voltage sampling, we deployed 25 sensors in a
single site (under a single transformer) for two months and observed the results. We saw two
groups of outages: larger outages, which impacted all or a significant portion of the site, and
smaller outages, which might be a single phase or smaller. Larger outages comprised about
60% of the outages at this site, while smaller outages made up about 40%. This suggested
that our primary deployment strategy of three sensors per site detected many, but not all,
low-voltage outages.

5.2 Grid Data

In this section we describe some early findings about the performance of the grid. Much of
the deeper analysis about grid performance is on-going and involves the researchers running
the impact evaluations. The final reports generated for MCC about Ghana Power Compact,
as well as aggregated data, are slated to be made public by MCC.

5.2.1 Original Deployment

From June 2018 to September 2019, using 427 PowerWatch sensors in Accra, We observed
3,123 outages with an average duration of 1.7 hours. The full set of outages is shown in
Figure 5.9. Validating these outages is described in Section 5.1.1.
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Figure 5.9: All outages PowerWatch detected from June 2018 to September 2019.
The outages are visualized on a timeline where the y axis shows the size of the outage (as the
number of sensors impacted) on a log scale. Small perturbations are added to the location
of the lines to make it easier to distinguish outages of the same size. PowerWatch detected
3,123 outages with an average duration of 1.7 hours. The longest outage lasted over 48 hours.
The largest outage impacted a nearly-80 km2 area, representing two-thirds of our deployed
sensors.

In the original deployment of 427 PowerWatch devices, 18% of voltages sensed in Accra
were outside the desired range. This would likely have a significant impact on appliances and
contribute to the ubiquity of low-cost voltage stabilizers (see Figure 2.45) [52].

Figure 5.10: The number of hours respondents experienced below the target
voltage band (207Vrms) per day. These measurements contain both the periodic 2
minute measurements as well as measurements taken on outage and restoration across 420
PowerWatch detects that 18% of voltages sensed are outside the desired range.

We can similarly consider frequency across the participant population. ECG defines
nominal frequency as 50 Hz and acceptable fluctuation as between 49.8 and 50.2 Hz [46]. In
Figure 5.11, we show that 1.28% of measurements taken across the deployment are below
49.8 HZ and 25.45% of measurements are above 50.2 HZ. This sample shows clear problems
with frequency stability that remain to be investigated in more detail.
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Figure 5.11: Frequency in sample is unstable. We see that while a majority of our
samples are within the acceptable range around the nominal 50 HZ, there are still a significant
number of readings that represent deviations beyond the acceptable range of 49.8 to 50.2 HZ.

5.2.2 Expanded, nLine Deployment

This work has expanded as part of the commercialization of PowerWatch with nLine. Com-
mercialization allowed us to grow the deployment to around 1,400 sensors, which will continue
running until 2023 (see Section 7.1). Figures 5.12, 5.13, and 5.11 contain data from this
larger deployment as collected by nLine and delivered to UC Berkeley [powerwatch-rfp,
updated-inception-report, pilot-report].

The average voltage per participant compared to the target voltage from the larger, nLine
deployment is shown in Figure 5.12 and separated into districts [updated-inception-report].
Because this average may mask the low voltages experienced during peak demand, we also
show the average number of hours per day below the target voltage range (207 Vrms) for
each participant in Figure 5.13.
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(a) Dansoman (b) Achimota

(c) Kaneshie (d) Mampong

Figure 5.12: The average voltage (V) for participants, by month, in each district
of Accra with PowerWatch sensors. Includes data collected by the initial PowerWatch
deployments described in this work and in the 2019 COMPASS paper [297], as well as
additional data, analysis, and text produced by nLine from a commercial deployment of about
1,400 PowerWatch in Accra [updated-inception-report, 298]. Sensor voltage levels are
averaged per participant, then collected and plotted as box plots for each month in each
district. Outlier bars represent minimum and maximum average voltages, the green triangle
represents the mean of the dataset, and the orange line represents the median. Seasonal trends
are observed, as well as long-term voltage level improvements in Achimota and Kaneshie,
especially for the lower quartile of participants. More analysis is necessary to attribute the
underlying cause of these improvements.
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(a) Dansoman (b) Achimota

(c) Kaneshie (d) Mampong

Figure 5.13: Daily Hours Undervoltage per Respondent (hours below 207 Vrms)
vs Time (year-month) by District of Accra This includes data collected by the initial
PowerWatch deployments described in this work and in the COMPASS 2019 paper[297] as
well as additional data, analysis, and text produced by nLine from a commercial deployment of
around 1400 PowerWatch in Accra[updated-inception-report, 298]. The average number
of hours per day under the target voltage (207 Vrms) experienced by participants every
month in each district. The number of hours per day under target voltage is calculated
every day for each participant, then collected and plotted as box plots each month in each
district. Outlier bars represent minimum and maximum average hours, the green triangle
represents the mean, and the orange line represents the median of the dataset. Hours under
target voltage better captures the performance of the grid under peak load than the average
voltage. As with the average voltage, seasonal trends are observed, as well as long-term
voltage stability improvements in Achimota and Kaneshie. More analysis is necessary to
attribute the underlying cause of these improvements. Mampong has notably stable voltage
with the exception of a few outliers, with nearly all Mampong participants receiving voltage
consistently within the target range.

5.2.3 Fairness

ECG segments Accra into 18 districts, calculates SAIDI and SAIFI by district for internal
purposes, and aggregates SAIDI and SAIFI for the entire city for public release. PowerWatch
provides an opportunity to study electricity reliability at much higher resolution. Further,
because this data is collected independently of the utility and the sample is roughly random,
this dataset is well suited for exploring questions related to individual reliability and fairness.
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Figure 5.14: Lorenz curves show us power-quality fairness across our participants.
Work in progress from “Disaggregated power quality data reveal systemic inequality” by Adkins
et. al (including myself) [299]. Lorenz curves for the four power-reliability and -quality
metrics across the analysis sites exhibit inequality similar to those reported in other countries,
and over larger geographic regions in Sub-Saharan Africa [301]. We note that as power quality
worsens, so to does inequality of that measurement. We hypothesize that this is due to low
power quality consistently impacting specific pieces of infrastructure.

The following section describes work in progress by myself and four other researchers (engineers
and economists) [299].

We can begin to use disaggregated data collected by PowerWatch and the Ghana Statistical
Services to explore if there is systemic inequality across neighborhoods (Figure 5.14 and
Figure 5.15). We find that reliability, especially voltage quality, is heterogeneous. We can
then explore if reliability and voltage quality correlate with socioeconomic characteristics
(see Table 5.3) [299, 300].

We can also quantify the effect of the aggregation level of SAIDI and SAIFI on masking
potentially important heterogeneity [71, 79, 299]. Aggregation can have significant economic
and political impacts. For example, improving reliability in the wealthiest areas can achieve
the same aggregate as improving reliability in the poorest areas. Policy makers thus lack an
incentive to address power quality in poor areas.

We propose the term “reliability subclimate” and track the loss of these subclimates
across different aggregation levels. This early result is shown in Figure 5.16. This type of
analysis could help inform future metric designs more appropriate for higher-frequency data
than SAIDI and SAIFI [30, 79].
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Figure 5.15: Heterogeneity in socioeconomic and power-quality indicators. Work
in progress from “Disaggregated power quality data reveal systemicinequality” by Adkins et.
al (including myself) [299]. Examples of power reliability, population, and demographic
data split into analysis sites. The presence of inequality in power-reliability and -quality
metrics is clear, and some visual correlation can be drawn between power measurements and
demographic indicators.

Figure 5.16: Exploring “reliability climates” and the impact of aggregated metrics
like SAIDI and SAIFI. Work in progress from “Disaggregated power quality data reveal
systemic inequality,” by Adkins et. al ( including myself) [299]. This figure shows the error
between per-site number and duration of outages and SAIFI and SAIDI metrics aggregated
to the district level. We note that the distribution of sites below the mean is wider than those
above the mean, indicating that a relatively small proportion of the population experiences
significantly worse power.
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Power Reliability Metric
Outage Frequency Outage Duration Daily Hours Undervoltage 10% Daily Hours Undervoltage 20%

Analysis Metric 75-25 Gini 75-25 Gini 75-25 Gini 75-25 Gini
Census population 2.59 0.20 2.89 0.23 22.27 0.45 212.96 0.66
Number electricity meters 2.76 0.21 3.17 0.25 24.38 0.47 263.09 0.67
Number buildings 2.79 0.22 3.50 0.27 29.04 0.49 375.96 0.68
WorldPop population 2.93 0.22 3.33 0.27 50.55 0.53 549.21 0.73
Population density 0.83 -0.02 0.99 0.00 1.00 0.05 0.69 0.01
Less than high school education* 1.22 0.04 1.18 0.03 2.42 0.16 5.99 0.23
Does not own computer* 1.14 0.03 1.12 0.02 2.17 0.15 3.69 0.20
Non-professional occupation* 1.08 0.01 1.07 0.00 1.87 0.15 2.84 0.20
Illiterate* 0.99 -0.00 0.93 -0.03 1.41 0.08 1.55 0.11
Cooks without gas/electricity* 1.14 0.02 1.07 0.00 1.63 0.10 2.79 0.18
Blue collar occupation* 1.18 0.02 1.14 0.03 2.37 0.14 4.64 0.16
Christian* 1.05 0.01 1.03 0.01 1.00 -0.04 1.12 -0.03
Animist* 0.99 0.02 0.95 0.01 0.90 0.06 0.86 0.11
Muslim* 1.01 -0.02 1.10 -0.01 0.91 0.03 0.65 -0.02

Table 5.3: Equality of power reliability and quality metrics when comparing across
four population weights and various demographic metrics. Work in progress from
“Disaggregated power quality data reveal systemic inequality,” by Adkins et. al (including myself)
[299]. We evaluate the ratio between the highest and lowest quartiles (75-25) and the Gini
index for four population weights and a variety of demographic metrics. For all demographic
metrics, sites are weighted by census population, then ordered by the demographic metric
before performing the analysis. Therefore, the census population results serve as a baseline
for all demographic metrics further down the table (marked with a *), and no demographic
metric can exceed the inequality of this first row. We pull out several key findings from
this analysis: (1) power quality is more unequal than power reliability; (2) low levels of
inequality are observed in our dataset with respect to number and duration of outages; and (3)
demographic metrics that are intuitive predictors of wealth also exhibit significant inequality
with respect to undervoltage.

5.2.4 PowerWatch Data as Ground Truth

With the accuracy of PowerWatch established, it opens the door for PowerWatch to provide
ground truth for other sensors and measurement methods. With PowerWatch deployed as
ground truth, the data from higher-resolution sensors, such as micro-PMUs, or side-channel
measurements of the grid, such as satellite nightlights [119, 157] or internet scanning [150, 158],
might be more accurately transformed or interpreted to help improve power reliability. Early
results combining satellite nightlights with PowerWatch data show promising improvements
in accuracy when using satellite nightlights to observe grid stability[162].

5.3 Summary

In this chapter, I presented data about the performance of the PowerWatch deployment itself
and data that PowerWatch gathered about the performance of the grid. I demonstrated
that we had deployed enough sensors to correctly detect and capture the extent of most
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high- and medium-voltage outages and that we had deployed a sufficient subsample to trust
our S-SAIDI and S-SAIFI calculation. I then presented results from the deployment about
outages and voltage fluctuations in Accra. Finally, I concluded this chapter by outlining the
potential for using PowerWatch data to further fairness in energy reliability and as ground
truth for other reliability measurements.
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Chapter 6

Deployment Retrospective

In this Chapter, I describe the lessons learned within the context of three PowerWatch
deployments between May 2018 and June 2019. I break up lessons by scale, as each scale
uncovered its own complexities and challenges, captured in Table 6.1.

Category Small Scale Medium Scale Large Scale
Organizational • Local SIM procure-

ment
• Hiring local staff
• Contracting local firms
• Paying outside free tier

Technical • Global SIM opera-
tion

• Custom hardware
• Firmware development
• App development
• SIM operation

• Assembly
• Site selection

Operational • SIM top-up • Transportation
• Site selection
• Incentivizing participants
• Data sharing

• Deployment manage-
ment

Cultural • Learning local con-
text

• Local leader approval
• Survey design

• Unexpected phone
usages

Table 6.1: Pain points of different scales. At each scale of deployment we ran into pain
points—complexities that we perceived to be more difficult than would be expected by a
simple increase in deployment size. We encountered many at the transition to medium
scale, when local capacity needed to be built, expenses to operate the technology increased,
lack of technical reliability became much more apparent, and systems that could once be
human-operated had to be automated. Large scale brought new problems, the most notable
being the inability to track deployment state without automated deployment management
tools.

There is a strong tradition of research focusing on meta-insights gained from deploying
information and communication technologies (ICT) for development. Lessons learned from
others’ experiences overlap with many of the lessons from our deployments, including recom-
mendations to co-design with local practitioners or participants to increase the likelihood a
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technology functions as intended in the local context [302–307]; reports on the difficulty of
updating, debugging, and monitoring systems with unreliable communication infrastructure
[303–306, 308–310]; emphasis on staffing and adequately training a local team to ensure a
high quality deployment [303–306, 308, 311]; and techniques that can be taken to ensure the
sustainability of a technology [305, 306, 310, 311].

Our work expands on prior work by presenting our experiences and lessons learned as
a function of scale, emphasizing that as scale increases, challenges related to incorrectly
managing an unfamiliar local context have a higher impact on the quality of the deployment
and are harder to address post hoc.

Our deployment, where sensors were installed at participants homes in urban and peri-
urban environments, is a bit unusual in ICT for development. Many works exist within
rural contexts [303, 305, 306, 310, 312], contain a dependence on user interaction [303, 305,
306, 312], or have a deployment context within larger organizations [304, 313, 314]. Our
experiences capture one of the first road maps for independent, in-home, non-rural, continuous
sensing in the development context. I conclude this chapter by describing the risks and
rewards of conducting interdisciplinary work like this.

6.1 Small-Scale Pilot

The first activity we performed was a deployment of 15 PowerWatch sensors and 5 Dum-
sorWatch apps. The goal of this deployment was to validate that the technology could
reliably sense power outages and transmit this information over many weeks in the field. We
performed no survey work and no site selection work for the small-scale pilot. The primary
challenges were related to producing the technology, connecting the PowerWatch sensors to
the cellular network, and building enough local capacity for PowerWatch and DumsorWatch
to be deployed.

In addition to testing the technology, we built relationships to support future scaling. We
reached out to local stakeholders for feedback on our assumptions underlying the designs of
our sensors. We were able to speak with engineers and managers at ECG, the Millennium
Development Authority (MiDA), and various independent contractors involved in the Ghana
Power Compact. Further, we received data from ECG that helped validate our hypothesis that
the measurements of SAIDI and SAIFI could benefit from higher-resolution measurements.

Even at small scale, we experienced unanticipated technical challenges. To get PowerWatch
on the cellular network, we initially attempted to use the global Particle IoT SIM cards that
were included with our cellular modems. We found their connection to be much spottier than
a local SIM, and Particle support had little insight into the nature of the underlying problem.
Because of this, we decided to use SIM cards from the largest local carrier (MTN), but we
encountered a 3 SIM-card-per-person limit upon purchase. Although we were able to get
around this by visiting different stores, purchasing SIM cards in stores was not an option for
future scale.
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Another challenge was keeping SIM cards functional. Prepaid SIM cards require the
purchase of data plans for the SIM, which is done using an Unstructured Supplementary
Service Data (USSD) application that can only be run from within Ghana; there is no
web-based account management or top-up available. We initially solved this problem by
purchasing a 90-day data plan, the longest available. This was sufficient for our small-scale
pilot but would not be viable for future deployments.

6.2 Medium-Scale Deployment

In our medium-scale deployment, 1,981 individuals downloaded the DumsorWatch app and
165 individuals installed PowerWatch sensors. Deployment activities took around one week
for training, two weeks to survey participants and deploy PowerWatch sensors, and then
another three weeks to conduct short surveys and install DumsorWatch apps. We ran this
deployment for seven months.

Unlike the small-scale deployment, this scale required implementing our full deployment de-
sign, including hiring a full local implementing team, recruiting and incentivizing participants,
choosing deployment sites, extracting value from the data streams, and fully implementing
the survey instruments. The following subsections describe the changes experienced as we
increased from small- to medium-scale, paying particular attention to the challenges extracted
in Table 6.1.

6.2.1 Organizational Challenges

The medium-scale deployment was large enough that the financial responsibilities were
significant. We had to start managing multiple monthly payments for cloud services and
payments to local companies for cell network connectivity and incentive transfers. Most of
this increase in complexity was ultimately handled by staff at the University of California,
Berkeley, but establishing payment schedules took a large effort from the research team.
The university still missed payments, causing frequent delays, especially when payment was
needed in a short time frame (1-2 weeks).

Because prepaid SIM cards were not viable or purchasable through retail channels at
the quantities now needed, we had to enter into a contract with the cellular provider, MTN.
Despite multiple meetings, MTN was initially quite hesitant to provide the SIM cards due to
concerns about whether our application was legitimate. We were ultimately able to overcome
these concerns by visiting the MTN main office in our university-themed apparel, giving a
technical demo, and answering questions about our backgrounds and affiliations.

At this scale, many of the cloud-based software services our systems were built upon were
no longer eligible for free-tier usage. For one service in particular, this meant that we were
going to be unable to continue with this technology without signing a multi-year contract that
extended beyond the length of the deployment. We found a workaround for this deployment
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by applying to a special program within the company, but future deployments would require
more carefully considering pricing models for ancillary services.

6.2.2 Cultural Challenges

Visiting households and businesses required permission from the relevant local district gov-
ernment assemblies. We wrote letters of introduction and visited these assemblies to receive
permissions, and this increased trust by participants.

Further, we worked with the field officers to refine the design of our survey. During training
activities the field officers had the opportunity to react to survey questions and provide
suggestions for improvement. We used this feedback to make the survey as appropriate and
in line with our research objectives as possible. As field officers entered the field, we received
continuous feedback on ways to improve our survey and deployment procedures.

Finally, we learned that a uniform would be valuable for building trust. We provided
DumsorWatch branded shirts and backpacks for the field officers so they would project an
official appearance when approaching participants. These are shown in Figure 3.9.

6.2.3 Technical Challenges

At this scale, frequently visiting sensors for debugging was no longer feasible, so we prioritized
sensor stability and remote failure detection and mitigation. This work included developing
a full, custom embedded-system for PowerWatch (shown in Figure 4.3 A.2) with built-
in mechanisms to reset the device on failure. Additionally, we spent considerable time
implementing and testing more reliable firmware, incorporating error-collection libraries,
and building dashboards displaying the health of both PowerWatch and DumsorWatch. We
assembled this version of PowerWatch over three days with the help of a team of fellow
graduate students.

Another technical challenge was dealing with mobile phone heterogeneity. We had little
insight into the types of mobile phones and versions of Android among our participants. Thus,
we implemented DumsorWatch to be backwards compatible to 4.0.0, a version of Android
no longer supported by Google [315]. Backward compatibility took considerable engineering
effort, and had side effects such as making DumsorWatch incompatible with many modern
Google cloud services, including Google’s bug tracking tools.

Finally, we experienced two challenges related to SIM card operations. First, we could
not identify a way to test PowerWatch sensors in the United States using the MTN postpaid
SIM cards. This led us to build a United States-based testbed before traveling to Ghana,
and to perform final assembly and quality assurance in Ghana in the days leading up to
the deployment. Second, MTN had not correctly provisioned the SIM cards it sold us and
the cards could not access the network. This took multiple days of interacting MTN to fix,
delaying deployment and making clear that MTN was not well-suited to manage large fleets
of SIM cards assigned to an individual customer.
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These problems led us to continue exploring global SIM card options, and we tested Twilio
SIM cards during this deployment. We found they had similar problems to the Particle
SIMs previously evaluated. We contacted Twilio support and found their documented list of
Ghanaian network operators was out of date, making unlisted providers unavailable on the
Twilio network and leading to a drop in service quality.

6.2.4 Operational Challenges

The operational challenges started with transporting our equipment to Ghana. We carried the
PowerWatch sensors, power strips (handed out to participants as incentives), and equipment for
field officers into Ghana in suitcases over multiple flights from the United States. PowerWatch
sensors were carried on the plane whenever possible to minimize the chance the suitcase would
be lost in baggage. This method of transportation worked but led to multiple confrontations
with airport security in the United States and customs in Ghana. We were able to overcome
these hurdles by providing documentation of our project and our letters of invitation, but
this transportation method depended on our team being persistent and prepared with
documentation, unwrapping all equipment, labeling all equipment with tags indicating it
was property of the University of California and not for resale, and only traveling with a few
suitcases at a time.

To implement our site-selection methodology we needed GIS maps of the grid. We worked
with stakeholders to determine where the best maps of the grid were maintained, and obtained
these maps after repeated visits to stakeholder offices. These maps were not perfect, but they
included enough detail for our site-selection procedures.

At this scale it was not practical to transfer recurring incentives to participants by hand.
We had anticipated this problem and designed an incentive management system to support
this goal. The system was designed to capture user behavior (e.g., whether they completed
a survey, installed DumsorWatch, kept DumsorWatch installed, etc.) and transfer airtime
automatically. The actual transfer of airtime took place through a third-party API. We
developed and tested the incentive transfer system alongside our deployment activities.

Finally, at this scale, the data collected was significant enough that stakeholders in the
region began requesting access to the data. Because many of these stakeholders would be
responsible for helping the project achieve further scale, we made an effort to develop and
share anonymized visualizations and summary statistics.

6.2.5 Failures and Missteps

If I were to do this work again, I would have sketched out all moving parts of the deployment,
including all stakeholders, and diagrammed the frequency and type of communication they
require. This likely would have uncovered and allowed us to anticipate problems outside of
the technical work before experiencing them.

One class of failures experienced at medium scale was attributable to simple technical
immaturity. For example, we found bugs in both our automated incentive transfer system
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and the third-party payment API used to incentivize participants. This API was provided by
a small company, but we believed it to be the best option for transferring airtime in Ghana.
Both technologies should have been more aggressively tested prior to launch.

The pain points at medium scale showed a clear need for a fleet of testing phones in
Ghana against which we could implement continuous integration and automated testing of
incentive transfers. However, as with most hardware-based testing systems, this was difficult
to implement in practice. As a result, most participants experienced late payments, which we
hypothesize caused the significant number of DumsorWatch uninstalls shown in Figure 6.1b.

du

(a) PowerWatch (b) Dumsorwatch

Figure 6.1: Why sensors were uninstalled

As described in Chapter 3 our deployment had lots of state saved in lots of places,
making it difficult to manage without building up deployment management systems, shown
in Figure 3.4. Prior to our deployment management systems, surveys containing participant
and deployment placement information were uploaded by the field team and downloaded by
the research team periodically. The surveys were then cleaned and provided as CSV files to
the individual engineer handling either sensor management or the payment system. Errors in
the surveys (common due to typos in long unique IDs) were communicated back to the field
team via phone calls and emails, and the resultant corrections in the field would not always
be communicated back to the research team. This was ineffective while we were in Ghana
and completely collapsed after we returned and could not focus full-time on deployment
upkeep. As devices moved, we received multiple, conflicting reports about their current
location. As a result, we permanently lost the state of some devices; five devices are still
completely unaccounted for. These issues continued to make data analysis, sensor debugging,
and correlation of problems with a specific participant nearly impossible to manage for the
devices in this deployment.

6.3 Large-Scale Deployment

Beginning in February 2019, we built on our medium-scale deployment, adding 292 new
PowerWatch devices and 1,419 new app downloads in three districts of Accra. This resulted
in a full deployment of 457 PowerWatch devices and 3,400 DumsorWatch apps.



CHAPTER 6. DEPLOYMENT RETROSPECTIVE 118

6.3.1 Organizational and Cultural Challenges

The organizational and cultural challenges did not change from the medium-scale deployment.
Existing service contracts were sufficient or easily renegotiated, and the field team scaled
linearly with the size of deployment.

6.3.2 Technical Challenges

The increased number and technical complexity of the new PowerWatch sensors constructed
for the large-scale deployment precluded relying on other graduate students to help assemble
devices as we did with the medium-scale deployment; however, the scale was still too small
to be cost- or time-effective for contracted assembly. Our solution was to build our own
assembly line by hiring 10 undergraduates to assemble devices. This required developing
discrete steps, trainings, and quality-assurance techniques. The PowerWatch assembly line
can be seen in Figure 6.2. Ultimately this assembly line produced the 295 PowerWatch
sensors over four weeks and 110 person-hours of total work, with a 97.6% yield rate, which
was far better than we were anticipating. Although this activity was successful, difficulties in
recruiting and paying students hourly, and challenges with the academic schedule, ensured
that this model would not scale much beyond 400 units.

Figure 6.2: The PowerWatch assembly line. Over the course of four weeks, 10 undergradu-
ates worked 110 person-hours to assemble 295 PowerWatch sensors. They were responsible for
assembling the plug; screwing together the enclosure; attaching the circuit board; connecting
the battery, antenna, SIM card and SD card; and provisioning the device with base firmware.
They worked from team-created assembly manuals and training materials.

Similarly, the larger number of sites meant site selection was no longer easy to do by
hand. This led us to develop a GIS-based site-selection system, using the GIS maps of the
grid collected from utility. The maps had to be cleaned, and then the system could generate
sites based on our site-selection rules, label those sites, and create site location images for
the field officers. This system was designed and maintained by a dedicated graduate student.

We continued exploring global SIM card options, using Aeris SIM cards for a subset of
this deployment. We found that, due to Aeris’ focus on global IoT connectivity and the
number of customers they had in Sub-Saharan Africa, Aeris SIM cards worked significantly
better than Particle or Twilio SIMs in Ghana.
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6.3.3 Operational Challenges

The biggest change for the large-scale deployment was addressing the operational issues
described in Section 6.2.5, such as managing districuted state. We addressed these issues by
designing custom deployment management software.

Interdisciplinary work is rewarding and risky

When first approached with the opportunity to run a deployment at scale in Accra, I was
naively confident. I thought I could decompose the larger task of a deployment into subsystems,
each of which could be effectively engineered, and I put together an incredible team to execute
the vision and plan. However, in practice, well-designed subsystems are not enough. Critically,
we overlooked the human links between these systems, leading to problems not due to sensors
malfunctioning but instead from the complexities of sensor placement and upkeep as well as
differences in incentives across our research team and their employing organizations.

The University

One of our primary operational challenges was interfacing with the university system. The
administrative capacity of the university system was inadequate when it came to paying for
the disparate set of services necessary to perform our deployment. Our university policy
dictated a single day turn-around on wire transfers, but in practice this time was often over
15 days. Additionally, contracting with new companies, especially companies with which the
university had never contracted before (the vast majority), often took months.

If we were to plan for this deployment again, we would build in significantly more time
for delays and send more money than necessary to our stakeholders in Ghana early in the
deployment so that they could better handle later delays in payment from the university.
Still, it would be difficult to imagine the deployment running at its described pace without
personal credit being extended by the research team. An alternative might be to partner
with a more agile external organization to manage many of the relationships and payments.

6.4 Summary

In this chapter, I presented the challenges and lessons from each scale of our three PowerWatch
deployments. In the first section, I described our small-scale pilot, where we experienced
organizational, technical, and operational challenges with procuring and operating local SIMs,
and cultural challenges as we learned the local context.

In the second section, I described our medium-scale deployment. At this scale, we
experienced organizational challenges with hiring local staff, contracting with local companies,
and growing beyond the free tier of our software services. We also faced technical challenges
with developing our hardware, firmware, and app and with operating SIMs; operational
challenges with transporting the sensors to Accra, selecting deployment sites, incentivising
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our participants to keep the sensors installed in their households and businesses, and sharing
the data we gathered. We experienced cultural challenges with securing approval from local
area leaders, refining our survey, and building participant trust with our field officers. Finally,
I outlined some lessons learned from technical and deployment-management missteps during
the medium-scale deployment.

In the third section, I described lessons learned from our large-scale deployment. While
the organizational and cultural challenges did not change much from the medium scale, we
faced new technical challenges with sensor assembly and deployment site selection, as well
as operational challenges with our deployment-management system. In the final section, I
described how the incentives and interfaces involved in interdisciplinary work like this pose
challenges but also offer valuable opportunities for progressing important work. In the final
chapter, I will discuss how our collection of lessons learned and the software meta-tools
developed we developed may help inform future sensor system deployments.



121

Chapter 7

The Road Ahead

Having demonstrated a viable, cost-effective device, data-management platform, and deploy-
ment methodology for utility-independent power grid performance characterization, I will
now describe the road ahead. This includes a short discussion of the logic behind the decision
to commercialize this work, a short summary of new applications enabled by PowerWatch,
and a vision for the future.

7.1 nLine

In late 2019 we received funding to scale the PowerWatch deployment in Accra to 1,400
sensors; this was the tipping point for our work outgrowing the lab. My advisor Professor
Prabal Dutta, Joshua Adkins (a fellow PhD student researching in Lab11), and I founded
nLine to “measure and improve the performance of critical infrastructure in order to meet
the needs of all people and support sustainable, inclusive economic development.”

The name nLine pays homage to a common technique used to evaluate the impact of
interventions, where one-time pre-intervention “baseline”, mid-intervention “midline”, and
post-intervention “endline” measurements are taken. Data is rarely collected for impact
evaluations outside these infrequent and discrete measurement windows. Borrowing our italic
n from the common notation for sample size, the name nLine represents that we provide an
“n-line” measurement—a continuous data stream.

At nLine, we continue the work in this dissertation by designing sensors and cloud
services to determine when the grid fails, why it fails, and report what we learn back to
utilities, regulators, investors, and ratepayers. More generally, we are working toward a
general-purpose infrastructure-quality monitoring solution that can be deployed quickly and
for variable lengths of time and can operate either in collaboration with or independently
from utility companies.

nLine has nearly 10 full-time data scientists, MPPs, and project managers across three
countries. We are currently working in partnership with utilities, donors, and research
institutions to quantify power reliability in Ghana, Kenya, Sierra Leone, Rwanda, the
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Democratic Republic of the Congo, and Nigeria. I am very excited to continue on as the
CEO of nLine post-graduation.

7.2 New Applications

Since publishing our results, I have been approached at nLine by various stakeholders looking
to use PowerWatch for targeted measurements. PowerWatch has remained well suited for a
variety of applications because it:

1. can be installed without utility participation. This reduces administrative overhead in
coordinating with the utility for data and access to their physical property.

2. can be installed quickly and managed easily. Sensors can be carried into country, field of-
ficers can be trained quickly, the sensor installs in seconds, and deployment management
is built-in as a first-order requirement.

3. can be easily targeted. Sites can be selected arbitrarily.

4. can be moved. Sensors can be reused, reducing cost.

While it remains future work to fully enumerate potential applications enabled by these
freedoms, I do want to quickly mention four that are most exciting to me at the moment.

7.2.1 Health care

Health care provisioning and basic services rely heavily on affordable and reliable electricity,
and a lack of data on power quality and reliability hinders efforts to address the temperature-
dependent supply chain, or cold chain, of COVID-19 vaccines in Africa.

One in four primary healthcare facilities in Sub-Saharan Africa lack access to power and
more suffer from debilitating power outages. In late 2021, a group of 14 organizations launched
a Multilateral Energy Compact for Health Facility Electrification, aimed at improving the
electricity in over 25,000 clinics across sub-Saharan Africa, South Asia, and South-East Asia,
each one serving an average of 5 to 10 thousand people. [316–318].

Along with P.I.’s Daniel Kammen (UC Berkeley) and Rebecca Hernandez (UC Davis),
nLine just received a competitive 2021 CITRIS Seed Awards for our proposal “The power
of health in Africa: A novel data collection approach for analyzing how distributed energy
systems support vaccine cold chain resilience”. In this work we will use PowerWatch to
measure grid uptime at 100 clinics by deploying multiple PowerWatch per building. Efforts
will focus on locations in Rwanda and the Democratic Republic of the Congo. By collecting
and monitoring spatiotemporal data continuously, this project can help electrification plan-
ners better rationalize infrastructure deployments and assist health sector professionals in
identifying cold chain vulnerabilities.
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Figure 7.1: COVID-19 vaccine doses administered per 100 people. Figure is a screen
capture from “ published by Our World In Data [319]. The gap across Africa is striking and
brings to mind similar patterns in figures about grid reliability (like Figures Figure 2.51 and
Figure 2.12).

7.2.2 Targeting micro-grids

As the technology for deploying and maintaining small-scale distributed generation systems
improves, it is tempting to imagine these systems filling in the gaps in electricity access that
traditional grids have yet to reach [216]. Although there are cases where these systems are
more appropriate than a traditional grid, the economies of scale achieved by even a small grid
system uniquely allow a power utility to (theoretically) keep price per watt lower without
compromising the reliability and quality of service[320]. This supportive economic model is
the primary reason that grid systems enjoy a high popularity with development economists
as one of the energy technologies that leads to the most favorable socioeconomic returns on
investment [219, 321, 322].

Allee et. al describes that “Estimates of the electricity demand of unelectrified customers
are a crucial input to selecting mini-grid sites, projecting revenue, and sizing system com-
ponents to provide adequate capacity while minimizing capital costs. Typical customer
survey-based demand estimates for these communities — where there are no historical data
— are not reliable, typically overpredicting demand.”[323]. Demand estimates are improved
with better quality reliability data[247].

Along with P.I. Jay Taneja (University of Massachusetts, Amherst), nLine has been
contract to provide a week-long measurement of reliability in 109 markets as part of a much
larger survey activity. The data collected will be used by the Rural Electrification Agency to
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target a next stage of investments in micro-grids.

7.2.3 Improving remote sensing

Models that use low-resolution or highly-aggregated data from remote sensors to predict grid
reliability often don’t have ground truth data. AtlasAI describes their system as follows: “Our
models analyze terabytes of satellite imagery to track, analyze and forecast regions of growth,
stagnation and vulnerability at a 2km x 2km resolution across emerging markets.”[156]. It
follows that ground truth data with greater than 2km by 2km resolution could provide them
unique and valuable insights into model performance, and indeed our early results in Shah
et. al. do show that when trained off PowerWatch data, satellite night-light based models
perform better.

It seems that a model could be constructed that not only estimates a parameter, but also
outputs a list of locations where higher resolution data would be most helpful for improving
accuracy of future predictions (and then maybe even designs the sensor and spins up a
back-end?). With nLine, I hope to continue exploring questions about how and when to use
direct measurements to bootstrap accuracy in different remote sensing applications.

7.3 Vision

I believe that domain scientists should no longer need to tolerate clearly incomplete or
imperfect data. And if data must be incomplete, the error will at least be quantified. This
vision comes from four observations:

1. There is a growing pressure for reproducability, transparency, fairness, and generaliz-
ablity that can drive reform.

2. Low-cost sensor networks have existed for long enough that tools exist to allow relatively
turn-key deployments.

3. The world has been blanketed with supporting infrastructure (i.e., GSM, phones,
technical literacy) to allow sensor networks to be bootstrapped into existence.

4. Many deployment problems remain hard not due to technology but to poor communi-
cation between engineers and domain scientists.

The academy is well suited to play an important role in each of these, as long as the right
incentives are offered for innovation across layers spanning the broadest political, electrical,
academic, transportation, financial, and other chaotic sub-systems.
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U Rey, and J Carlos. “Management framework for sustainable rural e-healthcare
provision”. In: Proceedings of the IADIS International Conference e-Society. 2011,
p. 157.

[309] Yunhao Liu, Yuan He, Mo Li, Jiliang Wang, Kebin Liu, and Xiangyang Li. “Does
wireless sensor network scale? A measurement study on GreenOrbs”. In: IEEE
Transactions on Parallel and Distributed Systems 24.10 (2013), pp. 1983–1993.

[310] John Butterworth, Sam Godfrey, Ali Regah, and Scott Short. “Monitoring and
management of climate resilient water services in the Afar and Somali regions of
Ethiopia”. In: (2018).

[311] Andy Dearden and William D Tucker. “Moving ICTD research beyond bungee
jumping: practical case studies and recommendations”. In: IEEE Technology and
Society magazine 35.3 (2016), pp. 36–43.

[312] Kurtis Heimerl, Janani Vasudev, Kelly G Buchanan, Tapan Parikh, and Eric Brewer.
“A case study on designing interfaces for multiple users in developing regions”. In:
Proceedings of the First ACM Symposium on Computing for Development. ACM.
2010, p. 9.

[313] Zahir Koradia, C. Balachandran, Kapil Dadheech, Mayank Shivam, and Aaditeshwar
Seth. “Experiences of Deploying and Commercializing a Community Radio Automation
System in India”. In: Proceedings of the 2Nd ACM Symposium on Computing for
Development. ACM DEV ’12. Atlanta, Georgia: ACM, 2012, 8:1–8:10. isbn: 978-
1-4503-1262-2. doi: 10.1145/2160601.2160612. url: http://doi.acm.org/10.1145/
2160601.2160612.

[314] Heather Underwood, S. Revi Sterling, and John K. Bennett. “The Design and
Implementation of the PartoPen Maternal Health Monitoring System”. In: Proceedings
of the 3rd ACM Symposium on Computing for Development. ACM DEV ’13. Bangalore,
India: ACM, 2013, 8:1–8:10. isbn: 978-1-4503-1856-3. doi: 10.1145/2442882.2442893.
url: http://doi.acm.org/10.1145/2442882.2442893.

[315] Google Play services discontinuing updates for API levels 14 and 15. Dec. 2018.
url: https://android-developers.googleblog.com/2018/12/google-play-services-
discontinuing.html.

[316] United Nations. Multilateral Energy Compact for Health Facility Electrification. url:
https://www.un.org/sites/un2.un.org/files/multilateral energy compact for health
facility electrification - final 1.pdf.

[317] SEforALL supports Energy Compact aimed at powering 25,000 healthcare facilities
with clean energy. url: https://www.seforall.org/news/seforall-supports-energy-
compact-aimed-at-powering-25000-healthcare-facilities-with-clean.

[318] Power Africa COVID-19 response. Oct. 2021. url: https ://www.usaid .gov/
powerafrica/coronavirus.

https://doi.org/10.1145/2160601.2160612
http://doi.acm.org/10.1145/2160601.2160612
http://doi.acm.org/10.1145/2160601.2160612
https://doi.org/10.1145/2442882.2442893
http://doi.acm.org/10.1145/2442882.2442893
https://android-developers.googleblog.com/2018/12/google-play-services-discontinuing.html
https://android-developers.googleblog.com/2018/12/google-play-services-discontinuing.html
https://www.un.org/sites/un2.un.org/files/multilateral_energy_compact_for_health_facility_electrification_-_final_1.pdf
https://www.un.org/sites/un2.un.org/files/multilateral_energy_compact_for_health_facility_electrification_-_final_1.pdf
https://www.seforall.org/news/seforall-supports-energy-compact-aimed-at-powering-25000-healthcare-facilities-with-clean
https://www.seforall.org/news/seforall-supports-energy-compact-aimed-at-powering-25000-healthcare-facilities-with-clean
https://www.usaid.gov/powerafrica/coronavirus
https://www.usaid.gov/powerafrica/coronavirus


BIBLIOGRAPHY 149

[319] et. al Ritchie Hannah. “Coronavirus Pandemic (COVID-19)”. In: Our World in Data
(2020). url: https://ourworldindata.org/coronavirus.

[320] Shelby Veazey. Challenges Faced during Microgrid Implementation. url: https://www.
phoenixenergygroup.com/blog/challenges-faced-during-microgrid-implementation.

[321] International Energy Agency. weo-2017 special report: energy access outlook. 2017.
url: https://www.iea.org/publications/freepublications/publication/weo-2017-
special-report-energy-access-outlook.html.

[322] World Resources Institute. Energy Access. http://www.wri.org/our-work/project/
energy-access. (Accessed on 12/06/2017). 2017.

[323] Andrew Allee, Nathaniel J. Williams, Alexander Davis, and Paulina Jaramillo. “Pre-
dicting initial electricity demand in off-grid Tanzanian communities using customer
survey data and machine learning models”. In: Energy for Sustainable Development
62 (June 2021), pp. 56–66. issn: 0973-0826. doi: 10.1016/j.esd.2021.03.008.

https://ourworldindata.org/coronavirus
https://www.phoenixenergygroup.com/blog/challenges-faced-during-microgrid-implementation
https://www.phoenixenergygroup.com/blog/challenges-faced-during-microgrid-implementation
https://www.iea.org/publications/freepublications/publication/weo-2017-special-report-energy-access-outlook.html
https://www.iea.org/publications/freepublications/publication/weo-2017-special-report-energy-access-outlook.html
http://www.wri.org/our-work/project/energy-access
http://www.wri.org/our-work/project/energy-access
https://doi.org/10.1016/j.esd.2021.03.008

	Contents
	List of Figures
	List of Tables
	Introduction
	The Importance of Reliability
	Reliability Requires Grid-Performance Data
	Thesis Statement
	Dissertation Roadmap

	Background
	Definitions
	The Grid
	Power Outages
	Voltage and Frequency

	Standard Reliability Metrics
	Good Reliability
	Good Reliability Data

	Causes of Performance Problems
	Existing Data Sources
	Meters
	Call Centers
	Surveys
	Non-Traditional Sensors

	Value of Utility-Independent Measurements
	National Security
	Targeted Actions
	Higher-Resolution Adherence Checks
	Public Benefit

	Stakeholders in Grid-Performance Data
	Utility Companies
	Regulators
	Ratepayers
	Investors
	Researchers

	The Grid and Climate Change
	Slowing Climate Change by Increasing Grid Efficiency
	Slowing Climate Change by Enabling Clean Generation
	Operational Challenges Caused by Climate Change

	Summary

	The Deployment
	Ghana Context
	History of Poor Electricity Reliability
	Ground Truth Not Available
	Evaluation Goals

	PowerWatch Goals
	Improving Energy-Reliability Data Quality
	Developing an Independent Measurement Methodology
	Exploring Socioeconomic Impacts of Reliability

	Methodology
	Site Selection
	Sampling Strategy
	Deployment and Surveying Team
	Summary

	The Device
	Architecture
	Sensor
	Cloud
	Outage Clustering
	Cost
	Deployment Management Tool
	Visualizations

	Device Performance
	In-Lab Testbed
	In-Field Analysis

	Summary

	The Data
	Deployment Data
	Extracting Outages
	Sampling Evaluation

	Grid Data
	Original Deployment
	Expanded, nLine Deployment
	Fairness
	PowerWatch Data as Ground Truth

	Summary

	Deployment Retrospective
	Small-Scale Pilot
	Medium-Scale Deployment
	Organizational Challenges
	Cultural Challenges
	Technical Challenges
	Operational Challenges
	Failures and Missteps

	Large-Scale Deployment
	Organizational and Cultural Challenges
	Technical Challenges
	Operational Challenges

	Summary

	The Road Ahead
	nLine
	New Applications
	Health care
	Targeting micro-grids
	Improving remote sensing

	Vision

	Bibliography

