
Applications of Machine Learning for Character

Animation

Stephen Bailey

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-30

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-30.html

May 1, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Applications of Machine Learning for Character Animation

by

Stephen Wells Bailey

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Wawrzynek, Chair
Professor Sergey Levine
Professor Greg Niemeyer

Fall 2020

Applications of Machine Learning for Character Animation

Copyright 2020
by

Stephen Wells Bailey

1

Abstract

Applications of Machine Learning for Character Animation

by

Stephen Wells Bailey

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Wawrzynek, Chair

An important goal of character animation is to create believable, life-like movements and
expressions. For film, artists spend significant amounts of effort to add sufficient complexity
to a character rig to enable believable and emotionally evocative performances. However,
once a complex character rig has been authored, an artist then needs to spend a significant
amount of effort to animate a character and bring it to life. For video games, mesh defor-
mations and geometry processing must be real-time, which affects the types of deformations
included in a character rig for an interactive application. As a result, video game charac-
ters tend to lack some of the sophisticated deformations and motions seen in film-quality
characters.

This dissertation explores applications of machine learning for improving the quality of de-
formations in real-time character rigs as well as applications to assist artists in producing
high-quality animations. We detail a deep learning-based approach to enable complex film-
quality mesh deformations to run in real-time for both a character’s body and face. Our
method learns mesh deformations from an existing character rig and produces an accurate
approximation using significantly less computational time. In addition to mesh deformations,
we present a statistical approach to synthesize novel animations from a collection of artist-
created animations. Thus, single-use animations for film can be leveraged for additional
applications. We also present a method for generating facial animation from a recorded
performance, which provides artists with an initial animation that can be fine-tuned to meet
stylistic and expressive needs.

i

To my grandparents John and Alice Bailey, who supported me throughout my studies but
were unfortunately unable to see me finish.

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1

1.1 Contributions . 2
1.2 Dissertation Outline . 2
1.3 Statement of Multiple Authorship and Prior Publication 4

2 Fast and Deep Body Deformations 6

2.1 Introduction . 6
2.2 Related Work . 8
2.3 Method . 10
2.4 Results . 17
2.5 Discussion . 27

3 Fast and Deep Facial Deformations 30

3.1 Introduction . 30
3.2 Related Work . 31
3.3 Facial Approximation . 34
3.4 Results . 41
3.5 Discussion . 48

4 Inverse Kinematics with Mesh Approximations 51

4.1 Introduction . 51
4.2 Solutions for the Body . 52
4.3 Solutions for the Face . 54
4.4 Results . 58
4.5 Discussion . 62

5 Repurposing Artist-Created Facial Animation 63

iii

5.1 Introduction . 63
5.2 Related Work . 64
5.3 Overview . 65
5.4 Low Dimensional Embedding . 66
5.5 Animation Synthesis in Latent Space . 71
5.6 Results . 77
5.7 Discussion . 80

6 Facial Performance Capture 81

6.1 Introduction . 81
6.2 Related Work . 83
6.3 Blendweight Optimization . 84
6.4 Style Transfer . 90
6.5 Model Training . 96
6.6 Results . 97
6.7 Discussion . 102

7 Conclusion 106

7.1 Summary of Contributions . 106
7.2 Limitations and Future Work . 107

Bibliography 109

iv

List of Figures

2.1 Comparison of a deformed mesh using a fully evaluated rig, our fast deformation
approximation, and linear blend skinning. The meshes are colored to indicate the
distance error for each vertex compared with the ground truth mesh. 6

2.2 Our approximation method learns the deformation system of a character rig by
splitting the mesh deformation into a linear portion and a nonlinear portion.
The linear approximation uses rigid skinning, and the nonlinear approximation is
learned from a set of training examples generated from the original rig evaluation
function. 7

2.3 Example poses of Po and Shifu created by our data generation method. The
poses do not look like anything an artist would create, but the local deformations
of the mesh are still meaningful. 16

2.4 Side-by-side comparison of the ground truth mesh (left) and the approximation
(center). The vertices of the approximated mesh are colored to indicate the per-
vertex distance error (right). Errors above and below the range of the scale are
clamped to the ends of the color range. All distances are measured in centimeters. 18

2.5 Side-by-side comparison of the ground truth mesh (left) and the approximation
(right) for a frame of the dynamic motion of Tigress. The most noticeable differ-
ence is the shape of the stretched leg. 19

2.6 Log histogram plot of the distribution of per-vertex approximation errors for the
walk cycle animations. All distances are measured in centimeters. 20

2.7 Log histogram plot of the distribution of per-vertex approximation errors for
the dynamic animations for Tigress and Shifu. All distances are measured in
centimeters. 21

2.8 Our method compared with linear blend skinning using at most k bone weights
per vertex and rotational regression using K = 2 and K = 15 input bones per
deformation gradient. The deformation errors are denoted by the vertex color.
Gray indicates no error while red indicates large error. The wire-frame of the
ground truth mesh is rendered on top of each image to help visualize the errors. 22

2.9 Side by side comparison of LBS with K = 1 (left) and the target deformation
(right). Although the shape of the meshes appear similar, the vertices in the LBS
deformation are moved tangentially along the surface, which can cause undesir-
able effects when applying textures to the mesh. 23

v

2.10 Close-up of Astrid’s skirt for the original mesh compared with our method, LBS,
and RR. Our method more accurately approximated the vertices on the skirt.
LBS produced visible errors in the middle of the skirt because those vertices
cannot be placed accuratly as a linear combination of the bones. RR produced
visible errors because the spikes on the skirt are separate meshes and cannot be
placed accurately because RR relies on rigid skinning to fix the location of at
least one vertex in each mesh. 25

3.1 Side-by-side comparison of facial mesh deformations using our coarse and refined
approximations as well as an approximation generated by linear blend skinning.
The most noticeable difference, shown on the second row, is observed around the
nasal region of the mesh. 30

3.2 Diagram of the approximation model. Rig parameters are used as input to con-
volutional networks which generate a deformation map for each mesh segment.
Vertex offsets are extracted by bilinear interpolation of the deformation map at
each vertex position in texture coordinate space. These offsets are added to the
neutral pose to reach the desired deformation. For the refinement model, only a
subset of the total active vertices is used. 34

3.3 Detail of course and refine models. All convolutions use 3x3 kernels except for
the last layer, which uses a 1x1 kernel. All layers but the last use the leaky ReLU
activation function, and no activation function is applied to the last layer. All
non-dense layers are square in the image plane. Upsampling is achieved through
nearest-neighbor interpolation. 35

3.4 Illustration of the rigid components. The blue triangle represents a rigid mesh
segment identified by Equation 3.3. The black line represents a nonlinearly de-
formed mesh segment, and the dots on the line represent vertices on the surface.
The red dots represent the set of vertices identified by Equation 3.4 that best
match the rigid transformation of the blue triangle across a large set of examples.
Given the rest pose and the positions of the vertices on the nonlinear segment in
a deformed pose, the transformation R, t is computed from the red vertices. The
transformation is then applied to the blue triangle to compute its position in the
deformed pose. 38

3.5 Example poses from the training data. 41
3.6 Visualization of the mesh segments of the three characters. Each mesh segment

is represented as a continuous region of the same color. 43
3.7 Visualization of the mesh segments used for the refinement stage of the approx-

imation model. Gray regions of the mesh indicate segments that are unused in
the refinement model. 44

3.8 Comparison of forehead wrinkles on Hiccup’s mesh using our approximation and
LBS. 45

vi

3.9 Visual difference between the ground truth mesh evaluated through the original
rig function and the rig approximation methods. The heatmap on the right half
of each approximation visualizes the angle between the normal vector on the
approximation and the corresponding normal on the ground truth mesh. Smaller
angles are better. 46

3.10 Rig approximation of Hiccup transferred to a new mesh with a different topology.
A single mesh segment from the coarse approximation is applied to the new mesh
on the right. The facial mesh on the right is from the freely available Mathilda
Rig developed by Leon Li-Aun Sooi and Xiong Lin. 50

4.1 Example of a kinematic chain with three bones. The bone configurations are pa-
rameterized by θ0, θ1, and θ2. The forward kinematic function p = f(θ) provides
the position of the control point on the end of the bone on the right. 51

4.2 Illustration of aligning bones to a triangle specified by target control point t. . . 53
4.3 Posing example on iPad. 55
4.4 Diagram of IK model. Control points are divided into disjoint subsets and pro-

vided to separate dense neural networks. Each network outputs a subset of the
pose. The valid values from the outputs are averaged together to produce the
final averaged rig parameter pose. 57

4.5 Comparison of meshes deformed by rig parameters computed through the IK
model. The red dots represent the control points provided to the IK model. . . . 60

4.6 Example of our facial performance capture method. The facial landmarks are
detected on the input image. The landmark information is passed to the IK
model, which computes rig parameter values. The rig parameters are then passed
to our approximation model to produce the deformed target mesh. 61

5.1 Four frames of a synthesized roar animation for Toothless the Dragon. 63
5.2 Three dimensional latent space learned for a training set of 9 examples of a roar

with a total of 393 frames. 70
5.3 Four examples of the best-matching poses found between two models. In each

pair, the pose on the left is generated from a model trained on animations with
grumpy-looking animations, and the pose on the right is generated from happy-
looking animations. 75

5.4 Set of frames from an animation synthesized using a model trained on a set of
”surprise” expressions. 76

5.5 A visualization of the layered Deformation System for Toothless’s facial rig that
enables real time free-form facial control shaping. 78

vii

6.1 Visualization of the full blendweight solving process. Starting with a frame from
a recorded video on the left, we employ style transfer to produce the middle image
that has the appearance of the blendshape model but preserves the expression
of the actor in the recorded frame. We then apply our blendweight optimization
method to produce the deformed facial model shown on the right. 81

6.2 Graphical representation of our blendweight optimization method. When evalu-
ated on a video sequence, the geometry of the blendshape model, texture maps,
and lighting coefficients are held constant. For each frame sequence, the iterative
optimizer is provided the image, detected facial landmarks, optical flow between
the past and current frame, and blendweight values from the previous frame. The
optimizer outputs blendweight values that best deform the mesh to match the
image. The optimizer also outputs in-plane camera rotation and the camera’s
center of projection, which best aligns the blendshape model to the input image. 85

6.3 Landmark points for the full face (left), the mouth contours (middle), and pupil
centers (right) plotted on the rendered image. The points on the full face plot,
the outer contour of the lips on the mouth plot, and the eye plot are defined as
fixed points on the mesh topology. The points along the inner contour of the
mouth plot lie on the silhouette edges of the mouth, and their location on the
mesh depends on the pose and camera position. 87

6.4 Style transfer network evaluated with a source image I0 and a driving image Id

from the same video. The landmark detector computes the landmark positions µ
and the transformation matrices J. These outputs are then given to the optical
flow model along with the source image. This model produces a dense flow field
and an occlusion map, which are given to the generator along with the source
image. The image generator then outputs an image that closely matches the
driving image Id. 90

6.5 Visualization of landmark points generated by a model trained on the full objec-
tive function, a model trained without the distance, background, and regulariza-
tion loss, a model trained without facial segmentation, and the original first order
motion model. 92

6.6 Example of a recorded frame (left) with the background removed (middle) and
the mask M used for the background-deterring objective. 93

6.7 Landmark and transformation matrix correction during style transfer evaluation
with a source image I0 in the “rendered” style. Evaluation proceeds as illustrated
in Figure 6.4 with images I0 and Vd. Landmark and transformation correction
occurs between the landmark detector and the optical flow model. The landmark
and transformation correction component provides the optical flow model with
an approximation of the coordinates for µ(Id) and the transformations J(Id). . 94

6.8 Example of an input frame (left) with the a mask applied to the mouth (middle-
left), the right eye (middle-right), and the left eye (right). 95

6.9 Side-by-side comparison of reconstructed images. 99

viii

6.10 Side-by-side comparison of the deformed blendshape model for various frames of
the male actor and the female actor in the test set recordings. From left to right,
the columns show the original recorded frame, the facial rig posed by an artist to
match the recording, the posed rig generated from our style transfer method, the
original first order motion model, CycleGAN, and the neural algorithm of artistic
style. 103

6.11 Side-by-side comparison of style-transferred results for various frames of the male
actor and female actor in the test set recordings. From left to right, the columns
show the original recorded frame, results from our method, the original first order
motion model, CycleGAN, and the neural algorithm for artistic style. 104

ix

List of Tables

2.1 Statistics of the approximation models trained for the character rigs. 17
2.2 Mean and max approximation errors for each model tested on a walk cycle. . . . 19
2.3 Mean and max approximation errors for dynamic animations tested on the Tigress

and Shifu rigs. 20
2.4 Mean approximation errors, measured in cm, and enveloping errors (EE) using

our method compared with linear blend skinning (LBS) with K = 4 and K = m
and rotational regression (RR) using the original choice of K = 2 as well as
K = 15 input bones. The comparison is shown for all of the test animations with
all of the rigs. EE is defined in Equation 2.9. 23

2.5 Timing comparison in milliseconds for the deformation systems of the characters
evaluated with Libee and our approximation using both a parallel implementation
and a single-threaded implementation as well as the timing for the approximation
run on a mobile device for the Astrid and Po character rigs. We also provide
timing for WPSD using 100, 50, and 10 example poses and timing for the linear
only skinning. The timings for the iPad, WPSD, and linear skinning are all
evaluated on a parallel implementation on the CPU. 27

3.1 Approximation model statistics for each character rig. 42
3.2 Average vertex position error measured in mm and average normal angle error

measured in degrees. 45
3.3 Average evaluation time in milliseconds on both the high-end machine and the

consumer-quality machine. The coarse approximation is timed by evaluating the
coarse model and the rigid deformations. The full approximation is timed by
evaluating the coarse model, the refinement model, and the rigid deformations.
Where indicated, the neural network is evaluated on the GPU, but the rigid
components are always evaluated on the CPU. 47

4.1 Posing errors measured in mm and degrees. For Toothless, the IK models are
trained using gradients from the corresponding approximation. For Hiccup,
Valka, and Ray, the IK model is trained with gradients from our method and
generates rig parameters for both our approach and the dense method. 59

x

6.1 Average video reconstruction errors using our method, our method without seg-
mentation, our method without our additional loss terms, the original first order
method, and X2Face. 98

6.2 Posing errors (average distance error in cm). Errors are measured on sets of
artist-created poses for recordings of two male and two female actors. For each
recording, the point-wise distance errors are measured on a set of locations sam-
pled uniformly at random across the front of the facial model. The second set
of errors are measured from the point-wise distances of a specific set of facial
landmarks on the mesh. 100

xi

Acknowledgments

I would first like to thank my wife Kate Pfeiffer for sticking with me throughout my entire
PhD studies. I appreciate her willingness to follow me wherever I go and to listen to my
technical talks even though she felt completely confused at times.

My PhD work has been split among Berkeley, DreamWorks Animation, and Unity Tech-
nologies, and there are many people to thank from each institution. At DreamWorks, I would
first like to thank Carmen Badea. She brought me on as a summer intern, which started
my journey in collaborating with the film studio. Next, I would like to thank Martin Watt
for mentoring me during my first research project. Although I was not enthusiastic about
machine learning at the time, his interest in applying ML to animation inspired me to learn
as much as I could about the topic. I would also like to thank Paul DiLorenzo who mentored
me for my deformation approximation projects at DreamWorks. I appreciate his effort to
ensure that I always had the resources needed to conduct my research and always knew who
to put me in contact with when I had questions. I’d like to give a big thanks to Dave Otte
for sharing his expertise in character rigging with me as well as his willingness to use his
calm, soothing voice to narrate the supplemental videos for my publications. Andrew Pearce
deserves my thanks for taking time to proofread my papers as well as helping to ensure that
the visuals in my work were approved by the company for publication. Finally, I’d like to
thank Dio Gonzalez, Bret Statsny, Iris Cheung, and Greg Junker for their help whenever I
had questions regarding software engineering as well as the frequent breaks for tea time.

At Unity Technologies, I’d first like to thank Morten Mikkelsen who gave me the oppor-
tunity to research facial animation and who also did anything within his abilities to ensure
that I had every possible resource needed to succeed. I’d next like to thank Dan Roarty and
Ian Spriggs for creating impressively detailed facial rigs for my research. Equally important
was the work of Atri Dave who was willing to pose hundreds of expressions on the facial rig
and produce any type of animation that I needed for my work. Finally, I’d like to thank
Sean Patrick Sherwin for providing me with countless recordings and facial performances.
Most importantly, however, I’d like to thank him for having a good-looking face that I did
not mind staring at for hours each day as I conducted my research.

At Berkeley, I will start by thanking my academic advisor James O’Brien for taking
me on as a student. I appreciate his willingness to let me freely explore my own research
interests along with his guidance that helped me develop into a better researcher. I’d like
to acknowledge my dissertation committee members John Wawrzynek, Sergey Levine, and
Greg Niemeyer as well as Ren Ng on my qual committee. I’d also like to give thanks to
Jonathan Shewchuk who provided valuable feedback on my dissertation. I’d next like to
thank Rahul Narain and Tobi Pfaff for their positive influence during my first year of grad
school as well as Tobi’s help to make my publications sound more “scientific”. Finally, I’d
like to thank Armin Samii for being supportive throughout my entire PhD experience. I
greatly appreciate all of our wine nights as welcome breaks from work.

1

Chapter 1

Introduction

As computational power has steadily risen over the years, so, too, has the realism and com-
plexity of computer-generated scenes and animations. The complexity and computational
needs of techniques used by visual effects artists has kept pace with improvements in compu-
tation speed as summarized by Blinn’s Law, which states “as technology advances, rendering
time remains constant” [118]. For example, a single frame from a recent animated film could
range from several hours to several days to render on modern hardware. In 1995, Pixar’s
original Toy Story required similar render times on hardware from that time. However, if
rendered on current-day machines, the film would take a fraction of the time to render.

Although image rendering takes a significant portion of the computation time spent
generating a movie, other aspects of the film have grown in complexity as well. Character
mesh deformations, for example, have also become more computationally demanding over
the years. These mesh deformations are driven by character rigs, which controls how a
mesh is deformed according to a set of input parameters. As the detail and quality of mesh
deformations grow, so, too, does the complexity of the character rig.

At DreamWorks Animation, for example, character rigs were so complex that they were
unable to evaluate at interactive rates before the development of LibEE and Premo, their
current in-house animation software [153]. Previously, animators would enter numbers in a
spreadsheet and would wait for their workstation to compute the deformed mesh and update
a character on their screen at non-interactive rates. To keep up with the growing complexity
of character rigs, they developed their current software to utilize multi-threaded hardware on
high-end computing machines. As a result, animators are now able to adjust rig parameters
and see the changes in the deformed character mesh in real-time, which can increase their
productivity. Despite these improvements, artist still require a significant amount of time to
produce a high-quality character animation. For example, one artist might spend a week of
effort to author 5 to 10 seconds of animation for a feature film.

In contrast to film, character rigs for video games and real-time applications are not
nearly as sophisticated. These real-time rigs are designed for fast evaluation times and often
sacrifice quality and realism for speed. One popular rigging technique for real-time rigs is
called linear blend skinning. In this approach, a rig is defined by an underlying skeletal

CHAPTER 1. INTRODUCTION 2

structure, and the mesh deformations are determined by the configuration of bones in the
skeleton. Each vertex in the mesh is then deformed through a pre-determined weighted sum
of the bone transformations. Despite the limitations of the types of deformations linear blend
skinning can achieve, it is still one of the more popular methods for real-time applications
due to its simplicity and speed.

1.1 Contributions

This dissertation explores two aspects of character animation: the computational cost of
evaluating film-quality character rigs and the labor cost of producing high-quality facial
animation. I propose methods based on recent trends in the field of machine learning that
significantly reduce evaluation times of mesh deformations as well as reduce the authorship
time of novel character animations. I make the following contributions:

• Fast mesh deformation approximations This work develops methods to reduce
the time required to compute mesh deformations for film-quality rigs. These methods
allows for better interactivity with character rigs during animation authoring and use
in real-time games and applications. I propose two separate approaches for approxi-
mating deformations for the body of the character and the face of the character. Both
approaches show significant improvements in rig evaluation time while preserving a
high level of accuracy in the deformation approximations.

• Repurposing existing animation for novel synthesis I propose a method for
automatically animating characters in real-time based on an existing corpus of artist-
created animation. This method allows film-quality animation to be repurposed and
reused for interactive animation while preserving the stylistic details that define a
character’s motion. I demonstrate this method through synthesis of expressive facial
animation of an animal character from film.

• Low-cost facial animation through performance capture This work develops
a method to animate a facial rig from a single camera recording of an actor’s facial
performance. This method works with artist-created facial rigs and can animate the
character with recordings captured with inexpensive webcams. This approach does not
require high-quality facial scans of the actor nor does it require the geometry of the
facial rig to match the shape of a recorded actor’s head.

1.2 Dissertation Outline

The goal of this dissertation is to apply machine learning techniques to improve the com-
putational time of character rigs as well as reduce the manual labor required to author new
character animations.

CHAPTER 1. INTRODUCTION 3

First, in Chapter 2, I cover mesh deformations for the body of character rigs. Character
bodies are typically rigged through an underlying skeleton consisting of joints and rigid
bones. The deformed mesh is then defined as a function of the skeleton configuration. For
characters that feature sophisticated mesh deformations, significant computational power
might be spent preserving mesh volume when limbs move or generating skin wrinkles when
joints are bent. To compress this computation, I present a deep learning-based approach that
trains a neural network to approximate the mesh deformations from the original character rig.
The network learns a function that maps bone configurations to deformed vertex positions
in the character mesh. I evaluate the method on a set of complex character rigs used in
feature film production.

Next, in Chapter 3, I address the challenges of approximating facial mesh deformations.
The method for approximating body deformations relies on an underlying skeletal structure.
However, facial deformations are typically produced through skin sliding and muscle con-
tractions rather than bone movement. As a result, the body approximation in not suited
for producing facial deformations. Instead, I propose a method that maps vertex positions
to a 2D deformation map. I then construct a deep learning-based model consisting of both
dense layers and convolutional layers. This network approximates vertex positions through
deformation maps. In addition, I propose a coarse-to-fine approximation approach to fo-
cus computational effort on complex regions of facial meshes such as around the eyes and
mouth. I demonstrate the effectiveness of this approach on film-quality characters and show
that the model can reconstruct fine-scale facial details such as skin wrinkles while running
significantly faster than the original character rigs. There is also a beneficial side-effect
of approximating both body and facial deformations as neural networks. The trained net-
work parameters represent a compressed version of the character rig and can be shared and
evaluated independent of the original rigging software used to author the character.

A fast deformation approximation creates possibilities for new and interactive forms of
character control. In Chapter 4, I discuss methods for manipulating and posing characters
through both the fast body approximation and the facial approximation. For the body
approximation, I present an inverse kinematics (IK) method that works specifically for two-
bone limbs such as arms and legs. We implement this method on a mobile device and show
that our body approximation combined with this IK method is fast enough to run in real-
time on low-powered devices. Applying IK to a facial rig poses a challenge because facial
rigs typically do not contain bones.

In this case, IK approaches would compute the gradient of a control point on the mesh
with respect to the rig’s parameters. For film-quality characters, facial rigs execute custom-
written code, and gradient evaluation may either not be possible or prohibitively expensive to
compute in real-time. However, because the facial approximation is implemented as a neural
network, gradients can be readily computed through the model. Nevertheless, traditional IK
methods solve for rig parameters through iterative methods, but the gradient computation
through the approximation model is still too complex to evaluate multiple times per frame in
real-time. Instead, I propose a learning-based approach that approximates the IK problem as
a fixed-length feed-forward neural network. This solution allows for IK to run at interactive

CHAPTER 1. INTRODUCTION 4

rates with the facial approximation model.
In addition to IK methods, I also present other methods to animate characters. Chapter 5

describes a method for synthesizing facial animations. In this approach, a system specifies
an emotional expression or a certain pose for a character, and this method synthesizes facial
motion to match the specifications. This method employs a nonparametric statistical model
that compresses existing artist-created animations into continuous low-dimensional latent
spaces. Animations can be created by defining a path through the latent space and then
mapping points along the path to facial poses on the character rig. By labeling different
regions of the latent spaces with specific emotional expressions, the system can produce
animation with specific emotions by generating a path through the corresponding labeled
region of latent space. I demonstrate this method through an interactive application in which
a character responds in real-time with various expressions based on a user’s input.

As one other method of character control, I present a facial performance capture method
in Chapter 6. Facial performance capture refers to methods that produce a facial animation
that matches a recorded performance of an actor. Typically, these types of methods aim to
morph a character rig to match the shape of the recorded actor. To match the geometry
of an actor’s head, expensive scanning equipment is often required. However, I propose an
approach that instead warps an actor’s recorded performance to match the appearance of
the character model, which avoids using any facial scanning equipment. I propose a deep
learning-based style transfer method to warp video frames in pixel space. To produce the
animation, I then utilize iterative inverse rendering techniques to deform the facial mesh to
match the appearance of the model in the style transferred image.

1.3 Statement of Multiple Authorship and Prior

Publication

Some of the research presented in this dissertation has previously been published as papers
in which I am the first author. Here, I acknowledge the contributions of my collaborators
who helped bring by research into its current state.

I completed the body approximation method [5], published in SIGGRAPH, while working
at DreamWorks Animation under the mentorship of Paul DiLorenzo. Both Paul and Dave
Otte helped me understand the complexity of production-quality character rigs, and they
helped identify the need for fast rig evaluation in film production.

The facial approximation method and the facial IK method [6], also published in SIG-
GRAPH, were completed with guidance from Paul DiLorenzo as well. In addition, Dalton
Omens collaborated in the core design of the method and assisted with the method’s imple-
mentation.

My work on facial animation synthesis through pre-existing artist-created animation [4] is
published in SCA. This work was also completed while I worked with DreamWorks Animation
under the mentorship of Martin Watt.

CHAPTER 1. INTRODUCTION 5

My work on performance facial capture is unpublished. This research has been con-
ducted while working with Unity Technologies under the mentorship of Morten Mikkelsen.
The artists Ian Spriggs and Atri Dave have provided me with the character rig and facial ex-
pressions used in the work. Additionally, Sean Patrick Sherwin collected all of the recordings
used for my research.

Finally, my academic advisor James F. O’Brien provided valuable feedback on all of my
research projects detailed in this document.

6

Chapter 2

Fast and Deep Body Deformations

2.1 Introduction

The level of detail that can be included in character rigs for interactive applications such as
video games and virtual reality is limited by computational costs. These types of rigs need to
run at interactive rates, and therefore need to be evaluated as quickly as possible. Because
of this limitation, real-time character rigs often lack a high level of detail. In contrast,
film-quality character rigs are not limited by hard computational constraints and their mesh
deformations appear more detailed and complex. Unfortunately, film-quality character rigs
are not suitable for real-time applications. A single film-quality rig might be able to run
at interactive rates on a high-end machine, but typically only after tremendous effort has
been spent to optimize the rig, parallelize its evaluation, and shift parts of the computation

1These images are Property of DreamWorks Animation L.L.C., used with permission.

Figure 2.1: Comparison of a deformed mesh using a fully evaluated rig, our fast deformation
approximation, and linear blend skinning. The meshes are colored to indicate the distance
error for each vertex compared with the ground truth mesh.1

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 7

Figure 2.2: Our approximation method learns the deformation system of a character rig by
splitting the mesh deformation into a linear portion and a nonlinear portion. The linear
approximation uses rigid skinning, and the nonlinear approximation is learned from a set of
training examples generated from the original rig evaluation function.

to the high-end machine’s GPU. We would like to use these high quality rigs to increase
the detail of characters in interactive applications, particularly those running on modest
computing platforms such as mobile devices or game consoles. However, directly plugging
these computationally intensive rigs into an interactive application is generally infeasible.
The performance increases that come as hardware improves over time is unlikely to bring
film-quality rigs to real-time, because as performance improves, the level of complexity and
fidelity one expects in a film rig also tends to increase. Furthermore, many of these real-time
applications need to run on modest computing hardware such as phones or game consoles.
Assuming the application is run on a fully loaded high-end machine is reasonable for users
who are professional animators, but not for most other users.

To address this limitation, we present a data-driven approach to learn a computation-
ally less expensive approximation for character rigs. Our approximation method reduces
the computation enough to evaluate film-quality rigs in real-time on mobile devices. An
overview of the method is outlined in Figure 2.2. Most character rigs are designed with two
main components: a skeletal motion system and a deformation system [107]. The skele-
tal motion system is responsible for mapping the input rig parameters that specify a pose
to a configuration of the character’s skeleton which is composed of bones and joints. The
deformation system then maps the skeleton configuration to the final mesh geometry. The
deformation system determines how the character’s skin moves and includes effects such as
muscle bulging and and skin wrinkles. In most character rigs, the deformation computation
typically requires the most time and thus is a bottleneck.

We propose a method to approximate the deformation system faster than the original.
Given an input skeleton, our system can significantly speed up the overall rig evaluation
by dramatically improving the speed of the deformation system. Furthermore, our method
achieves a high level of accuracy such that errors are not visually apparent.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 8

2.2 Related Work

A common method for rigging a character involves first defining an underlying skeleton and
then deforming the character’s mesh based on the positions and orientations of the skele-
ton’s bones. One of the fastest methods to compute the deformation from the skeleton is
linear blend skinning or skeleton subspace deformation as described by Magnenat-Thalmann,
Laperrière, and Thalmann [102]. This method computes the deformation of a mesh from
a rest pose as a weighted sum of the skeleton’s bone transformations applied to each ver-
tex. Although linear blend skinning can compute deformations quickly, these deformations
can suffer from volume loss and the “candy wrapper” problem. Prior research has explored
methods to solve the shortcomings of linear blend skinning. Multi-weight enveloping [151]
addresses these problems by using using blending weights for each entry in the bone trans-
formation matrices, and the weights are automatically learned from example poses of the rig.
Quaternion-based methods [50], such as spherical blend skinning [67], are other approaches
that address the limitations of linear blend skinning without significantly increasing the
computational cost of the deformation.

Although linear blend skinning provides a fast method to compute mesh deformations,
there are some types of deformation that are challenging to express with this approach. For
example, skin slide, muscle bulges, and cloth wrinkles are difficult to achieve using only
linear blend skinning. These effects, however, can be achieved using additional skinning
methods at the cost of additional computation. Some of these methods include pose space
deformations [94, 135] and cage-based deformations [63, 64]. Realistic character deformations
can also be computed through physics-based approaches [25], and highly realistic results can
be achieved by accurately modeling the underlying anatomy of a character [89].

Skinning decomposition is the process of identifying bone transformations and bone-
vertex weights to best approximate a given animation with linear blend skinning. Proposed
solutions to the skinning decomposition problem provide a compressed representation of the
animation as well as an efficient method to play back the animation in real-time. Prior re-
search has explored methods to approximate arbitrary deformations [60, 68, 65, 85]. These
methods seek to fit a bone structure to a series of mesh animations and optimize the bone
influences for each vertex to best reconstruct the original animation. Alternatively, a vol-
umetric approximation can be fitted to an animation using sphere-meshes [139], and linear
blend weights can be quickly computed with respect to the underlying spheres. With these
methods, large animations can be efficiently played back using hardware acceleration, and
the deformed meshes can be stored in a compressed format given the fitted bone structure or
sphere-meshes. One drawback of these approaches is that new animations cannot be quickly
fitted to the rigs because the bones are optimized for a specific set of deformations. Further-
more, an animator would need to learn to use the fitted bone structure in order to author
new animations. Example-based skinning methods have been developed [109, 150, 33, 112]
that uses the original skeleton from a character rig. These methods use training examples
to learn a deformation model that can approximate mesh deformations given new skeleton
poses not seen during model training.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 9

A linearization method [66] computes deformations by adding virtual bones to approx-
imate nonlinear deformations in a character. This method utilizes the underlying skeleton
of a rig, which allows new skeletal motion to be easily applied to the rig. However, that
algorithm works only for deformations computed through a differentiable skinning technique
such as dual quaternion blend skinning. Our method, on the other hand, allows for more
general deformations and only assumes that the deformations can be computed as a function
of the character’s skeleton.

Because these skinning decomposition methods compute a compact representation of an
animation with bones using linear blend skinning, the deformation evaluation is fast and
efficient. However, editing the compressed animations can be difficult because the computed
bones are not organized in any meaningful hierarchy. Some work [126, 31, 49, 84] has
addressed this limitation by extracting a skeleton structure with joints while also computing
bone transformations and vertex-bone weights for an example animation. By providing a
hierarchical skeletal system, an animator can more easily edit an existing motion, but extra
computation would be required to fit the skeleton to a new animation of the same mesh.
These methods approximate mesh deformations when existing animations are provided with
or without an underlying skeleton. Our method, in contrast, approximates deformations for
a mesh without any example animations; however, it does require that the mesh have an
underlying skeleton. We use the underlying skeleton of a character rig without modification,
which lets an animator author new poses using the familiar original rig while benefiting from
our fast approximate evaluation.

All of these previous skinning decomposition methods seek to find compact representation
of an animation using bones with linear blend skinning. Because linear blending is fast,
the compressed animations can be computed quickly, but the limitations of linear blend
skinning can cause inaccuracies and undesirable artifacts. To improve the speed of linear
blend skinning, a sparseness constraint must be imposed on the vertex-bone weights. In some
cases where a vertex is influenced by a large number of bones, this sparseness constraint can
lead to large inaccuracies in the approximation. One proposed solution [86] to this problem
is to compress an animation with a two-layer linear blend skinning model, which accurately
reduces the computational cost of evaluating dense skinning weights.

Our approach is also based on decomposing a deformation with linear blend skinning. To
reduce the computational cost, we assign each vertex to a single bone, but to overcome the
limitations of this skinning method, we also propose an extra nonlinear step, which is modeled
as a function of all the bones that influence a vertex. Although our approach does require
more computation than a rig using linear blend skinning, we show that the deformations can
still be computed efficiently for real-time applications and that our approximation approach
can reproduce deformations to a high level of accuracy on film-quality rigs as seen in our
results.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 10

2.3 Method

The rig function r(p) maps a set of artist-level rig parameters, denoted with p, to a deformed
polygonal mesh. We follow a similar notation for the rig function as described in Hahn et
al. [47], and we assume that the rig function is a black-box. We further assume that the
topology of the mesh is constant for all possible parameters p, which allows us to express
the rig function as V = r(p) where V is a list of the vertex positions in the mesh. An
intermediate step of the rig function computes the skeleton S of a character. The skeleton’s
configuration is specified by a set of linear transformations and translations for each bone in
the skeleton. Specifically for a skeleton with m bones, S = [X1, t1,X2, t2, . . . ,Xm, tm] where
Xj is the 3 × 3 linear transformation matrix of bone j and tj is the translation of bone j.
The transformations and translations are expressed in a global coordinate frame. We further
assume that the rig function can be expressed as the composition of two functions: a skeletal
motion system mapping rig parameters to a skeleton and a deformation system mapping a
skeleton to vertex positions. The skeletal motion system is denoted by S = m(p), and the
deformation system is denoted by V = d(S). Composing these two systems, the rig function
can be expressed as r(p) = (d ◦m)(p).

Our method provides an approach to approximate the deformation function d(S) by
decomposing the function into two parts: a linear computation and a nonlinear computation.
The linear portion uses rigid rotations and translations to deform the vertices in the mesh
according to the bone transformations in the skeleton. This computation is fast, but the
resulting mesh is visibly different from the target mesh V = d(S). To correct this difference
the nonlinear component utilizes a universal function approximator to estimate the remaining
residual error between the mesh obtained from rigid rotations and the target mesh. The
nonlinear function approximator learns from a set of randomly generated skeletons and
corresponding deformed meshes that are computed offline using the rig function r(p).

Deformation Approximation

We view the rig function as a deformation applied to a mesh in some rest pose. This
deformation has linear and nonlinear components, and when combined the two components
fully describe the deformation applied to the mesh.

Linear Skinning

The linear deformation can be applied directly from the input skeleton by multiplying the
vertices in the mesh with the bone transformation matrices. In our skinning method, we
assign each vertex to a single bone where the vertex k is assigned to bone bk. Starting with
a mesh in a rest pose V0 and the corresponding skeleton S0, the linear deformation by a new
skeleton S for vertex k can be computed as

d̂k(S) = Xbk

(
X0

bk

)−1 (
v0
k − t0bk

)
+ tbk (2.1)

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 11

where X0
bk

and t0bk are the transformation matrix and translation vector for bone bk in the
skeleton S0 of the rest pose, and v0

k is the position of vertex k in the mesh of the rest pose.
We assume that we only have black-box access to the deformation function, and we there-

fore cannot rely on information about the character rig to identify vertex-bone assignments.
Instead, we assign each vertex to a single bone that best explains the vertex’s deformation
across a set of example poses. The bone assignment bk is determined by selecting the bone
which minimizes the least squares error of the rigid transformation of the vertex by the bone.

The linear deformation is visibly different from the target deformation where ||d(S)− d̂(S)||2 ≫
0. We view this residual error as a nonlinear function, which allows for sophisticated stretch-
ing, compression, and volume preservation. These features cannot be handled by a linear
transformation alone.

Nonlinear Deformation

The residual d(S) − d̂(S) expresses the error in terms of the global coordinate system and
thus depends on global transformations of the skeleton. Ideally, we would like to express
the residual in such a way that the error for some vertex k is only affected by a local
neighborhood of bones in the skeleton. By representing the residual locally for each vertex,
the error function becomes easier to learn because the residual for each vertex no longer
depends on the transformations of every ancestor bone in the skeleton hierarchy.

To specify the residual locally, we define the nonlinear deformation function for some
vertex k as follows

fk(S) = (Xbk)
−1 (dk(S)− tbk)−

(
X0

bk

)−1 (
v0
k − t0bk

)
(2.2)

where dk(S) is the position of vertex k as computed from the original rig deformation func-
tion. This function removes the transformation of the rest pose from the vertex v0

k and the
transformation of the deformed pose from the deformed vertex dk(S). The difference of these
two positions gives us the nonlinear deformation of the vertex in the coordinate space of the
bone bk.

The deformation function can now be expressed as

dk(S) = Xbk

((
X0

bk

)−1 (
v0
k − t0bk

)
+ fk(S)

)
+ tbk (2.3)

We denote our approximation with model parameters θ as nk(S; θ) ≈ fk(S), and the de-
formation approximation d̃k(S; θ) can be expressed as the sum of the linear and nonlinear
functions

d̃k(S; θ) = d̂k(S) +Xbknk(S; θ) (2.4)

The optimal model parameters θ̂ are estimated by minimizing the squared error loss over a
set of n training examples

θ̂ = argmin
θ

n∑

i=1

∥∥∥dk(S
i)− d̃k(S

i; θ)
∥∥∥
2

(2.5)

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 12

Instead of using one function approximator per vertex, we group the vertices into subsets
and train a function approximator that outputs each vertex in the subset. In order to take
advantage of the local deformation defined in f(S), we separate the vertices of the mesh
into subsets Pi based on the bones that they are assigned to such that Pi = {k | bk = i}.
By dividing the vertices into sets this way, the nonlinear deformations for vertices in set Pi

are defined in the same coordinate system, which makes the deformation function easier to
learn.

Implementation

Because the function fPi
(S) can be highly nonlinear, we need a model that is capable of

learning arbitrary continuous functions. Feed-forward neural networks are universal function
approximators [56] that can learn such functions. Given any continuous function, a neural
network of sufficient size can approximate the function arbitrarily closely. This property
thus makes neural networks good candidates for approximating the nonlinear deformation
component of the rig function.

In our experiments, we trained each neural network with two fully connected hidden
layers and a dense output layer. In the following section, we describe how we determine the
number of layers and the number of hidden units per layer. The hidden layers used the tanh
nonlinearity, and the output layer was a dense linear layer. Other activation functions such
as the rectified linear unit [41] could have been used, but we only evaluated tanh in our work.
We trained each network on inputs of the bone transformation matrices and the translation
vectors given in the frame of reference of the parent bone. The transformation matrix for
bone j with parent p is given as X−1

p Xj, and the translation vector is given as X−1
p (tj − tp).

The root bone is not provided as an input. In total, each bone contributed 12 inputs to the
neural network. The models were trained using the Adam optimization method [70] with
the following values for the parameters: α = 0.01, β1 = 0.9, β2 = 0.999, and ǫ = 10−8.

Model Sparsification

The method presented so far works well to approximate the nonlinear deformation func-
tion, but similar results can be achieved with less computation per neural network. We
can increase the speed of the approximation without significantly affecting the accuracy by
identifying and removing extra computations in the models. We explored four approaches
to reduce the size of the approximation model: reduce the size and number of the hidden
layers in each neural network, reduce the dimension of the inputs, reduce the dimensions of
the outputs, and reduce the total number of neural networks evaluated. Reducing the size
and number of hidden layers can be done empirically, and we found that two layers each of
128 nodes in each neural network worked well for our character rigs.

Feed-forward neural networks are composed of a series of dense layers where the output
xi+1 of layer i is used as the input of the next layer. The output for some layer i is computed

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 13

as follows
xi+1 = f(Wixi + bi) (2.6)

where Wi and bi are unknown parameters that are learned when the model is trained. The
function f(x) is a nonlinear function applied element-wise to the components of the input
vector. The most time-consuming part of Equation 2.6 is the matrix-vector product Wixi. If
the matrix Wi is m×n, then the complexity of calculating the product is O(mn). Therefore,
to reduce the computational complexity of evaluating the neural network models, we need
to reduce the sizes of the weight matrices Wi.

Input Reduction

Evaluating the first layer of the network involves a large amount of computation because
the dimension of the input is large. For some set of vertices Pi, the nonlinear deformation
fPi

(S) is expressed locally with respect to bone i according to Equation 2.2. Because the
vertices Pi are primarily deformed by bones near bone i, this deformation function depends
only on the local bones near the vertices in this set and does not require all of the bones as
input. This invariance to some of the input bones is a direct consequence of the formulation
of fPi

(S) in a local coordinate space of bone i.
Assuming that we have access to the original rig function r(p) and the skeleton S = m(p),

we can identify which bones most affect the vertices in Pi. Starting in an arbitrarily selected
example pose p′, we perturb rig controls that affect the bones one at a time and record
which bones caused a change in the function fPi

(S). This process is repeated with multiple
example poses and with large perturbations to ensure that all bones affecting vertices in Pi are
identified. We define a subset of the skeleton SPi

as the set of all bones that influence any of
the vertices in Pi. We then use this subset of bones as the input to the model approximating
the nonlinear deformation function for these vertices. The rigs we tested contained between
100 and 200 bones. After reducing the number of input bones, each set of vertices tended
to have around 20 bones that contributed to their deformation. By using this reduced input
set, the computational cost of the first layer for each model can be significantly reduced.

Output Reduction

Next, we consider the size of the output layer. The output contains 3 values per vertex, and
for the rigs that we tested, there were on the order of hundreds of vertex positions that each
neural network approximated. Unlike the input layer, each dimension of the output needs
to be predicted. However, these outputs are highly correlated with each other. With this in
mind, we propose using a linear dimensionality reduction method to reduce the size of the
output. Our approach is similar to the approach used by Laine et al. [78] in which they use
PCA to initialize the final layer in their network to output vertex positions.

With the data used to train each model, we run PCA on each matrix V1...n
Pi

containing
all of the vertex positions for set Pi across all n poses in the training set. The matrix V1...n

Pi

is a 3|Pi| × n matrix where there are |Pi| vertices and n training examples. PCA gives us a

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 14

transformation T that maps the set of vertex positions to a lower dimensional space. Next,
we need to determine how many principal components to use in the linear transformation
T. Keeping more components will increase the accuracy of the model at the cost of more
computation time. We decide the number of components to keep by finding the minimum

amount that keeps the reconstruction error
∥∥V1...n

Pi
−TTTV1...n

Pi

∥∥2

F
below some user-specified

threshold.
In our experiments, we found that keeping the average per-vertex distance error below

0.03 cm was sufficient to maintain the visual accuracy of the approximation without adding
too many principal components to the transformation. This threshold choice lead on average
to 20-30 principal components per model, which provided a reasonable balance between speed
and accuracy. Once we found the transformation T, we appended it to the end of the neural
network model as a final dense layer with a linear activation. When the model is trained,
the weights of this last layer are not optimized so that the transformation is maintained.

Model Count Reduction

One final approach to reduce the computation of the approximation is to reduce the total
number of neural networks in the approximation model. In our method as currently described
so far, one model is trained per bone; however, we found that some bones had few vertices
assigned to them. As a result, we were training some models to predict the deformation of
a small set of vertices. These neural networks can be removed, and their vertices can be
reassigned to other bones.

To remove networks approximating small subsets of vertices, we greedily removed the
bone with the fewest vertices assigned to it and iteratively recomputed the vertex subsets
Pi. We continued this process until the average vertex assignment error

e =
n∑

i=1

∥∥∥Vi − d̂(Si)
∥∥∥
2

F
(2.7)

grew larger than some pre-defined threshold. Before removing any bone, we recorded the
best average vertex assignment e0 error given by Equation 2.7. Next, we removed bones one
at a time. In each iteration, the bone with the fewest number of vertices was removed, and
the vertices assigned to that bone were reassigned to the next best bone that minimized the
error.

At each iteration, we recomputed the assignment error ei, and we stopped this procedure
when ei > τe0 for some scaling factor τ > 1. In our experimental rigs we found that values
of τ ∈ [1.1, 1.5] worked well. Higher values of τ will lead to fewer models that need to be
trained, but fewer models could lead to larger approximation errors. If a small value of τ is
chosen, then more models will be used, but the approximation errors will be smaller. Thus,
the choice of τ provides a trade-off between speed and accuracy in the approximation.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 15

Data Generation

The choice of training data is important for the rig approximator’s accuracy when run on
test inputs. Feed-forward neural networks do not extrapolate well from training data, and
therefore, the training data needs to span the range of all possible poses that could be
expected as inputs when the approximator is used. However, if the training set includes a
large range of motion with improbable poses such as arms rotated into the torso or body parts
stretched to twice their length, then these types of poses would represent large deformations
that the approximator would need to learn. As a result, the neural network would learn
these large deformations while sacrificing accuracy for smaller deformations. However, we
desire a high accuracy for these smaller deformations because they are more likely to be
encountered when the model is evaluated.

Here, we describe a method to create a data set that contains all of the probable poses
while avoiding poses with large deformations that are unlikely to occur in an animation.
First, we consider each joint in the skeleton independently. For each joint, we manually
identify a reasonable range of motion for the rotation and scaling. For example, we might
specify the range of the knee joint from 0 to 150 degrees. We define a range for each joint in
the skeleton and generate new poses by randomly sampling independently from each joint
range. Each value is sampled from a Gaussian distribution with 1.5 standard deviation
aligned with and scaled to the specified range. Specifically for some rig parameter with a
range [a, b], the parameter values are drawn from the following Gaussian distribution:

N (0.5 · (a+ b), 1.5 · (b− a)) (2.8)

We re-sample values that lie outside of the range [a, b]. This sampling method ensures that
the full range of motion for each joint is contained in the training set. Samples near the
ends of the range of motion occur in the data set less frequently. If we assume that poses
near the ends of the joint range create poses that an animator typically will not use, then
because there are fewer of these examples in the training set, the approximator will focus on
learning the deformations near the middle of the range of motion.

Our sampling method creates poses that globally appear invalid. Because our approx-
imation method learns deformations locally, the global appearance of the character is less
important than the local deformations around the joints of the character. Because each joint
is sampled within the user-defined range of motion, meaningful local deformations of the
mesh are contained in the samples, and our approximator can accurately learn from these
example poses. Figure 2.3 shows several examples of poses generated by our method.

Other sampling methods could be used where appropriate. For example, a character that
has a walking mode and flying mode that it switches between could use bimodal sampling.
Additionally, semantic knowledge about how a character moves could be used for customized
sampling. If example animations for the character are available, then supersampling methods
could be used [55] to generate example poses similar to the animation.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 16

Figure 2.3: Example poses of Po and Shifu created by our data generation method. The
poses do not look like anything an artist would create, but the local deformations of the
mesh are still meaningful.1

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 17

Table 2.1: Statistics of the approximation models trained for the character rigs.

Tigress Shifu Astrid Po
Vertices 16,206 14,706 168,635 13,800

Character Height 182 cm 86 cm 194 cm 191 cm
Models 67 73 45 40

Avg. PCs used 22.6 19.5 24.5 29.7
Avg. input bones 26.9 22.3 14.6 57.75

Model memory size 11.5 MB 10.7 MB 67.5 MB 27.5 MB

2.4 Results

We are interested in two key aspects of our deformation approximation: model accuracy and
model speed. Model accuracy is important because we want to minimize the visual differences
between the approximated mesh and the original deformed mesh. If the approximation
is noticeably different than the original, then this method might not be suitable for all
applications. The speed of the approximation is also important. On the rigs that we tested,
our method took significantly less time to evaluate the rig compared with the original rig
function. With a fast rig approximation, a highly complicated character can be evaluated
at interactive rates even on low-end machines and mobile devices. See the accompanying
video2 for animation examples.

We approximated the deformation functions of four film-quality character rigs: Po, Shifu,
and Tigress from Kung Fu Panda 3, and Astrid from How to Train Your Dragon 2. All of
these character rigs were originally optimized to run on high-end machines. Table 2.1 shows
the size of the models trained for all four rigs including the total memory required to evaluate
the approximation models. In all of the approximators, we used two nonlinear hidden layers
with the tanh activation function, and each hidden layer consisted of 128 nodes. We found
that generating between 10,000 and 20,000 example poses was sufficient to train accurate
approximation models for each rig.

Model Accuracy

To evaluate the accuracy of our models, we measured the average per-vertex distance error
of the approximated mesh as well as the largest single vertex error. We are interested in the
largest error because even if the average error is small, a single misplaced vertex could create
undesirable results. For each character, we evaluated a walk-cycle animation and computed
the errors across all frames of the animation. The approximation errors are reported in
Table 2.2. Figure 2.6 shows the distribution of vertex errors for each walking animation.

2http://graphics.berkeley.edu/papers/Bailey-FDD-2018-08/Bailey-FDD-2018-08.mp4

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 18

Figure 2.4: Side-by-side comparison of the ground truth mesh (left) and the approximation
(center). The vertices of the approximated mesh are colored to indicate the per-vertex
distance error (right). Errors above and below the range of the scale are clamped to the
ends of the color range. All distances are measured in centimeters.1

From these plots, we observe the number of vertices falls off roughly exponentially with the
distance error.

Figure 2.4 shows a side-by-side comparison of the mesh generated through the full rig
evaluation and the approximated mesh for a frame of Astrid walking. Our method does not
handle facial animation, and for each tested animation, we turned off all face controls. A
region with large error in the approximation is found in the middle of Astrid’s skirt. The
deformation of this area is controlled by both legs, which appears to cause some inaccuracy

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 19

Figure 2.5: Side-by-side comparison of the ground truth mesh (left) and the approximation
(right) for a frame of the dynamic motion of Tigress. The most noticeable difference is the
shape of the stretched leg.1

Table 2.2: Mean and max approximation errors for each model tested on a walk cycle.

Tigress Shifu Astrid Po
Mean error 0.087 cm 0.016 cm 0.104 cm 0.143 cm
Max error 2.78 cm 1.10 cm 2.16 cm 4.80 cm

in the approximation.
We additionally evaluated our method on more dynamic motions that contain poses near

the edge or beyond the range of motion that the approximation models were trained on.
We tested animations of martial arts moves for both Shifu and Tigress. The mean and max
errors are presented in Table 2.3, and the distribution of errors is shown in Figure 2.7. We
found that the largest errors tend to occur in the legs during kicking motions. Specifically,
the legs are stretched beyond what the approximator was trained on. Because the model
did not learn from example poses with a large amount of stretch, it fails on this particular
pose from the animation. However, because the error is still small relative to the scale of the
character and because the leg is stretched for a brief, dynamic moment, the approximation
error is barely noticeable when viewing the animation. Figure 2.5 shows the results of our
approximation on a frame of animation with the stretched leg.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 20

(a) Tigress (b) Shifu

(c) Astrid (d) Po

Figure 2.6: Log histogram plot of the distribution of per-vertex approximation errors for the
walk cycle animations. All distances are measured in centimeters.

Table 2.3: Mean and max approximation errors for dynamic animations tested on the Tigress
and Shifu rigs.

Tigress Shifu
Mean error 0.208 cm 0.041 cm
Max error 19.17 cm 8.14 cm

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 21

(a) Tigress (b) Shifu

Figure 2.7: Log histogram plot of the distribution of per-vertex approximation errors for the
dynamic animations for Tigress and Shifu. All distances are measured in centimeters.

Comparison

We compare our approach with linear blend skinning (LBS) and the rotational regression
(RR) method of Wang, Pulli, and Popović [150]. Like our algorithm, these two other methods
can approximate the deformation function given any possible input pose. Thus, we can
directly compare the accuracy of our approximation with these two methods.

For LBS, we estimate the bone weights for each vertex using example-based skinning
decomposition [109]. We do not add any additional bones to the skeleton when we solve for
the vertex weights. We experimented with many different values of the sparseness constraint
K, which determines the total number of joints that can influence each vertex.

The rotational regression method described in Wang, Pulli, and Popović [150] approx-
imates the deformation gradients of the triangles in a character’s mesh. Their model uses
linear regression to approximate deformation gradients from bone transformations. In their
method, they only used at most two bones to approximate the gradients. However, we found
that using only two bones was insufficient to approximate the deformations of our character
rigs. We thus show results with the original method using K = 2 bones per triangle and
with the method using K = 15 bones to approximate the gradients. To achieve the most
accurate results, our implementation does not include the reduced formulation presented in
their work.

In Figure 2.8, we show a comparison of deformations approximated with linear blend
skinning, rotational regression, and our method. We show the deformations using LBS
computed with different values of K ranging from K = 1 to K = m where m is the total
number of bones in the skeleton as well as RR using the original K = 2 as well as K = 15
bones as inputs. Visually, we can see that our method outperforms LBS and RR for this

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 22

(a) LBS K = 1 (b) LBS K = 5 (c) LBS K = 10 (d) LBS K = 15

(e) LBS K = m (f) RR K = 2 (g) RR K = 15 (h) Our Method

Figure 2.8: Our method compared with linear blend skinning using at most k bone weights
per vertex and rotational regression using K = 2 and K = 15 input bones per deformation
gradient. The deformation errors are denoted by the vertex color. Gray indicates no error
while red indicates large error. The wire-frame of the ground truth mesh is rendered on top
of each image to help visualize the errors.1

example pose. For LBS with K > 1, the deformations suffer from significant volume loss in
the legs and the arms. In our method, this volume loss problem is not apparent, and the
approximated deformation is closer to the original mesh than any of the meshes generated
with LBS. In the case of K = 1 (Figure 2.8a), volume loss is not seen in the deformation
because no transformations matrices are blended together. However, most of the errors occur
from the vertices moving tangentially to the surface of the target deformation as shown in
Figure 2.9. This type of error in the deformation would cause undesirable stretching and
distortion of any texture applied to the mesh.

We further compared our method with LBS and RR for each walking and kungfu ani-
mation. In Table 2.4, we present the average approximation errors for all of the animations
using our method compared with the other methods. Our algorithm learns from a separate
training set described in Section 2.3 while LBS and RR are trained on the same animation
on which the errors are measured, a situation which benefits LBS and RR in the comparison.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 23

(a) LBS K = 1 (b) Ground Truth

Figure 2.9: Side by side comparison of LBS with K = 1 (left) and the target deformation
(right). Although the shape of the meshes appear similar, the vertices in the LBS deformation
are moved tangentially along the surface, which can cause undesirable effects when applying
textures to the mesh.1

Table 2.4: Mean approximation errors, measured in cm, and enveloping errors (EE) using our
method compared with linear blend skinning (LBS) with K = 4 and K = m and rotational
regression (RR) using the original choice of K = 2 as well as K = 15 input bones. The
comparison is shown for all of the test animations with all of the rigs. EE is defined in
Equation 2.9.

Our Method LBS (K = 4) LBS (K = m) RR (K = 2) RR (K = 15)
Mean EE Mean EE Mean EE Mean EE Mean EE

Tigress Walk 0.085 18.47 0.365 85.51 0.079 20.29 0.188 37.07 0.063 11.78
Tig. Kungfu 0.207 21.35 0.788 65.12 0.640 52.75 1.052 86.95 1.033 84.85
Shifu Walk 0.015 6.88 0.171 57.58 0.061 19.83 0.145 38.62 0.110 26.85

Shifu Kungfu 0.043 17.55 0.331 66.71 0.283 59.19 0.349 56.93 0.336 52.85
Po Walk 0.143 19.03 0.307 51.02 0.155 23.01 0.321 41.03 0.163 23.46

Astrid Walk 0.104 21.53 0.270 62.35 0.116 30.41 0.279 66.74 0.257 64.44

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 24

Following Wang, Pulli, and Popović [150], we also compute the envoloping error (EE)

EE = 100

√ ∑N

i=1

∑V

k=1 ‖v
i
k − v̂i

k‖
2

∑N

i=1

∑V

k=1 ‖v
i
k − c (v0

k)‖
2 (2.9)

where v̂i
k is the approximated vertex position and

c
(
v0
k

)
= Xi

bk

(
X0

bk

)−1 (
v0
k − t0bk

)
+ tibk (2.10)

is the function that rigidly transforms the rest pose vertex position by the single best bone
that explains its deformation. The envoloping error measures only local errors as opposed
to global errors. We present the average error and the enveloping error for each animation
using each approximation method in Table 2.4.

For each animation, our method is more accurate than LBS with both K = 4 and
K = m. Furthermore, our method is more accurate than rotational regression in each
tested animation with the exception of the walk cycle for Tigress when K = 15. The mesh
deformations on the characters we tested have regions where the vertex positions depend
on more than two bones such as in the hands and in the torso, and our results show that
rotational regression performs better when more bones are provided as input. In Astrid’s
mesh, there are many small, unconnected meshes such as the spikes in her skirt. No vertex
on these meshes can be accurately placed using rigid skinning with a single bone, which
the rotational regression method relies on. Thus, the error from the rotational regression
approximation is clearly visible as seen in Figure 2.10.

We did not compare our deformation approximation with skinning decomposition meth-
ods that add bones to a character rig. Skinning decomposition methods solve the problem of
optimally fitting bones to a mesh when an existing animation is provided. The advantages
of these types of methods are that they can have arbitrarily high accuracy when reproducing
the example animations [66] and that they can play back the example animations at a fast
rate. Our method, in contrast, solves the problem of approximating mesh deformations given
a character rig with an existing skeleton but without any example animations. Because of
the difference in the type of problem that our method solves and the type that skinning
decomposition methods solve, we do not compare our approach with these algorithms.

Model Speed

As seen in Table 2.5, the run-time of our approximation compared to the run-time of the
original rig evaluation demonstrates the computational savings that can be achieved with
our method. To train our models, we used Theano [138] in a Python environment. Once the
models were trained, we evaluated them in our own multi-threaded C++ implementation.
During training and testing, we use only the CPU to evaluate the networks. We found that
running the models on the GPU was slower than the CPU. This slower performance is caused
by the models having large inputs and outputs compared to the size of the hidden layers in

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 25

Figure 2.10: Close-up of Astrid’s skirt for the original mesh compared with our method,
LBS, and RR. Our method more accurately approximated the vertices on the skirt. LBS
produced visible errors in the middle of the skirt because those vertices cannot be placed
accuratly as a linear combination of the bones. RR produced visible errors because the spikes
on the skirt are separate meshes and cannot be placed accurately because RR relies on rigid
skinning to fix the location of at least one vertex in each mesh.1

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 26

the network. Thus, most of the time spent evaluating the network on the GPU was spent
transferring data.

The training time for each approximation model took approximately 2-3 hours with the
majority of the time spent evaluating the original character rig to generate the training data.
Once trained, we evaluated the speed of the model by measuring the evaluation time through
the model for a single input pose. Multiple input poses can be passed into the model for
a single evaluation, which would utilize matrix-matrix multiplications through the neural
network as opposed to matrix-vector. Evaluating the model with multiple input poses would
have a faster run-time per input compared with evaluation on poses one at a time. This speed
increase comes from matrix-matrix multiplication running faster than separate matrix-vector
multiplications for each input when using highly optimized linear algebra packages.

Despite the performance gains from evaluating multiple input poses simultaneously, we
timed the approximation models evaluating inputs one at a time to demonstrate the appli-
cability of our method for interactive applications. In Table 2.5, we compare the run-time of
our method with Libee [153], a highly optimized, multi-threaded rig evaluation engine, on
four different character rigs. All of the character rigs have been optimized to evaluate as fast
as possible in Libee. Because our method approximates only the deformation system of the
character, the times we report from Libee are measured by the difference in time between
when the rig evaluation starts and finished all computations for the deformation system.
We present times for running the rig evaluation in both parallel and single-threaded imple-
mentations. We ran our experiments on a machine with an Intel Xeon Processor E5-2690
v2 running at 3.0GHz with 10 cores and 92GB of RAM. In both cases, our approxima-
tion method outperforms Libee by up to a factor of 10. The largest performance gains are
observed when comparing the parallel implementations.

In addition to Libee, we compare our method with the weighted variant [76] of pose space
deformation [94]. Like our method, PSD can be used to add a corrective offset to overcome
the limitations of linear skinning. To compare the timing of our method with WPSD, we
replace the neural networks in each nonlinear deformer and use WPSD to predict the same
vertex offsets given the same input bones from the skeleton. We test WPSD using 10, 50,
and 100 example poses from the test animations. The timing results using WPSD as well
as the timing results evaluating the linear only skinning are shown in Table 2.5. Although
the timing of our method is comparable to WPSD using 100 example poses, we would like
to point out that the speed of WPSD depends on the number of example poses.

Our method provides a fast approximation to the deformation system, which allows a
high-quality character rig to be evaluated in real-time on a low-end system or even a mobile
device. To demonstrate our approach, we implemented the approximation on an iPad and
evaluated both Astrid’s and Po’s character rigs on the device. Table 2.5 shows the timed
results on the iPad. For both rigs, our approximation runs faster on the mobile device
compared with the full evaluation of the deformation system running in parallel on a high-
end machine using Libee.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 27

Table 2.5: Timing comparison in milliseconds for the deformation systems of the characters
evaluated with Libee and our approximation using both a parallel implementation and a
single-threaded implementation as well as the timing for the approximation run on a mobile
device for the Astrid and Po character rigs. We also provide timing for WPSD using 100,
50, and 10 example poses and timing for the linear only skinning. The timings for the iPad,
WPSD, and linear skinning are all evaluated on a parallel implementation on the CPU.

Tigress Shifu Astrid Po
Libee serial 65.2 ms 43.1 ms 142.5 ms 89.6 ms

Our approx. serial 10.6 ms 10.2 ms 62.0 ms 9.8 ms
Libee parallel 20.6 ms 8.7 ms 32.8 ms 28.2 ms

Our approx. parallel 2.7 ms 1.5 ms 7.7 ms 2.2 ms
iPad N/A N/A 28.6 ms 7.7 ms

WPSD 100 1.5 ms 1.5 ms 9.0 ms 1.4 ms
WPSD 50 1.0 ms 1.0 ms 7.6 ms 0.9 ms
WPSD 10 0.7 ms 0.6 ms 6.7 ms 0.6 ms

Linear only 0.5 ms 0.4 ms 3.2 ms 0.4 ms

2.5 Discussion

We have presented a method that can accurately approximate mesh deformations for film-
quality character rigs in real-time. Our method relies on defining the deformations in a local
coordinate system to reduce the complexity of the nonlinear deformation function that we
approximate. We use deep learning methods to learn these deformations and are able run
the approximation in real-time.

Limitations

Our method assumes that mesh deformations are a function only of the skeleton. However,
character rigs for feature films may have additional deformations that rely on rig parameters
that are not associated with bones. Currently, our approach is unable to learn these types
of deformations, but the algorithm we have described can be modified if the additional
rig parameters influencing these deformations are given as inputs to the approximation.
Additionally, because our method only computes the approximation per pose, it cannot
handle dynamics or non-deterministic behavior. Approximating these types of behaviors
could make for an interesting extension to our method.

Deformations of a character’s face is an example of deformations that rely both on bone
transformations and additional rig parameters. In film-quality rigs, the face is animated
with high-level artistic controls. Unlike the deformations on a character’s body, the face
deformations rely mostly on the high-level controls rather than the underlying skeleton.

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 28

This difference would create a significant problem when directly applying our method to
approximate the face. If our method were used to approximate the face deformation, the
vertices on the face would be assigned to a small set of head bones that do not explain
most of the deformation of the mesh. Furthermore each vertex might be affected by large
number of rig parameters, which leads to a high-dimensional input for each vertex. Because
the input dimension would be large and most of the facial deformation would need to be
learned, training an approximator with our deep learning method would be challenging.

Linear Component Alternatives

From Figure 2.8, we can see that the approximation grows closer to the original mesh as
K increases. Because LBS can be computed quickly, our method could compute the linear
deformation component from Equation 2.1 using some K > 1, and this would reduce the
residual error that the nonlinear function approximators need to learn. However, we found
that in practice using a larger K does not have a significant visual impact on the results.

Delta Mush [104] is a type of deformation that aims to preserve the volume of a deformed
mesh. Additionally, Delta Mush can easily be applied to a character rig without requiring
any fine-tuning. Although this method is not a linear deformation, by preserving volume,
Delta Mush could bring the deformed mesh closer to the target deformation. As a result,
the remaining nonlinear deformation could be easier to learn and could be approximated
with smaller and faster neural networks. Using Delta Mush as an alternative for the linear
component of our method could be an interesting area of exploration.

Nonlinear Component Alternatives

Although pose space deformation can approximate mesh deformations faster than our method
if sufficiently few example poses are provided, the quality of the approximation depends
heavily on the selected poses. We found that using poses generated from our training set
described in Section 2.3 as example poses for PSD does not result in an accurate deforma-
tion approximator. Better results could be achieved by manually selecting example poses to
ensure a more accurate approximation. Our method, in contrast, is able to learn an accurate
approximation from this randomly generated dataset.

Potential Applications

Our method can be combined with other approaches that can provide a character skeleton in
real-time to create interesting real-time experiences. For example, motion capture recordings
can be used to drive a character’s skeleton, and our method can use the skeleton to compute
the final deformed mesh of a character. Furthermore, prior research has explored animation
synthesis techniques. Motion graphs [74] can be used to synthesize controllable animation
at interactive rates. The animation generated by this approach is a sequence of skeletons,
which our method can use to compute a character’s mesh deformation. Other synthesis

CHAPTER 2. FAST AND DEEP BODY DEFORMATIONS 29

methods use generative models such as Gaussian processes [43, 148, 92] or deep learning
models [53, 52]. All of these motion synthesis methods output bone positions and rotations
for a character, which form the inputs to our method. Because character skeletons can be
generated using many different techniques, our method can readily be applied to the outputs
of these synthesis algorithms to animate a film-quality rig in real-time.

30

Chapter 3

Fast and Deep Facial Deformations

3.1 Introduction

Character facial rigs for video games and other real-time applications are often controlled
by sets of bones or blendshapes. Although these rigging methods can be computed quickly,
they generally sacrifice fine-scale details for speed. Expressing nuanced deformations with
these real-time rigs is challenging and often requires additional computational layers added
to the underlying rig. Some such additions for increasing the level of detail in the mesh

1These images are Property of DreamWorks Animation L.L.C., used with permission.

(a) Ground Truth (b) Refined Approx. (c) Coarse Approx. (d) LBS Approx.

Figure 3.1: Side-by-side comparison of facial mesh deformations using our coarse and refined
approximations as well as an approximation generated by linear blend skinning. The most
noticeable difference, shown on the second row, is observed around the nasal region of the
mesh.1

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 31

deformation include pose space deformations [94] and wrinkle maps. However, despite these
improvements, the level of detail in film-quality facial rigs is noticeably better when com-
pared with real-time rigs. Because these rigs are not constrained by real-time requirements,
artists can utilize more computationally expensive deformations to achieve sophisticated and
detailed results.

Facial rigs for film require a significant amount of computation to create realistic and
expressive mesh deformations. When evaluated on a high-end machine, these facial rigs
might run at a rate of only 10-30 FPS, and would run even slower on consumer-level devices.
Furthermore, animation studios typically develop in-house rigging software on which their
characters are developed. These rigs are limited to their custom animation engines, and
porting a character for use outside of the in-house software can be challenging and time-
consuming. Thus, due to computational limits and portability, film-quality characters are
rarely used outside of the film for which they are designed.

Recently, Bailey et al. [5] proposed a method to approximate body deformations of film-
quality character rigs. However, their method relies on an underlying skeleton to approximate
the deformations. Unlike body rigs, facial rigs do not have an extensive skeletal structure
that can be utilized for the deformation approximation. To overcome this limitation, we
propose a novel method for approximating deformations of facial meshes. Our approximation
accurately computes deformations of the facial mesh, including skin, mouth interior, teeth,
and other structures. Our approach uses convolutional neural networks (CNNs) to take
advantage of the types of deformations found in facial meshes. The method computes the
deformation in three separate parts: a coarse approximation, a refined approximation, and
an approximation for rigid components of the mesh. Our method preserves high-frequency
detail in the mesh (Figure 3.1) while running up to 17x faster than the production rigs that
we tested.

Furthermore, we implement our approximation model in TensorFlow [105], an open-
source machine learning library, which allows the facial rig to transcend the proprietary
limitations of the original rigging software used to author the character and allows the
model to be deployed on a wider variety of devices and applications. In addition, the rig
approximation can easily be evaluated on both the CPU and the GPU without any additional
effort.

3.2 Related Work

Facial deformation systems for animated characters vary widely in their methods and com-
plexity. Often, facial models combine multiple deformation methods to achieve their final
result. One of the simplest and fastest ways to compute deformation is from an underly-
ing skeleton. Skeleton subspace deformation (SSD) [102], also called linear blend skinning
(LBS), is popular due to its simplicity and speed. Due to the well-known shortcomings
of SSD, like the candy-wrapper effect, improvements have been investigated such as multi-
weight enveloping [151] and dual-quaternion skinning [68] which improve the quality without

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 32

noticeably impacting the evaluation speed. While this class of methods is often used as the
base deformation system for a character’s body, it is often combined with other methods to
rig a character’s face. A more common approach for a facial deformation system is blend-
shapes [117, 116, 72] which linearly combine a set of artist-created facial expressions. This
method is also fast to evaluate but is too limiting by itself for film-quality character rigs that
could require hundreds of blendshapes to be keyed every frame in an animation. Another
approach to construct a facial model is through physically-based deformation for better re-
alism and ease of generating realistic poses [132, 29, 58]. In complex facial models, all of
these techniques and others may be combined which generally results in a high cost and low
evaluation speed.

For real-time applications, it is necessary to construct a facial deformation model which
preserves detail without incurring too great a computational cost. One approach [11] utilizes
pose-space deformation [94] in a hybrid approach which computes the base deformation using
SSD and learns a model to compute high-fidelity, nonlinear details, like wrinkles, which
are applied on top of the base. For efficient computation of physically-based deformation,
Hahn et al. [45] improves on rig-space physics [47] for real-time results on production-quality
character rigs. These approaches are sufficient in achieving high performance for the systems
they are built upon, but we seek to find an efficient representation for an existing high-quality
rig, whose deformation model may be slow to compute on lower-powered hardware without
needing to optimize the complex character rig.

There exist many different approaches to approximate an existing deformation model
given a set of example poses. A goal of most of these approaches is to construct a more
computationally efficient representation of the deformation function. One of the skinning
decomposition methods [85] finds the bone transformations and skin weights for a skeleton
subspace deformation model given a set of example poses. Similarly, Le and Deng [84] also
finds a SSD representation of the deformation, but organized in a skeletal hierarchy for
easier animation afterward. Feng, Kim, and Yu [33] learns a skinned mesh via SSD from
example data in order to animate with control points. Because a bone-based deformation
system is not the best way to represent facial deformations, these methods alone are not
suitable for our purposes. Sphere-Meshes [139] decompose a mesh animation into a set
of animated spheres, which can be keyframed afterwards for animation. This approach is
also unsuitable for high-quality character animation due to the difficulty of representing fine
details. Specifically targeted at facial animation, Li, Weise, and Pauly [97] and Neumann
et al. [115] learn new parametric rig models like blendshapes from example poses. Garrido
et al. [37] create facial rigs based on statistical models such that the appearance of the rig
closely matches the appearance of a recorded actor. All of these methods learn a completely
new rig representation with different controls than those present in the original rig. Our goal
is to approximate an existing facial rig and maintain the same controls so an artist would
not have to re-learn the control parameters.

Past research that attempts to approximate an existing rig function often assumes an un-
derlying blendshape model [129] or an underlying skeletal structure, while our method does
not make such strong assumptions about the facial rig. EigenSkin [75] efficiently computes

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 33

high-fidelity nonlinear deformation on GPU via an error-optimal pose-dependent displace-
ment basis constructed from example meshes. This method assumes an underlying SSD
representation of a given rig and uses it in its computation. Mohr and Gleicher [109] learns
an augmented SSD skinning model with additional joints from an existing SSD rig. The
work of Bailey et al. [5] assumes an underlying skeleton and uses the skeletal deformation
as a base on which a fine-detail nonlinear displacement is overlaid. In this chapter, we learn
a deformation model without the assumption of a skeletal system, which is appropriate for
complex facial rigs.

In order to support inverse kinematics (IK) for a facial rig in real-time, an efficient
and accurate inversion of the rig function is necessary to compute character poses given
a set of constraints. Due to the complexity of facial rigs, traditional solutions for the IK
problem, which has been well-studied [21, 124, 113, 157, 40], are not easily applicable to
film-quality facial models due to the requirement of a differentiable rig function. There is
existing research in computing blendshape parameters from landmarks [162, 11, 93], but
our work seeks to allow for the inversion of an arbitrary black-box rig function. Prior work
has explored solutions to this problem. Xiao et al. [159] utilizes an iterative optimization
approach; however, their method is not entirely rig-agnostic as it is designed to optimize
the inversion of a pose-space deformation rig. Holden, Komura, and Saito [52] successfully
inverts a black-box rig function using two nonlinear methods: Gaussian process regression
and feed-forward neural networks. In contrast, our approach uses deep-learning methods
to approximate the original rig function. Due to the neural network, the gradient of the
rig function can be estimated through the rig approximation, which can then be used to
estimate the inverse rig function.

Recently, deep convolutional methods have been developed for data-driven mesh regres-
sion problems. These methods utilize the power and flexibility of deep neural networks for
applications ranging from facial reconstruction [34] and facial animation [78] to cloth simu-
lation [61]. One way to apply CNNs to meshes is by defining mesh convolution operations.
Litany et al. [99] introduces graph convolutional autoencoders, while Ranjan et al. [122] uses
a similar idea to generate 3D faces. MeshCNN [48] defines specialized convolution and pool-
ing operations on triangle meshes. Because our applications are centered around efficiency,
using these mesh convolutions would be too computationally expensive. Traditional CNNs
operate on 2D images and feature maps. In order to reconstruct 3D deformations using these
models, a mapping must be created between the feature map space and vertex positions.
Masci et al. [106] and Boscaini et al. [14] apply convolutions to a mesh by parameterizing the
mesh around a small local area. Sinha, Bai, and Ramani [134] applies CNNs by projecting
a mesh onto a spherical domain then “cutting up” the projection. Other works [77, 34, 61]
use texture (UV) maps to map the vertex positions to 2D space. In this way, the networks
learn to predict 2-dimensional feature maps but they represent 3-dimensional coordinates.
Convolutional neural networks have seen success in prior work due to the spatial coherence
of vertex positions being preserved in transformed space. Previous work has generated UV
maps from perspective projections [34] or scans [61, 77]. Because our work assumes a com-
plete character rig, we use a UV map created by an artist to compute vertex positions from

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 34

+

Rig	Parameters
Coarse	Models

...

Interpolation	Step

Deformed	Mesh+

Deformation
Maps

UV Map Vertex
Offsets

| |�

̃

�

3

�

1

�

�

�

1

...

�

Neutral	Mesh

�

1

′

�

�

′

...

�

Refinement
Vertex	Sets

Sample Vertex
OffsetsInterpolation	S

tep

�

�

Refinement
Models

...

�

1

′

�

�

′

p

Figure 3.2: Diagram of the approximation model. Rig parameters are used as input to
convolutional networks which generate a deformation map for each mesh segment. Vertex
offsets are extracted by bilinear interpolation of the deformation map at each vertex position
in texture coordinate space. These offsets are added to the neutral pose to reach the desired
deformation. For the refinement model, only a subset of the total active vertices is used.1

a 2D feature space.

3.3 Facial Approximation

Given a character’s facial rig with a polygonal mesh, letV denote the set of vertex coordinates
in the mesh with |V| = n vertices. Let p represent the rig parameters of the characters,
and let V = r(p) be the rig function that maps the parameters to a deformed mesh. Our
method focuses on approximating this rig function r(p).

Our approach utilizes artist-created texture coordinates U ∈ R
n×2 of the facial mesh.

The approximation relies on convolutional neural networks, which generate deformation
maps given input rig parameters. The deformation maps are sampled at texture coordinates
to approximate vertex positions in the mesh. Many parameters for a facial rig deform
local regions of the mesh, and the rig parameters can be viewed as local operations on the
mesh. By design, a CNN performs local computations on a feature map. Assuming that
the local information in a mesh is preserved in the texture coordinates, a CNN is ideal for
approximating the rig function.

Our model is divided into two stages: a coarse approximation and a refined approximation
(Figure 3.2). The coarse approximation operates on the entire mesh. To ensure that the
model executes quickly, the coarse approximation is comprised of multiple CNNs that output
low resolution deformation maps. As a result, high-frequency details in the deformation are
lost. To handle this detail loss, we propose a refined approximation composed of additional

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 35

Coarse	Model

Refinement	Model

Input

256

512

16
8 16

16 16 16 3

8 8 16
32 32 32 32

Input

256

512

16
8 16

16 16 16
3

8 8 16
32 32 32 64

16
64

16
64

16
64

dense layer

reshape upsample

convolution

Figure 3.3: Detail of course and refine models. All convolutions use 3x3 kernels except for
the last layer, which uses a 1x1 kernel. All layers but the last use the leaky ReLU activation
function, and no activation function is applied to the last layer. All non-dense layers are
square in the image plane. Upsampling is achieved through nearest-neighbor interpolation.

CNNs that output higher resolution deformation maps. These models focus only on vertex-
dense regions of the mesh to approximate these high-frequency deformations. To further
improve the model’s efficiency, we identify segments of the mesh that only undergo rigid
rotations and translations within the rig function. These segments are approximated with a
faster rigid approximation instead of the more complex CNN approximation.

Coarse Model

We assume that the facial mesh is divided into multiple segments, which is common for
artist-created facial rigs. Each vertex is assigned to a single mesh segment. Let m indicate
the number of segments in the mesh, and let Vk and Uk denote the set of vertex positions
and texture coordinates in mesh segment k. The coarse approximation also works with
facial rigs that are not segmented, and in this case, we would set m = 1, and the full mesh
is contained in the single segment.

The coarse model computes the deformed mesh by first generating a deformation map
for each mesh segment in the facial rig and then computing vertex positions through the
maps. The function Ik = f(p;θk) computes a deformation map for mesh segment k given

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 36

rig parameters p. The function f is a neural network consisting of several dense layers and
convolutional layers and is parameterized by θk (Figure 3.3). Vertex offsets∆k are computed
by sampling deformation map Ik at texture coordinates Uk. We represent this sampling step
as ∆k = g(Ik;Uk), which outputs the vertex offsets. Because each vertex is assigned to a
single mesh segment, the vertex offsets for the full mesh are obtained by concatenating the
offsets for each segment such that ∆ = ∪k∈{1,...,m}∆k. The approximation computes the final
vertex positions for the mesh by adding the offsets to the mesh’s neutral pose.

Given the approximation model, we next define a loss function to find the optimal model
parameters θk. We propose a loss function that both penalizes inaccuracies in approximated
vertex positions as well as inaccuracies in face normals on the mesh. Given a target mesh
V, and the approximated vertex offsets ∆, the loss function is defined as

L(V,∆) =
1

n

n∑

i=1

∥∥vi − (V0 +∆)i
∥∥
1
+ αn

1

f

f∑

i=1

‖ni − ñi‖1 (3.1)

where αn is a scaling factor hand-tuned by the user. Experimentally, we found that αn = 5
works well. In the loss, ni is the normal of face i in the mesh V, and ñi is the normal of
face i in the approximated mesh with vertex positions V0 + ∆ and a total of f faces in
the mesh topology. We use the L1 loss instead of the L2 loss because it produces sharper
features. We learn the mapping from rig parameters to vertex offsets end-to-end without
supervision on the intermediary deformation maps. Furthermore, we do not optimize the
texture coordinates and rely instead on the artist-created coordinates.

Because the approximation model works on separate mesh segments, the model could pro-
duce discontinuities across mesh segment boundaries and seams. To minimize this potential
problem, the error function strongly penalizes inaccurate face normals, which encourages
smooth results along mesh segment boundaries. Penalizing normal errors also suppresses
low-amplitude, high-frequency errors that are visually disturbing.

To help with model training, each network is provided only a subset of the rig parameters.
The subset contains all of the rig parameters that can deform any vertex within the mesh
segment that the model is approximating. All other rig parameters are excluded from the
network’s inputs. As a result, the network does not need to learn which parameters to
ignore and will avoid being negatively affected by the noise provided by inputs that have no
influence on the outputs.

Refinement Model

In the coarse approximation model, the resolutions of the deformation maps Ik are inten-
tionally kept small to reduce the computational complexity. However, in texture coordinate
space, vertices in dense regions of the mesh could be placed less than a pixel apart in the
small deformation maps. If these vertices undergo a high-frequency deformation, such as
skin wrinkle, then the approximation model will be unable to recreate this deformation ac-
curately. The bottleneck in this case is the resolution of the map output by the CNN. To

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 37

overcome this limitation, we propose applying refinement models that focus exclusively on
these vertex-dense regions of the mesh.

First, we identify sets of vertices that correspond with regions of large error in the ap-
proximation. We discuss vertex selection for the refinement model in Section 3.3. Each set
is then defined as a new mesh segment. The texture coordinates for each vertex in the new
mesh segments are scaled to fill the full resolution of the refinement deformation maps. As
in the coarse approximation, no vertex is assigned to multiple mesh segments. Additionally,
not every vertex is assigned to a mesh segment for the refinement stage. Only vertices in
regions of the mesh with a high approximation error are divided into mesh segments.

Let m′ indicate the number of mesh segments in the refinement stage and let U′
k′ be the

new texture coordinates for segment k′. Similar to the notation for the coarse model, the
refinement model for segment k′ can be expressed as δk′ = g(f(p;θr

k′);U
′
k′) where θr

k′ are
the parameters for the refinement model. The output δk′ approximates the residual between
the vertex positions in the mesh and the output of the coarse model within mesh segment
k′. The refinement approximation for vertices not contained in any mesh segment in this
stage is set to zero, and we denote this set as δm′+1 = 0. Let δ represent the combined set
of outputs δk′ . The refinement models are trained using the same loss as the coarse model
from Equation 3.1 where the loss is evaluated as L(V,∆+ δ).

In our implementation, the refinement models produce deformation maps with a higher
resolution than those produced by the coarse models. Alternatively, the entire approximation
could be computed by only applying these higher resolution refinement models across the
entire mesh and foregoing use of a coarse approximation. However, applying the refinement
model across the entire mesh would have a much higher computational cost both because of
a global resolution increase and because the refinement model uses a deeper network.

Refinement Boundary Selection

To identify the vertex sets used for refinement, we estimate for each vertex the minimum
approximation error given the coarse deformation map resolution and texture coordinates
of each mesh segment. Next, we perform clustering on the texture coordinates with each
vertex weighted by its estimated approximation error. The vertices near each cluster become
the mesh segments for the refinement models while vertices far from cluster centroids are
omitted from the refinement step.

We estimate the minimum approximation error by first mapping vertex positions to a
deformation map through the texture coordinates and then sampling the deformation map
at the coordinates to generate vertex positions. The map is computed through polyharmonic
interpolation with a linear kernel by interpolating values at pixel coordinates from the texture
coordinates. Vertex positions are computed from the deformation maps through bilinear
interpolation. Let vi be the original vertex position, and let ṽi be the sampled vertex
position from the deformation map. We estimate the approximation error over a set of n

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 38

R,t

Rest	Pose

Deformed	Pose

Rigid
Transformation

Figure 3.4: Illustration of the rigid components. The blue triangle represents a rigid mesh
segment identified by Equation 3.3. The black line represents a nonlinearly deformed mesh
segment, and the dots on the line represent vertices on the surface. The red dots represent
the set of vertices identified by Equation 3.4 that best match the rigid transformation of the
blue triangle across a large set of examples. Given the rest pose and the positions of the
vertices on the nonlinear segment in a deformed pose, the transformation R, t is computed
from the red vertices. The transformation is then applied to the blue triangle to compute
its position in the deformed pose.

samples Vi = {v1
i ,v

2
i , ...,v

n
i) as

ei =
1

n

n∑

j=1

∥∥vj
i − ṽ

j
i

∥∥2

2
. (3.2)

We then run k-means clustering on the texture coordinates with each vertex weighted by
its corresponding approximation error ei. The number of clusters is determined by the
elbow method. Each vertex is assigned to the nearest cluster centroid up to a user-specified
distance. In our experiments, we assigned vertices within a square with a length of 1/4 of
the width of the original texture coordinate space and centered on the cluster means. This
approach worked well for the characters we tested. As with the coarse approximation, we
compute the set of rig parameters that can deform any vertex contained in these new mesh
segments and provide each refinement model with only those input parameters.

Rigid Components

In character faces there could be sections of the mesh that move rigidly, such as teeth. In the
case of characters that we tested, each tooth was modeled as a separate segment. Because
the deformation of each tooth in the rig could be expressed as a rotation and translation,
approximating the linear transformation with a CNN model for each tooth would produce
unnecessary computation. Instead, we estimate the rigid movement by computing a linear
transformation from nearby vertices in the approximated mesh as illustrated in Figure 3.4.

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 39

Each rigid mesh segment is assigned to a subset of vertices approximated by the CNN
models. The motions of these rigid segments are then estimated by solving for the rigid
transformation that best explains the movement of the corresponding subset of vertices
from the CNN approximation. The rigid transformations are computed after the coarse and
refinement approximations have been evaluated because the computation relies on the results
of the approximation.

To identify the rigidly deformed segments of the mesh, we consider all k mesh segments
that are provided by the author of the facial rig. Next, we collect a set of n example mesh
deformations V = {V1,V2, ...,Vn}. Given the mesh in a rest pose V0, we compute the
approximation error of rigidly transforming vertex positions V0

k to Vi
k as

eik = min
ti
k
,Ri

k

∥∥V0
kR

i
k + tik −Vi

k

∥∥2

F
s.t. Ri

k ∈ SO(3). (3.3)

This equation indicates the difference in vertex positions for mesh segment k in sample i
when applying a rigid rotation Ri

k and translation tik. We average the error across samples
ek = 1

n

∑n

i=1 e
i
k. Rigidly deformed mesh segments can then be identified where ek < τ . In

our experiments, we used τ = 0.3mm.
Let Vi

r be a rigidly deformed mesh segment (i.e. er < τ) for sample i. Let Ri
r and tir

be the minimizers of Equation 3.3. Let P be the set of vertex indices in the mesh that are
not contained in any rigidly deformed segment. For each vertex j ∈ P , we compute the
approximation error under the transformation Ri

r, t
i
r across all samples i

ǫr,j =
1

n

n∑

i=1

∥∥v0
jR

i
r + tir − vi

j

∥∥2

2
. (3.4)

For the rigid mesh segment r, let V0
δ and Vi

δ be the set of vertices with the c smallest
approximation errors ǫr,j where |V 0

δ | = c. In our experiments, we chose c = 10. Given the
nonlinearly deformed vertices of a mesh V′

P , the vertex positions for rigid mesh segment r
can be approximated as V′

r = V0
rR

′
δ+t′δ where R

′
δ and t′δ are the minimizers of Equation 3.3

for the vertex positions V′
δ.

Implementation Details

All of the models f(p;θk) and f(p;θr
k′) for the coarse approximation and the refinement stage

are implemented as deep neural networks with a series of dense layers followed by convolu-
tional layers. Figure 3.3 shows the structure of both coarse and refinement networks. The
networks are trained across two stages. The parameters θk corresponding with the coarse
approximation are trained in the first stage to minimize the loss L(V,∆) from Equation 3.1.
These models are trained with the Adam optimizer [71] using the momentum parameters
suggested by the authors and with a batch size of 8. Optimization starts with the learning
rate at 10−3. After the model converges, the learning rate is reduced to 10−4. After con-
vergence again, we reduce the rate to 10−5 and run until convergence once more. Once the

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 40

parameters θk from the coarse approximation are fully optimized, they are held constant
while the refinement model parameters θr

k′ are optimized with the loss L(V,∆ + δ). The
same hyper-parameters and training schedule are used for optimization of the refinement
model.

When training the approximation models, we compute the rigid mesh segments (Equa-
tion 3.3) and the sets of vertices assigned to each rigid segment (Equation 3.4) using the
original rig function. During model evaluation, the rigid transformations are computed after
the coarse and refinement models are evaluated. The approximated vertex positions are used
to compute the rotation matrices and translation vectors, which are then applied to the rigid
mesh segments to create the resulting approximated mesh deformation.

To train the facial approximation model, a large set of training data is needed. The
training data consist of pairs (p,V) of rig parameters p and the vertex positions of the
deformed mesh output by the rig function V = r(p). To generate the training data, we
augment existing animation with multiplicative noise and apply data balancing to prevent
common poses found in the animation data from being over-represented in the training data.

Let A be the set of poses from the training animation, and let m be the number of rig
parameters in each pose. We construct the training set as

T = {u⊙ p — u ∼ U(0.25, 3.0)m,p ∼ A} (3.5)

where u ∈ R
m is a vector of random values with each component drawn uniformly at

random in the range [0.25, 3.0] and p is drawn uniformly at random from the set of poses
A. The operation ⊙ denotes component-wise multiplication of vectors. In our experiments,
we generate |T | = 50,000 samples for our training set. Figure 3.5 shows example poses from
the training data T .

Given the training set, we next balance the data. The training data is generated from
existing animation, and certain expressions, such as a neutral expression, might occur more
frequently than other poses in the data. A model trained with this dataset would overfit to
frequently occurring expressions and would perform poorly when approximating other types
of expressions. Taking inspiration from Feng et al. [35], we sort the training examples into
bins and draw random samples by picking a bin uniformly at random and then picking a
sample within the bin uniformly at random.

To divide the data into bins, we first manually label a small set of landmark vertices
around key facial features such as the mouth, eyes, and nose. In our experiments, we
manually identified roughly 20-30 landmark points for each character. For each pose pi ∈ T ,
we gather the positions of the landmark vertices Vi

l in the deformed mesh. We then use

PCA to project the set of landmark positions {V1
l ,V

2
l , ...,V

|T |
l } onto a one dimensional

space. This one dimensional space is segmented into intervals of equal length along the
range of the projected data. The samples are then sorted into bins according to the interval
in which they lie. When drawing samples for training, a bin is selected uniformly at random,
and from that bin, a sample is selected uniformly at random. In our experiments, we divided
the data into 16 bins.

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 41

Figure 3.5: Example poses from the training data.1

3.4 Results

We built our approximation to work with film-quality facial rigs that are used in computer-
animated film production. The rigs are deformed through a combination of a free-form
shaping system and a curve-based pose interpolation system. These deformers are layered
for coarse to fine control of the mesh to facilitate art-directable facial rigging of the character
[119]. The rigs are implemented as node-based computational graphs with more than 10,000
nodes used to compute facial deformations. The nodes implement a wide variety of functions
such as basic arithmetic operators and spline interpolation. The rig system also supports
custom-written nodes that can execute arbitrary code.

We demonstrate our method using four example facial rigs. Three of these rigs are the
proprietary facial rigs used in the feature film How to Train Your Dragon: The Hidden World
for the characters Hiccup, Valka, and Toothless. The fourth example is the facial rig from
the publicly available open-source character, Ray, published by the CGTarian Animation
and VFX Online School [9].

We compare our approximation models against linear blend skinning (LBS) approxima-
tions and a dense feed-forward version of our approximation models. We observe that our
method preserves high-frequency details, which are lost in the LBS approximations, and it
is more accurate than the dense models for three out of four character rigs. Furthermore,

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 42

Table 3.1: Approximation model statistics for each character rig.

Hiccup Valka Toothless Ray
Vertices 12,510 12,828 14,080 4,922

Rig Parameters 258 265 286 99
Coarse

10 9 18 6
Segments

Refinement
4 3 4 3

Segments
Rigid Segments 26 24 110 2

Model Size 8.66 MB 7.39 MB 12.97 MB 5.08 MB
Dense Size 25.96 MB 27.32 MB 31.66 MB 24.19 MB

unlike the LBS approximations, our model preserves the mapping from rig parameters to the
deformed mesh, which allows our method to approximate novel animations without access
to the original rig function.

Table 3.1 shows statistics of each model trained on these characters. The models do not
approximate the characters’ hair nor their eyeballs. However, the models do approximate
the interior of the mouth as well as the teeth. Figure 3.6 visualizes the mesh segments for
the facial models of Hiccup, Valka, and Toothless, and Figure 3.7 shows the mesh segments
used during the refinement stage of the approximation.

In our results, the dense model runs faster than our approximation model, and in one case
is more accurate than our model when approximating artist-created animations. However,
the dense approximation’s faster speed does come at the cost of more model parameters,
which translates to higher memory storage costs as seen in Table 3.1. When the dense
model fails, there are visible and undesirable artifacts in the deformed mesh as seen in the
facial meshes of Hiccup and Valka in Figure 3.9. These artifacts appear as high-frequency
noise on the surface of the mesh and are caused by the dense approximation modeling each
component of each vertex as an independent output. Our approximation, on the other
hand, models local neighborhoods in the mesh through the use of CNNs, and inaccuracies
in the approximation are less likely to manifest as high-frequency noise as in the dense
approximation. Furthermore, our model is more accurate than the dense approximation on
poses generated through inverse kinematics for all characters.

Comparison

We compare the accuracy of our approximation models to a LBS model and a dense feed-
forward network with fully connected layers instead of convolutional layers. We estimate
the LBS weights and bone transformations using the method of Le and Deng [85]. The
dense model is trained to approximate vertex offsets, and we train a separate network for
each mesh segment. Each model is comprised of two hidden layers each of 256 nodes, and

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 43

(a) Hiccup (b) Valka (c) Toothless

Figure 3.6: Visualization of the mesh segments of the three characters. Each mesh segment
is represented as a continuous region of the same color.1

the final output layer is the offsets for each vertex in the mesh segment. Because the dense
network is not constrained by deformation map resolution, we do not train an additional
refinement model, but we do deform the rigid segments using the same method as our CNN
approximation. The dense model most closely resembles the method described by Bailey
et al. [5]. The primary difference is that the facial mesh is not linearly deformed by a set of
bones before applying the dense neural network.

For each character, we collect all available animation for the rig and randomly split the
data 90%/10% into training and test data. We generate training data using only poses from
the training set according to Equation 3.5. In the case of Ray’s rig, we do not have access
to existing facial animation. Instead, we generate the training and test sets by sampling
the rig parameters in each pose independently from a uniform distribution covering a user-
specified range of values for each parameter. This random sampling method does not work
when training the approximation models for the other character rigs due to a higher level of
complexity in their mesh deformations. To train our approximation models as well as the

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 44

Figure 3.7: Visualization of the mesh segments used for the refinement stage of the approxi-
mation model. Gray regions of the mesh indicate segments that are unused in the refinement
model.1

dense models, we generate 50,000 samples for each character. For the LBS models, we fit 16,
24, and 32 bones to the mesh and allow each vertex to have 8 non-zero weights. In addition,
we generate 1,000 samples in order to estimate the vertex weights. We utilize fewer training
examples due to memory and computational constraints.

The test sets for Hiccup, Valka, and Toothless are constructed by taking all unique poses
from the test data that were unused for training. We measure both the vertex position error
and the face normal error in Table 3.2. The vertex error is the mean distance between the
approximated and target vertex positions across the test set. The face normal error is the
angle between the approximated and target face normals in the mesh. Specifically,

Enormal =
1

f

f∑

i=1

arccos (ni · n
′
i) (3.6)

where ni is the normal of face i in the ground truth mesh, and n′
i is the normal of face i in

the approximated mesh with a total of f faces.
From the results, we see that most approximations achieve submillimeter accuracy on

average. However, the average vertex position error is not a good indicator for the accuracy
of fine-scale details in the approximations. Figure 3.1 and Figure 3.8 show approximated
deformations for a poses of Toothless and Hiccup containing wrinkles. As seen in Table 3.2,
the refined approximation produces the smallest normal error for Hiccup, Valka, and Ray, but

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 45

Table 3.2: Average vertex position error measured in mm and average normal angle error
measured in degrees.

Hiccup Valka Toothless Ray
Distance Error

Coarse 0.36 0.43 2.01 1.00
Refined 0.27 0.37 1.81 0.40
Dense 0.37 0.98 1.55 5.00

LBS: 16 Bones 0.49 0.33 4.36 0.64
LBS: 24 Bones 0.35 0.25 2.77 0.46
LBS: 32 Bones 0.24 0.21 2.35 0.44

Normal Angle Error
Coarse 1.6 1.7 3.1 3.8
Refined 0.9 1.1 2.4 1.5
Dense 1.9 5.5 1.9 8.9

LBS: 16 Bones 2.0 1.9 5.2 4.2
LBS: 24 Bones 1.9 1.8 4.3 3.7
LBS: 32 Bones 1.6 1.6 4.5 4.1

(a) Ground Truth (b) Refined Approx. (c) Coarse Approx. (d) LBS Approx.

Figure 3.8: Comparison of forehead wrinkles on Hiccup’s mesh using our approximation and
LBS.1

the dense model produces the smallest error for Toothless. This smaller error indicates that
both the refined approximation and the dense approximation can reproduce fine-scale details
in the deformed mesh when compared to our coarse approximation and LBS. Figure 3.9 shows
side-by-side comparisons with a visualization of the normal error. See the supplementary
video for more results. The trained network for Ray, along with other supporting files needed
for benchmarking and comparison, are available as supplemental materials 2.

2http://graphics.berkeley.edu/papers/Bailey-FDF-2020-07

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 46

(a) Ground Truth (b) Coarse (c) Refined (d) Dense (e) LBS

Figure 3.9: Visual difference between the ground truth mesh evaluated through the original
rig function and the rig approximation methods. The heatmap on the right half of each
approximation visualizes the angle between the normal vector on the approximation and the
corresponding normal on the ground truth mesh. Smaller angles are better.1

Timing

We implement our approximation models in Python with TensorFlow. We evaluate their
execution times on both a high-end machine and a consumer-quality laptop using both the
CPU and the GPU. For the high-end machine, we use an Intel Xeon E5-2697 v3 processor
with 28 threads running at 2.60 GHz along with an NVIDIA Quadro K5200 GPU. On the
laptop, we use an Intel Core i7-7700HQ processor with 8 threads running at 2.80 GHz along
with an NVIDIA GeForce GTX 1060. The rotation for the rigid segments is computed by
minimizing Equation 3.3 with the SVD. When evaluating the full approximation with the
GPU, we solve this minimization problem on the CPU due to TensorFlow’s slow implemen-
tation of the SVD on the GPU. Model training time consisted of 2-4 hours spent generating

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 47

Table 3.3: Average evaluation time in milliseconds on both the high-end machine and the
consumer-quality machine. The coarse approximation is timed by evaluating the coarse
model and the rigid deformations. The full approximation is timed by evaluating the coarse
model, the refinement model, and the rigid deformations. Where indicated, the neural
network is evaluated on the GPU, but the rigid components are always evaluated on the
CPU.

Hiccup Valka Toothless
Original Rig

H
ig
h
-e
n
d

75 66 30
Coarse w/ GPU 6.4 6.0 10.4

Full w/ GPU 8.7 7.5 12.6
Dense w/ GPU 2.6 2.6 4.2

Coarse 2.9 2.7 4.4
Full 4.2 3.8 5.6

Dense 2.1 2.2 2.9
Coarse w/ GPU

C
on

su
m
er

5.8 3.2 7.3
Full w/ GPU 4.3 4.5 9.1

Dense w/ GPU 1.8 1.7 7.3
Coarse 6.9 2.7 5.7

Full 3.5 5.2 9.0
Dense 3.4 2.5 3.35

training data through the original rig evaluation engine followed by 2-3 hours of training the
coarse approximation model and 2-3 hours for the refined approximation model.

We compare the timing of our approximation against the original rig evaluation software
for Hiccup, Valka, and Toothless. These three character rigs are designed for Libee [153], a
multi-threaded rig evaluation engine. Character artists optimized these rigs to run as fast
as possible on the engine. Unlike our method, Libee can only evaluate character rigs on the
CPU. Table 3.3 shows the evaluation times using Libee and our method running both on the
CPU and the GPU. We time our models by taking the average execution time across 1,000
evaluations on single poses.

From these results, we observe that our approximation models runs from 5 to 17 times
faster than the original rig evaluation engine. In the case of the high-end machine, the
approximation runs slower on the GPU because the model is evaluated on a single pose and
because the convolutions operate on feature maps with low resolution. Thus, the GPU is
underutilized in this case, which leads to slower performance. Furthermore, we find that the
GeForce GPU on the consumer-quality machine evaluates the approximation models faster
than the Quadro GPU on the high-end desktop. This difference can be attributed to the
slower clock speed of the Quadro compared with the GeForce GPU.

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 48

3.5 Discussion

Our method provides a fast and accurate approximation of film-quality facial rigs. We have
shown that our approximation can preserve details of fine-grain mesh deformations where
bone-based approximations are unable. In addition, our approach provides a differentiable
rig approximation, which allows for a wide range of potential new applications for the char-
acter rig. Additionally, once the model is trained, our method no longer requires the original
rig function to evaluate mesh deformations. Because the approximations can be implemented
with open-source machine learning libraries, the models can be easily distributed and de-
ployed on many different systems without requiring the complex or proprietary software that
was initially used to build the facial rig. Thus, our approximation model provides a com-
mon format in which facial rigs can be shared without a dependency on the original rigging
software. Furthermore, the approximation model parameters can be viewed as a form of
rig obfuscation such that the underlying rigging techniques used to create the character are
hidden when the model is shared.

Because our method is built upon convolutional layers the model is not restricted to a
single mesh topology. The approximation model trained on a certain mesh can deform a
novel mesh not seen during training. As long as the texture coordinates of the facial features
in the new mesh align with the texture coordinates of the original, the approximation rig
can be transferred to the new facial mesh. In this case, the approximation models output
the deformation maps using the same set of input rig parameters. Vertex offsets for the new
mesh are computed by sampling deformation maps at new texture coordinates corresponding
with the new mesh. Figure 3.10 shows an example of transferring one mesh segment of the
coarse approximation model onto a new mesh with a different topology. In this example, the
texture coordinates are manually aligned to those of the original mesh.

The approximation method outputs vertex offsets in a world coordinate system. As a
result, the deformations applied to a new mesh might appear undesirable if the facial propor-
tions of the mesh differ significantly from the original model. A different parameterization
of the offsets output by the approximation model could help alleviate this issue and allow
our method to transfer the approximation from one rig to a facial mesh with significantly
different proportions.

In our examples, vertex normals are computed separately, and are not considered as part
of the approximation model. However, in certain real-time applications, recomputing nor-
mals from a deformed mesh is avoided to save computational time. Although we did not
experiment with approximating vertex normals in our model, the method could easily be
extended to approximate normals as well. Instead of outputting 3 channels in the deforma-
tion maps, the network could output additional channels for the normal directions, and an
additional loss term could be included to train the model to output accurate normal vectors.
Due to the small resolution of the intermediary feature maps, this approach would only be
appropriate for approximating vertex or face normals. Normal maps or other high-resolution
maps such as ambient occlusion maps would need to be created using other means.

In our implementation, we used the texture coordinates provided with each character rig

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 49

to interpolate from deformation maps to vertex offsets. Although these coordinates work
well for mapping textures to the mesh surface, they might not be well-suited for our method.
For example, the texture coordinates for the upper lip and lower lip of a character’s mouth
could be near each other. Vertices on the lower lip can move far away from the upper lip
when the mouth opens. If the texture coordinates are close enough together, then vertices
on both lips might lie on the same pixel in the deformation map. If this were the case, then
visually the lips would appear stuck together when the mouth opens, which would be an
inaccurate deformation. To avoid these types of issues, new deformation map coordinates
could be generated specifically for this approximation task rather than relying on pre-existing
texture coordinates.

CHAPTER 3. FAST AND DEEP FACIAL DEFORMATIONS 50

Figure 3.10: Rig approximation of Hiccup transferred to a new mesh with a different topology.
A single mesh segment from the coarse approximation is applied to the new mesh on the
right. The facial mesh on the right is from the freely available Mathilda Rig developed by
Leon Li-Aun Sooi and Xiong Lin.1

51

Chapter 4

Inverse Kinematics with Mesh

Approximations

4.1 Introduction

Character rigs are manipulated through artist-friendly parameters that give an animator
low-level control over a character’s deformation. For example, an artist posing a character’s
arm and hand might specify the rotations for every bone in the arm and hand. However,
specifying bone rotations becomes challenging when a character needs to interact with an
environment such as fixing a foot in place on the ground while it walks. Inverse Kinematics
(IK) helps solve this problem by allowing an animator to specify the location of a control
point (such as a foot) and then automatically computing the necessary bone rotations to
deform a character to match the control point’s location.

Figure 4.1: Example of a kinematic chain with three bones. The bone configurations are
parameterized by θ0, θ1, and θ2. The forward kinematic function p = f(θ) provides the
position of the control point on the end of the bone on the right.

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 52

Inverse kintematics is well-studied in the field of robotics, and Aristidou et al. [3] provide
a comprehensive survey of the use IK for computer animation. Given a kinematic chain of
bones parameterized by bone configurations θ such than the position of a control point on
the chain is a function of the bone configurations p = f(θ), which we refer to as the forward
kinematic function. Figure 4.1 illustrates an example of a kinematic chain with three bones.

The IK function is represented as the inverse of the forward kinematic function such
that θ = f−1(p). Given some target t for the control point, the solution to the IK problem
seeks to find an acceptable bone configuration θ′ such that t = f(θ′). Iterative methods are
popular solutions to this inverse problem, especially for computer graphics and animation.
First, an error function is defined as

e(θ) = t− f(θ). (4.1)

To optimize this function, the Jacobian of the forward kinematics function is computed or
estimated J(θ)ij =

∂ei
∂θj

. Depending on the complexity of the forward kinematic function, the

Jacobian can be computed analytically or numerically. Finally, an update step for the bone
configurations can be estimated as ∆θ ≈ J(θ)e(θ).

For many IK problems, the loss function might be underconstrained or the Jacobian
might not be a square matrix. Many methods have been proposed to compute an update
step given a non-invertible Jacobian [3]. One popular approach is to use the pseudo-inverse
of J(θ) such that

∆θ = J(θ)⊤(J(θ)J(θ)⊤)−1e(θ). (4.2)

Because our rig approximation methods compute mesh deformations in real-time, fast
IK methods could be used with our approximations to provide interactive character control.
Because the body deformation approximation relies on an underlying character skeleton, we
can use traditional IK methods to manipulate characters’ limbs. However, this approach is
not applicable to our facial approximation because it does not use bones as input. We present
our real-time solutions to the IK problem for both our body and facial rig approximation
methods.

4.2 Solutions for the Body

Often, IK problems are underconstrained, and the solution is not unique. These iterative
methods converge to a single solution, but the result depends on the initial configuration
when optimizing the error function. For character rigs, the IK problem for positioning
hands and feet are usually underconstrained. However, artists want the solution of the IK
problem to be deterministic such that the same input rig parameters always produce the same
deformed mesh. Borrowing solutions for character rigs in production, we deterministically
solve the IK problem for the hands and feet.

Our solution relies on the fact that human rigs and human-like rigs consist of two bones
between the torso and the hands and feet with a hinge joint connecting the two bones and

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 53

Figure 4.2: Illustration of aligning bones to a triangle specified by target control point t.

a ball joint connecting one of the bones to the torso. Using the arm as an example, we
construct a triangle with the shoulder, elbow, and hand as vertices. We then rotate the
upper arm such that the elbow lies on the corresponding vertex, and then we rotate the
hand to align it with the remaining vertex. Assuming that the triangle can be computed
deterministically, then the solution to this IK problem with two bones has a closed-form
solution.

We describe our IK solution for a character’s arm, but this approach generalizes to legs
with two bones as well. Let du be the length of the upper arm bone, let dl be the length of
the lower arm bone, and let o be the position of the base of the upper arm bone. The user
inputs the target position of the hand t as well as a reference direction r, which controls the
orientation the triangle that the bones are aligned to. We compute the normalized vector

n =
(t− o)× r

‖(t− o)× r‖
(4.3)

and place the elbow joint on the plane spanned by the vectors t − o and n. The joint is

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 54

placed on the remaining vertex of the triangle whose vertices contain o and t with lengths
‖t− o‖, du, and dl. Using Heron’s formula, we first compute the area of the triangle with
base t− o as

A =
1

4

√
4d2ud

2
l − (d2u + d2l − ‖t− o‖2)2 (4.4)

and the height h of the triangle with base t − o is given as h = 2A/ ‖t− o‖. Finally, the
position m of the elbow joint can be computed as

m =

√
d2u − h2(t− o)

‖t− o‖
+ hn+ o. (4.5)

Given the positions o, m, and t, the two bone configurations can be computed in closed-
form. In the case where the IK problem has no solution when the control point t is out of
reach of the arm, we leave the elbow joint unbent and point the upper arm in the direction
t− o.

Our IK method is a fast alternative to iterative methods when posing a two-bone kine-
matic system, which is suitable for common IK problems with human-like character rigs.
We combine this IK method with our fast body deformation approximation, which allows a
high-quality character rig to be evaluated in real-time on a low-end system or even a mobile
device. We implemented a posing application for the iPad in which the user can pose the
arms and legs of the character using IK controls. Figure 4.3 shows a screenshot of a user
interacting with the application to pose Po.

We use this IK method to compute the input skeleton as a simplified skeletal system.
The user can manipulate five points: one each for the hands and feet and one control for the
torso position. To compute the resulting skeleton, we apply the torso position as a global
offset to all bones in the skeleton. Next, the system only manipulates the two bones in each
arm and leg. The resulting skeleton is then passed to the deformation approximation.

4.3 Solutions for the Face

Facial character rigs for production use are typically constructed in such a manner that
computing the gradient of the vertex positions with respect to the rig parameters ∂V/∂p
would be difficult and extremely slow. Using the approximation model that we propose,
estimating the gradient becomes possible and is trivial with automatic differentiation, which
is a common feature in deep learning libraries. One useful application of this gradient is
inverse kinematics where rig parameters are estimated to best deform the mesh in order
to match user-specified control point positions. Common solutions to inverse kinematics
formulate it as an iterative optimization problem [3]. These types of solutions would require
multiple gradient evaluations before converging on the optimal rig parameters. Although the
approximation model can be used to estimate ∂V/∂p, computing the gradient multiple times

1These images are Property of DreamWorks Animation L.L.C., used with permission.

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 55

Figure 4.3: Posing example on iPad.1

through our approximation model for an iterative optimization method requires too much
computation to run in real-time. Instead, we propose a feed-forward neural network that
takes the IK control points as input and outputs the corresponding rig parameters. During
training, the network utilizes the approximation gradient, but does not require ∂V/∂p when
evaluated on new inputs. As a result, the feed-forward network can compute the desired rig
parameters in real-time.

Model Details

Let C be the set of indices of vertices corresponding to IK control points, and let rC(p) :
R

m → R
|C|×3 be the rig function that maps the rig parameters p to the subset of vertices

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 56

VC. Then the inverse kinematics problem can be expressed as

p′ = argmin
p

∥∥rC(p)−VC

∥∥2

F
(4.6)

where VC are the target control points provided by the user. Due to the assumption that
the rig function r is not differentiable, we replace it with the approximation, denoted as
r̃. Furthermore, instead of solving the minimization problem with an iterative algorithm,
we introduce a feed-forward network fIK : R|C|×3 → R

m to approximate the minimization
problem through a fixed-length computation such that

fIK(VC;θIK) = argmin
p

∥∥r̃C(p)−VC

∥∥2

F
(4.7)

where θIK are the network parameters that require training. The model is trained on a
specific set of control points and vertices VC, and a new network would need to be trained
for any different set of vertices.

The loss function used to train the model contains both a point-matching component to
ensure that the deformed mesh closely matches the control points as well as a regularization
component to avoid large rig parameters that would create unnatural poses. The loss is
expressed as

L(VC) = Lpoint(VC) + λregLreg(VC) (4.8)

where λreg ∈ R is a user-defined regularization weight. The point-matching loss computes
the distance between the points generated by the estimated pose and the corresponding
control points

Lpoint(VC) =
1

|C|

∑

i∈C

∥∥r̃i(fIK(VC;θIK))− vi

∥∥
1
. (4.9)

The regularization term penalizes large parameter values as

Lreg(VC) =
∥∥(fIK(VC;θIK)− p0)⊙ s

∥∥
1

(4.10)

where p0 defines the neutral expression of the character and s ∈ R
m defines individual scaling

values for each rig parameter. For rig parameter i, the scale is given by si = 1/(pi,max−pi,min)
where pi,max and pi,min are the maximum and minimum values for rig parameter i in the
animation data A. Scaling each parameter separately ensures that regularization is applied
equally to each parameter regardless of the difference in their ranges of values. Furthermore,
we use the L1 regularization loss to encourage sparsity in the estimated pose p.

An ideal IK approximation model fIK would avoid learning incorrect correlations between
certain rig parameters and control points. For example, if a user were to adjust a control point
on the left eye of a character, the approximation model should avoid changing rig parameters
related to the mouth. We guarantee this property by designing the IK approximation model
as a combination of multiple networks. The control points are divided into separate sets
based on the regions of the face. For example, all of the points on the right eye of the

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 57

Partial	Poses

D
ense	256

D
ense	256

O
utput	Pose

D
ense	256

D
ense	256

O
utput	Pose

D
ense	256

D
ense	256

O
utput	Pose

+

Averaged	Pose

Control	Points

IK	Models

Figure 4.4: Diagram of IK model. Control points are divided into disjoint subsets and
provided to separate dense neural networks. Each network outputs a subset of the pose.
The valid values from the outputs are averaged together to produce the final averaged rig
parameter pose.

character define one subset, and all of the points on the mouth define a separate subset. In
our experiments, the points are divided manually.

Let the control points be divided into k subsets, and let Cj denote subset j. In total, the
IK approximation model consists of k separate feed-forward networks. The input to model j
is the subset of control pointsVCj , and the output is the set of rig parameters that can deform
any of the vertices corresponding to the control points. Rig parameters can be estimated by
multiple models. In this case, the final estimated value is the average of the outputs. More
sophisticated methods could be used to compute the final value of rig parameters predicted
by multiple networks. However, averaging the values worked well with our rigs. For the
character faces, only a small fraction of the rig parameters are shared between IK models.
Of the shared parameters, almost all of them control large-scale deformations of the face such
as squash and stretch of the entire head. Because these controls drive large deformations
across all regions of the mesh, IK models trained on control points for small portions of the
mesh will generally agree on parameter values for these types of global deformations. Thus,
we can achieve reasonable results by simply averaging these parameters.

Implementation Details

Each network of the IK approximation model consists of three dense layers with 256 nodes
in the first two layers and |Rj| nodes in the final layer where Rj is the set of rig parameters
estimated by IK model j. The leaky ReLU activation function is applied after the first and
second layers. No activation is applied to the output of the final layer so that the network can
output any value for the rig parameters. A diagram of the network is shown in Figure 4.4.
Similar to the facial approximation model, the IK model is optimized with Adam using the
same training schedule and balanced dataset described in Section 3.3.

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 58

As described, the IK model is trained using control points from deformed meshes com-
puted through the rig function. Thus, the training data only contains examples of control
points that can be matched exactly with the appropriate rig parameters. However, when
evaluating the IK model, a user might configure the control points in a way such that rig
cannot precisely match the points. To account for this use case, we add noise to the con-
trol points during training. Given a training sample VC, a new sample is computed as
V

′

C = VC + U(−δ, δ)|C|×3 for some user-defined δ > 0. This new data point is created by
adding uniformly random noise to each control point’s position. In our experiments, we
found that δ = 4.5mm produces reasonable results. The IK model is trained with this new
data V

′

C, but all other aspects of model training remain identical.

4.4 Results

The facial approximation method provides a differentiable model that maps rig parameters
to the deformed mesh, which can be used for IK applications. We demonstrate the uses of
our approximation through an interactive posing application and a facial landmark-based
performance capture system.

Character Posing

We develop a real-time posing application in which the user manipulates a sparse set of
control points, and our IK model computes rig parameters that deform the mesh to match
the control points. The user drags the points across the screen, and the mesh is updated
interactively. The control points are provided to the system as 2D image coordinates. We
train the IK model to match the points by projecting the mesh onto the image plane and
express the point loss term in Equation 4.9 in terms of distance in image coordinates. We
project the mesh onto the image plane through an orthographic projection with the camera
pointing along the Z axis. Thus, the distance in image coordinates can be computed by only
the X and Y coordinates of the vertex positions.

The IK model is trained on meshes generated from the same augmented dataset used to
train the approximation models. Excluding the time taken to generate the meshes from the
original rig function, training takes 1-2 hours.

We compare our approximation method with the dense neural network approach. IK
models are trained using both methods as the rig approximation r̃(p) from Equation 4.7.
In our experiments, the IK models trained with gradients from the dense model for Hiccup,
Valka, and Ray produce poses for which the dense approximation generates significantly
inaccurate deformations with blatant visual artifacts. For these three characters, we instead
use poses generated from the IK model trained using gradients from our approximation
method. In the case of Toothless’s rig, we evaluate the dense model with poses generated
from an IK model trained with gradients from the dense approximation. To evaluate the
models, we collect 25 user-generated control point configurations. There is no guarantee that

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 59

Table 4.1: Posing errors measured in mm and degrees. For Toothless, the IK models are
trained using gradients from the corresponding approximation. For Hiccup, Valka, and Ray,
the IK model is trained with gradients from our method and generates rig parameters for
both our approach and the dense method.

Hiccup Valka Toothless Ray
Distance Error

CNN (ours) 0.94 0.70 5.49 0.58
Dense 1.92 2.19 11.19 4.19

Normal Angle Error
CNN (ours) 2.8 1.7 3.0 1.5

Dense 5.6 8.9 4.2 8.5

these control point configurations can be matched exactly by the original rig. Next, the IK
model computes rig parameters for the control points. Finally, a mesh is generated using the
approximation method, and a ground truth mesh is generated using the original rig function
evaluated on the same rig parameters. We measure the per-vertex distance error and the
per-face normal error between the approximated and ground truth meshes. For Toothless,
the approximation model is fed poses generated from the IK model trained on its gradients.
For Hiccup, Valka, and Ray, both our model and the dense model are fed poses from the
IK model trained on gradients from our method. As seen in Table 4.1, our method more
closely matches the ground truth mesh evaluated on rig parameters output by the IK model.
Figure 4.5 shows a side-by-side comparison of the ground truth mesh and the approximated
deformation for several example control point configurations.

The larger difference in accuracy between our approximation and the dense approximation
for Hiccup, Valka, and Toothless can be explained by the types of poses output by the IK
model. The IK model is trained in an unsupervised setting, and the distribution of poses
output by the model does not exactly match the distribution of poses from the training
data. Thus, some poses output by the IK model are dissimilar from the original training
data. Higher accuracy on these poses suggests that our approximation model generalizes to
new poses better than the dense model. The results from Ray further support this conclusion.
Both the CNN and dense models for Ray are trained on poses sampled uniformly at random.
Any pose output by the IK model will lie somewhere within this distribution. As seen in
these results, the average approximation error for both the CNN and the dense model for
Ray are similar when evaluated on a uniformly random set of poses (Table 3.2) and on the
set of poses output by the IK model (Table 4.1).

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 60

Figure 4.5: Comparison of meshes deformed by rig parameters computed through the IK
model. The red dots represent the control points provided to the IK model.1

Facial Performance Capture

Real-time monocular facial performance capture systems rely on a differentiable rig to map
a video recording to an animation sequence. Zollhöfer et al. [165] provide a survey of current
state of the art methods in monocular facial tracking. Because the physical appearance of
an actor will not match the appearance of our animated characters, our system animates the
character by tracking a sparse set of facial landmark points. To track the facial landmarks on
an actor, we use our own implementation of the method described in [35], and we train the
model on the same dataset described by the authors. In our facial tracking system, we use
54 out of the 68 landmark points from the dataset. We manually identify the corresponding
points on the facial model.

To animate the mesh, we track the movement of the detected landmarks in the recording
and use the IK model to estimate the rig parameters required to match the new landmark
configuration. Because the facial proportions of the actor might differ from those of the
animated character, we track the difference between the actor’s expression and the actor’s
neutral pose. This difference is then applied to the control points for the IK model. Specifi-
cally, let l0 be the detected landmark points on an image of the actor in a neutral expression
and let l be the coordinates of the detected landmarks in the current expression of the actor.
The control points c given to the IK model are then computed as c = c0 + l− l0 where c0 is
the control point positions of the mesh in the neutral expression. Figure 4.6 shows a frame
from a recording and the resulting deformed mesh from the input.

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 61

(a) Input frame (b) Target mesh

Figure 4.6: Example of our facial performance capture method. The facial landmarks are
detected on the input image. The landmark information is passed to the IK model, which
computes rig parameter values. The rig parameters are then passed to our approximation
model to produce the deformed target mesh.1

CHAPTER 4. INVERSE KINEMATICS WITH MESH APPROXIMATIONS 62

4.5 Discussion

Because our body approximation model uses a character’s skeleton as input, our method
can be seamlessly combined with IK by first using IK methods to pose the skeleton then
computing the mesh deformations from the resulting bone configurations. However, com-
bining IK with our facial approximation model provides additional complications. The main
difference is that the facial deformations do not depend solely on a character’s skeleton.
Thus, gradients must be computed through the mesh deformations of the facial rig rather
than through bone transformations. In the case of complex facial rigs, the computational
cost of computing gradients with respect to rig parameters is significantly larger than com-
puting gradients through a skeleton. As previously indicated, gradient computation through
our fast facial approximation method is too slow for iterative IK method to evaluate in real-
time. To overcome this limitation, we have presented an additional deep-learning model that
approximates solutions to the IK problem through fixed-length feed-forward neural network.

In this work, we have presented a facial performance capture method that poses a charac-
ter based on detected facial landmarks in a recorded video. Prior methods that animate facial
rigs through performance capture typically use simple rigs, such as blendshape models [156]
or morphable models [12], due to the ease of computing gradients through the rig. However,
as demonstrated through our IK solution, the facial approximation model easily provides
gradients for more complex facial rigs. Thus, facial capture methods that have previously
been limited to differentiable character rigs can now also be applied to production-level
characters through our deformation approximation method.

63

Chapter 5

Repurposing Artist-Created Facial

Animation

5.1 Introduction

Feature animation is a labor and time intensive process that creates characters with com-
pelling and unique personalities. Taking one of these characters into an interactive appli-
cation presents a challenge. The traditional approach is to hand animate large numbers of
motion clips which can then be evaluated in a motion graph. This becomes expensive due
to the large number of possible actions required. Even a single action can require multiple
clips to avoid obvious visual repetition when idling in a specific pose.

In this chapter we repurpose the original hand animated content from a film by using
it as a training set which is then used to generate new animation in real time that can
retain much of the personality and character traits of the original animation. Due to this
choice of training data, we assume that we will have tens of minutes of usable animation.

1These images are Property of DreamWorks Animation L.L.C., used with permission.

Figure 5.1: Four frames of a synthesized roar animation for Toothless the dragon.1

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 64

Furthermore, because we use animation for a film-quality character, there is a large number
of rig parameters that our synthesis algorithm will need to control. Thus, we use a form of
the Gaussian Process Latent Variable Model (GPLVM) to embed the rig parameters of the
animation in a lower dimensional space, and we synthesize new animations using this model.

Our work presents a new method to scale the input data to the GPLVM to account
for the nonlinear mapping between a character’s rig parameters and its evaluated surface
mesh. Further, we present a novel method to synthesize new animation using the GPLVM.
Our method is based on a particle simulation, and we demonstrate its effectiveness at gen-
erating new facial animation for a non-human character. We found that GPLVMs trained
with a few homogeneous animations produce visually better results than one trained with
many animations of varying types of motions. Our method uses multiple GPLVMs, and we
present a novel method to synthesize smooth animations that transition between models. To
demonstrate the effectiveness of our work, we develop an interface for our method to receive
directions to control the animation in real-time. We developed an interactive application
to interface with our method to show that our algorithm can synthesize compelling and
expressive animation in real-time.

5.2 Related Work

Statistical methods have been used to analyse and synthesize new motion data [19, 114,
79]. In particular, the Gaussian Process Latent Variable Model (GPLVM) [82] has been
used for a number of applications in animation such as satisfying constraints or tracking
human motion [44, 146, 149] as well as interactive control [160, 91]. This model is used to
reduce the dimension of the motion data and to create a statistical model of the animation.
Modifications to the GPLVM have been proposed to make it better suited for modeling
motion data. The GPLVM tends to keep far data separated in the reduced dimensional
space, but it makes no effort to keep similar data points close together. A number of
methods have been proposed to address this limitation. Back constraints [83] have been
applied to the GPLVM to preserve local distances. Dynamic models [147, 81] have also
been introduced to model the time dependencies in animation data. A connectivity prior
[91] has been proposed to ensure a high degree of connectivity among the animation data
embedded in the low-dimensional latent space. Prior methods that model animation data
with a GPLVM have been applied to full-body motion capture data. In contrast with past
work, we apply a similar technique to hand-crafted animation for a film-quality character.
One key difference between motion capture data and film-quality hand animation is that
the hand animation lies in a significantly higher dimensional space than the motion capture
data in terms of the number of parameters needed to specify a pose.

Data-driven approaches to character control and animation synthesis have focused on
full-body tasks, which are based on motion graphs [2, 73, 88, 143, 100, 90, 108]. These
methods use a graph structure to describe how motion clips from a library can be connected
and reordered to accomplish a task. These approaches perform well with large training set;

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 65

however, smaller data sets might not be well-suited for motion graphs because a lack of
variety and transitions in the motions. Other methods for character control include data-
driven and physics-based approaches [30, 111, 91, 136]. All of these methods are applied to
full-body human motion or hand motion [1]. The tasks the controllers are trained can be
quantifiably measured such as locomotion or reaching tasks. In contrast, we use our method
to animate a non-human character’s face. Tasks for facial animation are not as easy to
quantify, and we therefore develop a novel particle simulation-based method to control facial
animation.

Facial animation of non-human characters can be controlled by retargetting recorded ex-
pressions. A commonly used method is blendshape mapping [20, 26, 130, 15, 22], which maps
expressions from an input model onto corresponding expressions from the target character.
Motion is generated by then blending between the different facial shapes of the character.
This approach uses an input model such as a video recording of a human to drive the an-
imation of the character. Unlike the blenshape mapping approaches, our method does not
control facial animation with recordings of a model. Furthermore, we do not require that the
character’s face be animated with blendshapes. We make no assumptions about the charac-
ter’s rig, but specifically the face rig we used in our results is animated using a combination
of bones, blendshapes, and free-form deformations. Other methods use speech recordings
to control the facial animation [96, 152, 32, 18]. Our method does not use video or speech
recordings to control the facial animation. Instead we use user interaction with an interactive
application as input for our animation synthesis algorithm. Another method for modeling
facial expressions allows users to manipulate the face directly and avoids unnatural faces by
learning model priors [80].

Animated characters are controlled through an underlying rig, which deforms a surface
mesh that defines the character. A variety of methods exist to map a character’s rig controls
to deformations of the surface mesh [7, 128, 103, 133, 95] as well as the inverse from a skeleton
to rig space [54]. Our method makes no assumptions about rig controls and treats mapping
from the character rig to the surface mesh as an arbitrary nonlinear function, similar to the
assumptions made in [46].

5.3 Overview

Our work computes a low dimensional embedding for a set of training animation and uses the
resulting model to generate new animation. The animation data is represented as character
rig parameters, which can be evaluated to generate a surface mesh of the character. We
make no assumptions about the mapping from rig parameters to the mesh. Because the
mapping is typically nonlinear, variation in the rig controls might not necessarily correspond
with a similar variation in the surface mesh. We therefore scale each component of the rig
parameters based on an approximation of the influence each control has on the mesh.

Next, we embed the scaled rig parameters in a low dimensional space. We first use
principal component analysis (PCA) to reduce the data to an intermediate space. We then

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 66

use then use a form of the GPLVM to further reduce the dimension of the data. Our GPLVM
variant keeps similar poses in the animation close in the latent space and keeps temporally
close poses near each other as well. For pose synthesis, we compute the maximum a posteriori
estimate for the most likely rig parameters given a low-dimensional latent point. We use the
learned models to synthesize new animations in real-time. The current pose of a synthesized
animation is represented as a particle in the latent space. We apply forces to the particle to
push it towards user-defined targets. At each time step in the simulation, we use the current
location of the particle in the latent space to generate the next pose in the animation using
the GPLVM. We found that this method creates expressive facial animations.

Because we train a separate GPLVM for each type of action, the particle simulation
by itself cannot generate animations that transition between models. To overcome this
limitation, we compute matching points between the models. These matching points are
locations in the latent spaces that map to similar rig parameters. Transitions between models
are performed by moving the particle to one of these matching points, switching models, and
starting a new simulation at the corresponding matching point in the new model.

5.4 Low Dimensional Embedding

Given a large set of training animation, represented as a sequence of rig control parameters,
our method learns a mapping between a low dimensional latent space and rig parameters.
This mapping is generated in three stages. First, each rig control in the training animation is
scaled to weight the controls proportional to changes in the final mesh. Second, the training
animation is reduced linearly using Principal Component Analysis (PCA). Finally, the data
is mapped to a lower dimensional latent space using a form of the Gaussian Process Latent
Variable Model (GPLVM). After we have found an embedding of the training data in the
latent space, we can then map any arbitrary point in the low dimensional space to values
for the rig controls.

Scaling Rig Controls

We assume that the character rig parameters p, when evaluated, produces a surface mesh.
The ith vertex of this mesh is given by the function ei(p). We only assume that the rig
evaluation function e(p) is continuous. Otherwise, we make no other assumptions about
the function to keep our method as general as possible. Thus, the evaluation function will
typically be highly nonlinear.

Depending on how the evaluation function e(p) is defined, large changes in some rig
parameters might result in small changes in the output surface mesh while small changes
for other parameters might result in large changes in the mesh. Specifically for some setting

of the rig parameters p, the value
∥∥∥∂e(p)

∂pi

∥∥∥ might be large for the ith rig parameter, but the

value
∥∥∥∂e(p)

∂pj

∥∥∥ might be small for some other rig control. Thus, there could exist some rig

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 67

controls that have a very small effect on the surface mesh but have a large variance across
the training animation. Because we will be using PCA, we want to scale each component
of the data so that the principal axes of the transformation do not align with these controls
with high variance but low influence on the mesh.

To avoid this situation, we want to scale the rig parameters about the sample average to
obtain z = W(p− p̄) + p̄ where W is a diagonal matrix and wi is the amount to scale the
ith rig parameter. We choose W such that a unit change in the scaled rig parameter space
corresponds with approximately a unit change in the surface mesh. Specifically for the ith

rig parameter,

∥∥∥∥
∂

∂zi
e(W−1(z− p̄) + p̄)

∥∥∥∥ = 1 (5.1)

where z is any possible value of the scaled rig parameters.
We use p = W−1z and the chain rule to find that

∥∥∥∥
∂e(p)

∂pi

∂

∂zi

[
w−1

i (zi − p̄i) + p̄i
]∥∥∥∥ = 1. (5.2)

We can use Equation 5.2 to solve for the weights and find that wi =
∥∥∥∂e(p)

∂pi

∥∥∥. Because

e(p) is a generally nonlinear function, Equation 5.2 cannot be satisfied for all possible values
of p for a fixed W. Instead, we approximate the norm of the partial derivative by evaluating
the rig at the sample mean p̄ of the training data and at several points about the mean. For
rig parameter i, we construct a least squares error problem to approximate the norm of the
partial derivative by

∥∥∥∥
∂e(p)

∂pi

∥∥∥∥ ≈ argmin
w

2∑

n=−2

(‖e(p̄)− e(p̄+ nσi)‖ − w ‖nσi‖)
2 (5.3)

where σi is a vector with the sample standard deviation of the ith rig parameter in the ith

position and zeros elsewhere. The values n ∈ {−2,−1, 0, 1, 2} were chosen experimentally,
and this set was found to produce good results. We solve this least squares problem separately
for each wi.

Linear Dimensionality Reduction

Typically, a fully-rigged main character for a feature film will have on the order of thousands
of rig controls. Some of these rig controls might not be used in the training data, and some
might have a small, almost imperceptible effect on the animation. To remove these controls
and simplify the data, we linearly reduce the dimension of the data by using Principal
Component Analysis. This method will treat the small variations in the data as noise and
remove it. This initial linear reduction helps improve the results of the GPLVM that is used
later.

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 68

Let z represent the scaled rig parameters of a single frame of animation. Suppose that
there are Drig parameters and that there are N total number of frames of animation in the
training set. The scaled animation data can be represented as Z = [z1, z2, z3, ..., zN]. We
then compute the singular value decomposition of the data Z̄ = UΣVT where the matrix
Z̄ is the matrix Z with the sample mean subtracted from each column of the matrix. We
choose the number of principal components dpca to use by considering the explained variance

of the model. The explained variance is given by v(d) =
∑d

i=1 σ
2
i /

∑k

i=1 σ
2
i , where σ

2
i is

the ith singular value of the normalized matrix Z̄ and k is the rank of the matrix. In our
experiments for our models, we chose dpca such that v(dpca) ≈ 0.85. With the number of
principal components chosen, we define the transformation matrix Tpca, which contains the
first dpca columns of the matrix U. We then represent the training data as the matrix
Y = TT

pcaZ̄.
We evaluated the difference between running PCA on the original and scaled rig param-

eters to determine the effect scaling the parameters has on the quality of the dimensionality
reduction. We found that when enough principal components are used to ensure that the
explained variance is at or above 85%, there is no discernible difference quality of the ani-
mations between the scaled and original rig parameters, but the GPLVMs described in the
following section tended to perform better with the scaled rig parameters. The difference
between the original rig parameters and the compressed data, measured as

∥∥z−TpcaT
T
pcaz

∥∥,
is much larger when using the scaled rig parameters compared to the unscaled parameters.
When we use a small number of principal components, animations compressed with the
scaled rig parameters are visually better than the animations compressed with the unscaled
data. Furthermore, the unscaled version often contains objectively undesirable meshes, such
as the jaw of a character passing through the roof of its mouth. Therefore, we conclude that
quantitative comparisons in the rig parameter space will not be sufficient to evaluate the
effectiveness of our method.

Nonlinear Dimensionality Reduction

Given the linearly reduced data in the matrix Y, we now compute a low-dimensional em-
bedding through the use of a Gaussian Process Latent Variable Model [82]. The GPLVM
is a generative, probabilistic model that we use to map nonlinearly the PCA transformed
data Y to a set of points X in a latent space of dimension dgplvm where dgplvm < dpca. We
model dynamics in the latent space by placing a Gaussian process prior on the points X

as described in [81]. This dynamics prior will thus keep temporally close data points close
together spatially. Because we train our models using multiple segments of animation, the
GPLVM with a dynamics prior will tend to keep separate segments far apart in the latent
space. This separation is caused by the GPLVM placing dissimilar frames of animation far
apart without trying to place similar frames near each other. Therefore, we use the con-
nectivity prior described in [91] in order to pull together similar frames of animation from
separate segments.

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 69

The GPLVM models the training data Y as the outputs of a Gaussian process from the
low dimensional embedding of the points X. We assume that each output of the GP is
independent so that

log p(Y|X) =

dpca∑

i=1

logN(yi,:|0,Kx)

= −
dpca
2

|Kx| −
1

2
tr
(
K−1

x YYT
)
+ const.

(5.4)

We denote the ith row of Y as yi,:. For the entries in the kernel matrix Kx, we use the
radial basis function, which is given by:

kX(xi,xj) = σ2
rbf exp

(
−

1

2l2x
‖xi − xj‖

2

)
+ δijσ

2
white. (5.5)

The kernel parameters σ2
rbf , σ

2
white, and l

2 are optimized when the GPLVM is trained.
Our input data is composed of multiple segments of animation, and we would like to

model the dynamics of each segment. We place a Gaussian process prior on the latent points
X. The input to the GP is time t of each frame. Each segment of animation is independent
from all others; thus, the prior places a Gaussian process on each segment separately. The
dynamics prior is given by

ψD(X, t) =

dgplvm∑

i=1

logN(Xi,:|0,Kt). (5.6)

The entries of the kernel matrix Kt are computed by the radial basis function. Fur-
thermore, Kij

t = 0 when frames i and j belong to separate animation segments. See the
description of the simple hierarchical model in [81] for more details.

The connectivity prior provides a method to model the degree of connectivity among the
latent points X by using graph diffusion kernels. We denote this prior with ψC(X). See the
description of the connectivity prior in [91] for more details.

Combining the dynamics and connectivity priors, we can express the conditional prob-
ability of X as p(X|t) ∝ expψD(X, t) expψC(X). We estimate the latent points X and
the hyper-parameters σrbf , σwhite, and lx through maximum a posteriori (MAP) estimation.
Thus, we want to maximize

log p(X, σrbf , σwhite, lx|Y, t) = log p(Y|X) + ψD(X, t) + ψC(X). (5.7)

To maximize Equation (5.7), we use scaled conjugate gradient. The initial guess for the
latent points is the first dgplvm rows of Y. We manually set the hyper-parameters for the
dynamics prior and do not optimize these values. In Figure 5.2, we show a plot of several
animation curves embedded in a three dimensional latent space.

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 70

Figure 5.2: Three dimensional latent space learned for a training set of 9 examples of a roar
with a total of 393 frames.1

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 71

Mapping to Rig Controls

Once we have a trained a model, we are now able to reconstruct rig control values from a new
point x′ in the latent space. We first find the most likely point in the dpca dimensional space
given the new point and the GPLVM model. Next, we multiply by the matrix of principal
components to obtain the scaled rig parameters. Finally, we divide by the scaling factors
and add the mean to each parameter.

The distribution of a new point y given the corresponding latent point x and the GPLVM
model M is a Gaussian distribution where

p(y|x,M) = N(y|YK−1
x kx(x), kx(x,x)− kx(x)

TKxkx(x)) (5.8)

where kx(x) is a column vector whose ith entry is given by kx(x)i = kx(xi,x). Because
the distribution is Gaussian, the most likely point in the dpca dimensional space is given by
the mean YK−1

x kx(x). The product YK−1
x can be precomputed, which would allow this

pose reconstruction problem to run in time linear to the size of the training data for the
model.

5.5 Animation Synthesis in Latent Space

New animations can be synthesized by generating a new path P = [x1,x2, ...,xt] through the
latent space. The rig parameters for each point in the path can be computed by mapping
the point from the latent space to the high dimensional rig control space. Because the latent
space provides a continuous mapping any smooth curve in this low-dimensional space will
result in smooth animation curves for each rig parameter.

To synthesize a new path, we simulate a particle moving through the latent space and
track its position over time. We control the particle using a Lagrange multiplier method
to enforce constraints on the system. For example, if we desire a path that does not stray
too far from a user-defined point, we define a constraint to enforce this behavior. To add
variations and noise to the path, we apply a random force. We found that this particle
simulation method works well for synthesizing facial animations.

In order to achieve real-time performance, the number of training points in the GPLVM
must be small. Therefore, the training animation needs to be divided into sufficiently small
subsets. Each subset of animation corresponds with a specific type of expression or facial
action such as a roar. A separate GPLVM is trained on each subset of animation. Because
these latent spaces are separate, we need a method to map points from one model to another.
With such a mapping, the particle simulation can transition between models, which allows
for the synthesis of facial animations across multiple subsets of the animation.

We conclude this sections with a descriptions of a set of low-level “commands” to provide
control of the synthesized animation. These commands are used to control the particle in
the latent space, which thus gives control of the synthesized animation. The motivation for
these commands is to develop a system reminiscent of the method an artist might use to plan

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 72

an animation of a character’s face. These commands allow for a user or an application to
specify key poses in time, and our animation synthesizer generates motion that transitions
between the poses.

Particle Simulation

We synthesize curves in the latent space by tracking the position of a particle in this space
over time.

The input to our simulation is a path p(t) that the particle follows through time. We
apply two constraints to the system and a “random” force to add noise to the path. The
first constraint ensures that the particle does not move too far from the path. The second
constraint ensures that the particle remains in areas of high probability in the GPLVM.
Because there could be times when both constraints cannot be satisfied simultaneously, we
model the path-following constraint as a hard constraint that must be satisfied, and the
other constraint is modeled as a soft constraint that can be violated.

Given some path p(t) parametrized by time, we want to ensure that the particle does
not drift too far away from the curve. To enforce this requirement, we apply the inequality
constraint ‖x− p(t)‖2 − r2 ≤ 0 to ensure that the particle at location x stays within a
distance r of the point p(t) at time t. Forward simulation with this constraint is computed
using the Lagrange multiplier method described in [8].

Let F be the force acting on the particle at time t. We use the Lagrange multiplier
method to compute an additional force Fc that we apply to the particle to ensure that the
constraint is satisfied. The constraint force is given by Fc = λg where g = x(t)− p(t). The
multiplier λ for a particle of unit mass is given by

λ =
−gTF+G

gTg
. (5.9)

The scalar G is given by

G = (ẋ(t)− ṗ(t))T (ẋ(t)− ṗ(t)) + 2α(gT ẋ(t)− gT ṗ(t)) +
1

2
β2(gTg − r2). (5.10)

The parameters α and β are selected by the user to control how quickly a system violating
the constraints returns to a state satisfying them. We set β = α2, which is suggested
in [8]. The term Fc described above will apply a force to satisfy the equality constraint
‖x(t)− p(t)‖2 − r2 = 0. To allow the particle to move freely within the radius around the
target point, we constrain the force Fc to only point towards the target point p(t). This is
accomplished by setting λ = 0 whenever λ > 0.

Our second constraint pushes the particle towards high probability regions in the latent
space. The GPLVM provides a probability distribution over the latent space p(x(t)|M), and
we use this distribution to push the particle towards “probable” regions, which can provide
better reconstructed poses than less probable regions of the latent space. However, we found

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 73

that models trained with facial animations can synthesize reasonable poses from less likely
regions of the latent space. We found that generally these lower probability poses do not
contain visual defects such as an overly stretched face or interpenetrating meshes. Therefore,
keeping the particle in a high probability region is not critical and can be violated if necessary
to satisfy the path constraint. We model this likelihood constraint as a force applied to the
particle that points in the direction of the gradient of the PDF. The magnitude of the force
is determined by the value of the PDF evaluated at the particle’s current location. If the
value is above some empirically chosen quantity v, the magnitude is small, and if the value
is below v, the magnitude is large. We model this as a sigmoid function so that the force
function is continuous for numerical integration. The magnitude is expressed as

S(t) = a

(
1 + exp

(
p(x(t)|M)− v

l

))−1

, (5.11)

and the constraint force is expressed as

FGPLVM(t) = S(t)
∂p(x(t)|M)

∂x
/

∥∥∥∥
∂p(x(t)|M)

∂x

∥∥∥∥ . (5.12)

The parameters a and l are defined by the user, and control the magnitude of the force
when the constraint is not satisfied and how quickly the magnitude approaches a. Computing
the partial derivatives of the Gaussian process takes time quadratic to the size of the training
data. If the size of the training set is small, this can be computed in real-time.

In addition to these constraint forces, we apply a random force Frand(t) to add variation
to the particle’s path. We model this force as a randomly drawn, zero-mean Gaussian
process: Frand(t) ∼ GP(0, k(t, t′)). Each component of Frand(t) is independent of all others.
The covariance function is given by k(t, t′) = α exp (−(2γ)−1(t− t′)2), where α and γ are
user-defined parameters that control the magnitude and smoothness of the random force.

This random force adds noise and variations to the particle’s movement through the latent
space. Thus, a particle following the same path multiple times will have slight variations in
each repetition, which will generate unique animations with small but noticeable differences.
Variations in the animation could be achieved through other means such as perturbing the
path p(t); however, we did not evaluate these other possibilities.

In our experiments, we simulate the particle forward in time using a fourth-order Runge-
Kutta integration method. We used a piecewise linear function for the path p(t), which
is defined by a set of points [p1,p2, ...,pn] such that p(ti) = pi and ti is the time of the
ith frame of animation. We do not integrate across multiple frames of animation to avoid
integrating over discontinuities in the piecewise path function p(t). Section 5.5 describes
methods to define p(t).

Mapping Between Models

A large set of heterogeneous motions cannot be accurately embedded in a low dimensional
(d ≤ 5) latent space. Therefore, we divide the training animation into small sets of similar

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 74

expressions and compute the embedding in the latent space for each subset separately. The
drawback of training separate models is that animations transitioning between multiple
models cannot be synthesized using our particle simulation method. This problem arises
because a continuous path between models does not exist. In this section, we describe a
method to synthesize smooth animations that transition between latent spaces.

To create a path between two models M1 and M2, we first precompute a set S of cor-
responding points in both latent spaces. A pair of matching points (x1,x2) where x1 ∈ M1

and x2 ∈M2 is included in S if ‖g(x1;M1)− g(x2;M2)‖
2 < ǫ where g(x;M) is the function

that maps x to the rig parameter space. Thus, we want to identify pairs of points in the
latent spaces whose reconstructed poses are similar. The set of matching points identifies
points in the two models, which can be used as bridges between the two models. To create
a curve that moves between model M1 to M2, we create a path in M1 that ends at a point
in S for the model and then create a path that starts at the matching point in M2.

To identify a pair of matching points for models M1 and M2, we fix a point x1 ∈ M1

and compute the reconstructed rig parameters z1 = g(x1;M1). The point x1 can be any
point; however, in our implementation, we restricted x1 to be from the set of latent points
corresponding to the training animation for the model. Next, the point z1 is transformed by
the linear dimensionality reduction specified by model M2

ŷ1 = TT
2 [W2(z1 −m2)] (5.13)

where T2 is the first d principal components of the PCA transformation given in model
M2, W2 is the diagonal matrix of scale values for each component, and m2 is the mean of
the training data used in model M2.

The next step is to find the point x2 in the latent space of model M2 such that

x2 = argmin
x

∥∥∥∥ŷ1 − argmax
y

logp(y|x,M2)

∥∥∥∥
2

. (5.14)

Because yi = f(x) + ǫ where ǫ is additive Gaussian white noise, the maximum of
p(y|x,M2) occurs when y = f∗ where f∗ = K∗[Kx]

−1Y2 is the noise-free output for the
test point x. Therefore, Equation (5.14) can be written as

x2 = argmin
x

∥∥ŷ1 −K∗[Kx]
−1Y2

∥∥2
. (5.15)

The problem of finding the best matching x2 ∈ M2 giving the point x1 ∈ M1 is now
formulated as a nonlinear optimization problem. We solve this problem by using the scaled
conjugate gradient algorithm. However, because the function is multi-modal, we run the
optimization algorithm multiple times with randomly selected initial values to attempt to
find the global minimizer. Furthermore, care needs to be taken not to take large steps during
the optimization routine because the gradient of the objective function quickly goes to zero
as x2 moves away from the training points in the model.

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 75

Figure 5.3: Four examples of the best-matching poses found between two models. In each
pair, the pose on the left is generated from a model trained on animations with grumpy-
looking animations, and the pose on the right is generated from happy-looking animations.1

In our implementation, we identified pairs of matching points between models M1 and
M2 by computing matching points x2 for each latent point of the training data for model
M1. We then evaluated the Euclidean distance between the reconstructed rig space poses
for each pair of matching points. Pairs with distances below some user-defined threshold
were kept while all other pairs were discarded. With this method, we obtained between
10-50 transition points between each pair of models. For models trained on similar-looking
animations, the transition points were spread throughout the latent space. Models trained
with distinct animations tended to have the transition points clustered around one or two
small regions of the latent space.

To create an animation that transitions between two models, we generate a curve in the
first model that ends at one of the precomputed transition points and a curve in the second
model that starts at the corresponding transition point from the first model. The animation
is synthesized by reconstructing the poses along the curves and placing the animation from
the second model right after the first. As seen in Figure 5.3, the poses reconstructed from
matching latent points in two models are not necessarily identical. As a result, there will
be a discontinuity in the animation at the transition between the two models. To overcome
this problem, we perform a short blend between the two poses in the rig parameter space at
the transition point.

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 76

Figure 5.4: Set of frames from an animation synthesized using a model trained on a set of
”surprise” expressions.1

Synthesis Control

We use the particle simulation method described above to synthesize animation for the face
of a non-human character and develop a set of commands to provide intuitive control of
the character’s expression. The high-level reasoning for using these commands is that we
want to provide control over what pose the character has at a specific time in an animation.
With these poses, our synthesis algorithm then generates transitions between the poses and
models specified in the commands.

MOVE: The move command takes a target point t in the latent space as input. The
synthesized animation is controlled by moving the particle from its current position in the
latent space to the target point. This is accomplished by setting the particle’s path function
p(t). We tested two methods to generate the path. The first method creates a straight line
from the current point to the target. The second method uses the shortest path in a complete
weighted graph G of the training data. In the graph, we represent each frame of data as a

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 77

vertex, and the weights between vertices are computed by w(xi,xj) = ‖xi − xj‖
−p, which

is similar to the graph constructed for the connectivity prior [91]. In our implementation,
we found that setting p = 4 yielded good results. We also add the start and end points as

vertices in the graph G. We re-sample the resulting path so that
∥∥∥∂p(t)

∂t

∥∥∥ is constant for all

t. This ensures that the particle follows the path at a consistent speed. We found that both
path-generating methods create compelling animation. The only difference between the two
is that the straight line path is shorter, and thus a particle following this path will reach the
target in less time.

IDLE: When the animated character is not performing an action, we would like for the
character to have an “idling” animation, and we would like to control the expression of the
character as it idles. We found that we can synthesize idling animations by picking a point
p in the latent space corresponding with a user-specified pose. This pose is a hand-selected
expression. We let the particle move randomly within a radius r about the point to create
variations of that pose. Keeping the particle within the radius is accomplished by setting
the particle’s path following function to p(t) = p for the time we want idle about the point.
To add variety to the animation, multiple user-specified points can be used. With multiple
points, the synthesis can be controlled by first picking a point from the set to move to. Next,
the particle hovers about that point for a fixed amount of time. Finally, an new point is
selected, and the simulation repeats by moving to this new point and hovering. See the
accompanying video2 for examples of synthesized idling animations.

TRANSITION: The transition command is used to generate a continuous animation
between two models. This command uses the previously described MOVE and IDLE com-
mands. To transition from model M1 to model M2, our method moves the particle from its
current position in modelM1 to the nearest precomputed matching point in the latent space.
When the particle is close to the point, it then idles about that point and the particle in
M2 also begins to idle about the corresponding matching point. We finish the transition by
performing a blend between the high-dimensional rig parameters from the two models while
the particles are idling. Please see the video2 for examples of transitions.

PLAY SEGMENT: Occasionally, we might want to play part of an animation unmod-
ified directly from the training set. We play the animation by using the embedding of the
sequence in the latent space. We use the MOVE command to position the particle near the
starting pose of the animation. When the particle is close enough, we stop the simulation
and move the particle along the path of the embedded animation. When moving the particle
to the start, we adjust the radius r to ensure that it has moved close to the start to avoid
discontinuities when the animation segment starts playing.

5.6 Results

We used the method described above to synthesize animations at interactive frame rates. The
input to our algorithm is film-quality hand animation. For a feature film, a main character
might have about 20 minutes of animation. We manually separated the data into sets of

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 78

Figure 5.5: A visualization of the layered Deformation System for Toothless’s facial rig that
enables real time free-form facial control shaping.1

similar expressions and also removed any visually bad data. For example, a character might
be off screen and is not animated, or a character might be animated for one specific camera
angle and does not look acceptable from all possible viewing angles. Using our method, we
trained a separate model for each type of expression that we manually labeled in the training
data. To evaluate the effectiveness of our method, we compared transitions synthesized with
our method to transitions generated using Motion Graphs [73]. Additionally, we synthesized
scripted animations off-line and created an interactive game featuring synthesized real-time
animation using our algorithm to demonstrate the application of our method.

We used the animation data from the hero dragon character Toothless in the feature
film How to Train Your Dragon 2. This data is sampled at 24 FPS, and 742 face rig
controls are used in our algorithm. Toothless’s facial rig is a multi-layered design [120],
which provides control ranging from coarse to fine deformations. Figure 5.5 shows the
layers of the face rig. There are four main layers of the face rig that involve both bones
and blenshapes. First, the bones control large, gross deformations of the mesh. Second,
intermediate blendshapes are applied for coarse control. Third, fine-control blendshapes are
used. Finally, free-form deformations are applied to allow custom shapes after the first three
layers have been evaluated.

To demonstrate how well our method can reuse previous animation, we use only data from
this film and do not hand animate any data specific for our applications. We identified eight
expression sets: happy, grumpy, bored, curious, and neutral, roar, head shake, and surprise.
We manually labeled animations that fit into these categories and trained a GPLVM on each
one separately. The labeling task required several hours to complete. Each model contained
between 100 to 800 frames of animation, and the latent space for each model has three
dimensions. We chose three dimensions experimentally by training models with different
dimensions. We found that for our small data sets, the quality of animations synthesized
with models of three dimensions or higher were perceptually similar. Therefore, we chose the
smallest dimension to minimize the number of unknown variables we solve for when training
the GPLVM. In total, we included 3745 usable frames of animation in our training data,

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 79

which is equivalent to 156 seconds of animation.
Because our method solves a problem similar to Motion Graphs and methods based on

Motion Graphs, we compare expression transitions synthesized with our method to those
we synthesized using Motion Graphs described in [73]. In our method, we used on average
12 frames to blend between two models. Therefore, we used the same number of frames to
synthesize the blends between segments of animation using Motion Graphs for comparison.
In the accompanying video2, we show transitions synthesized using both methods. For
Motion Graphs, we picked transitions between two sets of animation by picking transitions
points between animation sequences with small distances in the rig parameter space as
described in their work. Visually, we found that in some cases, transitions synthesized
using Motion Graphs appear sudden and unnatural. We found that these sudden transitions
occur when the two animations do not contain large movements. However, Motion Graph
blends are not noticeable when transitioning between motions containing large movements.
Our method, on the other hand is able to synthesize smooth transitions between different
expressions regardless of the amount of motion before and after the transition.

We found that because our sets of training animation are small and contain heterogeneous
motions, the Motion Graph algorithm was unable to find transitions with small distances
going towards or away from most animation segments. Thus, a motion graph built on this
data would use a small fraction of the data. Our method, however, makes use of the entire
data set and is capable of transitioning to and from any pose.

We also evaluate our method by synthesizing scripted animations. We directly used our
interface for the synthesis algorithm. We provided control over which command is sent to
the system and when. This give the user the ability to specify poses that the character
needs to make at a scripted time. Because the animation can be computed in real-time,
the user can quickly see how changes in the script affect the animation. All of the off-line
animations shown in our accompanying video are synthesized with this method. We found
that scripting an animation allows for someone without an artistic background to author
novel and expressive animations quickly.

We demonstrate the effectiveness of our algorithm through an interactive game of Tic-
Tac-Toe, in which the user plays against the computer. We synthesize animation for Tooth-
less’s face to react in real time with the results of the game. During Toothless’s turn, he
holds a ponderous expression. Although the computer logic for Tic-Tac-Toe strategy can
be computed in milliseconds, we intentionally extend Toothless’s deliberation time to allow
for expressions as if he were playing a cognitively difficult game. During the player’s turn,
he squints and scowls as if he were intimidating the player. When Toothless loses a round
in the game, he roars and expresses anger, and when the he wins, he expresses happiness.
If Toothless misses a move to block the player from winning, he displays an expression of
surprise. All of these expressions are scripted using commands described in Section 5.5.

We found that eye movement is context specific. Because synthesizing new animation
with eye movement lead to unrealistic animation, we fixed the eyes to look forward and do

2http://graphics.berkeley.edu/papers/Bailey-RHA-2016-07/Bailey-RHA-2016-07.mp4

CHAPTER 5. REPURPOSING ARTIST-CREATED FACIAL ANIMATION 80

not include the eyes’ rig parameters in the synthesis model.
For each emotional state animated in the game, we created a set of scripts containing

specific commands. When the game needed to synthesize a particular emotional expression,
it randomly picked a script from the corresponding set to run. Only the head shaking
animation was scripted using the PLAY command. All other animations are scripted using
TRANSITION, MOVE, and IDLE.

We tested our application on an HP Z840 workstation with two Intel Xeon E5-2687w
processors running at 3.1GHz, providing 16 cores in total. The machine has 32GB RAM.
To compute the surface meshes, we use LibEE [154], a multithreaded evaluation engine for
calculating Toothless’s surface mesh.

To achieve interactive frame rates for rig evaluation, the resolution of Toothless’s final
skin mesh was reduced by a factor of 5. This was done non-uniformly to ensure resolution
was retained in the most critical areas for expression, e.g. eyes and wrinkles around the
nose. Apart from the mesh resolution reduction, no other changes were made to the face rig
compared with the original production rig used in the film. LibEE is also the same engine
used to evaluate the rig during the production of the film; therefore, the animation and
deformations are all the same as used in production. We render the mesh for the real-time
application using OpenGL. The application runs successfully at 24 frames per second. Please
see the supplementary video for a recording of the application running in real time.

5.7 Discussion

Our labeled training data for each expression formed small sets ranging from 100 to 800
frames of animation. Because of the small size of these sets, GPLVMs worked well to model
the variation in the motion for each expression. However, dividing the data into separate
sets of expressions has limitations. We cannot mix expressions because the models are sepa-
rate. For example, our method is unable to combine “happy” and “surprise” expressions to
synthesize a hybrid expression from both models. Generating these mixed expressions could
be possible by training a GPLVM on a large, combined data set. However, we found that a
GPLVM trained on this mixed set did not perform well because of the dissimilarities in the
motions from the separate expressions. Additionally, the computation time required to train
the model grows cubically with the size of the training data, and we found that the training
times were unfeasibly long without using Gaussian process approximation techniques.

Our method’s ability to synthesize transitions between models depends on its ability to
find matching points between two expression models. Suppose that two GPLVM models
are so different that no pair of similar points can be found. Then synthesizing transitions
between the two might need to pass through a third model that has matching points with
the two. For example, a transition going from happy to grumpy expressions might need to
pass through a neutral expression if the happy and grumpy models share no similar points.

81

Chapter 6

Facial Performance Capture

6.1 Introduction

Facial performances are a key component of character animation. The expressiveness of a
facial animation as well as the timing are crucial for a sense of realism. Achieving this high
level of quality in a facial animation can be a time-consuming and expensive process. For
animated film, the high-quality, high-end solution involves animating a character’s face by
hand, in which artists have full control of the appearance and timing of a facial performance.
Although every aspect of the performance is directable, an artist working for a week might
only produce several seconds of animation.

For live action film, visual effects artists create highly accurate and detailed virtual
representations of actors’ heads. These facial models are typically generated through scans
of an actor’s face, which require a highly sophisticated capture rig consisting of a large array

Figure 6.1: Visualization of the full blendweight solving process. Starting with a frame from
a recorded video on the left, we employ style transfer to produce the middle image that
has the appearance of the blendshape model but preserves the expression of the actor in
the recorded frame. We then apply our blendweight optimization method to produce the
deformed facial model shown on the right.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 82

of carefully calibrated cameras [123]. Recently, data-driven approaches have been introduced
that produce similar high-quality results for actors wearing head-mounted cameras [110].
Additional work has allowed for facial performance capture to transfer an actor’s performance
onto a facial rig whose appearance does not match the actor’s [51].

Although these types of facial animations are impressive, the results take a significant
amount of time and resources to produce, which limits their use to high-end productions
such as big budget feature films or Triple-A video games. Lower budget productions have
significantly fewer options for facial animation, and there is a noticeable difference in the
quality. Our work aims to improve the accuracy of facial performance capture methods while
using inexpensive equipment. Specifically, our method does not require multi-camera facial
capture camera arrays nor does it require high-resolution scans of actors’ faces. Instead,
our approach utilizes an artist-modeled blendshape facial rig, a set of manually posed ex-
pressions on the rig, and a set of recordings captured with a helmet-mounted camera. In
our experiments, we record performances with an inexpensive webcam. In total, the only
equipment required to generate facial performance capture animations with our method is
a helmet and a single camera. The cost of these two items is a fraction of the cost of a
multi-camera performance capture system.

Given a recording of an actor, our work generates an animation to match a recorded
performance. The animated facial rig is an artist-created blendshape model, and we do not
require the appearance and facial features of the model to match those of the actor. The
resulting animation consists only of blendweights used to deform the facial rig. We do not
generate any corrective deformations to better match the recorded performance. The main
benefit of animating the rig through blendshapes only is that artists can manipulate and
edit the solved animation via the original controls of the facial rig.

Our facial performance capture method operates in several stages. First, the face is
detected in a frame, and the image is cropped and resized while the background is removed.
The image is then passed to a style transfer model that manipulates the image in pixel-space
to morph the appearance of the actor to match the appearance of the blendshape model
while preserving the actor’s expression. Facial landmarks are then detected on the resulting
image. The image and the points are passed to an iterative optimizer that estimates the
rig parameters for the given frame. Finally, eye rotations are computed after the mesh and
camera parameters have been fitted to the input frame. Figure 6.1 shows images from each
stage of our method.

Our contributions include a style transfer method designed specifically for transferring
facial expressions as well as an iterative blendweight optimizer for processing the style-
transferred images. For style transfer, we adapt the first order motion model of Siarohin
et al. [131] by segmenting the face and training a model for each component. We also
introducing additional loss terms to improve the quality of results. We design our itera-
tive blendweight optimizer to take advantage of constant features contained in the style
transferred images. Because the facial geometry, texture, and lighting are constant in the
images, the optimzer can solve for blendweight values and camera position without needing
to estimate these constant parameters.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 83

We evaluate our approach on recordings of actors whose facial features are visibly different
from the animated facial rig. Furthermore, we show that our iterative optimizer produces
the best results from images generated through our style transfer method when compared
to other approaches. All of our results are produced with an artist-created blendshape
model. The style transfer method and separate landmark detectors are the only components
that requires training. We train the model with a small set of facial recordings, and we
demonstrate that our method successfully generalizes to new actors and performances.

6.2 Related Work

A common approach for facial performance capture is first to fit a parametric model to an
image of the actor’s face and then to match the expression in the recorded face by finding
the optimal rig parameters that minimize some objective function on the image. We will
refer to this class of methods as optimization-based methods. These approaches start with
a parametric facial model (or morphable model) [12, 13], which solves the underconstrained
problem of estimating facial geometry given a static image of a head. This type of parametric
model can be created by scanning several hundred heads and then correlating their geometric
differences through PCA. FaceWarehouse [23] extends the morphable model by also including
a statistical model of facial expressions. Furthermore, morphable models can be fit to a source
and target actor to transfer expressions from one recording to another [140]. Because our
method transfers expressions through manipulations in image space, our algorithm does not
require a morphable model and can instead work with artist-created facial rigs.

Once a 3D model has been fit to the actor’s head, the blendweights are updated according
to the displacement of image features from frame to frame by solving an optimization problem
[97, 156, 98, 16]. Although fitting a blendshape model to a video captures the general motion
of the face, the eyes and the mouth are difficult to capture accurately. Methods to improve
lip animations use an example-based approach to animate the mouth [36] or use multi-
camera setups [17, 10]. Facial performance capture methods that rely on a single RGB
camera tend to miss high-frequency information in the appearance of the actor’s head such
as wrinkles. These details can be added through texture [57] or through direct manipulation
of the geometry [38]. Because our method is designed to allow artists to work with the
resulting facial animation, we restrict our algorithm to blendweight manipulation only and
avoid adjusting the facial model’s geometry to better match a recording.

Recently, deep learning methods have helped improve results in facial reconstruction and
performance capture. Deep video portraits [69] transfers the facial performance of an actor
onto a target face by fitting a morphable model to the recordings and then applying deep
learning models to synthesize a photorealistic image from a rasterized version of the facial
model. Other methods [141, 137] train deep learning models to regress parameters of a
morphable model given input images or video. In contrast, Laine et al. [78] use a neural
network to output vertex positions of a facial model and avoid using a morphable model.
They collect data from high-quality facial scans for use during model training. Similarly, the

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 84

codec avatar [101, 155, 127] generates facial geometry and view-dependent textures from a
set of input videos. Unlike these approaches, our method instead transfers the expression
of a recorded actor onto an animatable facial rig in image space. As a result, our approach
does not require facial scans of actors.

Style transfer is a key component of our method and can be loosely defined as rendering
the content of one image in the style of another. Gatys, Ecker, and Bethge [39] introduced
an iterative method for style transfer by optimizing correlations between features from inter-
mediate layers in pretrained convolutional neural networks. Subsequent work replaced the
iterative optimization step with deep learning models to allow for real-time style transfer
[62, 145, 144]. Other work includes pix2pix [59], which proposes a solution to the image-to-
image translation problem with paired training data. CycleGAN [164] addresses the same
image-to-image translation problem but works in an unsupervised setting. StarGAN [28]
addresses the multi-domain problem by utilizing pre-defined labels for images across many
different style domains. More recently, StarGAN v2 [27] replaces the domain labels from
StarGAN with style codes that are learned during model training.

Additional research addresses style transfer specifically for images of human faces. These
approaches generate facial images through image processing alone and do not rely on geomet-
ric priors such as the morphable model. X2Face [158] develops an encoder/decoder network
to learn a latent code for facial images. Similarly, DR-GAN [142] learns latent codes from
facial images in which facial variations such as expression are separated from facial identity.
Other work [161] synthesizes novel facial images given a source photo and the landmark
positions of the target pose. CarioGAN [24] synthesizes caricature images through a style
transfer component and a geometric component, which warps the style-transferred image
based on exaggerated movement of facial landmarks.

For the style transfer component of our method, we use the first order motion model [131].
This approach detects motion between pairs of images through an unsupervised landmark
detector. An image generator then uses the motion to warp image features in order to
synthesize a new image of some target style with the driving motion from an image pair. We
found this approach works well with our method because it preserves the geometry of facial
images during style transfer.

6.3 Blendweight Optimization

Given a video of a facial performance [I1, I2, ..., IT], where frame It is an RGB image,
our method outputs a sequence of deformed meshes M = [m1,m2, ...,mT], where mesh mt

matches the facial expression depicted in frame It. Here, we assume that the face depicted
in the video sequence matches the appearance of the facial mesh that is fit to the images. We
parameterize the deformed mesh with a blenshape model. The blendshape model is defined
by a set of meshes B = [b0,b1, ...bm], where the mesh b0 is a neutral expression and mesh
bi, i > 0, is some artist-defined expression such as “open mouth”. The mesh deformation
can be parameterized by a vector of blendweights x ∈ R

m where xi ∈ [0, 1] and is computed

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 85

Optimized	Parameters

Constant	Parameters Per-Frame Inputs

Blendshape
Meshes Albedo Map Ambient

Occlusion	Map
Spherical	Harmonic

Coefficients Image Detected
Landmarks

Prior
Blendweights

Iterative	Optimizer

In-Plane	Camera
Rotation Center	of	Projection Blendweights

Optical Flow

Figure 6.2: Graphical representation of our blendweight optimization method. When evalu-
ated on a video sequence, the geometry of the blendshape model, texture maps, and lighting
coefficients are held constant. For each frame sequence, the iterative optimizer is provided
the image, detected facial landmarks, optical flow between the past and current frame, and
blendweight values from the previous frame. The optimizer outputs blendweight values that
best deform the mesh to match the image. The optimizer also outputs in-plane camera
rotation and the camera’s center of projection, which best aligns the blendshape model to
the input image.

as

m(x) = b0 +
m∑

i=1

(
bi − b0

)
xi. (6.1)

Thus, to produce a sequence of meshes given a video sequence, our method needs to estimate
blendweight values X = [x1,x2, ...,xT] that correspond with the facial expressions seen in
the recorded video sequence [I1, I2, ..., IT]. Our method estimates blendweights through an
iterative optimization method (Figure 6.2). Given an image frame I in a “rendered” style
(as seen in the middle image of Figure 6.1), we minimize an objective function L(x, I) to
estimate the optimal blendweight values x for the given image I. After the blendweights
have been computed, we estimate eye rotations on the facial model to match the appearance
in the image.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 86

With an image I of a facial expression matching the appearance of the blendshape
model, we want to estimate the blendweights x that best deform the mesh to match the
facial expression depicted in the image. Our approach formulates blendweight estimation
as an inverse rendering problem in which we identify the blendweights and environment
parameters that can be used to render an image that closely matches the target image
I. Our blendweight estimation method is based on prior optimization-based approaches
[97, 156, 98, 16] that estimate geometry, skin reflectance, and illumination from images.
Because we have control over the “rendered” image style, we can keep the skin reflectance
and illumination constant across all images and only need to estimate a small set of camera
parameters and the deformed geometry through the blendweights.

Model Appearance

The “rendered” image style is generated with diffuse reflectance on the geometry and is
illuminated with a spherical harmonic (SH) lighting model. Furthermore, the same albedo
map and ambient occlusion map are used across all examples. Given a point v on the
geometry’s surface with normal n and texture coordinates u, the radiance at point v can be
computed as

c(n,u) = Iao[u]Ialb[u]
B2∑

b=1

γbYb(n) (6.2)

The illumination is approximated by the first B = 3 SH bands [121]. The SH coefficients
γb are kept constant across all images. The values Iao[u] and Ialb[u] are the bilinearly in-
terpolated values of the ambient occlusion map and the albedo map evaluated at texture
coordinate u.

Points on the geometry are mapped to the local coordinate frame of the camera and then
to the image plane through perspective projection. Let v ∈ R

3 be a point in world space,
let R ∈ SO(3) and t ∈ R

3 be the camera’s orientation parameters, and let Π : R3 → R
2

be the camera’s perspective projection function. The position of the point v on the image
plane can be computed as

p(v) = Π(R−1(v − t)) (6.3)

Thus, the image coordinates of some point mi(x) on the deformed mesh can be computed
as p(mi(x)). During optimization, all camera parameters are held constant except for the
center of projection as well as in-plane camera rotation.

Objective Function

Given a frame I from a sequence of images, we develop an objective function to estimate
blendweight values x as well as camera parameters such that the resulting deformed mesh
best matches the image when it is rendered on the image plane. For the camera parameters,
we optimize the in-plane rotation θ and the center of projection o in the objective function.
All other camera parameters remain fixed. We use the following loss:

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 87

Figure 6.3: Landmark points for the full face (left), the mouth contours (middle), and pupil
centers (right) plotted on the rendered image. The points on the full face plot, the outer
contour of the lips on the mouth plot, and the eye plot are defined as fixed points on the
mesh topology. The points along the inner contour of the mouth plot lie on the silhouette
edges of the mouth, and their location on the mesh depends on the pose and camera position.

L =wphotoEphoto + wlandEland+

wsmoothEsmooth + wregEreg

(6.4)

where wphoto, wland, wmouth, wsmooth, and wreg are user-defined positive scalars to weight each
error term in the objective function.

The photometric error Ephoto penalizes differences in the radiance on points on the mesh
compared to what is observed in the image. Alternatively, this error can be viewed as
rendering the mesh onto the image plane and comparing the color at specific points with the
image. We define the following photometric error:

Ephoto =
1

|S|

∑

i∈S

‖I[p(mi(x))]− c(ni,ui)‖1 (6.5)

The mesh is sampled at a set |S| of points that are picked uniformly at random across a
user-defined region on the surface of the mesh. This region corresponds with the visible part
of the front of the face.

The landmark error term Eland is designed to align a sparse set of points on the facial
mesh with corresponding points on the image plane. These points are manually identified on
the mesh and correspond with prominent facial features such as the eyes, nose, and mouth.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 88

Given a set of landmark points P , as shown in the left and middle images in Figure 6.3, and
a landmark detector D(I) that identifies landmarks in an RGB image, the landmark error
is expressed as

Eland =
1

|P|

∑

i∈P

∥∥∥p(mi(x))−Df
i (I)

∥∥∥
2

2
. (6.6)

The landmark detector Df (I) outputs the landmarks as 2D image coordinates. We imple-
ment the CNN-based landmark detector described by Feng et al. [34]. We construct the
training data for the detector by rendering a large set of images of the facial mesh with
different poses. Because the images are rendered from the mesh, we can compute exactly
where each landmark is located in the images, which we use to train the landmark detector.

To ensure that mouth shapes are accurately reconstructed from the input image, we
include a set of landmark points following the contours of the mouth. We evenly space the
points along the contours of the outer lips and the inner lips. The outer lip contours are
defined by the boundary between the lips and the skin around the mouth. These landmarks
are computed as fixed points on the mesh topology. The inner lip contours are defined as the
silhouette edge of the mouth as seen from the view of the camera. Because the silhouette
edge can change with respect to different mouth shapes, the landmarks for the inner lips
are not fixed to specific points on the mesh. We evenly distribute the points along the
contour according to the euclidean distance between the vertices on the silhouette edges in
the deformed mesh m(x). The middle image of Figure 6.3 depicts the landmarks on the
outer and inner lip contours. To identify the corresponding points in an image, we train a
separate landmark detector.

To promote temporal coherence between frames, we utilize optical flow maps to penalize
mesh movement in regions with little to no detected motion. For a given frame t, let F t−1

represent the optical flow map from frame It−1 to frame It. Let xt−1, θt−1, and ot−1 be the
optimized blendweights and camera parameters estimated for frame It−1. First, for each
point in the set S of sampled points from Equation 6.5, we compute the influence

αi,k =

∥∥b0
i − bk

i

∥∥
2∑

j∈S

∥∥b0
j − bk

j

∥∥
2

(6.7)

for some point i ∈ S on the mesh and blendshape k > 0 in the facial rig. Next, we compute
the magnitude of movement for each sampled point through the optical flow map. This
magnitude is represented as µi = ‖F t−1[p(mi(x

t−1))]‖2. The values in the optical flow map
are bilinearly sampled according to the projection of the mesh m(xt−1) onto the image plane.
We can then penalize changes in blendweights according to flow magnitudes as follows:

Esmooth =
m∑

k=1

exp

(
−
∑

i∈S (αi,kµi)

σ

)(
xt−1
k − xk

)2
(6.8)

where σ > 0 is a user-specified hyperparamter.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 89

Finally, to enforce sparsity in the blendweights x, we use L1 regularization: Ereg = ‖x‖1.
This sparsity-inducing regularization encourages the optimizer to activate only blendshapes
that are required to minimize the objective.

Optimization

To compute the optimal blendweight values, we minimize the objective function (Equa-
tion 6.4) for the blendweights x and the camera parameters θ and o simultaneously. When
solving for blendweights across a video sequence, we use the optimal values from the previous
frame as the initial guess for the next frame. To minimize the objective, we use the Newton-
Raphson method with box constraints on the blendweights to ensure that each value lies in
the range [0, 1]. At each iteration, we fit a quadratic to the current guess and solve for the
optimal value of the constrained problem. We use the method of Goldfarb and Idnani [42] to
solve the quadratic program. We perform a line search in the direction of the solution using
the bisection method. For a given frame, we run up to 10 iterations of Newton-Raphson and
terminate early if the line search fails to reduce the value of the error function.

Computing the silhouette edges for the landmark points along the mouth in Equation 6.6
during optimization could introduce discontinuities in the loss function. To avoid these
complications, we compute the silhouette edges from the initial guess for the blendweights.
The edges are held constant throughout the optimization process for each frame and are
only updated when optimization begins for the next frame in a sequence.

Eye Tracking

After the blendweights and camera parameters have been fit to an image, we have sufficient
information to rotate the facial rig’s eyes to match the image. Given the centers of the
pupils in the image and in the mesh, we compute the eye rotations such that when the mesh
is projected onto the image plane the pupil’s center aligns with the corresponding point in
the detected image as depicted on the right in Figure 6.3. Furthermore, to ensure that the
resulting eye rotations appear realistic, we compute the transformation as two rotations:
first about the X axis then about the Y axis, assuming that the front of the facial mesh is
pointing along the Z axis.

For the eye, let e be the center of rotation for the mesh and let p be the point on the
surface of the mesh representing the center of the pupil. We do not assume that p−e aligns
with the Z axis. Given the optimized camera parameters and the image coordinates of the
center of the pupil detected in the frame, we construct a ray that deprojects the point into
the 3D scene. Let t be the intersection of this ray with a sphere centered on e with radius
r = ‖p− e‖2. The eye rotations are then computed as the rotations about the X and Y axes
that align p− e with t− e.

We first calculate the rotation about the X axis as the angle between p − e and an
intermediate vector a. The Y rotation is then computed as the angle between a and t− e.
This intermediate vector is the intersection point of the plane x = px − ex, the plane

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 90

First	Order	Model

Driving	Image

Source	Image

Landmark
Detector

Optical	Flow
	Model

Warp

Image	Generator

Output	Image

Figure 6.4: Style transfer network evaluated with a source image I0 and a driving image Id

from the same video. The landmark detector computes the landmark positions µ and the
transformation matrices J. These outputs are then given to the optical flow model along
with the source image. This model produces a dense flow field and an occlusion map, which
are given to the generator along with the source image. The image generator then outputs
an image that closely matches the driving image Id.

y = ty − ey, and the sphere centered on the origin with radius r. If there are two points in
this intersection, we select a as the point on the same side of the plane x = 0 as p − e. If
there is no intersection, then the deprojected ray from the image plane does not intersect
the sphere, and we cannot estimate eye rotations for this frame with this approach.

Our eye tracking approach works well when the pupils are correctly positioned in the
style transferred input image. However, the style transfer method that we use occasionally
misplaces the pupils in the image. When this error occurs, our eye tracking method produces
undesirable cross-eyed results. In these cases, we compute the rotation for only one of the
eyes and apply this transformation to both eyes.

6.4 Style Transfer

Given a recording of an actor, we want to synthesize a new recording that preserves the
expressions of the actor but swaps the identity with that of the facial rig so that our iterative
optimizer can fit the blendshape model to the image. Our style transfer method directly
manipulating images without knowledge of the underlying digital face.

Our approach is based on the first order motion model [131], which transfers motion from
a video sequence onto a separate subject. We use this method to transfer the motion in a
recording of an actor onto an image in the “rendered” style for blendweight optimization.
The model uses a source image in the “rendered” style and manipulates it according to the
motion observed between two frames from a video recording of an actor. Thus, the motion
of an actor’s facial features are directly transferred onto an image of the facial model without
any direct knowledge of the underlying blendshapes.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 91

Style Transfer Model

Our style transfer method follows the same architecture described by Siarohin et al. [131].
The model consists of three components: an unsupervised landmark detector, an optical flow
field generator, and an image generator. Given an input image V , the landmark detector
outputs k image points µ(V) ∈ R

k×2 as well as a 2×2 transformation matrix J(V) ∈ R
k×2×2

for each point. The landmark detector processes a source image and a frame from a driving
video, and the optical flow model processes the outputs from the landmark detector. The
optical flow model produces a dense motion map along with an occlusion map, which is
then used by the image generator module. The image generator processes the source image
through several convolutional layers. Next, the the intermediate feature map is warped ac-
cording to the dense motion map, and the features are masked by the occlusion map. The
warped features are then passed through several residual layers and finally several convolu-
tional and upsampling layers to produce an output image. Figure 6.4 depicts the first order
model evaluated on a source and driving image of the same style. We only describe in detail
the components of the first order model related to our modifications of the original method.

The model is trained to reconstruct a driving image Vd from two components: an image
V0 of the same style and a sparse set of features computed from both images. We optimize the
model parameters using the perceptual loss as well as the equivariance constraint proposed
by the authors of the first order model. Additionally, we introduce a landmark distance loss,
a background-deterring loss, and a regularization term to promote a better distribution of
landmark points and transformation matrices across human faces in input images. Figure 6.5
shows a comparison of landmarks points detected by models trained with and without these
additional loss terms. Given a driving image Vd and the reconstructed image V̂d generated
by the first order model, the loss function is defined as

L(Vd, V̂d) =Lpercep(Vd, V̂d) + Lequi(Vd)+

Ldist(Vd) + Lbg(Vd) + Lreg(Vd).
(6.9)

Our proposed loss terms primarily affect the unsupervised landmark detector. To gen-
erate k landmark coordinates, the model first produces one heatmap for each landmark.
The softmax operation is then applied to the heatmap to produce a set of confidence maps
C(Vd) ∈ [0, 1]h×w×k. The 2D positions are then computed through the summation of the
confidence maps µi(Vd) =

∑h

y=1

∑w

x=1Ci(Vd). Because our use-case only requires that the
face in an image be accurately reconstructed, the landmark detector should place all points
on the face and ignore the background in an image. To achieve this goal, we first replace the
background in the input image with solid black to remove any unnecessary image features.
Second, we apply a background-deterring constraint to the confidence maps as follows:

Lbg(Vd) = λbg

k∑

i=1

h∑

y=1

w∑

x=1

Ci(Vd)[x, y] · M(Vd)[x, y] (6.10)

where λbg > 0 is a user-defined hyperparameter. Ci(Vd)[x, y] indicates the pixel value at the
coordinate (x, y) in the confidence map for landmark i, and M(Vd) ∈ {0, 1}h×w is a binary

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 92

(a) Full loss function (b) No loss terms Ldist,
Lbg, and Lreg

(c) No Segmentation (d) Original First Or-
der Motion Model

Figure 6.5: Visualization of landmark points generated by a model trained on the full ob-
jective function, a model trained without the distance, background, and regularization loss,
a model trained without facial segmentation, and the original first order motion model.

mask that is nonzero for pixels lying on the background of the image. Figure 6.6 shows an
example of a video frame with the background removed along with the mask M.

The distance error Ldist(Vd) penalizes overlapping landmarks and landmarks that are in
close proximity. Given the set of k landmarks µ(Vd), we compute the pair-wise squared
euclidean distance between the landmarks dij = ‖µi(Vd)− µj(Vd)‖

2
2. The distance loss is

then computed as

Ldist(Vd) = λdist

k∑

i=1

k∑

j=i+1

exp(−dijT) (6.11)

where λdist > 0 and T > 0 are user-defined hyperparameters.
The regularization term Lreg(Vd) penalizes large eigenvalues in the transformation ma-

trices J(Vd). These matrices are part of affine transformations in the image space. Large
eigenvalues would indicate regions undergoing significant stretching and scaling deforma-
tions. On human faces, the mouth region typically exhibits the largest deformations across
various poses, and the transformation matrices can reflect information about stretched and
deformed parts of the mouth. However, we found that penalizing large transformations in
J(Vd) produces visually better results when the first order model is used for style transfer.
To regularize these matrices, we apply the following loss:

Lreg(Vd) = λreg

k∑

i=1

‖Ji(Vd)− I‖2F (6.12)

where I is the 2× 2 identity matrix. Although we could penalize large eigenvalues in J(Vd)
with a rotation-invariant loss, we found that Equation 6.12 is simple to implement, produces
good results, and can easily be differentiated.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 93

Figure 6.6: Example of a recorded frame (left) with the background removed (middle) and
the mask M used for the background-deterring objective.

Model Evaluation

During training, the style transfer network is optimized to reconstruct a frame Vd in a driving
video from a source frame V0 taken from the same recording. However, we want the network
to transfer the expression of a face in a recorded video onto an image with a “rendered”
style. Given a frame Vd from a driving video along with a reference frame V0 and a source
image I0 that both depict the same facial expression (such as a neutral expression), the
model produces an image Id that preserves the style of the source image I0 but contains the
expression in the video frame Vd.

To use the first order motion model for style transfer, we manipulate the coordinates
and transformation matrices output by the landmark detector module. These outputs serve
as a low-dimensional representation of the input images and functions as a bottleneck for
the image generator. Given a driving image Vd and a source image V0, the optical flow
module receives the relative motion of the landmarks as well as the relative change in the
transformation matrices. The relative motion for the landmarks is given by µ0→d = µ(Vd)−
µ(V0), and the change in the transformation matrices is given by J0→d = J(Vd)J(V0)

−1.
The first order motion model transfers facial expressions by applying the relative motion

in landmarks between the frames V0 and Vd onto the source image I0. We approximate
landmark positions for the to-be-estimated image Id as follows:

µ(Id) ≈ µ(I0) + µ0→d. (6.13)

Because the image Id does not exist, the landmarks µ(Id) are estimated by applying the
motion of the landmarks between video frames V0 and Vd onto the landmarks from the
“rendered” source image I0. Similarly, we transfer the relative change in the transformation
matrices produced by the landmark detector. This change is expressed as follows:

J(Id) ≈ J0→d · J(I0). (6.14)

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 94

Style	Transfer

Landmark	and	Transformation
Correction

Source	Image

Driving	Image

Reference
Image

Output

Figure 6.7: Landmark and transformation matrix correction during style transfer evaluation
with a source image I0 in the “rendered” style. Evaluation proceeds as illustrated in Fig-
ure 6.4 with images I0 and Vd. Landmark and transformation correction occurs between the
landmark detector and the optical flow model. The landmark and transformation correction
component provides the optical flow model with an approximation of the coordinates for
µ(Id) and the transformations J(Id).

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 95

Figure 6.8: Example of an input frame (left) with the a mask applied to the mouth (middle-
left), the right eye (middle-right), and the left eye (right).

Figure 6.7 graphically depicts how the first order model is used to produce style transferred
image.

Facial Segmentation

Although the style transfer network can operate on the full image of a face, we found that
more accurate results were achieved by segmenting the face into regions and training a
separate model on each facial region. Specifically, we have a model for the full face, a model
for the mouth, one model for the left eye and eyebrow, and one for the right eye and eyebrow.
These facial regions are identified in the input images through a separate facial landmark
detector. Figure 6.8 shows an example frame along with masks applied to the three separate
regions of the face.

For each region in an image, we identify corresponding landmarks and compute the
convex hull containing those points. The convex hull is then expanded by a user-defined
margin, and the shape is used to mask the image so that only the relevant facial region is
visible. During model training, the unmasked images are given as input. When evaluating
the objective function (Equation 6.9), the driving image Vd and the reconstructed image V̂d

are masked. Thus, the model has access to the full image but only needs to output the image
within the masked region. Each style transfer model is trained separately. Figure 6.5 shows
a comparison of detected landmark positions for models trained with and without facial
segmentation. For the style transfer models, we allow 24 landmark points for the models
trained on the full face and mouth. We allow 12 points each for the models trained on the
eyes.

When evaluating the model for style transfer, we merge the results together to construct
a single image. First, the model of the full face is evaluated. Next, the remaining style
transfer models are evaluated separately and merged onto the output of the model of the
full face. The images are merged according to the mask of the driving image Vd. Pixels
within the mask are copied onto the combined image while pixels outside the mask remain
unchanged. Although the output image is of the “rendered” style, we found that reasonable

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 96

results are achieved using masks from the driving image Vd to merge the results of the style
transfer models onto image Id.

Image Super-Resolution

Due to memory and computation restrictions, our implementation of the style transfer net-
work outputs images of size 256 × 256. However, the blendweight optimization method
benefits from higher resolution images. To increase the resolution of the image, we train SR-
GAN [87] on images of the “rendered” style only. Because we can produce rendered images
of arbitrary size, generating a dataset with higher resolution images is trivial. We use the
super-resolution model to double the image resolution to 512× 512.

6.5 Model Training

For training, the style transfer networks require a set of images in the “rendered” style,
featuring a diverse set of facial expressions as well as a set of images of actors covering many
head shapes, facial appearances, and expressions. To create the “rendered” style images, we
rasterize images of the blendshape model posed with randomly generated expressions. The
camera parameters and lighting conditions are held constant across all images. The random
expressions are generated by augmenting a small set of artist-created poses. To synthesize
a new pose, we first divide the blendweights into two sets: one set for the eyes and upper
half of the face and another set for the mouth and the lower half of the face. Next, we select
two poses uniformly at random from the set of artist created poses. For each pose with
probability 0.5, we randomly choose to mirror the expression or use the original pose. A
new pose is constructed by combining the set of upper half blendweights from one pose with
the set of lower half blendweights from the other pose. Finally, we add uniformly random
noise to all non-zero blendweights in the synthesized pose. The noise is drawn i.i.d. from the
distribution U(−0.15, 0.15), and the resulting blendweight values are clamped to the range
[0, 1].

We construct the image set of actors by recording performers through a helmet-mounted
webcam. The camera records the performance at 30 FPS. Each recording consists of the
actor physically expressing various emotional states as well as the actor speaking both ex-
temporaneously as well as from a script.

For rendered images and images of actors, we crop the image around the face, replace
the background with black and resize the image to a resolution of 256 × 256. We use a
landmark detector trained on a distribution of 68 facial landmarks as defined in the iBUG
300-W dataset [125]. With the detected landmarks, we crop each image so that the image is
square and so that the face occupies the center of the image. We then compute the convex
hull of the landmarks and set to black any pixel that lies outside of the convex hull.

During training of the style transfer model for each batch sample, we randomly pick with
0.5 probability to use the rendered image set or any of the recorded image. If we choose to

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 97

use an example from the recorded images, we pick one recording uniformly at random from
the set of all recordings of all actors. Then two images from the same recording are selected
uniformly at random with one image as the source and the other as the driving image. For
the landmark detection models used for blendweight optimization, we compute landmark
positions for all of the “rendered” images in the training set. These models and the SRGAN
model are only trained on this “rendered” image set, and the images of recorded actors
are not used. When training all of the models, we augment the data by applying random
rotations, translations, and thin plate spline warps to the input samples.

6.6 Results

To evaluate our method, we construct a dataset of video recordings and one blendshape
model along with a set of artist-created poses for the facial rig. Our training set of video
recordings consists of 92 minutes of facial performances across 14 actors, including 12 male
actors and 2 female actors. One additional male and one female actor are recorded and
used for evaluation purposes. The videos are captured with an inexpensive webcam and are
recorded at a rate of 30 FPS with a resolution of 1280× 720. The camera is mounted on a
helmet worn by the actor to eliminate all head rotation relative to the camera.

The artist-created facial blendshape rig is modeled after one of the actors in the training
set of our experiments. The model consists of 11,406 vertices. In the blendweight optimizer,
we deform the mesh with 92 blendshapes. To generate the training images for the style
transfer model, an artist manually creates 104 poses that cover the full range of emotional
expressions and the full range of visemes of the blendshape model. We augment the poses
using the method described in the previous section to produce a set of 2,000 samples.

We implement our method in Python and use TensorFlow for the deep learning com-
ponents. We run our method on a 20 core machine running at 2.20 GHz with one Nvidia
Titan RTX GPU. Training the four style transfer networks takes roughly one day in total.
When solving for blendweights, our iterative optimizer runs at a rate of roughly 20 seconds
per frame.

The quality of the style transferred image has a significant impact on the results from
the blendweight optimization process. Our blendweight solver assumes a fixed head shape
for the blendshape model. Thus, the appearance of the physical structure of the face must
be preserved in the stylized image while also accurately transferring the expression from a
recorded actor. In our experiments, we first compare our style transfer method’s ability to
reconstruct images from the same style domain. For our second experiment, we construct
a small set of artist-posed expressions from recorded video frames and use these rendered
images as an approximation for the ground truth blendweight values. In this evaluation, we
compare deformed meshes estimated through our style transfer results and through other
style transfer approaches.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 98

Table 6.1: Average video reconstruction errors using our method, our method without seg-
mentation, our method without our additional loss terms, the original first order method,
and X2Face.

Test Train
RMSE LPIPS RMSE LPIPS

Our Method 10.9 0.277 6.8 0.176
No Segmentation 11.8 0.269 7.2 0.182

No Ldist, Lbg, and Lreg 11.4 0.279 7.1 0.181
First Order 11.6 0.273 7.5 0.180

X2Face 17.3 0.370 13.5 0.291

Style Transfer Results

We first compare the accuracy of our method when reconstructing an image from the same
style domain. We evaluate the performance of our method against four other approaches.
First, we test a variant of our approach in which a single network generates the whole image
instead of using multiple networks that focus on specific regions of the face. The number of
landmarks tracked by this variant is the same as the sum of the landmarks across the four
networks in our approach. Second, we compare against another variant of our model that
is trained with image segmentation but without our proposed loss terms in Equation 6.9.
Finally, we evaluate our method against the original first order motion model [131] as well
as X2Face [158], a model that produces a latent representation of an image and reconstructs
it through image warps on a different image. Thus, all of these methods take a source
image and a driving image as inputs and reconstruct the driving image through some latent
representation. For the source image, we use a recorded frame of the actor in a neutral
expression.

We train all of the models with the previously described image dataset. For evaluation, we
run the models on roughly 6 minutes of recordings of a male actor and a female actor not seen
during training. We also evaluate the reconstruction of recordings of one male and one female
actor contained in the training set to evaluate each approach’s ability to generalize. Each
model reconstructs the recordings, and we compute the difference between the reconstruction
and the original. We measure the differences with both the root mean squared error (RMSE)
and the Learned Perceptual Image Patch Similarity (LPIPS) metric [163], which measures
image similarities through deep visual features. RMSE is measured on the images with colors
scaled to the range [0, 255]. As seen in Table 6.1, our method shows a slight improvement
on the root mean squared error over the original first order model as well as X2Face. Lower
values are better for both error measurements.

Figure 6.9 shows the reconstructions for two recorded frames from the test set. The
images from X2Face show the largest visual differences. The clear difference in the recon-
struction quality suggests that the X2Face method might not generalize well to new faces

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 99

(a) Original (b) Ours (c) No Segmentation

(d) No Ldist, Lbg, Lreg (e) First Order (f) X2Face

Figure 6.9: Side-by-side comparison of reconstructed images.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 100

Table 6.2: Posing errors (average distance error in cm). Errors are measured on sets of
artist-created poses for recordings of two male and two female actors. For each recording,
the point-wise distance errors are measured on a set of locations sampled uniformly at
random across the front of the facial model. The second set of errors are measured from the
point-wise distances of a specific set of facial landmarks on the mesh.

Male Actors
Test Set Training Set

Front Face Landmarks Front Face Landmarks
Our Method 0.25 0.27 0.19 0.25
First Order 0.26 0.28 0.23 0.29
CycleGAN 0.26 0.30 0.32 0.36

Neural Style 0.62 0.76 0.83 1.15

Female Actors
Test Set Training Set

Front Face Landmarks Front Face Landmarks
Our Method 0.28 0.30 0.30 0.33
First Order 0.28 0.30 0.34 0.35
CycleGAN 0.37 0.40 0.35 0.37

Neural Style 0.75 0.87 0.83 0.97

when trained on our small dataset with a small number of unique actors. The bottom row
in the figure shows a limitation of our method and the first order method. The models are
unable to reconstruct the wrinkles in the actor’s face. Because the models generate the im-
ages partially through image warps, they are not well-suited for reconstructing pose-specific
features, such as wrinkles, that cannot be reconstructed through image warps alone. We ob-
serve this behavior when using the model to transfer facial expressions onto the “rendered”
style. However, we found that our blendweight optimization method produces reasonable
results despite the lack of wrinkles in certain expressions.

Blendweight Optimization Results

Next, we evaluate the quality of solved blendweights given a style-transferred image. We
found that preserving the visual proportions of the blendshape model in the “rendered” image
style is essential for the accurate performance of our blendweight optimization method. To
test the quality of the style-transferred images, an artist manually poses the blendshape
model to match several frames from both the training set and test set of recordings. We
then use the blendweight optimizer to solve for the poses in the set of images. An error
is then computed from the distance between the surface of the artist-posed mesh and the
blendshape face deformed by the optimized pose.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 101

An ideal comparison would have a ground truth animation fit to the evaluation recording.
However, because the geometry of the blendshape model does not match the geometry of
the recorded actor, we cannot compare a solved animation to a 3D reconstruction of the
actor’s performance. As an alternative, an artist poses the facial model to a subset of
frames from recordings of both male and female actors in the training and test sets that
we use for evaluation. We assume that the professional artist can accurately reconstruct
a facial expression from a reference image, and we use these manually posed expressions
as a proxy for the ground truth. Animating and keyframing the blendshape model for the
full recording would provide the most data for comparison. However, this process is too
time-consuming, and blended poses between keyframes in the animation might not precisely
match the corresponding facial expressions in the recordings. Thus, we settle for a subset of
static poses modeled after specific frames in the video recordings.

In our experiment, we compare the results of the optimization method applied to images
generated by our style transfer method, the first order motion model [131], CycleGAN [164],
and A Neural Algorithm of Artistic Style [39]. Because CycleGAN is designed to translate
images from only one predefined style domain to another, we train the model on frames of
the recordings in which it is evaluted. In contrast, our style transfer approach is not limited
to a pre-determined style domain, and the model does not see frames from the recordings
in the test set during training. Although StarGAN v2 [27] would be an ideal method for
comparison, we were unable to train the model successfully with our dataset.

We use each style transfer method to produce a sequence of 256×256 images. The images
are then upsampled via our trained SRGAN model. Next, we detect annotated landmark
points on the “renered” style images (Figure 6.3). Finally, we generate an animation for the
full sequence of images and collect a subset of poses corresponding with the frames in which
we have ground truth data.

To compare individual frames of an animation quantitatively, we compute the distance
of a set of points. Because the topology of the mesh never changes when deformed by
blendshapes, we can compute corresponding points on the surfaces of two deformed meshes.
Given a set of n frames and K points, let pi

k represent the point k on the ground truth
deformed mesh for frame i, and let p̃i

k represent the point k on the deformed mesh computed
through solved blendweights. We compute the error as the average distance between the
corresponding points

D =
1

nK

n∑

i=1

K∑

k=1

∥∥pi
k − p̃i

k

∥∥
2
. (6.15)

We evaluate the error on two different sets of points. First, we construct as set of points
by sampling 1,000 points uniformly at random across the surface of the front of the facial
mesh. The second set of points consists of the landmarks for the full face as depicted on
the left in Figure 6.3. We evaluate our method across four recordings consisting of two male
and two female actors. One of the male actors and one of the female actors are included in
the training set used to train our style transfer models. For CycleGAN, we train a separate
model for each recording. These CycleGAN models are trained on a dataset consisting of

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 102

rendered images of the blendshape model for one style domain, and all frames from a single
recorded actor as the other style domain.

Table 6.2 shows numerical results of our experiment. In all cases, our method performs the
best while the Neural Algorithm of Artistic Style produces the largest error. For the neural
style method, these large errors can be attributed to the method transferring the textures
in the images without warping the image to match the facial structure of the rendered
blendshape model. Our blendweight optimization method assumes a fixed facial structure in
the input image. The neural style method generally preserves the positions of facial features
in the image, and our blendweight solver cannot compensate for these resulting differences in
facial feature proportions. The error from the neural style images becomes even larger when
the actor’s facial geometry is significantly different from the blendshape model’s geometry.

Figure 6.10 shows side-by-side examples of recorded frames with the solved pose from
images of the different style transfer methods. The frames are selected from recordings of
the male and female actors in our test set. In comparison to CycleGAN, we can see that
poses solved from images generated through our style transfer method more closely match
the the shape of the mouth as posed by the artist. However, in some cases, we can see that
poses solved from the CycleGAN results more accurately match the eyes when they are fully
closed in a recorded frame. Figure 6.11 shows a side-by-side comparison of the same recorded
frames with the style transferred results. In this set of images, we also observe these subtle
differences in the eyes and the mouth shapes.

6.7 Discussion

We have presented a method for facial performance capture consisting of a style transfer
component and a blendweight optimization component. Our method does not require high-
quality facial scans nor does it require that a recorded actor’s appearance match that of the
target facial rig. Instead, our method requires a blendshape model, example poses covering
a full range of expression on the facial rig, and a training set of facial performances recorded
from a helmet-mounted camera. As a result, any actor, regardless of appearance, can drive
a facial rig through our performance capture method. Furthermore, the resulting animation
is expressed only as a sequence of blendweights, which artists can use to edit an animation
to their liking.

Because the blendweight optimizer seeks a solution that best matches the appearance of
a face in a single frame, the resulting solved pose might use a different set of blendweights
compared to what an artist might use. However, the appearance of an expression would
be similar to what an artist would create. This difference is a consequence of a large set
of blendshapes in a facial rig. Similar facial expressions can be created through different
combinations of blendweights. Additionally, the optimizer considers a single frame in isola-
tion when solving for blendweights. This approach loses the context of a facial performance
that could provide vital cues as to which set of blendweights to activate. For example, in
a recording of an actor talking, an animator can identify phonemes through the audio and

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 103

(a) Recorded (b) Artist Pose (c) Our Method (d) First Order (e) CycleGAN (f) Neural Style

Figure 6.10: Side-by-side comparison of the deformed blendshape model for various frames
of the male actor and the female actor in the test set recordings. From left to right, the
columns show the original recorded frame, the facial rig posed by an artist to match the
recording, the posed rig generated from our style transfer method, the original first order
motion model, CycleGAN, and the neural algorithm of artistic style.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 104

(a) Recorded (b) Our Method (c) First Order (d) CycleGAN (e) Neural Style

Figure 6.11: Side-by-side comparison of style-transferred results for various frames of the
male actor and female actor in the test set recordings. From left to right, the columns show
the original recorded frame, results from our method, the original first order motion model,
CycleGAN, and the neural algorithm for artistic style.

CHAPTER 6. FACIAL PERFORMANCE CAPTURE 105

activate corresponding shapes to produce the desired mouth appearance. Our method does
not utilize any contextual information in a recording and might match appearances through
different blendshapes. Future work could incorporate additional information, such as audio,
to help produce animations more similar to what an artist would create.

Although our method produces believable animations from recordings, future improve-
ments could be made to both the style transfer method as well as the blendweight opti-
mization method. Because our style transfer approach relies on image warping through
landmarks, the method has difficulties reproducing pose-specific image features such as fa-
cial wrinkles caused by smiling. Furthermore, changes in lighting create challenges for the
style transfer method because is reduces an image to a set of landmarks and matrix trans-
formations. Changes in lighting or color cannot easily be encoded in the landmarks. We
avoid this issue by ensuring that videos in our training data are captured under constant
lighting as well as using a fixed lighting environment for the “rendered” style images in the
training data. When performing style transfer on new videos, the actor does not need to
be recorded under constant lighting conditions. Because the style transfer method cannot
easily encode lighting variations in the landmarks and linear transformations, any changes
in lighting in a new recording are lost. When an expression is transferred to the “rendered”
style, the constant lighting is preserved, which is the behavior that we desire.

As presented, our blendweight optimization method does not consider the interior of
the mouth when matching the facial rig to a performance. One major consequence of this
formulation is that our method can produce an animation where the teeth penetrate the
lips, which produces an undesirable visual appearance. Future work could explore methods
that track teeth as well to prevent intersection between the teeth and lips of the model.
Furthermore, our method does not track the tongue. Animating this part of the mouth
could further improve the realism and accuracy of our facial performance capture system.

Finally, our method requires an actor’s performance to be recorded from a helmet-
mounted camera. This setup ensures that the actor’s head does not rotate relative to the
camera. Avoiding head rotations is necessary for our blendweight optimization method be-
cause our approach only estimates in-plane camera rotations and the camera’s center of
projection. It would be unable to handle any arbitrary camera rotation. Future work could
explore tracking head rotations so that actors will not need to wear a helmet-mounted cam-
era. However, the style transfer method would need to preserve the visual appearance of
the facial geometry across head rotations. If the proportions are not preserved, then the
blendweight optimizer will not produce accurate results because it cannot deform the geom-
etry of the mesh outside of the given blendshapes.

106

Chapter 7

Conclusion

7.1 Summary of Contributions

Recent advances in machine learning, and deep learning in particular, have provided new
tools to apply to problems in character animation. To address growing complexity of film-
quality character rigs, I have proposed methods to compress the computational cost of eval-
uating mesh deformations. Previously, these types of rigs have been specialized to individual
films. In some film studios, these characters might even be inaccessible in future projects
due to incompatibilities with updated animation software.

However, my proposed methods offer a solution to these common challenges with char-
acter rigs. First, my approach reduces the computational complexity of character rigs so
that they can be evaluated real-time on low-powered, consumer-quality devices. As a result,
my approach can increase the level of complexity of characters in games and interactive
applications. Second, because these rig approximations are implemented as neural networks,
character rigs can now be expressed as a fixed-length set of model parameters. This rep-
resentation provides a common format in which any character can be expressed. Because
deep learning libraries and packages are readily available, applications that evaluate these
models can easily be written. Once trained, these approximation models no longer depend
on the original animation software used to create the rig. The model parameters can also
be used as an archival method for characters authored on outdated rigging software. As
another benefit, the models allow for character sharing between animation studios in cases
where sharing their proprietary rigging software is an impracticality.

Additionally, I have proposed tools for character control and assisted animation author-
ing. As digital characters continue to grow in complexity, animators continually spend more
effort to control additional character details to achieve an ever-increasing level realism and
expressiveness. Although automated methods may never match the quality of artist-created
animations, I have developed methods that allow artists to control coarse movements and
deformations of a character so that they can focus their energy on finer-scale details that
make an animation believable. The inverse kinematics methods allow artists to pose char-

CHAPTER 7. CONCLUSION 107

acters quickly through manipulation of a small set of control points rather than a long list
of rig parameters. Additionally, my proposed facial performance capture method generates
animations through the original controls of the rig. Afterwards, an animator can then use
the familiar rig parameters to clean-up and fine-tune the performance. Finally, my ani-
mation synthesis approach aims to extend the lifetime of film-quality animation. Artists
spend a significant amount of effort to produce character motions for a movie. As a way to
reuse these high-quality animations, I have proposed a method to learn from these examples
and produce controllable facial animations that follow a similar artistic style of the original
animations.

7.2 Limitations and Future Work

My proposed research has shown promising results, but there are always opportunities for
improvements and extensions. In each chapter, I have listed limitations specific to each
project separately. Here, I will discuss limitations and future work relating to my proposed
research when considered as a whole.

The rig approximations for both the body and the face operate only on a single pose to
compute mesh deformations. When posing characters, animators typically work with rigs
that operate on single-frame poses and exclude time-dependent motions such as cloth and
hair simulations. These types of simulations are often expensive to compute, but do provide
an important level of detail and realism to an animation. Incorporating these simulations
in a deformation approximation would require extending the models to handle temporal
data. Furthermore, collisions with the cloth, hair, and body meshes could pose additional
challenges for a real-time approximation method.

In addition to improving rig evaluation times, an approximation method has the po-
tential to help artists with the character rigging process. As demonstrated with the facial
approximation method, the deformations can be transferred to an entirely different facial
mesh. However, this is not possible with my proposed body approximation because it relies
on a fixed mesh topology for the character. Furthermore, the approximation models learn
deformations specific to the rig on which they are trained. If the models were transferred to
a new character with significantly different body and facial proportions, the approximations
would produce undesirable results. For example, if a new character’s eyes were twice as large
as the character on which an approximation model is trained, then a fully closed eye on the
original character would produce only half-closed eyes on the new character. Challenges
like this need to be addressed in order to transfer deformations learned from one rig onto a
character mesh with different topology and proportions.

For animations, artists could benefit the most from methods that generate animation,
which provides a starting point for the artist. Thus, artists can spend their efforts focusing
on fine-scale stylistic details that are expected in high-quality animations. The facial perfor-
mance capture method that I have proposed is capable of providing this starting point for
artists because it produces animations only through the existing rig controls of the charac-

CHAPTER 7. CONCLUSION 108

ter. However, my approach, like similar related solutions, prioritizes matching the physical
appearance and movements of a recorded actor. In some cases, certain desired emotional
expressions might not be captured in the generated animation, and an artist might choose to
rework the animation from scratch if the performance capture version is significantly different
from the desired look.

In contrast, my animation synthesis method learns to generate new motions from existing
artist-created examples. Thus, producing an animation segment with a desired emotional
expression is straightforward. However, the high-level controls of the system do not provide
fine-scale influence over the synthesized motion. For example, the method would struggle
to produce a timed sequence of visemes for a talking character. If combined with the facial
performance capture method, this approach could provide physical emotional expressions
and stylistic movements for characters while the performance capture approach provides
controls for physical movement of facial features such as eyes and mouth. The system would
give an artist more control over the generated animation and would not be limited to the
exact physical motion of a recorded performance. This combined system could either detect
the emotional expression from a recording or allow an artist to script times when certain
emotions should be triggered, which would help generate animations that are closer to an
artist’s desired result.

Finally, in each chapter, I have considered either body or facial motion in isolation.
Nevertheless, a fully immersive performance would need to consider both body language
and facial expressions together. Animations of talking heads can provide some sense of
realism. However, combining facial motion with context-specific arm gestures and body
language would further increase the quality of an animation beyond current capabilities
when controlling the face separately. Future work should address animating and synthesizing
full body and facial motions as a whole in order to create more compelling and believable
experiences.

109

Bibliography

[1] S. Andrews and P.G. Kry. “Goal directed multi-finger manipulation: Control policies
and analysis”. In: Computers & Graphics 37.7 (2013), pp. 830–839. issn: 0097-8493.

[2] Okan Arikan and D. A. Forsyth. “Interactive Motion Generation from Examples”. In:
ACM Trans. Graph. 21.3 (July 2002), pp. 483–490. issn: 0730-0301.

[3] Andreas Aristidou et al. “Inverse Kinematics Techniques in Computer Graphics: A
Survey”. In: Computer Graphics Forum 37 (Sept. 2018), pp. 35–58. doi: 10.1111/
cgf.13310.

[4] Stephen W. Bailey, Martin Watt, and James F. O’Brien. “Repurposing Hand Anima-
tion for Interactive Applications”. In: Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’16. Zurich, Switzerland: Eurographics As-
sociation, 2016, pp. 97–106. isbn: 9783905674613.

[5] Stephen W. Bailey et al. “Fast and Deep Deformation Approximations”. In: ACM
Trans. Graph. 37.4 (July 2018), 119:1–119:12. issn: 0730-0301. doi: 10.1145/3197517.
3201300. url: http://doi.acm.org/10.1145/3197517.3201300.

[6] Stephen W. Bailey et al. “Fast and Deep Facial Deformations”. In: ACM Trans.
Graph. 39.4 (July 2020). issn: 0730-0301. doi: 10.1145/3386569.3392397. url:
https://doi.org/10.1145/3386569.3392397.

[7] Alan H. Barr. “Global and Local Deformations of Solid Primitives”. In: Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’84. New York, NY, USA: ACM, 1984, pp. 21–30. isbn: 0-89791-138-5.

[8] J. Baumgarte. “Stabilization of constraints and integrals of motion in dynamical sys-
tems”. In: Computer Methods in Applied Mechanics and Engineering 1 (June 1972),
pp. 1–16.

[9] Vadim Besedin et al. Ray Character Rig. CGTarian Animation & VFX Online School.
2018. url: https://www.cgtarian.com/maya-character-rigs/download-free-
3d-character-ray.html.

BIBLIOGRAPHY 110

[10] Kiran S. Bhat et al. “High Fidelity Facial Animation Capture and Retargeting with
Contours”. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’13. Anaheim, California: ACM, 2013, pp. 7–14. isbn:
978-1-4503-2132-7. doi: 10.1145/2485895.2485915. url: http://doi.acm.org/
10.1145/2485895.2485915.

[11] Bernd Bickel et al. “Pose-space Animation and Transfer of Facial Details”. In: Pro-
ceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. SCA ’08. Dublin, Ireland: Eurographics Association, 2008, pp. 57–66. isbn:
978-3-905674-10-1. url: http://dl.acm.org/citation.cfm?id=1632592.1632602.

[12] Volker Blanz and Thomas Vetter. “A Morphable Model for the Synthesis of 3D Faces”.
In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’99. USA: ACM Press/Addison-Wesley Publishing Co., 1999,
pp. 187–194. isbn: 0201485605. doi: 10.1145/311535.311556. url: https://doi.
org/10.1145/311535.311556.

[13] James Booth et al. “Large Scale 3D Morphable Models”. In: Int. J. Comput. Vision
126.2–4 (Apr. 2018), pp. 233–254. issn: 0920-5691. doi: 10.1007/s11263-017-1009-
7. url: https://doi.org/10.1007/s11263-017-1009-7.

[14] Davide Boscaini et al. “Learning Shape Correspondence with Anisotropic Convolu-
tional Neural Networks”. In: Proceedings of the 30th International Conference on
Neural Information Processing Systems. NIPS’16. Barcelona, Spain: Curran Asso-
ciates Inc., 2016, pp. 3197–3205. isbn: 9781510838819.

[15] Sofien Bouaziz, Yangang Wang, and Mark Pauly. “Online Modeling for Realtime
Facial Animation”. In: ACM Trans. Graph. 32.4 (July 2013), 40:1–40:10. issn: 0730-
0301.

[16] Sofien Bouaziz, Yangang Wang, and Mark Pauly. “Online Modeling for Realtime
Facial Animation”. In: ACM Trans. Graph. 32.4 (July 2013), 40:1–40:10. issn: 0730-
0301. doi: 10.1145/2461912.2461976. url: http://doi.acm.org/10.1145/
2461912.2461976.

[17] Derek Bradley et al. “High Resolution Passive Facial Performance Capture”. In: ACM
Trans. Graph. 29.4 (July 2010), 41:1–41:10. issn: 0730-0301. doi: 10.1145/1778765.
1778778. url: http://doi.acm.org/10.1145/1778765.1778778.

[18] Matthew Brand. “Voice Puppetry”. In: Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’99. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1999, pp. 21–28. isbn: 0-201-
48560-5.

[19] Matthew Brand and Aaron Hertzmann. “Style Machines”. In: Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 183–
192. isbn: 1-58113-208-5.

BIBLIOGRAPHY 111

[20] Ian Buck et al. “Performance-Driven Hand-Drawn Animation”. In: NPAR 2000 : First
International Symposium on Non Photorealistic Animation and Rendering. June 2000,
pp. 101–108.

[21] Samuel R. Buss and Jin-Su Kim. “Selectively Damped Least Squares for Inverse
Kinematics”. In: Journal of Graphics Tools 10.3 (2005), pp. 37–49. doi: 10.1080/
2151237X.2005.10129202. eprint: https://doi.org/10.1080/2151237X.2005.
10129202. url: https://doi.org/10.1080/2151237X.2005.10129202.

[22] Chen Cao et al. “3D Shape Regression for Real-time Facial Animation”. In: ACM
Trans. Graph. 32.4 (July 2013), 41:1–41:10. issn: 0730-0301.

[23] Chen Cao et al. “FaceWarehouse: A 3D Facial Expression Database for Visual Com-
puting”. In: IEEE Transactions on Visualization and Computer Graphics 20.3 (Mar.
2014), pp. 413–425. issn: 1077-2626. doi: 10.1109/TVCG.2013.249. url: https:
//doi.org/10.1109/TVCG.2013.249.

[24] Kaidi Cao, Jing Liao, and Lu Yuan. CariGANs: Unpaired Photo-to-Caricature Trans-
lation. 2018.

[25] Steve Capell et al. “Interactive Skeleton-driven Dynamic Deformations”. In: ACM
Trans. Graph. 21.3 (July 2002), pp. 586–593. issn: 0730-0301. doi: 10.1145/566654.
566622. url: http://doi.acm.org/10.1145/566654.566622.

[26] Jin-xiang Chai, Jing Xiao, and Jessica Hodgins. “Vision-based Control of 3D Facial
Animation”. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’03. San Diego, California: Eurographics Association,
2003, pp. 193–206. isbn: 1-58113-659-5.

[27] Yunjey Choi et al. “StarGAN v2: Diverse Image Synthesis for Multiple Domains”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). June 2020.

[28] Yunjey Choi et al. “StarGAN: Unified Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation”. In: CoRR abs/1711.09020 (2017). arXiv: 1711.
09020. url: http://arxiv.org/abs/1711.09020.

[29] Matthew Cong et al. “Fully Automatic Generation of Anatomical Face Simulation
Models”. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium
on Computer Animation. SCA ’15. Los Angeles, California: ACM, 2015, pp. 175–183.
isbn: 978-1-4503-3496-9. doi: 10.1145/2786784.2786786. url: http://doi.acm.
org/10.1145/2786784.2786786.

[30] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. “Robust Task-based
Control Policies for Physics-based Characters”. In: ACM Trans. Graph. 28.5 (Dec.
2009), 170:1–170:9. issn: 0730-0301.

BIBLIOGRAPHY 112

[31] Edilson De Aguiar et al. “Automatic Conversion of Mesh Animations into Skeleton-
based Animations”. In: Computer Graphics Forum 27.2 (2008), pp. 389–397. issn:
1467-8659. doi: 10.1111/j.1467-8659.2008.01136.x. url: http://dx.doi.org/
10.1111/j.1467-8659.2008.01136.x.

[32] Marc Escher and Nadia Magnenat Thalmann. “Automatic 3D Cloning and Real-Time
Animation of a Human Face”. In: Proceedings of the Computer Animation. CA ’97.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 58–. isbn: 0-8186-7984-0.

[33] Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. “Real-time Data Driven Defor-
mation Using Kernel Canonical Correlation Analysis”. In: ACM Trans. Graph. 27.3
(Aug. 2008), 91:1–91:9. issn: 0730-0301. doi: 10 . 1145 / 1360612 . 1360690. url:
http://doi.acm.org/10.1145/1360612.1360690.

[34] Yao Feng et al. “Joint 3D Face Reconstruction and Dense Alignment with Position
Map Regression Network”. In: CoRR abs/1803.07835 (2018). arXiv: 1803.07835.
url: http://arxiv.org/abs/1803.07835.

[35] Zhen-Hua Feng et al. “Wing Loss for Robust Facial Landmark Localisation with Con-
volutional Neural Networks”. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2017), pp. 2235–2245.

[36] Pablo Garrido et al. “Corrective 3D Reconstruction of Lips from Monocular Video”.
In: ACM Trans. Graph. 35.6 (Nov. 2016), 219:1–219:11. issn: 0730-0301. doi: 10.
1145/2980179.2982419. url: http://doi.acm.org/10.1145/2980179.2982419.

[37] Pablo Garrido et al. “Reconstruction of Personalized 3D Face Rigs from Monocular
Video”. In: ACM Trans. Graph. 35.3 (May 2016). issn: 0730-0301. doi: 10.1145/
2890493. url: https://doi.org/10.1145/2890493.

[38] Pablo Garrido et al. “Reconstruction of Personalized 3D Face Rigs from Monocular
Video”. In: ACM Trans. Graph. 35.3 (May 2016), 28:1–28:15. issn: 0730-0301. doi:
10.1145/2890493. url: http://doi.acm.org/10.1145/2890493.

[39] L. A. Gatys, A. S. Ecker, and M. Bethge. “Image Style Transfer Using Convolutional
Neural Networks”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016, pp. 2414–2423.

[40] Michael Girard and A. A. Maciejewski. “Computational Modeling for the Computer
Animation of Legged Figures”. In: Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’85. New York, NY,
USA: ACM, 1985, pp. 263–270. isbn: 0-89791-166-0. doi: 10.1145/325334.325244.
url: http://doi.acm.org/10.1145/325334.325244.

BIBLIOGRAPHY 113

[41] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav
Dud́ık. Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, Nov. 2011, pp. 315–323. url: http://proceedings.mlr.press/v15/
glorot11a.html.

[42] D. Goldfarb and A. Idnani. “A Numerically Stable Dual Method for Solving Strictly
Convex Quadratic Programs”. In: Math. Program. 27.1 (Sept. 1983), pp. 1–33. issn:
0025-5610. doi: 10.1007/BF02591962. url: https://doi.org/10.1007/BF02591962.

[43] Keith Grochow et al. “Style-based Inverse Kinematics”. In: ACM Trans. Graph. 23.3
(Aug. 2004), pp. 522–531. issn: 0730-0301. doi: 10.1145/1015706.1015755. url:
http://doi.acm.org/10.1145/1015706.1015755.

[44] Keith Grochow et al. “Style-based Inverse Kinematics”. In: ACM Trans. Graph. 23.3
(Aug. 2004), pp. 522–531. issn: 0730-0301.

[45] Fabian Hahn et al. “Efficient Simulation of Secondary Motion in Rig-space”. In: Pro-
ceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. SCA ’13. Anaheim, California: ACM, 2013, pp. 165–171. isbn: 978-1-4503-
2132-7. doi: 10.1145/2485895.2485918. url: http://doi.acm.org/10.1145/
2485895.2485918.

[46] Fabian Hahn et al. “Efficient Simulation of Secondary Motion in Rig-space”. In: Pro-
ceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. SCA ’13. Anaheim, California: ACM, 2013, pp. 165–171. isbn: 978-1-4503-
2132-7.

[47] Fabian Hahn et al. “Rig-space Physics”. In: ACM Trans. Graph. 31.4 (July 2012),
72:1–72:8. issn: 0730-0301. doi: 10.1145/2185520.2185568. url: http://doi.acm.
org/10.1145/2185520.2185568.

[48] Rana Hanocka et al. “MeshCNN: A Network with an Edge”. In: ACM Trans. Graph.
38.4 (July 2019). issn: 0730-0301. doi: 10.1145/3306346.3322959. url: https:
//doi.org/10.1145/3306346.3322959.

[49] Nils Hasler et al. “Learning Skeletons for Shape and Pose”. In: Proceedings of the
2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’10.
Washington, D.C.: ACM, 2010, pp. 23–30. isbn: 978-1-60558-939-8. doi: 10.1145/
1730804.1730809. url: http://doi.acm.org/10.1145/1730804.1730809.

[50] Jim Hejl. “Hardware Skinning with Quaternions”. In: Game Programming Gems 4.
Ed. by Andrew Kirmse. Charles River Media, 2004, pp. 487–495.

[51] Darren Hendler et al. “Avengers: Capturing Thanos’s Complex Face”. In: ACM SIG-
GRAPH 2018 Talks. SIGGRAPH ’18. Vancouver, British Columbia, Canada: Associ-
ation for Computing Machinery, 2018. isbn: 9781450358200. doi: 10.1145/3214745.
3214766. url: https://doi.org/10.1145/3214745.3214766.

BIBLIOGRAPHY 114

[52] Daniel Holden, Taku Komura, and Jun Saito. “Phase-functioned Neural Networks
for Character Control”. In: ACM Trans. Graph. 36.4 (July 2017), 42:1–42:13. issn:
0730-0301. doi: 10.1145/3072959.3073663. url: http://doi.acm.org/10.1145/
3072959.3073663.

[53] Daniel Holden, Jun Saito, and Taku Komura. “A Deep Learning Framework for Char-
acter Motion Synthesis and Editing”. In: ACM Trans. Graph. 35.4 (July 2016), 138:1–
138:11. issn: 0730-0301. doi: 10.1145/2897824.2925975. url: http://doi.acm.
org/10.1145/2897824.2925975.

[54] Daniel Holden, Jun Saito, and Taku Komura. “Learning an Inverse Rig Mapping for
Character Animation”. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. SCA ’15. Los Angeles, California: ACM, 2015,
pp. 165–173. isbn: 978-1-4503-3496-9.

[55] Daniel Holden, Jun Saito, and Taku Komura. “Learning Inverse Rig Mappings by
Nonlinear Regression”. In: IEEE Transactions on Visualization and Computer Graph-
ics 23.3 (Mar. 2017), pp. 1167–1178. issn: 1077-2626. doi: 10.1109/TVCG.2016.
2628036. url: https://doi.org/10.1109/TVCG.2016.2628036.

[56] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Networks”. In:
Neural Netw. 4.2 (Mar. 1991), pp. 251–257. issn: 0893-6080. doi: 10.1016/0893-
6080(91)90009-T. url: http://dx.doi.org/10.1016/0893-6080(91)90009-T.

[57] Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. “Dynamic 3D Avatar Cre-
ation from Hand-held Video Input”. In: ACM Trans. Graph. 34.4 (July 2015), 45:1–
45:14. issn: 0730-0301. doi: 10.1145/2766974. url: http://doi.acm.org/10.
1145/2766974.

[58] Alexandru-Eugen Ichim et al. “Phace: Physics-based Face Modeling and Animation”.
In: ACM Trans. Graph. 36.4 (July 2017), 153:1–153:14. issn: 0730-0301. doi: 10.
1145/3072959.3073664. url: http://doi.acm.org/10.1145/3072959.3073664.

[59] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial Net-
works”. In: July 2017, pp. 5967–5976. doi: 10.1109/CVPR.2017.632.

[60] Doug L. James and Christopher D. Twigg. “Skinning Mesh Animations”. In: ACM
Trans. Graph. 24.3 (July 2005), pp. 399–407. issn: 0730-0301. doi: 10.1145/1073204.
1073206. url: http://doi.acm.org/10.1145/1073204.1073206.

[61] Ning Jin et al. “A Pixel-Based Framework for Data-Driven Clothing”. In: CoRR
abs/1812.01677 (2018). arXiv: 1812.01677. url: http://arxiv.org/abs/1812.
01677.

[62] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-time style
transfer and super-resolution”. In: European Conference on Computer Vision. 2016.

[63] Pushkar Joshi et al. “Harmonic Coordinates for Character Articulation”. In: ACM
Trans. Graph. 26.3 (July 2007). issn: 0730-0301. doi: 10.1145/1276377.1276466.
url: http://doi.acm.org/10.1145/1276377.1276466.

BIBLIOGRAPHY 115

[64] Tao Ju et al. “Reusable Skinning Templates Using Cage-based Deformations”. In:
ACM Trans. Graph. 27.5 (Dec. 2008), 122:1–122:10. issn: 0730-0301. doi: 10.1145/
1409060.1409075. url: http://doi.acm.org/10.1145/1409060.1409075.

[65] L. Kavan, P.-P. Sloan, and C. O Sullivan. “Fast and Efficient Skinning of Animated
Meshes”. In: Computer Graphics Forum (2010). issn: 1467-8659. doi: 10.1111/j.
1467-8659.2009.01602.x.

[66] Ladislav Kavan, Steven Collins, and Carol O’Sullivan. “Automatic Linearization of
Nonlinear Skinning”. In: Proceedings of the 2009 Symposium on Interactive 3D Graph-
ics and Games. I3D ’09. Boston, Massachusetts: ACM, 2009, pp. 49–56. isbn: 978-
1-60558-429-4. doi: 10.1145/1507149.1507157. url: http://doi.acm.org/10.
1145/1507149.1507157.

[67] Ladislav Kavan and Jǐŕı Žára. “Spherical Blend Skinning: A Real-time Deformation
of Articulated Models”. In: Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games. I3D ’05. Washington, District of Columbia: ACM, 2005, pp. 9–
16. isbn: 1-59593-013-2. doi: 10.1145/1053427.1053429. url: http://doi.acm.
org/10.1145/1053427.1053429.

[68] Ladislav Kavan et al. “Skinning Arbitrary Deformations”. In: Proceedings of the 2007
Symposium on Interactive 3D Graphics and Games. I3D ’07. Seattle, Washington:
ACM, 2007, pp. 53–60. isbn: 978-1-59593-628-8. doi: 10.1145/1230100.1230109.
url: http://doi.acm.org/10.1145/1230100.1230109.

[69] Hyeongwoo Kim et al. “Deep Video Portraits”. In: ACM Trans. Graph. 37.4 (July
2018). issn: 0730-0301. doi: 10.1145/3197517.3201283. url: https://doi.org/
10.1145/3197517.3201283.

[70] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980 (2014). url: http://arxiv.org/abs/1412.6980.

[71] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (Dec. 2014).

[72] J. Kleiser. “A fast, efficient, accurate way to represent the human face.” In: SIG-
GRAPH ’89 Course Notes 22: State of the Art in Facial Animation. 1989.

[73] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. “Motion Graphs”. In: Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’02. San Antonio, Texas: ACM, 2002, pp. 473–482. isbn: 1-58113-521-1.

[74] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. “Motion Graphs”. In: ACM
Trans. Graph. 21.3 (July 2002), pp. 473–482. issn: 0730-0301. doi: 10.1145/566654.
566605. url: http://doi.acm.org/10.1145/566654.566605.

BIBLIOGRAPHY 116

[75] Paul G. Kry, Doug L. James, and Dinesh K. Pai. “EigenSkin: Real Time Large De-
formation Character Skinning in Hardware”. In: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’02. San Antonio,
Texas: ACM, 2002, pp. 153–159. isbn: 1-58113-573-4. doi: 10.1145/545261.545286.
url: http://doi.acm.org/10.1145/545261.545286.

[76] Tsuneya Kurihara and Natsuki Miyata. “Modeling Deformable Human Hands from
Medical Images”. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. SCA ’04. Grenoble, France: Eurographics Associa-
tion, 2004, pp. 355–363. isbn: 3-905673-14-2. doi: 10.1145/1028523.1028571. url:
http://dx.doi.org/10.1145/1028523.1028571.

[77] Zorah Lähner, Daniel Cremers, and Tony Tung. “DeepWrinkles: Accurate and Real-
istic Clothing Modeling”. In: CoRR abs/1808.03417 (2018). arXiv: 1808.03417. url:
http://arxiv.org/abs/1808.03417.

[78] Samuli Laine et al. “Production-level Facial Performance Capture Using Deep Convo-
lutional Neural Networks”. In: Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. SCA ’17. Los Angeles, California: ACM, 2017,
10:1–10:10. isbn: 978-1-4503-5091-4. doi: 10.1145/3099564.3099581. url: http:
//doi.acm.org/10.1145/3099564.3099581.

[79] Manfred Lau, Ziv Bar-Joseph, and James Kuffner. “Modeling Spatial and Temporal
Variation in Motion Data”. In: ACM Trans. Graph. 28.5 (Dec. 2009), 171:1–171:10.
issn: 0730-0301.

[80] Manfred Lau et al. “Face Poser: Interactive Modeling of 3D Facial Expressions Using
Facial Priors”. In: ACM Trans. Graph. 29.1 (Dec. 2009), 3:1–3:17. issn: 0730-0301.

[81] Neil D. Lawrence. “Hierarchical Gaussian process latent variable models”. In: In In-
ternational Conference in Machine Learning. 2007.

[82] Neil D. Lawrence. “The Gaussian process latent variable model”. In: Technical Report
no CS-06-05 (2006).

[83] Neil D. Lawrence and Joaquin Quiñonero-Candela. “Local Distance Preservation in
the GP-LVM Through Back Constraints”. In: Proceedings of the 23rd International
Conference on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: ACM,
2006, pp. 513–520. isbn: 1-59593-383-2.

[84] Binh Huy Le and Zhigang Deng. “Robust and Accurate Skeletal Rigging from Mesh
Sequences”. In: ACM Trans. Graph. 33.4 (July 2014), 84:1–84:10. issn: 0730-0301.
doi: 10.1145/2601097.2601161. url: http://doi.acm.org/10.1145/2601097.
2601161.

[85] Binh Huy Le and Zhigang Deng. “Smooth Skinning Decomposition with Rigid Bones”.
In: ACM Trans. Graph. 31.6 (Nov. 2012), 199:1–199:10. issn: 0730-0301. doi: 10.
1145/2366145.2366218. url: http://doi.acm.org/10.1145/2366145.2366218.

BIBLIOGRAPHY 117

[86] Binh Huy Le and Zhigang Deng. “Two-layer Sparse Compression of Dense-weight
Blend Skinning”. In: ACM Trans. Graph. 32.4 (July 2013), 124:1–124:10. issn: 0730-
0301. doi: 10.1145/2461912.2461949. url: http://doi.acm.org/10.1145/
2461912.2461949.

[87] Christian Ledig et al. “Photo-Realistic Single Image Super-Resolution Using a Gener-
ative Adversarial Network”. In: July 2017, pp. 105–114. doi: 10.1109/CVPR.2017.19.

[88] Jehee Lee et al. “Interactive Control of Avatars Animated with Human Motion Data”.
In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’02. San Antonio, Texas: ACM, 2002, pp. 491–500. isbn:
1-58113-521-1.

[89] Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. “Comprehensive Biome-
chanical Modeling and Simulation of the Upper Body”. In: ACM Trans. Graph. 28.4
(Sept. 2009), 99:1–99:17. issn: 0730-0301. doi: 10.1145/1559755.1559756. url:
http://doi.acm.org/10.1145/1559755.1559756.

[90] Yongjoon Lee, Seong Jae Lee, and Zoran Popović. “Compact Character Controllers”.
In: ACM Trans. Graph. 28.5 (Dec. 2009), 169:1–169:8. issn: 0730-0301.

[91] Sergey Levine et al. “Continuous Character Control with Low-Dimensional Embed-
dings”. In: ACM Transactions on Graphics 31.4 (2012), p. 28.

[92] Sergey Levine et al. “Continuous Character Control with Low-dimensional Embed-
dings”. In: ACM Trans. Graph. 31.4 (July 2012), 28:1–28:10. issn: 0730-0301. doi:
10.1145/2185520.2185524. url: http://doi.acm.org/10.1145/2185520.
2185524.

[93] J. P. Lewis and K. Anjyo. “Direct Manipulation Blendshapes”. In: IEEE Computer
Graphics and Applications 30.4 (July 2010), pp. 42–50. issn: 1558-1756. doi: 10.
1109/MCG.2010.41.

[94] J. P. Lewis, Matt Cordner, and Nickson Fong. “Pose Space Deformation: A Unified
Approach to Shape Interpolation and Skeleton-driven Deformation”. In: Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 165–172. isbn: 1-58113-208-5. doi: 10.1145/344779.344862. url: http:
//dx.doi.org/10.1145/344779.344862.

[95] J. P. Lewis, Matt Cordner, and Nickson Fong. “Pose Space Deformation: A Unified
Approach to Shape Interpolation and Skeleton-driven Deformation”. In: Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 165–172. isbn: 1-58113-208-5.

[96] J. P. Lewis and F. I. Parke. “Automated Lip-synch and Speech Synthesis for Character
Animation”. In: SIGCHI Bull. 17.SI (May 1986), pp. 143–147. issn: 0736-6906.

BIBLIOGRAPHY 118

[97] Hao Li, Thibaut Weise, and Mark Pauly. “Example-based Facial Rigging”. In: ACM
SIGGRAPH 2010 Papers. SIGGRAPH ’10. Los Angeles, California: ACM, 2010, 32:1–
32:6. isbn: 978-1-4503-0210-4. doi: 10.1145/1833349.1778769. url: http://doi.
acm.org/10.1145/1833349.1778769.

[98] Hao Li et al. “Realtime Facial Animation with On-the-fly Correctives”. In: ACM
Trans. Graph. 32.4 (July 2013), 42:1–42:10. issn: 0730-0301. doi: 10.1145/2461912.
2462019. url: http://doi.acm.org/10.1145/2461912.2462019.

[99] Or Litany et al. “Deformable Shape Completion with Graph Convolutional Autoen-
coders”. In: CoRR abs/1712.00268 (2017). arXiv: 1712.00268. url: http://arxiv.
org/abs/1712.00268.

[100] Wan-Yen Lo and Matthias Zwicker. “Real-time Planning for Parameterized Human
Motion”. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’08. Dublin, Ireland: Eurographics Association, 2008,
pp. 29–38. isbn: 978-3-905674-10-1.

[101] Stephen Lombardi et al. “Deep Appearance Models for Face Rendering”. In: ACM
Trans. Graph. 37.4 (July 2018). issn: 0730-0301. doi: 10.1145/3197517.3201401.
url: https://doi.org/10.1145/3197517.3201401.

[102] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. “Joint-dependent Local
Deformations for Hand Animation and Object Grasping”. In: Proceedings on Graphics
Interface ’88. Edmonton, Alberta, Canada: Canadian Information Processing Society,
1988, pp. 26–33. url: http://dl.acm.org/citation.cfm?id=102313.102317.

[103] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. “Joint-dependent Local
Deformations for Hand Animation and Object Grasping”. In: Proceedings on Graphics
Interface ’88. Edmonton, Alberta, Canada: Canadian Information Processing Society,
1988, pp. 26–33.

[104] Joe Mancewicz et al. “Delta Mush: Smoothing Deformations While Preserving De-
tail”. In: Proceedings of the Fourth Symposium on Digital Production. DigiPro ’14.
Vancouver, British Columbia, Canada: ACM, 2014, pp. 7–11. isbn: 978-1-4503-3044-
2. doi: 10.1145/2633374.2633376. url: http://doi.acm.org/10.1145/2633374.
2633376.

[105] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.
org/.

[106] Jonathan Masci et al. “Geodesic Convolutional Neural Networks on Riemannian Man-
ifolds”. In: Proceedings of the 2015 IEEE International Conference on Computer Vi-
sion Workshop (ICCVW). ICCVW ’15. USA: IEEE Computer Society, 2015, pp. 832–
840. isbn: 9781467397117. doi: 10.1109/ICCVW.2015.112. url: https://doi.org/
10.1109/ICCVW.2015.112.

BIBLIOGRAPHY 119

[107] Tim McLaughlin, Larry Cutler, and David Coleman. “Character Rigging, Deforma-
tions, and Simulations in Film and Game Production”. In: ACM SIGGRAPH 2011
Courses. SIGGRAPH ’11. Vancouver, British Columbia, Canada: ACM, 2011, 5:1–
5:18. isbn: 978-1-4503-0967-7. doi: 10.1145/2037636.2037641. url: http://doi.
acm.org/10.1145/2037636.2037641.

[108] Jianyuan Min and Jinxiang Chai. “Motion Graphs++: A Compact Generative Model
for Semantic Motion Analysis and Synthesis”. In: ACM Trans. Graph. 31.6 (Nov.
2012), 153:1–153:12. issn: 0730-0301.

[109] Alex Mohr and Michael Gleicher. “Building Efficient, Accurate Character Skins from
Examples”. In: ACM Trans. Graph. 22.3 (July 2003), pp. 562–568. issn: 0730-0301.
doi: 10.1145/882262.882308. url: http://doi.acm.org/10.1145/882262.
882308.

[110] Lucio Moser, Darren Hendler, and Doug Roble. “Masquerade: Fine-Scale Details for
Head-Mounted Camera Motion Capture Data”. In: ACM SIGGRAPH 2017 Talks.
SIGGRAPH ’17. Los Angeles, California: Association for Computing Machinery, 2017.
isbn: 9781450350082. doi: 10.1145/3084363.3085086. url: https://doi.org/10.
1145/3084363.3085086.

[111] Uldarico Muico et al. “Contact-aware Nonlinear Control of Dynamic Characters”.
In: ACM SIGGRAPH 2009 Papers. SIGGRAPH ’09. New Orleans, Louisiana: ACM,
2009, 81:1–81:9. isbn: 978-1-60558-726-4.

[112] Tomohiko Mukai and Shigeru Kuriyama. “Efficient Dynamic Skinning with Low-rank
Helper Bone Controllers”. In: ACM Trans. Graph. 35.4 (July 2016), 36:1–36:11. issn:
0730-0301. doi: 10.1145/2897824.2925905. url: http://doi.acm.org/10.1145/
2897824.2925905.

[113] Tomohiko Mukai and Shigeru Kuriyama. “Geostatistical Motion Interpolation”. In:
ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM,
2005, pp. 1062–1070. isbn: 978-1-4503-7825-3. doi: 10.1145/1186822.1073313.
url: http://doi.acm.org/10.1145/1186822.1073313.

[114] Tomohiko Mukai and Shigeru Kuriyama. “Geostatistical Motion Interpolation”. In:
ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM, 2005,
pp. 1062–1070.

[115] Thomas Neumann et al. “Sparse Localized Deformation Components”. In: ACM
Trans. Graph. 32.6 (Nov. 2013), 179:1–179:10. issn: 0730-0301. doi: 10.1145/2508363.
2508417. url: http://doi.acm.org/10.1145/2508363.2508417.

[116] Frederic Ira Parke. “A Parametric Model for Human Faces.” AAI7508697. PhD thesis.
1974.

BIBLIOGRAPHY 120

[117] Frederick I. Parke. “Computer Generated Animation of Faces”. In: Proceedings of the
ACM Annual Conference - Volume 1. ACM ’72. Boston, Massachusetts, USA: ACM,
1972, pp. 451–457. isbn: 978-1-4503-7491-0. doi: 10.1145/800193.569955. url:
http://doi.acm.org/10.1145/800193.569955.

[118] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. 3rd. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2016. isbn: 0128006455.

[119] Sven Pohle et al. “DreamWorks Animation Facial Motion and Deformation Sys-
tem”. In: Proceedings of the 2015 Symposium on Digital Production. DigiPro ’15.
Los Angeles, California: Association for Computing Machinery, 2015, pp. 5–6. isbn:
9781450337182. doi: 10.1145/2791261.2791262. url: https://doi.org/10.1145/
2791261.2791262.

[120] Sven Pohle et al. “DreamWorks Animation Facial Motion and Deformation System”.
In: Proceedings of the 2015 Symposium on Digital Production. DigiPro ’15. Los An-
geles, California: ACM, 2015, pp. 5–6. isbn: 978-1-4503-3718-2.

[121] Ravi Ramamoorthi and Pat Hanrahan. “An Efficient Representation for Irradiance
Environment Maps”. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. New York, NY, USA: ACM,
2001, pp. 497–500. isbn: 1-58113-374-X. doi: 10.1145/383259.383317. url: http:
//doi.acm.org/10.1145/383259.383317.

[122] Anurag Ranjan et al. “Generating 3D Faces Using Convolutional Mesh Autoen-
coders”. In: Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari et al. Cham:
Springer International Publishing, 2018, pp. 725–741. isbn: 978-3-030-01219-9.

[123] Jérémy Riviere et al. “Single-Shot High-Quality Facial Geometry and Skin Appear-
ance Capture”. In: ACM Trans. Graph. 39.4 (July 2020). issn: 0730-0301. url:
https://doi.org/10.1145/3386569.3392464.

[124] Charles F. Rose III, Peter-Pike J. Sloan, and Michael F. Cohen. “Artist-Directed
Inverse-Kinematics Using Radial Basis Function Interpolation”. In: Computer Graph-
ics Forum 20.3 (2001), pp. 239–250. doi: 10.1111/1467-8659.00516. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00516. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00516.

[125] Christos Sagonas et al. “300 Faces In-The-Wild Challenge: database and results”. In:
Image and Vision Computing 47 (Jan. 2016). doi: 10.1016/j.imavis.2016.01.002.

[126] S. Schaefer and C. Yuksel. “Example-based Skeleton Extraction”. In: Proceedings
of the Fifth Eurographics Symposium on Geometry Processing. SGP ’07. Barcelona,
Spain: Eurographics Association, 2007, pp. 153–162. isbn: 978-3-905673-46-3. url:
http://dl.acm.org/citation.cfm?id=1281991.1282013.

BIBLIOGRAPHY 121

[127] Gabriel Schwartz et al. “The Eyes Have It: An Integrated Eye and Face Model for
Photorealistic Facial Animation”. In: ACM Trans. Graph. 39.4 (July 2020). issn:
0730-0301. doi: 10.1145/3386569.3392493. url: https://doi.org/10.1145/
3386569.3392493.

[128] Thomas W. Sederberg and Scott R. Parry. “Free-form Deformation of Solid Geometric
Models”. In: Proceedings of the 13th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’86. New York, NY, USA: ACM, 1986, pp. 151–
160. isbn: 0-89791-196-2.

[129] Jaewoo Seo et al. “Compression and Direct Manipulation of Complex Blendshape
Models”. In: ACM Trans. Graph. 30 (Dec. 2011), p. 164. doi: 10.1145/2070781.
2024198.

[130] Yeongho Seol et al. “Artist Friendly Facial Animation Retargeting”. In: ACM Trans.
Graph. 30.6 (Dec. 2011), 162:1–162:10. issn: 0730-0301.

[131] Aliaksandr Siarohin et al. “First Order Motion Model for Image Animation”. In:
Conference on Neural Information Processing Systems (NeurIPS). Dec. 2019.

[132] Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. “Automatic Determination of
Facial Muscle Activations from Sparse Motion Capture Marker Data”. In: ACM SIG-
GRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM, 2005, pp. 417–
425. isbn: 978-1-4503-7825-3. doi: 10.1145/1186822.1073208. url: http://doi.
acm.org/10.1145/1186822.1073208.

[133] Karan Singh and Eugene Fiume. “Wires: A Geometric Deformation Technique”. In:
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp. 405–414. isbn:
0-89791-999-8.

[134] Ayan Sinha, Jing Bai, and Karthik Ramani. “Deep Learning 3D Shape Surfaces Using
Geometry Images”. In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe et al.
Cham: Springer International Publishing, 2016, pp. 223–240.

[135] Peter-Pike J. Sloan, Charles F. Rose III, and Michael F. Cohen. “Shape by Exam-
ple”. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics. I3D ’01.
New York, NY, USA: ACM, 2001, pp. 135–143. isbn: 1-58113-292-1. doi: 10.1145/
364338.364382. url: http://doi.acm.org/10.1145/364338.364382.

[136] Jie Tan et al. “Learning Bicycle Stunts”. In: ACM Trans. Graph. 33.4 (July 2014),
50:1–50:12. issn: 0730-0301.

[137] Ayush Tewari et al. “MoFA: Model-Based Deep Convolutional Face Autoencoder
for Unsupervised Monocular Reconstruction”. In: Oct. 2017, pp. 1274–1283. doi:
10.1109/ICCVW.2017.153.

[138] Theano Development Team. “Theano: A Python framework for fast computation
of mathematical expressions”. In: arXiv e-prints abs/1605.02688 (May 2016). url:
http://arxiv.org/abs/1605.02688.

BIBLIOGRAPHY 122

[139] Jean-Marc Thiery et al. “Animated Mesh Approximation With Sphere-Meshes”. In:
ACM Trans. Graph. 35.3 (May 2016), 30:1–30:13. issn: 0730-0301. doi: 10.1145/
2898350. url: http://doi.acm.org/10.1145/2898350.

[140] Justus Thies et al. “Face2Face: Real-Time Face Capture and Reenactment of RGB
Videos”. In: Commun. ACM 62.1 (Dec. 2018), pp. 96–104. issn: 0001-0782. doi:
10.1145/3292039. url: https://doi.org/10.1145/3292039.

[141] Anh Tran et al. “Regressing Robust and Discriminative 3D Morphable Models with
a Very Deep Neural Network”. In: July 2017, pp. 1493–1502. doi: 10.1109/CVPR.
2017.163.

[142] Luan Tran, Xi Yin, and Xiaoming Liu. “Disentangled Representation Learning GAN
for Pose-Invariant Face Recognition”. In: In Proceeding of IEEE Computer Vision
and Pattern Recognition. Honolulu, HI, July 2017.

[143] Adrien Treuille, Yongjoon Lee, and Zoran Popović. “Near-optimal Character Ani-
mation with Continuous Control”. In: ACM Trans. Graph. 26.3 (July 2007). issn:
0730-0301.

[144] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Instance Normalization:
The Missing Ingredient for Fast Stylization”. In: CoRR abs/1607.08022 (2016). arXiv:
1607.08022. url: http://arxiv.org/abs/1607.08022.

[145] Dmitry Ulyanov et al. “Texture Networks: Feed-Forward Synthesis of Textures and
Stylized Images”. In: Proceedings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48. ICML’16. New York, NY, USA:
JMLR.org, 2016, pp. 1349–1357.

[146] Raquel Urtasun et al. “Priors for People Tracking from Small Training Sets”. In: Pro-
ceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1 - Volume 01. ICCV ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 403–410. isbn: 0-7695-2334-X-01.

[147] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. “Gaussian process dynamical
models”. In: In NIPS. MIT Press, 2006, pp. 1441–1448.

[148] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. “Gaussian Process Dynamical
Models for Human Motion”. In: IEEE Trans. Pattern Anal. Mach. Intell. 30.2 (Feb.
2008), pp. 283–298. issn: 0162-8828. doi: 10.1109/TPAMI.2007.1167. url: http:
//dx.doi.org/10.1109/TPAMI.2007.1167.

[149] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. “Gaussian Process Dynamical
Models for Human Motion”. In: IEEE Trans. Pattern Anal. Mach. Intell. 30.2 (Feb.
2008), pp. 283–298. issn: 0162-8828.

[150] Robert Y. Wang, Kari Pulli, and Jovan Popović. “Real-time Enveloping with Rota-
tional Regression”. In: ACM Trans. Graph. 26.3 (July 2007). issn: 0730-0301. doi:
10.1145/1276377.1276468. url: http://doi.acm.org/10.1145/1276377.
1276468.

BIBLIOGRAPHY 123

[151] Xiaohuan Corina Wang and Cary Phillips. “Multi-weight Enveloping: Least-squares
Approximation Techniques for Skin Animation”. In: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’02. San Anto-
nio, Texas: ACM, 2002, pp. 129–138. isbn: 1-58113-573-4. doi: 10.1145/545261.
545283. url: http://doi.acm.org/10.1145/545261.545283.

[152] K. Waters and T. Levergood. “An Automatic Lip-synchronization Algorithm for Syn-
thetic Faces”. In: Proceedings of the Second ACM International Conference on Multi-
media. MULTIMEDIA ’94. San Francisco, California, USA: ACM, 1994, pp. 149–156.
isbn: 0-89791-686-7.

[153] Martin Watt et al. “LibEE: A Multithreaded Dependency Graph for Character Ani-
mation”. In: Proceedings of the Digital Production Symposium. DigiPro ’12. Glendale,
California: ACM, 2012, pp. 59–66. isbn: 978-1-4503-1649-1. doi: 10.1145/2370919.
2370930. url: http://doi.acm.org/10.1145/2370919.2370930.

[154] Martin Watt et al. “LibEE: A Multithreaded Dependency Graph for Character Ani-
mation”. In: Proceedings of the Digital Production Symposium. DigiPro ’12. Glendale,
California: ACM, 2012, pp. 59–66. isbn: 978-1-4503-1649-1.

[155] Shih-En Wei et al. “VR Facial Animation via Multiview Image Translation”. In: ACM
Trans. Graph. 38.4 (July 2019). issn: 0730-0301. doi: 10.1145/3306346.3323030.
url: https://doi.org/10.1145/3306346.3323030.

[156] Thibaut Weise et al. “Realtime Performance-based Facial Animation”. In: ACM
Trans. Graph. 30.4 (July 2011), 77:1–77:10. issn: 0730-0301. doi: 10.1145/2010324.
1964972. url: http://doi.acm.org/10.1145/2010324.1964972.

[157] Chris J. Welman. “Inverse Kinematics and Geometric Constraints for Articulated
Figure Manipulation”. PhD thesis. Simon Fraser University, 1993.

[158] Olivia Wiles, A. Sophia Koepke, and Andrew Zisserman. “X2Face: A network for
controlling face generation using images, audio, and pose codes”. In: Proceedings of
the European Conference on Computer Vision (ECCV). Sept. 2018.

[159] Xian Xiao et al. “A Powell Optimization Approach for Example-Based Skinning in
a Production Animation Environment”. In: Computer Animation and Social Agents
(Dec. 2006).

[160] Yuting Ye and C. Karen Liu. “Synthesis of Responsive Motion Using a Dynamic
Model”. In: Computer Graphics Forum 29.2 (2010), pp. 555–562. issn: 1467-8659.

[161] E. Zakharov et al. “Few-Shot Adversarial Learning of Realistic Neural Talking Head
Models”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 9458–9467.

[162] Li Zhang et al. “Spacetime Faces: High Resolution Capture for Modeling and An-
imation”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 548–558. issn: 0730-0301.
doi: 10.1145/1015706.1015759. url: http://doi.acm.org/10.1145/1015706.
1015759.

BIBLIOGRAPHY 124

[163] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a Percep-
tual Metric”. In: CVPR. 2018.

[164] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks”. In: Computer Vision (ICCV), 2017 IEEE International Con-
ference on. 2017.

[165] Michael Zollhöfer et al. “State of the Art on Monocular 3D Face Reconstruction,
Tracking, and Applications”. In: Comput. Graph. Forum 37 (2018), pp. 523–550.

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Dissertation Outline
	Statement of Multiple Authorship and Prior Publication

	Fast and Deep Body Deformations
	Introduction
	Related Work
	Method
	Results
	Discussion

	Fast and Deep Facial Deformations
	Introduction
	Related Work
	Facial Approximation
	Results
	Discussion

	Inverse Kinematics with Mesh Approximations
	Introduction
	Solutions for the Body
	Solutions for the Face
	Results
	Discussion

	Repurposing Artist-Created Facial Animation
	Introduction
	Related Work
	Overview
	Low Dimensional Embedding
	Animation Synthesis in Latent Space
	Results
	Discussion

	Facial Performance Capture
	Introduction
	Related Work
	Blendweight Optimization
	Style Transfer
	Model Training
	Results
	Discussion

	Conclusion
	Summary of Contributions
	Limitations and Future Work

	Bibliography

