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Abstract

Post Verification of Integrity of Remote Queries in Opaque

by

Andrew Law

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Raluca Ada Popa, Chair

Many companies and individuals in the modern age of big data outsource their data and
computation to third parties who specialize in maintaining hardware and cloud services.
However, they may want to keep their data and computation secret for business or privacy
interests. Opaque is a system that offers secure data analytics in an untrusted cloud by lever-
aging special hardware called secure enclaves as well as a variety of other novel techniques.
Opaque is built on Spark SQL, a powerful Spark module that performs data processing and
analytics. Spark SQL, and by extension, Opaque, distributes data among nodes to paral-
lelize workloads. While each such node is trusted, the job driver/scheduler, which resides in
the cloud and delegates the tasks, is not. This work outlines a design and implementation
to preserve query integrity in the face of the untrusted scheduler using logs in the form of
HMAC outputs and graph computations.
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Chapter 1

Introduction

1.1 A Motivation to Secure Analytics

The modern internet is backed by “big data” and “cloud computing.” In today’s age,
more data than ever before about everything imaginable is being generated and relied upon
by companies big and small. Tech giants like Google and Facebook collect and categorize
consumer data to sell ad targeting to generate their yearly multi-billion dollar revenue.
Other smaller companies claim to be “data driven,” performing specific analyses on more
niche data sets. What these companies have in common is that they all often outsource
their computation to cloud providers, who specialize in maintaining the hardware for both
corporate and consumer use.

Customers of cloud providers, however, may not trust the cloud providers with their data,
as the data could be sensitive, or maybe they want to protect their own business interests
and hide their computation from prying eyes. Secure analytics systems leverage advanced
hardware and/or cryptographic techniques to protect data stored in the cloud from malicious
entities who have some degree of control over the hosting service, whether those actors are
the cloud provider admins themselves, or perhaps hackers who have compromised the cloud
services and have an interest in peering at private information.

1.2 Introduction to Opaque

Whatever one might want to use secure analytics for, Opaque [14] is a system that aims
to fulfill all of the specifications outlined above; it provides private data analysis on third
party hardware.

Opaque is a system developed by researchers at UC Berkeley that aims to be an “Oblivi-
ous and Encrypted Data Analytics Platform.” Essentially, it runs Spark SQL inside hardware
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enclaves on the computers maintained by the cloud provider to ensure that computation on
sensitive data is secure. The Opaque paper offers two different modes that provide different
levels of security. Oblivious mode uses new oblivious database operators to compute in a
data-oblivious fashion, mitigating memory access side channel attacks on hardware enclaves.
Encrypted mode foregoes data oblivious operations in exchange for better performance. In
both modes, data confidentiality and integrity are preserved (save for side channel leakage
on the hardware enclaves.)

1.3 Limitations of Opaque in the Open Source

Open source code for Opaque exists on GitHub [15]. However, at this time, the open
source version of Opaque is lacking some of the functionality proposed in the original 2017
paper. The main limitation we will address is the lack of integrity enforcement. In security,
we typically aim to enforce two key properties: confidentiality and integrity. Confidentiality
is the general term for keeping data secret. This is taken care of intrinsically by the hardware
enclaves and data encryption. On the other hand, integrity is a property that ensures
that data has not been tampered with in transit. Computation integrity in Opaque is
unquestionably important; not only should users be confident that their data is secret, but
they should also be confident that when they request a query to be run on the data in the
cloud, that Opaque has actually run that specific query and not some other query.

As a concrete example to put this into perspective, consider a bank (Bank A) that has
a dataset of customers and their checking account balance. Bank A wants to compute the
query SELECT name FROM users WHERE users.balance < 500. Recall that Opaque runs
on Spark, which divides a query among different workers. Spark will schedule workers that
each compute their own part of the query, and then send information to one another to
eventually output a final result containing only the information asked by the user. In our
model, the workers are trusted since they are running on hardware enclaves, but the task
driver which orchestrates them and is responsible for their inputs and outputs is not. This
query mentioned above includes a selection followed by a projection. Computational integrity
in this case would ensure that between the projection and selection, no rows were dropped,
added, or modified, and that the expected query plan computed by Spark’s query planner
is actually the one being run by the workers (ie. the task DAG actually was a selection
followed by a projection and not some other combination of operations).

In Opaque’s current version at the time of writing, the mechanism to ensure this property
is not in place. While the dataframe records are encrypted with AES-GCM mode and are
thus protected to some degree, the untrusted job driver residing in the cloud is able to tamper
with data and communication flow while it is being passed between Opaque workers, and
could theoretically affect the outcome of an Opaque query.

https://github.com/mc2-project/opaque
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1.4 Aim of this Report and Contributions

In this MS report, my goal is to design and implement an integrity mechanism for Opaque
such that the problem outlined in the section above can be solved. Although its specific
implementation may be centered around Opaque’s internals, this design is at a high level
generally applicable to similar secure analytics systems that leverage distributed computing.

In addition, to initially familiarize myself with Opaque’s codebase, we also contributed
to an orthogonal effort to complete Opaque’s functionality suite in the TPC-H benchmark,
including implementing expressions such as “CaseWhen” and “Like”.
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Chapter 2

Background

2.1 Hardware Enclaves

Hardware enclaves provide a region of trusted memory on a computer that no other
process is able to tamper with or see in plaintext without the permission of the enclave.
This includes both user mode and kernel processes, including even the operating system of
the machine. This property works well with the purpose of Opaque - running Spark SQL
operators in the enclave allow a user to do analytics on data while keeping the data and
computation secret from the host system (ie. the cloud provider). Thus, any code that runs
in the enclave can be considered “trusted.” Code that runs outside the enclave is considered
“untrusted.”

Hardware enclave software libraries may provide a remote attestation service whereby
users are able to affirm that the code run by the hardware enclave is correct. In this case,
an Opaque client performs remote attestation to ensure that Opaque code is being run by
the hardware enclave.

Opaque uses the Intel SGX [8] enclave as its hardware enclave of choice. This choice is
relatively unimportant at a high level but is mentioned because the details of implementation
do depend on the specific hardware. As long as the user trusts both Opaque and Intel, the
user can be sure that their data is safe from the cloud provider after performing remote
attestation.

2.2 Apache Spark/Spark SQL

Apache Spark [9] is the industry standard all in one data analytics engine for “large scale
data processing” and is what Opaque is built on. It provides almost any functionality one
could think of in the data analytics space, including implementations of SQL, DataFrames,
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machine learning utilities, and more. Additionally, it is widely accessible, as it is available as
a package in Java, Scala, Python, and R, where it is able to be used both in large applications
and in quick interactive sessions. “Apache Spark achieves high performance for both batch
and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical
execution engine.” Using parallelization and various other optimizations for computing on
large datasets, Spark’s website claims to be able to run workloads 100x faster than normal.
It is also very portable, being able to run standalone in a local cluster, or in various other
standardized environments such as Amazon’s EC2, Hadoop YARN, or Kubernetes.

2.3 Opaque System Design Overview/Driver

Figure 2.1: Figure 2 from the original Opaque [14] paper illustrates the high level architecture
of the system.

Opaque extends Spark’s query planner with new strategies and plans that handle en-
crypted data. When a query is submitted, the query is processed by Spark’s complex query
optimizer, Catalyst, which, with help from Opaque’s new rules and strategies to handle en-
crypted data, outputs a task DAG. This DAG encapsulates the partitioning of the dataset,
which database operators should be computed on these data partitions, and how data parti-
tions are sent from worker to worker. The job driver, which has since been moved to be run
on the cloud server, is responsible for interpreting the task DAG and orchestrating workers
to actually execute the query plan.
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Chapter 3

Related Work

In this section, we discuss a selection of existing works broadly related to securing systems
with trusted hardware, and then more specifically, works related to the provision of integrity
for interaction with remote databases. For these, we compare approaches and threat models
to those used in Opaque.

3.1 Haven [4]

Haven [4] is a system that offers trusted execution of unmodified legacy applications in
an untrusted environment. Like Opaque, the security relies on a hardware enclave, and its
implementation also uses Intel SGX. Haven focuses on portability of applications; a user
should be able to run their program in Haven’s environment and have it “just work.”

3.2 Graphene-SGX [13]

Graphene-SGX is a work that aims to demonstrate a library OS than can run unmodified
applications on SGX hardware with lower overhead costs than previously thought to be
possible.

3.3 Panoply [11]

Panoply [11] is another work that leverages Intel SGX enclaves to run Linux applications
in lightweight sandboxes the authors call “microns.” Panoply “enforces a strong integrity
property for the inter-enclave interactions, ensuring that the execution of the application
follows the legitimate control and data-flow even if the OS misbehaves.” This property is
similar to the aims of this work, since we also aim to enforce integrity for inter-enclave
interactions.
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3.4 SCONE [6]

SCONE [6] is a similar work to Panoply that attempts to secure Docker containers using
Intel SGX hardware while retaining similar performance and throughput as normal Docker
without SGX.

3.5 Visor [17]

Visor [17] is a system that secures the data pipeline involved in processing video stream
data with machine learning modeling. It uses a hybrid trusted execution environment span-
ning both CPU and GPU and uses data oblivious algorithms to protect against leakage via
memory access pattern side channel attacks.

3.6 Authentication and Integrity in Outsourced

Databases [1]

Authentication and Integrity in Outsourced Databases (AIOD) [1] is an early work (2006)
pertaining to integrity verification of individual tuples of a remote database. It has a similar
threat model to this work in that there is a trusted client which interacts with an untrusted
server hosting the client’s outsourced database.

However, unlike Opaque which aims to provide confidentiality of the data, integrity of
computation, and a wide range of computation functionality over the remote data, AIOD
aims simply to provide basic database functionality (create, store, delete, access), or in other
words, does not provide the means to do computation over data, nor does it aim to preserve
confidentiality. It only tries to enable the client to fetch some subset of the database while
preventing tampering of the returned tuples.

AIOD accomplishes this via cryptographic methods - specifically, by attaching RSA and
DLP signatures to database records to preserve integrity. This is similar in some ways
to our approach, which relies heavily on cryptographic MAC functions to attach trusted
logs to encrypted data, but also different since hardware enclaves provide a source of trust
colocated with the untrusted server whereas AIOD does not use (and did not have access
to) this technology at the time.

Finally, although the end goal of query integrity is the same, Opaque’s setting involves a
distributed computation system whereas AIOD tackles problems pertaining to a monolithic
RDBMS.
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3.7 A query integrity assurance scheme for accessing

outsourced spatial databases [2]

This work tackles a similar problem to the one in AIOD, in that rather than enabling
query/computational integrity over a dataset, Ku et al. [2] enables integrity over the database
itself. It differs from AIOD in that it specializes in protecting the integrity specifically for
encrypted spatial data, or data that describes objects defined in a geometric space. Its
approach is based on an “auditing” method in which data is probabilistically duplicated and
encrypted with a different key, and then is subject to being checked by the client, pressuring
the server to remain honest. The discussion of similarities and differences with Opaque is
largely the same as the one when examining AIOD.

3.8 Efficient Query Integrity for Outsourced Dynamic

Databases [3]

This work by Zheng, Xu, and Ateniese implements query integrity defined very similarly
to that in Opaque for a slightly different setting; in particular, the authors split up the
“trusted client” into two parties: the database owner and a database querier. The work
provides query integrity to the database querier while allowing the database owner to do
updates to the outsourced database stored in the cloud. Their approach combines a variety
of cryptographic techniques including Merkle B-Tree datastructures and homomorphic linear
tags.

3.9 Ryoan [7]

Ryoan’s [7] setup is similar to Opaque’s in that it provides a remote distributed data
analytics system on secret data in an untrusted environment. Like Opaque, it leverages Intel
SGX to establish trusted “sandboxes”. However, Ryoan’s threat model and system framing
is also different from Opaque, since there are multiple “clients” in Ryoan who are mutually
distrustful. Ryoan protects these clients from each other. Most importantly, the equivalent of
Opaque’s untrusted job driver, which is responsible for scheduling and coordinating Opaque
workers and is one of the main threats in our work, is initialized in a “master enclave” in
Ryoan and is trusted. Therefore, the executed query graph is intrinsically trusted in Ryoan.
Overall, Ryoan concerns itself more with making sure each individual node behaves properly
(does not leak data), unlike our work, which verifies the structure of the execution graph at
large as well as the integrity of the edges between each node.
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3.10 VC3 [5]

VC3 [5] is the most similar system to Opaque in this list; it is a distributed secure
analytics platform supporting outsourced cloud computation on encrypted data and, like
Opaque, leverages Intel SGX to provide a secure memory region in the cloud. Parts of
VC3’s integrity scheme are quite similar to Opaque’s runtime verification procedure, where
successor nodes verify part of the input received from the predecessor node. VC3 additionally
provides safeguards protecting enclave code memory safety using a custom compiler.

On the other hand, my work focuses mostly on post verification of the query graph
representing data flow between workers, which are orchestrated by an untrusted entity. This
workflow is not emphasized in the VC3 paper. In Opaque, post verification is a step that
can be done offline, reducing in band overhead. VC3 chooses to run integrity verification
as an in band procedure. Further, the VC3 implementation and discussion is centered very
much around MapReduce, unlike Opaque which is based on Spark.
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Chapter 4

Threat Model

Figure 4.1: Threat Model Visualization

This work’s trusted computing base is Spark and an abstract model of a hardware enclave
that protects against a malicious host operating system that controls everything outside
the enclave, but cannot attack the enclave memory or get information from the processor
including register information while enclave code is executing or CPU information such as
processor keys. The attacker, which could include the cloud provider administrators or a
malicious actor who has compromised the cloud service, has full control of the cloud operating
system and software stack.

The attacker can attempt to spoof or drop encrypted data being passed between Spark
workers in the cloud, modify the flow of communication between Spark workers running in
enclaves, and in general, perform any other operations on memory outside the protection of
the hardware enclaves.

We assume security of the hardware enclave; ie. the attacker can not tamper with code
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execution or modify memory inside the hardware enclave, and that the attacker is unable to
tamper with the enclave attestation procedure.

Side channel attacks on specific enclave technology and denial of service are out of scope
of this work. In particular, timing [12], power [16], DoS [10], or other sorts of side channel
attacks that violate the threat model of a powerful abstract hardware enclave are out of
scope, since those are largely orthogonal to the high level ideas being presented in this
work since, if for example an attack specific to Intel SGX were to be discovered, another
instantiation of the enclave model could be used instead.

Memory access pattern side channel attacks are not protected against, since data oblivi-
ousness is not implemented in this work.

In conclusion, the Opaque user must trust Opaque, the version of Spark SQL that Opaque
is built on, and the hardware enclave model backing Opaque in the cloud to be sure that
their data is confidential and the queries being requested are the queries being computed.
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Chapter 5

System Overview

The client refers to the user of Opaque, and is therefore trusted. We define trust from
the point of view of the client.

The server refers to the cloud provider, which provides the machines which the client
outsources computation to. We will use the term “server” also to refer to all of its machines
and the machines’ operating systems etc. outside the enclaves. The server is untrusted.

The enclave refers to the trusted execution environment/hardware enclave/Intel SGX
hardware running inside the untrusted host machines in the cloud. Computation done ex-
clusively by the enclave is considered trusted. An ecall refers to a specific function done by
an enclave worker. The computation done by an ecall is trusted, since it is all executed by
the enclave and enclave code.

Opaque follows a client-server model. The client submits encrypted data to the server in
the cloud, which contains a hardware enclave that performs Spark SQL computation on the
data. The enclave then encrypts the result and sends it back to the client.

The two entities in Spark important to our discussion are the query planner (Catalyst)
and the job driver. Given a query, the query planner computes a task DAG and gives it to
the job driver for task delegation.

The way these entities are allocated among the client and server are important to a
discussion about security. In particular, the client runs a query planner locally. The server
runs both the query planner and task scheduler outside the enclave. The entities at the
server are untrusted and must somehow be verified.

The main idea behind verifying that the task DAG was executed correctly is to reconstruct
the flow of execution into a DAG after the result is returned to the client. The client then
compares this “executed DAG” to the DAG computed by the query planner run locally at
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the client. If they are the same, then the flow of information had not been tampered with.
If they are not, then the job driver did not delegate workers appropriately, and the flow of
information has been changed in some way.

Figure 5.1: Opaque [14] Figure 3

The challenge in this approach is thinking about how to reconstruct this graph without
trusting the server, which does the job orchestration. At a high level, this is done by carefully
attaching logs to the encrypted output of each enclave worker, whose individual results are
tagged with a cryptographic primitive called a MAC function. The MAC function takes in a
secret key as input and ensures that only the enclaves, which hold a secret key shared with
the client, are able to generate tags, and therefore that the logs are able to be trusted. The
logs are like breadcrumbs that serve to reconstruct the flow of execution from start to finish.
They hold the server accountable and ensure that tampering with the task DAG does not
go undetected.
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Chapter 6

System Design

To implement computation integrity, we contributed two main pieces to Opaque.

The first is the logging system mentioned in the System Overview section above. This
change allows the client to effectively “see into the past” and reconstruct the flow of infor-
mation that occurred when the query was executed in the cloud. This approach relies on a
cryptographic primitive called a MAC function, which provides trusted “breadcrumbs” we
can use to backtrack from the final output and recreate our task DAG.

The second piece is a new Scala module in Opaque’s client code called the Job Verification
Engine. The Job Verification Engine is responsible for executing various graph operations in
order to verify the integrity of each query based on the logs generated by the logging system.

Each Spark worker running inside an enclave produces outputs of encrypted data that it
pushes back to the host memory for further downstream processing, and can send information
to as many other worker nodes as there are data partitions. Recall that Spark divides data
into a specified number of partitions in order to parallelize workloads.

6.1 Breaking Down an Opaque Query

To get some more context about these DAGs and all the objects involved, let’s look at
an example of a typical Opaque query and break down how it can turn into a DAG of ecalls.
For the sake of simplicity, assume a single data partition.

Query: dataframe.sort($"foo").limit(10)

(Equivalent SQL: SELECT foo FROM dataframe ORDER BY foo ASC LIMIT 10)

Plan (Operators): EncryptedProject → EncryptedSort → EncryptedLocalLimit

→ EncryptedGlobalLimit
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These operators are the ones chosen by Opaque’s query optimizer, to be executed in this
order. The reader can consider this chain of operators the logical steps Opaque needs to
execute to compute the query. Each operator is implemented by one or more ecalls, which
are singular units of trusted computation done by an enclave worker. The plan of operators
can also then be viewed in the context of their underlying ecalls:

Plan (Ecalls): project→ externalSort→ limitReturnRows→ countRowsPerPartition

→ computeNumRowsPerPartition → limitReturnRows

In the next section, we examine a more complex imaginary query which incorporates
multiple data partitions and visualize an example DAG that might be produced by the
query optimizer. As we do so, one should keep in mind the above process of breaking down a
query into its operators and then its ecalls to contextualize the post verification computation.

6.2 Logging

Consider an Opaque job that splits the data into 2 partitions and performs 3 ecalls. All
output from the first ecall goes to partition 1 (perhaps an aggregation operation), output
from the second ecall is broadcast to all partitions (perhaps an operator done on each group
of a group by operation), and output from the third ecall stays in the same partition. In
visual form, this job can be represented as follows:

Figure 6.1: Task DAG of query broken into ecalls and data partitions

We want to ensure that if the Spark Catalyst query planner outputs this DAG for the
imaginary query described above, the job driver run by the cloud executes this exact task
DAG.

Towards this effort, we modified the enclave code to output an additional object we call
Crumbs along with its encrypted data. The flatbuffer schema for a Crumb object is shown
below:
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table Crumb {

ecall:int; // Ecall executed

input_macs:[ubyte];

num_input_macs:int; // Number of input_macs

all_outputs_mac:[ubyte]; // MAC over all outputs of ecall

log_mac:[ubyte]; // MAC over the LogEntryChain

}

A Crumb object tracks metadata about a node after it is executed, such as the ecall
(specific enclave function) performed at the node, as well as the node’s inputs and outputs.

A list of Crumbs called the LogEntryChain is maintained for each data partition and
appended to as ecalls are executed by workers allocated to each partition. At the end of the
query, k lists of Crumbs are filled, where k is the number of data partitions, and the sum of
the Crumbs over all the lists is equal to the number of Spark workers involved in the query.

Consider for example the node P12 in Figure 6.1. The Crumb object corresponding to
this node would include the ecall field noting that “ECall 2” was executed. It would list
two MACs in the input macs field, since it takes input from node P11 and node P21. Its
all outputs mac would be a MAC over the outputs it sent to nodes P13 and P23. Note that
both P13 and P23 would include P12’s all outputs mac as data in their input macs field.

All objects involved in logging are MAC’d by the enclave workers at each step before
being output along with the encrypted data, ensuring that the logs themselves cannot be
tampered with, spoofed, or dropped by the server.

6.3 Job Verification Engine

The Job Verification Engine is the module that the client uses to do computation integrity
verification. Its job is to build the “Executed DAG” from the LogEntryChains, “Expected
DAG” from Spark metadata, and then compare them.

At a high level, the “Executed DAG” is built by processing each Crumb object from the
LogEntryChains, and recreating edges based on matching input macs and all outputs mac

fields. For example, if node 1 sent data to node 2, node 1’s all outputs mac will be one
of the entries in node 2’s input macs list. Using this fact, it is just a matter of iterating
through all the Crumbs to match all nodes to their “parents”. Once there is an edge between
each node and its parents, the graph is complete.

After reconstructing the “Executed DAG”, the Job Verification Engine must compute
the “Expected DAG” from the query plan. The client runs a copy of Spark Catalyst query
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planner for this purpose. Spark can output a DAG of Spark operators that will be used in
the plan. The Job Verification Engine transforms this graph into a finer granularity DAG of
ecalls in linear time; we call this the “Expected DAG”.

After both graphs are constructed, the Job Verification Engine checks that the DAGs
are the same. This operation involves checking the labeled nodes for their ecall identifiers
in both the expected and executed DAGs, and then checking that the edges associated with
each node are the same. This can be done in linear time in the number of nodes and edges.



19

Chapter 7

Implementation

Our changes made to Opaque to implement computation integrity in its current state
include around 600 lines of Scala and 200 lines of C++. See the Opaque codebase on the
MC2 GitHub page [15] for more details on the code blocks referenced in this section.

7.1 Reconstruction of Executed Flow

We modified enclave code to create the logs used for reconstruction of the flow of data
partitions between ecall workers.

In FlatbuffersWriters.cpp, we hooked into the internal memory writing mechanism
of Opaque to ensure that when it outputs encrypted results of Spark operations to non-
enclave memory, it additionally computes a MAC on the output, as well as outputting all
the other logging information stored in the Crumb object. This mechanism can be toggled
by the developer of new Opaque operations, since not all encrypted output from an enclave
necessarily needs to be tracked in the task DAG, such as those from intermediary functions.

In FlatbuffersReaders.cpp, successor enclave workers ensure that no rows were dropped
by the job driver from their respective predecessor enclave workers, and make sure the MACs
output by predecessor nodes match the data.

We made minor code refactoring to integrate these changes in various other parts of the
codebase including Enclave.cpp and EnclaveContext.h.

Post verification happens on the client side in JobVerificationEngine.scala. As men-
tioned before, a LogEntryChain object containing a list of Crumb objects is maintained per
data partition. These LogEntryChains are returned as part of the final output and can
be processed by the Job Verification Engine running on the client. Once the Crumbs are
given to the engine, it iterates through the LogEntryChain, and while doing so, populates
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a hash table mapping unique all outputs mac to JobNode objects. A JobNode is the Scala
representation of an enclave worker; in other words, in the diagram in Section 6.2, each Pij

represents a job node, and as a result, there will be a one to one relationship between a
Crumb object and a JobNode object since they represent the same thing. Iterating through
the JobNodes again allows us to match all outputs mac fields with input macs fields to
recreate edges between the nodes, constructing a DAG representing the transfer of informa-
tion that transpired in the query from node to node.

7.2 Construction of Expected Flow

Construction of expected flow happens in JobVerificationEngine.scala.

By running a copy of Spark Catalyst with Opaque’s rules on the client side, the client
is able to construct the task DAG that it expects the server to execute. This is done
by accessing the Spark DataFrame object’s queryExecution.executedPlan field, which
returns a recursive object representing a tree of Spark operators. Some minor additional
graph processing transforms the tree of Spark operators into a tree of Opaque operators.

After retrieving this graph of operators, we need to then convert it into a graph of ecalls.
This is done in the generateJobNodes method, which contains a cascading if else/switch
case denoting an explicit mapping of each supported Opaque operator to the ecalls that
implement the operator. The following code snippet from this function illustrates the logic
for a few Spark operators.

if (operatorName == "EncryptedSort" && numPartitions == 1) {

expectedEcalls.append("externalSort")

}

...

} else if (operatorName == "EncryptedGlobalLimit") {

expectedEcalls.append("countRowsPerPartition",

"computeNumRowsPerPartition", "limitReturnRows")

}

...

In the above code, the EncryptedSort Spark operator is transformed into the one ecall
that implements it, externalSort. The EncryptedGlobalLimit Spark operator is trans-
formed into three ecalls that implement it, in the order they are supposed to be run by the
server - countRowsPerPartition, computeNumRowsPerPartition, and limitReturnRows.

After converting the graph into a DAG of ecalls, we need to add edges based on how the
ecalls communicate information downstream. This is done in the linkEcalls method. The
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following code snippet from this function illustrates some of the different kinds of logic used
for various ecalls.

...

} else if (ecall == "externalSort") {

// Send to same partition for the next worker

for (i <- 0 until numPartitions) {

parentEcalls(i).addOutgoingNeighbor(childEcalls(i))

}

} else if (ecall == "partitionForSort") {

// All to all shuffle

for (i <- 0 until numPartitions) {

for (j <- 0 until numPartitions) {

parentEcalls(i).addOutgoingNeighbor(childEcalls(j))

}

}

...

} else if (ecall == "computeNumRowsPerPartition") {

// Broadcast from one partition (assumed to be partition 0) to all partitions

for (i <- 0 until numPartitions) {

parentEcalls(0).addOutgoingNeighbor(childEcalls(i))

}

...

In this code snippet, parentEcalls and childEcalls are lists of JobNodes, where each
JobNode in the list represents a specific enclave worker performing an ecall on one data
partition, and the parentEcalls list contains the nodes for the ecall that happens before
the ecall in childEcalls. This method is necessary to define how ecalls communicate with
one another. For example, while the externalSort ecall sends data from partition x to
partition x in the next ecall, the partitionForSort ecall shuffles data in an all-to-all manner
as shown in the code snippet above. These differences in ecall behavior need to be defined
explicitly in the Job Verification Engine by a programmer with knowledge of how the ecall
works in order for the integrity module to properly construct an the “expected flow.”

7.3 Comparing DAGs

Once both DAGs are constructed, verifying integrity is a matter of comparing the DAGs
and checking if they are equal, or isomorphic. Two DAGs are isomorphic if there exists
a mapping f between the vertices of DAG1 to the vertices of DAG2 such that if any two
vertices A and B in DAG1 are adjacent, f(A) and f(B) are adjacent in DAG2. If the “Actual
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DAG” and the “Expected DAG” are isomorphic, then we can be sure that the scheduler did
not tamper with the flow of execution.

In our case, the nodes are labeled with ecall identifiers, and thus the problem is easier
than the DAG isomorphism problem, which does not have node labelings. With the node
labelings, we can first check the list of nodes in both the expected and executed DAGs. If
they match and are the same, then for each node and its edges in the expected DAG, we can
check the associated node in the executed DAG to check whether the edges are also equal.
An edge is equal if the parent and child have the same ecall identifier.

7.4 Usage

The Job Verification Engine exposes a small interface of methods to use in the wider
client application. Namely, to verify a job, the user calls resetForNextJob to flush the
internal state of the JobVerificationEngine, and then after executing a query, calls the verify
function on the query’s dataframe object to verify the integrity of the query.
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Chapter 8

Evaluation

8.1 Theoretical Analysis

The additional work required for verifying query integrity does not introduce any major
asymptotic penalties to Opaque’s operations. During runtime, the only cost is the cryptog-
raphy done on each encrypted output. This implies performance and memory penalties at
most linear in the size of the output that Opaque produced before integrity was implemented.
The post verification step is also relatively cheap; it is a one time cost that is able to be
performed offline.

Diving deep into asymptotic analysis, let P be the number of data partitions selected
by Opaque’s query planner. Let E be the number of different types of ecalls executed.
Then, the number of Opaque workers is O(PE), since at most P instances of each ecall are
executed. Let N be the size in bytes of the largest output produced by any one Opaque
worker, without accounting for integrity. The runtime overhead is overwhelmingly caused
by the cryptography done to compute and verify MACs. The MAC function used is the
HMAC-SHA256 offering of the mbedtls C++ library, which runs in time scaling linearly
with the input size. Since a fixed number of MACs are computed over every output of every
node, and the same number of MACs are verified at the next, each node performs O(N) work
towards this purpose of computing and checking MACs (with a small constant factor), for a
total of O(PEN) work over the entirety of the query. For storage, the MAC function outputs
a fixed number of bytes no matter the input length, and so the factor of N is removed. The
memory overhead thus only scales with the number of enclave operations and data partitions
for an asymptotic cost of O(PE). Both of these overheads have small constant factors due
to the nature of the cryptography being used. In conclusion, the runtime overhead in both
time and space complexity scale linearly with the system at large and incur small penalties
relative to the runtime before integrity checks were done.

Post verification can be done offline and incurs a one time cost per query, and so is
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arguably even less impactful than the runtime penalties. Post verification is concerned with
graph processing and has little to do with the actual output produced at each node, which
has been verified at runtime. There are three steps to post verification: reconstructing
the executed query DAG, constructing the expected query DAG, and checking for equality
between the two. Constructing the two DAGs takes time linear in the number of enclave
nodes, which is at most the product of the number of data partitions P and the total number
of ecalls made to the enclave E, (which scales linearly with the number of Spark operators
invoked by the query planner). Therefore, for both runtime and memory, DAG construction
incurs a cost of O(PE). Because the nodes are labeled with ecall identifiers, checking to see
if the DAGs are equal is done in a linear traversal of both DAGs and thus is also computed
in linear time.

8.2 Performance in Practice

To test performance, we benchmarked the system using two of Opaque’s “Big Data
Benchmarks.” The schema and queries can be found on the GitHub repository but are listed
here for convenience.

Ranking Benchmark

Schema

StructType(Seq(

StructField("pageURL", StringType),

StructField("pageRank", IntegerType),

StructField("avgDuration", IntegerType)))

)

The ranking dataset contains 1,200 rows.

Query

rankingsDF.filter($"pageRank" > 1000)

Results

Looking at table 8.1, for a single partition, Opaque (including logging overhead) incurs a
3.3x time penalty, and post verification incurs an additional 143 milliseconds, or an additional
1.75x time penalty compared to the baseline. For 5 partitions, Opaque (including logging
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Table 8.1: Time Taken for Ranking Benchmark (ms)

Spark Baseline Opaque (With Logging) Opaque (With Logging and Post Verification)

1 Partition 186 628 771
5 Partitions 251 715 724

overhead) incurs a 2.8x time penalty, with a similar low flat penalty when adding post
verification.
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User Visits Benchmark

Schema

StructType(Seq(

StructField("sourceIP", StringType),

StructField("destURL", StringType),

StructField("visitDate", DateType),

StructField("adRevenue", FloatType),

StructField("userAgent", StringType),

StructField("countryCode", StringType),

StructField("languageCode", StringType),

StructField("searchWord", StringType),

StructField("duration", IntegerType)))

)

The user visits dataset contains 10,000 rows.

Query

uservisitsDF

.select(substring($"sourceIP", 0, 8).as("sourceIPSubstr"), $"adRevenue")

.groupBy($"sourceIPSubstr").sum("adRevenue")

Results

Table 8.2: Time Taken for User Visits Benchmark (ms)

Spark Baseline Opaque (With Logging) Opaque (With Logging and Post Verification)

1 Partition 477 6400 7346
5 Partitions 475 20974 21820

Looking at table 8.2, for a single partition, Opaque (including logging overhead) incurs a
13x time penalty, and post verification incurs an additional 946 milliseconds, or an additional
2x time penalty. For 5 partitions, Opaque (including logging overhead) incurs a 40x time
penalty, with a 1000 millisecond penalty when adding post verification.
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Chapter 9

Limitations and Future Work

9.1 Implementation Pitfalls

Although the techniques described in this work can be generalized at a high level to other
similarly designed systems, the actual implementation is brittle; the job verification engine’s
logic works on a case-by-case basis for each Spark operator and could change depending
on the ecalls used. Thus, a programmer would have to keep this in mind when extending
Opaque to support any new user defined functions or adding additional Spark operators.

9.2 Future Work

In terms of functionality, this work has fully supported query integrity verification for
Opaque. Future work could take two different directions: it could refactor code implement-
ing the job verification logic for further time and memory gains, or improve Opaque in
an orthogonal manner. For instance, the original paper’s framing aimed to support data
obliviousness to prevent side channel attacks on Intel SGX enclaves. As of right now, this
functionality is not merged in the master branch of the Opaque code base, and further work
needs to be done to do so while integrating with the recent developments in Opaque.
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Chapter 10

Conclusion

In this report, we explored the integrity limitations of the open source software of Opaque,
outlined new design changes, and discussed an implementation of computational integrity
that adds a needed layer of security to Opaque. This work reflects a core component of
the secure analytics platform, and ensures to the client that the untrusted driver located
in the cloud schedules tasks among Opaque workers correctly, and in addition, does not
tamper with encrypted data passed between Opaque workers. While the implementation is
Opaque specific, the high level ideas are widely applicable to any distributed secure analytics
platform that operates in a similar fashion to Opaque.
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