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Abstract

Interpolation Learning

by

Zitong Yang

Master of Science in Computer Science

University of California, Berkeley

Professor Yi Ma, Chair

The classical bias-variance trade-off predicts that bias decreases and variance increases with
model complexity, leading to a U-shaped risk curve. Recent work calls this into question for
neural networks and other over-parameterized models, for which it is often observed that
larger models generalize better. We provide a simple explanation for this by measuring the
bias and variance of neural networks: while the bias is monotonically decreasing as in the
classical theory, the variance is unimodal or bell-shaped: it increases then decreases with the
width of the network. We vary the network architecture, loss function, and choice of dataset
and confirm that variance unimodality occurs robustly for all models we considered. The
risk curve is the sum of the bias and variance curves and displays different qualitative shapes
depending on the relative scale of bias and variance, with the double descent curve observed
in recent literature as a special case.

Recent work showed that there could be a large gap between the classical uniform convergence
bound and the actual test error of zero-training-error predictors (interpolators) such as deep
neural networks. To better understand this gap, we study the uniform convergence in the
nonlinear random feature model and perform a precise theoretical analysis on how uniform
convergence depends on the sample size and the number of parameters. We derive and prove
analytical expressions for three quantities in this model: 1) classical uniform convergence
over norm balls, 2) uniform convergence over interpolators in the norm ball, and 3) the risk
of minimum norm interpolator. We show that, in the setting where the classical uniform
convergence bound is vacuous (diverges to ∞), uniform convergence over the interpolators
still gives a non-trivial bound of the test error of interpolating solutions. We also showcase
a different setting where classical uniform convergence bound is non-vacuous, but uniform
convergence over interpolators can give an improved sample complexity guarantee. Our
result provides a first exact comparison between the test errors and uniform convergence
bounds for interpolators beyond simple linear models. This thesis is the compilation of the
author’s two representative work [2] and [1].
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Exact Gap between Generalization Error and Uniform Convergence in
Random Feature Models

1. Introduction
Uniform convergence—the supremum difference between
the training and test errors over a certain function class—is
a powerful tool in statistical learning theory for under-
standing the generalization performance of predictors.
Bounds on uniform convergence usually take the form of√

complexity/n (Vapnik, 1995), where the numerator rep-
resents the complexity of the function class, and n is the
sample size. If such a bound is tight, then the predictor is
not going to generalize well whenever the function class
complexity is too large.

However, it is shown in recent theoretical and empiri-
cal work that overparametized models such as deep neu-
ral networks could generalize well, even in the interpo-
lating regime in which the model exactly memorizes the
data (Zhang et al., 2016; Belkin et al., 2019a). As interpo-
lation (especially for noisy training data) usually requires
the predictor to be within a function class with high com-
plexity, this challenges the classical methodology of using
uniform convergence to bound generalization. For example,
Belkin et al. (2018c) showed that interpolating noisy data
with kernel machines requires exponentially large norm
in fixed dimensions. The large norm would effectively
make the uniform convergence bound

√
complexity/n vac-

uous. Nagarajan & Kolter (2019a) empirically measured the
spectral-norm bound in Bartlett et al. (2017) and find that
for interpolators, the bound increases with n, and is thus
vacuous at large sample size. Towards a more fine-grained
understanding, we ask the following

Question: How large is the gap between uniform
convergence and the actual generalization errors
for interpolators?

In this paper, we study this gap in the random features model
from Rahimi & Recht (2007). This model can be inter-
preted as a linearized version of two-layer neural networks
(Jacot et al., 2018) and exhibit some similar properties to
deep neural networks such as double descent (Belkin et al.,
2019a). We consider two types of uniform convergence in
this model:

• U : The classical uniform convergence over a norm
ball of radius

√
A.

• T : The modified uniform convergence over the same
norm ball of size

√
A but only include the interpolators,

proposed in Zhou et al. (2020).

Our main theoretical result is the exact asymptotic expres-
sions of two versions of uniform convergence U and T in
terms of the number of features, sample size, as well as
other relevant parameters in the random feature model. Un-
der some assumptions, we prove that the actual uniform
convergence concentrates to these asymptotic counterparts.
To further compare these uniform convergence bounds with
the actual generalization error of interpolators, we adopt

• R : the generalization error (test error) of the minimum
norm interpolator.

from Mei & Montanari (2019). To make U , T , R compa-
rable with each other, we choose the radius of the norm
ball
√
A to be slightly larger than the norm of the minimum

norm interpolator. Our limiting U , T (with norm ball of size√
A as chosen above), andR depend on two main variables:

ψ1 = limd→∞N/d representing the number of parameters,
and ψ2 = limd→∞ n/d representing the sample size. Our
formulae for U , T andR yield three major observations.

1. Sample Complexity in the Noisy Regime: When the
training data contains label noise (with variance τ2),
we find that the norm required to interpolate the noisy
training set grows linearly with the number of samples
ψ2 (green curve in Figure 1(c)). As a result, the stan-
dard uniform convergence bound U grows with ψ2 at
the rate U ∼ ψ1/2

2 , leading to a vacuous bound on the
generalization error (Figure 1(b)).

In contrast, in the same setting, we show the uniform
convergence over interpolators T ∼ 1 is a constant
for large ψ2, and is only order one larger than the
actual generalization errorR ∼ 1. Further, the excess
versions scale as T − τ2 ∼ 1 andR− τ2 ∼ ψ−12 .

2. Sample Complexity in the Noiseless Regime: When
the training set does not contain label noise, the gen-
eralization error R decays faster: R ∼ ψ−22 . In this
setting, we find that the classical uniform convergence
U ∼ ψ

−1/2
2 and the uniform convergence over inter-

polators T ∼ ψ−12 . This shows that, even when the
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(a) Noiseless response (τ2 = 0)
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(c) Minimum norm A∞(ψ2)

Figure 1. Random feature regression with activation function σ(x) = max(0, x) − 1/
√
2π, target function fd(x) = 〈β,x〉 with

‖β‖22 = 1, and ψ1 = ∞. The horizontal axes are the number of samples ψ2 = limd→∞ n/d. The solid lines are the the algebraic
expressions derived in the main theorem (Theorem 1). The dashed lines are the function ψp

2 in the log scale. Figure 1(a) and 1(b):
Comparison of the classical uniform convergence in the norm ball of size level α = 1.5 (Eq. (17), blue curve), the uniform convergence
over interpolators in the same norm ball (Eq. (18), red curve), the risk of minimum norm interpolator (Eq. (13), yellow curve). Figure
1(c): Minimum norm required to interpolate the training data (Eq. (12)).

classical uniform convergence already gives a non-
vacuous bound, there still exists a sample complexity
separation among the classical uniform convergence
U , the uniform convergence over interpolators T , and
the actual generalization errorR.

3. Dependence on Number of Parameters: In addition
to the results on ψ2, we find that U , T andR decay to
its limiting value at the same rate 1/ψ1. This shows
that both U and T correctly predict that as the number
of features ψ1 grows, the riskR would decrease.

These results provide a more precise understanding of uni-
form convergence versus the actual generalization errors,
under a natural model that captures a lot of essences of
nonlinear overparametrized learning.

1.1. Related work

Classical theory of uniform convergence. Uniform con-
vergence dates back to the empirical process theory of
Glivenko (1933) and Cantelli (1933). Application of
uniform convergence to the framework of empirical risk
minimization usually proceeds through Gaussian and
Rademacher complexities (Bartlett & Mendelson, 2003;
Bartlett et al., 2005) or VC and fat shattering dimensions
(Vapnik, 1995; Bartlett, 1998).

Modern take on uniform convergence. A large volume
of recent works showed that overparametrized interpola-
tors could generalize well (Zhang et al., 2016; Belkin et al.,
2018b; Neyshabur et al., 2015a; Advani et al., 2020; Bartlett
et al., 2020; Belkin et al., 2018a; 2019b; Nakkiran et al.,
2020; Yang et al., 2020; Belkin et al., 2019a; Mei & Mon-
tanari, 2019; Spigler et al., 2019), suggesting that the clas-
sical uniform convergence theory may not be able to ex-

plain generalization in these settings (Zhang et al., 2016).
Numerous efforts have been made to remedy the original
uniform convergence theory using the Rademacher com-
plexity (Neyshabur et al., 2015b; Golowich et al., 2018;
Neyshabur et al., 2019; Zhu et al., 2009; Cao & Gu, 2019),
the compression approach (Arora et al., 2018), covering
numbers (Bartlett et al., 2017), derandomization (Negrea
et al., 2020) and PAC-Bayes methods (Dziugaite & Roy,
2017; Neyshabur et al., 2018; Nagarajan & Kolter, 2019b).
Despite the progress along this line, Nagarajan & Kolter
(2019a); Bartlett & Long (2020) showed that in certain set-
tings “any uniform convergence” bounds cannot explain
generalization. Among the pessimistic results, Zhou et al.
(2020) proposes that uniform convergence over interpo-
lating norm ball could explain generalization in an over-
parametrized linear setting. Our results show that in the
nonlinear random feature model, there is a sample complex-
ity gap between the excess risk and uniform convergence
over interpolators proposed in Zhou et al. (2020).

Random features model and kernel machines. A num-
ber of papers studied the generalization error of kernel ma-
chines (Caponnetto & De Vito, 2007; Jacot et al., 2020b;
Wainwright, 2019) and random features models (Rahimi
& Recht, 2009; Rudi & Rosasco, 2017; Bach, 2015; Ma
et al., 2020) in the non-asymptotic settings, in which the
generalization error bound depends on the RKHS norm.
However, these bounds cannot characterize the generaliza-
tion error for interpolating solutions. In the last three years,
a few papers (Belkin et al., 2018c; Liang et al., 2020; 2019)
showed that interpolating solutions of kernel ridge regres-
sion can also generalize well in high dimensions. Recently,
a few papers studied the generalization error of random fea-
tures model in the proportional asymptotic limit in various
settings (Hastie et al., 2019; Louart et al., 2018; Mei & Mon-
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tanari, 2019; Montanari et al., 2019; Gerace et al., 2020;
d’Ascoli et al., 2020; Yang et al., 2020; Adlam & Penning-
ton, 2020; Dhifallah & Lu, 2020; Hu & Lu, 2020), where
they precisely characterized the asymptotic generalization
error of interpolating solutions, and showed that double-
descent phenomenon (Belkin et al., 2019a; Advani et al.,
2020) exists in these models. A few other papers studied
the generalization error of random features models in the
polynomial scaling limits (Ghorbani et al., 2019; 2020; Mei
et al., 2021), where other interesting behaviors were shown.

Precise asymptotics for the Rademacher complexity of some
underparameterized learning models was calculated using
statistical physics heuristics in Abbaras et al. (2020). In
our work, we instead focus on the uniform convergence of
overparameterized random features model.

2. Problem formulation
In this section, we present the background needed to under-
stand the insights from our main result. In Section 2.1 we
define the random feature regression task that this paper fo-
cuses on. In Section 2.2, we informally present the limiting
regime our theory covers.

2.1. Model setup

Consider a dataset (xi, yi)i∈[n] with n samples. Assume
that the covariates follow xi ∼iid Unif(Sd−1(

√
d)), and

responses satisfy yi = fd(xi)+εi, with the noises satisfying
εi ∼iid N (0, τ2) which are independent of (xi)i∈[n]. We
will consider both the noisy (τ2 > 0) and noiseless (τ2 = 0)
settings.

We fit the dataset using the random features model. Let
(θj)j∈[N ] ∼iid Unif(Sd−1(

√
d)) be the random feature vec-

tors. Given an activation function σ : R→ R, we define the
random features function class FRF(Θ) by

FRF(Θ) ≡
{
f(x) =

N∑

j=1

ajσ
(
〈x,θj〉/

√
d
)

: a ∈ RN
}
.

Generalization error of the minimum norm interpola-
tor. Denote the population risk and the empirical risk of a
predictor a ∈ RN by

R(a) = Ex,y
(
y −

N∑

j=1

ajσ(〈x,θj〉/
√
d)
)2
, (1)

R̂n(a) =
1

n

n∑

i=1

(
yi −

N∑

j=1

ajσ(〈xi,θj〉/
√
d)
)2
, (2)

and the regularized empirical risk minimizer with vanishing
regularization by

amin = lim
λ→0+

arg min
a

[
R̂n(a) + λ‖a‖22

]
.

In the overparameterized regime (N > n), under mild con-
ditions, we have mina R̂n(a) = R̂n(amin) = 0. In this
regime, amin can be interpreted as the minimum `2 norm
interpolator.

A quantity of interest is the generalization error of this
predictor, which gives (with a slight abuse of notation)

R(N,n, d) ≡ R(amin). (3)

Uniform convergence bounds. We denote the uniform
convergence bound over a norm ball and the uniform con-
vergence over interpolators in the norm ball by

U(A,N, n, d) ≡ sup
(N/d)‖a‖22≤A

(
R(a)− R̂n(a)

)
, (4)

T (A,N, n, d) ≡ sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a). (5)

Here the scaling factor N/d of the norm ball is such that the
norm ball converges to a non-trivial RKHS norm ball with
size
√
A as ψ1 → ∞ (limit taken after N/d → ψ1). Note

that in order for the maximization problem in (5) to have
a non-empty feasible region, we need R̂n(amin) = 0 and
need to take A ≥ (N/d)‖amin‖22: we will show that in the
region N > n with sufficiently large A, this happens with
high probability.

By construction, for any A ≥ (N/d)‖amin‖22, we have
U(A) ≥ T (A) ≥ R(amin) (see Figuire 2). So a natural
problem is to quantify the gap among U(A), T (A), and
R(amin), which is our goal in this paper.

0 2 4 6 8 10 12 14
0

1
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Figure 2. Illustration of uniform convergence U (c.f. eq. (4)),
uniform convergence over interpolators T (c.f. eq. (5)), and
minimum norm interpolator R(amin). We take yi = 〈xi,β〉 for
some ‖β‖22 = 1, and take the ReLU activation function σ(x) =
max{x, 0}. Solid lines are our theoretical predictions U and T
(cf. (6) & (7)). Points with error bars are obtained from simulations
with the number of features N = 500, number of samples n =
300, and covariate dimension d = 200. The error bar reports
1/
√
20×standard deviation over 20 instances. See Appendix B

for details.
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2.2. High dimensional regime

We approach this problem in the limit d → ∞ with
N/d→ ψ1 and n/d→ ψ2 (c.f. Assumption 3). We further
assume the setting of a linear target function fd and a non-
linear activation function σ (c.f. Assumptions 1 and 2). In
this regime, our main result Theorem 1 will show that, the
uniform convergence U and the uniform convergence over
interpolators T will converge to deterministic functions, i.e.,
writing here informally,

U(A,N, n, d)
d→∞→ U(A,ψ1, ψ2), (6)

T (A,N, n, d)
d→∞→ T (A,ψ1, ψ2), (7)

where U and T will be defined in Definition 2 (which de-
pends on the definition of some other quantities that are
defined in Appendix A and heuristically presented in Re-
mark 1). In addition to U and T , Theorem 1 of Mei &
Montanari (2019) implies the following convergence

(N/d)‖amin‖22
d→∞→ A(ψ1, ψ2), (8)

R(amin)
d→∞→ R(ψ1, ψ2). (9)

The precise algebraic expression of equation (8) and (9) was
given in Definition 1 of Mei & Montanari (2019), and we in-
clude in Appendix A for completeness. We will sometimes
refer to U , T ,A,R without explicitly mark their depen-
dence on A,ψ1, ψ2 for notational simplicity.

Kernel regime. Rahimi & Recht (2007) have shown that,
as N →∞, the random feature space FRF(Θ) (equipped
with proper inner product) converges to the RKHS (Repro-
ducing Kernel Hilbert Space) induced by the kernel

H(x,x′) = Ew∼Unif(Sd−1)[σ(〈x,w〉)σ(〈x′,w)〉].
We expect that, if we take limit ψ1 →∞ afterN, d, n→∞,
the formula of U and T will coincide with the corresponding
asymptotic limit of U and T for kernel ridge regression with
the kernel H . This intuition has been mentioned in a few
papers (Mei & Montanari, 2019; d’Ascoli et al., 2020; Jacot
et al., 2020a). In this spirit, we denote

U∞(A,ψ2) ≡ lim
ψ1→∞

U(A,ψ1, ψ2), (10)

T∞(A,ψ2) ≡ lim
ψ1→∞

T (A,ψ1, ψ2), (11)

A∞(ψ2) ≡ lim
ψ1→∞

A(ψ1, ψ2), (12)

R∞(ψ2) ≡ lim
ψ1→∞

R(ψ1, ψ2). (13)

We will refer to the quantities {U∞, T∞,A∞,R∞} as the
{uniform convergence in norm ball, uniform convergence
over interpolators in norm ball, minimum `2 norm of inter-
polators, and generalization error of interpolators} of kernel
ridge regression.

Low norm uniform convergence bounds. There is a
question of which norm A to choose in U and T to compare
with R. In order for U and T to serve as proper bounds
for R(amin), we need to take at least A ≥ ψ1‖amin‖22.
Therefore, we will choose

A = αψ1‖amin‖22, (14)

for some α > 1 (e.g., α = 1.1). Note ψ1‖amin‖22 →
A(ψ1, ψ2) as d → ∞. So for a fixed α > 1, we further
define

U (α)(ψ1, ψ2) ≡ U(αA(ψ1, ψ2), ψ1, ψ2), (15)

T (α)(ψ1, ψ2) ≡ T (αA(ψ1, ψ2), ψ1, ψ2), (16)

and their kernel version,

U (α)
∞ (ψ2) ≡ lim

ψ1→∞
U (α)(ψ1, ψ2), (17)

T (α)
∞ (ψ2) ≡ lim

ψ1→∞
T (α)(ψ1, ψ2). (18)

This definition ensures that R(ψ1, ψ2) ≤ T (α)(ψ1, ψ2) ≤
U (α)(ψ1, ψ2) andR∞(ψ2) ≤ T (α)

∞ (ψ2) ≤ U (α)
∞ (ψ2).

3. Asymptotic power laws and separations
In this section, we evaluate the algebraic expressions derived
in our main result (Theorem 1) as well as the quantities U (α),
T (α), A, and R, before formally presenting the theorem.
We examine their dependence with respect to the noise level
τ2, the number of features ψ1 = limd→∞N/d, and the
sample size ψ2 = limd→∞ n/d, and we further infer their
asymptotic power laws for large ψ1 and ψ2.

3.1. Norm of the minimum norm interpolator

Since we are considering uniform convergence bounds over
the norm ball of size α timesA∞(ψ2) (the norm of the min-
norm interpolator), let’s first examine how A∞(ψ2) scale
with ψ2. As we shall see, A∞(ψ2) behaves differently in
the noiseless (τ2 = 0) and noisy (τ2 > 0) settings, so here
we explicitly mark the dependence on τ2, i.e. A∞(ψ2; τ2).

The inferred asymptotic power law gives (c.f. Figure 1(c))

A∞(ψ2; τ2 > 0) ∼ ψ2,

A∞(ψ2; τ2 = 0) ∼ 1,

where X1(ψ) ∼ X2(ψ) for large ψ means that

lim
ψ→∞

log(X1(ψ))/ log(X2(ψ)) = 1.

In words, when there is no label noise (τ2 = 0), we can
interpolate infinite data even with a finite norm. When the
responses are noisy (τ2 > 0), interpolation requires a large
norm that is proportional to the number of samples.
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On a high level, our statement echoes the finding of Belkin
et al. (2018c), where they study a binary classification prob-
lem using the kernel machine, and prove that an interpolat-
ing classifier requires RKHS norm to grow at least expo-
nentially with n1/d for fixed dimension d. Here instead we
consider the high dimensional setting and we show a linear
grow in ψ2 = limd→∞ n/d.

3.2. Kernel regime with noiseless data

We first look at the noiseless setting (τ2 = 0) and present
the asymptotic power law for the uniform convergence U (α)

∞
over the low-norm ball, the uniform convergence over inter-
polators T (α)

∞ in the low norm ball, and the minimum norm
riskR∞ from (17) (18) (13), respectively.

In this setting, the inferred asymptotic power law of
U (α)
∞ (ψ2), T (α)

∞ (ψ2), andR∞(ψ2) gives (c.f. Figure 1(a))

U (α)
∞ (ψ2; τ2 = 0) ∼ ψ−1/22 ,

T (α)
∞ (ψ2; τ2 = 0) ∼ ψ−12 ,

R(α)
∞ (ψ2; τ2 = 0) ∼ ψ−22 .

As we can see, all the three quantities converge to 0 in the
large sample limit, which indicates that uniform conver-
gence is able to explain generalization in this setting. yet
uniform convergence bounds do not correctly capture the
convergence rate (in terms of ψ2) of the generalization error.

3.3. Kernel regime with noisy data

In the noisy setting (fix τ2 > 0), the Bayes risk (minimal
possible risk) is τ2. We study the excess risk and the excess
version of uniform convergence bounds by subtracting the
Bayes risk τ2. The inferred asymptotic power law gives (c.f.
Figure 1(b))

U (α)
∞ (ψ2; τ2)− τ2 ∼ ψ1/2

2 ,

T (α)
∞ (ψ2; τ2)− τ2 ∼ 1,

R∞(ψ2; τ2)− τ2 ∼ ψ−12 .

In the presence of label noise, the excess risk R∞ − τ2

vanishes in the large sample limit. In contrast, the classical
uniform convergence U∞ becomes vacuous, whereas the
uniform convergence over interpolators T∞ converges to a
constant, which gives a non-vacuous bound ofR∞.

The decay of the excess risk of minimum norm interpolators
even in the presence of label noise is no longer a surprising
phenomenon in high dimensions (Liang et al., 2019; Ghor-
bani et al., 2019; Bartlett et al., 2020). A simple explanation
of this phenomenon is that the nonlinear part of the activa-
tion function σ has an implicit regularization effect (Mei &
Montanari, 2019).

The divergence of U (α)
∞ in the presence of response noise is

partly due to that A∞(ψ2) blows up linearly in ψ2 (c.f.
Section 3.1). In fact, we can develop a heuristic intu-
ition that U∞(A,ψ2; τ2) ∼ A/ψ

1/2
2 . Then the scaling

U (α)
∞ (ψ2; τ2 > 0) ∼ A∞(ψ2; τ2 > 0)/ψ

1/2
2 ∼ ψ

1/2
2 can

be explained away by the power law of A∞(ψ2; τ2 > 0) ∼
ψ2. In other words, the complexity of the function space
of interpolators grows faster than the sample size n, which
leads to the failure of uniform convergence in explaining
generalization. This echoes the findings in Nagarajan &
Kolter (2019a).

To illustrate the scaling U∞(A,ψ2) ∼ A/ψ
1/2
2 . We fix

all other parameters (µ1, µ?, τ, F1), and examine the de-
pendence of U∞ on A and ψ2. We choose A = A(ψ2)
according to different power laws A(ψ2) ∼ ψp2 for p =
0, 0.25, 0.5, 0.75, 1. The inferred asymptotic power law
gives U∞(A(ψ2), ψ2) ∼ ψp−0.52 (c.f. Figure 3). This pro-
vides an evidence for the relation U∞(A,ψ2) ∼ A/ψ

1/2
2 .
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Figure 3. Uniform convergence U∞(A(ψ2), ψ2) over the norm
ball in the kernel regime ψ1 → ∞. The size of the norm ball
A = A(ψ2) is chosen according to different power laws as shown
in the legend.

3.4. Finite-width regime

Here we shift attention to the dependence of U , T , and
R on the number of features ψ1. We fix the number of
training samples ψ2, noise level τ2 > 0, and norm level
α > 1 similar as before. Since Uα → Uα∞, T α → T α∞
and R → R∞ as ψ1 → ∞, we look at the dependence of
Uα−Uα∞, T α−T α∞ andRα−Rα∞ with respect to ψ1. The
inferred asymptotic law gives (c.f. Figure 4)

U (α)(ψ1, ψ2)− U (α)
∞ (ψ2) ∼ ψ−11 ,

T (α)(ψ1, ψ2)− T (α)
∞ (ψ2) ∼ ψ−11 ,

R(ψ1, ψ2)−R∞(ψ2) ∼ ψ−11 ,

A(ψ1, ψ2)−A∞(ψ2) ∼ ψ−11 .

Note that large ψ1 should be interpreted as the model be-
ing heavily overparametrized (a large width network). This
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Figure 4. Random feature regression with the number of sample ψ2 = 1.5, activation function σ(x) = max(0, x) − 1/
√
2π, target

function fd(x) = 〈β,x〉 with ‖β‖22 = 1, and noise level τ2 = 0.1. The horizontal axes are the number of features ψ1. The solid
lines are the the algebraic expressions derived in the main theorem (Theorem 1). The dashed lines are the function ψp

1 in the log scale.
Figure 4(a): Comparison of the classical uniform convergence in the norm ball of size level α = 1.5 (Eq. (15), blue curve), the uniform
convergence over interpolators in the same norm ball (Eq. (16), red curve), the risk of minimum norm interpolator (Eq. (9), yellow curve).
Figure 4(b): Minimum norm required to interpolate the training data (Eq. (8)).

asymptotic power law implies that, both uniform conver-
gence bounds correctly predict the decay of the test error
with the increase of the number of features.

Remark on power laws. For the derivation of the power
laws in this section, instead of working with the analytical
formula, we adopt an empirical approach: we perform linear
fits with the inferred slopes, upon the numerical evaluations
(of these expressions defined in Definition 2) in the log-
log scale. However, these linear fits are for the analytical
formulae and do not involve randomness, and thus reliably
indicate the true decay rates.

4. Main theorem
In this section, we state the main theorem that presents the
asymptotic expressions for the uniform convergence bounds.
We will start by stating a few assumptions, which fall into
two categories: Assumption 1, 2, and 3, which specify the
setup for the learning task; Assumption 4 and 5, which are
technical in nature.

4.1. Modeling assumptions

The three assumptions in this subsection specify the target
function, the activation function, and the limiting regime.

Assumption 1 (Linear target function). We assume that
fd ∈ L2(Sd−1(

√
d)) with fd(x) = 〈β(d),x〉, where β(d) ∈

Rd and
lim
d→∞

‖β(d)‖22 = F 2
1 .

We remark here that, if we are satisfied with heuristic for-
mulae instead of rigorous results, we are able to deal with
non-linear target functions, where the additional nonlinear
part is effectively increasing the noise level τ2. This intu-

ition was first developed in (Mei & Montanari, 2019).

Assumption 2 (Activation function). Let σ ∈ C2(R)
with |σ(u)|, |σ′(u)|, |σ′′(u)| ≤ c0e

c1|u| for some constant
c0, c1 <∞. Define

µ0 ≡ E[σ(G)], µ1 ≡ E[Gσ(G)], µ2
? ≡ E[σ(G)2]−µ2

0−µ2
1,

where expectation is with respect to G ∼ N (0, 1). Assume
µ0 = 0, 0 < µ2

1, µ
2
? <∞.

The assumption that µ0 = 0 is not essential and can be
relaxed with a certain amount of additional technical work.

Assumption 3 (Proportional limit). Let N = N(d) and
n = n(d) be sequences indexed by d. We assume that the
following limits exist in (0,∞):

lim
d→∞

N(d)/d = ψ1, lim
d→∞

n(d)/d = ψ2.

4.2. Technical assumptions

We will make some assumptions upon the properties of
some random matrices that appear in the proof. These as-
sumptions are technical and we believe they can be proved
under more natural assumptions. However, proving them
requires substantial technical work, and we defer them to
future work. We note here that these assumptions are often
implicitly required in papers that present intuitions using
heuristic derivations. Instead, we ensure the mathematical
rigor by listing them. See Section 5 for more discussions
upon these assumptions.

We begin by defining some random matrices which are the
key quantities that are used in the proof of our main results.

Definition 1 (Block matrix and log-determinant). LetX =
(x1, . . . ,xn)T ∈ Rn×d and Θ = (θ1, . . . ,θN )T ∈ RN×d,
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where xi,θa ∼iid Unif(Sd−1(
√
d)), as mentioned in Sec-

tion 2.1. Define

Z =
1√
d
σ

(
XΘT

√
d

)
, Z1 =

µ1

d
XΘT,

Q =
ΘΘT

d
, H =

XXT

d
, (19)

and for q = (s1, s2, t1, t2, q) ∈ R5, we define

A(q) ≡
[
s1IN + s2Q ZT + pZT

1

Z + pZ1 t1In + t2H

]
.

Finally, we define the log-deteminant ofA(q) by

Gd(ξ; q) ≡ 1

d

N+n∑

i=1

Logλi

(
A(q)− ξIn+N

)
.

Here Log is the complex logarithm with branch cut on the
negative real axis and {λi(A)}i∈[n+N ] is the set of eigen-
values ofA.

The following assumption states that for properly chosen λ,
some specific random matrices are well-conditioned. As we
will see in the next section, this ensures that the dual prob-
lems in Eq. (20) and (21) are bounded with high probability.

Assumption 4 (Invertability). Consider the asymptotic limit
as specified in Assumption 3 the activation function as in
Assumption 2. We assume the following.

• Denote U(λ) = µ2
1Q + (µ2

? − ψ1λ)IN − ψ−12 ZTZ.
There exists ε > 0 and λU = λU (ψ1, ψ2, µ

2
1, µ

2
?), such

that for any fixed λ ∈ (λU ,∞) ≡ ΛU , with high
probability, we have

U(λ) � −εIN .

• Denote T (λ) = Pnull[µ
2
1Q + (µ2

? − ψ1λ)IN ]Pnull

where Pnull = IN − Z†Z. There exists ε > 0
and λT = λT (ψ1, ψ2, µ

2
1, µ

2
?), such that for any fixed

λ ∈ (λT ,∞) ≡ ΛT , with high probability we have

T (λ) � −εPnull,

and Z has full row rank with σmin(Z) ≥ ε (which
requires ψ1 > ψ2).

The following assumption states that the order of limits and
derivatives regarding Gd can be exchanged.

Assumption 5 (Exchangeability of limits). We denote

SU = {(µ2
? − λψ1, µ

2
1, ψ2, 0, 0;ψ1, ψ2) : λ ∈ (λU ,∞)},

ST = {(µ2
? − λψ1, µ

2
1, 0, 0, 0;ψ1, ψ2) : λ ∈ (λT ,∞)},

where λU and λT are given in Assumption 4 and de-
pend on (ψ1, ψ2, µ

2
1, µ

2
?). For any fixed (q;ψ) =

(s1, s2, t1, t2, p;ψ1, ψ2) ∈ SU ∪ ST , in the asymptotic limit
as in Assumption 3, for k = 1, 2, we have

lim
u→0+

lim
d→∞

E[∇kqGd(iu; q)] = lim
u→0+

∇kq
(

lim
d→∞

E[Gd(iu; q)]
)
,

and
∥∥∥∇kqGd(0; q)− lim

u→0+
lim
d→∞

E[∇kqGd(iu; q)]
∥∥∥ = od,P(1),

where od,P(1) stands for convergence to 0 in probability.

4.3. From constrained forms to Lagrangian forms

Before we give the asymptotics of U and T as defined in
Eq. (4) and (5), we first consider their dual forms which are
more amenable in analysis. These are given by

U(λ,N, n, d) ≡ sup
a

[
R(a)− R̂n(a)− ψ1λ‖a‖22

]
,

(20)

T (λ,N, n, d) ≡ sup
a

inf
µ

[
R(a)− λψ1‖a‖22 (21)

+ 2〈µ,Za− y/
√
d 〉
]
.

The proposition below shows that the strong duality holds
upon the constrained forms and their dual forms.

Proposition 1 (Strong Duality). For any A > 0, we have

U(A,N, n, d) = inf
λ≥0

[
U(λ,N, n, d) + λA

]
.

Moreover, for any A > ψ1‖amin‖22, we have

T (A,N, n, d) = inf
λ≥0

[
T (λ,N, n, d) + λA

]
.

The proof of Proposition 1 is based on a classical result
which states that strongly duality holds for quadratic pro-
grams with single quadratic constraint (Appendix B.1 in
Boyd & Vandenberghe (2004)).

4.4. Expressions of U and T
Proposition 1 transforms our task from computing the
asymptotics of U and T to that of U and T . The latter
is given by the following proposition.

Proposition 2. Let the target function fd satisfy Assump-
tion 1, the activation function σ satisfy Assumption 2, and
(N,n, d) satisfy Assumption 3. In addition, let Assumption
4 and 5 hold. Then for λ ∈ ΛU , with high probability the
maximizer in Eq. (20) can be achieved at a unique point
aU (λ), and we have

U(λ,N, n, d) = U(λ, ψ1, ψ2) + od,P(1),

ψ1‖aU (λ)‖22 = AU (λ, ψ1, ψ2) + od,P(1).
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Moreover, for any λ ∈ ΛT , with high probability the maxi-
mizer in Eq. (21) can be achieved at a unique point aT (λ),
and we have

T (λ,N, n, d) = T (λ, ψ1, ψ2) + od,P(1),

ψ1‖aT (λ)‖22 = AT (λ, ψ1, ψ2) + od,P(1).

The functions U , T ,AU ,AT are given in Definition 5 in
Appendix A.

Remark 1. Here we present the heuristic formulae of
U , T ,AU ,AT , and defer their rigorous definition to the
appendix. Define a function g0(q;ψ) by

g0(q;ψ) ≡ extz1,z2

[
log
(
(s2z1 + 1)(t2z2 + 1)

− µ2
1(1 + p)2z1z2

)
− µ2

?z1z2 + s1z1 + t1z2

− ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ψ1 − ψ2

]
,

(22)

where ext stands for setting z1 and z2 to be stationery
(which is a common symbol in statistical physics heuristics).
We then take

U(λ,ψ) = F 2
1 (1− µ2

1γs2 − γp − γt2) + τ2(1− γt1),

where γa ≡ ∂ag0(q;ψ)|q=(µ2
?−λψ1,µ2

1,ψ2,0,0) for the sym-
bol a ∈ {s1, s2, t1, t2, p}, and

T (λ,ψ) = F 2
1 (1− µ2

1νs2 − νp − νt2) + τ2(1− νt1),

where we define νa ≡ ∂ag0(q;ψ)|q=(µ2
?−λψ1,µ2

1,0,0,0)

for symbols a ∈ {s1, s2, t1, t2, p}. Finally AU =
−∂λU , AT = −∂λT . By a further simplification,
we can express these formulae to be rational functions
of (µ2

1, µ
2
?, λ, ψ1, ψ2,m1,m2) where (m1,m2) is the sta-

tionery point of the variational problem in Eq. (22) (c.f.
Remark 2).

We next define U and T to be dual forms of U and T .

Definition 2 (Formula for uniform convergence bounds).
For A ∈ ΓU ≡ {AU (λ, ψ1, ψ2) : λ ∈ ΛU}, define

U(A,ψ1, ψ2) ≡ inf
λ≥0

[
U(λ, ψ1, ψ2) + λA

]
.

For A ∈ ΓT ≡ {AT (λ, ψ1, ψ2) : λ ∈ ΛT }, define

T (A,ψ1, ψ2) ≡ inf
λ≥0

[
T (λ, ψ1, ψ2) + λA

]
.

Finally, we are ready to present the main theorem of this
paper, which states that the uniform convergence bounds
U(A,N, n, d) and T (A,N, n, d) converge to the formula
presented in the definition above.

Theorem 1. Let the same assumptions in Proposition 2
hold. For any A ∈ ΓU , we have

U(A,N, n, d) = U(A,ψ1, ψ2) + od,P(1), (23)

and for A ∈ ΓT we have

T (A,N, n, d) = T (A,ψ1, ψ2) + od,P(1), (24)

where functions U and T are given in Definition 2.

The proof of this theorem is contained in Section E.

5. Discussions
In this paper, we calculated the uniform convergence bounds
for random features models in the proportional scaling
regime. Our results exhibit a setting in which standard
uniform convergence bound is vacuous while uniform con-
vergence over interpolators gives a non-trivial bound of the
actual generalization error.

Modeling assumptions and technical assumptions. We
made a few assumptions to prove the main result Theorem
1. Some of these assumptions can be relaxed. Indeed, if we
assume a non-linear target function fd instead of a linear
one as in Assumption 1, the non-linear part will behave like
additional noises in the proportional scaling limit. However,
proving this rigorously requires substantial technical work.
Similar issue exists in Mei & Montanari (2019). Moreover,
it is not essential to assume vanishing µ2

0 in Assumption 2.

Assumption 4 and 5 involve some properties of specific
random matrices. We believe these assumptions can be
proved under more natural assumptions on the activation
function σ. However, proving these assumptions requires
developing some sophisticated random matrix theory results,
which could be of independent interest.

Relationship with non-asymptotic results. We hold the
same opinion as in Abbaras et al. (2020): the exact formulae
in the asymptotic limit can provide a complementary view
to the classical theories of generalization. On the one hand,
asymptotic formulae can be used to quantify the tightness of
non-asymptotic bounds; on the other hand, the asymptotic
formulae in many cases are comparable to non-asymptotic
bounds. For example, Lemma 22 in Bartlett & Mendelson
(2003) coupled with the bound of Lipschitz constant of the
square loss in proper regime implies that U∞(A,ψ2) have a
non-asymptotic bound that scales linearly in A and inverse
proportional to ψ1/2

2 (c.f. Proposition 6 of E et al. (2020)).
This coincides with the intuitions in Section 3.3.

Uniform convergence in other settings. A natural ques-
tion is whether the power law derived in Section 3 holds for
models in more general settings. One can perform a sim-
ilar analysis to calculate the uniform convergence bounds
in a few other settings (Montanari et al., 2019; Dhifallah
& Lu, 2020; Hu & Lu, 2020). We believe the power law
may be different, but the qualitative properties of uniform
convergence bounds will share some similar features.

Relationship with Zhou et al. (2020). The separation of
uniform convergence bounds (U and T ) is first pointed out
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by Zhou et al. (2020), where the authors worked with the
linear regression model in the “junk features” setting. We
believe random features model are more natural models to il-
lustrate the separation: in Zhou et al. (2020), there are some
unnatural parameters λn, dJ that are hard to make connec-
tions to deep learning models, while the random features
model is closely related to two-layer neural networks.
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Rademacher complexity and spin glasses: A link between
the replica and statistical theories of learning. In Math-
ematical and Scientific Machine Learning, pp. 27–54.
PMLR, 2020.

Adlam, B. and Pennington, J. Understanding double de-
scent requires a fine-grained bias-variance decomposition.
arXiv preprint arXiv:2011.03321, 2020.

Advani, M. S., Saxe, A. M., and Sompolinsky, H. High-
dimensional dynamics of generalization error in neural
networks. Neural Networks, 132:428–446, 2020.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
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A. Definitions of quantities in the main text
A.1. Full definitions of U , T , AU , and AT in Proposition 2

We first define functions m1(·),m2(·), which could be understood as the limiting partial Stieltjes transforms ofA(q) (c.f.
Definition 1).

Definition 3 (Limiting partial Stieltjes transforms). For ξ ∈ C+ and q ∈ Q where

Q = {(s1, s2, t1, t2, p) : |s2t2| ≤ µ2
1(1 + p)2/2}, (25)

define functions F1( · , · ; ξ; q, ψ1, ψ2, µ1, µ?),F2( · , · ; ξ; q, ψ1, ψ2, µ1, µ?) : C× C→ C via:

F1(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?) ≡ ψ1

(
− ξ + s1 − µ2

?m2 +
(1 + t2m2)s2 − µ2

1(1 + p)2m2

(1 + s2m1)(1 + t2m2)− µ2
1(1 + p)2m1m2

)−1
,

F2(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?) ≡ ψ2

(
− ξ + t1 − µ2

?m1 +
(1 + s2m1)t2 − µ2

1(1 + p)2m1

(1 + t2m2)(1 + s2m1)− µ2
1(1 + p)2m1m2

)−1
.

Let m1( · ; q;ψ) m2( · ; q;ψ) : C+ → C+ be defined, for =(ξ) ≥ C a sufficiently large constant, as the unique solution of
the equations

m1 = F1(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?),

m2 = F2(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?)
(26)

subject to the condition |m1| ≤ ψ1/=(ξ), |m2| ≤ ψ2/=(ξ). Extend this definition to =(ξ) > 0 by requiring m1,m2 to be
analytic functions in C+.

We next define the function g(·) that will be shown to be the limiting log determinant ofA(q).

Definition 4 (Limiting log determinants). For q = (s1, s2, t1, t2, p) and ψ = (ψ1, ψ2), define

Ξ(ξ, z1, z2; q;ψ) ≡ log[(s2z1 + 1)(t2z2 + 1)− µ2
1(1 + p)2z1z2]− µ2

?z1z2

+ s1z1 + t1z2 − ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ξ(z1 + z2)− ψ1 − ψ2.
(27)

Letm1(ξ; q;ψ),m2(ξ; q;ψ) be defined as the analytic continuation of solution of Eq. (26) as defined in Definition 3. Define

g(ξ; q;ψ) = Ξ(ξ,m1(ξ; q;ψ),m2(ξ; q;ψ); q;ψ). (28)

We next give the definitions of U , T , AU , and AT .

Definition 5 (U , T , AU , and AT in Proposition 2). For any λ ∈ ΛU , define

AU (λ, ψ1, ψ2) = − lim
u→0+

[
ψ1

(
F 2
1 µ

2
1∂s1s2 + F 2

1 ∂s1p + F 2
1 ∂s1t2 + τ2∂s1t1

)
g(iu; q;ψ)

∣∣∣
q=qU

]
,

U(λ, ψ1, ψ2) = F 2
1 + τ2 − lim

u→0+

[(
F 2
1 µ

2
1∂s2 + F 2

1 ∂p + F 2
1 ∂t2 + τ2∂t1

)
g(iu; q;ψ)

∣∣∣
q=qU

]
,

AT (λ, ψ1, ψ2) = − lim
u→0+

[
ψ1

(
F 2
1 µ

2
1∂s1s2 + F 2

1 ∂s1p + F 2
1 ∂s1t2 + τ2∂s1t1

)
g(iu; q;ψ)

∣∣∣
q=qT

]
,

T (λ, ψ1, ψ2) = F 2
1 + τ2 − lim

u→0+

[(
F 2
1 µ

2
1∂s2 + F 2

1 ∂p + F 2
1 ∂t2 + τ2∂t1

)
g(iu; q;ψ)

∣∣∣
q=qT

]
,

where qU = (µ2
? − λψ1, µ

2
1, ψ2, 0, 0), qT = (µ2

? − λψ1, µ
2
1, 0, 0, 0).

In the following, we give a simplified expression for U and AU .

Remark 2 (Simplification of U and AU ). Define ζ, λ as the rescaled version of µ2
1 and λ

ζ =
µ2
1

µ2
?

, λ =
λ

µ2
?

.
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Let m1( · ;ψ) m2( · ;ψ) : C+ → C+ be defined, for =(ξ) ≥ C a sufficiently large constant, as the unique solution of the
equations

m1 = ψ1

[
−ξ + (1− λψ1)−m2 +

ζ(1−m2)

1 + ζm1 − ζm1m2

]−1
,

m2 = −ψ2

[
ξ + ψ2 −m1 −

ζm1

1 + ζm1 − ζm1m2

]−1
,

(29)

subject to the condition |m1| ≤ ψ1/=(ξ), |m2| ≤ ψ2/=(ξ). Extend this definition to =(ξ) > 0 by requiring m1,m2 to be
analytic functions in C+. Let

m1 = lim
u→∞

m1(iu,ψ),

m2 = lim
u→∞

m2(iu,ψ).

Define
χ1 = m1ζ −m1m2ζ + 1,

χ2 = m1 − ψ2 +
m1ζ

χ1
,

χ3 = λψ1 +m2 − 1 +
ζ (m2 − 1)

χ1
.

Define two polynomials E1, E2 as

E1(ψ1, ψ2, λ, ζ) = ψ2
1(ψ2χ

4
1 + ψ2χ

2
1ζ),

E2(ψ1, ψ2, λ, ζ) = ψ2
1(χ2

1χ
2
2m

2
2ζ − 2χ2

1χ
2
2m2ζ + χ2

1χ
2
2ζ + ψ2χ

2
1 − ψ2m

2
1m

2
2ζ

3 + 2ψ2m
2
1m2ζ

3 − ψ2m
2
1ζ

3 + ψ2ζ),

E3(ψ1, ψ2, λ, ζ) = − χ4
1χ

2
2χ

2
3 + ψ1ψ2χ

4
1 + ψ1χ

2
1χ

2
2m

2
2ζ

2 − 2ψ1χ
2
1χ

2
2m2ζ

2 + ψ1χ
2
1χ

2
2ζ

2

+ ψ2χ
2
1χ

2
3m

2
1ζ

2 + 2ψ1ψ2χ
2
1ζ − ψ1ψ2m

2
1m

2
2ζ

4 + 2ψ1ψ2m
2
1m2ζ

4 − ψ1ψ2m
2
1ζ

4 + ψ1ψ2ζ
2.

Then

U(λ, ψ1, ψ2) = − (m2 − 1)
(
τ2χ1(ψ1, ψ2, λ, ζ) + F 2

1

)

χ1(ψ1, ψ2, λ, ζ)
,

AU (λ, ψ1, ψ2) =
τ2E1(ψ1, ψ2, λ, ζ) + F 2

1 E1(ψ1, ψ2, λ, ζ)

E2(ψ1, ψ2, λ, ζ)
.

Remark 3 (Simplification of T and AT ). Define ζ, λ as the rescaled version of µ2
1 and λ

ζ =
µ2
1

µ2
?

, λ =
λ

µ2
?

.

Let m1( · ;ψ) m2( · ;ψ) : C+ → C+ be defined, for =(ξ) ≥ C a sufficiently large constant, as the unique solution of the
equations

m1 = ψ1

[
−ξ + (1− λψ1)−m2 +

ζ(1−m2)

1 + ζm1 − ζm1m2

]−1
,

m2 = −ψ2

[
ξ +m1 +

ζm1

1 + ζm1 − ζm1m2

]−1
,

(30)

subject to the condition |m1| ≤ ψ1/=(ξ), |m2| ≤ ψ2/=(ξ). Extend this definition to =(ξ) > 0 by requiring m1,m2 to be
analytic functions in C+. Let

m1 = lim
u→∞

m1(iu,ψ),

m2 = lim
u→∞

m2(iu,ψ).

Define

χ4 = m1 +
m1ζ

χ1(m1,m2, ζ)
,
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and
χ1 = m1ζ −m1m2ζ + 1,

χ3 = λψ1 +m2 − 1 +
ζ (m2 − 1)

χ1
,

where the definitions of χ1, χ3 are the same as in Remark 2. Define three polynomials E3, E4, E5 as

E4(ψ1, ψ2, λ, ζ) =ψ1

(
ψ2χ

4
1χ

3
4 + χ4

1χ
2
4m

3
1m

2
2ζ

3 − 2χ4
1χ

2
4m

3
1m2ζ

3 + χ4
1χ

2
4m

3
1ζ

3 + 2χ3
1χ

2
4m

3
1m

2
2ζ

2

− 4χ3
1χ

2
4m

3
1m2ζ

2 + 2χ3
1χ

2
4m

3
1ζ

2 − ψ2χ
3
1χ

2
4m1ζ + χ2

1χ
2
4m

3
1m

2
2ζ − 2χ2

1χ
2
4m

3
1m2ζ

+ χ2
1χ

2
4m

3
1ζ + ψ2χ

2
1χ

2
4m1ζ − ψ2χ

2
1m

5
1m

2
2ζ

5 + 2ψ2χ
2
1m

5
1m2ζ

5 − ψ2χ
2
1m

5
1ζ

5

− 2ψ2χ1m
5
1m

2
2ζ

4 + 4ψ2χ1m
5
1m2ζ

4 − 2ψ2χ1m
5
1ζ

4 − ψ2m
5
1m

2
2ζ

3

+ 2ψ2m
5
1m2ζ

3 − ψ2m
5
1ζ

3
)
,

E5(ψ1, ψ2, λ, ζ) =m1

(
ζ + 1 +m1ζ −m1m2ζ

)2(
− χ4

1χ
2
3χ

2
4m

2
1

+ ψ1ψ2χ
4
1χ

2
4 − 2ψ1ψ2χ

3
1χ4m1ζ + ψ2χ

2
1χ

2
3m

4
1ζ

2 + ψ1χ
2
1χ

2
4m

2
1m

2
2ζ

2

− 2ψ1χ
2
1χ

2
4m

2
1m2ζ

2 + ψ1χ
2
1χ

2
4m

2
1ζ

2 + 2ψ1ψ2χ
2
1χ4m1ζ + ψ1ψ2χ

2
1m

2
1ζ

2

− 2ψ1ψ2χ1m
2
1ζ

2 − ψ1ψ2m
4
1m

2
2ζ

4 + 2ψ1ψ2m
4
1m2ζ

4 − ψ1ψ2m
4
1ζ

4 + ψ1ψ2m
2
1ζ

2
)
,

E6(ψ1, ψ2, λ, ζ) =χ2
1χ

2
4ψ1ψ2

(
χ4χ

2
1 −m1χ1ζ +m1ζ

)(
m1ζ −m1m2ζ + 1

)2
.

Then

T (λ, ψ1, ψ2) = − (m2 − 1)
(
τ2χ1(ψ1, ψ2, λ, ζ) + F 2

1

)

χ1(ψ1, ψ2, λ, ζ)
,

AT (λ, ψ1, ψ2) = −ψ1
F 2
1 E4(ψ1, ψ2, λ, ζ) + τ2E6(ψ1, ψ2, λ, ζ)

E5(ψ1, ψ2, λ, ζ)
.

A.2. Definitions ofR and A
In this section, we present the expression ofR and A from Mei & Montanari (2019) which are used in our results and plots.

Definition 6 (Formula for the prediction error of minimum norm interpolator). Define

ζ = µ2
1/µ

2
?, ρ = F 2

1 /τ
2

Let the functions ν1, ν2 : C+ → C+ be be uniquely defined by the following conditions: (i) ν1, ν2 are analytic on C+; (ii)
For =(ξ) > 0, ν1(ξ), ν2(ξ) satisfy the following equations

ν1 = ψ1

(
− ξ − ν2 −

ζ2ν2
1− ζ2ν1ν2

)−1
,

ν2 = ψ2

(
− ξ − ν1 −

ζ2ν1
1− ζ2ν1ν2

)−1
;

(31)

(iii) (ν1(ξ), ν2(ξ)) is the unique solution of these equations with |ν1(ξ)| ≤ ψ1/=(ξ), |ν2(ξ)| ≤ ψ2/=(ξ) for =(ξ) > C,
with C a sufficiently large constant.

Let
χ ≡ lim

u→0
ν1(iu) · ν2(iu), (32)

and
E0(ζ, ψ1, ψ2) ≡ − χ5ζ6 + 3χ4ζ4 + (ψ1ψ2 − ψ2 − ψ1 + 1)χ3ζ6 − 2χ3ζ4 − 3χ3ζ2

+ (ψ1 + ψ2 − 3ψ1ψ2 + 1)χ2ζ4 + 2χ2ζ2 + χ2 + 3ψ1ψ2χζ
2 − ψ1ψ2 ,

E1(ζ, ψ1, ψ2) ≡ ψ2χ
3ζ4 − ψ2χ

2ζ2 + ψ1ψ2χζ
2 − ψ1ψ2 ,

E2(ζ, ψ1, ψ2) ≡ χ5ζ6 − 3χ4ζ4 + (ψ1 − 1)χ3ζ6 + 2χ3ζ4 + 3χ3ζ2 + (−ψ1 − 1)χ2ζ4 − 2χ2ζ2 − χ2 .

(33)
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Then the expression for the asymptotic risk of minimum norm interpolator gives

R(ψ1, ψ2) = F 2
1

E1(ζ, ψ1, ψ2)

E0(ζ, ψ1, ψ2)
+ τ2

E2(ζ, ψ1, ψ2)

E0(ζ, ψ1, ψ2)
+ τ2.

The expression for the norm of the minimum norm interpolator gives

A1 =
ρ

1 + ρ

[
− χ2(χζ4 − χζ2 + ψ2ζ

2 + ζ2 − χψ2ζ
4 + 1)

]
+

1

1 + ρ

[
χ2(χζ2 − 1)(χ2ζ4 − 2χζ2 + ζ2 + 1)

]
,

A0 = − χ5ζ6 + 3χ4ζ4 + (ψ1ψ2 − ψ2 − ψ1 + 1)χ3ζ6 − 2χ3ζ4 − 3χ3ζ2

+ (ψ1 + ψ2 − 3ψ1ψ2 + 1)χ2ζ4 + 2χ2ζ2 + χ2 + 3ψ1ψ2χζ
2 − ψ1ψ2,

A(ψ1, ψ2) = ψ1(F 2
1 + τ2)A1/(µ

2
?A0).

B. Experimental setup for simulations in Figure 2
In this section, we present additional details for Figure 2. We choose yi = 〈xi,β〉 for some ‖β‖22 = 1, the ReLU activation
function σ(x) = max{x, 0}, and ψ1 = N/d = 2.5 and ψ2 = n/d = 1.5.

For the theoretical curves (in solid lines), we choose λ ∈ [0.426, 2], so that AU (λ) ∈ [0, 15], and plot the parametric
curve (AU (λ),U(λ) + λAU (λ)) for the uniform convergence. For the uniform convergence over interpolators, we choose
λ ∈ [0.21, 2] so that AT (λ) ∈ [6.4, 15], and plot (AT (λ), T (λ) + λAT (λ)). The definitions of these theoretical predictions
are given in Definition 5, Remark 2 and Remark 3

For the empirical simulations (in dots), first recall that in Proposition 2, we defined

aU (λ) = arg max
a

[
R(a)− R̂n(a)− ψ1λ‖a‖22

]
,

aT (λ) = arg maxa inf
µ

[
R(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]
.

After picking a value of λ, we sample 20 independent problem instances, with the number of features N = 500, number
of samples n = 300, covariate dimension d = 200. We compute the corresponding (ψ1‖aU‖22, R(aU ) − R̂n(aU )) and
(ψ1‖aT ‖22, R(aT )) for each instance. Then, we plot the empirical mean and 1/

√
20 times the empirical standard deviation

(around the mean) of each coordinate.

C. Proof of Proposition 1
The proof of Proposition 1 contains two parts: standard uniform convergence U and uniform convergence over interpolators
T . The proof for the two cases are essentially the same, both based on the fact that strong duality holds for quadratic program
with single quadratic constraint (c.f. Boyd & Vandenberghe (2004), Appendix A.1).

C.1. Standard uniform convergence U

Recall that the uniform convergence bound U is defined as in Eq. (4)

U(A,N, n, d) = sup
(N/d)‖a‖22≤A

(
R(a)− R̂n(a)

)
.

Since the maximization problem in (4) is a quadratic program with a single quadratic constraint, the strong duality holds. So
we have

sup
(N/d)‖a‖22≤A2

R(a)− R̂n(a) = inf
λ≥0

sup
a

[
R(a)− R̂n(a)− ψ1λ(‖a‖22 − ψ−11 A)

]
.

Finally, by the definition of U as in Eq. (20), we get

U(A,N, n, d) = inf
λ≥0

[
U(λ,N, n, d) + λA

]
.
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C.2. Uniform convergence over interpolators T

Without loss of generality, we consider the regime when N > n.

Recall that the uniform convergence over interpolators T is defined as in Eq. (5)

T (A,N, n, d) = sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a).

When the set {a ∈ RN : (N/d)‖a‖22 ≤ A, R̂n(a) = 0} is empty, we have

T (A,N, n, d) = inf
λ≥0

[
T (λ,N, n, d) + λA

]
= −∞.

In the following, we assume that the set {a ∈ RN : (N/d)‖a‖22 ≤ A, R̂n(a) = 0} is non-empty, i.e., there exists a ∈ RN

such that R̂n(a) = 0 and (N/d)‖a‖22 ≤ A.

Let m be the dimension of the null space of Z ∈ Rn×N , i.e. m = dim({u : Zu = 0}). Note that Z ∈ RN×n and N > n,
we must have N − n ≤ m ≤ N . We letR ∈ RN×m be a matrix whose column space gives the null space of matrix Z. Let
a0 be the minimum norm interpolating solution (whose existence is given by the assumption that {a ∈ RN : R̂n(a) = 0}
is non-empty)

a0 = lim
λ→0+

arg min
a∈RN

[
R̂n(a) + λ‖a‖22

]
= arg min

a∈RN :R̂n(a)=0
‖a‖22.

Then we have

{a ∈ RN : R̂n(a) = 0} = {a ∈ RN : y =
√
dZa} = {Ru+ a0 : u ∈ Rm}.

Then T can be rewritten as a maximization problem in terms of u:

sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a) = sup
u∈Rm:‖Ru+a0‖22≤ψ−1

1 A

[
〈Ru+ a0,U(Ru+ a0)〉 − 2〈Ru+ a0,v〉+ E(y2)

]

= R(a0) + sup
u∈Rm:‖Ru+a0‖22≤ψ−1

1 A

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉

]
.

Note that the optimization problem only has non-feasible region when A > (N/d)‖a0‖22. By strong duality of quadratic
programs with a single quadratic constraint, we have

sup
u∈Rm:‖Ru+a0‖22≤ψ−1

1 A

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉

]

= inf
λ≥0

sup
u∈Rm

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λ(ψ1‖Ru+ a0‖22 −A)

]
.

The maximization over u can be restated as the maximization over a:

R(a0) + sup
u∈Rm

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λψ1‖Ru+ a0‖22

]
= sup
a:R̂n(a)=0

[
R(a)− λψ1‖a‖22

]
.

Moreover, since supa:R̂n(a)=0[R(a)− λψ1‖a‖22] is a quadratic programming with linear constraints, we have

sup
a:R̂n(a)=0

[
R(a)− λψ1‖a‖22

]
= sup

a
inf
µ

[
R(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]
.
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Combining all the equality above and the definition of T as in Eq. (21), we have

T (A,N, n, d) = sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a)

= R(a0) + sup
u∈Rm:‖Ru+a0‖22≤ψ−1

1 A

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉

]

= R(a0) + inf
λ≥0

sup
u

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λ(ψ1‖Ru+ a0‖22 −A)

]

= inf
λ≥0

{
λA+R(a0) + sup

u

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λψ1‖Ru+ a0‖22

]}

= inf
λ≥0

{
λA+ sup

a:R̂n(a)=0

[
R(a)− λψ1‖a‖22

]}

= inf
λ≥0

{
λA+ sup

a
inf
µ

[
R(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]}

= inf
λ≥0

[
T (λ,N, n, d) + λA

]
.

This concludes the proof.

D. Proof of Proposition 2
Note that the definitions of U and T as in Eq. (20) and (21) depend on β = β(d), where β(d) gives the coefficients of
the target function fd(x) = 〈x,β(d)〉. Suppose we explicitly write their dependence on β = β(d), i.e., U(λ,N, n, d) =
U(β, λ,N, n, d) and T (λ,N, n, d) = T (β, λ,N, n, d), then we can see that for any fixed β? and β̃ with ‖β̃‖2 = ‖β?‖2,
we have U(β?, λ,N, n, d)

d
= U(β̃, λ,N, n, d) and T (β?, λ,N, n, d)

d
= T (β̃, λ,N, n, d) where the randomness comes from

X,Θ, ε. This is by the fact that the distribution of xi’s and θa’s are rotationally invariant. As a consequence, for any fixed
deterministic β?, if we take β ∼ Unif(Sd−1(‖β?‖2)), we have

U(β?, λ,N, n, d)
d
= U(β, λ,N, n, d),

T (β?, λ,N, n, d)
d
= T (β, λ,N, n, d).

where the randomness comes fromX,Θ, ε,β.

Consequently, as long as we are able to show the equation

U(β, λ,N, n, d) = U(λ, ψ1, ψ2) + od,P(1)

for random β ∼ Unif(Sn−1(F1)), this equation will also hold for any deterministic β? with ‖β?‖22 = F 2
1 . Vice versa for T ,

‖aU‖22 and ‖aT ‖22.

As a result, in the following, we work with the assumption that β = β(d) ∼ Unif(Sd−1(F1)). That is, in proving
Proposition 2, we replace Assumption 1 by Assumption 6 below. By the argument above, as long as Proposition 2 holds
under Assumption 6, it also holds under the original assumption, i.e., Assumption 1.
Assumption 6 (Linear Target Function). We assume that fd ∈ L2(Sd−1(

√
d)) with fd(x) = 〈β(d),x〉, where β(d) ∼

Unif(Sd−1(F1)).

D.1. Expansions

Denote v = (vi)i∈[N ] ∈ RN and U = (Uij)i,j∈[N ] ∈ RN×N where their elements are defined via

vi ≡ Eε,x[yσ(〈x,θi〉/
√
d)],

Uij ≡ Ex[σ(〈x,θi〉/
√
d)σ(〈x,θj〉/

√
d)].

Here, y = 〈x,β〉 + ε, where β ∼ Unif(Sd−1(F1)), x ∼ Unif(Sd−1(
√
d)), ε ∼ N (0, τ2), and (θj)j∈[N ] ∼iid

Unif(Sd−1(
√
d)) are mutually independent. The expectations are taken with respect to the test sample x ∼ Unif(Sd−1(

√
d))

and ε ∼ N (0, τ2) (especially, the expectations are conditional on β and (θi)i∈[N ]).
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Moreover, we denote y = (y1, . . . , yn)T ∈ Rn where yi = 〈xi,β〉 + εi. Recall that (xi)i∈[n] ∼iid Unif(Sd−1(
√
d))

and (εi)i∈[n] ∼iid N (0, τ2) are mutually independent and independent from β ∼ Unif(Sd−1(
√
d)). We further denote

Z = (Zij)i∈[n],j∈[N ] where its elements are defined via

Zij = σ(〈xi,θj〉/
√
d)/
√
d.

The population risk (1) can be reformulated as

R(a) = 〈a,Ua〉 − 2〈a,v〉+ E[y2],

where a = (a1, . . . , aN ) ∈ RN . The empirical risk (2) can be reformulated as

R̂n(a) = ψ−12 〈a,ZTZa〉 − 2ψ−12

〈ZTy,a〉√
d

+
1

n
‖y‖22.

By the Appendix A in Mei & Montanari (2019) (we include in the Appendix F for completeness), we can expand σ(x) in
terms of Gegenbauer polynommials

σ(x) =
∞∑

k=0

λd,k(σ)B(d, k)Q
(d)
k (
√
d · x),

where Q(d)
k is the k’th Gegenbauer polynomial in d dimensions, B(d, k) is the dimension of the space of polynomials on

Sd−1(
√
d) with degree exactly k. Finally, λd,k(σ) is the k’th Gegenbauer coefficient. More details of this expansion can be

found in Appendix F.

By the properties of Gegenbauer polynomials (c.f. Appendix F.2), we have

Ex∼Unif(Sd−1(
√
d))[xQk(〈x,θi〉)] = 0, ∀k 6= 1,

Ex∼Unif(Sd−1(
√
d))[xQ1(〈x,θi〉)] = θi/d, k = 1.

As a result, we have

vi = Eε,x[yσ(〈x,θi〉/
√
d)] =

∞∑

k=0

λd,k(σ)B(d, k)Ex[〈x,β〉Q(d)
k (
√
d · x)] = λd,1(σ)〈θi,β〉. (34)

D.2. Removing the perturbations

By Lemma 6 and 7 as in Appendix D.6, we have the following decomposition

U = µ2
1Q+ µ2

?IN + ∆, (35)

withQ = ΘΘT/d, E[‖∆‖2op] = od(1), and µ2
1 and µ2

? are given in Assumption 2.

In the following, we would like to show that ∆ has vanishing effects in the asymptotics of U , T , ‖aU‖22 and ‖aT ‖22.

For this purpose, we denote

Uc = µ2
1Q+ µ2

?IN ,

Rc(a) = 〈a,Uca〉 − 2〈a,v〉+ E[y2],

R̂c,n(a) = 〈a, ψ−12 ZTZa〉 − 2〈a, ψ−12 ZTy/
√
d〉+ E[y2],

U c(λ,N, n, d) = sup
a

(
Rc(a)− R̂c,n(a)− ψ1λ‖a‖22

)
,

T c(λ,N, n, d) = sup
a

inf
µ

[
Rc(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]
.

(36)
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For a fixed λ ∈ ΛU , note we have

U c(λ,N, n, d) = sup
a

(
〈a, (Uc − ψ−12 ZTZ − ψ1λIN )a〉 − 2〈a,v − ψ−12

ZTy√
d
〉
)

= sup
a

(
〈a,Ma〉 − 2〈a,v〉

) (37)

whereM = Uc−ψ−12 ZTZ−ψ1λIN and v = v−ψ−12 ZTy/
√
d. WhenX,Θ are such that the good event in Assumption

4 happens (which says thatM � −εIN for some ε > 0), the inner maximization can be uniquely achieved at

aU,c(λ) = arg max
a

(
〈a,Ma〉 − 2〈a,v〉

)
= M

−1
v. (38)

and when the good event {‖∆‖op ≤ ε/2} also happens, the maximizer in the definition of U(λ,N, n, d) (c.f. Eq. (20)) can
be uniquely achieved at

aU (λ) = arg max
a

(
〈a, (M + ∆)a〉 − 2〈a,v〉

)
= (M + ∆)−1v.

Note we have
aU (λ)− aU,c(λ) = (M + ∆)−1v −M−1

v = (M + ∆)−1∆M
−1
v,

so by the fact that ‖∆‖op = od,P(1), we have

‖aU (λ)− aU,c(λ)‖2 ≤ ‖(M + ∆)−1∆‖op‖aU,c(λ)‖2 = od,P(1)‖aU,c(λ)‖2.

This gives ‖aU (λ)‖22 = (1 + od,P(1))‖aU,c(λ)‖22.

Moreover, by the fact that ‖∆‖op = od,P(1), we have

U c(λ,N, n, d) = sup
a

(
R(a)− R̂n(a)− ψ1λ‖a‖22 − 〈a,∆a〉

)
+ E[y2]− ‖y‖22/n

= U(λ,N, n, d) + od,P(1)(‖aU,c(λ)‖22 + 1).

As a consequence, as long as we can prove the asymptotics of U c and ‖aU,c(λ)‖22, it also gives the asymptotics of U and
‖aU (λ)‖22. Vice versa for T and ‖aT (λ)‖22.

D.3. The asymptotics of U c and ψ1‖aU,c(λ)‖22
In the following, we derive the asymptotics of U c(λ,N, n, d) and ψ1‖aU,c(λ)‖22. When we refer to aU,c(λ), it is always
well defined with high probability, since it can be well defined under the condition that the good event in Assumption 4
happens. Note that this good event only depend onX,Θ and is independent of β, ε.

By Eq. (37) and (38), simple calculation shows that

U c(λ,N, n, d) ≡ − 〈v,M−1
v〉 = −Ψ1 −Ψ2 −Ψ3,

‖aU,c‖22 ≡ 〈v,M
−2
v〉 = Φ1 + Φ2 + Φ3,

where
Ψ1 = 〈v,M−1

v〉, Φ1 = 〈v,M−2
v〉,

Ψ2 = − 2ψ−12 〈
ZTy√
d
,M

−1
v〉, Φ2 = − 2ψ−12 〈

ZTy√
d
,M

−2
v〉,

Ψ3 = ψ−22 〈
ZTy√
d
,M

−1ZTy√
d
〉, Φ3 = ψ−22 〈

ZTy√
d
,M

−2ZTy√
d
〉.

The following lemma gives the expectation of Ψi’s and Φi’s with respect to β and ε.
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Lemma 1 (Expectation of Ψi’s and Φi’s). Denote qU (λ,ψ) = (µ2
? − λψ1, µ

2
1, ψ2, 0, 0). We have

Eε,β[Ψ1] = µ2
1F

2
1 ·

1

d
Tr
(
M
−1
Q
)
× (1 + od(1)),

Eε,β[Ψ2] = − 2F 2
1

ψ2
· 1

d
Tr
(
ZM

−1
ZT

1

)
× (1 + od(1)),

Eε,β[Ψ3] =
F 2
1

ψ2
2

· 1

d
Tr
(
ZM

−1
ZTH

)
+
τ2

ψ2
2

· 1

d
Tr
(
ZM

−1
ZT
)
,

Eε,β[Φ1] = µ2
1F

2
1 ·

1

d
Tr
(
M
−2
Q
)
× (1 + od(1)),

Eε,β[Φ2] = − 2F 2
1

ψ2
· 1

d
Tr
(
ZM

−2
ZT

1

)
× (1 + od(1)),

Eε,β[Φ3] =
F 2
1

ψ2
2

· 1

d
Tr
(
ZM

−2
ZTH

)
+
τ2

ψ2
2

· 1

d
Tr
(
ZM

−2
ZT
)
.

Here the definitions ofQ,H , and Z1 are given by Eq. (19).

Furthermore, we have

Eε,β[Ψ1] = µ2
1F

2
1 · ∂s2Gd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Ψ2] = F 2
1 · ∂pGd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Ψ3] = F 2
1 · (∂t2Gd(0+; qU (λ,ψ))− 1) + τ2 · (∂t1Gd(0+; qU (λ,ψ))− 1),

Eε,β[Φ1] = − µ2
1F

2
1 · ∂s1∂s2Gd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Φ2] = − F 2
1 · ∂s1∂pGd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Φ3] = − F 2
1 · ∂s1∂t2Gd(0+; qU (λ,ψ))− τ2 · ∂s1∂t1Gd(0+; qU (λ,ψ)).

The definition of Gd is as in Definition 1, and∇kqGd(0+; q) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a
matrix) of Gd(iu; q) with respect to q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqGd(0+; q) = lim
u→0+

∇kqGd(iu; q).

We next state the asymptotic characterization of the log-determinant which was proven in (Mei & Montanari, 2019).

Proposition 3 (Proposition 8.4 in (Mei & Montanari, 2019)). Define

Ξ(ξ, z1, z2; q;ψ) ≡ log[(s2z1 + 1)(t2z2 + 1)− µ2
1(1 + p)2z1z2]− µ2

?z1z2

+ s1z1 + t1z2 − ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ξ(z1 + z2)− ψ1 − ψ2.
(39)

For ξ ∈ C+ and q ∈ Q (c.f. Eq. (25)), let m1(ξ; q;ψ),m2(ξ; q;ψ) be defined as the analytic continuation of solution of
Eq. (26) as defined in Definition 3. Define

g(ξ; q;ψ) = Ξ(ξ,m1(ξ; q;ψ),m2(ξ; q;ψ); q;ψ). (40)

Consider proportional asymptotics N/d→ ψ1, N/d→ ψ2, as per Assumption 3. Then for any fixed ξ ∈ C+ and q ∈ Q,
we have

lim
d→∞

E[|Gd(ξ; q)− g(ξ; q;ψ)|] = 0. (41)

Moreover, for any fixed u ∈ R+ and q ∈ Q, we have

lim
d→∞

E[‖∂qGd(iu; q)− ∂qg(iu; q;ψ)‖2] = 0, (42)

lim
d→∞

E[‖∇2
qGd(iu; q)−∇2

qg(iu; q;ψ)‖op] = 0. (43)

Remark 4. Note that Proposition 8.4 in (Mei & Montanari, 2019) stated that the Eq. (42) and (43) holds at q = 0. However,
by a simple modification of their proof, one can show that these equations also holds at any q ∈ Q.
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Combining Assumption 5 with Proposition 3, we have

Proposition 4. Let Assumption 5 holds. For any λ ∈ ΛU , denote qU = qU (λ,ψ) = (µ2
?− λψ1, µ

2
1, ψ2, 0, 0), then we have,

for k = 1, 2,
‖∇kqGd(0+; qU )− lim

u→0+
∇kqg(iu; qU ;ψ)‖ = od,P(1).

As a consequence of Proposition 4, we can calculate the asymptotics of Ψi’s and Φi’s. Combined with the concentration
result in Lemma 2 latter in the section, the proposition below completes the proof of the part of Proposition 2 regarding the
standard uniform convergence U . Its correctness follows directly from Lemma 1 and Proposition 4.

Proposition 5. Follow the assumptions of Proposition 2. For any λ ∈ ΛU , denote qU (λ,ψ) = (µ2
? − λψ1, µ

2
1, ψ2, 0, 0),

then we have
Eε,β[Ψ1]

P→ µ2
1F

2
1 · ∂s2g(0+; qU (λ,ψ);ψ),

Eε,β[Ψ2]
P→ F 2

1 · ∂pg(0+; qU (λ,ψ);ψ),

Eε,β[Ψ3]
P→ F 2

1 ·
(
∂t2g(0+; qU (λ,ψ);ψ)− 1

)
+ τ2

(
∂t1g(0+; qU (λ,ψ);ψ)− 1

)
,

Eε,β[Φ1]
P→ − µ2

1F
2
1 · ∂s1∂s2g(0+; qU (λ,ψ);ψ),

Eε,β[Φ2]
P→ − F 2

1 · ∂s1∂pg(0+; qU (λ,ψ);ψ),

Eε,β[Φ3]
P→ − F 2

1 · ∂s1∂t2g(0+; qU (λ,ψ);ψ)− τ2 · ∂s1∂t1g(0+; qU (λ,ψ);ψ),

where ∇kqg(0+; q;ψ) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a matrix) of g(iu; q;ψ) with respect to
q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqg(0+; q;ψ) = lim
u→0+

∇kqg(iu; q;ψ).

As a consequence, we have

Eε,β[U c(λ,N, n, d)]
P→ U(λ, ψ1, ψ2), Eε,β[ψ1‖aU,c(λ)‖22]

P→ AU (λ, ψ1, ψ2),

where the definitions of U and AU are given in Definition 5. Here P→ stands for convergence in probability as N/d→ ψ1

and n/d→ ψ2 (with respect to the randomness ofX and Θ).

Lemma 2. Follow the assumptions of Proposition 2. For any λ ∈ ΛU , we have

Varε,β[Ψ1],Varε,β[Ψ2],Varε,β[Ψ3] = od,P(1),

Varε,β[Φ1],Varε,β[Φ2],Varε,β[Φ3] = od,P(1),

so that
Varε,β[U c(λ,N, n, d)],Varε,β[‖aU,c(λ)‖22] = od,P(1).

Here, od,P(1) stands for converges to 0 in probability (with respect to the randomness of X and Θ) as N/d → ψ1 and
n/d→ ψ2 and d→∞.

Now, combining Lemma 2 and Proposition 5, we have

U c(λ,N, n, d)
P→ U(λ, ψ1, ψ2), ψ1‖aU,c(λ)‖22

P→ AU (λ, ψ1, ψ2),

Finally, combining with the arguments in Appendix D.2 proves the asymptotics of U and ψ1‖aU (λ)‖22.

D.4. The asymptotics of T c and ψ1‖aT,c(λ)‖22
In the following, we derive the asymptotics of T c(λ,N, n, d) and ψ1‖aT,c(λ)‖22. This follows the same steps as the proof
of the asymptotics of U c and ψ1‖aU,c(λ)‖22. We will give an overview of its proof. The detailed proof is the same as that of
U c, and we will not include them for brevity.
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For a fixed λ ∈ ΛT , recalling that the definition of T c as in Eq. (36), we have

T c(λ,N, n, d) = sup
a

inf
µ

[
Rc(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]

= sup
a

inf
µ

(
〈a, (Uc − λψ1IN )a〉 − 2〈a,v〉+ 2〈µ,Za〉 − 2〈µ,y/

√
d〉
)

+ E[y2]

= sup√
dZa=y

〈a, (Uc − λψ1IN )a〉 − 2〈a,v〉+ E[y2]

(44)

Whenever the good event in Assumption 4 happens, (Uc − λψ1IN ) is negative definite in null(Z). The optimum of the
above variational equation exists. By KKT condition, the optimal a and dual variable µ satisfies

• Stationary condition: (Uc − λψ1IN )a+ZTµ = v.

• Primal Feasible: Za = y/
√
d.

The two conditions can be written compactly as
[
Uc − ψ1λIN ZT

Z 0

] [
a
µ

]
=

[
v

y/
√
d

]
. (45)

We define

M ≡
[
Uc − ψ1λIN ZT

Z 0

]
, v ≡

[
v

y/
√
d

]
. (46)

Under Assumption 4, M is invertible. To see this, suppose there exists vector [aT
1 ,µ

T
1 ]T 6= 0 ∈ RN+n such that

M [aT
1 ,µ

T
1 ]T = 0, then

(Uc − λψ1IN )a1 +ZTµ1 = 0,

Za1 = 0.

As in Assumption 4, let Pnull = IN −Z†Z. We write a1 = Pnullv1 for some v1 6= 0 ∈ RN . Then,

(Uc − λψ1IN )Pnullv1 +ZTµ1 = 0,

⇒ Pnull(Uc − λψ1IN )Pnullv1 + PnullZ
Tµ1 = 0,

⇒ Pnull(Uc − λψ1IN )Pnullv1 = 0,

where the last relation come from the fact that ZPnull = 0. However by Assumption 4, Pnull(Uc−λψ1IN )Pnull is negative
definite, which leads to a contradiction.

In the following, we assume the event in Assumption 4 happens so thatM is invertible. In this case, the maximizer in Eq.
(44) can be well defined as

aT,c(λ) = [IN ,0N×n]M
−1
v.

Moreover, we can write T c as
T c(λ,N, n, d) = E[y2]− vTM−1

v.

We further define

v1 = [vT,0T
n×1]T, v2 = [0T

N×1,y
T/
√
d]T, E ≡

[
IN 0N×n

0n×N 0n×n

]
.

Simple calculation shows that

T c(λ,N, n, d) ≡ E[y2]− 〈v,M−1
v〉 = F 2

1 + τ2 −Ψ1 −Ψ2 −Ψ3,

‖aU,c‖22 ≡ 〈v,M
−1
EM

−1
v〉 = Φ1 + Φ2 + Φ3,

where
Ψ1 = 〈v1,M

−1
v1〉, Φ1 = 〈v1,M

−1
EM

−1
v1〉,

Ψ2 = 2〈v2,M
−1
v1〉, Φ2 = 2〈v2,M

−1
EM

−1
v1〉,

Ψ3 = 〈v2,M
−1
v2〉, Φ3 = 〈v2,M

−1
EM

−1
v2〉.

The following lemma gives the expectation of Ψi’s and Φi’s with respect to β and ε.
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Lemma 3 (Expectation of Ψi’s and Φi’s). Denote qT (λ,ψ) = (µ2
? − λψ1, µ

2
1, 0, 0, 0). We have

Eε,β[Ψ1] = µ2
1F

2
1 · ∂s2Gd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Ψ2] = F 2
1 · ∂pGd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Ψ3] = F 2
1 · ∂t2Gd(0+; qT (λ,ψ)) + τ2 · ∂t1Gd(0+; qT (λ,ψ)),

Eε,β[Φ1] = − µ2
1F

2
1 · ∂s1∂s2Gd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Φ2] = − F 2
1 · ∂s1∂pGd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Φ3] = − F 2
1 · ∂s1∂t2Gd(0+; qT (λ,ψ))− τ2 · ∂s1∂t1Gd(0+; qT (λ,ψ)).

The definition of Gd is as in Definition 1, and∇kqGd(0+; q) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a
matrix) of Gd(iu; q) with respect to q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqGd(0+; q) = lim
u→0+

∇kqGd(iu; q).

The proof of Lemma 3 follows from direct calculation and is identical to the proof of Lemma 1. Combining Assumption 5
with Proposition 3, we have

Proposition 6. Let Assumption 5 holds. For any λ ∈ ΛT , denote qT = qT (λ,ψ) = (µ2
? − λψ1, µ

2
1, 0, 0, 0), then we have,

for k = 1, 2,
‖∇kqGd(0+; qT )− lim

u→0+
∇kqg(iu; qT ;ψ)‖ = od,P(1).

As a consequence of Proposition 6, we can calculate the asymptotics of Ψi’s and Φi’s.

Proposition 7. Follow the assumptions of Proposition 2. For any λ ∈ ΛT , denote qT (λ,ψ) = (µ2
? − λψ1, µ

2
1, 0, 0, 0), then

we have
Eε,β[Ψ1]

P→ µ2
1F

2
1 · ∂s2g(0+; qT (λ,ψ);ψ),

Eε,β[Ψ2]
P→ F 2

1 · ∂pg(0+; qT (λ,ψ);ψ),

Eε,β[Ψ3]
P→ F 2

1 · ∂t2g(0+; qT (λ,ψ);ψ) + τ2 · ∂t1g(0+; qT (λ,ψ);ψ),

Eε,β[Φ1]
P→ − µ2

1F
2
1 · ∂s1∂s2g(0+; qT (λ,ψ);ψ),

Eε,β[Φ2]
P→ − F 2

1 · ∂s1∂pg(0+; qT (λ,ψ);ψ),

Eε,β[Φ3]
P→ − F 2

1 · ∂s1∂t2g(0+; qT (λ,ψ);ψ)− τ2 · ∂s1∂t1g(0+; qT (λ,ψ);ψ),

where ∇kqg(0+; q;ψ) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a matrix) of g(iu; q;ψ) with respect to
q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqg(0+; q;ψ) = lim
u→0+

∇kqg(iu; q;ψ).

As a consequence, we have

Eε,β[T c(λ,N, n, d)]
P→ T (λ, ψ1, ψ2), Eε,β[ψ1‖aT,c(λ)‖22]

P→ AT (λ, ψ1, ψ2),

where the definitions of T and AT are given in Definition 5. Here P→ stands for convergence in probability as N/d→ ψ1

and n/d→ ψ2 (with respect to the randomness ofX and Θ).

The Proposition above suggests that Ψi and Φi concentrates with respect to the randomness inX and Θ. To complete the
concentration proof, we need to show that Ψi and Φi concentrates with respect to the randomness in β and ε.

Lemma 4. Follow the assumptions of Proposition 2. For any λ ∈ ΛT , we have

Varε,β[Ψ1],Varε,β[Ψ2],Varε,β[Ψ3] = od,P(1),

Varε,β[Φ1],Varε,β[Φ2],Varε,β[Φ3] = od,P(1),
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so that
Varε,β[T c(λ,N, n, d)],Varε,β[‖aT,c(λ)‖22] = od,P(1).

Here, od,P(1) stands for converges to 0 in probability (with respect to the randomness of X and Θ) as N/d → ψ1 and
n/d→ ψ2 and d→∞.

Now, combining Proposition 7 and 4, we have

T c(λ,N, n, d)
P→ T (λ, ψ1, ψ2), ψ1‖aT,c(λ)‖22

P→ AT (λ, ψ1, ψ2).

The results above combined with the arguments in Appendix D.2 completes the proof for the asymptotics of T and
ψ1‖aT (λ)‖22.

D.5. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Note that by Assumption 4, the matrix M = Uc − ψ−12 ZTZ − ψ1λIN is negative definite (so
that it is invertible) with high probability. Moreover, whenever M is negative definite, the matrix A(qU ) for qU =
(µ2
? − λψ1, µ

2
1, ψ2, 0, 0) is also invertible. In the following, we condition on this good event happens.

From the expansion for vi in (34), we have

Eβ,εΨ1 = Eβ,ε
[
Tr
(
M
−1
vvT

)]
=

1

d
λd,1(σ)2F 2

1 ·
[
Tr
(
M
−1

ΘΘT
)]

=
1

d
µ2
1F

2
1 Tr

(
M
−1 ΘΘT

d

)
× (1 + od(1)),

where we used the relation λd,1 = µ1/
√
d× (1 + od(1)) as in Eq. (66). Similarly, the second term is

Eβ,εΨ2 = − 2

ψ2

√
d
Eβ,ε

[
Tr
(
ZM

−1
vyT

)]

= − 2

ψ2d
√
d
λd,1(σ)F 2

1 · Tr
(
ZM

−1
ΘXT

)

= − 2

ψ2d2
µ1F

2
1 · Tr

(
ZM

−1
ΘXT

)
× (1 + od(1)).

To compute Ψ3, note we have
Eβ,ε[yyT] = F 2

1 · (XXT)/d+ τ2In.

This gives the expansion for Ψ3

Eβ,εΨ3 = ψ−22 d−1Eβ,εTr
(
ZM

−1
ZTyyT

)

= ψ−22 d−2F 2
1 Tr

(
ZM

−1
ZTXXT

)
+ ψ−22 d−1Tr

(
ZM

−1
Z
)
τ2.

Through the same algebraic manipulation above, we have

Eβ,εΦ1 =
1

d
µ2
1F

2
1 Tr

(
M
−2 ΘΘT

d

)
× (1 + od(1)),

Eβ,εΦ2 = − 2

ψ2d2
µ1F

2
1 · Tr

(
ZM

−2
ΘXT

)
× (1 + od(1)),

Eβ,εΦ3 = ψ−22 d−2F 2
1 · Tr

(
ZM

−2
ZTXXT

)
+ ψ−22 d−1τ2Tr

(
ZM

−2
ZT
)
.

Next, we express the trace of matrices products as the derivative of the function Gd(ξ, q) (c.f. Definition 1). The derivatives
of Gd are (which can we well-defined at q = qU = (µ2

? − λψ1, µ
2
1, ψ2, 0, 0) with high probability by Assumption 4)

∂qiGd(0, q) =
1

d
Tr(A(q)−1∂iA(q)), ∂qi∂qjGd(0, q) = −1

d
Tr(A(q)−1∂qiA(q)A(q)−1∂qjA(q)). (47)
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As an example, we consider evaluating ∂s2Gd(0, q) at q = qU ≡ (µ2
? − λψ1, µ

2
1, ψ2, 0, 0). Using the formula for block

matrix inversion, we have

A(µ2
? − λψ1, µ

2
1, ψ2, 0, 0)−1 =

[
(µ2
? − λψ1)IN + µ2

1Q ZT

Z ψ2In

]−1
=

[
(Uc − ψ−12 ZTZ − ψ1λIN )−1 · · ·

· · · · · ·

]
.

Then we have

∂s2Gd(0, qU ) =
1

d
Tr

([
M
−1 · · ·
· · · · · ·

] [
Q 0
0 0

])
= Tr(M

−1
Q)/d.

Applying similar argument to compute other derivatives, we get

1. Tr(M
−1

ΘΘT)/d2 = Tr(M
−1
Q)/d = ∂s2Gd(0, qU ).

2. µ1 · Tr(ZM
−1

ΘXT)/d2 = Tr(M
−1
ZT

1Z)/d = −ψ2∂pGd(0, qU )/2.

3. Tr(ZM
−1
ZTXXT)/d2 = Tr(ZM

−1
ZTH)/d = ψ2

2∂t2Gd(0, qU )− ψ2
2 .

4. Tr(ZM
−1
ZT)/d = ψ2

2∂t1Gd(0, qU )− ψ2
2 .

5. Tr(M
−2
Q)/d = −∂s1∂s2Gd(0, qU ).

6. (2/dψ2) · Tr(ZT
1ZM

−2
) = ∂s1∂pGd(0, qU ).

7. Tr(M
−2
ZTHZ)/(dψ2

2) = −∂s1∂t2Gd(0, qU ).

8. Tr(M
−2
ZTZ)/(dψ2

2) = −∂s1∂t1Gd(0, qU ).

Combining these equations concludes the proof.

Proof of Lemma 2. We prove this lemma by assuming that β follows a different distribution: β ∼ N (0, (‖F1‖22/d)Id). The
case when β ∼ Unif(Sd−1(F1)) can be treated similarly.

By directly calculating the variance, we can show that, there exists scalers (c
(d)
ik )k∈[Ki] with c(d)ik = Θd(1), and matrices

(Aik,Bik)k∈[Ki] ⊆ {IN ,Q,ZTHZ,ZTZ}, such that the variance of Ψi’s can be expressed in form

Varε,β(Ψi) =
1

d

Ki∑

k=1

c
(d)
ik Tr(M

−1
AikM

−1
Bik)/d.

For example, by Lemma 8, we have

Varβ∼N (0,(F 2
1 /d)Id)

(Ψ1) = λd,1(σ)4Varβ∼N (0,(F 2
1 /d)Id))

(βTΘTM
−1

Θβ) = 2λd,1(σ)4F 4
1 ‖ΘTM

−1
Θ‖2F /d2

= c
(d)
1 Tr(M

−1
QM

−1
Q)/d2,

where c(d)1 = 2d2λd,1(σ)4F 4
1 = Od(1). The variance of Ψ2 and Ψ3 can be calculated similarly.

Note that each Tr(M
−1
AikM

−1
Bik)/d can be expressed as an entry of∇2

qGd(0; q) (c.f. Eq. (47)), and by Proposition 4,
they are of order Od,P(1). This gives

Varε,β(Ψi) = od,P(1).

Similarly, for the same set of scalers (c
(d)
ik )k∈[Ki] and matrices (Aik,Bik)k∈[Ki], we have

Varε,β(Φi) =
1

d

Ki∑

k=1

cikTr(M
−2
AikM

−2
Bik)/d.

Note that for two semidefinite matrices A,B, we have Tr(AB) ≤ ‖A‖opTr(B). Moreover, note we have ‖M‖op =
Od,P(1) (by Assumption 4). This gives

Varε,β(Φi) = od,P(1).

This concludes the proof.
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D.6. Auxiliary Lemmas

The following lemma (Lemma 5) is a reformulation of Proposition 3 in (Ghorbani et al., 2019). We present it in a stronger
form, but it can be easily derived from the proof of Proposition 3 in (Ghorbani et al., 2019). This lemma was first proved in
(El Karoui, 2010) in the Gaussian case. (Notice that the second estimate —on Qk(ΘXT)— follows by applying the first
one whereby Θ is replaced byW = [ΘT|XT]T

Lemma 5. Let Θ = (θ1, . . . ,θN )T ∈ RN×d with (θa)a∈[N ] ∼iid Unif(Sd−1(
√
d)) and X = (x1, . . . ,xn)T ∈ Rn×d

with (xi)i∈[n] ∼iid Unif(Sd−1(
√
d)). Assume 1/c ≤ n/d,N/d ≤ c for some constant c ∈ (0,∞). Then

E
[

sup
k≥2
‖Qk(ΘΘT)− IN‖2op

]
= od(1) , (48)

E
[

sup
k≥2
‖Qk(ΘXT)‖2op

]
= od(1). (49)

Notice that the second estimate —on Qk(ΘXT)— follows by applying the first one —Eq. (48)— whereby Θ is replaced
byW = [ΘT|XT]T, and we use ‖Qk(ΘXT)‖op ≤ ‖Qk(WW T)− IN+n‖op.

The following lemma (Lemma 6) can be easily derived from Lemma 5. Again, this lemma was first proved in (El Karoui,
2010) in the Gaussian case.

Lemma 6. Let Θ = (θ1, . . . ,θN )T ∈ RN×d with (θa)a∈[N ] ∼iid Unif(Sd−1(
√
d)). Let activation function σ satisfies

Assumption 2. Assume 1/c ≤ N/d ≤ c for some constant c ∈ (0,∞). Denote

U =
(
Ex∼Unif(Sd−1(

√
d))[σ(〈θa,x〉/

√
d)σ(〈θb,x〉/

√
d)]
)
a,b∈[N ]

∈ RN×N .

Then we can rewrite the matrix U to be

U = λd,0(σ)21N1T
N + µ2

1Q+ µ2
?(IN + ∆),

withQ = ΘΘT/d and E[‖∆‖2op] = od(1).

In the following, we show that, under sufficient regularity condition of σ, we have λd,0(σ) = O(1/d).

Lemma 7. Let σ ∈ C2(R) with |σ′(x)|, |σ′′(x)| < c0e
c1|x| for some c0, c1 ∈ R. Assume that EG∼N (0,1)[σ(G)] = 0. Then

we have
λd,0(σ) ≡ Ex∼Unif(Sd−1(

√
d))[σ(x1)] = O(1/d).

Proof of Lemma 7. Let x ∼ Unif(Sd−1(
√
d)) and γ ∼ χ(d)/

√
d independently. Then we have γx ∼ N (0, Id), so that by

the assumption, we have E[σ(γx1)] = 0.

As a consequence, by the second order Taylor expansion, and by the independence of γ and x, we have (for ξ(x1) ∈ [γ, 1])

|λd,0(σ)| = |E[σ(x1)]| ≤ |E[σ(x1)]− E[σ(γx1)]| ≤
∣∣∣E[σ′(x1)x1]E[γ − 1]

∣∣∣+
∣∣∣(1/2)E[σ′′(ξ(x1)x1)(γ − 1)2]

∣∣∣

≤
∣∣∣E[σ′(x1)x1]

∣∣∣ ·
∣∣∣E[γ − 1]

∣∣∣+ (1/2)E
[

sup
u∈[γ,1]

σ′′(ux1)2
]1/2

E[(γ − 1)4]1/2.

By the assumption that |σ′(x)|, |σ′′(x)| < c0e
c1|x| for some c0, c1 ∈ R, there exists constant K that only depends on c0 and

c1 such that

sup
d

∣∣∣E[σ′(x1)x1]
∣∣∣ ≤ K, sup

d

∣∣∣(1/2)E
[

sup
u∈[γ,1]

σ′′(ux1)2
]1/2∣∣∣ ≤ K.

Moreover, by property of the χ distribution, we have

|E[γ − 1]| = O(d−1), E[(γ − 1)4]1/2 = O(d−1).

This concludes the proof.
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The following lemma is a simple variance calculation and can be found as Lemma C.5 in (Mei & Montanari, 2019). We
restate here for completeness.
Lemma 8. Let A ∈ Rn×N and B ∈ Rn×n. Let g = (g1, . . . , gn)T with gi ∼iid Pg, Eg[g] = 0, and Eg[g2] = 1. Let
h = (h1, . . . , hN )T with hi ∼iid Ph, Eh[h] = 0, and Eh[h2] = 1. Further we assume that h is independent of g. Then we
have

Var(gTAh) = ‖A‖2F ,

Var(gTBg) =

n∑

i=1

B2
ii(E[g4]− 3) + ‖B‖2F + Tr(B2).

E. Proof of Theorem 1
Here we give the whole proof for U . The proof for T is the same.

For fixed A2 ∈ ΓU ≡ {AU (λ, ψ1, ψ2) : λ ∈ ΛU}, we denote

λ?(A
2) = inf

λ

{
λ : AU (λ, ψ1, ψ2) = A2

}
.

By the definition of ΓU , the set {λ : AU (λ, ψ1, ψ2) = A2} is non-empty and lower bounded, so that λ?(A2) can be
well-defined. Moreover, we have λ?(A2) ∈ ΛU . It is also easy to see that we have

λ?(A
2) ∈ arg min

λ≥0

[
U(λ, ψ1, ψ2) + λA2

]
. (50)

E.1. Upper bound

Note we have
U(A,N, n, d) = sup

(N/d)‖a‖22≤A2

(
R(a)− R̂n(a)

)

≤ inf
λ

sup
(N/d)‖a‖22≤A2

(
R(a)− R̂n(a)− ψ1λ(‖a‖22 − ψ−11 A2)

)

≤ inf
λ

[
U(λ,N, n, d) + λA2

]

≤ U(λ?(A
2), N, n, d) + λ?(A

2)A2.

Note that λ?(A2) ∈ ΛU , so by Lemma 5, in the limit of Assumption 3, we have

U(A,N, n, d) ≤ U(λ?(A
2), ψ1, ψ2) + λ?(A

2)A2 + od,P(1) = U(A,ψ1, ψ2) + od,P(1),

where the last equality is by Eq. (50). This proves the upper bound.

E.2. Lower bound

For any A2 > 0, we define a random variable λ̂(A2) (which depend onX , Θ, β, ε) by

λ̂(A2) = inf
{
λ : λ ∈ arg min

λ≥0

[
U(λ,N, n, d) + λA2

]}
.

By Proposition 1, the set is should always be non-empty, so that λ̂(A2) can always be well-defined.

Moreover, since λ?(A2) ∈ ΛU , by Assumption 4, as we have shown in the proof in Proposition 2, we can uniquely define
aU (λ?(A

2)) with high probability, where

aU (λ?(A
2)) = arg max

a

[
R(a)− R̂n(a)− ψ1λ?(A

2)‖a‖22
]
.

As a consequence, for a small ε > 0, the following event Eε,d can be well-defined with high probability

Eε,d =
{
ψ1‖aU (λ?(A

2))‖22 ≥ A2 − ε
}
∩
{
λ̂(A2 + ε) ≤ λ?(A2)

}

=
{
A2 − ε ≤ ψ1‖aU (λ?(A

2))‖22 ≤ A2 + ε
}
.
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Now, by Proposition 2, in the limit of Assumption 3, we have

lim
d→∞

PX,Θ,β,ε(Eε,d) = 1, (51)

and we have
U(λ?(A

2), ψ1, ψ2) = U(λ?(A
2), ψ1, ψ2) + od,P(1). (52)

By the strong duality as in Proposition 1, for any A2 ∈ ΓU , we have

U(A,N, n, d) = U(λ̂(A2), N, n, d) + λ̂(A2)A2.

Consequently, for small ε > 0, when the event Eε,d happens, we have

U((A2 + ε)1/2, N, n, d)

= sup
a

(
R(a)− R̂n(a)− ψ1λ̂(A2 + ε) ·

(
‖a‖22 − ψ−11 (A2 + ε)

))

≥ R(aU (λ?(A
2)))− R̂n(aU (λ?(A

2)))− ψ1λ̂(A2 + ε) ·
(
‖aU (λ?(A

2))‖22 − ψ−11 (A2 + ε)
)

≥ R(aU (λ?(A
2)))− R̂n(aU (λ?(A

2)))− ψ1λ̂(A2 + ε) ·
(
‖aU (λ?(A

2))‖22 − ψ−11 (A2 − ε)
)

≥ R(aU (λ?(A
2)))− R̂n(aU (λ?(A

2)))− ψ1λ?(A
2) ·
(
‖aU (λ?(A

2))‖22 − ψ−11 (A2 − ε)
)

= U(λ?(A
2), N, n, d) + λ?(A

2) · (A2 − ε).

As a consequence, by Eq. (51) and (52), we have

U((A2 + ε)1/2, N, n, d) ≥ U(λ?(A
2), ψ1, ψ2) + λ?(A

2) · (A2 − ε)− od,P(1) = U(A,ψ1, ψ2)− ελ?(A2)− od,P(1).

where the last equality is by the definition of U as in Definition 2, and by the fact that λ?(A2) ∈ arg minλ≥0[U(λ, ψ1, ψ2) +
λA2]. Taking ε sufficiently small proves the lower bound. This concludes the proof of Theorem 1.

F. Technical background
In this section we introduce additional technical background useful for the proofs. In particular, we will use decompositions
in (hyper-)spherical harmonics on the Sd−1(

√
d) and in Hermite polynomials on the real line. We refer the readers to

(Efthimiou & Frye, 2014; Szego, Gabor, 1939; Chihara, 2011; Ghorbani et al., 2019; Mei & Montanari, 2019) for further
information on these topics.

F.1. Functional spaces over the sphere

For d ≥ 1, we let Sd−1(r) = {x ∈ Rd : ‖x‖2 = r} denote the sphere with radius r in Rd. We will mostly work with the
sphere of radius

√
d, Sd−1(

√
d) and will denote by γd the uniform probability measure on Sd−1(

√
d). All functions in the

following are assumed to be elements of L2(Sd−1(
√
d), γd), with scalar product and norm denoted as 〈 · , · 〉L2 and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫

Sd−1(
√
d)

f(x) g(x) γd(dx) . (53)

For ` ∈ Z≥0, let Ṽd,` be the space of homogeneous harmonic polynomials of degree ` on Rd (i.e. homogeneous polynomials
q(x) satisfying ∆q(x) = 0), and denote by Vd,` the linear space of functions obtained by restricting the polynomials in Ṽd,`
to Sd−1(

√
d). With these definitions, we have the following orthogonal decomposition

L2(Sd−1(
√
d), γd) =

∞⊕

`=0

Vd,` . (54)

The dimension of each subspace is given by

dim(Vd,`) = B(d, `) =
2`+ d− 2

`

(
`+ d− 3

`− 1

)
. (55)
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For each ` ∈ Z≥0, the spherical harmonics {Y (d)
`j }1≤j≤B(d,`) form an orthonormal basis of Vd,`:

〈Y (d)
ki , Y

(d)
sj 〉L2 = δijδks.

Note that our convention is different from the more standard one, that defines the spherical harmonics as functions on
Sd−1(1). It is immediate to pass from one convention to the other by a simple scaling. We will drop the superscript d and
write Y`,j = Y

(d)
`,j whenever clear from the context.

We denote by Pk the orthogonal projections to Vd,k in L2(Sd−1(
√
d), γd). This can be written in terms of spherical

harmonics as

Pkf(x) ≡
B(d,k)∑

l=1

〈f, Ykl〉L2Ykl(x). (56)

Then for a function f ∈ L2(Sd−1(
√
d)), we have

f(x) =
∞∑

k=0

Pkf(x) =
∞∑

k=0

B(d,k)∑

l=1

〈f, Ykl〉L2Ykl(x).

F.2. Gegenbauer polynomials

The `-th Gegenbauer polynomial Q(d)
` is a polynomial of degree `. Consistently with our convention for spherical harmonics,

we view Q
(d)
` as a function Q(d)

` : [−d, d]→ R. The set {Q(d)
` }`≥0 forms an orthogonal basis on L2([−d, d], τ̃d) (where τ̃d

is the distribution of 〈x1,x2〉 when x1,x2 ∼i.i.d. Unif(Sd−1(
√
d))), satisfying the normalization condition:

〈Q(d)
k , Q

(d)
j 〉L2(τ̃d) =

1

B(d, k)
δjk . (57)

In particular, these polynomials are normalized so that Q(d)
` (d) = 1. As above, we will omit the superscript d when clear

from the context (write it as Q` for notation simplicity).

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v ∈ Sd−1(
√
d) and consider the

subspace of V` formed by all functions that are invariant under rotations in Rd that keep v unchanged. It is not hard to see
that this subspace has dimension one, and coincides with the span of the function Q(d)

` (〈v, · 〉).

We will use the following properties of Gegenbauer polynomials

1. For x,y ∈ Sd−1(
√
d)

〈Q(d)
j (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2(Sd−1(
√
d),γd)

=
1

B(d, k)
δjkQ

(d)
k (〈x,y〉). (58)

2. For x,y ∈ Sd−1(
√
d)

Q
(d)
k (〈x,y〉) =

1

B(d, k)

B(d,k)∑

i=1

Y
(d)
ki (x)Y

(d)
ki (y). (59)

Note in particular that property 2 implies that –up to a constant– Q(d)
k (〈x,y〉) is a representation of the projector onto the

subspace of degree-k spherical harmonics

(Pkf)(x) = B(d, k)

∫

Sd−1(
√
d)

Q
(d)
k (〈x,y〉) f(y) γd(dy) . (60)
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For a function σ ∈ L2([−
√
d,
√
d], τd) (where τd is the distribution of 〈x1,x2〉/

√
d when x1,x2 ∼iid Unif(Sd−1(

√
d))),

denoting its spherical harmonics coefficients λd,k(σ) to be

λd,k(σ) =

∫

[−
√
d,
√
d]

σ(x)Q
(d)
k (
√
dx)τd(x), (61)

then we have the following equation holds in L2([−
√
d,
√
d], τd) sense

σ(x) =
∞∑

k=0

λd,k(σ)B(d, k)Q
(d)
k (
√
dx). (62)

F.3. Hermite polynomials

The Hermite polynomials {Hek}k≥0 form an orthogonal basis of L2(R, µG), where µG(dx) = e−x
2/2dx/

√
2π is the

standard Gaussian measure, and Hek has degree k. We will follow the classical normalization (here and below, expectation
is with respect to G ∼ N(0, 1)):

E
{

Hej(G) Hek(G)
}

= k! δjk . (63)

As a consequence, for any function σ ∈ L2(R, µG), we have the decomposition

σ(x) =

∞∑

k=1

µk(σ)

k!
Hek(x) , µk(σ) ≡ E

{
σ(G) Hek(G)} . (64)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials introduced in the
previous section. Indeed, the Gegenbauer polynomials (up to a

√
d scaling in domain) are constructed by Gram-Schmidt

orthogonalization of the monomials {xk}k≥0 with respect to the measure τd, while Hermite polynomial are obtained by
Gram-Schmidt orthogonalization with respect to µG. Since τd ⇒ µG (here⇒ denotes weak convergence), it is immediate
to show that, for any fixed integer k,

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(d, k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
. (65)

Here and below, for P a polynomial, Coeff{P (x)} is the vector of the coefficients of P . As a consequence, for any fixed
integer k, we have

µk(σ) = lim
d→∞

λd,k(σ)(B(d, k)k!)1/2, (66)

where µk(σ) and λd,k(σ) are given in Eq. (64) and (61).
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1. Introduction
Bias-variance trade-off is a fundamental principle for un-
derstanding the generalization of predictive learning models
(Hastie et al., 2001). The bias is an error term that stems
from a mismatch between the model class and the under-
lying data distribution, and is typically monotonically non-
increasing as a function of the complexity of the model. The
variance measures sensitivity to fluctuations in the training
set and is often attributed to a large number of model pa-
rameters. Classical wisdom predicts that model variance
increases and bias decreases monotonically with model com-
plexity (Geman et al., 1992). Under this perspective, we
should seek a model that has neither too little nor too much
capacity and achieves the best trade-off between bias and
variance.

In contrast, modern practice for neural networks repeat-
edly demonstrates the benefit of increasing the number of
neurons (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; Zhang et al., 2017), even up to the point of saturat-
ing available memory. The inconsistency between classical
theory and modern practices suggests that some arguments
in the classical theory can not be applied to modern neural
networks.

Geman et al. (1992) first studied the bias and variance of
the neural networks and give experimental evidence that
the variance is indeed increasing as the width of the neu-
ral network increases. Since Geman et al. (1992), Neal
et al. (2019) first experimentally measured the variance of
modern neural network architectures and shown that the
variance can actually be decreasing as the width increases to
a highly overparameterized regime. Recently, Belkin et al.
(2019a; 2018; 2019b) directly studied the risk of modern
machine learning models and proposed a double descent risk
curve, which has also been analytically characterized for cer-
tain regression and classification models (Mei & Montanari,
2019; Hastie et al., 2019; Spigler et al., 2019; Deng et al.,
2019; Advani & Saxe, 2017; Bartlett et al., 2020; Chatterji
& Long, 2020). However, there exists two mysteries around
the double descent risk curve. First, the double descent
phenomenon can not be robustly observed (Nakkiran et al.,
2019; Ba et al., 2020). In particular, to observe it in modern
neural network architectures, we sometimes have to arti-
ficially inject label noise (Nakkiran et al., 2019). Second,
there lacks an explanation for why the double descent risk

curve should occur. In this work, we offer an simple expla-
nation for these two mysteries by proposing an unexpected
unimodal variance curve.

Specifically, we measure the bias and variance of modern
deep neural networks trained on commonly used computer
vision datasets. Our main finding is that while the bias
is monotonically decreasing with network width as in the
classical theory, the variance curve is unimodal or bell-
shaped: it first increases and then decreases (see Figure
2). Therefore, the unimodal variance is consistent with the
finding of Neal et al. (2019), who observed that the variance
eventually decreases in the overparameterized regime. In
particular, the unimodal variance curve can also be observed
in Neal et al. (2019, Figure 1, 2, 3). However, Neal et al.
(2019) did not point out the characteristic shape of the vari-
ance or connect it to double descent. More importantly, we
demonstrate that the unimodal variance phenomenon can
be robustly observed for varying network architecture and
dataset. Moreover, by using a generalized bias-variance
decomposition for Bregman divergences (Pfau, 2013), we
verify that it occurs for both squared loss and cross-entropy
loss.

This unimodal variance phenomenon initially appears to
contradict recent theoretical work suggesting that both bias
and variance are non-monotonic and exhibit a peak in some
regimes (Mei & Montanari, 2019; Hastie et al., 2019) . The
difference is that this previous work considered the fixed-
design bias and variance, while we measure the random-
design bias and variance (we describe the differences in
detail in §2.1). Prior to our work, Nakkiran (2019) also
considered the variance of linear regression in the random-
design setting, and Rosset & Tibshirani (2017) discussed
additional ways to decompose risk into the bias and the
variance term.

A key finding of our work is that the complex behavior of
the risk curve arises due to the simple but non-classical vari-
ance unimodality phenomenon. Indeed, since the expected
risk (test loss) is the sum of bias and variance, monotonic
bias and unimodal variance can lead to three characteristic
behaviors, illustrated in Figure 1, depending on the relative
size of the bias and variance. If the bias completely domi-
nates, we obtain monotonically decreasing risk curve (see
Figure 1(a)). Meanwhile, if the variance dominates, we
obtain a bell-shaped risk curve that first increases then de-
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(a) Case 1 (b) Case 2 (c) Case 3
Figure 1. Typical cases of expected risk curve (in black) in neural networks. Blue: squared bias curve. Red: variance curve.

creases (see Figure 1(c)). The most complex behavior is
if bias and variance dominate in different regimes, leading
to the double-descent risk curve in Figure 1(b). All three
behaviors are well-aligned with the empirical observation
in deep learning that larger models typically perform bet-
ter. The most common behavior in our experiments is the
first case (monotonically decreasing risk curve) as bias is
typically larger than variance. We can observe the double-
descent risk curve when label noise is added to the training
set (see §3.3), and can observe the unimodal risk curve
when we use the generalized bias-variance decomposition
for cross-entropy loss (see §3.2).

Further Implications. The investigations described
above characterize bias and variance as a function of net-
work width, but we can explore the dependence on other
quantities as well, such as model depth (§4.2). Indeed, we
find that deeper models tend to have lower bias but higher
variance. Since bias is larger at current model sizes, this
confirms the prevailing wisdom that we should generally
use deeper models when possible. On the other hand, it
suggests that this process may have a limit—eventually very
deep models may have low bias but high variance such that
increasing the depth further harms performance.

We also investigate the commonly observed drop in accu-
racy for models evaluated on out-of-distribution data, and at-
tribute it primarily to increased bias. Combined with the pre-
vious observation, this suggests that increasing model depth
may help combat the drop in out-of-distribution accuracy,
which is supported by experimental findings in Hendrycks
& Dietterich (2019).

Theoretical Analysis of A Two-Layer Neural Network.
Finally, we conduct a theoretical study of a two-layer lin-
ear network with a random Gaussian first layer. While this
model is much simpler than those used in practice, we never-
theless observe the same characteristic behaviors for the bias
and variance. In particular, by working in the asymptotic
setting where the input data dimension, amount of training
data, and network width go to infinity with fixed ratios, we
show that the bias is monotonically decreasing while the

variance curve is unimodal. Our analysis also character-
izes the location of the variance peak as the point where
the number of hidden neurons is approximately half of the
dimension of the input data.

2. Preliminaries
In this section we present the bias-variance decomposition
for squared loss. We also present a generalized bias-variance
decomposition for cross-entropy loss in §2.2. The task is
to learn a function f : Rd → Rc, based on i.i.d. train-
ing samples T = {(xi,yi)}ni=1 drawn from a joint dis-
tribution P on Rd × Rc, such that the mean squared er-
ror Ex,y

[
‖y − f(x, T )‖22

]
is minimal, where (x,y) ∼ P .

Here we denote the learned function by f(x; T ) to make
the dependence on the training samples clear.

Note that the learned predictor f(x; T ) is a random
quantity depending on T . We can assess its perfor-
mance in two different ways. The first way, random-
design, takes the expectation over T such that we con-
sider the expected error ET

[
‖y − f(x, T )‖22

]
. The

second way, fixed-design, holds the training covariates
{xi}ni=1 fixed and only takes expectation over {yi}ni=1,
i.e., ET

[
‖y − f(x, T )‖22 | {xi}ni=1

]
. The choice of

random/fixed-design leads to different bias-variance de-
compositions. Throughout the paper, we focus on random-
design, as opposed to fixed-design studied in Mei & Monta-
nari (2019); Hastie et al. (2019); Ba et al. (2020).

2.1. Bias Variance Decomposition

Random Design. In the random-design setting, decom-
posing the quantity ET

[
‖y − f(x, T )‖22

]
gives the usual

bias-variance trade-off from machine learning, e.g. Geman
et al. (1992); Hastie et al. (2001).

Ex,yET
[
‖y − f(x, T )‖22

]
=

Ex,y
[
‖y − f̄(x)‖22

]
︸ ︷︷ ︸

Bias2

+ExET
[
‖f(x, T )− f̄(x)‖22

]
︸ ︷︷ ︸

Variance

,

where f̄(x) = ET f(x, T ). Here ET
[
‖(y − f(x, T )‖22

]

measures the average prediction error over different realiza-
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tions of the training sample. In addition to take the expecta-
tion ET , we also average over Ex,y , as discussed in Bishop
(2006, §3.2). For future reference, we define

Bias2 = Ex,y
[
‖y − f̄(x)‖22

]
, (1)

Variance = ExET
[
‖f(x, T )− f̄(x)‖22

]
. (2)

In §2.2, we present our estimator for bias and variance in
equation (1) and (2).

Fixed Design. In fixed-design setting, the covariates
{xi}ni=1 are held be fixed, and the only randomness in the
training set T comes from yi ∼ P (Y | X = xi). As
presented in Mei & Montanari (2019); Hastie et al. (2019);
Ba et al. (2020), a more natural way to present the fixed-
design assumption is to hold {xi}ni=1 to be fixed and let
yi = f0(x) + εi for i = 1, . . . , n, where f0(x) is a ground-
truth function and εi are random noises. Under this assump-
tion, the randomness in T all comes from the random noise
εi. To make this clear, we write T as Tεi . Then, we obtain
the fixed-design bias-variance decomposition

Eεi
[
‖(y − f(x, Tεi)‖22

]
=

[
‖(y − f̄(x)‖22

]
︸ ︷︷ ︸

Bias2

+Eεi
[
‖(f(x, Tεi)− f̄(x)‖22

]
︸ ︷︷ ︸

Variance

,

where f̄(x) = Eεif(x, Tεi). In most practical settings, the
expectation Eεif(x, Tεi) cannot be estimated from training
samples T = {(xi,yi)}ni=1, because we do not have access
to independent copies of f(xi) + εi. In comparison to the
random-design setting, the fixed-design setting tends to have
larger bias and smaller variance, since more “randomness”
is introduced into the variance term.

2.2. Estimating Bias and Variance

In this section, we present the estimator we use to estimate
the bias and variance as defined in equation (1) and (2). The
high level idea is to approximate the expectation ET by
computing the sample average using multiple training sets
T1, . . . , TN . When evaluating the expectation ET , there is a
trade-off between having larger training sets (n) within each
training set and having larger number of splits (N ), since
n×N = total number of training samples.

Mean Squared Error (MSE). To estimate bias and vari-
ance in equation (1) and (2), we introduce an unbiased
estimator for variance, and obtain bias by subtracting the
variance from the risk. Let T = T1 ∪ · · · ∪ TN be a random
disjoint split of training samples. In our experiment, we
mainly take N = 2 (for CIFAR10 each Ti has 25k samples).
To estimate the variance, we use the unbiased estimator

v̂ar(x, T ) =
1

N − 1

N∑

j=1

∥∥∥f(x, Tj)−
N∑

j=1

1

N
f(x, Tj)

∥∥∥
2

2
,

Algorithm 1 Estimating Generalized Variance
Input: Test point x, Training set T .
for i = 1 to k do

Split the T into T (i)
1 , . . . , T (i)

N .
for j = 1 to N do

Train the model using T (i)
j ;

Evaluate the model at x; call the result π(i)
j ;

end for
end for
Compute π̂ = exp

{
1
N ·k

∑
ij log

(
π

(i)
j

)}

(using element-wise log and exp; π̂ estimates π̄).
Normalize π̂ to get a probability distribution.
Compute the variance 1

N ·k
∑
ij DKL

(
π̂‖π(i)

j

)
.

where var depends on the test point x and on the random
training set T . While var is unbiased, its variance can be
reduced by using multiple random splits to obtain estimators
v̂ar1, . . . , v̂ark and taking their average. This reduces the
variance of the variance estimator since:

VarT
(1

k

k∑

i=1

v̂ari
)

=

∑
ij CovT (v̂ari, v̂arj)

k2
≤ VarT (v̂ar1),

where the {v̂ari}ki=1 are identically distributed but not inde-
pendent, and we used the Cauchy-Schwarz inequality.

Cross-Entropy Loss (CE). In addition to the classical
bias-variance decomposition for MSE loss, we also consider
a generalized bias-variance decomposition for cross-entropy
loss. Let π(x, T ) ∈ Rc be the output of the neural network
(a probability distribution over the class labels). π(x, T ) is
a random variable since the training set T is random. Let
π0(x) ∈ Rc be the one-hot encoding of the ground-truth
label. Then, omitting the dependence of π and π0 on x and
T , the cross entropy loss

H(π0, π) =
c∑

l=1

π0[l] log(π[l])

can be decomposed as

ET [H(π0, π)] = DKL(π0‖π̄)︸ ︷︷ ︸
Bias2

+ET [DKL(π̄‖π)]︸ ︷︷ ︸
Variance

, (3)

where π[l] is the l-th element of π, and π̄ is the average of
log-probability after normalization, i.e.,

π̄[l] ∝ exp{ET log(π[l])} for l = 1, . . . , c.

This decomposition is a special case of the general decom-
position for Bregman divergence discussed in Pfau (2013).

We apply Algorithm 1 to estimate the generalized variance
in (3). Here we could not obtain an unbiased estimator, but
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the estimate is better if we take more random splits (larger
k). In practice, we choose k to be large enough so that the
estimated variance stabilizes when we further increase k
(see §3.4). Similar to the case of squared loss, we estimate
the bias by subtracting the variance from the risk.

3. Measuring Bias and Variance for Neural
Networks

In this section, we study the bias and variance (equations (1)
and (2)) of deep neural networks. While the bias is mono-
tonically decreasing as folk wisdom would predict, the
variance is unimodal (first increases to a peak and then
decreases). We conduct extensive experiments to verify
that this phenomenon appears robustly across architec-
tures, datasets, optimizer, and loss function. Our code
can be found at https://github.com/yaodongyu/
Rethink-BiasVariance-Tradeoff.

3.1. Mainline Experimental Setup

We first describe our mainline experimental setup. In the
next subsection, we vary each design choice to check ro-
bustness of the phenomenon. More extensive experimental
results are given in the appendix.

For the mainline experiment, we trained a ResNet34 (He
et al., 2016) on the CIFAR10 dataset (Krizhevsky et al.,
2009). We trained using stochastic gradient descent (SGD)
with momentum 0.9. The initial learning rate is 0.1. We
applied stage-wise training (decay learning rate by a factor
of 10 every 200 epochs), and used weight decay 5× 10−4.
To change the model complexity of the neural network, we
scale the number of filters (i.e., width) of the convolutional
layers. More specifically, with width = w, the number of
filters are [w, 2w, 4w, 8w]. We vary w from 2 to 64 (the
width w of a regular ResNet34 designed for CIFAR10 in He
et al. (2016) is 16).

Relative to the standard experimental setup (He et al., 2016),
there are two main differences. First, since bias-variance
is usually defined for the squared loss (see (1) and (2)),
our loss function is the squared error (squared `2 distance
between the softmax probabilities and the one-hot class
vector) rather than the log-loss. In the next section we
also consider models trained with the log-loss and estimate
the bias and variance by using a generalized bias-variance
decomposition, as described in §2.2. Second, to measure
the variance (and hence bias), we need two models trained
on independent subsets of the data as discussed in §2.2.
Therefore, the training dataset is split in half and each model
is trained on only n = 25, 000 = 50, 000/2 data points. We
estimate the variance by averaging overN = 3 such random
splits (i.e., we train 6 = 3× 2 copies of each model).

In Figure 2, we can see that the variance as a function of the

width is unimodal and the bias is monotonically decreasing.
Since the scale of the variance is small relative to the bias,
the overall behavior of the risk is monotonically decreasing.

3.2. Varying Architectures, Loss Functions, Datasets

Architectures. We observe the same monotonically de-
screasing bias and unimodal variance phenomenon for
ResNext29 (Xie et al., 2017). To scale the “width” of the
ResNext29, we first set the number of channels to 1 and
increase the cardinality, defined in (Xie et al., 2017), from
2 to 4, and then fix the cardinality at 4 and increase channel
size from 1 to 32. Results are shown in Figure 3(a), where
the width on the x-axis is defined as the cardinality times
the filter size.

Loss Function. In addition to the bias-variance decompo-
sition for MSE loss, we also considered a similar decom-
position for cross-entropy loss as described in §2.2. We
train with cross-entropy loss and use n = 10, 000 training
samples (5 splits), repeating N = 4 times with independent
random splits. As shown in Figure 3(b), the behavior of the
generalized bias and variance for cross entropy is consis-
tent with our earlier observations: the bias is monotonically
decreasing and the variance is unimodal. The risk first in-
creases and then decreases, corresponding to the unimodal
risk pattern in Figure 1(c).

Datasets. In addition to CIFAR10, we study bias and vari-
ance on MNIST (LeCun, 1998) and Fashion-MNIST (Xiao
et al., 2017). For these two datasets, we use a fully con-
nected neural network with one hidden layer with ReLU ac-
tivation function. The “width” of the network is the number
of hidden nodes. We use 10,000 training samples (N = 5).
As seen in Figure 3(c) and 10 (in Appendix B), for both
MNIST and Fashion-MNIST, the variance is again unimodal
and the bias is monotonically decreasing.

In addition to the above experiments, we also conduct ex-
periments on the CIFAR100 dataset, the VGG network ar-
chitecture (Simonyan & Zisserman, 2015), various training
sample sizes, and different weight decay regularization and
present the results in Appendix B. We observe the same
monotonically descreasing bias and unimodal variance phe-
nomenon in all of these experiments.

3.3. Connection to Double-Descent Risk

When the relative scale of bias and variance changes, the risk
displays one of the three patterns, monotonically decreasing,
double descent, and unimodal, as presented in Figure 1(a),
1(b) and 1(c). In particular, the recent stream of observa-
tions on double descent risk (Belkin et al., 2019a) can be
explained by unimodal variance and monotonically decreas-
ing bias. In our experiments, including the experiments
in previous sections, we typically observe monotonically
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Figure 2. Mainline experiment on ResNet34, CIFAR10 dataset (25,000 training samples). (Left) Risk, bias, and variance for ResNet34.
(Middle) Variance for ResNet34. (Right) Train error and test error for ResNet34.
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Figure 3. Risk, bias, and variance with respect to different network architectures, training loss functions, and datasets. (a). ResNext29
trained by MSE loss on CIFAR10 dataset (25,000 training samples). (b). ResNet34 trained by CE loss (estimated by generalized
bias-variance decomposition using Bregman divergence) on CIFAR10 dataset (10,000 training samples). (c). Fully connected network
with one hidden layer and ReLU activation trained by MSE loss on MNIST dataset (10,000 training samples).

decreasing risk; but with more label noise, the variance will
increase and we observe the double descent risk curve.

Label Noise. Similar to the setup in Nakkiran (2019), for
each split, we sample training data from the whole training
dataset, and replace the label of each training example with a
uniform random class with independent probability p. Label
noise increases the variance of the model and hence leads
to double-descent risk as seen in Figure 4. If the variance
is small, the risk does not have the double-descent shape
because the variance peak is not large enough to overwhelm
the bias, as observed in Figures 2, 3(a), 3(c) and 10.

3.4. Discussion of Possible Sources of Error

In this section, we briefly describe the possible sources of
error in our estimator defined in §2.2.

Mean Squared Error. As argued in §2.2, the variance
estimator is unbiased. To understand the variance of the
estimator, we first split the data into two parts. For each part,
we compute the bias and variance for varying network width
by using our estimator. Averaging across different model
width, the relative difference between the two parts is 0.6%
for bias and 3% for variance, so our results for MSE are
minimally sensitive to finite-sample effects. The complete
experiments can be found in the appendix (see Figure 17).

Cross Entropy Loss. For cross entropy loss, we are cur-
rently unable to obtain an unbiased estimator. We can assess
the quality of our estimator using the following scheme.
We partition the dataset into five parts T1, . . . , T5, i.e., set
N = 5 in Algorithm 1. Then, we sequentially plot the esti-
mate of bias and variance using k = 1, 2, 3, 4 as described
in Algorithm 1. We observe that using larger k gives better
estimates. In Figure 18 of Appendix B.9, we observe that
as k increases, the bias curve systematically decreases and
the variance curve increases. Therefore our estimator over-
estimates the bias and under-estimates the variance, but the
overall behaviors of the curves remain consistent.

4. What Affects the Bias and Variance?
In this section, through the Bias-Variance decomposition
analyzed in §3, we investigate the role of depth for neural
networks and the robustness of neural networks on out-of-
distribution examples.

4.1. Bias-Variance Tradeoff for Out-of-Distribution
(OOD) Example

For many real-world computer vision applications, inputs
can be corrupted by random noise, blur, weather, etc.
These common occurring corruptions are shown to signifi-
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Figure 4. Increasing label noise leads to double-descent. (Left) Bias and variance under different label noise percentage. (Right) Training
error and test error under different label noise percentage.
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Figure 5. (a). Risk, bias, and variance for ResNet34 on out-of-distribution examples (CIFAR10-C dataset). (b)-(c). Bias and variance for
ResNet with different depth trained by MSE loss on CIFAR10 (25,000 training samples).

cantly decrease model performance (Azulay & Weiss, 2019;
Hendrycks & Dietterich, 2019). To better understand the
“generalization gap” between in-distribution test examples
and out-of-distribution test examples, we empirically evalu-
ate the bias and variance on the CIFAR10-C dataset devel-
oped by Hendrycks & Dietterich (2019), which is a common
corruption benchmark and includes 15 types of corruption.

By applying the models trained in the mainline experiment,
we are able to evaluate the bias and variance on CIFAR10-C
test dataset according to the definitions in (1) and (2). As we
can see from Figure 5(a), both the bias and variance increase
relative to the original CIFAR10 test set. Consistent with
the phenomenon observed in the mainline experiment, the
bias dominates the overall risk. The results indicate that
the “generalization gap” mainly comes from increased bias,
with relatively less contribution from variance as well.

4.2. Effect of Model Depth on Bias and Variance

In addition to the ResNet34 considered in the mainline
experiment, we also evaluate the bias and variance for
ResNet18 and ResNet50. Same as the mainline experi-

ment setup, we estimate the bias and variance for ResNet
using 25,000 training samples (N = 2) and three indepen-
dent random splits (k = 3). The standard building block of
ResNet50 architecture in He et al. (2016) is bottleneck block,
which is different from the basic block used in ResNet18 and
ResNet34. To ensure that depth is the only changing vari-
able across three architectures, we apply the basic block for
ResNet50. Same training epochs and learning rate decays
are applied to three models.

From Figure 5(b) and 5(c), we observe that the bias de-
creases as the depth increases, while the variance increases
as the depth increases. For each model, the bias is monoton-
ically decreasing and the variance is unimodal. The differ-
ences in variance are small (around 0.01) compared with the
changes in bias. Overall, the risk typically decreases as the
depth increases. Our experimental results suggest that the
improved generalization for deeper models, with the same
network architecture, are mainly attributed to lower bias.

For completeness, we also include the bias and variance
versus depth when basic blocks in ResNet are replaced by
bottleneck blocks (see Figure 20 in the appendix). We
observe similar qualitative trend of bias and variance.
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Note that at high width, the bias of ResNet50 is slightly
higher than the bias of ResNet18 and ResNet34. We
attribute this inconsistency to difficulties when training
ResNet50 without bottleneck blocks at high width. Lastly,
we also include the bias and variance versus depth for out-
of-distribution test samples, in which case we also observed
decreased bias and increased variance as depth increases, as
shown in Figure 19 of Appendix B.10.

5. Theoretical Insights from a Two-layer
Linear Model

While the preceding experiments show that the bias and
variance robustly exhibit monotonic-unimodal behavior in
the random-design setting, existing theoretical analyses hold
instead for the fixed-design setting, where the behavior of the
bias and variance are more complex, with both the bias and
variance exhibiting a peak and the risk exhibiting double
descent pattern (Mei & Montanari (2019, Figure 6)). In
general, while the risk should be the same (in expectation)
for the random and fixed design setting, the fixed-design
setting has lower bias and higher variance.

Motivated by the more natural behavior in the random-
design setting, we work to extend the existing fixed-design
theory to the random-design case. Our starting point is Mei
& Montanari (2019), who consider two-layer non-linear
networks with random hidden layer weights. However, the
randomness in the design complicates the analysis, so we
make two points of departure to help simplify: first, we
consider two-layer linear rather than non-linear networks,
and second, we consider a different scaling limit (n/d→∞
rather than n/d going to some constant). In this setting, we
rigorously show that the variance is indeed unimodal and
the bias is monotonically decreasing (Figure 6). Our precise
assumptions are given below.

5.1. Model Assumptions

We consider the task of learning a function y = f(x) that
maps each input vector x ∈ Rd to an output (label) value
y ∈ R. The input-output pair (x, y) is assumed to be drawn
from a distribution where x ∼ N (0, Id/d) and

y = f0(x) := x>θ, (4)

where θ ∈ Rd is a weight vector. Given a training set T :=
{(xi, yi)}ni=1 with training samples drawn independently
from the data distribution, we learn a two-layer linear neural
network parametrized byW ∈ Rp×d and β ∈ Rp as

f(x) = (Wx)>β,

where p is the number of hidden units in the network. In
above, we takeW as a parameter independent of the train-
ing data T whose entries are drawn from i.i.d. Gaussian

distribution N (0, 1/d). GivenW , the parameter β is esti-
mated by solving the following ridge regression1 problem

βλ(T ,W ) = arg min
β∈Rp

‖(WX)>β − y‖22 + λ‖β‖22, (5)

where X = [x1, . . . ,xn] ∈ Rd×n denotes a matrix
that contains training data vectors as its columns, y =
[y1, . . . , yn] ∈ Rn denotes a vector containing training la-
bels as its entries, and λ ∈ R+ is the regularization parame-
ter. By noting that the solution to (5) is given by

βλ(T ,W ) = (WXX>W> + λI)−1WXy,

our estimator f : Rd → R is given as

fλ(x; T ,W ) = x>W>βλ(T ,W ). (6)

5.2. Bias-Variance Analysis

We may now calculate the bias and variance of the model
described above via the following formulations:

Biasλ(θ)2 = Ex [ET ,W fλ(x; T ,W )− f0(x)]
2
,

Varianceλ(θ) = ExVarT ,W [fλ(x; T ,W )] ,

where f0(x) and fλ(x; T ,W ) are defined in (4) and (6),
respectively. Note that the bias and variance are functions
of the model parameter θ. To simplify the analysis, we
introduce a prior θ ∼ N (0, Id) and calculate the expected
bias and expected variance as

Bias2
λ := EθBiasλ(θ)2, (7)

Varianceλ := EθVarianceλ(θ). (8)

The precise formulas for the expected bias and the expected
variance are parametrized by the dimension of the input
feature d, the number of training points n, the number of
hidden units p and also λ.

Previous literatures (Mei & Montanari, 2019) suggests that
both the risk and the variance achieves a peak at the inter-
polation threshold (n = p). In the regime when n is very
large, the risk no longer exhibits a peak, but the unimodal
pattern of variance still holds. In the rest of the section, we
consider the regime where the n is large (monotonically de-
creasing risk), and derive the precise expression for the bias
and variance of the model. From our expression, we obtain
the location where the variance achieves the peak. For this
purpose, we consider the following asymptotic regime of
n, p and d:

1`2 regularization on weight parameters is arguably the most
widely used technique in training neural network, known for im-
proving generalization (Krogh & Hertz, 1992). Other regulariza-
tion such as `1 can also be used and leads to qualitatively similar
behaviors.
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(a) Risk v.s. γ for different n (b) Bias v.s. γ for different n (c) Variance v.s. γ for different n

Figure 6. Risk, bias, and variance for a two-layer linear neural network.

Assumption 1. Let {(d, n(d), p(d))}∞d=1 be a given se-
quence of triples. We assume that there exists a γ > 0
such that

lim
d→∞

p(d)

d
= γ, and lim

d→∞
n(d)

d
=∞.

For simplicity, we will write n := n(d) and p := p(d).

With the assumption above, we have the expression of the
expected bias, variance and risk as a function of γ and λ.

Theorem 1. Given {(d, n(d), p(d))}∞d=1 that satisfies As-
sumption 1, let λ = n

dλ0 for some fixed λ0 > 0. The
asymptotic expression of expected bias and variance are
given by

lim
d→∞

Bias2
λ =

1

4
Φ3(λ0, γ)2, (9)

lim
d→∞

Varianceλ =




Φ1(λ0,
1
γ )

2Φ2(λ0,
1
γ )
− (1−γ)(1−2γ)

2γ − 1
4Φ3(λ0, γ)2, γ ≤ 1,

Φ1(λ0,γ)
2Φ2(λ0,γ) −

γ−1
2 − 1

4Φ3(λ0, γ)2, γ > 1,

where

Φ1(λ0, γ) = λ0(γ + 1) + (γ − 1)2,

Φ2(λ0, γ) =
√

(λ0 + 1)2 + 2(λ0 − 1)γ + γ2,

Φ3(λ0, γ) = Φ2(λ0, γ)− λ0 − γ + 1.

The proof is given in Appendix C.

The risk can be obtained through Bias2
λ + Varianceλ.

The expression in Theorem 1 is plotted as the red curves
in Figure 6. In addition to the case when n/d → ∞,
we also plot the shape of bias, variance and risk when
n/d→ {0.15, 0.25, 0.35, . . . , 1.00, 1.50}. We find that the
risk of the model grows from unimodal to monotonically
decreasing as the number of samples increased (see Figure
6(a)). Moreover, the bias of the model is monotonically
decreasing (see Figure 6(b)) and the variance is unimodal
(see Figure 6(c)).

Corollary 1 (Monotonicity of Bias). The derivative of the
limiting expected Bias in (9) can be calculated as

−

(√
2(γ + 1)λ0 + (γ − 1)2 + λ2

0 − γ − λ0 + 1
)2

2
√
γ2 + 2γ (λ0 − 1) + (λ0 + 1) 2

.

(10)

When λ0 ≥ 0, the expression in (10) is strictly non-positive,
therefore the limiting expected bias is monotonically non-
increasing as a function of γ, as classical theories predicts.

To gain further insight into the above formulas, we also
consider the case when the ridge regularization amount λ0

is small. In particular, we consider the first order effect of
λ0 on the bias and variance term, and compute the value of
γ where the variance attains the peak.
Corollary 2 (Unimodality of Variance – small λ0 limit).
Under the assumptions of Theorem 1, the first order effect
of λ0 on variance is given by

lim
d→∞

EVarianceλ =

{
O
(
λ2

0

)
, γ > 1,

−(γ − 1)γ − 2γλ0 +O
(
λ2

0

)
, o.w.

and the risk is given by

lim
d→∞

ERiskλ =

{
1− γ +O

(
λ2

0

)
, γ ≤ 1,

O
(
λ2

0

)
, γ > 1.

Moreover, up to first order, the peak in the variance is

Peak =
1

2
− λ0 +O

(
λ2

0

)
.

Theorem 2 suggests that when λ0 is sufficiently small, the
variance of the model is maximized when p = d/2, and the
effect of λ0 is to shift the peak slightly to d/2− λ0d.

From a technical perspective, to compute the variance in
the random-design setting, we need to compute the element-
wise expectation of certain random matrix. For this purpose,
we apply the combinatorics of counting non-cross partitions
to characterize the asymptotic expectation of products of
Wishart matrices.



Rethinking Bias-Variance Trade-off for Generalization of Neural Networks

6. Conclusion and Discussion
In this paper we re-examine the classical theory of bias and
variance trade-off as the width of a neural network increases.
Through extensive experimentation, our main finding is
that, while the bias is monotonically decreasing as classi-
cal theory would predict, the variance is unimodal. This
combination leads to three typical risk curve patterns, all ob-
served in practice. Theoretical analysis of a two-layer linear
network corroborates these experimental observations.

The seemingly varied and baffling behaviors of modern neu-
ral networks are thus in fact consistent, and explainable
through classical bias-variance analysis. The main unex-
plained mystery is the unimodality of the variance. We
conjecture that as the model complexity approaches and
then goes beyond the data dimension, it is regularization in
model estimation (the ridge penalty in our theoretical exam-
ple) that helps bring down the variance. Under this account,
the decrease in variance for large dimension comes from
better conditioning of the empirical covariance, making it
better-aligned with the regularizer.

In the future, it would be interesting to see if phenomena
characterized by the simple two-layer model can be rigor-
ously generalized to deeper networks with nonlinear acti-
vation, probably revealing other interplays between model
complexity and regularization (explicit or implicit). Such
a study could also help explain another phenomenon we
(and others) have observed: bias decreases with more layers
as variance increases. We believe that the (classic) bias-
variance analysis remains a powerful and insightful frame-
work for understanding the behaviors of deep networks;
properly used, it can guide practitioners to design more
generalizable and robust networks in the future.
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A. Summary of Experiments
We summarize the experiments in Table 1, each row corresponds to one experiment, some include several independent splits,
in this paper. Every experiment is related to one or multiple figures, which is specified in the last column “Figure”.

Dataset Architecture Loss Optimizer Train Size #Splits(k) Label Noise Figure Comment

CIFAR10 ResNet34 MSE SGD(wd=5e-4) 25000 3 7 2, 5 Mainline

CIFAR10 ResNext29 MSE SGD(wd=5e-4) 25000 3 7 3(a), 7 ArchitectureVGG11 MSE SGD(wd=5e-4) 10000 1 7 8

CIFAR10 ResNet34 CE SGD(wd=5e-4) 10000 4 7 3(b), 9 Loss

MNIST DNN MSE SGD(wd=5e-4) 10000 1 7 3(c)
DatasetFashion-MNIST DNN MSE SGD(wd=5e-4) 10000 1 7 10

CIFAR100 ResNet34 CE SGD(wd=5e-4) 10000 1 7 11

CIFAR10 ResNet34 MSE SGD(wd=5e-4) 10000 1 10%/20% 4 Label noise

CIFAR10 ResNet18 MSE SGD(wd=5e-4) 25000 3 7 5 DepthResNet50 MSE SGD(wd=5e-4) 25000 3 7 5

CIFAR10 ResNet34 MSE SGD(wd=5e-4) 10000 1 7 12 Train sizeResNet34 MSE SGD(wd=5e-4) 2500 1 7 13

CIFAR10 ResNet34 MSE SGD(wd=1e-4) 10000 1 7 14 Weight decay

CIFAR10
ResNet26-B MSE SGD(wd=5e-4) 25000 3 7 20 Depth (with

bottleneck
block)

ResNet38-B MSE SGD(wd=5e-4) 25000 3 7 20
ResNet50-B MSE SGD(wd=5e-4) 25000 3 7 20

CIFAR10 VGG9 MSE SGD(wd=5e-4) 25000 3 7 21 DepthVGG11 MSE SGD(wd=5e-4) 25000 3 7 21

Table 1. Summary of Experiments.

B. Additional Experiments
In this section, we provide additional experimental results, some of them are metioned in §3 and §4.

Network Architecture: The implementation of the deep neural networks used in this work is mainly adapted from
https://github.com/kuangliu/pytorch-cifar.

Training Details: For CIFAR10 dataset and CIFAR100 dataset, when training sample size is 25,000, we use 500 epochs for
training and decay by a factor of 10 the learning rate every 200 epoch. When training sample size is 10,000/5,000, we use
1000 epochs for training and decay by a factor of 10 the learning rate every 400 epoch. For MNIST dataset and FMNIST
dataset, we use 200 epochs for training and decay by a factor of 10 the learning rate every 100 epoch. For all the experiments
in this paper, we sampled data without replacement to train the models as described in §2.2.

B.1. Architecture

We provide additional results on ResNext29 presented in §3.2. The results are shown in Figure 7. We also study the behavior
of risk, bias, and variance of VGG network (Simonyan & Zisserman, 2015) on CIFAR10 dataset. Here we use VGG11 and
the number of filters are [k, 2k, 4k, 4k, 8k, 8k, 8k, 8k], where k is the width in Figure 8. The number of training samples of
each split is 10,000. We use the same optimization setup as the mainline experiment (ResNet34 in Figure2).

B.2. Loss

We provide additional results on cross-entropy loss presented in §3.2, the results are shown in Figure 9.

B.3. Dataset

We provide the results on Fashion-MNIST dataset in Figure 10, which is mentioned in §3.2. We study the behavior of
risk, bias, and variance of ResNet34 on CIFAR100 dataset. Because the number of class is large, we use cross-entropy
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during training, and apply the classical Bias-Vairance decomposition for MSE in (1) and (2) to estimate the risk, bias, and
variance. As shown in Figure 11, we observe the bell-shaped variance curve and the monotonically decreasing bias curve on
CIFAR100 dataset.

B.4. Training Size

Appart from the 2 splits case in Figure 2, we also consider 5 splits (10,000 training samples) and 20 splits case (2,500
training samples). We present the 5 splits case (10,000 training samples) in Figure 12, which corresponds to the label 0%
case in Figure 4. We present the 20 splits (2,500 training samples) in Figure 13. With less number of training samples, both
the bias and the variance will increase.

B.5. Weight Decay

We study another different weight decay parameter, (wd=1e-4) for ResNet34 on CIFAR10 dataset (10,000 training samples).
The risk, bias, variance, and train/test error curves are shown in Figure 14. Compared with Figure 12, we observe that larger
weight decay can decrease the variance.

B.6. Label Noise

We provide the risk curve for ResNet34 under different label noise percentage as described in §3.3, and the results are shown
in Figure 15.

B.7. 0-1 Loss Bias-Variance Decomposition

We evaluated the bias and variance for 0-1 loss (defined in Dietterich & Kong (1995)) on the CIFAR10 dataset with
10,000 training samples using ResNet34. The results are shown in Figure 16. We can consistently observe that the bias is
monotonically decreasing and the variance is unimodal.
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Figure 7. Risk, bias, variance, train/test error for ResNext29 trained by MSE loss on CIFAR10 dataset (25,000 training samples). (Left)
Risk, bias, and variance for ResNext29. (Middle) Variance for ResNext29. (Right) Train error and test error for ResNext29.
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Figure 8. Risk, bias, variance, train/test error for VGG11 trained by MSE loss on CIFAR10 dataset (10,000 training samples). (Left) Risk,
bias, and variance for VGG11. (Middle) Variance for VGG11. (Right) Train error and test error for VGG11.
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Figure 9. Variance and train/test error for ResNet34 trained by cross-entropy loss (estimated by generalized bias-variance decomposition
using Bregman divergence) on CIFAR10 dataset (10,000 training samples). (Left) Variance for ResNet34. (Right) Train error and test
error for ResNet34.
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Figure 10. Fully connected network with one-hidden-layer and ReLU activation trained by MSE loss on Fashion-MNIST dataset (10,000
training samples).
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Figure 11. Risk, bias, variance, and train/test error for ResNet34 trained by cross-entropy loss (estimated by MSE bias-variance decompo-
sition) on CIFAR100 (10,000 training samples). (Left) Risk, bias, and variance for ResNet34. (Middle) Variance for ResNet34. (Right)
Train error and test error for ResNet34.
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Figure 12. Risk, bias, variance, train/test error for ResNet34 trained by MSE loss on CIFAR10 dataset (10,000 training samples). (Left)
Risk, bias, and variance for ResNet34. (Middle) Variance for ResNet34. (Right) Train error and test error for ResNet34.
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Figure 13. Risk, bias, variance, train/test error for ResNet34 trained by MSE loss on CIFAR10 dataset (2,500 training samples). (Left)
Risk, bias, and variance for ResNet34. (Middle) Variance for ResNet34. (Right) Train error and test error for ResNet34.
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Figure 14. Risk, bias, variance, train/test error for ResNet34 trained by MSE loss on CIFAR10 dataset (10,000 training samples), the
weight decay parameter of SGD is 1e-4. (Left) Risk, bias, and variance for ResNet34. (Middle) Variance for ResNet34. (Right) Train
error and test error for ResNet34.
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Figure 15. Risk under different label noise percentage. Increasing label noise leads to double descent risk curve.
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Figure 16. Bias-variance (0-1 loss), and test error for ResNet34 trained by MSE loss on CIFAR10 dataset (10,000 training samples).
(Left) Bias and variance (0-1 loss), and test error for ResNet34. (Right) Variance (0-1 loss) for ResNet34.
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B.8. Sources of Error for Mean Squared Error (MSE)

As argued in §2.2 the estimator for variance is unbiased estimator. To understand the variance of the estimator, we first split
the data into two parts, A and B. For each part, we take multiple random splits (k) and estimate the variance by taking the
average of those estimators, and vary the number of random splits k. The results are shown in Figure 17. We can see that the
variation between to parts of data is small. Quantitatively, veraging across different model width, the relative difference
between two parts of data is 0.65% for bias and 3.15% for variance.
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Figure 17. Bias and variance for two portions of data with k from 1 to 5. (Left) Bias for ResNet18. (Right) Variance for ResNet18.

B.9. Sources of Error for Cross Entropy Loss (CE)

For cross entropy loss, we are currently unable to obtain an unbiased estimator. We can access the quality of our estimator
using the following scheme. We partition the dataset into five parts T1, . . . , T5, i.e., set N = 5 in Algorithm 1. Then,
we sequentially plot the estimate of bias and variance using k = 1, 2, 3, 4 as described in Algorithm 1. Using larger k
gives better estimate. As shown in Figure 18, when k is small, our estimator over-estimate the bias and under-estimate the
variance, but the overall behavior of the curves are consistent.
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Figure 18. Estimate of bias, variance, and risk using varying number of sample (k in Algorithm 1). (Left) Bias (CE) for ResNet34.
(Middle) Variance (CE) for ResNet34. (Right) Risk (CE) for ResNet34.

B.10. Effect of Depth on Bias and Variance for Out-Of-Distribution Data

We study the role of depth on out-of-distribution test data. In Figure 19, we observe that increasing the depth can decrease
the bias and increase the variance. Also, deeper ResNet can generalize better on CIFAR10-C dataset as shown in Figure 19.
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Figure 19. Bias, variance, and test error for ResNet with different depth (ResNet18, ResNet34 and ResNet50 trained by MSE loss on
25,000 CIFAR10 training samples) evaluated on out-of-distribution examples (CIFAR10-C dataset). (Left) Bias for ResNet18, ResNet34
and ResNet50. (Middle) Variance for ResNet18, ResNet34 and ResNet50. (Right) Test error for ResNet18, ResNet34 and ResNet50.

B.11. Effect of Depth on ResNet using Bottleneck Blocks

In order to study the role of depth for ResNet on bias and variance, we apply basic residual block for ResNet50. To better
investigate the depth of ResNet, we use Bottleneck block for ResNet26, ResNet38, and ResNet50. More specifically, the
number of 3-layer bottleneck blocks for ResNet26, ResNet38, and ResNet50 are [2, 2, 2, 2], [3, 3, 3, 3], and [3, 4, 6, 3]. As
shown in Figure 20, we observe that deeper ResNet with Bottleneck blocks has lower bias and higher variance.
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Figure 20. Bias and variance for ResNet (bottleneck block) with different depth. (Left) Bias for ResNet26, ResNet38 and ResNet50.
(Right) Variance for ResNet26, ResNet38 and ResNet50.

B.12. Effect of Depth on VGG

We study the role of depth for VGG network on bias and variance. As shown in Figure 21, we observe that deeper VGG has
lower bias and higher variance.
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Figure 21. Bias and variance for VGG with different depth. (Left) Bias for VGG9, VGG11 and VGG13. (Right) Variance for VGG9,
VGG11 and VGG13.
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B.13. Additional Synthetic Experiment

In Figure 22, we plot the result of performing regression on synthetic data using a two-layer linear fully connected linear
network with varying width. The data are generated as y = β>x, x ∼ N (0, Id/d), where ‖β‖2 = 1 is randomly generated
and fixed weight vector. The first layer of the network is drawn from i.i.d. zero-mean Gaussian distribution with variance
1/
√
d, and the second layer is trained using gradient descent with weight decay 0.1. The horizontal axis is the number of

parameters of the hidden layer normalized by the dimension of the data (i.e., p/d). The dots indicate actual experimental
results, while the lines indicate theoretically predicted results. We can observe that they align well and the peak occurs at the
predicted value.

Figure 22. Bias, Variance, and Risk for two layer linear network with parameters n = 800 and d = 30.
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C. Proof of Theorems in §5
Throughout this section, we use ‖ · ‖ and ‖ · ‖2 to denote the Frobenius norm and spectral norm of a matrix, respectively.
Recall that for any given θ, the training set T = (X,y) satisfies the relation y = X>θ. By plugging this relation into (6),
we get

fλ(x; T ,W ) = x>Mλ(T ,W )θ, (11)

where we define
Mλ(T ,W ) := W>(WXX>W> + λI)−1WXX>. (12)

To avoid cluttered notations, we omit the dependency ofM on λ, T andW .

By using (11), the expected bias and expected variance in (7) and (8) can be written as functions on the statistics of M .
This is stated in the following proposition. To proceed, we introduce the change of variable

η := γ−1 =
d

p

in order to be consistent with conventions in random matrix theory.

Proposition 1 (Expected Bias/Variance). The expected bias and expected variance are given by

EBias2
λ =

1

d
‖EM − I‖2, and

EVarianceλ =
1

d
E‖M − EM‖2,

whereM is defined in (12).

Proof. By plugging (11) into (7), and using the prior that x ∼ N (0, Id/d) and θ ∼ N (0, Id), we get

EBias2
λ = E{E(x>Mθ|x,θ)− x>θ}2

= E
[
x>(EM − I)θ

]2

= Ex>(EM − I)θθ>(EM − I)x

= Etr
[
x>(EM − I)θθ>(EM − I)>x

]

= tr
[
(EM − I)E(xx>)(EM − I)>E(θθ>)

]

=
1

d
‖EM − I‖2.

Similarly, by plugging (11) into (8) we get

EVarianceλ

= E
{
E
[
(x>Mθ − E(x>Mθ|x,θ))2|x,θ

]}

= E
{
E
[
(x>Mθ − x>(EM)θ)2|x,θ

]}

= E(x>Mθ − x>(EM)θ)2

= E
[
x>(M − EM)θ

]2

=
1

d
E‖M − EM‖2.

The risk is given by

EBias2
λ + EVarianceλ =

1

d
E‖M − I‖2 =

1

d
Etr(M>M)− 2

d
Etr(M) + 1.



Rethinking Bias-Variance Trade-off for Generalization of Neural Networks

First, we show that in the asymptotic setting defined in Assumption 1, the expected Bias and expected Variance can be
calculated as functions on the statistics of the following matrix:

M̃λ0
(W ) = W>(WW> + λ0I)−1W . (13)

In the following, we omit the dependency of M̃ on λ0 andW .

Proposition 2 (Gap betweenM and M̃ ). Under Assumption 1 with λ− n
dλ0, we have

1

d
‖EM − I‖2 =

1

d
‖EM̃ − I‖2, and

1

d
E‖M − I‖2 =

1

d
E‖M̃ − I‖2.

Proof. It suffices to show that ‖M − M̃‖2 = 0 almost surely. From (12) and (13), we have

M − M̃ = W>ΩW +W>ΩW∆ +W>(WW> + λ0I)−1W∆,

where ∆ := (d/n)XX> − I and Ω := (WW> + λ0I +W∆W>)−1 − (WW> + λ0I)−1.

By using triangle inequality and the sub-multiplicative property of spectral norm, we have

‖M − M̃‖2 ≤ ‖W ‖22 · ‖Ω‖2 + ‖W ‖22 · ‖Ω‖2 · ‖∆‖2 + ‖M̃‖2 · ‖∆‖2. (14)

Furthermore, by a classical result on the perturbation of matrix inverse (see e.g., Ghaoui (2002, equation (1.1))), we have

‖Ω‖2 ≤ ‖(WW> + λ0I)−1‖22‖W ‖22‖∆‖2 +O(‖∆‖22).

Combining this bound with (14) gives

‖M − M̃‖2 ≤ ‖W ‖42 · ‖(WW> + λ0I)−1‖22 · ‖∆‖2 + ‖M̃‖2 · ‖∆‖2 +O(‖∆‖22).

It remains to show that ‖∆‖2 = 0 and that ‖W ‖2, ‖(WW> + λ0I)−1‖22, and ‖M̃‖2 are bounded from above almost
surely. By Wainwright (2019, Example 6.2), ∀δ > 0 and n > d,

P
(
‖∆‖2 ≤ 2ε+ ε2

)
≥ 1− e−nδ2/2, where ε = δ +

√
d

n
.

By letting δ =
√
d/n and taking the asymptotic limit as in Assumption 1, we have

‖∆‖2 a.s.
= 0.

From Geman (1980), the largest eigenvalue ofWW> is almost surely (1 +
√
η)2 <∞. Therefore, we have

‖W ‖2 a.s.
= 1 +

√
η <∞.

Finally, note that

‖(WW> + λ0I)−1‖2 ≤
1

λ0 + σmin(W )2
≤ 1

λ0
<∞,

‖M̃‖2 =
σmax(W )2

σmax(W )2 + λ0
≤ 1.

We therefore conclude that ‖M − M̃‖2 = 0 almost surely, as desired.

Proposition 3 (Asymptotic Risk). Given the expression for Bias and Variance in Proposition 1, under the asymptotic
assumptions from Assumption 1,

1

d
E‖M̃ − I‖2 =

{
(1− 1

η ) + fλ−1
0

( 1
η ), if d > p,

fλ−1
0

(η), if d ≤ p,

where η = d/p, and for any η, α ∈ R,

fα(η) =
α+ η(1 + η − 2α+ ηα)

2η
√
η2 + 2ηα(1 + η) + α2(1− η)2

− 1− η
2η

.
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Proof. Recall that M̃ = W>(WW> + λ0I)−1W , by Sherman-Morrision,

M̃ = I − (I + λ−1
0 W>W )−1,

where (d/p)W>W ∈ Rd×d. Let λi ≥ 0, i = 1, . . . , d be the eigenvalues of (d/p)W>W . For notational simplicity, let
α = λ−1

0 . Then

‖M̃ − I‖2 = ‖[I + (α/η)(d/p)W>W ]−1‖2 =

d∑

i=1

1

(1 + α
η λi)

2
.

LetA = (d/p)W>W , and µA be the spectral measure ofA. Then

1

d
‖M̃ − I‖2 =

∫

R+

1

(1 + α
η x)2

dµA(dx).

According to Marchenko-Pastur Law (Bai & Silverstein, 2010), in the limit when d→∞ when η ≤ 1,

1

d
‖M̃ − I‖2F

a.s.
=

1

2π

∫ η+

η−

√
(η+ − x)(x− η−)

ηx(1 + α
η x)2

dx,

where η+ = (1 +
√
η)2, and η− = (1−√η)2. For convenience, define

fα(η) =
1

2π

∫ η+

η−

√
(η+ − x)(x− η−)

ηx(1 + α
η x)2

dx =
α+ η(1 + η − 2α+ ηα)

2η
√
η2 + 2ηα(1 + η) + α2(1− η)2

− 1− η
2η

.

When η > 1,
1

d
‖M̃ − I‖2F =

(
1− 1

η

)
+ fα

(
1

η

)
.

Then, in the asymptotic regime,

1

d
‖M̃ − I‖2F

a.s.
=

{
(1− 1

η ) + fα( 1
η ), if d > p,

fα(η), if d < p.

Proposition 4 (Asymptotic Bias). Given the expression for Bias in Proposition 1, under the asymptotic assumptions in
Assumption 1, the Bias for the model is given by

1

d
‖EM − I‖2 =

[
1− λ0η + (1 + η)−

√
λ2

0η
2 + 2λ0η(1 + η) + (1− η)2

2η

]2
.

Proof. Recall that
M = W>(WXX>W> + λI)−1WXX>.

Recall that M̃ = I − (I + λ−1
0 W>W )−1. Thus

1

d
‖EM̃ − I‖2 =

1

d
‖E(I + λ−1

0 W>W )−1‖2.

By Neumann series,

E(I + λ−1
0 W>W )−1 =

∑

m≥0

E(−λ−1
0 W>W )m = I +

∑

m≥1

(−1)m(λ0η)−mEAm,

where η = d/p,A = (d/p)W>W . According to Corollary 3.3 in Bishop et al. (2018) (recall we are considering the
asymptotic regime of d, p→∞),

EAm =
m∑

k=1

ηm−kNm,k · I,
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where

Nm,k =
1

k

(
m− 1

k − 1

)(
m

k − 1

)

is the Narayana number. Therefore,

1

d
‖EM̃ − I‖2 =

(
1 + η−1

∞∑

m=1

k∑

k=1

(−λ−1
0 )m(η−1)k−1Nm,k

)2

.

Observe that the double sum in the previous equation is just the generating series for the Narayana number,

∞∑

m=1

k∑

k=1

(−λ−1
0 )m(η−1)k−1Nm,k = −λ0η + (1 + η)−

√
λ2

0η
2 + 2λ0η(1 + η) + (1− η)2

2η
.

This completes the proof.

Finally, the statement of Theorem 1 follows directly from the above propositions.


