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Abstract—
The rise of the Video on Demand (VoD) industry led to un-

foreseen technical challenges, ranging from scalability issues
to network bottlenecks. As VoD platforms increasingly rely on
large content delivery networks (CDN) to lower the bandwidth
requirements on the origin servers and to improve latencies,
we observed that the streaming costs are still unbearably high.
In response to these challenges, in recent years, hybrid VoD
architectures started gaining traction both in academia and
in industry as an alternative to traditional CDNs. However,
amongst all of the systems which we’ve analyzed, to the best
of our knowledge, none of them are robust enough to prevent
collusion-based attacks against stakeholders, and this limits
the viability of these solutions. In this paper, we present the
design and implementation of a robust incentivization protocol
for blockchain-based hybrid VoD systems, Proof-of-Stream,
which we argue is the critical missing piece of the many
proposed hybrid VoD systems available today.

I. INTRODUCTION

Not too long ago, linear broadcasting schedules and theatri-
cal releases were in control over the content that was available
to viewers. However, over the last few decades, there has been
a paradigm shift where an increasing amount of entertainment
content is now made readily available for consumption in an
on-demand fashion. As an increasing amount of digital media
content is now offered through platforms such as Netflix,
HBO, Amazon Prime and Google Play, consumers have more
control over what and when to consume. Nevertheless, the rise
of the new video-on-demand (VoD) industry is accompanied
with unforeseen technical challenges. As the quality of video
content improves, more storage and bandwidth are required
to serve such streaming sessions. In a recent technical report
produced by Cisco [1], it is stated that video accounts for
over 82% of internet traffic in 2020. In order to meet the ever
growing demands of VoD content, companies typically have
complex distributed video ingestion and serving systems to
meet these new technical requirements. Moreover, to ensure
low streaming latencies for users located all over the world,
companies often employ content distribution networks (CDN)
such as Akamai to cache and serve content assets through
the edge. Despite so, bandwidth is often still the bottle-

neck of such systems and can result in high costs for VoD
companies due to the sheer amount of data each origin server
has to stream to clients. Moreover, as bandwidth becomes the
bottleneck, it becomes increasingly harder to serve content
to viewers in developing regions who do not have access to
expensive public infrastructure and CDN support.

In response to these challenges, in recent years, hybrid VoD
architectures have started gaining traction both in academia
and in industry as an alternative to traditional CDNs [16]
[17] [18]. Such hybrid systems, which will be described in
detail in Section II-A, typically employ edge devices as cache
nodes (often co-located on user devices/nodes) to significantly
reduces the load on the origin server while also enabling
low-latency and cost-efficient streaming in rural areas. These
systems are also typically integrated with public blockchain
infrastructures like Ethereum to enable more trust between
stakeholders and to automate payment functionalities such as
royalty management in a decentralized way [16][17]. However,
there are two main issues with existing systems. Firstly, none
of these systems, to the best of our knowledge, are robust
enough to prevent collusion-based attacks against stakeholders.
Secondly, in order for such systems to be viable at all, a
robust incentivization protocol built to protect the interests of
stakeholders such as artists, advertisers and cache nodes is
critical for adoption.

In this paper, we present the design and implementation of
a robust incentivization protocol for blockchain-based hybrid
VoD systems, Proof-of-Stream, which we argue is the critical
missing piece of the many proposed hybrid VoD systems
available today. Our implementation of the protocol in the
paper is built on top of an existing hybrid VoD system, CalVoD
[2][3][4][5][6], developed in the University of California,
Berkeley. The design, however, is platform-agnostic and can
be easily implemented and integrated with any hybrid or
decentralized VoD platforms.

In the following sections, we aim to present several core
building blocks and primitives which are helpful to implement
a robust incentivization layer for blockchain-based hybrid VoD
systems. Specifically, we propose a robust incentivization and
view count guarantee scheme for such systems by leveraging
smart contracts to keep track of view counts and user pur-
chases of VoDs.



Fig. 1: A typical hybrid VoD architecture consists of a set of origin servers owned by the streaming platform as well as a set
of edge devices consisting of users and cache nodes. User clients stream from origin servers via client-server mode whereas
they stream from neighboring cache nodes in a peer-to-peer fashion.

The rest of the paper is organized as follows. Section II
describes the Hybrid VoD Architecture as well as Blockchains
and Smart Contracts, providing readers with necessary back-
ground for understanding the remainder of the paper. Section
III introduces and analyzes existing works in the space, as
well as how they fail to provide an incentivization protocol
robust against many common collusion-based attacks. Section
IV describes the system architecture. Section V introduces
the threat models we’ve considered in our design as well as
our overall design goals. We then introduce and describe in-
depth our proposed protocol in Section VI. In Section VII
we evaluate our protocol’s robustness and deployment costs.
Finally, we conclude in Section VIII.

II. PRELIMINARIES

A. Hybrid Video on Demand Architecture

In recent years, there have been several attempts to reduce
the streaming costs of VoD systems by employing a hybrid
architecture[16] [17] [18]. Whereas in a traditional VoD sys-
tem the origin servers handle and serve all user requests, a
hybrid VoD system (as illustrated in Fig. 1) has additional
cache nodes on the edge (often co-locating with user nodes),
which can serve other user requests in a peer-to-peer (P2P)
fashion, therefore reducing the overall load on the origin
servers.

In a hybrid architecture, there are typically four groups of
stakeholders.

• Origin servers: these are regular content-streaming
servers owned by the streaming platform.

• Users: they connect to the network and pay for content
• Cache nodes: they are located on edge devices whom

are often also users who serve neighboring users’ stream
sessions by streaming content packets in a peer-to-peer
manner, reducing the overall load on the origin servers

• Content creators: these are artists who provide content
to the streaming platform and receive royalty in return

• Advertisers: they pay the streaming platform to broadcast
their advertisements.

In this hybrid setting, the bandwidth requirements on the
origin servers can be drastically reduced since content packets
of a particular stream session can be ”reused” and forwarded
by a cache node (which is typically just another user who
has that content packet already cached) to a nearby user
node which is requesting for the same content. The origin
server only streams directly to clients when cache nodes are
not available to fully fulfill a user request. As the user base
increases, a hybrid VoD system will drastically decrease the
load and costs on the origin servers since more content packets
will be available in the cache nodes, which can then be used
to serve new requests in a P2P manner.

Traditionally, advertisers and content creators are regarded
as separate stakeholders. However, we realize that a grow-
ing trend in recent years in the Asian VoD market is that
advertisements are increasingly being directly embedded into
content. Specifically, there is a trend for ”creative embedded
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advertisements” 1 in VoDs where these advertisements share
the same casts and story lines as the actual content and
are directly embedded, rather than pre-rolled, into the VoDs.
For the purposes of this paper, we will mainly consider this
group of advertisers and show that our protocol will help
simultaneously protect the interests of both the artists and these
advertisers. In future work, we hope to explore techniques
which are more general, to protect the interests of different
types of advertisers.

From our experiences with deploying and running CalVoD,
we’ve identified the key building blocks common in such
hybrid systems:

• Incentivization mechanisms to encourage users to simul-
taneously act as cache nodes

• Artist royalty-management module
• Advertisement fee-management module

As demonstrated by various Blockchain ecosystems such as
Bitcoin [7] and Ethereum [8], an incentivization mechanism
is crucial for adoption and scalability. Since CalVoD also
requires a huge number of independent (cache) nodes to be
practical, an incentivization mechanism is crucial. Moreover,
as a VoD system which depends heavily on independent
partnerships with artists and advertisers for revenue, CalVoD
requires several modules to pay artists and charge advertisers
fairly. In this paper, we define a fair payment as being
proportional to the true view count of the underlying content.

While implementations of royalty and advertisement fee
modules can vary across systems, in this paper we aim to
introduce several core primitives which can aid practitioners
in implementing these modules in practice.

B. Blockchain

Blockchain is the technology underlying many emerging
cryptocurrencies like Bitcoin [7] and Ethereum [8]. It allows
users to exchange value in a truly decentralized and peer-
to-peer manner, without depending on a central organization
or authority to oversee and process the transactions. From a
datastructures point of view, the blockchain is an immutable,
distributed and append-only ledger of linked blocks, where
each block records a set of transactions. These blocks are
cryptographically and chronologically linked, hence the name
”blockchain” [9]. Within a blockchain ecosystem, there is
typically a set of nodes called miners, which run a consensus
algorithm and are responsible for validating and recording
transactions to the distributed ledger.

Besides being decentralized, blockchains also provide sev-
eral interesting features that our system depends on in order
to be functional:

• Transparency since all transactions which are recorded
on the blockchain are visible to all nodes in the network.

1The exact term for this is described in a Chinese wiki:
”https://baike.baidu.com/item/创意中插” We can’t seem to find English
literature on this perhaps due to how new this trend is; however this seems
to be an extreme form on the ”product placement” marketing / advertising
strategy typically employed.

• Liveness since participants can always reach the
blockchain while more transactions are continually being
processed and new blocks being added.

• Blockchain address which each participant in the network
has. This address is bound to the hash of each user’s
public key and cryptography guarantees that only the
holder of the secret key can send or sign messages
corresponding to this public key [10] [11].

C. Smart Contracts

Smart contracts are user-defined programs that can be
deployed and ran on a blockchain such as Ethereum[8]. Once
deployed, users are able to interact with these contracts, which
will cause nodes currently running these contracts to update
their local replicas according to the execution results. In order
to interact with the smart contract, such as to invoke a method,
the caller has to pay some amount of fees also known as
gas. The amount of gas required for each type of execution is
listed in Appendix G of the Ethereum Yellow Paper [9] and
is reproduced in Appendix A.

In our system, we use smart contracts to store persistent and
dynamic state, as well as to facilitate the automatic payment-
splitting between various stakeholders. Just as any other trans-
actions on a blockchain, the states in smart contracts are visible
to all participants, allowing for easy audits. Moreover, smart
contract source code will also be open-sourced, hence any
participants can verify the logic of the smart contract at any
point in time.

III. RELATED WORKS

Here we analyze several existing hybrid VoD solutions and
discuss how a scheme like PoS can help complement them.

A. CalVoD

CalVoD [2] is the hybrid video-on-demand system which we
began our research on. It utilizes edge devices as cache nodes
to serve user requests for video-streams in a P2P fashion,
therefore achieving a higher quality-of-service for the user
while also reducing costs on the origin servers. However,
CalVoD itself is primarily focused on the streaming layer, and
from our experiences with deploying and testing it, lacks an
incentivization scheme to make it practical for production.
As such, this paper is the result of a year of designing
and implementing a robust incentivization protocol to enable
CalVoD to be a practical hybrid VoD system. Our protocol has
since outgrown CalVoD and is platform-agnostic.

B. MyTVChain

MyTvChain [17] is a blockchain-based hybrid VoD system
targeting the sports media industry. Its system architecture
mirrors that of the original CalVoD design which consists of
an origin server as well as a set of edge devices acting as
cache nodes (with co-located users). A typical stream request
will be fulfilled and served entirely by neighboring cache
nodes if possible, or else, by the origin server. A blockchain
module then handles royalty management for the content
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creators (sports clubs in this case) as well as cache payments.
However, despite having this incentivization layer, the authors
do not describe any threat models their system guards against
and therefore is unclear whether they are resilient and robust
against the many collusion-based attacks common in such
systems, as further described in section V.

C. Aurum

Aurum [16] is another blockchain-based hybrid VoD system
which builds on top of CalVoD. The paper covers a broad
range of topics ranging from techniques for content-correlation
to providing quality of service (QoS) through the use of
hybrid architectures. However, the paper lacks discussion of
the incentivization mechanism, which from our experience, is
a core functionality necessary for the platform to be practical
and sustainable in the long run. As such, we think that a robust
incentivization protocol like Proof-of-Stream is the missing
piece that will help complete Aurum.

D. Livepeer

Livepeer [18] is a decentralized blockchain-based media
server implementation for livestreams. Its goal is to provide a
decentralized platform for common media operations such as
transcoding and transmuxing. At a high level, broadcaster con-
nects to the blockchain network and requests for a livestream
service (i.e. to transcode its live stream packets and stream
to requesting users). Then a sophisticated and secure process
selects a worker node to transcode the packets and then finally
records the proof of transcoding onto the blockchain. At the
end of the process, various stakeholders receive their fair share
of payments. Though the whitepaper presents quite a robust
solution2 to the video-processing process, the authors noted
that the design and implementation of a robust streaming phase
is left for future work. As such, again, we think that our
proposed scheme can complement their solution really well,
resulting in a robust end-to-end hybrid media and streaming
server implementation.

IV. SYSTEM

In this section, we describe the overall architecture of our
system. We first introduce the network and market models
under consideration. Then, we describe the overall architecture
of our system, and finally provide a detailed explanation of
each component.

A. Network Model

Our system’s network model (Fig. 2) consists of the follow-
ing entities:

• Hybrid VoD Network. This network is where users,
cache nodes and the origin servers communicate. Fig.
1 illustrates the typical communication patterns between
the different entities. Users request and pay for content by
communicating with the origin servers in a client-server
mode. Users also communicate amongst themselves in
a P2P mode when acting as / being served by caches

2Here we refer to robustness in the game theoretical sense

co-located on user nodes. In this paper, we will treat
CalVoD’s network model as a black-box and avoid diving
too deep into its actual implementations since real-world
VoD systems are each implemented very differently.

• Blockchain. At the core of this paper is the integra-
tion of a blockchain network to the CalVoD network.
The blockchain network will handle the user-payment,
royalty-management, view count-tracking as well as
cache-incentivization through the use of smart contracts.

To sum up, user sessions and content packets are streamed be-
tween the origin servers, cache and user nodes over the hybrid
VoD network, while payments and custom metadata specific
to our proposed protocol (Section VI) are communicated and
recorded over the blockchain network (illustrated in Fig 2).

B. Market Model

The system described in our paper targets a niche business
model. While there are many forms of VoD services out
there in the market, including subscription-based VoD (SVoD),
transactional VoD (TVoD), advertisement-based VoD (AVoD)
and other hybrids, this paper, and CalVoD, primarily focuses
on the market space of a hybrid of TVoD and AVoD where
advertisement fees as well as a pay-per-view model dominates
the income for the VoD service. Specifically, our proposed
scheme is most appropriate for VoD systems which employ
a pay-per-view model where a user’s payment to rent or
purchase a content is then further divided between various
stakeholders such as the streaming platform and the artist.
In addition, we also learned that in many VoD platforms in
Asia, pay-per-view content often also contains advertisement
fragments embedded within the content itself. As such, the
view-count generated by each of these content is also directly
proportional to the advertising fees. Hence, our system as-
sumes that such advertisers will also contribute to the overall
revenue of the platform and therefore it is important for our
scheme to protect their interests.

C. System Architecture

The system (Fig. 3) includes five components: Origin
Servers, Caches, Users, Content Creators and the Blockchain.
Advertisers are also part of the system; however, they are
not included in the diagram because interactions between
the platform and the advertisers typically happen off-chain
via private payment agreements. In the following section, we
briefly explain the dynamics of the system, and defer the
protocol description and implementation details to Section VI.

When a user joins the system, it connects to the hybrid VoD
network, which we treat as a black-box model. In Section VI,
we will introduce a complete end-to-end system by building
on top of CalVoD, though it is important to note again that
the scheme and interfaces introduced later are generic enough
to be implemented on any existing hybrid VoD system with
minimal changes needed to the underlying VoD system. Once
the user is part of the VoD network and decides on a content to
purchase, they will pay for the content by sending a transaction
to a smart contract corresponding to the content they have
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Fig. 2: Network Model

Fig. 3: System Architecture Diagram

chosen (i.e. each content on the VoD platform has its own
smart contract counterpart which handles payments and other
features). The user then provides the transaction hash to the
VoD network, which will validate the user’s payment. Once
validated, streaming begins on the VoD network. In other
words, our system works by extending hybrid VoD systems
with a blockchain interface which handles payments as well
as other features such as view-count tracking.

V. THREAT MODEL AND DESIGN GOALS

In this section, we introduce the adversarial assumptions
and design goals of our system.

A. Adversarial and Threat Model

In our design, we are mainly concerned with collusion-
based adversaries which try to compromise the stability of
the system. In our set-up, the various parties involved include
the server, users, cache-nodes as well as artists. As such, there
are various possible collusion scenarios, which form the basis
of our threat model. In this section, we will introduce each of
these potential threats as well as discuss ways to prevent and
mitigate them.

1) Server-User Collusion Against Artists: The first poten-
tial threat this system faces is a collusion between the origin
servers and the user. One main motivation underlying such a
collusion is to reduce costs, both for the server and for the user.
The colluding parties in this case are incentivized to stream
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and pay outside of the proposed scheme since royalty fees
can be avoided and thus lowering costs for both the server
and the user. Specifically, such a collusion happens whenever
a user colludes with the origin server to begin a stream-
session without paying through the smart contract. Instead, the
user pays the server directly off-chain to initiate a streaming
session, instead of following the protocol and initializing a
streaming session by first paying the smart contract.

Such a collusion will result in the content creator receiving
a less-than-fair share of payment since the user’s payment to
the server bypasses the smart-contract which handles royalty
payment to the content creator. In addition, since the smart-
contract is not invoked for this stream session, the view count
of this stream session is also not recorded. Referring to Fig.
3, this can be visualized by removing all the red arrows.

We now show that such a collusion is unlikely and irrational.
The goal of distributing video chunks onto independent cache-
nodes is to reduce the load and streaming costs on the origin
server. Assuming that cache nodes are honest, any user in-
volved in the collusion will only be served by the origin server
since honest cache nodes following the protocol will check for
a valid user payment first (illustrated as the “User Payment
Verification” arrow in Fig. 3) before streaming. Therefore,
such a collusion reduces the system to a centralized VoD
system where the origin server is the only node servicing the
user’s stream request. This results in an increased streaming
cost and burden on the origin server, which undermines the
benefits of the hybrid VoD architecture; therefore, such a
collusion is irrational from the origin server’s point of view.

2) ”Streamer”-User Collusion Against Artists: The above
collusion can be extended to include colluding cache nodes.
”Streamers” in this case refer to nodes which can serve user
requests, and in our set-up, they refer to a set consisting of
the origin servers as well as several colluding cache nodes.
Such a collusion happens when the origin servers, together
with several colluding cache nodes, decide to stream to a user
who has paid them directly off-chain, bypassing the smart
contract. In this case, the artist is again the victim, as they
will not receive their fair share of payment for this particular
stream session. Again, we can show that this collusion will
not work well in practice. CalVoD cache nodes each has very
little video chunks available to stream to users, and therefore
a large number of independent cache nodes are often required
to fully serve a user’s stream request.

Assuming that most cache nodes are honest (otherwise, this
system reduces to a piracy network), such a collusion will
necessarily result in an incomplete and/or low-quality stream
from the user’s point of view. Specifically, a colluding user’s
stream sessions will only be served by the origin servers as
well as the set of colluding nodes since honest nodes will
verify the payment to the smart contract before initializing
the stream. As such, the quality of stream received by the
malicious user will be proportional to the number of nodes
participating in the collusion, which can be assumed to be
very low.

3) Dishonest Origin Server Against Advertisers: Since
advertisement fees, on top of user payments, make up a
large portion of the server’s revenue, a natural threat in our
system is a dishonest server acting against the advertisers. As
advertisement fees are often proportional to the view count
of the content (which has the advertisement embedded), the
server is incentivized to inflate this view count to overcharge
advertisers. In our design, the view count is a state tracked
within the smart contract corresponding to the underlying
content. As we will describe fully in Section VI, the only
way to increment the view count in the smart contract is to
send a payment to the contract. Hence, in order for the server
to inflate the view count, the server has to pay the smart
contract, just like any other user. From this point of view,
this scenario is no longer considered a threat since the server
is just acting as a regular user paying for the content and
incrementing the view count. Therefore, a decision to inflate
the view count of a particular content in order to increase
advertisement revenue boils down to the net margin of such
an act. In other words, such an “attack” is only rational if and
only if the advertisement fee per view received by the server
is greater (highly unlikely) than the royalty cost per view paid
to the content creator.

B. Design and Functionality Requirements

Under the aforementioned system model and adversarial
assumptions, the goal of this paper is to develop a robust in-
centivization mechanism on top of CalVoD with the following
design goals:

1) Ensure an accurate view-count for each VoD: This is
the most fundamental requirement for our system. At its core,
the mechanism should be able to faithfully track the true view-
counts for each VoD available in the catalog, as the view-count
will be directly proportional to the income received from the
advertisers as well as to the royalty fees paid to artists.

2) A modular design which can be easily integrated into
existing hybrid VoD systems: Though we present our design
and implementation on top of CalVoD, our goal is to have
our proposed scheme be platform-agnostic and usable in any
hybrid VoD setting which shares similar attributes to CalVoD.

VI. OUR PROPOSED SCHEME: PROOF-OF-STREAM

In this section, we will present our design and imple-
mentation of the Proof-of-Stream incentivization layer on top
of CalVoD, while also describing how our implementation
is platform-agnostic. Proof-of-Stream (PoS) consists of the
following distinct phases: content on-boarding, content stream
request, payment splitting, streaming and cache acknowledge-
ments, and cache payments. These stages are visualized in
Fig. 3. In each of the following sub-sections, we will detail
each phase in detail as well as provide pseudo-code wherever
necessary to demonstrate the ease of integration of Proof-of-
Stream into any existing VoD systems. We will also attempt to
make it explicit that the following scheme is platform-agnostic.
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A. Content On-boarding

In this section, we discuss how CalVoD on-boards a new
content. For the purposes of this paper, “on-boarding” a
content refers to the process of getting a content ready for the
Proof-of-Stream layer, rather than the process of ingesting a
content from an external source into CalVoD’s internal storage
layer (i.e. not referring to the encoding, transcoding, decoding
and storage pipeline).

1 contract ContentSmartContract {
2 string public title;
3 address payable[] public artists;
4 uint256[] public artists_percentages; // NOTE:

the index has to match those in the artists
field

5 address payable public origin_server;
6 uint256 public content_price; // NOTE: this is

in Wei, not ether, since msg.value in
PayForStream is in Weis.

7 uint256 public views;
8
9 constructor(string memory Title, address payable

[] memory Artists, uint256[] memory
Artists_percentages, uint256 Content_price)
public {

10 title = Title;
11 artists = Artists;
12 artists_percentages = Artists_percentages;
13 content_price = Content_price;
14 origin_server = payable(msg.sender);
15 views = 0;
16 }
17
18 function PayForStream() public payable {
19 require (msg.value >= content_price);
20 uint256 moneyToReturn = msg.value -

content_price;
21 payable(msg.sender).transfer(moneyToReturn);
22 uint256 total = 0;
23 for (uint256 i = 0; i < artists.length; i++)

{
24 uint256 current_payable = (content_price

* artists_percentages[i]) / 100;
25 total += current_payable;
26 artists[i].transfer(current_payable);
27 }
28 origin_server.transfer(content_price - total

);
29 views += 1;
30 }
31 }

Listing 1: Proof-of-Stream Smart Contract Code

Whenever a new content, con1, has been ingested into
CalVoD’s system, we need to on-board the content onto
the Proof-of-Stream layer as well. To do so, CalvVoD will
first need to deploy a content smart-contract, csccon1

, onto
Ethereum. csccon1

will be specific to this particular content,
and will be responsible for keeping track of the views and
purchases of the content as well as be used for splitting
the user payments to the various stakeholders (e.g. royalty
management). As shown in the smart contract code above
(Listing. 1), each of these content smart-contracts’ initializa-
tion will require certain parameters such as the Ethereum
Account Address of the various stakeholders of the content
as well as the percentage of each payment they should receive
(i.e. royalty percentages etc). Once created, csccon1 will have

an initial view count set to 0, its origin server contract
address pointed to CalVoD’s Ethereum Account Address and
its stakeholder addresses and payment percentages correctly
initialized as well. Upon deployment of csccon1

onto the main
net, we will receive its deployed contract address, which will
be given to users later on for them to pay and initialize stream
sessions. From this point onward, csccon1 will be the smart-
contract representation of the content, where view counts and
stream payments will be processed, and this concludes the
on-boarding process for this content. For any existing VoD
platforms wanting to integrate Proof-of-Stream into their ex-
isting systems, they will need to perform a backfill procedure
by creating and deploying a content smart contract cscconi for
each and every existing content, coni, in the VoD platform’s
catalog and storing each of these deployed contracts’ addresses
in a database. In other words, there needs to be a mapping for
every content available in the platform’s catalog from actual
content to their smart-contract representations on Ethereum
(Fig. 4).

B. Content Stream Request and Payment Splitting

In this section, we introduce the process of requesting and
paying for a stream session of a particular content, con1. In a
pay-per-view model, when a user is connected to the CalVoD
network and decides to stream con1, they will request for the
smart contract which is responsible for that particular content,
csccon1

. CalVoD fetches the contract address of csccon1
and

forwards this contract address to the user, where the user
can send a payment to by using the contract’s PayForStream
method. As Ethereum provides an event API which allows
events to be sent to listeners whenever transactions to a smart
contract are mined, CalVoD can set up such a listener such
that when the user payment transaction has successfully been
mined, CalVoD can begin its streaming session to the user. As
shown in Listing. 1, PayForStream will increment the view
count state of the contract (line 29) while also splitting the
user’s payment to send to the various stakeholders (lines 23 to
28). For instance, for a contract which is initialized to have the
content creator A receive 30%, content creator B receive 40%
and server receive 30% of the payments, a user’s payment for
a 10 Ether content to the PayForStream method will result in
sending content creator A 3 Ether, content creator B 4 Ether
and the origin server 3 Ether. Once the payment transaction
has completed, the transaction’s address is made available to
the user both as a form of ”receipt” (proof of payment) as
well as to be used by CalVoD nodes to verify payment.

Since Ethereum contracts’ public state variables do not
expose setters, and that our smart contract does not expose
such setters, there is no way to update the view count state
in the variable through external means. The only way we
can increment the view count state is through our exposed
PayForStream API, and therefore we can guarantee that no
malicious users can alter the view count without first paying
for the full price of the content (and even by paying the full-
price, the user is only able to increment the view count by
1, which is accurate). This aligns with our design goal of
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Fig. 4: Each VoD system using Proof-of-Stream will need to store a mapping between the contents available for stream and
their smart contract counterparts.

ensuring that view counts are accurate, since each payment is
linked to exactly 1 view count, as desired. Furthermore, since
the payment is handled entirely by the smart contract rather
than some black-box mechanism, artists and advertisers have
full transparency over the payment mechanism and true view-
count, and therefore can be guaranteed to receive their fair
share of payments. The smart contract’s source code is also
openly available for audit.

C. Content Streaming and Cache Acknowledgements

Once a user has paid for a content via the PayForStream
function on the content’s corresponding smart contract, they
can begin their stream session. In the CalVoD ecosystem, this
means that the user can now connect to the CalVoD network
and request a stream session by providing their payment’s
transaction address from the previous section, as a proof of
payment. Upon validating the payment, CalVoD will begin
notifying the network of available cache nodes to service this
user’s stream request. For the purposes of this paper we will
not attempt to describe the in-depth process of the stream
session since each VoD platform has its own streaming layer
with different implementations and the Proof-of-Stream layer
described in this paper works with any underlying streaming
implementations. The only relevant concept here is that the
VoD system will need to verify the user’s payment, using the
transaction hash returned in the previous step, before streaming
to the user. During the streaming session in CalVoD, we also
require the user to periodically send acknowledgement packets
back to the caches which served their stream session. Cache
acknowledgement here is mainly used by CalVoD to pay its
cache nodes fairly, though this is optional in other hybrid VoD
systems which employ different black-box payment models to
its cache nodes.

D. Cache Payments

This stage is optional, depending on the type of payment
model employed by the underlying VoD system. In our im-
plementation, CalVoD pays its caches an amount proportional

to the amount of bandwidth and packets it provides to other
users. In exchange for streaming content to users, cache
nodes will receive stream acknowledgement packets signed by
users. Cache nodes can then exchange these acknowledgement
packets with the CalVoD origin server for payments. In this
paper, we treat and delegate the cache-payment process to an
off-chain service, since we acknowledge that there can be a
variety of business models available, each having their distinct
way of paying cache nodes. However, a realistic and simple
approach for on-chain payments would be through custom
ERC20 tokens. In such a set-up, we envision that users will
receive some amount of these tokens from the CalVoD server
upon purchasing a content. Then, instead of acknowledgement
packets, the user will transfer some of these tokens over to
the cache nodes which served their streaming session. Finally,
cache nodes can exchange these tokens for monetary payments
from the CalVoD servers. We hope to fully iron out the details
of this fully decentralized setup in future work.

VII. EVALUATION

In this section, we evaluate our system through several
angles. First, we revisit the threat models and design goals
introduced in Section V and evaluate our design based on those
goals. Then we examine the modularity and costs of integrat-
ing Proof-of-Stream with an underlying hybrid VoD system.
Finally, we evaluate the execution costs, mainly focusing on
the costs associated with using Ethereum as the blockchain
layer.

A. Threat Evaluation

As introduced in earlier sections, the goal of the PoS layer
is to provide a robust incentivization scheme for hybrid VoD
systems, focusing on stakeholders protection. In Section V,
we introduced the various collusion based attacks which may
possibly undermine the viability of such hybrid VoD systems,
as well as arguments for why those attacks are irrational and
unlikely under PoS. Here, we reiterate some of those key ideas.
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1) Collusion-based Attacks: Such attacks typically involve
a colluding party of origin servers, cache nodes and users
against the content creators. These colluding parties are in-
centivized to transact and pay off-chain, bypassing the content
smart contract, so that they can lower their costs by not
paying the associated royalty fees. Assuming that a majority
of the cache nodes are honest, we argue that such attacks
are irrational and unfeasible in practice under PoS since a
hybrid VoD system served by a colluding server and a small
set of colluding caches will be unable to produce high-quality
streams with low streaming costs. In fact, if the user ends up
receiving a high-quality stream, this necessarily means that
the majority of the stream burden must have been on the
origin servers, therefore reducing this setup to that of a non-
hybrid centralized VoD system. Hence, for the VoD server to
reap the benefits of a hybrid architecture (e.g. lower streaming
costs and greater quality of service), it must rely on a huge
number of independent cache nodes, which we can assume to
be honest.

2) View Inflation Attack: The VoD platform is also incen-
tivized to increase profit margins by overcharging advertisers.
As advertisers pay the VoD platform an amount proportional
to the view count of the advertisement (which in our set-
up is equivalent to the view count of the content in which
the advertisement is embedded), the server is incentivized
to inflate this view count. In our scheme, the only way to
increment the view count of any content is by invoking the
PayForStream method on the content’s corresponding smart
contract. Since this method requires the caller to pay the full
amount of the price of the content, the VoD server has to pay
for the content for each view count it tries to inflate. Doing a
simple analysis yields that as long as the advertisement fee for
a single view is less than the per-view royalty fee paid to the
content creators, which is the typical case, a server’s decision
to inflate the view count is irrational and hence unlikely in
practice.

B. Integration Costs

Beyond preventing the adversarial attacks described in our
threat models, another goal of our system is to be as modular
as possible so that it can be integrated into any existing hybrid
VoD systems. Our experience with implementing PoS and
integrating it with the CalVoD streaming system shows that
the integration effort required is minimal. In order to integrate
an existing hybrid VoD system with Proof-of-Stream, all that
is needed is for the hybrid VoD system to implement the
following modules (Fig. 3)

• Blockchain Module within Origin Servers- This module
handles deploying new content smart contracts for each
corresponding content in the VoD system’s catalog.

• Blockchain Module within User Clients- This module
handles user payments by encapsulating users’ calls to
the PayForStream API in content smart contracts.

• Blockchain Module within Partner Clients- This module
handles receiving royalty-payouts for partners including
content creators.

Specifically, whenever a new content is ingested into the
underlying VoD system, the blockchain module within origin
servers will need to onboard the content onto the blockchain.
Then, whenever a user decides to purchase a content, the
blockchain module within the user’s client can handle the
payment.

C. Execution Costs

In Ethereum, there is the concept of gas in order to quantify
the associated costs of each transaction. The price of gas is
paid using Ethereum’s native currency, Ether, and we can refer
to the average daily gas price as an estimate of the associated
costs. In Appendix A, we see that each operation in a smart
contract has a fixed gas cost, proportional to the computational
complexity for that operation. For instance, every transaction
has a fixed base cost of 21000 gas while adding two variables
requires 3 gas. When evaluating the costs associated with
the on-chain operations of our content smart contract, we are
mainly interested in the following metrics:

• Transaction cost: This is based on the overall gas cost of
sending data to the blockchain, and is typically consists
for the following components:

1) Base cost of a transaction
2) Cost of a contract deployment
3) Cost of every zero byte of data or code in a

transaction
4) Cost of every non-zero byte of data or code in a

transaction [9];
• Execution cost: This indicates the portion of gas that is

actually spent on executing the code in a transaction by
the Ethereum Virtual Machine [13];

We have implemented the content smart contract defined in
Listing 1 and deployed it to the Kovan Ethereum Test Network
[12] in order to evaluate the associated costs. When deploying
an instance of the content smart contract, the transaction cost
is 682862 gas while the execution cost is 464038 gas. Invoking
the PayForStream function costs 65800 gas in transaction costs
and 44528 gas in execution costs. As on December 23rd,
2020, the average gas price is 108 gWei [14] and the price
of 1 Ether is $568.41 [15]. In other words, the total cost for
deploying each smart contract is about $70.4, whereas the cost
of invoking PayForStream each time is about $7. However, as
the price of Ether fluctuates drastically, this can be change the
transaction costs greatly as well. Therefore, in future work,
we hope to explore alternate blockchains, and even custom
private ledgers, so that the the associated costs can be lower
and more stable.

VIII. CONCLUSION

In this paper, we have proposed a robust incentivization and
stakeholder-protection scheme named Proof-of-Stream. This
scheme is modular enough to be implemented and integrated
into any hybrid VoD system. We then conducted analysis and
experiments to evaluate Proof-of-Stream, where the results
indicate that the design goals were met. In the future, we hope
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to explore on-chain payments as well as alternate blockchain
designs such that more stable and lower transaction and
execution costs can be achieved.
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