
Modin OpenMPI Compute Engine

Andrew Zhang
Richard Lin
Sean Meng
Crystal Jin

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-265

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-265.html

December 17, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Richard Lin, Crystal Jin, and Sean Meng for helping
with the initial
research of the paper. I would also like to thank Devin Petersohn for
providing valuable insight
and guidance for this project. Special thanks to Divij Sharma for
proofreading assistance.

17 December 2021

Abstract

Modin OpenMPI Compute Engine

By

Andrew Zhang, Richard Lin, Crystal Jin, Sean Meng

University of California, Berkeley

Professor Anthony Joseph

Pandas is a popular dataframe manipulation tool used by data scientists. A key problem
with Pandas is its inability to scale across cores, which severely limits its ability to deal
with big data workloads. In order to keep up with ever larger datasets, data scientists need
a dataframe tool that can scale effectively but also retain Pandas’s ease of use. Modin, a
drop-in substitute for Pandas, can effectively parallelize dataframe workloads and
supports various computational backends, such as Ray, Dask, or Python. In this project
we implement another compute backend for Modin: OpenMPI, an implementation of
Message Passing Interface. This will allow users to tap into OpenMPI infrastructure to
scale up their dataframe processing needs.

1

1 Introduction

Pandas is a popular Python library amongst data scientists for manipulating dataframes. Pandas
operates relatively performantly on single machines by implementing dataframe operations as
calls to other well-parallelized libraries (such as Numpy) under the hood. However, Pandas itself
does not implement parallelism in its calls to underlying libraries, nor does it offer a way to use
parallel computing solutions, such as multiple simultaneous processes, to parallelize work across
a single machine or cluster. Thus Pandas cannot be scaled effectively.

Modin[5], a drop-in substitute for Pandas, aims to solve this problem. Modin splits a dataframe
into multiple partitions that may be distributed across multiple systems (or in the case of a single
machine, multiple cores), which allow for drastically increased performance that scales with
computing resources. Another advantage of Modin is its modularity. The query compiler is
implemented as a separate interface from its underlying execution engine. This means that
Modin operations can be sent to various compute fabrics under the hood, including Ray[4],
Dask[8], or plain Python (see Fig. 1).

Figure 1: Architecture of Modin. Modin separates its implementation into several abstraction
layers: APIs, Query Compiler, Middle Layer, and Execution. The goal is to provide access between

layers so compute engines can be easily substituted

The current set of supported backends is somewhat limited. In this project, we implement a new
execution engine using OpenMPI[2], a particular implementation of the Message Passing
Interface(MPI)[3]. This will allow users who already have access to an OpenMPI optimized

2

environment to take advantage of Modin without having to change their computational
infrastructure.

To summarize, our contribution is as follows:
● Implement an OpenMPI compute backend for Modin that takes full advantage of the

features offered by the Message Passing Interface.

2 Background

2.1 Scaling in Python

Python has established itself as the data scientists’ preferred language. There are numerous
advantages to using Python for data science tasks, such as having a healthy suite of data
manipulation tools and libraries including Jupyter Notebook, Numpy, and Pandas. Python is also
more readable compared to other popular languages.

For larger workloads however, Python and popular data libraries run into problems. Pandas and
Numpy do not have native support for executing across a compute cluster, which leaves the data
scientist to either scale up their individual machine, which can only be done to a limit, to scale
down their data, or to accept long execution times. Although Numpy does have underlying
support for multithreading via its C extensions, computational speedups from native Python
multithreading are hindered by the global interpreter lock (GIL), which prevents two lines of
Python bytecode from being executed simultaneously. Thus multithreading speedups are limited
to operations that can release the GIL, such as disk/network IO. Most developers opt to start new
Python processes (each process will have its own GIL) in order to achieve parallel compute
speedups. Despite the challenges, numerous Python libraries have emerged to help data scientists
add scalable compute to their Python workloads.

Modin currently supports using Dask, Ray, or Python for its underlying compute engine.
Although Ray and Dask are both designed for Python distributed computing, they differ in
implementation and feature set which can lead to one framework being preferred over the other
on the basis of performance, application constraints, or ease of use.

2.2 Dask

Dask is an open source low-level scheduler that can parallelize Python code as individual
processes across clusters of machines or on a single machine. Dask.Distributed, a centrally
managed, distributed, dynamic task scheduler, is also Modin’s default choice for its scheduler.
Task execution is coordinated by the scheduler and performed by worker processes. The

3

scheduler is also asynchronous and event-driven via futures that implement Python’s
concurrent.futures interface. Dask is fault tolerant, handling failure and addition of workers
gracefully. According to the Dask documentation, “Dask is routinely run on thousand-machine
clusters to process hundreds of terabytes of data efficiently within secure environments”[8].

2.3 Ray

Ray is an open-source library that provides an API for distributing applications across one
machine or clusters of machines, similar to Dask. Modin uses Ray’s Remote API. Remote API
allows functions to run asynchronously as Tasks and class instances to run as remote processes
called Actors. Unlike naive processes-based parallelism with native Python, Ray’s Actor
abstraction allows sharing mutable state across Tasks, which avoids duplication of data and
expensive initialization overhead. Ray implements a distributed bottom-up scheduling scheme in
which tasks are submitted to local schedulers, and a global scheduler is used to load balance
across machines in the cluster.

Centralized scheduling versus bottom-up scheduling is one of the main differences between Dask
and Ray. Ray’s bottom-up scheduling allows for lower task latency and higher throughput as not
all jobs must pass through a single centralized choke.

2.4 MPI Motivation

MPI is a standard for message passing that is common in the high performance computing
industry. MPI itself does not implement parallel processing, rather it is achieved via multiple
processes on one or more machines performing computation and coordinating between
themselves via the communication abstraction that MPI provides. Unlike Dask or Ray, MPI does
not provide a scheduler, meaning that complex parallelism outside of basic scatters and gathers
requires additional user implementation on top of MPI calls[3]. The more primitive, bare bones
nature of MPI allows for extremely low message passing overhead. Particular implementations
of MPI can also take advantage of features like remote direct memory access (RDMA) to further
increase performance.

We believe that by implementing an MPI Engine, we can benefit data scientists with access to
existing MPI-based compute environments. For this project we use the OpenMPI
implementation.

4

3. MPI Engine Overview

3.1 Design

Modin separates its internal implementation into several abstraction layers: APIs, Query
Compiler, Middle Layer, and Execution. Modin aims to provide a clean separation between
layers to allow for easy substitution for any particular layer. This is particularly important for the
“bring your own backend” (see Fig. 1). This clean separation will allow us to focus on
implementing the compute engine and provides us with the exact API the upper frameworks will
call to interact with our OpenMPI Engine.

More specifically, our new OpenMPI Engine must implement the following base classes
enumerated in Table 1.

Base Class Description

IO Reads in different file formats: csv, json, parquet, etc.

Axis Partition Holds the data and metadata for data along an axis i.e. row or column.
The API of this class is used by the frame manager to compute on the
data in the partition.

Partition Holds the data and metadata for a block of data in the dataframe. The
API of this class is used by the frame manager to compute on the data
in the partition.

Frame (DataFrame) Holds the partitions that make up the dataframe and contains the frame
manager instance. Applies functions across the partitions using the
frame manager.

Frame Manager Contains the logic for distributing computation across partitions. It is
called by the DataFrame for applying functions.

Table 1: Base classes in Modin that were implemented to create a new execution engine and a
description of what they do.

Once these classes are implemented, the MPI Engine can be initialized in Modin without
modifications to any other layer or application code.

3.2 Implementation Details

To interact between OpenMPI and Python, we opted to use mpi4py[1], a Python wrapper library
that is compatible with various MPI implementations. Our design of the MPI execution engine is

5

similar to the Dask execution engine, that is the MPI Engine will execute tasks asynchronously
using a pool of worker processes across a single or multiple machines. More specifically, a single
operation on a dataframe will be split into multiple tasks that each operate on a partition of the
aforementioned dataframe in parallel. Then the MPI Engine will receive and submit tasks for
asynchronous execution to a main executor process through mpi4py.futures. The mpi4py.futures
package is based on Python’s native concurrent.futures package. The main executor will spawn
off worker processes using dynamic process management, a feature specified by the MPI-2
standard. Dynamic process management allows the main executor to create additional processes
during runtime after startup as opposed to the number of processes being fixed at startup.

3.3 MPI Pool Executor Lifecycle

Figure 2: This diagram illustrates how tasks, which consist of a function and its arguments, are
submitted to the MPI Process Pool for asynchronous execution. We start with the worker process

already being initialized by the Background Thread. 1) The main thread places a task onto the task
queue and receives a future. 2) Background thread dequeues the task 3) Background Thread

serializes the task and MPI Sends it to a Worker Process. 4) The Worker Process receives the task,
deserializes it, executes the function on the arguments, serializes the results and calls MPI Send to
send it back to the Background Thread 5) Background Thread receives the result, deserializes it,
and calls the future’s set_result method. The main thread can now retrieve this future’s results

3.3.1 Background Thread Send

Upon initialization, the MPI Pool Executor creates a background thread whose sole purpose is to
monitor a global task queue and submits tasks (a function and its arguments) to available
workers. If the number of workers is below the max threshold, MPI will spawn an additional

6

worker via dynamic process management. Task submission involves serializing both the function
and its arguments (in our case via cloudpickle) and sending it to an available worker via MPI
Send. After the send, the thread marks the worker as busy so as to not send it any additional
tasks.

3.3.2 Worker Process

Workers repeat the following loop for the duration of the program: 1) wait to receive a task from
the executor background thread 2) upon receive, deserialize the task function and arguments 3)
run the function on the arguments 4) serialize the results and send them back to the background
thread via MPI Send.

3.3.3 Background Thread Receive

The background thread will occasionally call MPI Iprobe, to check if there are any available
messages from the worker processes. If there is a message to be received, the background thread
will deserialize the result, fetch the appropriate future object and call future.set_result. This
method will mark the future as done, run all done callbacks, and place the execution result into
the future object. This worker the result was received from will be marked as available by the
background thread.

3.3.4 Additional Remarks

Note that the pool executor is a centralized task scheduler. So far we assumed that all future
objects remain in the single main code flow execution process. Although this implements a
functional MPI Engine, there are some inefficiencies with this naive design that we will address
later.

7

3.4 Challenges

3.4.1 Asynchronous Function Execution on Future Object Arguments

0 # Function signatures
1 func1(arg: pd.DataFrame) -> pd.DataFrame
2 func2(arg: Future) -> pd.DataFrame
3 func3(arg: Future) -> pd.DataFrame
5 # Asynchronous executions
6 future_result_1 = mpi_executor.submit(func1, df)
7 future_result_2 = mpi_executor.submit(func2, future_result_1) # This line may error
8 future_result_1.block_until_done() # Wait for future_result_1 to complete execution
9 future_3 = mpi_executor.submit(func3, future_result_1) # This line will not error

Listing 1: The first line of code generates a future representing the result of function func1 on
non-future argument df. The second line attempts to asynchronously execute func2 on the future

object future_result_1, which can lead to unexpected behavior at runtime depending on the state of
the future_result_1 when this line is executed. The third line will lead to unexpected behavior, but

will block until future_result_1 completes execution

Since not all Pandas operations can be translated into a single map reduce, the query compiler
may need to execute functions whose arguments are futures (the alternative is to block until the
future yields a result). In Code Listing 1, we document the problem with pseudocode. On line 6,
future_1 refers to the asynchronous result of executing func1 on df. Line 7 attempts to run func2,
which takes a future as an argument, on future_result_1. This operation will not succeed if
future_result_1 is not done by line 7’s execution. This is because futures cannot be trivially
serialized due to its internal mutex lock and the fact that set_result will not be called correctly on
the deserialized future by the pool’s background thread as it has no knowledge of the existence of
the deserialized future.

Even if we remove the mutex lock and re-implement futures such that they can be serialized
without loss of functionality (see Sec 3.4.2), this would still pose a runtime problem. If
future_result_1 has not completed execution by the time Line 7 is executed, future_result_1 will
be serialized and sent to a worker for execution. This worker that is trying to run func2 on
future_result_1 would be forced to block until future_result_1 is done executing. In the
meantime, this worker must spin-wait.

We provide a polling based solution to this problem as shown on Line 8-9. Before submitting
func3 to the executor, we block until its future object argument, future_result_1, is finished
executing. The main drawback to this solution is that we are forced to block on line 8 and cannot
continue code execution. Our actual implementation will only perform a periodic non-blocking
check to see if the future is done, and use callbacks to place dependent tasks onto the task queue.

8

3.4.2 Serializable Futures (SFuture)

A typical future object cannot be trivially serialized due to aforementioned reasons; an internal
mutex lock and that pool executor background thread will not call set_result on a deserialized
future. However, for the purposes of implementing an MPI Engine for Modin, we do not need
futures that must both be serializable and retain full functionality. We document an
implementation of a reduced functionality serializable future that leverages MPI features below.
For the purposes of clarity, we will refer to these serializable futures as SFutures.

3.4.2.1 Serialization Deserialization API

class SFuture(Future):
MPI Dynamic RMA Window
win : MPI.Window = MPI.Win.Create_dynamic(MPI.INFO_NULL, comm=MPI.COMM_WORLD)

def __init__(self, future=None, [...]):

Unserialized attributes. These stay on the host process.
self.future : [None, Future] = future # Underlying future instance that we are wrapping.
self.addr_and_sz = array.array('Q', (0, 0)) # Q denotes long long type.

First number stores the MPI RMA Window Address.
Second number stores serialized dataframe length

Instance Attributes that will be serialized/deserialized on pickle/unpickle. This can be
achieved by overriding __get_state__ and __set_state__.
self.uuid : str
self.originating_process_num : int
self.addr_and_sz_ptr : int
[...]
if new_SFuture_is__being_instantiated:

self.uuid = uuid.uuid4()
self.originating_process_num = MPI.COMM_WORLD.Get_rank()
self.addr_and_sz_ptr = MPI.Get_address(self.addr_and_sz)
SFuture.win.Attach(self.addr_and_sz) # Attach the addr_and_sz tuple to the RMA window

else:
self.uuid, self.originating_process_num, self.addr_and_sz_ptr = load_values_from_unpickle()

Result cache
self.result_cache : [pd.DataFrame, Any] = None # Results are cached to avoid redundant fetching

from remote processes and deserialization

Listing 2: A pseudocode view of how SFutures are initialized. Ellipsis indicates omitted code.

In Listing 2, we list the SFuture’s API. Note the constructor’s behavior; if we attempt to initialize
an SFuture with the same future_id as an existing SFuture in the current process’s scope, we
must receive the same SFuture object. This design is based on Dask’s Serializable Lock
implementation[11] (if a Serializable Lock is deserialized on its process of origin, you receive
the exact instance of the original Serializable Lock). This means you cannot have two SFuture
instances in the same process with the same future_id, since they would be the same object. One
way to think of this is that within a process, an SFuture with the same future_id behaves like a

9

singleton. To implement this feature we overrode the class’s metatype’s __new__ dunder method
to check a global dictionary in the process memory and either fetch the existing SFuture or
continue to instantiate and initialize a new SFuture instance.

In order to ensure this feature also works on deserializing an SFuture, we override its
__get_state__ dunder method such that it only returns its future_id, process of origin, and
memory start location (see Listing 2). If the SFuture is deserialized in a process that already has
an instance with the same future_id in its memory, we will get an alias to the original future;
deserializing involves a call to __new__ and a call to __set_state__, the former method will
return the original SFuture and latter will never have an effect on the future’s state, since
future_id, machine of origin, and memory start location never change once initialized. If such an
instance does not exist, we must have deserialized the SFuture in a process from which the
SFuture did not originate. In that case we set the state so this “remote” SFuture has a copy of the
future_id, process of origin, and memory start location. We only serialize these three variables,
as these are the only pieces of information needed to perform a remote result retrieval. We
document the result retrieval process in the upcoming section.

3.4.2.2 Result API

def SFuture.result(self, timeout=None):
Check local cache for result. Code is omitted
[...]
self instances is a remotely deserialized SFuture.
We must fetch the result from the originating process
addr_and_sz_temp = array.array('Q', (0, 0))
while time_elapsed < timeout:

Start One-sided RMA Access Epoch
SFuture.win.Lock(self.originating_process_num, lock_type=MPI.LOCK_SHARED)
Attempt to fetch the address of the serialized result and its length
SFuture.win.Get(addr_and_sz, target_rank=self.originating_process_num,

target=self.addr_and_sz_ptr)
Block until Get succeeds
SFuture.win.Unlock(self.originating_process_num)

if addr_and_sz[0] == 0:
Result not ready. Wait for 100ms. Then try again.
time.sleep(0.1)
continue

Result is ready
Create a buffer to load in result
buffer = create_buffer(addr_and_sz[1])
Start One-sided RMA Access Epoch
SFuture.win.Lock(self.originating_process_num, lock_type=MPI.LOCK_SHARED)
Load the remote serialized result into local buffer
SFuture.win.Get(buffer, target_rank=self.originating_process_num, target=addr_and_sz[0])
Block until done
SFuture.win.Unlock(self.originating_process_num)

Cache the result

10

self.result_cache = pkl.load(buffer)
Return result
return self.result_cache

Listing 3: SFuture’s pseudo-code implementation of the result() method. Ellipsis indicates omitted
code. Note how the API leverages MPI’s One-Sided RMA, which obviates the need for

synchronization between processes to coordinate Sends and Receives.

Futures are never serialized with their result, even if the result is available. Thus a deserialized
future must retrieve its result from its process of origin. We do this via MPI’s one sided
communication API. Note that a deserialized SFuture has an address for the length and location
tuple of its remote serialized result. To retrieve the result (see Listing 3), we first do a one-sided
Remote Memory Access (RMA) operation to determine the length of the serialized result. If the
length is zero, we sleep and check again later. If the length is non-zero, we know the result is
ready and the address part of the tuple is now a valid remote memory address. We fetch the
location of the pickled result and read the pickled result out of the remote process memory.

3.4.2.2 Set Result API

def SFuture.set_result(self, result):
Check if the result is already set. Code is omitted
[...]
API only supports setting SFuture result if setter is originating process
assert self.originating_process_num == MPI.COMM_WORLD.Get_rank()

self.result_buffer = result_to_buffer(result) # Serialize the result
Start One-sided RMA Access Epoch. Lock must be exclusive to ensure Get processes are not
simultaneously executing.
SFuture.win.Lock(self.originating_process_num, lock_type=MPI.LOCK_EXCLUSIVE)
Add buffer to Dynamic RMA Window. Set the address and size values.
SFuture.win.Attach(self.result_buffer)
self.addr_and_sz[0] = MPI.Get_address(self.result_buffer)
self.addr_and_sz[1] = self.result_buffer.length()
End access epoch
SFuture.win.Unlock()

Set the result of the underlying future. This is necessary to ensure callbacks are invoked
return self.future.set_result(result)

Listing 4: The set_result method pseudo-code. Ellipsis indicates omitted code.

The set_result method is rather simple (see Listing 4). We allocate a buffer and serialize our
result into the buffer. Then, we start an RMA Access Epoch and attach the buffer to the MPI
RMA Window, set the addr_and_sz pointer to contain the buffer’s address and length, and end
the RMA Access Epoch. We also make sure to call set_result on the Python future object that
SFuture wraps. This will ensure that callbacks attached to the underlying Python future are
executed correctly

11

3.4.2.3 API Motivation

There are several reasons why we chose this particular API implementation. First, by avoiding
serializing the result into the SFuture, we ensure the messages we send via MPI Send are shorter
and that the data transfer heavy lifting is done via RMA operations, which can be significantly
faster than Send/Recv on systems with hardware support for RMA[10]. One-sided RMA also
obviates the need to synchronize MPI Send and Receive calls between the process that has the
data and the one that wants the data. Second, this allows us to passively implement serialization
caching. Serializing data frames takes a non-trivial amount of time, and our implementation will
avoid having to deal with repeat serializations.

4 Evaluation

4.1 Testing Scenario

In order to gauge the performance of our MPI Engine, we tested the speed of five Pandas
operations: read_csv, count, isnull, apply, and groupby. For the data, we used the Dask NYC taxi
dataset[9], which initially contains 12 million rows and is roughly 2GBs on disk. We ran strong
and weak scaling benchmarks on an AWS Linux EC2 instance with 2, 4, and 8 and 16 logical
cores. All tests allocate one process per core, except the 32 process test, which oversubscribes
and allocates 2 MPI processes per logical core. Note that MPI will reserve 1 of its processes for
its main thread/pool manager (ie 2 processes total means 1 worker process and 1 process that
steps through the application code). We ran each test 5 times and took the average execution
time. For the strong scaling benchmarks, we kept the number of rows the same for each test. For
weak scaling, we scaled up the data with the cores proportionally. We also ran the same
benchmarks on Pandas as a baseline with the exception that we did not change the number of
cores, because Pandas does not support multi-core parallelism.

4.2 Strong Scaling

For the strong scaling benchmark, we scale the number of cores while we hold the CSV size
steady at 2GB. In the plots below we also provide a native Pandas bar as a performance baseline.

12

4.2.1 Read CSV

Figure 3: Read CSV strong scaling benchmarks. The first bar is the Pandas baseline. For all other
bars, core count doubles per x-tick. The y-axis plots the mean number of seconds the test took to

execute across 5 separate runs. The orange bars show time spent serializing.

As we can see in Fig. 3, MPI does exhibit the expected scaling pattern as we double the number
of cores while holding dataframe size steady. That is, we see that execution time roughly halves
with each doubling of cores, at least initially. We see that by utilizing all available cores on the
node in MPI, we can achieve a roughly 2x speedup vs native Pandas (42s to 19s). Because read
csv passes around the full dataframe, this operation incurs heavy costs to serialization and
deserialization overheads. From the orange bars in Fig. 3, we see that the serialization time,
which fails to strongly scale with core count, bottlenecks MPI Engine’s ability to scale the
overall operation.

The non-scaling serialization costs have to do with the MPI Engine’s centralized pool executor
setup. The pool executor must receive all serialized results from its worker processes and
deserialize them one at a time. For instance, for the 8 process benchmark, the main process must
deserialize one seventh of the full dataframe 7 times (the 8 process benchmark has 7 workers).
We omit the serialization time bar in other graphs, as they do not spend a majority of their time
in serialization.

13

4.2.2 Count

Figure 4: Count strong scaling benchmarks. The first bar is the Pandas baseline. For all other bars,
core count doubles per x-tick. The y-axis plots the mean number of seconds the test took to execute

across 5 separate runs.

The count benchmark (see Fig. 4), shows some unusual behavior. Namely the scaling
outperforms native Pandas, but additional cores appear to gradually increase the runtime. We
believe this may be related to serialization times. If we compare Pandas and the best MPI core
count runtime, 1.5x speedup (5.2s to 3.4s).

14

4.2.3 IsNull

Figure 5: IsNull strong scaling benchmarks. The first bar is the Pandas baseline. For all other bars,
core count doubles per x-tick. The y-axis plots the mean number of seconds the test took to execute

across 5 separate runs.

IsNull (see Fig. 5) also exhibits effective strong scaling, however due to serialization overhead, it
cannot outperform native Pandas and in fact achieves a roughly 2.2x slowdown (1.8s to 4.2s).

15

4.2.4 Apply

Figure 6: Apply strong scaling benchmarks. The first bar is the Pandas baseline. For all other bars,
core count doubles per x-tick. The y-axis plots the mean number of seconds the test took to execute

across 5 separate runs.

We see the most significant improvements versus the Pandas baseline in the apply operation (see
Fig. 6). This is expected as apply is implemented as a for loop under the hood, and unlike read
csv, does not take advantage of a C-based parsing engine. This makes the apply operation very
inefficient, and parallelization yields significant gains. The parallel scaling only carries up to 8
cores before tapering out. Nonetheless, we achieve over 12x speedup relative to native Pandas
(127s to 10s).

16

4.2.5 Groupby

Figure 7: Groupby strong scaling benchmarks. The first bar is the Pandas baseline. For all other
bars, core count doubles per x-tick. The y-axis plots the mean number of seconds the test took to

execute across 5 separate runs.

Although groupby does exhibit scaling efficiency initially, speedups taper off after 8 cores and
do not outperform native Pandas (see Fig. 7). Unfortunately between Pandas and the fastest MPI
core count, we see a roughly 2.1x slowdown (3.5s to 7.4s).

4.3 Weak Scaling

For the weak scaling benchmarks, we double the size of the CSV as well as the number of
processes every iteration. We also provide a Pandas performance baseline. Since Pandas does not
support changing process count, we only scale the CSV size and we do not expect Pandas to
weak scale at all. This expectation is confirmed in the plots in Sec. 4.3. Note that the graphs
below are plotted on the log seconds scale on the y-axis. Ideal weak scaling on a log seconds plot
will appear as bars maintaining their height; this indicates that as core counts and data size
double, execution time remains roughly the same. Since the original dataset was only 2GB, for
the 32 process/4GB test, we resampled the original dataset to double its size to 4GB.

17

4.3.1 Read CSV

Figure 8: Read CSV weak scaling benchmarks. The x-ticks denote (MPI process count - if
applicable, CSV size in GB). The blue bars represent log second Pandas execution times. The

orange bars represent log second MPI execution times.

The read csv operation does not weak scale well, although it does outperform native Pandas as it
scales up (see Fig. 8). The benchmark exhibits some weak scaling for 2 through 8 cores, but fails
to continue weak scaling after.

18

4.2.2 Count

Figure 9: Count weak scaling benchmarks The x-ticks denote (MPI process count - if applicable,
CSV size in GB). The blue bars represent log second Pandas execution times. The orange bars

represent log second MPI execution times.

Count fails to weak scale perfectly, however it can outperform native Pandas in all benchmarked
cases (see Fig. 9).

4.2.3 IsNull

Figure 10: IsNull weak scaling benchmarks. The x-ticks denote (MPI process count - if applicable,
CSV size in GB). The blue bars represent log second Pandas execution times. The orange bars

represent log second MPI execution times.

19

IsNull demonstrates reasonable weak scaling by having similar execution times between 2 and
16 processes (see Fig. 10). However, it fails to continue weak scaling on the oversubscribed 32
process case. As with all other oversubscribed benchmark cases, assigning more processes than
there are cores never has the effect of significant performance increase.

4.2.4 Apply

Figure 11: Apply weak scaling benchmarks. The x-ticks denote (MPI process count - if applicable,
CSV size in GB). The blue bars represent log second Pandas execution times. The orange bars

represent log second MPI execution times.

Apply demonstrates reliable weak scaling up to 16 processes and significantly outperforms
native Pandas speeds (see Fig. 11). The oversubscribed 32 process case weak scales slightly
poorly compared to the other apply benchmarks.

20

4.2.5 Groupby

Figure 12: Groupby weak scaling benchmarks. The x-ticks denote (MPI process count - if
applicable, CSV size in GB). The blue bars represent log second Pandas execution times. The

orange bars represent log second MPI execution times.

Groupby, does exhibit consistent weak scaling up to 16 processes. Like previous benchmarks, the
oversubscribed case weak scales more poorly (see Fig. 12). Despite consistent weak scaling,
groupby is unable to outperform native Pandas.

5 Conclusion

Overall the MPI Engine demonstrates a moderate ability to weak and strong scale. From the plots
above, we see that the MPI Engine performed the best on the apply case, outperforming native
Pandas significantly and demonstrating consistent strong and weak scaling. Since apply is
implemented as a single threaded for loop in Pandas, the MPI Engine could take full advantage
of its parallelism without losing ground to overhead costs. The MPI Engine demonstrated
consistent strong scaling in nearly all cases except count. Though for isnull and groupby, the
MPI Engine was unable to outperform native Pandas benchmarks. We believe this is due to the
parallelism advantage to overhead ratio. Pandas, unlike our MPI Engine, does not need to split
and serialize a dataframe in order to begin operations. Furthermore, other researchers have noted
that MPI does have its own overhead costs[7], aside from the ones our MPI Engine introduces. If
the Pandas operation is more or less just passed to Numpy, which is parallelized in its C
extension, Pandas will be highly performant as it’s essentially running fully parallelized and does
not need to deal with additional serialization costs. Meanwhile if the Pandas operation does not
pass the data to some underlying parallelized C extension, then MPI’s parallelized speedups will

21

be larger than its overhead costs, allowing our engine to outperform Pandas. This theory is
consistent with the fact that read csv and apply exhibit large speedups, count is significantly
slowed down by serialization costs, and all other benchmarks strongly scale relatively well
despite not outperforming Pandas.

6 Future Work

The MPI Engine implemented in this project is relatively simple. Our implementation uses a
central executor process that could be a bottleneck on larger workloads, both network wise and
computationally. Future work that branches off of this initial implementation might want to
explore more complicated and commonly-used MPI compute fabrics and features.

One of the main costs that hinder performance benefits is the serializer. In this project we opted
to use cloudpickle as our object serializer. Passing dataframes and execution tasks between
processes involves serializing the function and the dataframe. Although we were able to save
time by caching results to avoid going through the serialization/deserialization process
unnecessarily, there is likely a better way to serialize dataframes and pass them between
machines. This improvement may be related to exploring more complicated MPI compute fabric
configurations that take into account data locality and avoid unnecessary dataframe passing. The
only reason we need to serialize the data is because Pandas dataframes are not contiguous in
memory and MPI requires data that is to be transferred to be contiguous. Thus, another way to
improve serialization performance may involve tapping the underlying Numpy arrays inside the
Pandas dataframe, as Numpy arrays are contiguous in memory.

Finally, we see that not all Pandas operations benefit from parallelization in MPI. Aside from
reducing overhead costs of the engine, future work may be done to have Modin or the MPI
Engine short circuit and compute in native Pandas a trivial operation is being performed. This
should allow Modin and the MPI Engine to achieve the best of both worlds; if the operation is
not bottlenecked by slow Python execution, parallelize with Modin and MPI otherwise execute
in native Pandas. This feature would allow our framework to leverage parallelism if and only if
the speedups outweigh the overhead costs.

7 Acknowledgements

I would like to thank Richard Lin, Crystal Jin, and Sean Meng for helping with the initial
research of the paper. I would also like to thank Devin Petersohn for providing valuable insight
and guidance for this project. Special thanks to Divij Sharma for proofreading assistance.

22

Works Cited

[1] Dalcin, Lisandro. “MPI for Python.” MPI for Python - MPI for Python 3.0.3 Documentation, 2020,

mpi4py.readthedocs.io/en/stable/index.html.

[2] Gabriel, Edgar, et al. "Open MPI: Goals, concept, and design of a next generation MPI

implementation." European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting.

Springer, Berlin, Heidelberg, 2004.

[3] Gropp, William, et al. Using MPI: portable parallel programming with the message-passing interface.

Vol. 1. MIT press, 1999.

[4] Moritz, Philipp, et al. "Ray: A distributed framework for emerging {AI} applications." 13th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18). 2018.

[5] Petersohn, Devin, and Anthony D. Joseph. Scaling Interactive Data Science Transparently with

Modin. Tech. rep. Electrical Engineering and Computer Sciences, University of California at Berkeley,

2018.

[6] Petersohn, Devin. “Scale Your Pandas Workflow by Changing a Single Line of Code.” Scale Your

Pandas Workflow by Changing a Single Line of Code - Modin 0.8.2 Documentation, 2020,

modin.readthedocs.io/en/latest/index.html.

[7] Raffenetti, Ken, et al. "Why is MPI so slow? analyzing the fundamental limits in implementing

MPI-3.1." Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis. 2017.

[8] Rocklin, Matthew. "Dask: Parallel computation with blocked algorithms and task scheduling."

Proceedings of the 14th python in science conference. No. 130-136. 2015.

[9] Rocklin, Matthew. Distributed Pandas on a Cluster with Dask DataFrames,

matthewrocklin.com/blog/work/2017/01/12/dask-dataframes.

[10] Gropp, William. “Lecture 34: One-sided Communication in MPI”. CS598-s15 Designing and

Building Applications for Extreme Scale Systems. University of Illinois, Urbana-Champaign.

http://wgropp.cs.illinois.edu/courses/cs598-s15/. Accessed 9 Dec. 2021.

[11] Dask Core Developers https://docs.dask.org/en/latest/_modules/dask/utils.html. Accessed 9 Dec.

2021.

23

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

