
A Scalable Generator of Massive MIMO Baseband

Processing Systems

Yue Dai

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-38

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-38.html

May 10, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I �first thank my advisor, Professor Borivoje Nikolic. His supports at all steps
in this degree make me a well-rounded engineer. His knowledge gives me
inspirations in my research. I additionally thank my committee Professor
Yakun Sophia Shao for the valuable advice. The basis of this project is built
on the prior work of Antonio Puglielli and Greg Lacaille. I greatly appreciate
the guidance of Greg Lacaille on this project, and the help of Harrison Liew
and James Dunn on the generator design. I thank the JUMP ComSenTer
program for funding this project and providing me with the opportunity to
learn from other universities.



 
 

A Scalable Generator of Massive MIMO Baseband Processing Systems 
 

by Yue Dai 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Borivoje Nikolic 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Yakun Sophia Shao 
Second Reader 

 
 

(Date) 

Sophia Shao



A Scalable Generator of Massive MIMO Baseband Processing Systems

by

Yue Dai

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolić, Chair
Assistant Professor Yakun Sophia Shao

Spring 2021



The thesis of Yue Dai, titled A Scalable Generator of Massive MIMO Baseband Processing
Systems, is approved:

Chair Date

Date

Date

University of California, Berkeley



A Scalable Generator of Massive MIMO Baseband Processing Systems

Copyright 2021
by

Yue Dai



1

Abstract

A Scalable Generator of Massive MIMO Baseband Processing Systems

by

Yue Dai

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

This thesis describes a scalable, highly portable, and power-efficient generator for massive
multiple-input multiple-output (MIMO) uplink baseband processing. This generator is writ-
ten in Chisel HDL, and produces hardware instances for the distributed processing in a
scalable massive MIMO system. The generator is parameterized in both the MIMO sys-
tem and hardware datapath elements. The performance of several generator instances with
different parameter values are validated by emulation on a field-programmable gate array
(FPGA), demonstrating both functionality and scalability, and operation up to 6.4Gb/s data
throughput.



i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 System Overview 4
2.1 Two-stage beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Signal packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Generator Design 7
3.1 Signal Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Frequency-flat channel estimation . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 MRC beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Sequencing Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 FPGA Emulation 17
4.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 FPGA Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results 22
5.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Power estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion 27
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



ii

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 29



iii

List of Figures

2.1 The scalable massive MIMO BS architecture for uplink. . . . . . . . . . . . . . . 5
2.2 The signal packet format. The upper inset is the user TX signal packet. The

lower inset is each BS channel received signal packet. . . . . . . . . . . . . . . . 6

3.1 The Spine generator datapath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 FIR Filter Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 IQ Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Golay Correlator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 MRC Beamformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 The scalable massive MIMO uplink baseband processing system emulation archi-
tecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 The scalable massive MIMO uplink baseband processing system set up. . . . . . 19
4.3 Emulation system control flow chart. . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 BER vs SNR for 32 antenna 2 users simulation and emulation results for a).
QPSK modulation scheme and b). 16-QAM scheme. . . . . . . . . . . . . . . . 23

5.2 Frequency flat normalized channel estimation MSE vs SNR with different Golay
pilot length. Blue lines show the normalized MSE of the true channel matrix
and the channel estimation in the FPGA; red lines show the normalized channel
estimation MSE of the simulator and FPGA. . . . . . . . . . . . . . . . . . . . . 24

5.3 SINR versus SNR for 32 antenna 2 users system simulation and emulation results
for a). QPSK modulation scheme and b). 16-QAM scheme. . . . . . . . . . . . . 25

5.4 Power breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



iv

List of Tables

4.1 FPGA emulation system parameter . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



v

Acknowledgments

I first thank my advisor, Professor Borivoje Nikolic. His supports at all steps in this degree
make me a well-rounded engineer. His knowledge gives me inspirations in my research. I
additionally thank my committee Professor Yakun Sophia Shao for the valuable advice. The
basis of this project is built on the prior work of Antonio Puglielli and Greg Lacaille. I
greatly appreciate the guidance of Greg Lacaille on this project, and the help of Harrison
Liew and James Dunn on the generator design. I thank the JUMP ComSenTer program for
funding this project and providing me with the opportunity to learn from other universities.



1

Chapter 1

Introduction

1.1 Motivation

With the increasing number of mobile devices and the increase of consumption and produc-
tion of media-rich content, the demand for higher data rate is growing dramatically. In-
novations in the capacity-achieving codes and efficient modulation techniques have brought
spectral efficiency of wireless point-to-point systems close to the theoretical Shannon limit
[1]. MIMO wireless technology is widely considered as an energy-efficient, secure and robust
approach to increasing the overall channel capacity and to reducing the effects of interfer-
ence, [8, 16]. By increasing the spatial resolution with hundreds to thousands of antennas
at the base station (BS), massive MIMO can support numerous users in the same time-
frequency resource by providing each user with their interference-free, high-capacity link to
the base station (BS) [11]. The integration of many antennas can be enabled by operating
at millimeter-wave (mm-wave) frequencies due to the small antenna size. [4].

While the massive MIMO is attractive, implementing the system in a cost-efficient and
energy-efficient way is challenging. To achieve a higher cost-efficiency and energy-efficiency,
a scalable MIMO architecture needs to be applied, and the system should also be able to
reconfigurable and portable easily for different MIMO system designs and different plat-
forms. For these reasons, this work uses a scalable and modular MIMO system, where the
beamforming operation is divided into 2 stages - the frequency flat maximum-ratio combin-
ing (MRC) beamforming and the frequency-selective decorrelation stage. The operation of
the MRC beamforming can be distributed to multiple panels, and each panel perform the
MRC beamforming independently. All panels are chained up, and panel MRC beamformed
signals are summed up along the daisy-chain. The summed beamformed signal is sent to the
decorrelation stage.

Energy efficiency can be achieved through hardware specialization; On the other hand,
designing the specialized hardware is costly. The approach of designing hardware generators,
as opposed to instances, enables reuse and thus reduces design cost [14, 15]. For many
signal processing tasks, reusing the algorithm implementation enables faster development



CHAPTER 1. INTRODUCTION 2

of application-optimized hardware [17, 14]. As a result, instead of implement the MRC
beamformer using dedicated instances in hardware, a generator is built using Chisel [3] to
improve the reconfigurability and portability of the hardware implementation.

1.2 Prior Work

Massive MIMO testbeds

Centralized processing architecture

Argos testbed [19] is implemented with 64 antennas, and it has the capability of serving 15
users at the same time through zero-forcing and conjugate multi-user beamforming. It is in-
tegrated with commercial radio modules to realize the prototype. Argos testbed includes the
central controller, 16 modules with 4 radios on each, the Ethernet switch, a clock distribution
board, and a transimission synchronization board. The central controller, which is the host
PC, use MATLAB to transmit data, weights, and control commands to the radio modules.
The baseband processing of Argos use the centralized processing architecture, where all data
are collected from antennas and processed in the centralized processor.

Another massive MIMO testbed is the LuMaMi [10], which is proposed by Lund Univer-
sity. The LuMaMi utilizes up to 100 base station antennas, and can serve up to 12 users on
the same time/frequency resources. The testbed is integrated with software-defined-radios
(SDRs), board switches, co-processors and higher layer control processor. SDRs enable the
local processing and work as the interface between the digital and radio-frequency domain.
The centralized beamforming operation is implemented on the FPGA of the co-processors.
The higher layer processor controls the system and configures the radios.

However, one disadvantage of the above testbeds is that those architectures highly depend
on the interconnection bandwidth. The data have to be collected from the frontends and
sent to the centralized processor to perform beamforming. With the increase of number
of antennas integrated on the testbed, the processing throughput will be limited by the
interconnection bandwidth. As a result, more efforts are required to design more complicated,
and higher-throughput routers or networks. To solve the interconnection bottleneck and
improve design scalability, the massive MIMO system has to be distributed.

Decentralized processing architecture

An implementation of the decentralized baseband processing for a massive MIMO system
in the graphic processing unit (GPU) has been proposed by Li [9], which partitions anten-
nas into clusters and detects data locally to reduce inter-cluster communication bandwidth.
The distributed beamforming algorithm uses alternating direction method of multipliers
and conjugate gradients based method. The interconnection bandwidth requirement for
this distributed GPU implementation is much lower than the centralized processing designs.
But this distributed beamforming algorithm cannot avoid loops during computation, which



CHAPTER 1. INTRODUCTION 3

increases the hardware implementation complexity. Beside the decentralized GPU imple-
mentation, ArgosV2 also implements distributed processing based on Argos, which is the
previous version of this testbed and implemented using SDRs [18].

Although the GPU and the software-defined radio (SDR) enable flexibility for experi-
mentation with algorithms, they are not practical power-efficient solutions. Compared with
FPGAs and application-specific integrated circuits, the power consumption of GPUs and
SDRs is much higher. To make the massive MIMO system power-efficient, the hardware
specialization is the solution.

Generators

Due to the high cost of specialized hardware design, to optimize the energy efficiency as well
as reduce design cost, design generators instead of instances can achieve this goal [7]. In
this work, Chisel is used to implement the generator. Chisel is a domain-specific extension
to the Scala programming language [3]. Hardware designers can create their own libraries
with the hardware primitives given by Chisel. After designers finish the hardware design,
the Chisel compiler translates them into synthesizable Verilog representations, which makes
the hardware design procedure much easier.

A memory-based, runtime-reconfigurable FFT engine generator proposed by Wang [20]
is a good example of the generator design using Chisel. Although the generator targets
SDR, the flexibility and portability of the generator help this work support a wide range of
applications. The FFT engine can be generated easily with different design parameters and
different design purposes.

1.3 Thesis Organization

The paper is organized as follows. Chapter 2 gives the overview of the scalable massive
MIMO uplink baseband processing system. Chapter 3 discusses the design of the generator
for the distributed processing part in the system. Chapter 4 details the “golden” model
simulator and FPGA emulation setup for the generator evaluation. The functionality and
performance are demonstrated and analyzed in Chapter 5.



4

Chapter 2

System Overview

In this chapter, the massive MIMO system, which includes both the uplink BS architecture
and the signal packet format, will be discussed in detail. The BS consists of three parts:
Heads, Spines, and the Tail. The Head is the mm-wave (or radio frequency) front-end.
The Spine contains a maximum-ratio combining (MRC) beamformer for a sub-array. All
Spines are chained up through the daisy-chain architecture. The Tail receives the MRC
beam-formed signal, and performs the frequency-selective decorrelation to remove inter-user
interference. Fig. 2.1 shows the uplink BS architecture.

2.1 Two-stage beamforming

Linear beamforming for wideband channels needs to consider the frequency-selective propa-
gation effect. To improve energy-efficiency of computation, a two-stage beamforming algo-
rithm has been proposed[7].

MRC beamformer

Theoretically, in flat-fading channels, MRC can maximize the output SNR [2], which is the
purpose of the first-stage beamformer. Assume a multi-user MIMO (MU-MIMO) system
containing K users and M antennas at the BS; let H ∈ CM×K be the channel matrix,
s ∈ CK be the transmitted symbols from users and y ∈ CM be the signal received at the
BS. Then

y = Hs + n, (2.1)

where n ∼ CN (0, σ2IM) is independently and identically distributed (i.i.d) zero mean com-
plex Gaussian noise. Let ỹMRC ∈ CK be the MRC beamformed signal at BS. Then the MRC
beamformer gives

ỹMRC = HHy = HHHs + HHn. (2.2)



CHAPTER 2. SYSTEM OVERVIEW 5

User

Spine

User
…

…

Tail

Base StationChannel

Head
Head

…

SpineHead
Head

…

SpineHead
Head

…
Figure 2.1: The scalable massive MIMO BS architecture for uplink.

The MRC beamformer can be split into multiple subarrays and then forms a distributed
system by computing each sub-block locally, followed by summing the results through the
daisy-chain. Let N equal to the number of sub-arrays, Bi ∈ CM/N×K where 0 < i < N ,
H = [BH

1 BH
2 ... BH

N ]H , and yi ∈ CM/N is the received signal at i-th sub-array. The previous
equation can be expressed as

ỹMRC =
N∑
i=1

ỹi,MRC =
N∑
i=1

BH
i yi. (2.3)

Frequency-selective decorrelation

For a MU system, the inter-user and inter-symbol interference are still present after the
MRC beamforming. At this stage, a wideband channel is translated into multiple narrow
subcarriers, and each narrow subcarrier performs the zero-forcing algorithm. Let Ns be
the number of samples of the OFDM pilot, Ng be the number of subcarriers. Then each
subcarrier contains Ns/Ng samples. Let Ỹi,MRC = FFT (ỹMRC)[i] be the i-th sample of the
MRC beam-formed signal in the frequency domain, and Hi be the channel matrix for the
i-th sample. The zero-forcing estimator gives

x̂i = IFFT ((HH
i Hi)

−1Ỹi,MRC). (2.4)

The estimation of Hi is the average of all estimations of Hj within the same subcarrier.
After the two-stage beamforming, the inter-user interference is removed and signal-to-

interference-plus-noise ratio (SINR) increases.



CHAPTER 2. SYSTEM OVERVIEW 6

BS

Golay pilot OFDM pilot Payload

Golay
pilot
user0

Golay
pilot
user1

OFDM 
pilot
user0

OFDM 
pilot
user1

All users 
payload

User

……

Figure 2.2: The signal packet format. The upper inset is the user TX signal packet. The
lower inset is each BS channel received signal packet.

2.2 Signal packet format

Fig. 2.2 shows the individual user’s signal packet and the signal packet received by each
BS channel, respectively. Users send time-interleaved Golay pilots first, followed by time-
interleaved OFDM pilots, to help perform the channel estimation in the two-stage beam-
former. Golay pilots are used for the estimation of a frequency-flat channel matrix in the
MRC beamformer, which consists of Golay complementary pairs. The BPSK-modulated
OFDM pilots are used for the frequency-selective channel estimation in the decorrelation
stage. Both Golay pilots and OFDM pilots include guard intervals. After all users send
both pilots, they send quadrature amplitude modulated (QAM) payloads simultaneously.
To synchronize the BS and users, a beacon signal is propagated to all users from the BS at
the beginning of each packet to work as a time reference.



7

Chapter 3

Generator Design

Generators are modular, highly parameterizable register-transfer level (RTL) hardware de-
signs implemented in the higher-level programming language to enable parametrization and
design reuse via extension. The Spine generator is written in Chisel [3], which is a hardware
construction language that facilitates parameterized circuit generation for both ASIC and
FPGA digital logic designs. It generates the MRC beamformer stage in this scalable massive
MIMO BS architecture. The Spine generator is parameterized in

• the number of channels per Spine

• the number of users in the system

• the oversampling rate

• the number of root-raised cosine (RRC) filter taps

• the Golay pilot design, including the code length, code seeds, and the guard interval

• the Lagrange polynomial order

• the datapath bitwidth

• the datapath parallelism

The Spine generator is integrated with multiple generators, which are designed for the
general digital signal processing (DSP) by using the reusable hardware library described
in [21]. The Spine datapath is shown in Figure 3.1. The inputs are M channels of in-
phase and quadrature (IQ) signals which are parallelized at the configuration time. The
outputs are K users MRC beam-formed signal summed with the signal coming from the
upper neighboring Spine in the daisy-chain. The outputs are sent to the lower neighboring
Spine. The parameters of each module generator are shown in the yellow boxes.



CHAPTER 3. GENERATOR DESIGN 8

3.1 Signal Correction

The signal correction group includes a 65-tap RRC filter, an IQ signal synchronizer, and a
direct current (DC) offset cancellation for each channel. The RRC filter is generated by the
tree-reduced strength-reduced FIR filter generator. The number of taps is parameterizable,
and the coefficient array is configurable. Fig. 3.2 shows an example of a FIR filter generated
by the FIR generator with 6 taps and parallelized by 2. Each valid cycle, way-0 and way-1
shift registers right by one, and multiply with the corresponding coefficient. Way-0 and way-
1 multiplication results are accumulated through way-0 and way-1 pipelined tree adders,
respectively. Assume the number of taps in a RRC filter is NT , because the RRC filer
coefficients are symmetric, then to reduce the number of multipliers in the design, the input
of the FIR filter is the summation of samples i and NT − i− 1 for i ∈ [0, NT ).

To balance the front-end impairments, the IQ synchronizer and the DC offset cancellation
are included in the datapath set with manually calibrated IQ impairment and DC. The IQ
imbalance comes from two parts:

• different gains, gi and gq, for I and Q channels.

• phase offsets, θi and θq, that make I and Q channels not orthogonal.

Let y = yi + j · yq be the signal without IQ imbalance for a single channel, and yim =
yim,i+j ·yim,q be the signal with IQ imbalance due to the frontend. Then yim can be expressed
as [

yim,i

yim,q

]
= P

[
yi
yq

]
=

[
gi sin θi gq cos θq
−gi cos θi gq sin θq

] [
yi
yq

]
(3.1)

To correct the IQ imbalanced signal, P−1 should be multiplied with the imbalanced
signal. Then [

yi
yq

]
= P−1

[
yim,i

yim,q

]
=

[
a b
c d

] [
yim,i

yim,q

]
(3.2)

Based on the equation, the architecture of IQ synchronizer is shown in Fig. 3.3.
Parameters of the IQ synchronizer are the coefficient matrix, ranging from (−1, 1).

3.2 Frequency-flat channel estimation

The MRC beamforming stage and the frequency-selective decorrelation stage perform the
channel estimation separately. In the MRC beamformer stage, the Golay pilot is used for
the frequency-flat channel estimation; while in the frequency-selective decorrelation stage,
the OFDM pilots aid the channel estimation. The detailed design of the frequency-selective
channel estimation can be found in [7].

The Golay pilot contains two complementary sequences with the same length L, where
L is a power of 2. The sum of the aperiodic autocorrelation functions of the sequence pair



CHAPTER 3. GENERATOR DESIGN 9

is a Kronecker delta [6]. Let hm,k represent the mth-row kth-column element in the channel
matrix H, and gk be the Golay pilot of user k. Because the Golay pilot is time-interleaved,
the pilot received at the channel m is given by g̃k,m = hm,kgk + n, where n is the additive
white Gaussian noise. Let the auto-correlation of g̃k,m be Rk,m. The estimation of hm,k is

ĥm,k =
1

2L
Rk,m. (3.3)

According to [6], the Golay sequence with length 2L can be generated by a sequence
of delayed values D and a sequence of seeds W with length log2(L). In this design, D is
any permutation of the set {20, 21, ......, 2log2(L)−1}, and the seed w ∈ {−1, 1}. The Golay
sequence pair is generated using the following algorithm:

Algorithm 1 Golay sequence pair generation
Input: L, D, W
Output: g

Create two empty arrays gA and gB with sizes are log2(L) + 1 by L
gA[0, 0]← 0, gB[0, 0]← 0
for 0 ≤ m < L do

for 0 ≤ n < log2L do
if m ≥ D[n] then

gA[n+ 1,m]←W[n]gA[n,m] + gB[n,m−D[n]]
gB[n+ 1,m]←W[n]gA[n,m]− gB[n,m−D[n]]

else
gA[n+ 1,m]←W[n]gA[n,m]
gB[n+ 1,m]←W[n]gA[n,m]

end if
end for

end for
g← Concatenation of the reverse of gA[log2L] and the reverse of gB[log2L]
return g

We designed a pipelined parallelizable Golay correlator generator based on the Algorithm
1. Because the reverse of a Golay sequence pair is also a Golay sequence pair, the Golay
correlator is equivalent to the Golay generator of the reverse sequence. Fig. 3.4 shows the
generated architecture of an oversampling-2, length-4, parallelism-4 Golay correlator. The
proposed design doesn’t contain multipliers, which makes it energy-efficient. The upper path
generates gB and the lower path generates gA in Algorithm 1. The datapath is pipelined
by log2(L) stages. The amount of parallelism changes the delay register connection and
the input of the adder by input look-ahead. The adder input can be either from the delay
registers or the pipeline registers. The architecture is hardware parameterized for D, but
can be configured for W on the fly. The sequencing controller controls the input of W at
each user’s Golay pilot time interval.



CHAPTER 3. GENERATOR DESIGN 10

The channel delay estimation contains two parts: coarse delay estimation and fine delay
estimation. The coarse delay estimation is based on the correlation norm peak of Golay
pilots in Eq. 3.3. The correlation norm peak detection contains two parts: parallel peak
detection and global peak detection. The parallel peak detection detects the maximum value
in each parallel lane, and the global peak detection detects the peak among all lanes. The
finite state machine for parallel peak detection contains 3 states:

• Wait. In this state, the parallel peak detector tracks the average power Pavg of the
correlation result for a certain window size WS. If the input correlation power is larger
than threshold × Pavg and larger than lowerbound value, then update Pmax to be
the input correlation power and maximum power buffer index imax to be WS − 1, and
go to Detect state; Otherwise, stay in this state.

• Detect. Track the maximum power for the window size WS − 1. If the input corre-
lation power is larger than current Pmax, then updates Pmax and imax. After finishing
tracking WS − 1 number of correlation power, go to Done state.

• Done. In this state, check whether the input correlation power is larger than the
current Pmax or not. If yes, output this correlation power; Otherwise, output Pmax.
Then go back to Wait state.

The finite state machine for the global peak detection contains 3 states as well:

• Wait. Use the shift register to keep records of the most recent WS× number of lanes
correlation results and their power. If one of lanes detects the peak, go to Detect &
Output state; Otherwise, stay in the current state.

• Detect & Output. Use tree-reduced comparator to find the maximum power among
the correlation powers in current and the previous cycle in all lanes. If the index of the
maximum power in the buffer is larger than or equal to the number of lanes, output the
correlation result corresponding to the maximum power and its adjacent 2l correlation
results, shift the buffer, and go back to Wait state; Otherwise, go to Output state.

• Output state. Output the correlation result corresponding to the maximum power
and its adjacent 2l correlation results, and go back to Wait state.

However, due to the ADC skew and the sampling phase mismatch, the signal may not be
sampled at the maximum power, which does not maximize the correlation norm peak. To
resample the signals with maximum power, Lagrange polynomial L(x) is used to interpolate
the correlation norm based on 2l + 1 correlation norm samples c(i) around the peak, where
i ∈ {−l, ..., 0, ...l}. The fine delay estimation ŝ0 is

ŝ0 = arg max
x
L(x) = arg max

x

l∑
i=−l

[
c(i)

l∏
−l,j 6=i

x− j
i− j

]
. (3.4)



CHAPTER 3. GENERATOR DESIGN 11

Let y(t) be the skewed signal and ŷ(t) be the deskewed signal, which is given by

ŷ(t) =
l∑

i=−l

[
y(t+ i)

l∏
−l,j 6=i

ŝ0 − j
i− j

]
. (3.5)

In software design, to find ŝ0, one needs to take the derivative of L(x), and use Newton
method to find the maximum point. Loops cannot be avoided when using Newton method
to find the zero point. In order to avoid loop iterations in hardware, the following algorithm
is used to calculate the maximum ŝ0 for a given resolution r.

Algorithm 2 Fine delay estimation
Input: c, r
Output: ŝ0

sq ← q · r, where q ∈ {−1/r, ..., 0, ..., 1/r}
for q from −1/r to 1/r do

Calculate all coefficients cfi ←
∏l

j=−l,j 6=i
sq−j
i−j , where i ∈ [−l, l]

ŷq(0)←
∑l

i=−l y(i) · cfi
end for
ŝ0 ← arg maxq ŷq(0)
return ŝ0

Let the datapath bitwidth to be B. The threshold of the peak detector ranges from
[0, 2B−1) with precision 0.5, and the lower bound of the peak detector ranges from (−1, 1)
with precision 2−(B+1). The fine delay estimation ranges from (−1, 1) with precision r, and
the fine delay synchronization coefficient ranges from (−1, 1) with precision 2−(B+1).

The Golay correlator generator is tested against the match filter result using the same
Golay pilot. The Golay pilot is generated by random seeds. The coarse delay estimation and
fine delay estimation are tested against the result produced by the Python golden model,
which will be discussed in detail in Chapter 4, using the same input signal. The fine delay
synchronizer is implemented using the FIR generator. It is tested with randomly generated
data and coefficients, and the result is compared with the software implementation of the
same FIR filter.

3.3 MRC beamformer

The MRC beamformer is generated by the pipelined systolic-array-based matrix multiplier
generator, with parameterized matrix dimensions and datapath parallelization. The matrix
multiplier uses the weight-stationary architecture. Each processing element (PE) consists of
a width-parameterized complex, fixed-point multiplier and an adder. For a massive MIMO
system with K users and M channels per Spine, the matrix multiplier dimension is M ×K



CHAPTER 3. GENERATOR DESIGN 12

for a single path. In order to meet timing requirement for different platforms or technology,
the number of pipeline stages along K dimension is also parameterized.

Fig. 3.5 shows the beamformer architecture. The weight inputs are the estimated
frequency-flat channel matrix, and the input to each row is the channel’s fine synchronized
signal.

Parameters K, M , and parallelism can be any integer larger than 0. The input, coeffi-
cients, and the output have the same data range and precision as the datapath. The MRC
beamformer is tested using randomly generated numbers, and the result is compared with
the ground truth produced by the software implementation of the matrix multiplier using
the same test data.

3.4 Sequencing Controller

The sequencing controller is designed for: 1) providing the time reference for each processing
module; 2) channel synchronization.

At the beginning of each signal packet, the sequencing controller sends the beacon signal
to all modules to reset registers and state machines. For Golay correlators, the sequencing
controller also controls the change of W for different users. Because Golay pilots are sent in
TDD mode, the sequencing controller will set up the W sequence in all Golay correlators to
be user k’s W when it is the time slot for that user.

Due to different user propagation delays and the front-end mismatches, the signal arrival
times are mismatched, even for the same user. Let the time delay created by the user i be
Tu,i and the time delay created by the channel j be Tc,j where i ∈ [1, K] and j ∈ [1,M/N ].
We can assume Tu ∼ N (µu, σ

2
u). Then the time delay between user i and channel j in the

same Spine module is Tu,i + Tc,j. To synchronize the channel before the MRC beamformer,
a channel time delay estimator is needed. This can be achieved by averaging the time delay
among all users signal received by the same channel.

E
[ 1

K

K∑
i=0

(Tcj + Tui)
]

= Tcj + µu. (3.6)

In the sequencing controller, both integer and decimal delay estimations for all users are
accumulated for each channel. The averaged integer delay estimation will be sent to channel
coarse synchronizers, and the averaged decimal delay estimation will be sent to channel fine
synchronizers. In channel coarse synchronizers, all other channels are synchronized to the
channel that has the longest delay. In channel fine synchronizers, a l-tap FIR filter is used,
whose l taps are generated using Eq.3.5.

Due to the slow change of channel delays and the long critical path of the channel delay
estimation, the channel delay estimation of the current packet will be used for the channel
synchronization of the next packet.



CHAPTER 3. GENERATOR DESIGN 13

The user time delay needs to be estimated after the MRC beamforming. The user time
delay estimation uses the same algorithm as the channel delay estimation. The downsampling
phase selection is determined by the user coarse time delay estimation.

The Spine Generator

The Spine Generator is integrated with the generators described above. The datapath is
shown in Fig.3.1. The ADC input in each channel firstly goes through the signal correction
module, which includes the RRC filter, IQ synchronizer and DC cancellation, to correct
the frontend impairment. Then the corrected pilot is used to estimate the frequency-flat
channel matrix and the channel delay in the channel estimation module. Channel delays are
collected in the sequencing controller module. The sequencing controller calculates the delay,
and sets both the channel coarse delay synchronization module and the channel fine delay
synchronization module for the next packet. The synchronized signals of all channels then
go into the MRC beamformer. After beamforming, each user’s delay is estimated in the user
delay estimation module, and the estimated delay is set to the user fine delay synchronization
module. The sequencing controller calculates the payload start position of each user based
on the user delay estimation result, and then controls the down sampler. The down sampled
signal is sent to the panel sum module, and summed with the accumulation result transmitted
from the upper neighbor panel in the daisy-chain architecture. The accumulation output is
then passed to the lower neighbor panel.



CHAPTER 3. GENERATOR DESIGN 14

M_channel
K_users
Bitwidth

parallelization

Signal 
Correction

Channel 
Coarse Sync

Channel 
Fine Sync

Channel 
Estimation

MRC 
Beamformer

User
Fine Sync

User delay
Estimation

↓X

Panel Sum

Sequencing Controller
tap_num

coeff

depth

num_tap

GolayDn
len

poly_tap_num

[K-1:0][M
-1:0][w

ts_bitw
idth-1:0]wts

GolayDn
len

poly_tap_num

index

td

argmax

argmax
td

[M
-1:0][parallel-1:0]

[adc_bitw
idth-1:0]

[K-1:0]
[parallel-1:0]
[bf_bitw

idth-1:0]

num_tap

row
colum

transpose

[K-1:0][parallel/X-1:0]
[serdes_bitw

idth-1:0]

[K-1:0][parallel/X-1:0][serdes_bitwidth-1:0]

X
maxDelay

i_adc_in q_adc_in

iq_corr
dc_offset

beacon

i_spine_in
q_spine_in

q_spine_outi_spine_out

Figure 3.1: The Spine generator datapath.



CHAPTER 3. GENERATOR DESIGN 15

Pipelined Tree Adder

Pipelined Tree Adder 

h0 h2h1 h4h3 h5

x(2n)

x(2n+1)

y(2n)

y(2n+1)

Figure 3.2: FIR Filter Generator.

I

Q

a

b
c

d

Icorrected

Qcorrected

Figure 3.3: IQ Correction.



CHAPTER 3. GENERATOR DESIGN 16

W0

W0x[2n+1]

W1

W1

y[2n]

y[2n+1]

x[2n]

x[2n-1] x[2n-2] x[2n-3]

Buffer

Buffer

W0x[2n+2] W1

y[2n+2]

Buffer

W0x[2n+3] W1

y[2n+3]

Buffer

0

Oversampling - 1

Figure 3.4: Golay Correlator.

Ain

Bin Cin

Aout

Cout

PE PE PE……

PE PE PE……

PE PE PE……

…
…

…
…

…
…

……

x0

x1

x(M-1)

M

K

1

y0 y1 y(k-1)

0

Parallelism - 1

Figure 3.5: MRC Beamformer.



17

Chapter 4

FPGA Emulation

4.1 Simulator

A Python-based system simulator is built to simulate an end-to-end massive MIMO system,
including the transmission packet generation, various channel models, front-end impairments,
and modular baseband signal processing [7]. We treat this simulator as a “golden” model
and evaluate the performance of this generator against it.

The transmission packet is parameterized in terms of the QAM modulation order, the
pilot length, the guard interval length, and the number of sub-carriers for the OFDM pilot.
All users shared the same D sequence, which is the same as the hardware design, but with
different W when generating the Golay pilot. User payloads are generated separately. All
user payloads are stored for later evaluation.

Channel models included in the simulator are the frequency-flat i.i.d channel, the frequency-
flat line-of-sight channel, and the Rician channel. It is also parameterized on the SNR. The
simulator also includes the carrier frequency offset (CFO) simulation, the sampling frequency
offset (SFO) simulation, the channel skew simulation, and the front-end impairment simu-
lation. Since the Spine generator implements the frequency-flat MRC beamformer, the per-
formance is evaluated on: 1) frequency-flat i.i.d channel; 2) Rician channel with K = 10dB.

The reference simulator includes the Spine and the Tail modules. The Spine algorithm
shown in Fig. 3.1 is simulated in floating-point data format. The Tail is simulated with the
frequency-selective decorrelation algorithm on the beamformed signal to eliminate inter-user
interference and equalize inter-symbol interference [7]. In the Tail module, CFO and SFO are
corrected using OFDM pilots. The corrected signal is transformed to the frequency domain,
and decorrelation algorithm is applied on each sub-carriers. After the decorrelation stage,
the signal is transformed back to the spatial domain, and then demodulated.



CHAPTER 4. FPGA EMULATION 18

i_adc_in

q_adc_in q_spine_out

i_spine_out

JTAG MEM (DDR4) clk_gen

DMA
config

DDR4_clk

clk_div_x

test_signal

Memory

Spine DSP Core

Server Server

FPGA

config

Figure 4.1: The scalable massive MIMO uplink baseband processing system emulation ar-
chitecture.

4.2 FPGA Emulation

The Spine generator is implemented on a Xilinx VCU118 FPGA. The FPGA emulation
system design is shown in Fig. 4.1. The set up is shown in Fig. 4.2. The FPGA contains:

• the Spine digital signal processing (DSP) core generated by the Spine generator but
without the panel summation module

• the memory system

• the clock generators for two clock domains

The server transfers the data to the FPGA, and simultaneously configures the Spine DSP core
and DMA through JTAG. Because the panel summation module maintains precision, the
emulation performance should be the same as if the summation is implemented on the FPGA.
The emulation system parameters are shown in Table. 4.1. The MIMO system contains 32
channels and 2 users with signal bandwidth 200MHz. Due to the resource limitation of the
FPGA, each FPGA is implemented with 4 channels, 8-bitwidth, and 8-parallelization on the
datapath. The baseband clock frequency is 50MHz.

The JTAG connection bitwidth is 64. The on-board DDR4 memory bitwidth is 512
without error correction code. The DDR4 is connected using the DDR4 interface provided
by Xilinx.

The emulation data flow is shown in Fig. 4.3. The Python simulator generates user
packets and simulates the channel. The Tcl script generator converts data to the 8-bit fixed-
point format, and generates the Tcl scripts for the data transmission control and the Spine



CHAPTER 4. FPGA EMULATION 19

Figure 4.2: The scalable massive MIMO uplink baseband processing system set up.

Table 4.1: FPGA emulation system parameter

Parameter Value

System
parameter

MIMO system parameter 32 channels, 2 users
Signal bandwidth 200MHz
Oversampling rate 2
Modulation scheme QPSK, 16-QAM

FPGA
parameter

FPGA Type Xilinx VCU 118
Number of channels per Spine 4
Datapath bitwidth 8
Datapath parallelization 8
Baseband clock freq 50MHz

DSP core configuration. The data transmission is implemented with Tcl axi commands.
Because the number of channels per Spine is 4, then every 4 channels data are grouped
together, and reshaped by the channel order. For example, the order of the data can be
channel 0 sample 0, channel 1 sample 0, channel 2 sample 0, channel 3 sample 0, channel
0 sample 1, etc. Each Tcl command sends 512 bits from the server to the FPGA memory.
The DSP core configuration includes:

• Set up DMA with the load and store base addresses and length, and the start signal.



CHAPTER 4. FPGA EMULATION 20

• The beacon signal to indicate the start of each packet.

• The number of users in the system.

• Each user’s W sequence for the Golay pilot.

• The thresholds for the channel and user correlation peak detector.

• Set up debug ports.

During the signal processing in the FPGA, the input data stream are loaded from the memory
through the DMA, then processed in the DSP core, and stored back to the memory through
DMA. When load and store conflicts, store has a higher priority. After the FPGA finishes
data processing, the data are loaded from the memory back to the server through JTAG. This
procedure is also implemented with Tcl commands. Each command loads 2048 bits from
the FPGA memory to the server. When the first 4 channel data finishes processing, the
next 4 channel data will follow the same procedure, and process the data in the FPGA. This
procedure will be repeated till all 32 channel data are processed. All of the communication
between the PC and the FPGA are through JTAG using AXI4 protocol. The emulation
data are then reformatted to the floating-point format and simulated by the Tail simulator
in PC.



CHAPTER 4. FPGA EMULATION 21

System Params

Simulator

Config.tcl MEM_write.tcl MEM_read.tcl

Vivado

FPGA

ReformatResult 
(SINR, BER)

Tcl scripts gen

python

tcl
interface
hardware

JTAG

BS received signal

Processed
data

Figure 4.3: Emulation system control flow chart.



22

Chapter 5

Results

5.1 Performance

The Spine generator demodulation bit-error rates (BER) are evaluated under different SNR
scenarios. The channel models are the flat i.i.d channel and the Rician channel with K =
10dB. The results of BER vs. SNR for the FPGA emulation system is shown in Fig. 5.1.
The figure shows the BER ranging from 10−6 to 10−3. The inset a) shows the BER of
the quadrature phase-shift keying (QPSK) modulation, and the inset b) shows that of the
16-QAM. The result shows that at SNR 11.9dB for the QPSK modulation and 19dB for the
16-QAM modulation, the BER reaches 10−3 in the flat i.i.d channel. For both QPSK and 16-
QAM modulation scheme, the emulation BER is very close to the simulation BER produced
by the floating-point golden model, validating the functionality of the Spine generator. The
small difference between the simulation and emulation performance comes from the residual
channel estimation and the datapath quantization errors.

The blue lines in Fig. 5.2 show the normalized mean-square error (MSE) of the true
channel matrix and the frequency-flat channel estimation in the FPGA versus SNR for
different Golay pilot lengths in the flat i.i.d channel. The normalized MSE of the channel
estimations decreases as the Golay pilot length increases. From the figure, one can also
notice that when the SNR is lower than 17 dB, 15 dB, and 13dB for the lengths of 8, 16,
and 32, respectively, the MSE increases faster than higher SNR in log scale. The change of
the slope is due to the increase of pilot synchronization failure. However, by increasing the
Golay pilot length to 64, the channel estimation MSE reduces to lower than 3 × 10−2 for
the SNR even lower than 15dB, and the possibility of pilot synchronization failure becomes
much lower.

The red lines in Fig. 5.2 show that when the SNR is lower than 23 dB, 19 dB, 17 dB,
and 13dB for pilot lengths of 8, 16, 32, 64, respectively, the normalized channel estimation
MSE of the simulator and the FPGA begins to increase. The normalized MSE converges to
5×10−4. To fit into the 8-bit datapath, a 0.2 gain is applied at the emulation input. Then the
normalized MSE floor corresponds to about 0.5 quantization bit, which is the quantization



CHAPTER 5. RESULTS 23

11 12 13 14 15
SNR / [dB]

10−5

10−4

10−3

BE
R

a). QPSK

sim flat iid
emu flat iid
emu Rician

19 20 21 22 23
SNR / [dB]

10−5

10−4

10−3

b). 16QAM

sim flat iid
emu flat iid
emu Rician

Figure 5.1: BER vs SNR for 32 antenna 2 users simulation and emulation results for a).
QPSK modulation scheme and b). 16-QAM scheme.

error. Emulated design adopts the Golay pilot length of 64 because of its adequately low
MSE. In Fig. 5.3, the SINR difference for the QPSK slightly increases as the SNR decreases,
which agrees with the MSE measurements from the channel estimation. For 16-QAM, the
SINR for the simulation and emulation is nearly the same.

Fig. 5.1 also shows the BER versus SNR for the QPSK and 16-QAM in a low-multipath
Rician channel. For the QPSK modulation, the performance is similar to the flat i.i.d channel.
For the 16-QAM modulation, the performance degrades by about 1 dB. Compared with
the QPSK modulation, the 16-QAM modulation is more sensitive to the imperfect channel
estimation in the Rician channel model, which leads to the larger performance degradation
than that of the QPSK modulation.

Emulation time for all presented BER measurements is 64 hours.

5.2 Throughput

The throughput of the Spine DSP core depends on the number of users in the system
K, baseband clock frequency f , oversampling rate x, datapath bitwidth b, and datapath
parallelization p. Because both I and Q have the same bitwidth, the throughput of a single
Spine is 2fbpK/x bits per second. By increasing datapath parallelism, which is a generator
parameter, the throughput can scale up. For the specific implementation in this paper, the
throughput is 6.4Gb/s.

Notice that due to the daisy-chain connection of Spines, the final throughput of the MRC
beamforming stage doesn’t scale up with the number of channels in the system, and is the



CHAPTER 5. RESULTS 24

10 15 20 25 30 35 40
SNR / [dB]

10−3

10−2

10−1

100

No
rm

al
ize

d 
M

SE

MSE true len 8
MSE true len 16
MSE true len 32
MSE true len 64
MSE sim len 8
MSE sim len 16
MSE sim len 32
MSE sim len 64

Figure 5.2: Frequency flat normalized channel estimation MSE vs SNR with different Golay
pilot length. Blue lines show the normalized MSE of the true channel matrix and the
channel estimation in the FPGA; red lines show the normalized channel estimation MSE of
the simulator and FPGA.

same as a single Spine. Compared with the LuMaMi whose interconnection bandwidth is
proportional to the number of antennas at the front-end [10], our work sigifficantly relaxes
the interconnect requirements.

5.3 Power estimation

The power of the implementation on Xilinx VCU118 is estimated using Xilinx Power Esti-
mator. The estimated power for each single Spine FPGA implementation is about 5.4W.
The power breakdown is shown in Fig.5.4. I/O, signals, logic, and DSP contribute to most
of the dynamic power consumption. This design can be mapped onto an ASIC for further
power savings.

5.4 Summary

Table 5.1 summarizes several state-of-the-art massive MIMO BS implementations. Unlike
[13] and [10] which include proprietary external FPGA modules, the design, the Spine gener-
ator is written in Chisel and is open-source [5]. This leads to its high portability to different
hardware platforms, either ASIC or FPGA, by easily changing the system and hardware
parameters. Compared to other narrowband OFDM designs in [10] and [9], our work sup-
ports much higher signal bandwidth, since the bandwidth of the carrier recovery algorithm



CHAPTER 5. RESULTS 25

11 12 13 14 15
SNR / [dB]

9

10

11

12

13

14

SI
NR

 / 
[d

Bm
]

a). QPSK

QPSK simulation
QPSK emulation

19 20 21 22
SNR / [dB]

18.0

18.5

19.0

19.5

20.0

20.5

21.0
b). 16QAM

16QAM simulation
16QAM emulation

Figure 5.3: SINR versus SNR for 32 antenna 2 users system simulation and emulation results
for a). QPSK modulation scheme and b). 16-QAM scheme.

Figure 5.4: Power breakdown.

in the Tail is not limited by the OFDM subcarrier bandwidth by using QAM payloads. The
distributed processing and daisy-chain architecture in our work relaxes the interconnection
requirements and improves the system scalability. Compared with the GPU implementation
in [9] which involves amount of memory access overhead, our work is specialized and much
more power-efficient.



CHAPTER 5. RESULTS 26

Table 5.1: Comparison

This work LuMaMi[10] RIVF’19 [13] JETCAS’17 [9]
Platform FPGA/ASIC FPGA FPGA GPU
Portable Yes No No No
Modulation QAM OFDM QAM OFDM
Distributed Yes No No Yes
Bandwidth 200MHz1 20MHz 935MHz2 40MHz
Method Two-stage BF MRC/ZF/RZF SOR ADMM
CHEST3 Yes Yes No Yes
Power 5.4W1 - - 235W4

1 The signal bandwidth is the FPGA implementation bandwidth. The power estimation are
based on the FPGA implementation of a single Spine with parameters shown in Table 4.1.
2 This is the maximum FPGA implementation clock frequency, not the signal bandwidth. The
signal bandwidth isn’t given.
3 Short for channel estimation.
4 This is the thermal design of the Tesla K40 GPU with fully utilization.



27

Chapter 6

Conclusion

6.1 Conclusion

This paper presents the design and the emulation results of a scalable, highly portable, and
power-efficient massive MIMO uplink baseband processing generator - the Spine generator.
The Spine generator is parameterized across a range of MIMO system and the datapath
hardware parameters, and specific instances were emulated on the FPGA.

The Spine generator is parameterizable on the number of users, the number of channels,
Golay pilots design, delay estimation precision, and datapath bitwidth and parallelism. An 4-
channel 8-bitwidth 8-way parallelism Spine is implemented on VCU118, and integrated with
the python golden model for controlling and evaluaton. The FPGA emulation supports up
to 200MHz signal bandwidth. The BER and SINR under different channels with different
modulation schemes are evaluated. Both the frequency flat i.i.d channel and the Rician
channel with QPSK and 16-QAM modulation schemes are evaluated. The results show the
performance of channel estimation with different Golay pilot lengths, and the functionality
of the Spine generator. At SNR 11.9dB for the QPSK modulation and 19dB for the 16-QAM
modulation, the BER reaches 10−3 in the flat i.i.d channel. The system can operate up to
6.4Gb/s with power estimation 5.4W. The parallelization and pipelining of the configurable
datapath and the distributed processing architecture enable the high throughput of the Spine
without putting pressure on the clock frequency or scaling up with the number of channels
in the system.

6.2 Future Work

Channel estimation improvement

The channel estimation evaluation result shows that when SNR is low, channel estimation
residuals increase drastically due to both channel noises and the quantization error. This
leads to the performance degradation of the Spine generator. In order to improve the channel



CHAPTER 6. CONCLUSION 28

estimation performance, some other channel estimation algorithms can be tried. Beamspace
channel estimation (BEACHES) can be applied to achieve this goal. BEACHES is a novel
algorithm which adaptively denoises the channel vectors in the beamspace domain using an
adaptive shrinkage procedure [12]. After integrating BEACHES to the Spine generator, the
channel estimation performance should be improved.

System integration

Currently, the Spine generator emulation only uses the data generated by the python golden
model. In the next step, the Spine generator needs to be integrated into the discrete Hydra
testbed [7], which includes receiver modules with antenna, ADCs, and FPGAs. All FPGAs
are connected with the daisy-chain architecture with high speed serial lanes. All FPGAs are
connected to the host through the Ethernet. By integrated the Spine generator with the
discrete Hydra testbed, the functionality and the performance of the Spine generator can be
evaluated using real-time data.



29

Bibliography

[1] A.Goldsmith. “5G and beyond: What lies ahead for wireless system design”. In: PIMRC.
2014.

[2] K. S. Ahn et al. “Performance analysis of maximum ratio combining with imperfect
channel estimation in the presence of cochannel interferences”. In: IEEE Transactions
on Wireless Communications 8.3 (2009), pp. 1080–1085.

[3] J. Bachrach et al. “Chisel: Constructing hardware in a Scala embedded language”. In:
Design Automation Conference. 2012, pp. 1212–1221.

[4] S. A. Busari et al. “Millimeter-Wave Massive MIMO Communication for Future Wire-
less Systems: A Survey”. In: IEEE Communications Surveys Tutorials 20.2 (2018),
pp. 836–869.

[5] Chisel3. https://github.com/chipsalliance/chisel3. Accessed on 2020-02-20.

[6] Enrique Garćıa et al. “Efficient filter for the generation/correlation of Golay binary
sequence pairs”. In: International Journal of Circuit Theory and Applications 42.10
(2014), pp. 1006–1015.

[7] G. LaCaille et al. “Design and Demonstration of a Scalable Massive MIMO Uplink
at E-Band”. In: 2020 IEEE International Conference on Communications Workshops.
2020, pp. 1–6.

[8] E. G. Larsson et al. “Massive MIMO for next generation wireless systems”. In: IEEE
Communications Magazine 52.2 (2014), pp. 186–195.

[9] Kaipeng Li et al. “Decentralized Baseband Processing for Massive MU-MIMO Sys-
tems”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 7.4
(2017), pp. 491–507.

[10] S. Malkowsky et al. “The World’s First Real-Time Testbed for Massive MIMO: Design,
Implementation, and Validation”. In: IEEE Access 5 (2017), pp. 9073–9088.

[11] T. L. Marzetta. “Noncooperative Cellular Wireless with Unlimited Numbers of Base
Station Antennas”. In: IEEE Transactions on Wireless Communications 9.11 (2010),
pp. 3590–3600.



BIBLIOGRAPHY 30

[12] Seyed Hadi Mirfarshbafan et al. “Beamspace Channel Estimation for Massive MIMO
mmWave Systems: Algorithm and VLSI Design”. In: IEEE Transactions on Circuits
and Systems I: Regular Papers 67.12 (2020), pp. 5482–5495.

[13] C. Nhat Cuong et al. “Hardware Implementation of the Efficient SOR-Based Mas-
sive MIMO Detection for Uplink”. In: 2019 IEEE-RIVF International Conference on
Computing and Communication Technologies. 2019, pp. 1–6.

[14] B. Nikolic et al. “Generating the Next Wave of Custom Silicon”. In: IEEE 44th Euro-
pean Solid-State Circuits Conference. 2018, pp. 6–11.

[15] B. Nikolić. “Simpler, more efficient design”. In: IEEE 41st European Solid-State Cir-
cuits Conference. 2015, pp. 20–25.

[16] F. Rusek et al. “Scaling Up MIMO: Opportunities and Challenges with Very Large
Arrays”. In: IEEE Signal Processing Magazine 30.1 (2013), pp. 40–60.

[17] O. Shacham et al. “Rethinking Digital Design: Why Design Must Change”. In: IEEE
Micro 30.6 (2010), pp. 9–24.

[18] Clayton Shepard, Hang Yu, and Lin Zhong. “ArgosV2: A Flexible Many-Antenna
Research Platform”. In: MobiCom (2013), pp. 163–166.

[19] Clayton Shepard et al. “Argos: practical many-antenna base stations”. In: MobiCom
(2012).

[20] A. Wang, J. Bachrach, and B. Nikolié. “A generator of memory-based, runtime-reconfigurable
2N3M5K FFT engines”. In: 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2016.

[21] Angie Wang et al. “ACED: A Hardware Library for Generating DSP Systems”. In: Pro-
ceedings of the 55th Annual Design Automation Conference. DAC ’18. San Francisco,
California, 2018.


	titlepage-yue (1)
	Master_thesis_yue_final

