
ObliCheck: Efficient Verification of Oblivious

Algorithms with Unobservable State

Jeongseok Son
Griffin Prechter
Rishabh Poddar
Raluca Ada Popa
Koushik Sen

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-29

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-29.html

May 1, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

ObliCheck: Efficient Verification of Oblivious Algorithms

with Unobservable State

by Jeongseok Son

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Raluca Ada Popa
Research Advisor

(Date)

* * * * * * *

Professor Koushik Sen
Second Reader

(Date)

Acknowledgement

I still remember the day when Raluca reached out to me for an admission interview. I already
knew her famous CryptDB, one of the most fascinating security works I have ever read. I was
excited about exploring a new area with her and fortunately got an acceptance letter from Cal.
However, it was not until I met Raluca in person that I made the decision. During the visit
day, the RISELab admits and members took a short hike to a faculty’s house on a hill. While
everyone was chatting and enjoying the panoramic scenery, Raluca quietly filled the cups on
a table with water for others. Even within the short visit days, I was able to recognize that she
is not just an extremely smart scholar, but also a kind and caring person. After spending three
years with her, I cannot have more confidence to say the observation was correct. She guided
me to become a better professional by always encouraging me to aim for the highest standard.
At the same time, she gave me her honest and careful advice on any matters I brought up to her
and was always supportive of whatever decision I made. The best thing I earned throughout
my graduate study is not the expertise in computer security. It is the attitude towards my work
and other people that I learned from my advisor. Thank you, Raluca.

Koushik and I first met at a RISE retreat. I was struggling to discover a new research idea
at that time. Koushik was joining RISELab as a faculty member around then. I was interested
in programming languages so I purposefully approached him. I was nervous about talking to a
world-renowned expert without knowing much about his area. Surprisingly, Koushik was kind
enough to show interest in collaborating with me. That was the moment when our ObliCheck
project took off. Even though I was not his advisee technically, Koushik was always there
when I needed him. Without his kindness and his practical projects that we built upon, our
project would have not been in publishable shape. When I hold a more senior role in my
career, I want to be approachable and humble like him.

I also want to thank Ion Stoica for giving me a chance to work with him when I was a
first-year. As a new graduate student, it is not always easy to approach an eminent professor
like Ion. He carved his time out of his hectic schedule and regularly come to his students
first and made himself available and responsive. I will ruminate on his insightful advice and
thoughts he shared with me even after graduating.

I will miss my student colleagues most after graduating. It will be impossible to find a
place like UC Berkeley, especially RISELab, where I was surrounded by the brightest and
energetic friends I have ever interacted with. First of all, I am grateful to Griffin Prechter and
Rishabh Poddar for working with me on ObliCheck early on. So many parts of the project
were uncertain when we started it. Their contributions were the most crucial catalyst for our
work. I appreciate Chia-Che Tsai for being a both good mentor and friend when I worked with
him on Civet. It was a great pleasure to have a group lunch every week and discuss various
topics in security with my sister colleagues including Weikeng Chen, Ankur Dave, Yuncong
Hu, Sam Kumar, Pratyush Mishra, Rishabh Poddar, Jean-Luc Watson, Wenting Zheng, and
others. I was lucky to have a set of convivial friends in the RISELab including Rolando Garcia,
Jack Kolb, Eric Liang, Richard Liaw, Romain Lopez, Stephanie Wang, Michael Whittaker,
and Zongheng Yang. I enjoyed working with Eric Love and Frederik Ebert to host Bar Nights
and a Football Night as a member of CSGSA in my first year. My Korean EECS friends,
Edward Kim and Dayeol Lee, and I came to Berkeley at the same time. We quickly became
close friends sympathizing with each other in the same boat. I wish all my colleagues at UC
Berkeley the very best luck and hope our future paths will cross again. Thank you all.

ObliCheck: Efficient Verification of Oblivious Algorithms with Unobservable State

Jeongseok Son Griffin Prechter Rishabh Poddar Raluca Ada Popa Koushik Sen
University of California, Berkeley

Abstract
Encryption of secret data prevents an adversary from learning
sensitive information by observing the transferred data. Even
though the data itself is encrypted, however, an attacker can
watch which locations of the memory, disk, and network are
accessed and infer a significant amount of secret information.

To defend attacks based on this access pattern leakage, a
number of oblivious algorithms have been devised. These
algorithms transform the access pattern in a way that the ac-
cess sequences are independent of the secret input data. Since
oblivious algorithms tend to be slow, a go-to optimization for
algorithm designers is to leverage space unobservable to the
attacker. However, one can easily miss a subtle detail and
violate the oblivious property in the process of doing so.

In this paper, we propose ObliCheck, a checker verify-
ing whether a given algorithm is indeed oblivious. In con-
trast to existing checkers, ObliCheck distinguishes observable
and unobservable state of an algorithm. It employs symbolic
execution to check whether all execution paths exhibit the
same observable behavior. To achieve accuracy and efficiency,
ObliCheck introduces two key techniques: Optimistic State
Merging to quickly check if the algorithm is oblivious, and
Iterative State Unmerging to iteratively refine its judgment if
the algorithm is reported as not oblivious. ObliCheck achieves
×4850 of performance improvement over conventional sym-
bolic execution without sacrificing accuracy.

1 Introduction
Security and privacy have become crucial requirements in
the modern computing era. In order to preserve the secrecy
of sensitive data, data encryption is now widely adopted and
prevents an adversary from learning secret information by
observing the data content. However, attackers can still in-
fer secret information by observing access patterns to the
data. Even though the data itself is encrypted, an attacker
can watch which locations of the memory, disk, and network
are accessed. Such concerns are growing with the increas-
ing adoption of hardware enclaves such as Intel SGX [57],
which provides memory encryption but does not hide accesses
to memory. By simply observing the access patterns, many
works [7,28,46,50,54,64,65,83] have shown that an attacker
can reconstruct secret information such as confidential search
keywords, entire sensitive documents, or secret images.

As a result, a rich line of work designs oblivious execution
to prevent such side channels based on access patterns. There
are two types of oblivious algorithms. The first, Oblivious
RAM (ORAM) [37, 77], can be used generically to hide ac-

cesses to memory, and fits best workloads of the type “point
queries”.

Intuitively, ORAM randomizes accesses to memory. How-
ever, even the fastest ORAM scheme incurs polylogarithmic
overhead proportional to the memory size per access, which
becomes prohibitively slow for processing a large amount
of data as in data analytics and machine learning. For these
workloads, instead, researchers have proposed a large array
of specialized oblivious algorithms, such as algorithms for
joins, filters, aggregates [6,11,15,24,64,79,89], and machine
learning algorithms [43, 44, 55, 65, 66, 74]. These specialized
algorithms work by accessing memory according to a prede-
fined schedule of accesses, which depends only on an upper
bound on the data size and not on data content.

Oblivious algorithms of both types tend to be notoriously
slow (e.g., hundreds of times for data analytics [89] and tens of
times for point queries [77]). To reduce such overhead, many
oblivious algorithms take advantage of an effective design
strategy: they leverage special regions of memory that are not
observable to the attacker. Such unobservable memory, albeit
often smaller than the observable one, allows the algorithm to
make direct and fast accesses to data. It essentially works as
a cache for the slower observable memory, which is accessed
obliviously. Different works choose different resources as
unobservable. For example, some works [6, 59, 65, 69] treat
registers as unobservable but all the cache and main memory
as observable in the context of hardware enclaves such as
Intel SGX. GhostRider [53] employs an on-chip scratchpad
as an unobservable space to make the memory trace oblivious.
Certain works focus on the network as being observable by
an attacker and the internal secure region of a machine as
unobservable [64,89]. These works report one or more orders
of magnitude [89] performance improvement by leveraging
the unobservable memory.

While generic algorithms like ORAM can be heavily scruti-
nized, specialized algorithms designed for all sorts of settings
do not receive the same level of scrutiny. Further, these al-
gorithms can be quite complex, balancing rich computations
with efficiency. The designer can miss a subtle detail and vio-
late the oblivious property. Currently, an oblivious algorithm
comes with written proof, and users must verify the proof man-
ually. As a result, recent works devise ways to check whether
an algorithm is oblivious in an automated way (by looking for
a secret dependent branch) using taint analysis [16,39,68,88].
These techniques, however, cannot capture unobservable state
and would classify a algorithm as not oblivious because of
its non-oblivious accesses to unobservable state. Thus, they

1

cannot model a vast array of modern oblivious algorithms.
We propose ObliCheck, a checker that can verify oblivi-

ous algorithms having unobservable state in an efficient and
accurate manner. ObliCheck allows algorithm designers to
write an oblivious algorithm using the APIs to distinguish
between observable and unobservable space. Based on this
distinction, ObliCheck precisely records the access patterns
visible to an attacker. Then, ObliCheck automatically proves
that the algorithm satisfies the obliviousness condition. Oth-
erwise, ObliCheck provides counterexamples – i.e., inputs
that violate the oblivious property – and identifies program
statements that trigger non-oblivious behavior.

ObliCheck primarily aims to verify the oblivious property
of the algorithms, not the actual implementations of oblivious
programs. ObliCheck employs a Satisfiability Modulo The-
ories (SMT) solver for symbolic execution and verificaiton.
SMT solvers can only solve formulas within a first-order
logic theory. Hence, ObliCheck cannot check an arbitrary
program. Instead, ObliCheck supports a restricted subset of
Javascript as a modeling language. The choice of Javascript
is for leveraging an existing program analysis framework,
Jalangi [71], for its implementation. We expect an algorithm
designer describes the algorithm using ObliCheck APIs to
check mistakes and bugs introduced in the algorithm design
stage.

1.1 Techniques and contributions
Our first observation is that taint analysis used in prior
work [16, 39, 68, 88] is too ‘coarse’ to capture unobservable
state. With taint analysis, if a branch predicate contains tainted
variables, then a checker simply rejects the algorithm even if
both execution paths of the branch display the same observ-
able behavior. Instead, we observe that we can overcome the
limitations of taint analysis with symbolic execution [18, 47].
Using symbolic execution, ObliCheck can analyze an input al-
gorithm with unobservable state in a finer-grained manner and
reason about how observable and unobservable state changes
in each execution path. Even if a branch depends on a secret
input variable, ObliCheck correctly classifies an algorithm
as oblivious if the two execution paths after the branch show
the same observable behavior. For example, if the two paths
both send an identically-sized encrypted message over the
network, our checker can conclude both branches maintain
the same observable state (the size of the message and its des-
tination) since the message content itself is encrypted (thus
unobservable).

However, a naïve application of symbolic execution does
not scale. The main challenge with employing symbolic ex-
ecution is that the program state quickly blows up as the
number of branches in the program increases, making it in-
feasible to complete the check for many algorithms. While
traditional state merging [10, 32, 33, 36, 73] can merge states
to alleviate the path explosion problem to some extent, it only
works when the values in two different paths are the same.

To address this problem, ObliCheck employs its optimistic
state merging technique (§4), which leverages the domain-
specific knowledge of oblivious algorithms that the actual
values are unobservable to the attacker. ObliCheck uses this
insight to optimistically merge two different values with dif-
ferent path conditions by introducing a new unconstrained
symbolic value for over-approximating the original symbolic
variable.

Such “aggressive” state merging for symbolic values is
effective at tackling path explosion, but can result in a false
“not-oblivious” prognosis. If a symbolic variable, x, is merged
into an unconstrained new symbolic variable y, later accesses
to y in a conditional statement may trigger an execution path
which would have been impossible if x were not replaced with
unconstrained y. To address this issue, we devise a technique
called iterative state unmerging (§5). ObliCheck records sym-
bolic variables merged during the execution. Then, it iter-
atively refines its judgment by backtracking the execution
and unmerges a part of merged variables which may have
caused the wrong prognosis. This iterative probing process
continues until it either classifies the algorithm as oblivious,
or completes the refinement process.

Although optimistic state merging followed by iterative
state unmerging costs extra symbolic execution, we found that
the overhead is tolerable. This is because our target algorithms
are mostly oblivious: an algorithm designer who wants to
check their algorithm for obliviousness likely did a decent job
making much of the algorithm oblivious, but is worried about
subtle mistakes. Hence, most algorithms do not require the
iterative state unmerging process, and even when an algorithm
needs the extra runs, our evaluation shows that the overhead
is less than 70% of single execution time. Further, when
ObliCheck reports an algorithm as not oblivious, ObliCheck
produces the counterexamples that violate the obliviousness
verification condition. This information provides valuable
help to the algorithm designers to amend their algorithm.

Finally, a well-known limitation of symbolic execution
is its inability to verify an algorithm containing an input-
dependent loop, requiring the user to provide loop invariants
manually, making it hard to verify oblivious algorithms writ-
ten in terms of an arbitrary length of the input. In ObliCheck,
we design a loop summarization technique (§6) that can auto-
matically generate a loop invariant for common loop patterns
employed in oblivious algorithms: each iteration of a loop
appends a constant number of elements to the output buffer.
Using this observation, ObliCheck can automatically figure
out the side-effect of a loop on the output length, enabling it
to verify oblivious algorithms not tied to a concrete length of
the input.

We evaluated ObliCheck using existing oblivious algo-
rithms, and find that ObliCheck improves the verification
performance up to ×4850 over conventional techniques. The
checking time of ObliCheck grows linearly as the number of
input records grows, whereas that of an existing technique

2

increases exponentially.

2 Background and Existing Approach
We first provide necessary background information regarding
the oblivious property and symbolic execution to understand
the problems. We then point out the limitations of an existing
approach to motivate our approach.

2.1 Oblivious Property and Oblivious Algorithms
The oblivious property implies the access sequences of an al-
gorithm are independent from the secret input data. To achieve
the oblivious property in a practical sense, specialized obliv-
ious algorithms have recently been devised. In contrast to
Oblivious RAM (ORAM), which compiles a general algo-
rithm and run it in an oblivious manner, oblivious algorithms
are designed for a specific purpose for data processing such as
distributed data analytics [64, 89], data structures [27, 38, 82],
and machine learning [63, 65]. Instead of randomly shuffling
and re-encrypting data as ORAM does, oblivious algorithms
implement fixed scheduling independent of secret input data
in a deterministic manner.

Oblivious algorithms leverage unobservable space, a se-
cure region of registers or memory which an attacker cannot
observe. Since the unobservable space is not visible to an
attacker, an algorithm can access data inside the unobservable
space fast in a non-oblivious way. Existing oblivious algo-
rithms use different types of unobservable space to protect
secret data from different types of attackers. For example,
oblivious algorithms for distributed data analysis [15, 64, 89]
assume a network attacker who can observe network traf-
fic but cannot observe a part of local memory. The network
attacker can only watch encrypted messages sent over net-
work so the information the attacker can utilize is the network
access patterns including the size of the messages and the
source and destination network addresses. On the other hand,
other works focusing on local data processing [6, 59, 65] re-
gard registers as unobservable space and treat cache and local
memory as observable by a memory attacker. We will dis-
cuss how ObliCheck captures different threat models under
an observable and unobservable space abstraction in §3.1.

2.2 Symbolic Execution and Path Explosion Problem
Symbolic execution runs a program with symbolic values as
input where symbols represent arbitrary value. Symbolic input
is used to analyze the conditions on input values that exercise
each part of a program. Throughout the execution, values de-
rived from the input symbols become symbolic expressions
containing input symbols. When a conditional statement re-
garding these symbolic values is encountered, both the then
and else branches are explored unlike normal execution.
Now each path has different constraints over the input sym-
bols. This constraint is called path condition, and symbolic
execution keeps the track of path conditions as it encounters
conditional statements during the execution. At the end of
the execution, a constraint solver solves the path condition of

Check Result Algorithm0 is actually:

Oblivious Not Oblivious

Accept Algorithm0 True Negative(3) False Negative(7)
Reject Algorithm0 False Positive(7) True Positive(3)

Table 1: Definition of the correct and erroneous classification types
of an oblivious checker. Rejecting a benign oblivious algorithm
is a false positive case (Type I error). Accepting a not oblivious
algorithm is a false negative case (Type II error).

each execution to generate a set of representative inputs that
exercise every path of a program. Symbolic execution has
been widely adopted to create complete or high coverage test
input sets and researchers have developed symbolic execution
frameworks such as Jalangi [71] and KLEE [17].

One of the most common problems that a user of symbolic
execution encounters is path explosion. A traditional symbolic
execution diverges into two runs for every branch in the code.
Thus, the number of paths explored and the corresponding
state of symbolic values grows exponentially in the number
of branches. In order to alleviate this issue, numerous state
merging techniques [10, 32, 33, 36, 73] have been devised.
State merging techniques merge the symbolic values changed
by the branch statements at join points after each branch. The
two diverged paths are converged into one path in this way and
thus reduces the number of operations and state maintained
after a branch statement. However, this comes at the cost of
more complicated path conditions, which increase the solver
time spent in a constraint solver.

2.3 Existing Approach Using Taint Analysis
Several techniques have been devised to check the access pat-
tern leakage of an algorithm. The most widely used technique
is taint analysis. This line of work identifies variables whose
values depend on secret input. They track the taints of vari-
ables propagated from secret inputs. In this way, a checker can
check whether a given algorithm includes a secret dependent
branch [16, 68]. Algorithms with secret dependent branches
are rejected in this approach assuming that those branches
incur information leakage because of the different behaviors
in the true and false blocks of the conditional statements.
Limitation. However, if an algorithm designer assumes the
network attacker discussed in §2.1 as a threat model, taint anal-
ysis can classify a benign oblivious algorithm as not oblivious.
The network attacker can only observe the network access
patterns including the size of data sent over the network, but
not the actual content of the data (which is encrypted). As we
defined in Table 1, this is a false-positive error.

Listing 1 shows one example algorithm where the assump-
tion in the existing approach results in a false positive. In this
example, secretInput is secret input. The predicate (Line
4) contains a secret variable secretInput[i]. Hence, taint
tracking based techniques reject this algorithm due to the
secret branch. However, since the threat model in oblivious al-
gorithms assume the actual content ((secretInput[i], 0)

in Line 5, (secretInput[i], 1) in Line 7) of data is en-

3

Name Arguments Description Effect

observableWrite(space, addr, buf)
Write buf at the addr of observable τP += (<space.ID,W>, addr, size(buf)),
space space.store[addr] = *buf

observableRead (space, addr, buf)
Read size(buf) of bytes at addr τP += (<space.ID,R>, addr, size(buf)),
of observable space *buf = space.store[addr]

readSecretInput () Introduce a secret input A new tainted symbolic value is added
readPublicInput () Introduce a public input A new untainted symbolic value is added

Table 2: API of ObliCheck. write, read, send, and recv are used to describe communication between observable and unobservable space.
The first field of a triplet added to the access sequence contains the enumerated type of access of MW, MR, NS, and NR, which encode memory
write, memory read, network send and network receive respectively. readSecretInput, and readPublicInput are necessary to make ObliCheck
distinguish the secret inputs from public inputs (Refer to Figure 3).

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInuput.length;

i++) {

4 if (secretInuput[i] < threshold) {

5 buf.push(Pair(secretInuput[i], 0));

6 } else {

7 buf.push(Pair(secretInuput[i], 1));

8 }

9 }

10 }

11 var encrypted = Crypto.encrypt(buf);

12 socket.send(ADDR, encrypted);

13 }

Listing 1: An example code from Opaque [3] in Javascript. It
tags each element in the secret input and sends the encrypted
result over the network. Red varialbes are tainted variables from
the secret input secretInput[i]. Since the algorithm has a
secret (secretInput[i]) dependent branch, taint analysis based
techniques deem that this code has leakage although the observed
size of the data (encrypted) does not depend on the secret input.

crypted, both branch blocks have indistinguishable behavior
to an attacker. Hence, the example algorithm is oblivious.

Requirements. A more accurate checker for oblivious algo-
rithms should satisfy the following requirements.
1) Be aware of which state of a program is observable or not

to an attacker (e.g., in Listing 1, the data content is en-
crypted, thus invisible, but the size of the data is revealed).

2) Understand the behavior of a program on different execu-
tion paths across the whole input space to make a sound
judgment of whether an algorithm is oblivious.

3) Know which input values are secret or public to decide
the behavior of a program is independent of secret input.

4) Since a checker has a limited time budget, the checking
process should be scalable in terms of the number of input
data records.

3 ObliCheck Overview
In order to check oblivious algorithms with unobservable state
and overcome the limitations of existing approaches, we pro-
pose ObliCheck. We now provide an overview of ObliCheck’s
API, the threat model it assumes, and its security guarantees.

Function Implementation using ObliCheck API

send(dst, buf) observableWrite(network, <host, dst>, buf)
recv(src, buf) observableRead(network, <src, host>, buf)

write(dst, buf) observableWrite(memory, dst, buf)
read(src, buf) observableRead(memory, src, buf)

Table 3: Example user-defined functions accessing observable
spaces. send and recv are used to express message transfer over net-
work and read and write represents local memory access. network
and memory are initialized by users with unique IDs and memory
space to store written and sent data.

3.1 ObliCheck APIs

To provide a framework that can accommodate algorithms
with different threat models, ObliCheck provides abstract ob-
servable and unobservable memory space. Any read and write
operations to the observable space are assumed to be observed
by an attacker. ObliCheck provides algorithm designers with
special APIs for describing reads and writes to the observ-
able space as described in Table 2. We assume data written
to or read from observable space is always encrypted. Thus,
an attacker can learn the size, source/destination address of
the data, and the type of operation (read or write) but not the
actual content. Using this abstract store model with APIs, a
designer can reflect a threat model that she assumes in the
code.

ObliCheck offers two categories of APIs for a designer
to write an oblivious algorithm. The first has functions that
describe communication between unobservable and observ-
able spaces. The second one is to specify whether an input
value is secret or public. Table 2 lists the APIs that ObliCheck
provides. Using observableRead and observableWrite, a de-
signer can naturally render a boundary between observable
and observable spaces in the algorithm.

ObliCheck keeps the access sequence under the hood and
uses the access sequence to check the final verification condi-
tion explained in §3.3. readSecretInput and readPublicInput
let a designer specify the secret input of an algorithm. This
specification is necessary to generate the verification condi-
tion at the end of symbolic execution. Listing 2 shows the
code in Listing 1 re-written using ObliCheck’s API.

4

 Local Machine

Unobservable

Write

Read

Remote
Machine
(Network
Adress A)

Remote
Machine
(Network

Address B)

Send

Receive

Observable

Memory Attacker

Network Attacker

Figure 1: Threat model of ObliCheck. The dark gray part of the
figure represents the store and data that an adversary cannot observe.
An attacker is not able to eavesdrop the unobservable space and
the content of encrypted data. However, an attacker is capable of
learning the size of transferred data, the locations of data written to
or read from an observable space, and the destination and source
network addresses of the network messages and their sizes.

3.2 Threat Model

As discussed in §3.1, ObliCheck assumes an input algorithm
leverages unobservable space where an attacker cannot watch
the data inside and access patterns over them. ObliCheck con-
siders an attacker watches any accesses to observable space.
However, the attacker cannot learn about the actual content
of data written to or read from observable space because
the data is encrypted when they cross the boundary between
unobservable and observable spaces.

This abstract threat model allows algorithm designers to
express common threat models that oblivious algorithms as-
sume using the APIs of ObliCheck. For example, the network
attacker discussed in §1 can be modeled by using observ-
ableWrite and observableRead for network send and receive
functions respectively. The memory attacker can be modeled
in a similar way. Table 3 shows how these functions can be
defined using APIs of ObliCheck. We focus on the network
adversary as running examples but an algorithm assuming the
memory attacker can be checked the same way.

ObliCheck only checks the obliviousness of a given algo-
rithm and assumes the data is properly encrypted when it is
written to an observable location. Mistakes of not properly
encrypting data can be caught using existing information flow
checking techniques [19,23,25,31,40,42,49,56,60,62,67,70,
75, 84–86]. We assume the code is either inside unobservable
space such as oblivious memory pools [20,22,53] or the code
accesses are separately treated to be oblivious.

3.3 Security Guarantee

To formulate the security guarantees of ObliCheck, we first
define the trace of observations visible to the adversary during
an execution. Given a algorithm P with input I, the trace of
observations τ is defined as a sequence of triplets:

τP(I) =< (ti,ai, li)|i ∈ N >

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInput.length; i++) {

4 if (secretInput[i] < threshold) {

5 buf.push(Pair(secretInput[i], 0));

6 } else {

7 buf.push(Pair(secretInput[i], 1));

8 }

9 }

10 send(ADDR, buf);

11 }

12 function main(n) {

13 var secretInput = new Array(n);

14 for (var i = 0; i < n; i++) { secretInput[i] =

ObliCheck.readSecretInput() };

15 var threshold = ObliCheck.readPublicInput();

16 tag(secretInput, threshold);

17 }

Listing 2: Listing 1 is re-written using the APIs of ObliCheck. Only
the socket.send is replaced with send, and the input is introduced
using readSecretInput, and readPublicInput.

where t represents a type of access, a denotes a target or
source location of the operation, and l represents the size of
a data read or written. The type of access is either read or
write combined with the type of an observable space (e.g.,
memory or network). Further, since we assume the data itself
is encrypted properly before being written to an observable
store, the attacker can only observe the size of the data that is
read or written, and not the actual contents.

Note that in addition to secret data, an algorithm P may
also receive some public data as input. For P to achieve the
oblivious property, we require that given any pair of inputs
I and I′, as long as the public input is the same, then no
polynomial-time adversary should be able to distinguish be-
tween the traces τP(I) and τP(I′). Based on this definition,
a condition for checking the oblivious property can be ex-
pressed as follows:

∀I, I′ ∈ InputSpace(P),

PublicInputP(I) = PublicInputP(I′)

⇒ τP(I) = τP(I′)

Here, InputSpace represents all the possible input spaces of
a given algorithm, and PublicInputP returns the public input
of a algorithm P. ObliCheck verifies that the above condition
holds while checking a algorithm. The condition assumes
nothing about SecretInput, which encodes the independence
of the observable output from secret input.

ObliCheck records the trace during the execution under the
hood when it encounters a read or write API explained in §3.1.
The verification condition is written in terms of the pairs of
input (I, I′). This implies that the verification condition for
the oblivious property is a 2-safety property [78] that requires
a checker to observe two finite traces of an algorithm. We will
describe how ObliCheck uses symbolic execution to check

5

the above verification condition in § 4.1.

4 Symbolic Execution and State Merging

4.1 Symbolic Execution for Checking Obliviousness

ObliCheck executes an algorithm symbolically, and at the
end of the execution, it checks whether the algorithm satisfies
the obliviousness condition defined in §3.3. ObliCheck uses
symbolic execution in the following way.

ObliCheck starts by treating all input values as symbolic
variables. ObliCheck explores both the true and false blocks of
all branches containing a symbolic value, while distinguishing
between secret and public symbolic variables to correctly
generate the verification condition at the end of the execution.

However, just running an algorithm once symbolically is
not sufficient because the verification condition of oblivious-
ness is written in terms of pairs of input. In other words,
obliviousness is a 2-safety property. Terauchi and Aiken [78]
formally defined a 2-safety property to distinguish it from a
general safety property, which can be proved by observing a
single finite trace.

In order to refute a 2-safety property, a checker has to ob-
serve two finite traces of an algorithm. Hence, ObliCheck
internally runs the algorithm twice symbolically, by sequen-
tially composing two copies of the algorithm. Each exe-
cution path of the first copy is followed by each one of
the second copy. This makes ObliCheck explore every pair
(Cartesian product) of the execution paths with pairs of input
(I, I′) ∈ InputSpace(P) At the end of the second execution,
ObliCheck compares the traces of both runs and checks that
the verification condition is always true using a constraint
solver (which checks that the negation of the verification con-
dition is unsatisfiable).

Example. To demonstrate how symbolic execution is used,
we summarize the result of symbolic execution of Listing 2
in Table 4. For brevity, we assume the input length n is 1 so
the loop iterates only once. We will generalize for algorithms
with loops bounded by an arbitrary symbolic value in § 6.

main introduces secret and public symbolic variables x0
and y respectively and assign them to secretInput[0] and
threshold. To differentiate the first and second symbolic
execution, we add additional subscripts f irst and second to
the variables. Inside tag function, the first symbolic execution
starts with an initial path condition True and the length of
the output buffer is 0. After encountering the loop at Line
4, the execution diverges into two sets and the output buffer
length increments by one. The second symbolic execution
runs the same algorithm but with different symbolic variables:
x0,second and ysecond instead of x0, f irst and ysecond .

After finishing the symbolic execution, ObliCheck gener-

Line Path Condition buf.length i buf[i]

2-4 φ1 = True 0 0 Undefined
5,8-10 φ1 = x0, f irst < y f irst 1 0 Pair(x0, f irst , 0)
7,8-10 φ1 = x0, f irst ≥ y f irst 1 0 Pair(x0, f irst , 1)

2-4 φ1 = True 0 0 Undefined
5,8-10 φ1 = x0,second < ysecond 1 0 Pair(x0,second , 0)
7,8-10 φ1 = x0,second ≥ ysecond 1 0 Pair(x0,second , 1)

Table 4: Result of symbolic execution of the algorithm in Listing 2.

ates a verification condition based on the definition in §3.3:
y f irst = ysecond ⇒

((x0, f irst < y f irst ∧ x0,second < ysecond ⇒ 1 = 1)
∧(x0, f irst < y f irst ∧ x0,second ≥ ysecond ⇒ 1 = 1)
∧(x0, f irst ≥ y f irst ∧ x0,second < ysecond ⇒ 1 = 1)
∧(x0, f irst ≥ y f irst ∧ x0,second ≥ ysecond ⇒ 1 = 1))

This formula is trivially always true since buf.length is
always a concrete value 1 (we leave out the type of access
and the address fields of the trace for simplicity). The verifi-
cation condition is quite trivial for this simple example, but
as an input algorithm becomes more complicated, symbolic
execution proves its real worth since it can capture how the
observable trace changes over the execution and can exercise
all possible execution paths.

4.2 Optimistic State Merging
Since symbolic execution diverges into two runs when it
encounters a branch, the number of executions paths grows
exponentially in the number of branches encountered in the
execution. This path explosion problem inhibits symbolic exe-
cution from exploring all possible input space and deteriorates
the coverage of a checker as the input length increases. To
solve this problem, we devise optimistic state merging – a
state merging technique that leverages domain-specific knowl-
edge of oblivious execution in the presence of unobservable
state.

Shortcomings of Traditional State Merging. Returning to
the branch example in Listing 1, the code is oblivious un-
der the definition in §3.3 assuming the data length is public.
The algorithm always sends the buffer with a length n re-
gardless of the secret values in secretInputRecords. To
check this condition, a checker should confirm the length
of encrypted is the same across any possible pairs of
secretInputRecords. Naïvely running symbolic execution
in this example leads to path explosion because the branch
is inside the for loop. Since it is common to iterate over el-
ements in the input data set within unobservable space, we
need a way to prevent path explosion in this case.

To mitigate the path explosion problem, state merging tech-
niques merge two different symbolic states of a variable. This
prevents some unnecessary exploration. However, traditional
state merging techniques cannot merge symbolic states when
two states are different from each other. For example, Table 4
shows the symbolic states after the execution in Listing 2.
With traditional state merging, the true and false paths of

6

the if statement at Line 4 cannot get merged because the
buf[i] has different state in each path. In other words, tradi-
tional state merging techniques are sound and complete with
regard to symbolic execution and explores the same set of
program behaviors as regular symbolic execution.

In contrast, ObliCheck is able to apply state merging more
aggressively through a domain specific insight. Optimistic
state merging leverages the observation that, in oblivious algo-
rithms, the attacker is unable to distinguish between different
unobservable states because the plaintext data only resides in
unobservable space, and is later encrypted when written to ob-
servable space. For example, buf[i] in Listing 2 is encrypted
when the buf is sent over network at Line 10. Therefore, at
branching statements, ObliCheck explores both true and false
blocks immediately and merge the corresponding states into
a new symbolic variable without divergence.

Merging Paths by Introducing a New Symbolic Variable.
ObliCheck simplifies path conditions by introducing a new
variable when merging two different symbolic expressions.
For example, the algorithm in Listing 2 exhibits different
state of buf[i] in the then and else branches after Line
4 (Pair(x0,0) and Pair(x0,1) respectively; Table 4). Hence,
traditional state merging cannot merge these two states. In
contrast, ObliCheck introduces a new unconstrained symbolic
variable, z, and merges the states as in Table 5.

Line Path Condition buf.length i buf[i]

2-4 φ1 = True 0 0 Undefined
5 φ1 = x0, f irst < y f irst 1 0 Pair(x0, f irst , 0)
7 φ1 = x0, f irst ≥ y f irst 1 0 Pair(x0, f irst , 1)

8-10 φ1 = True 1 0 Pair(x0, f irst , z)

2-4 φ1 = True 0 0 Undefined
5 φ1 = x0,second < ysecond 1 0 Pair(x0,second , 0)
7 φ1 = x0,second ≥ ysecond 1 0 Pair(x0,second , 1)

8-10 φ1 = True 1 0 Pair(x0,second , z)

Table 5: Result of optimistic state merging of the Listing 2.

This merging simplifies the verification condition to
y f irst = ysecond ⇒ 1 = 1, which reduces the burden of
a constraint solver. Optimistic state merging is an over-
approximation based on the domain-specific knowledge of
oblivious algorithms, where the data is encrypted and not ob-
servable by an adversary. Since it is over-approximation, this
a sound transformation; namely, if the transformed symbolic
execution judges an algorithm is oblivious, then the original
algorithm is always oblivious.

Tracking the Secret Values after Merging. ObliCheck
checks the verification after the execution of two copies of a
given algorithm. The verification condition in §3.3 is gener-
ated from the access sequence recorded by ObliCheck under
the hood. To generate the verification condition, ObliCheck
needs to know which symbolic values are secret or public.

To this end, ObliCheck associates a taint tag with every
introduced symbolic variable. Symbolic variables introduced
by readSecretInput are assigned a taint tag 1, and the others

Pgm ::= (` : stmt ;)∗

stmt ::= x = c
x = readSecretInput
x = readPublicInput
z = x ./ y
if x goto y
y = ∗x
∗x = y
error
halt

where
Σ is the program state
V is a set of variables
C is the set of constants
L is the set of statement labels
A is a set of memory addresses

x,y,z are elements of V
pc an element of V denoting the program

counter
c is an element of C∪A∪L
` is an element of L

./ is a binary operator
SecretSet is a set of secret symbolic variables
PublicSet is a set of public symbolic variables

Figure 2: A simple imperative language originally devised by Sen et
al. in MultiSE [73], augmented with states SecretSet and PublicSet
to maintain the mapping from symbolic values to the taint state.
The functions readSecretInput and readPublicInput introduce a
symbolic variable and initialize the corresponding taint tag. Refer to
Figure 3 for more details.

are assigned 0. ObliCheck sees the taint tag of symbolic val-
ues included in the trace and produces a proper verification
condition based on this information. Figure 3 describes the
semantics in a formal notation.

The use of taint tag is necessary due to optimistic state
merging. When ObliCheck applies optimistic state merging,
it has to maintain whether a newly generated symbolic vari-
able is secret. Taint tag lets ObliCheck track how secret input
is propagated and decide the security level of a newly gener-
ated symbolic variable after optimistic state merging. Unlike
traditional taint analysis, ObliCheck draws the final verdict by
solving the verification condition not simply from the value
of taint tags.

Optimistic State Merging Semantics. Our optimistic state
merging technique is based on MultiSE [73]. MultiSE merges
state without introducing auxiliary variables, and does not
require control flow graph analysis to identify join points
because the merging is done incrementally per assignment
operation. MultiSE maintains the state of variables in the form
of a value summary, a set of path conditions and possible
values of a variable. Each pair represents a possible value
which a variable can have and the corresponding condition
that leads to it. For example, buf.length in Listing 2 can be
represented using value summary {(x0 < y,1),(x0 ≥ y,1)}
after the first loop iteration.

In MultiSE, state merging can be done by simply replac-

7

DOMAIN SPECIFIC GUARDED UPDATE

{(φa
i ,< va

i , t
a
i >)}i∪×φ {(φb

j ,< vb
j , t

b
j >)} j = {(¬φ∧φ

a
i ,< va

i , t
a
i >)}i∪× {(φ∧φ

b
j ,< vb

j , t
b
j >)} j

NEXTPC

NextPC(Σ,φ, `) = (Σ(pc)\{(φ, `)})]{(φ, `+1)}

CONSTANT
(φ, `) ∈ Σ(pc) Pgm(`) = (x = c)

Σ−→ Σ[x 7→ Σ(x)∪×φ {(true,< c,F >)}][pc 7→ NextPC(Σ,φ, `)]

SYMBOLIC PUBLIC INPUT
(φ, `) ∈ Σ(pc) Pgm(`) = (x = readPublicInput) s is a fresh symbolic value from S

Σ−→ Σ[x 7→ Σ(x)∪×φ {(true,< s,F >)}][pc 7→ NextPC(Σ,φ, `)][PublicSet 7→ Σ(PublicSet)∪{s}]

SYMBOLIC SECRET INPUT
(φ, `) ∈ Σ(pc) Pgm(`) = (x = readSecretInput) s is a fresh symbolic value from S

Σ−→ Σ[x 7→ Σ(x)∪×φ {(true,< s,T >)}][pc 7→ NextPC(Σ,φ, `)][SecretSet 7→ Σ(SecretSet)∪{s}]

BINARY OPERATION
(φ, `) ∈ Σ(pc) Pgm(`) = (z = x ./ y) Σ(x) = {(φx

i ,< vx
i , t

x
i >)}i Σ(y) = {(φy

j,< vy
j, t

y
j >)} j

φ
x./y
i j = φ

x
i ∧φ

y
j vx./y

i j = vx
i ./ vy

j tx./y
i j = tx

i ∨ ty
j

Σ−→ Σ[z 7→ Σ(z)∪×φ {(φx./y
i j ,< vx./y

i j , tx./y
i j >)}i j][pc 7→ NextPC(Σ,φ, `)]

CONDITIONAL
(φ, `) ∈ Σ(pc) Pgm(`) = (if x goto y) Σ(x) = {(φx

i ,< vx
i , ·>)}i Σ(y) = {(φy

j, `
y
j)} j

s = {(φx
i ∧ vx

i ∧φ
y
j, `

y
j)}i j]{((φx

i ∧¬vx
i), `+1)}i

Σ−→ Σ[pc 7→ (Σ(pc)\{(φ, `)})]φ s

LOAD
(φ, `) ∈ Σ(pc) Pgm(`) = (y = ∗x) Σ(x) = {(φx

i ,< vx
i , ·>)}i Σ(vx

i) = {(φi j,< vi j, ti j >)} j

Σ−→ Σ[y 7→ Σ(y)∪×φ {(φx
i ∧φi j,< vi j, ti j >)}i j][pc 7→ NextPC(Σ,φ, `)]

STORE
(φ, `) ∈ Σ(pc) Pgm(`) = (∗x = y) Σ(x) = {(φx

i ,< vx
i , ·>)}i Σ(y) = {(φy

j,< vy
j, t

y
j >)} j

Σ−→ Σ[vx
i 7→ Σ(vx

i)∪×φ∧φx
i
{(φy

j,< vy
j, t

y
j >)} j)]i[pc 7→ NextPC(Σ,φ, `)]

Figure 3: The semantics of symbolic execution and state merging techniques of ObliCheck. The semantics incorporates the taint tag into the
MultiSE semantics [73] in order to track the propagation of secret input through merged symbolic values.

ing pairs with the same values with a single pair whose path
condition is the disjunction of the conditions of the merged
pairs. For instance, buf.length, {(x0 < y,1),(x0 ≥ y,1)}, be-
comes {(True,1)} after state merging. MultiSE further re-
moves pairs whose path condition is false when merging.

To formally demonstrate the semantics of ObliCheck oper-
ations including optimistic state merging, we bring a simple
imperative language from MultiSE [73] in Figure 2. Figure 3
defines the operational semantics of ObliCheck. Each operator
updates the program state Σ. The initial state maps each vari-
able to {(true,⊥)}, and pc to {(true, l0)}. To incorporate
the taint tag, we extend the value part of the value summary
from (φ,v) to (φ,〈v, t〉), where t is the taint tag associated
with the value.] is the original value-summary union opera-
tor that performs state merging in MultiSE. To distinguish our
optimistic state merging operator from the MultiSE operator,
we introduce ∪× operator in the semantics description. Our
optimistic state merging operator works as follows.

• In the value-summary pairs, the value part has an additional
taint tag t. 1 represents the corresponding value is secret,
and 0 denotes the value is public.

• For any two pairs (φ,〈v, t〉) and (φ′,〈v′, t ′〉) where v =
v′, a new value summary for s is calculated in the
same way as the] does except that the new taint
tag is set to t ∨ t ′. The new value summary becomes
(s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪ {(φ∨φ′,〈v, t ∨ t ′〉)}.

• For any two pairs (φ,v) and (φ′,v′) where v 6= v′ in a
value summary for s, a new symbolic variable y is intro-
duced. If φ or φ′ contain a secret symbolic variable, the new
value summary becomes (s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪
{(φ∨φ′,〈y,T 〉)}. Otherwise, the value summary becomes
(s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪ {(φ∨φ′,〈y, t ∨ t ′〉)}
For example, buf[i] in the Listing 2 has a value summary

{(x0 < y,〈0,F〉),(x0 ≥ y,〈1,F〉)}. After merging, the new
value summary becomes {(True,〈z,T 〉)}. The taint tag after
merging is T because the original path conditions contain x0,
a secret symbolic variable even though the original merged
values 0 and 1 are not secret values.

The ∪× operator is used in Figure 3 to describe the seman-
tics of symbolic execution and merging techniques used by
ObliCheck. Note that the program counter is treated in the
same way as MultiSE using] operator.

8

5 Iterative State Unmerging
Although our optimistic state merging technique improves
the performance of ObliCheck without losing soundness, the
overapproximation of the technique incurs false positives. In
this section, we point out the problem with optimistic state
merging and devise a technique that iteratively and selectively
removes false positives.

5.1 Problem of Aggressive State Merging
Optimistic state merging overapproximates the values to get
merged. This overapproximation enables more values to be
merged but loses path-specific information. Because the val-
ues are replaced with symbolic variables which can be an
arbitrary value satisfying a corresponding path condition, it
brings up more false positives.

Listing 3 is a benign oblivious algorithm but reported
as not oblivious if our optimistic state merging is used. At
Line 6 and 8, the i− th position of the buf is updated to ei-
ther 0 or 1 depending on the value of the secretInput[i].
Since 0 6= 1, our optimistic state merging operation introduces
a new symbolic variable and put it in the value summary
of buf[i].second. At Line 16 and 18, the predicates in
the branches contain record.second, where each record

points to the value stored at buf[i]. Since ObliCheck over-
approximated the buf[i].second, it has no way to know 0
and 1 are the only possible values for record.second and
thus the algorithm is reported as not oblivious.

Our merging technique does not affect the soundness of
ObliCheck, but sacrifices the completeness due to the overap-
proximation for merging. In fact, if we merge every variable,
any algorithms that have a secret dependent branch that af-
fects the access sequence are classified as not oblivious, the
same way as a taint analysis based checker does. For better
precision, ObliCheck has to intelligently choose variables to
apply the optimistic state merging technique.

5.2 Iteratively and Selectively Unmerging State
To overcome the above issue, we introduce an iterative way
to remove false positives. Choosing which values to merge
during the execution is tricky. The symbolic execution engine
does not immediately know how an updated variable is used
later by the verification condition. Simply rolling back the
merged state after the symbolic execution significantly deteri-
orates the performance of ObliCheck when a given algorithm
is a false-positive, where the OSM classifies the algorithm as
not oblivious but it is actually oblivious.

Instead of identifying which variables to merge, ObliCheck
does the reverse. ObliCheck first runs a program merging
every variable updated in multiple execution paths. Then it
checks the verification condition, and identifies which vari-
ables should be unmerged. In the next iteration, ObliCheck
backtracks the execution, locates operations where the merg-
ing should be avoided and re-runs the program symbolically.
The verification is performed again at the end of the iteration.
This iterative process helps ObliCheck learn how a certain

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInput.length; i++) {

4 if (secretInput[i] < threshold)

5 buf.push(Pair(secretInput[i], 0));

6 else

7 buf.push(Pair(secretInput[i], 1));

8 }

9 return buf;

10 }

11 function apply(records, func0, func1) {

12 var buf = [];

13 for (var i = 0; i < records.length; i++) {

14 if (records[i].second == 0)

15 buf.push(func0(records[i].first));

16 if (records[i].second == 1)

17 buf.push(func1(records[i].first));

18 }

19 return buf;

20 }

21 function main() {

22 // Input values are initialized

23 ...

24 var tagged = tag(secretInput, publicThreshold);

25 ...

26 var applied = apply(tagged, funcA, funcB);

27 ...

28 applied = Cipher.encrypt(applied);

29 write(ADDR, applied);

30 }

Listing 3: Example code from Opaque [89]. tag function tag 0 or 1
depending on the value of each secretInput[i] of secretInput.
apply applies a function to the value depending on the tag of
an element. Optimistic state merging merges the tags 0 and 1
into a symbolic value. Although the branches in apply do not
cause non-oblivious behavior, the algorithm is reported as non-
oblivious because the record.second becomes a symbolic value
after merging.

merging operation affects the outcome of verification later.
Algorithm 2 in Figure 5 is a formal description of the

iterative state unmerging process. During the execution,
ObliCheck tracks the location of operations which incur the
domain-specific merging. Jalangi inserts a unique operation
ID for every operation in a program statically. ObliCheck
stores the ID of operations which introduced a symbolic vari-
able or triggered domain-specific merging to an introduced
symbolic variable. At the end of each iteration, symbolic vari-
ables included in the verification condition are extracted. If
the verification condition does not hold and the extracted sym-
bolic variables contain ones introduced by domain-specific
merging, the operation IDs stored in SymVarToOID are added
to UnmergeOID to prohibit merging at these locations in the
next iteration. This iterative process enables an efficient selec-
tion of merging points that do not incur false positive error.

An algorithm with more non-oblivious branches will end up
enduring more unnecessary iterations, wasting time. However,

9

Algorithm 1 Iterative state unmerging algorithm
1: global variables
2: SymVarToOID . Symbolic variables to operation IDs
3: UnmergeOID . Set of operation IDs
4: end global variables

. Called for every assignment operation in a program
5: procedure UPDATE(OperationID)
6: if OperationID ∈UnmergeOID then
7: ConventionalMerging(OperationID)
8: else
9: s← DomainSpeci f icMerging(OperationID)

10: SymVarToOID[s]← SymVarToOID[s] ∪
11: {OperationID}
12: procedure OBLICHECKMAIN(Program)
13: while true do
14: Reset SymVarToOID
15: Trace1← SymbolicExec(Program)
16: Trace2← SymbolicExec(Program)
17: VC← ObliviousVC(Trace1, Trace2)
18: if VC then
19: report OBLIVIOUS, break
20: else
21: SymVarsInVC← ExtractSymVars(VC)
22: if SymVarsInVC ∩ SymVarToOID.keys 6= ∅ then
23: for all s ∈ SymVarsInVC do
24: UnmergeOID←UnmergeOID ∪
25: SymVarToOID[s]
26: else
27: report NOT OBLIVIOUS, break

Figure 4: A formal description of how our iterative state unmerging
algorithm functions. SymVarToOID is a dictionary maps a symbolic
variable introduced by merging to a set of operation IDs. The oper-
ation IDs uniquely identify each operation in a program statically.
UnmergeOID is a set of operation IDs that represent the locations
where ObliCheck should avoid performing our domain-specific merg-
ing. For every iteration, UnmergeOIDs grows. This lets ObliCheck
increases the precision gradually as necessary.

our domain-specific merging was based on the expectation
that developers checking a algorithm for obliviousness likely
put effort towards making it oblivious, potentially missing a
few details. Therefore, the number of iterations required to un-
merge relevant symbolic values is not large. In §7, we evaluate
the additional cost using example algorithms. If ObliCheck
fails to check a algorithm within a given time budget, it re-
ports the locations where state merging has happened. This
information can greatly assist a algorithm designer to manu-
ally inspect only a part of the code and then figure out whether
the algorithm is a true-positive or false-positive.

6 Handling Input-dependent Loops
6.1 Problem of Loops Bounded by Symbolic Expression
A well-known limitation of symbolic execution is its inabil-
ity of verifying a program containing an input-dependent
loop. These types of loops are bounded by a symbolic ex-
pression which consists of input symbolic variables. A pro-

1 // threshold and inputSize are public input

2 function tag(secretInput, threshold, inputSize) {

3 var buf = [], i = 0;

4 while (i < inputSize) {

5 if (secretInput[i] < threshold) {

6 // buf.length += 1 inside push

7 buf.push(Pair(secretInput[i], 0));

8 } else {

9 // buf.length += 1 inside push

10 buf.push(Pair(secretInput[i], 1));

11 }

12 i++;

13 }

14 return buf;

15 }

Listing 4: tag function with an input-dependent loop. The for loop
is transformed into while to better demonstrate the control flow.

gram containing an input-dependent loop has an infinite
number of paths for a symbolic execution engine to explore.
For example, Listing 4 shows a loop bounded by input-

Size. The path condition of the first iteration inside the
loop is 0 < inputSize. That of the second one is ¬(0 <
inputSize)∧ (1 < inputSize) and a new path condition is
generated infinitely since inputSize is not bounded.

Most oblivious algorithms involve loops bounded by input
symbolic variables. These loops are used to iterate over an
input secret record of which the length is public. The length
of the processed output is thus dependent on the input length.
However, the algorithm can still be oblivious since revealing
the input length does not violate the obliviousness property.
In order to verify generalized oblivious algorithms with sym-
bolic input length, ObliCheck is required to handle loops
bounded by symbolic variables.

6.2 Automatic Generation of Loop Invariants
In a general program verification, a user is required to provide
a loop invariant manually since it is an undecidable prob-
lem [12, 29, 41, 51, 76]. However, ObliCheck automatically
infers relevant partial loop invariants by leveraging a fact that
the length of the output is an induction variable. Induction
variables get incremented or decremented by a fixed amount
for each iteration in a loop. Oblivious algorithms use input-
dependent loops to build up output data by iterating over the
secret input records. To preserve the obliviousness, a fixed
amount of elements are appended to the output buffer for
every iteration as shown in the tagging example of Listing 4.

As long as the size of a buffer is an induction variable, the
problem is reduced to inferring the number of iterations of a
loop. The side-effects of a loop to induction variables can be
captured by multiplying the delta of the variables per iteration
by the number of iterations. Godefroid and Luchaup [35] for-
malized this idea in dynamic test generation which produces
test inputs while executing the program concretely. We extend
the idea to capture partial loop invariants in pure symbolic
execution. In a similar way that Godefroid and Luchaup [35]

10

Algorithm 2 Automatic loop invariant generation algorithm

. Called for every read operation in a loop
1: procedure READLOOP(L, Var)
2: if Var not in L.UpdatedVars.Keys then
3: L.UpdatedVars[Var] = readSecretInput
4: return L.UpdatedVars[Var]

. Called for every write operation in a loop
5: procedure UPDATELOOP(L, Var, Val)
6: L.UpdatedVars[Var] = Val

. Both functions are called at the end of a loop body
7: procedure INFERINDUCTIONVARS(L)
8: for V in L.UpdatedVars.Keys do
9: if L.Iteration == 1 then

10: L.IVCandidates[V]=L.UpdatedVars[V]
11: if L.Iteration == 2 then
12: L.IVDeltas[V]=L.UpdatedVars[V]-

L.IVCandidates[V]
13: L.IVCandidates[V]=L.UpdatedVars[V]
14: if L.Iteration == 3 then
15: if L.UpdatedVars[V] - L.IVCandidates[V]
16: == L.IVDeltas[V] then
17: IVs.append(V)
18: return IVs
19: procedure INFERLOOPITERATIONS(L)
20: for C in L.LoopConditions do
21: if L.Iteration == 1 then
22: C.Value = C.LHS - C.RHS
23: if L.Iteration == 2 then
24: C.Delta = (C.LHS - C.RHS) - C.Value
25: if L.Iteration == 2 then
26: if (C.LHS - C.RHS) - C.Value == C.Delta then
27: if L.Operator == < then
28: C.LoopCount = -(C.InitialVal / C.Delta)
29: if L.Operator == > then
30: ...

Figure 5: Functions added for generating loop invariants automati-
cally. ReadLoop and UpdateLoop track the changed variables inside
the loop. ReadLoop returns a fresh symbolic variable if a variable
is read before written. InferInductionVars and InferLoopIterations
track the delta of the variables and loop conditions to find the induc-
tion variables, and compute the number of iterations of a loop.

proposed, ObliCheck tracks the modified variables and check
the delta of the variables and expression in the loop condi-
tion between two consecutive iterations. Unlike Godefroid
and Luchaup, however, we use pure symbolic execution for
sound verification and finish loop summarization within three
iterations by over-approximation.

Finding Induction variables. ObliCheck figures out the
difference of each variable between the first and second itera-
tions, and the second and third ones. Then ObliCheck checks
that the two differences are the same. The first iteration starts
with an empty state mapping. When a variable is modified in
the first iteration, an entry from the variable to its concrete
or symbolic value is updated. If a variable is referenced but

it does not have an entry in the mapping, an unconstrained
symbolic variable is assigned to the referenced variable. This
over-approximation takes any possible modifications in previ-
ous iterations into account. At the end of the first iteration, the
values of the updated variables are saved. The second iteration
is executed with the state created during the first iteration. At
the end of the second iteration, the difference of the values
saved at the first iteration and the second one is calculated
and saved. After the third iteration, another set of the deltas
is obtained and the variables whose deltas are the same are
judged as induction variables.

Calculating the number of iterations. The number of loop
iterations depends on the loop condition that bounds the loop.
Loop conditions are the conditional statements inside a loop
that have one of their targets point to the outside of the loop.
A conditional predicate of the form LHS ◦ RHS in a loop
condition, where ◦ is one of the conditional operators (<,≤
,>,≥,=, 6=), can be transformed to LHS−RHS ◦0 and the
delta of LHS−RHS between iterations are obtained in the
same way that the delta of induction variables are figured
out [35]. When the operator ◦ is <, the number of iterations
is −(InitialValue/Delta). Since there can be multiple loop
conditions if a loop body has break or return statement,
ObliCheck computes the number of iterations for each loop
condition and takes the minimum among them.

After getting the delta per iteration of induction variables
and the number of iterations, the loop’s post-condition be-

comes
n∧
i

IVi =Ci +Di ∗ ICl , where IVi represents the induc-

tion variables, Ci is each induction variable’s initial value
before the loop, and ICl is the number of iterations of the
loop l. For example, the algorithm in Listing 4 has two in-
duction variables, i and buf.length. The post-condition be-
comes i = 0+1∗ inputSize∧bu f .length = 0+1∗ inputSize.
The pre-condition of the loop is the loop condition i <
inputSize, so the loop is summarized as (i < inputSize)∧(i =
inputSize∧bu f .length = inputSize).

Limitation. ObliCheck cannot summarize the side-effects of
a loop on non-induction variables. Also, if the loop condition
depends on a non-induction variable, ObliCheck is unable to
infer the number of loop iterations. In these cases, ObliCheck
simply assigns an arbitrary symbolic variable to non-induction
variables and variables changed in a loop bounded by non-
induction variables for over-approximation. If a part of the
over-approximated variables is included in the verification
condition, it will result in a false-positive. However, in §7 we
show that this is not the case for existing oblivious algorithms
since the relevant variables such as the length of the output
buffer increment by a fixed amount per iteration.

7 Evaluation
We implemented our checker based on Jalangi [71], a program
analysis framework for JavaScript. The choice of Javascript
is irrelevant to the core techniques of ObliCheck and the

11

same techniques can be implemented in any programming
languages. Jalangi implements symbolic execution dynam-
ically through source code instrumentation. In contrast to
static analysis frameworks, Jalangi can avoid imprecise alias
or pointer analyses since it actually runs a program under
the hood and the input values are restricted to values not
references.

We measured the total analysis time including the symbolic
execution and constraint solving time, but excluded the in-
strumentation time which is syntax-based and done before
the symbolic execution. The experiment was done on a Linux
machine with Ubuntu 18.04.2, Intel Core i7 quad-core CPU
and 32 GB of RAM.

We evaluate ObliCheck using existing data processing algo-
rithms from data processing frameworks used in production
and published academic papers. Table 6 lists the benchmark
algorithms. Opaque [89] is an open-source, distributed data
analytics frameworks based on Apache Spark [2]. Signal
Messenger [6] is an open-source encrypted messaging service
commercialized by Signal Messenger LLC.

Algorithm Description

Tag The algorithm in Listing 1
Tag (Not Oblivious) The algorithm in Listing 1 with the false

branch in the if statement removed
Tag&Apply The algorithm in Listing 3
Sort Oblivious operator from Opaque [89]
Filter Oblivious operator from Opaque [89]
Aggregate Oblivious operator from Opaque [89]
Join Oblivious operator from Opaque [89]
MapReduce Oblivious MapReduce by Ohrimenko et

al. [64]
Decision Tree Oblivious decision tree inference by

Ohrimenko et al. [65]
Hash Table Oblivious hash table used in the Signal

messaging service [6]
AES Encryption AES CBC encryption from AES-JS [1]
Neural Net Infer-
ence

Prediction part of a neural network from
neuroJS [5]

TextSecure Server End-to-End message encryption server
in Javascript [4]

Table 6: List of benchmark algorithms. Tag and Tag&Apply are the
example algorithms showed earlier. Sort, Filter, Aggreate and Join
are from the Opaque framework [3], MapReduce and Decision Tree
are from Ohrimenko et al. [64,65] and Hash Table is from the Signal
Messenger [6].

7.1 Accuracy Test
We first evaluate the accuracy of ObliCheck’s techniques (i.e.,
optimistic state merging and iterative state unmerging) and
compare it with other existing techniques – namely, taint track-
ing, and symbolic execution with conventional state merging
(MultiSE). Table 7 displays the results. MapReduce is not
oblivious because it pads the output up to the possible max-
imum length of the output based on the input data. Thus,
it leaks information regarding the input data distribution.

Example Oblivious? Taint
Analysis

ObliCheck

OSM OSM+ISU

Tag © × 7 © 3 © 3

Tag (NO) × × 3 × 3 × 3

Tag&Apply © × 7 × 7 © 3

Sort © × 7 © 3 © 3

Filter © × 7 © 3 © 3

Aggregate © × 7 © 3 © 3

Join © × 7 © 3 © 3

MapReduce × × 3 × 3 × 3

DecisionTree © × 7 © 3 © 3

HashTable © × 7 © 3 © 3

AES Encryption © © 3 © 3 © 3

Neural Net Inference © © 3 © 3 © 3

TextSecure Server × × 3 × 3 × 3

Table 7: Accuracy evaluation result of each technique over the bench-
mark suite algorithms. Taint Analysis checks the algorithm has a se-
cret dependent branch by taint tracking. OSM is our optimistic state
merging technique where only the length of buffers are not merged,
and ISU is our iterative state unmerging technique (ObliCheck).©
means the algorithm is classified as oblivious and× represents one
is classified as not oblivious. 3 marks the test result is correct (either
true positive or true negative)and 7 marks the result is an error (either
false positive or false negative).

TextSecure Server is not oblivious since the server sends
the different length of the message based on the status of
the devices and it does not pad the messages before sending
them.

Taint analysis classifies all algorithms as not oblivious ex-
cept for AES Encryption and Neural Net Inference. Both
of the two are only algorithms without secret-dependent
branches. Our optimistic state merging technique obtains the
correct results except for the Tag&Apply example, where
merging the tag values leads to false positive. Both conven-
tional state merging and our iterative state unmerging tech-
nique correctly identify oblivious and non-oblivious algo-
rithms.

7.2 Performance Evaluation
Pure symbolic execution suffers from path explosion and
conventional state merging does not fully address this issue.
We evaluate the performance of applying conventional state
merging to ObliCheck and show how much performance im-
provement it achieves in terms of total program analysis time.
We also measured the overhead of iterative state merging
compared with a non-iterative domain-specific merging tech-
nique. The length of the input data is 40 except for the AES
Encryption and TextSecure Server. AES Encryption requires
the number of input bytes is multiple of 16 bytes, so we set
the length at 4096. Neural Net Inference runs out of memory
at the length of 40 so we set it at 20. The input data to be
processed is considered as private in all the examples. In the
Neural Net Inference, we consider the size of the network
layers is not private. In the TextSecure Server, we consider
the destination device addresses are private input.

Table 8 shows the evaluation results of pure MultiSE and

12

Example LoC
Symbolic Execution (MultiSE) ObliCheck (OSM) ObliCheck (OSM + ISU)

Total Time (s)
Avg Value

Summary Size Total Time (s)
Avg Value

Summary Size Total Time (s)
Avg Value

Summary Size
Speed Up (×)
(vs MultiSE)

Overhead (%)
(vs OSM)

Tag 43 2751.61 24.14 1.28 1.41 1.29 1.41 2134.68 0.00
Tag (NO) 44 2765.46 23.19 92.76 2.04 96.75 2.04 28.58 4.03
Tag&Apply 48 3227.15 19.68 0.98 1.44 1.66 1.43 1938.47 69.28
Sort 152 3820.16 8.17 1.05 1.03 1.06 1.03 3592.38 0.61
Filter 162 4272.28 12.22 1.20 1.03 1.21 1.03 3517.08 0.48
Aggregate 183 5573.17 12.73 1.39 1.03 1.39 1.03 4011.28 0.00
Join 183 5285.54 12.73 1.31 1.03 1.32 1.03 3991.17 0.90
MapReduce 76 5384.13 62.32 284.20 1.87 442.33 1.92 12.17 55.64
DecisionTree 61 7506.62 70.79 1.52 1.02 1.55 1.02 4850.34 1.64
HashTable 68 6530.72 38.64 1.66 1.46 1.67 1.46 3912.44 0.67
AES Encryption 797 0.91 1 0.95 1 0.95 1 0.95 0.0
Neural Net Inference 219 6.77 1 6.96 1 6.96 1 0.97 0.0
TextSecure Server 184 17935.37 53.40 84.04 1.35 89.51 1.35 200.37 6.11

Table 8: Performance evaluation result of each technique on the test algorithms. OSM refers to optimistic state merging, and ISU to iterative
state unmerging. The total time includes the execution time of the symbolic execution engine and the solver time of ObliCheck. The average
value summary size is the average length of the value summary, which reflects how efficiently state merging was done. OSM shows the best
performance since it merges everything and executes a program only once. ObliCheck with ISU has less than 5.0% of the overhead for the test
algorithms except for Tag&Apply and MapReduce. Two algorithms are a false positive and a true negative, which make ObliCheck iterates
more.

ObliCheck on the test algorithms. ObliCheck performs up to
×4850 faster than MultiSE. The improvement mainly comes
from the reduced number of exploration paths and simplified
path conditions due to optimistic state merging. The over-
head of iterative state merging is marginal if the algorithm
is oblivious as it iterates only once. If the algorithm is not
oblivious (true positive) or needs more iterations to turn out
to be oblivious (false positive) the overhead becomes more
significant. In the benchmark suite, the maximum overhead is
∼ 69%.

We also demonstrate the scalability of ObliCheck com-
pared with conventional state merging techniques, by running
vanilla MultiSE and ObliCheck over Tag, Tag&Apply and
Non-oblivious Tag algorithms. The algorithms result in a true
negative, false positive and true positive respectively when
checked using optimistic state merging.

Figure 6 shows the results. ObliCheck boasts linear scala-
bility when it checks Tag, and Tag&Apply algorithms, which
are oblivious cases. In contrast, the runtime of MultiSE grows
exponentially. For Non-oblivious Tag, the total analysis time
of ObliCheck also grows exponentially since it fails to merge
the states in the end. In this case, ObliCheck provides the
information regarding the program statements where state
unmerging has been applied so that a algorithm designer can
manually inspect and judge a given algorithm is truly non-
oblivious.

Table 9 demonstrates the loop summarization performance
of ObliCheck. The number of loops only include ones summa-
rized by ObliCheck. For example, AES Encryption algorithm
contains multiple for loops but only one outermost loop has
the input length in its loop condition. All the other loops are
constants. As we discussed in § 4.1, MultiSE runs infinitely
when a given algorithm contains input-dependent loops so
cannot verify it. In contrast, ObliCheck generate loop invari-

Example MultiSE ObliCheck # of Loops Total Time (s)

Tag ∞ © 3 1 0.170
Tag (NO) ∞ × 3 1 0.290
Tag&Apply ∞ © 3 1 0.180
Sort ∞ © 3 20 0.423
Filter ∞ © 3 25 0.477
Aggregate ∞ © 3 31 0.623
Join ∞ © 3 27 0.468
MapReduce ∞ × 3 8 0.172
DecisionTree ∞ © 3 4 0.062
HashTable ∞ © 3 4 0.074
AES Encryption ∞ © 3 1 0.189
Neural Net Inference ∞ © 3 1 0.296
TextSecure Server ∞ × 3 1 0.211

Table 9: Loop invariant generation test result. The # of Loops col-
umn includes the number of loops summarized by ObliCheck. ∞

means the checking process runs infinitely. MultiSE runs infinitely
for all test algorithms because of input-dependent loops. ObliCheck
classifies each algorithm correctly by summarizing the loops.

ants automatically and classifies every test algorithm correctly
within a second.

8 Discussion
8.1 Generalization for Checking Other Side Channels
ObliCheck proves the absence of the access pattern side-
channel by keeping the access sequence as a program state.
Based on the recorded state, ObliCheck checks whether the
predefined verification holds at the end of symbolic execution.
In principle, other types of side-channel leakage can also be
verified in a similar way. For example, one can model timing
side-channels by recording the number of steps of a algorithm
while symbolically executing a algorithm. In contrast to ex-
isting works that rule out algorithms with secret dependent
branches and memory accesses entirely [16, 81], comparing
the time it takes to finish each execution path directly is a
more precise approach. By (1) modeling observable behavior
of an algorithm as program state during the symbolic execu-

13

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120

T
o
ta

l
T

im
e

(s
)

Input Size

MultiSE runs

out of memory

(a) Oblivious Tagging (True Negative)

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120

T
o
ta

l
T

im
e

(s
)

Input Size

ObliCheck
MultiSE

MultiSE runs

out of memory

(b) Oblivious Tag and Apply (False Positive)

0.01

0.1

1

10

100

1000

2 4 6 8 10 12 14

T
o

ta
l

T
im

e
(s

)

Input Size

(c) Non-oblivious Tagging (True Positive)

Figure 6: Total analysis time of MultiSE (conventional state merging) and ObliCheck (domain-specific merging followed by iterative state
unmerging) over Tag, Tag&Apply, and Tag (Non-oblivious). The total time of MultiSE grows exponentially until the input size 16 and fails to
finish due to out of memory error after then when it analyzes Tag and Tag&Apply. The total analysis time of ObliCheck grows linearly without
out of memory error. The total time of ObliCheck blows up exponentially when it checks the non-oblivious Tag algorithm. This is because state
merging is not possible after unmerging merged state and the size of state exponentially grows as MultiSE does.

tion, and (2) defining the verification condition based on the
state, one can prove the side-channel leakage using the same
technique used in ObliCheck. We leave the generalization of
our technique for different types of side-channels as future
work.

8.2 Checking Probabilistically Defined Obliviousness
ObliCheck checks if a given algorithm has the same determin-
istic access sequence across all possible input. In contrast, the
original ORAM work defines obliviousness probabilistically.
In order to verify the obliviousness condition in this case,
a checker should keep the probability distribution of access
sequences and verify the distributions of any two inputs are in-
distinguishable. For this, a symbolic execution engine should
be able to capture how a variable with probability distribution
is transformed over the algorithm execution. Several works
have been proposed recently to automatically verify differ-
ential privacy, which certifies the distance between any two
algorithm outputs is within a concrete bound [9, 14, 87]. For
example, LightDP [87] provides a language with a lightweight
dependent type incorporating probability distribution. Sim-
ilarly, ObliCheck can be extended with APIs or with a new
domain-specific language to capture probability distribution,
its transformation during the execution. The final verification
condition checks the statistical distance of the observable
state for any two inputs. This interesting direction requires
further investigation and we leave it for future work.

9 Related Work
Checking Side Channel Leakage Using Taint Analysis.
Several works have been proposed to detect or mitigate side-
channel leakage of an algorithm using taint analysis. Vale [16]
provides a domain-specific language (DSL) and tools for writ-
ing high-performance assembly code for cryptographic primi-
tives. Vale includes a checker which uses taint analysis that
checks the written code is free from digital side-channels of
memory and timing. As described in §2.3, this approach can

result in a large number of false positives in the presence of
unobservable state.

Raccoon [68] uses taint analysis to identify secret depen-
dent branches which can potentially leak information and
obfuscate the behaviors of these branches. Since Raccoon is
a compiler but not a checker, using taint analysis in this way
may result in unnecessary obfuscation but not the rejection
of a program. Sidebuster [88] uses taint analysis in the same
way to check and mitigate side-channels in web applications.
Overall, taint analysis is an efficient technique to detect and
mitigate side-channels under a limited time budget. However,
it keeps a coarse-grained state regarding information flow in
that it only tracks which variables are affected by a source
input.

Symbolic Execution and State Merging Techniques for
Preventing Side Channel Attacks. Symbolic execution has
widely deployed to check certain properties of a program and
to generate high-coverage test cases [17, 18,21,34,47,71, 72].
Practical symbolic execution frameworks normally limit the
depth of exploration or drive the execution to parts of a code
to find buggy code with a limited time budget. Our checker
rather checks the whole input space of a program to eliminate
false-negative cases to make our checker useful for check-
ing the security property. Jalangi [71] is a program analysis
framework for Javascript where ObliCheck is built atop. Since
Jalangi is a dynamic framework, ObliCheck can elude impre-
cise alias analyses.

State merging techniques are used to resolve the path explo-
sion problem of symbolic execution at the expense of more
complicated path conditions [10, 32, 33, 36]. MultiSE [73]
merge states incrementally at every assignment of symbolic
variables without introducing auxiliary variables. MultiSE
supports merging values not supported by constraint solver
such as functions and makes it unnecessary to identify the join
points of branches to merge state. OSM of ObliCheck is fun-
damentally different from existing state merging techniques.

14

Existing state merging techniques are sound and complete
with regard to symbolic execution. The merged symbolic state
explores the same set of program behaviors as regular sym-
bolic execution. Therefore, existing techniques do not report
false positives. In contrast, OSM leverages domain-specific
knowledge from oblivious programs and over-approximates
program behavior to merge two states even if they cannot be
merged in original state merging, which significantly speeds
up the checking process. However, OSM might report false
positives, and that’s where ISU kicks in to repair them.

One of the most widely exploited and studied side-channels
is the cache side-channel. CaSym [52] uses symbolic exe-
cution to detect a part of a given program that incurs cache
side-channel leakage. CaSym runs the LLVM IR of a program
symbolically and finds inputs which let an attacker distinguish
observable cache state. CaSym merges paths by introducing
an auxiliary logical variable. CaSym and our checker use sim-
ilar symbolic execution techniques but for different purposes.
CaSym specifically focuses on checking cache side-channel
leakage with a comprehensive cache model but ObliCheck
is for more general oblivious algorithms. CacheD [81] also
uses symbolic execution but only checks the traces explored
in a dynamic execution of a program, which may miss po-
tential vulnerabilities incurred by secret dependent branches.
CacheAudit [26] uses abstract interpretation to detect cache
side-channel leakage.

Ensuring Noninterference Policy. Noninterference is a se-
curity policy model which strictly enforces information with
a ‘high’ label does not interfere with information with a ‘low’
label [25]. Some existing approaches for enforcing noninter-
ference are type checking [60, 61, 67, 80] and abstract inter-
pretation [8, 30, 48].

Barthe et al. defined a way to prove noninterference by a se-
quential composition of a given algorithm [13]. Terauchi and
Aiken proposed a term 2-safety to distinguish safety property
like noninterference which requires to observe two finite sets
of traces [78]. Also, they devised a type-based transformation
of a given algorithm for self-composition which has better
efficiency than a simple sequential-composition suggested by
Barthe et al. for removing redundant and duplicated execution.
Milushev et al. suggested a way to use symbolic execution to
prove the noninterference property of a given algorithm [58].
They used type-directed transformation suggested by Ter-
auchi and Aiken to interleave two sets of algorithms. The
type-directed transformation can be orthogonally applied and
potentially improve the performance of ObliCheck.

10 Conclusion
Access pattern based side-channels have gained attraction due
to a large amount of information it leaks. Although oblivious
algorithms have been devised to close this side-channel, the
correctness of the algorithms must be manually checked by
understanding pen and pencil proofs. We showed that sym-
bolic execution can be utilized to automatically check a given

algorithm is oblivious. With our optimistic state merging
and iterative state unmerging techniques, ObliCheck achieves
more accurate results than existing taint analysis based tech-
niques and runs faster than traditional symbolic execution.

References
[1] Aes-js: A pure javascript implementation of the aes

block cipher algorithm and all common modes of oper-
ation. https://github.com/ricmoo/aes-js. Ac-
cessed: 2020-08-12.

[2] Apache spark: Lightning-fast unified analytics engine.
https://spark.apache.org/. Accessed: 2020-08-
10.

[3] Github: Opaue. https://github.com/ucbrise/

opaque. Accessed: 2020-02-10.
[4] A javascript implementation of a textsecure

server. https://github.com/joebandenburg/

textsecure-server-node. Accessed: 2020-08-12.
[5] neurojs: Neural network library. https://github.

com/pieteradejong/neuroJS. Accessed: 2020-08-
12.

[6] Technology preview: Private contact discov-
ery for signal. https://signal.org/blog/

private-contact-discovery/. Accessed: 2019-05-
06.

[7] An off-chip attack on hardware enclaves via the mem-
ory bus. In 29th USENIX Security Symposium (USENIX
Security 20), Boston, MA, August 2020. USENIX As-
sociation.

[8] Mauricio Alba-Castro, María Alpuente, and Santiago Es-
cobar. Abstract certification of global non-interference
in rewriting logic. In Proceedings of the 8th Interna-
tional Conference on Formal Methods for Components
and Objects, FMCO’09, pages 105–124, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[9] Aws Albarghouthi and Justin Hsu. Synthesizing cou-
pling proofs of differential privacy. Proc. ACM Program.
Lang., 2(POPL):58:1–58:30, December 2017.

[10] Saswat Anand, Patrice Godefroid, and Nikolai Till-
mann. Demand-driven compositional symbolic exe-
cution. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 367–381, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[11] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas
Joglekar, Raghav Kaushik, Donald Kossmann, Ravi
Ramamurthy, Prasang Upadhyaya, and Ramarathnam
Venkatesan. Secure database-as-a-service with ci-
pherbase. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’13, page 1033–1036, New York, NY, USA, 2013.
Association for Computing Machinery.

15

[12] Mike Barnett, K Rustan M Leino, and Wolfram Schulte.
The spec# programming system: An overview. In In-
ternational Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, pages
49–69. Springer, 2004.

[13] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure infor-
mation flow by self-composition. In Proceedings. 17th
IEEE Computer Security Foundations Workshop, 2004.,
pages 100–114, June 2004.

[14] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin
Grégoire, Justin Hsu, and Pierre-Yves Strub. Advanced
probabilistic couplings for differential privacy. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, pages
55–67, New York, NY, USA, 2016. ACM.

[15] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis,
Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 441–459,
New York, NY, USA, 2017. Association for Computing
Machinery.

[16] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rus-
tan M. Leino, Jacob R. Lorch, Bryan Parno, Ashay Rane,
Srinath Setty, and Laure Thompson. Vale: Verifying
high-performance cryptographic assembly code. In 26th
USENIX Security Symposium (USENIX Security 17),
pages 917–934, Vancouver, BC, 2017. USENIX Associ-
ation.

[17] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages
209–224, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

[18] Cristian Cadar and Koushik Sen. Symbolic execution for
software testing: Three decades later. Commun. ACM,
56(2):82–90, February 2013.

[19] Lorenzo Cavallaro and R. Sekar. Taint-enhanced
anomaly detection. In Proceedings of the 7th In-
ternational Conference on Information Systems Secu-
rity, ICISS’11, page 160–174, Berlin, Heidelberg, 2011.
Springer-Verlag.

[20] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. Shreds:
Fine-grained execution units with private memory. In
2016 IEEE Symposium on Security and Privacy (SP),
pages 56–71, May 2016.

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2e: A platform for in-vivo multi-path analysis
of software systems. In Proceedings of the Sixteenth
International Conference on Architectural Support for

Programming Languages and Operating Systems, ASP-
LOS XVI, pages 265–278, New York, NY, USA, 2011.
ACM.

[22] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In Proceedings of the 25th USENIX Confer-
ence on Security Symposium, SEC’16, pages 857–874,
Berkeley, CA, USA, 2016. USENIX Association.

[23] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of tls 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, page 1773–1788, New York,
NY, USA, 2017. Association for Computing Machinery.

[24] Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang, and
Beng Chin Ooi. Privacy-preserving computation with
trusted computing via scramble-then-compute. Proceed-
ings on Privacy Enhancing Technologies, 2017(3):21–
38, 2017.

[25] Dorothy E. Denning and Peter J. Denning. Certifica-
tion of programs for secure information flow. Commun.
ACM, 20(7):504–513, July 1977.

[26] Goran Doychev, Dominik Feld, Boris Kopf, Laurent
Mauborgne, and Jan Reineke. Cacheaudit: A tool for the
static analysis of cache side channels. In Presented as
part of the 22nd USENIX Security Symposium (USENIX
Security 13), pages 431–446, Washington, D.C., 2013.
USENIX.

[27] David Eppstein, Michael T. Goodrich, and Roberto
Tamassia. Privacy-preserving data-oblivious geomet-
ric algorithms for geographic data. In Proceedings of
the 18th SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, GIS ’10,
pages 13–22, New York, NY, USA, 2010. ACM.

[28] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. Branchscope:
A new side-channel attack on directional branch predic-
tor. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, page
693–707, New York, NY, USA, 2018. Association for
Computing Machinery.

[29] Robert W Floyd. Assigning meanings to programs. In
Program Verification, pages 65–81. Springer, 1993.

[30] Roberto Giacobazzi and Isabella Mastroeni. Abstract
non-interference: Parameterizing non-interference by
abstract interpretation. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’04, pages 186–197, New
York, NY, USA, 2004. ACM.

[31] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei,
David Mazières, John C. Mitchell, and Alejandro Russo.
Hails: Protecting data privacy in untrusted web appli-
cations. In Proceedings of the 10th USENIX Confer-

16

ence on Operating Systems Design and Implementa-
tion, OSDI’12, pages 47–60, Berkeley, CA, USA, 2012.
USENIX Association.

[32] Patrice Godefroid. Compositional dynamic test genera-
tion. In Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’07, pages 47–54, New York, NY, USA,
2007. ACM.

[33] Patrice Godefroid. Compositional dynamic test genera-
tion. In Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’07, page 47–54, New York, NY, USA,
2007. Association for Computing Machinery.

[34] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
Directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[35] Patrice Godefroid and Daniel Luchaup. Automatic par-
tial loop summarization in dynamic test generation. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, page 23–33,
New York, NY, USA, 2011. Association for Computing
Machinery.

[36] Patrice Godefroid, Aditya Nori, Sriram Rajamani, and
Sai Deep Tetali. Compositional may-must program anal-
ysis: Unleashing the power of alternation. In Principles
of Programming Languages (POPL). Association for
Computing Machinery, Inc., January 2010.

[37] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious rams. J. ACM,
43(3):431–473, May 1996.

[38] Michael T. Goodrich, Olga Ohrimenko, and Roberto
Tamassia. Data-oblivious graph drawing model and
algorithms. CoRR, abs/1209.0756, 2012.

[39] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cup-
pens, Jean-Louis Lanet, and Routa Moussaileb. De-
tection of side channel attacks based on data tainting
in android systems. In IFIP International Conference
on ICT Systems Security and Privacy Protection, pages
205–218. Springer, 2017.

[40] Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian,
Tuba Yavuz, and Kevin R.B. Butler. Firmusb: Vetting
usb device firmware using domain informed symbolic
execution. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, page 2245–2262, New York, NY, USA, 2017.
Association for Computing Machinery.

[41] Charles Antony Richard Hoare. An axiomatic basis for
computer programming. Communications of the ACM,
12(10):576–580, 1969.

[42] Sebastian Hunt and David Sands. On flow-sensitive
security types. In Conference Record of the 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’06, pages 79–90, New
York, NY, USA, 2006. ACM.

[43] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly
Shmatikov, and Emmett Witchel. Chiron: Privacy-
preserving machine learning as a service. CoRR,
abs/1803.05961, 2018.

[44] Nick Hynes, Raymond Cheng, and Dawn Song. Effi-
cient deep learning on multi-source private data. CoRR,
abs/1807.06689, 2018.

[45] L. Ivanov and R. Nunna. Modeling and verification of
cache coherence protocols. In ISCAS 2001. The 2001
IEEE International Symposium on Circuits and Systems
(Cat. No.01CH37196), volume 5, pages 129–132 vol. 5,
May 2001.

[46] S. Kadloor, X. Gong, N. Kiyavash, T. Tezcan, and
N. Borisov. Low-cost side channel remote traffic anal-
ysis attack in packet networks. In 2010 IEEE Interna-
tional Conference on Communications, pages 1–5, May
2010.

[47] James C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[48] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Re-
lational abstract interpretation for the verification of
2-hypersafety properties. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Commu-
nications Security, CCS ’13, pages 211–222, New York,
NY, USA, 2013. ACM.

[49] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. Information flow control for standard os ab-
stractions. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07,
pages 321–334, New York, NY, USA, 2007. ACM.

[50] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium
(USENIX Security 17), pages 557–574, Vancouver, BC,
August 2017. USENIX Association.

[51] K. Rustan M. Leino. Dafny: An automatic pro-
gram verifier for functional correctness. In Proceed-
ings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reason-
ing, LPAR’10, page 348–370, Berlin, Heidelberg, 2010.
Springer-Verlag.

[52] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang.
Deepsec: A uniform platform for security analysis of
deep learning model. In 2019 2019 IEEE Symposium
on Security and Privacy (SP), Los Alamitos, CA, USA,
may 2019. IEEE Computer Society.

[53] Chang Liu, Austin Harris, Martin Maas, Michael Hicks,
Mohit Tiwari, and Elaine Shi. Ghostrider: A hardware-
software system for memory trace oblivious compu-

17

tation. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages
87–101, New York, NY, USA, 2015. ACM.

[54] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
level cache side-channel attacks are practical. In 2015
IEEE Symposium on Security and Privacy, pages 605–
622, May 2015.

[55] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
neural network predictions via minionn transformations.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17,
page 619–631, New York, NY, USA, 2017. Association
for Computing Machinery.

[56] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu,
Limin Liu, Neng Gao, Min Yang, Xinyu Xing, and Peng
Liu. System service call-oriented symbolic execution
of android framework with applications to vulnerability
discovery and exploit generation. In MobiSys 2017 -
Proceedings of the 15th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys 2017 - Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, pages 225–238. Association for Computing
Machinery, Inc, 6 2017.

[57] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. HASP, 2013.

[58] Dimiter Milushev, Wim Beck, and Dave Clarke. Non-
interference via symbolic execution. In Proceedings of
the 14th Joint IFIP WG 6.1 International Conference
and Proceedings of the 32Nd IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Sys-
tems, FMOODS’12/FORTE’12, pages 152–168, Berlin,
Heidelberg, 2012. Springer-Verlag.

[59] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An efficient oblivious search index. In 2018
IEEE Symposium on Security and Privacy (SP), pages
279–296, May 2018.

[60] Andrew C. Myers and Andrew C. Myers. Jflow: Practi-
cal mostly-static information flow control. In Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’99,
pages 228–241, New York, NY, USA, 1999. ACM.

[61] Andrew C. Myers, Andrew C. Myers, and Barbara
Liskov. A decentralized model for information flow
control. In Proceedings of the Sixteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’97, pages
129–142, New York, NY, USA, 1997. ACM.

[62] Aleksandar Nanevski, Anindya Banerjee, and Deepak
Garg. Verification of information flow and access con-
trol policies with dependent types. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy, SP

’11, pages 165–179, Washington, DC, USA, 2011. IEEE
Computer Society.

[63] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg,
Marc Joye, Nina Taft, and Dan Boneh. Privacy-
preserving matrix factorization. In Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security, CCS ’13, pages 801–812, New
York, NY, USA, 2013. ACM.

[64] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Chris-
tos Gkantsidis, Markulf Kohlweiss, and Divya Sharma.
Observing and preventing leakage in mapreduce. In Pro-
ceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, pages
1570–1581, New York, NY, USA, 2015. ACM.

[65] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 619–636, Austin, TX,
2016. USENIX Association.

[66] Sergei Popov, Stanislav Morozov, and Artem Babenko.
Neural oblivious decision ensembles for deep learning
on tabular data. arXiv preprint arXiv:1909.06312, 2019.

[67] François Pottier and Vincent Simonet. Information flow
inference for ml. ACM Trans. Program. Lang. Syst.,
25(1):117–158, January 2003.

[68] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing digital side-channels through obfuscated exe-
cution. In 24th USENIX Security Symposium (USENIX
Security 15), pages 431–446, Washington, D.C., 2015.
USENIX Association.

[69] Sajin Sasy, Sergey Gorbunov, and Christopher W
Fletcher. Zerotrace: Oblivious memory primitives from
intel sgx. IACR Cryptology ePrint Archive, 2017:549,
2017.

[70] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng
Mao, Stephen McCamant, and Dawn Song. A symbolic
execution framework for javascript. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, SP
’10, page 513–528, USA, 2010. IEEE Computer Society.

[71] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and
Simon Gibbs. Jalangi: A selective record-replay and
dynamic analysis framework for javascript. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 488–498,
New York, NY, USA, 2013. ACM.

[72] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A
concolic unit testing engine for c. In Proceedings of
the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA,
2005. ACM.

18

[73] Koushik Sen, George Necula, Liang Gong, and Wontae
Choi. Multise: Multi-path symbolic execution using
value summaries. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ES-
EC/FSE 2015, pages 842–853, New York, NY, USA,
2015. ACM.

[74] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and
Latifur Khan. Sgx-bigmatrix: A practical encrypted
data analytic framework with trusted processors. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page
1211–1228, New York, NY, USA, 2017. Association for
Computing Machinery.

[75] Bhargava Shastry, Fabian Yamaguchi, Konrad Rieck,
and Jean-Pierre Seifert. Towards vulnerability discovery
using staged program analysis. In Juan Caballero, Urko
Zurutuza, and Ricardo J. Rodríguez, editors, Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, pages 78–97, Cham, 2016. Springer International
Publishing.

[76] Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram
Schulte. An automatic verifier for java-like programs
based on dynamic frames. In International Conference
on Fundamental Approaches to Software Engineering,
pages 261–275. Springer, 2008.

[77] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: An extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS
’13, pages 299–310, New York, NY, USA, 2013. ACM.

[78] Tachio Terauchi and Alex Aiken. Secure information
flow as a safety problem. In Proceedings of the 12th
International Conference on Static Analysis, SAS’05,
pages 352–367, Berlin, Heidelberg, 2005. Springer-
Verlag.

[79] Dhinakaran Vinayagamurthy, Alexey Gribov, and
Sergey Gorbunov. Stealthdb: a scalable encrypted
database with full sql query support. Proceedings on Pri-
vacy Enhancing Technologies, 2019(3):370–388, 2019.

[80] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A
sound type system for secure flow analysis. J. Comput.
Secur., 4(2-3):167–187, January 1996.

[81] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and
Dinghao Wu. Cached: Identifying cache-based timing
channels in production software. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 235–252,
Vancouver, BC, 2017. USENIX Association.

[82] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hu-
bert Chan, Elaine Shi, Emil Stefanov, and Yan Huang.
Oblivious data structures. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, pages 215–226, New York,
NY, USA, 2014. ACM.

[83] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted oper-
ating systems. In 2015 IEEE Symposium on Security
and Privacy, pages 640–656, May 2015.

[84] Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong.
Precise, dynamic information flow for database-backed
applications. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’16, pages 631–647, New York, NY,
USA, 2016. ACM.

[85] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama.
A language for automatically enforcing privacy poli-
cies. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’12, pages 85–96, New York, NY, USA,
2012. ACM.

[86] Alexander Yip, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek. Improving application security
with data flow assertions. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Prin-
ciples, SOSP ’09, pages 291–304, New York, NY, USA,
2009. ACM.

[87] Danfeng Zhang and Daniel Kifer. Lightdp: Towards
automating differential privacy proofs. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, pages 888–901,
New York, NY, USA, 2017. ACM.

[88] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang,
and Shuo Chen. Sidebuster: Automated detection and
quantification of side-channel leaks in web application
development. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS
’10, pages 595–606, New York, NY, USA, 2010. ACM.

[89] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica.
Opaque: An oblivious and encrypted distributed analyt-
ics platform. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages

283–298, Boston, MA, 2017. USENIX Association.

19

	Jeongseok_MS_Thesis_Title
	Acknowledgement
	MS_Thesis_Jeongseok

