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Abstract

Supporting Multiple Clients in Opaque

by

Eric Feng

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Raluca Ada Popa, Chair

Opaque builds upon Apache Spark and utilizes Intel SGX Enclaves in order to perform
oblivious, encrypted database operations. Unlike previous encrypted systems that focus on
either the general database or were application specific, Opaque aims for the best of both
worlds by optimizing the query layer, thus obtaining efficiency while still maintaining decent
adaptability. However, the implementation of Opaque is not complete and is lacking several
important security features such as obliviousness and multiparty support. For my Master’s
project, I implemented the multiparty aspect of Opaque.
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Chapter 1

Introduction

The cloud is becoming a mainstream mechanism for companies and applications to take
advantage of efficient computing and storage. However, due to inherent nature of storing
sensitive information on an external service, there are a variety of security concerns when in-
teracting with the cloud. Some of these concerns can be alleviated using encrypted databases
and/or trusted executions environments [6] such as enclaves. However, recent works [4, 5, 12]
have shown that these solutions are vulnerable to side channel attacks where an adversary
may be able to deduce the contents of the database through access patterns. To be clear,
these ‘access pattern leakage’ weaknesses affect both encrypted databases and enclaves.

In order to resolve these issues, access patterns must be hidden, and there have been a
variety of proposed solutions [3] that implement this property of ‘obliviousness’ with large
overheads in latency. Opaque [13] is one of the solutions that provides oblivious and confi-
dential operations, and it aims to address the latency issue present in encrypted database
systems by optimizing at the query layer. More specifically, Opaque acts as a wrapper around
Apache Spark and extends the software to utilize enclaves. This is significant as previous
systems, to the extent of my knowledge, primarily focused on either a database oblivious
protocol or an application specific one; the former type has terrible latencies while the latter
is application specific. In other words, by not focusing on the general database level or appli-
cation specific level, Opaque obtains a decent balance between the two with the efficiency of
application-specific implementations, but also the generalizability of the database-orientated
designs.

However, the current Opaque implementation is incomplete, and several key features
are missing. Among the aspects that are not implemented, most relevantly, is multiparty
support. Namely, the Opaque implementation only supports a single client interaction at a
time. For my Master’s project, we implemented the multiparty aspect of Opaque.

The main challenges we faced in implementing multiparty was removing the inherent trust
in the client present in the single client model and ensuring the resulting implementation was
compatible with Apache Spark. Previously, the client was able to provide all the secret keys
for enclave encryption, and it was also able to contain the Spark Driver that contained all
the variables (see $2.2 for more information on Apache Spark). These actions are no longer
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possible in the new threat model $5.
The two solutions to address the trust issue within the context of Apache Spark, and my

main contributions, are the following:

• We introduce a middle man that contains the single Spark Driver and coordinates all
client queries into the same spark cluster.

• We perform a modified version of local attestation process between the enclaves so that
they can determine a shared secret key for encrypted operations.
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Chapter 2

Background

2.1 Hardware Enclaves

Enclaves are a trusted runtime environment. More specifically, they are regions of private
memory that cannot be modified or viewed by any process running outside of the enclave.
In other words, due to these confidentiality and integrity guarantees, we can run commands
such that an adversary would not be able to discern sensitive, underlying data (not including
side-channel attacks).

The process by which a third-party is able to establish trust within an enclave is called
attestation. There are two types of attestation: local and remote. In local attestation, two
enclaves are certifying to each other their validity. In remote attestation, a client is trying
to verify the validity of some remote enclave. In both situations, the enclave being doubted
generates a signature report signed by a trusted entity. The report contains proof that the
enclave is indeed what it says it is, and the code it is running is valid. In the multiparty
implementation, we also include a public key in the report to support further communication.

2.2 Apache Spark

Opaque is built as a wrapper around Apache Spark, a framework for quickly performing
database operations. Spark handles these operations across a cluster containing a single
master node and one or more worker nodes. When provided a query, a Spark driver on
the master node determines a Directed Acyclical Graph (DAG) that dictates an efficient
workflow for executing that query using the worker nodes. That workflow is then handled
and distributed by a cluster manager provided by Spark. The role Opaque plays in this is
through a modification of the engine that generates the DAG to use encrypted operations.

When starting an application with Apache Spark, the application connects to the master
node in the cluster. The application contains a driver program, as mentioned above, which
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Figure 2.1: Spark Cluster Diagram [9]

in turn contains references to all the relevant variables, data sets, etc. This is significant as
different Spark drivers cannot share variables or references unless they store the information
in an external storage location.
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Chapter 3

Related Work

Interacting with encrypted data is an active area of research. Here are some of the related
works in the field.

CryptDB [8] and Monomi [10]

CryptDB and a follow-up work, Monomi, use layered encryption with each layer of en-
cryption corresponding to some functionality and level of leakage. The “outer-most” layers
of encryption are the most secure, and the “inner” layers are less secure but allow more
operations. Layers are decrypted as needed, and this mechanism is controlled by a trusted
proxy that also intercepts plaintext queries and transforms them into usable forms. Multi-
party functionality is supported through chain encryption keys. In Monomi, the system also
takes advantage of the trusted client and can send data to the client for final processing.

Conclave [11]

While not strictly a encrypted database system, Conclave uses a similar logic as Opaque
when optimizing for oblivious Multiparty Computation (MPC) in intercepting queries and
optimizing them. More specifically, Conclave partitions data into public and private data,
so query optimization takes the form of deciding what data needs to be processed in MPC
and what will not be. Overall, this splitting of the data and the query reduces the amount
of data that needs to be performed in MPC and increases efficiency.

ObliDB [3]

ObliDB provides general, oblivious database workloads and follows the original Opaque
paper. It takes advantage of a query processor that can dynamically choose between different
oblivious implementations of the same operator to obtain competitive performance. It also
provides two database formats (flat or tree-based).
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Prochlo [2]

While Prochlo supports obtaining results from an encrypted database, it mainly focuses
on how multiple clients can contribute data. Three of the main techniques in Prochlo include
enclaves (Intel SGX), batching, and a protocol the authors call Encode, Shuffle, Analyze
(ESA) that encrypts, permutes, and ensures that the data is encrypted when stored in a
database. The last step of the ESA protocol, Analyze, obtains the values in a database and
adds differential privacy to the results so that they can be used publically.

Cipherbase [1]

Cipherbase is an encrypted database system that supports SQL queries and provides
efficiency through a client proxy and custom hardware. The proxy for each client intercepts
queries from the client to the database and transforming it as appropriate. More specifically,
the proxy is responsible for encrypting or decrypting queries as well as ensuring the resulting
computations are efficient. The custom hardware, created from FPGAs, acts as a pseudo-
enclave and processes the encrypted data from the main database.

Oblix [7]

Oblix introduces efficient, oblivious encrypted search through combining an ORAM
(Oblivious RAM) client and server (based on PathORAM client and servers) onto the same
host and ensuring that all memory accesses are oblivious. More specifically, the client is
placed in an enclave while the server is allowed to be in untrusted memory. Client internal
memory accesses are also made oblivious and optimized through the computation of a full-
ness map for all buckets that allows for reading and writing only certain blocks. The authors
name the state of oblivious client internal and external memory as doubly-oblivious.
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Chapter 4

System Overview

4.1 System Architecture

In this section, we discuss the multiparty implementation and the primary actors in the
system. They are (i) the clients, (ii) the Spark cluster, and (iii) the intermediate RPC
listener.

Clients

A client is a party using Opaque to process data. They send queries to be executed
through the RPC listener.

Each client trusts themselves, and data can be stored unencrypted on the client without
being compromised. Additionally, they are able to decrypt results that are encrypted with
an owned secret key.

Spark Cluster

The spark cluster, or what would nominally be considered the cloud, is where the queries
are executed. The cluster is a collection of worker nodes and a single master node - every
worker node has hardware enclave support. The organization of the spark cluster is detailed
more in $2.2.

Query execution is dictated by the DAG physical plan generated by the Spark driver on
the master node. Worker nodes have both untrusted (the host) and trusted memory (the
enclave), and any communication reaching the enclave must first pass through the host. The
untrusted memory can be freely tampered with and viewed, and the enclaves themselves do
not establish TLS connections or other forms of direct communication with each other. How-
ever, communication remains confidential as all input and output to an enclave is encrypted
under a shared secret that is generated through a modified local attestation.
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As mentioned previously, the enclave is trusted and confidential, but the information
inside can be leaked through side-channel attacks. Access pattern leakage can be mitigated
through oblivious operators, but that is out of scope for this report.

RPC Listener

The RPC listener connects the clients and the Spark cluster and acts as a man in the
middle actor. Queries are communicated from the clients to the Spark cluster, and encrypted
results are communicated from the Spark cluster to the clients. The RPC listener is not
trusted, and it is not able to decrypt any of the messages that pass through it.

The purpose of the intermediate orchestrator is to ensure that all clients share a central
Spark driver and thus share data and memory for collaborative computing. In other words,
the reason why every client cannot directly communicate with the master node on their own
is because in doing so, they automatically create their own Spark driver (this is behavior of
Apache Spark) and thus cannot share data.

4.2 General Workflow

This section details the various steps involved for a clients to send queries and obtain
and decrypt results.

1. The RPC listener starts and connects to the Spark cluster through the master node.

2. The clients connect to the RPC Listener and, through it, performs remote attestation
with the enclaves in the Spark worker nodes. Through running remote attestation,
the clients are able to pass a personal shared secret key ski to the enclaves for result
encryption.

3. The clients send queries to the RPC listener which in turn communicates them to the
Spark cluster. The encrypted results are stored in a file(s) on the VM that the RPC
listener is located on.

4. The clients ask for a post-verification of the query computation to ensure that the
Spark driver did not tamper with the generated Spark DAG, force the enclaves to
execute the wrong query, and intentionally create bad results. Post verification is out
of scope for this report.

5. The RPC listener, after post-verification succeeds, reads the encrypted results from the
files from step 3 and uses the enclaves on the worker nodes to re-encrypt the results
under the the clients’ individual keys.

6. The RPC listener sends the encrypted ciphers to the corresponding client. The client
is able to then decrypt the result using their shared secret key ski.
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Figure 4.1: Clients send queries to the RPC listener. The RPC listener communicates to the
Spark master node which takes the query, generates the DAG, and communicates with the
worker nodes to execute the physical plan. Arrows only show one direction for simplicity.
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Chapter 5

Threat Model

As mentioned in the previous section, there are three main actors in Opaque Multiparty:
the clients, the Spark cluster, and the intermediate RPC listener. For the purpose of dis-
cussing the threat model, however, the Spark cluster and the intermediate RPC listener will
be grouped into the singular actor ‘the cloud’.

Client Threat Model

A client does not trust any actor besides itself. Unencrypted client data is considered
uncompromised only on the client itself and within the trusted enclaves. Malicious clients
can collude with each other and the cloud and have super-user privileges, but because query
results and data are always transmitted encrypted under either the client’s individual secret
key or the enclaves’ shared secret key, no data is leaked to malicious actors.

Cloud Threat Model

The RPC listener and the Spark cluster combined constitute the cloud for Opaque. We
assume that the entire cloud, except the enclaves, are compromised. This means that a
malicious actor can freely tamper and view insecure host memory, and the clients’ data will
maintain confidentiality and integrity.

We do trust the cloud for availability. We believe that this is a reasonable assumption
to make as cloud providers are self-interested in ensuring cloud availability for business.

One area of compromise not addressed is the potential for the untrusted Spark driver
to generate an incorrect working DAG so that the enclaves execute the wrong physical
plan. Post-verification of query execution is out of the scope of this report, but this issue is
currently being addressed by another person working on Opaque.

Finally, although we trust the information inside an enclave is confidential, as mentioned
previously, an adversary could still compromise and infer the data through side-channel
attacks.
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Chapter 6

System Design

In this section, we discuss the design of Opaque multiparty. There are three main sections:
(i) the initial set up before any communication occurs, (ii) local attestation without direct
communication between enclaves, and (iii) establishing communication between the client,
the RPC listener, and the Spark cluster.

6.1 Initial Setup

In the initial setup, I describe what each party holds.
Client: Each client holds two values at initialization.

• A 256-bit symmetric key ki to be transferred to the enclave for encrypting data.

• A certificate that authenticates the client to the enclaves.

• The public key of a trusted entity, used to verify enclave reports in remote attestation.

Spark Cluster: The untrusted host (excluding the enclaves) on both the master node
and worker nodes do not handle decrypted data and do not hold any items. The enclave
holds two items at start up.

• A 2048-bit RSA public/private keypair (pkj, skj). This key pair is used to communicate
with other enclaves in local attestation as well as the clients in remote attestation as
explained in sections 6.2 and 6.3.

• The public key of a trusted entity, used to verify other enclaves.

RPC Listener: The RPC listener acts as an intermediate actor in the communication
between the clients and the Spark cluster. As such, it does not contain any items.
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6.2 Local Enclave Attestation

In order for the enclaves to determine the same shared key, they need to be able to
trust one another and communicate. However, in Spark, direct communication between the
worker nodes outside of the evaluation of a physical plan isn’t supported, and so we have to
use the Spark driver as an intermediate actor to relay communications. To be specific, the
steps for local attestation are as follows:

1. The Spark driver gathers attestation reports from all the enclaves. These reports are
from OpenEnclave’s evidence SDK, and they contain the public key of the enclave.

2. The reports are sent to a single, randomly picked enclave e.

3. Enclave e verifies all the attestation reports using the public key of a trusted entity
and obtains the public keys of all other enclaves.

4. Enclave e generates a random 256-bit symmetric key and encrypts that key under each
of the other enclaves’ public keys. All of the ciphers are concatenated into a single
message c and returned to the Spark driver.

5. The Spark driver sends c to each of the enclaves.

6. Each enclave goes through the list of ciphers and attempts to decrypt each one. One
is guaranteed to decrypt successfully and provide the enclave the shared key.

7. At the end of the process, all enclaves obtain the shared key, and the Spark driver
learns no information.

6.3 Communication between Clients and the Spark

cluster

Remote Attestation

In order for the client to trust the remote enclaves, they perform remote attestation with
them. Because the clients do not communicate directly with the Spark cluster (and therefore
the enclaves inside them), they receive the attestation report through the RPC listener. This
is okay, because the client can verify and integrity check the report using the public key of a
trusted entity. After verification, the client will send back their shared key encrypted with
the enclaves’ public key. This shared key will be used for future communication between the
client and the enclaves.
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Spark-shell Sub-process

One of the primary difficulties with enabling multiparty support for Opaque was Sparks
inherent limitation on one active spark-context per application. More specifically, if there
were no RPC listener, then each client would connect to the spark cluster individually with
their own spark context, and they would not be able to communicate and work together. The
solution to this problem was to introduce the central shell that would be able to take all client
queries and direct them to the same spark context. Hence, the RPC listener instantiates a
single spark-shell sub-process and redirects all queries it receives to that sub-process.

Result Encryption and Decryption

To ensure that the results of the query are not known to the driver, the query results
remain encrypted until post-verification. More specifically, until the clients actively send a
post-verification request, the result will remain encrypted on disk. Once post-verification
occurs however, then the result will be read by the driver, sent to the enclave for decryption
and re-encryption using client keys, and then sent back to the corresponding clients.
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Chapter 7

Implementation

The implementation is built on the original Opaque codebase written in primarily C++
and Scala. In total, the added code was approximately 2000 lines of C++, Scala, and Python
code combined.

The Python client and RPC listener use gRPC for communication and call underlying
Opaque functions which can be either in C++ or Scala. For client side cryptography, we
used OpenSSL, while for enclave cryptography and interfacing we used MbedTLS and Open
Enclave respectively.

The multiparty implementation was tested on Intel SGX enclaves on Azure Secure Con-
fidential Computing instances. The code is currently open source at https://github.com/
mc2-project/opaque.

https://github.com/mc2-project/opaque.
https://github.com/mc2-project/opaque.
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Figure 7.1: Sample code for client shell. This code contains calls for attestation and sending
queries
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Chapter 8

Evaluation

8.1 Tests and Setup

In the experiments, we ran two common learning algorithms: logistic regression and
K-means. We also ran the first 22 queries of the TPCH benchmark.

Logistic Regression: Provided n points and classifications, logistic regression attempts
to match a logistic function to the points in order to obtain a binary classifier.

K-means: Provided a cluster of n points, k-means attempts to partition them into k
clusters such that each point is located in the cluster with the closet mean.

TPCH Benchmark: The TPCH benchmark is a common benchmark for any data-
processing software and completing it details complete coverage. Opaque does not support
all TPCH operations yet, and for this evaluation, I only ran the first 22.

The experiments include three systems: the original Opaque implementation with no
division of trust, an Opaque implementation with division of trust and local attestation, and
Opaque multiparty (queries being sent over gRPC). For gRPC, we had both the client and
the server on the same host.

The experiments were run on Microsoft Azure Confidential Computing Virtual Machines.
The specs of the machines were DC4s V2 machines with 4 vCPUs and 16 GiBs of memory.
The spark configurations of the cluster that the tests were run on was 3 executor instances
each with 4096 MB and with spark.sql.shuffle.partitions = 3. The configurations of the
gRPC server was 4 executor instances and 8 GB total.

8.2 Results

Logistic Regression: We measured the training time on 1000, 10000, 100000, 250000, and
500000 randomly generated classified 10D points. We trained for 5 iterations. K-means: We
measured the training time to classify 1000, 10000, 100000, 250000, and 500000 randomly
generated 2D points into 3 clusters. TPCH Benchmark: We measured the time it took to
complete the first 22 queries of the TPCH benchmark.
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Num. Points Trusted Client (s) Untrusted Client (s) gRPC (s)
1000 6 7 7
10000 7.5 9 10
100000 17 27 27
250000 34 52 54
500000 64 99 100

Table 8.1: Times for Logistic Regression

Num. Points Trusted Client (s) Untrusted Client (s) gRPC (s)
1000 6.5 8 8
10000 6.5 21 22
100000 19 125 123
250000 34 296 290
500000 66 498 494

Table 8.2: Times for K-Means

Trusted Client (s) Untrusted Client (s) gRPC (s)
126 125 128

Table 8.3: Times for first 22 Queries of TPCH

In general, after removing trust from the client, the more the workload increased, the
more encryptions are performed, and the greater the time taken. The TPCH times were
the same across all methods as the additional encryption for each query was low. For these
benchmarks, transitioning from an untrusted client to communicating through gRPC did
not increase latency as the final result in each case was not large and could be transmit-
ted in one trip on the single host (i.e. a single array for both Logistic Regression and K
Means). However, we expect that for workloads where the final result is many rows long,
the corresponding overhead would increase accordingly.
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Figure 8.1: The time increases as the amount of data that needs to be encrypted grows.
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Chapter 9

Next Steps

The current multiparty implementation creates a client shell for interaction, but the shell
is limited in that it can only send single line queries that must return a value. In other
words, Scala functions, classes, and objects need to be defined externally and then imported
into the shell using an ‘import’ command. Additionally, the shell has other issues including
being unable to use arrow keys to navigate current and previous input. The next immediate
step would be to improve the client shell to support these features.

Beyond the client shell improvements, post-verification and client authentication are also
currently not supported. The former is important in order to make sure that the Spark driver
does not maliciously tamper with the generated DAG and trick the enclaves into executing
the wrong query. The latter is important to make sure that only trusted parties are allowed
to connect to the spark cluster and process sensitive data. One possible solution to this
is to embed the trusted usernames into the enclave on start up and only allow those users
(identity would be signed by a trusted entity) to establish an initial connection. Another
possible solution is to add a digital signature onto every query and ensure that the enclave
checks that the query signer is trusted.

Finally, oblivious operators has also not been implemented yet. This is important in
order to ensure that the enclave is not vulnerable to side-channel attacks.

In summary, future work can focus on client shell improvements, the integration of the
post-verification engine, authentication of clients, and the implementation of obliviousness.
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Chapter 10

Conclusion

For this Master’s report, I contributed a design and implemented Opaque multiparty
functionality. The implementation involved removing the trust from the client and providing
a mechanism for clients to share a Spark driver.
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