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Abstract

Toward the Control of Non-Linear, Non-Minimum Phase Systems via Feedback
Linearization and Reinforcement Learning

by

Michael Estrada

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor S. Shankar Sastry, Chair

The control of non-linear systems has historically been a difficult task due primarily to the
need for additional analysis of the specific system being controlled in absence of the stan-
dard techniques of linear systems theory. While Feedback Linearization can be employed to
leverage the techniques of linear systems theory for non-linear systems, error in the dynamic
model used to construct the controller can lead to erroneous behavior. Similarly, in the case
of a non-minimum phase system, even an exactly accurate linearizaing controller can render
the zero dynamics of the system unstable; A condition that must be actively considered
and accounted for in the design of the controller and path to be followed. In this work,
we present three example cases of non-linear, and later, non-minimum phase systems. The
first, strictly non-linear example is that of racing a car. The technique of Learning Feedback
Linearization is used to learn an exactly linearizing controller for a 2D racecar, represented
by a dynamically extended bicycle model. A preprocessing network is further posited to
convert the outputs of the linearizing controller to a seperate set of inputs for the racecar.
The latter two examples, both demonstrating non-minimum phase behavior, are those of
Planar Vertical Take-Off and Landing in aircraft, and the control of a two-wheeled bicycle.
In both cases, these problems are formulated and posed as Reinforcement Learning problems.
The formulation of our solution for the latter examples attempts to learn how to correct a
nominal path, provided as input to the algorithm, in an effort to maintain the stability of the
zero dynamics. Our progress towards these goals is reported; some demonstrative example
cases of all three systems are shown, and the progress and results of these experiments are
discussed in depth. Finally, possible avenues of future work are discussed.
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Chapter 1

Preliminaries

1.1 Introduction

The control of nonlinear systems is traditionally considered challenging because of the many,
and varied classes of nonlinear systems that each display unique behaviors. typically this
needs to be accounted for on a case-by-case basis. The field of geometric control seeks to
address this by taking advantage of the structure of the system’s dynamics to simplify related
tasks like trajectory tracking and planning [1, 2]. The fundamental issue with this approach
is the necessity for accurate knowledge of the system’s dynamics, which can involve a great
deal of system identification work or otherwise simplifying the model of the dynamics. This
is in contrast to the techniques of model free reinforcement learning, [3–5] which can be used
to automatically compute optimal control strategies with no prior knowledge of the system’s
dynamics. Recent work in this direction has shown some promise but remains difficult in
many cases due to poor sample complexity in many robotics applications [6–8]. In this paper,
we first seek to demonstrate the technique of Learning Feedback Linearization (LFBL), first
proposed in [9]. LFBL is designed to exploit the advantages of both geometric control and
model-free reinforcement learning to optimize a geometric controller for a plant with unknown
dynamics and limited structural assumptions about those dynamics. Specifically, it seeks
to learn an optimal implementation of a technique called Feedback Linearization (FBL). A
successful feedback linearization scheme has the extremely useful property of rendering the
input-output relationship of an otherwise nonlinear plant to be linear. This then enables
the use of path planning and control techniques from the much more broadly applicable, and
easily applied, field of linear systems theory [10–12]. While this technique has been used
extensively in robotics, the fundamental concern with feedback linearization is the necessity
for highly accurate models of the dynamics governing the robot [1, 2, 13–15]. The field of
adaptive control has seen extensive work on the construction of exactly linearizing controllers
[16–23], but this too has the limitation of needing highly structured representations of how
and where the nonlinearities arise in the system’s dynamics. The method of LFBL, in
constrast, requires relatively limited knowledge about the structure of a nonlinear system to



CHAPTER 1. PRELIMINARIES 2

exactly linearize it.
Beyond briefly presenting the method of FBL and extending it to LFBL, this paper is

aimed at applying the method for the task of controlling 4-wheeled motor vehicles. Specif-
ically, we want to employ this method to exploit the benefits of linear control in the devel-
opment of algorithms for racing cars. The nonlinear and nonholonomic nature of a car’s
dynamics, paired with their prevalence in our daily lives, makes the study of their efficient
and effective control a tantalizing pursuit. A great deal of work has been done to accommo-
date the idiosyncrasies of path planning and control for vehicles, and autonomous racing has
become a point of interest for profit, sport, and hobby alike [24–27]. There is a mature body
of literature on the design of Model Predictive Control (MPC) algorithms that seeks to create
optimal paths based on an explicitly stated sets of dynamics and system constraints. There
has also been some recent work towards learning various elements of MPC [28–30], With
this background in mind, we seek to use LFBL to learn the dynamics of a car. The resulting
linear input-output relationship can be used to vastly simplify its planning and control. We
demonstrate this by the construction of a simple path planner that uses a Linear Quadratic
Regulator (LQR) structure paired with linear constraints to enforce the dynamics of the
vehicle. In addition, we posit a novel extension to the method of LFBL; a preprocessing
network that is designed to convert the values calculated by an exactly linearizing controller
into an appropriate set of inputs for the system we wish to control. This conversion then
allows for the application of a feedback linearizing controller to systems that do not share
the same inputs as the linearizing controller.

Beyond racing cars, a particular interesting subset of non-linear systems are the class
of non-minimum phase systems. The analysis and control of these systems is complicated
by the synthesis of a set of dynamics that must be found through the construction of a
diffeomorphism. This process of constructing the so-called ”eta dynamics”, or ”left-over
dynamics”, renders some modes of the system unobservable, and worse-yet, if these modes are
unstable with respect to the eigenvalues of the system, then those modes may act erroneously,
resulting in non-minimum phase behavior [1, 31]. From a theoretical standpoint, some
progress has been made towards adequately controlling this class of systems through stable
inversion techniques [32, 33], however, these types of approaches can lead to issues in causality
of solution, computational time, and being reliant on the addition of a feedback stabilizing
controller. Thus, it is often the case that a particular non-minimum phase system must have
special consideration given to it’s particular intricacies.
Two particularly useful examples of non-minimum phase systems to study are Planar Vertical
Take Off and Landing (PVTOL), and the control of a two wheeled bicycle. The former has
been studied in depth for it’s application to aircraft that must get into the air with little
or no room for a traditional runway, such as in the case of the harrier jet. A variety of
approaches have been used to solve this problem, each with it’s own set of trade-offs [34–36].
The latter example has also been studied in depth, with a wide variety of approaches in
simulation or even on custom-built hardware [37–40]. There has also been a respectable
literature developing around the use of machine learning to solve the problem of bicycle
control in some volume [41–43]. The difficulty with these approaches is that they often
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simplify the dynamics, and as a consequence, the non-minimum phase behavior inherent in
a bicycle is mitigated, or not considered at all. On the other hand, some approaches use
multi-body dynamics simulations that don’t admit any sort of explicit dynamic model for
the system, making analysis of the proposed controller difficult beyond empirical success or
failure [44–46]. To rectify these concerns, we propose a Reinforcement Learning approach
to the control of both PVTOL and bicycle systems. Specifically, we opt to learn how to
construct a path for non-minimum phase systems that will simultaneously adhere as closely
to a nominal desired path while attempting to maintain the zero dynamics of the system
within a predetermined desirable bound.

The remainder of this paper is structured as follows: Chapter 1: Preliminaries, will con-
tinue to develop necessary technical and intuitive background for the work here-in. Chapter
2: Non-Linear Vehicle Control will address the specifics of the vehicle dynamics under consid-
eration, briefly develop the method of LFBL, and present our progress towards the efficacious
control of a race car. Chapter 3: Non-Minimum Phase Control, will address the dynamics
of both PVTOL and bicycle systems, formulate their control as a Reinforcement Learning
problem, and report our progress towards the their effective control. Finally, Chapter 4:
Concluding Remarks, will briefly summarize the progress of the methods and techniques as
they are presented here, with an eye for how the current approach may be improved and
some promising possible directions of future work.

1.2 Feedback Linearization

To begin, we consider a system in the control affine form:

ẋ = f(x) + g(x)u

y = h(x),
(1.1)

The method presented here can address the ”square” case of this form where the number of
inputs matches the number of outputs. x ∈ Rn is the state, u ∈ Rq is the input, and y ∈ Rq

is the output with the mappings f : Rn → Rn, g : Rn → Rnxq, and h : Rn → Rq are assumed
smooth.

For the purposes of intuition, we will primarily address the single-input-single-output
(SISO; q=1) case with the knowledge that the Multi-input Multi-output (MIMO) square
case abides the same logic, albeit more mechanically obtuse. In the SISO case, we begin by
taking time derivatives of y = h(x) until the input u appears and invert this relationship
so-as to enforce the desired linear input-output behavior. Consider the first derivative of the
output posed in (1.1):

ẏ =
dh

dx
(x) ·

(
f(x) + g(x)u

)
=
dh

dx
(x) · f(x) +

dh

dx
(x) · g(x)u
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where Lfh(x) = dh
dx

(x) ·f(x) and Lgh(x) = dh
dx

(x) ·g(x) are called Lie derivatives and serve
to quantify the rate of change of y = h(x) along vector fields defined by f , and g respectively.
In the case where Lgh(x) 6= 0, u appears in the derivative and we can exactly control the
outputs y = h(x) with a controller of the form:

u(x, v) = 1
Lgh(x)

(−Lfh(x) + v)
(1.2)

where v ∈ Rq is the set of virtual inputs. This transformation between u and v serves to
”cancel out” the nonlinearities of the original system and enforce the relationship ẏ = v. If,
however, Lgh(x) ≡ 0, then the input can’t directly affect the first derivative as desired and
the control law (1.2) is not well defined. In this case, we can continue taking derivatives of
y(x) until the input appears. When the input appears in the γth derivative, the derivative
can be expressed as:

y(γ) = Lγfh(x) + LgL
γ−1
f h(x)u

(1.3)

where Lγfh(x) and LgL
γ−1
f h(x) are higher order Lie Derivatives. As before, if LgL

γ−1
f h(x) 6= 0

then the control law can be rewritten as:

u(x, v) = 1

LgL
γ−1
f h(x)

(−Lγfh(x) + v)
(1.4)

As above, this choice of control law enforces the relationship yγ = v, where gamma is
called the ”relative degree” of the nonlinear system.

This process can be extended readily to square, MIMO systems [q > 1]. By successively
taking the derivatives of each output variable until at least one of the inputs appears, we
can obtain an input-output relationship of the form:

[yγ11 , ..., y
γq
p ]T = b(x) + A(x)u

(1.5)

where the square matrix A(x) ∈ Rq×q is called the ”decoupling matrix” and b(x) ∈ Rq is
called the ”drift term”. If A(x) is invertable, then the control law can again be written as:

u(x, v) = A−1(x)(−b(x) + v) (1.6)

with virtual inputs v ∈ Rq corresponding to the decoupled linear system in (1.6):

[yγ11 , ..., y
γq
q ]T = [v1, ...., vq]

T (1.7)

where the jth entry of v is denoted vj, y
γj
j is the γth derivative of the jth output, and

γ = (γ1, ..., γq) is called the ”relative degree” of the system. The system (1.7) is Linear Time
invariant (LTI) and can be represented in the ”normal form”: with

ξ̇r = A′ξr +B′vr (1.8)



CHAPTER 1. PRELIMINARIES 5

With state variables ξr = (y1, ẏ1, ..., y
γ1−1
1 , ..., yq, ..., y

γq−1
q ) and A′ ∈ Rγ×γ and B′ ∈ Rγ×q.

This simplified normal form can be used to more easily create a desired trajectory for the
output of the nonlinear system using the techniques of linear control theory. A key insight
from this analysis is the manner in which the transformed LTI system is made to behave.
Specifically, the normal form is formulated in such a way that the γthj derivative of the jth

output is the value being directly controlled while the actual output, yj is related to this
value by a chain of integrators, e.g. we directly control the acceleration of a vehicle to achieve
the desired position values.

1.3 Non-Minimum Phase Dynamics

Continuing our analysis specifically for the SISO case, we can address the special case of a
feedback linearized system that displays non-minimum phase behavior. It is often the case
that a feedback linearized system will have relative degree γ ≤ n, resulting in a system of
γ linearly independent equations at some point xo. We would like to complete this system
of equations to encompass n equations, the size of the nominal system state. In particular,
we can generalize our previous understanding of the normal form to encompass these added
equations:

ξ̇1 = ξ2
...

ξ̇γ = p(ξ, η)
η̇1(x) = q1(ξ, η)
...
η̇n−γ(x) = qn−γ(ξ, η)

(1.9)

Where the η1, η2, ..., ηn−γ terms are the ”eta dynamics” of the system. A, typically non-
unique, set of eta dynamics can be found through the construction of a diffeomorphism.
A map Φ : Rn → Rn is called a diffeomorphism if it is a one-to-one smooth map with a
smooth inverse. Further, the map Φ : U → U is a diffeomorphism if its Jacobian DΦ has
full rank. So, by the construction of a map with the appropriate Jacobian, a corresponding
diffeomorphism can be found that outputs the correct change of coordinates. An unfortunate
side-effect of this transformation is that it renders the eta dynamics unobservable, further
complicating their analysis.
Next, we most consider the eta dynamics under a condition of output zeroing. As the name
would suggest, we seek to find an input that regulates the outputs being controlled to zero.
This task is in-and-of-itself trivial in light of 1.7, but can present some interesting residual
complications in the case of non-minimum phase systems. The process of choosing u to zero
the outputs results in the last n− γ equations of 1.9 being only a function of the eta states:

η̇1(x) = q1(0, η)
...
η̇n−γ(x) = qn−γ(0, η)

(1.10)
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These are called the ”zero dynamics” of the system. For ease, we will consider the lineariza-
tion about an equilibrium point at the origin. If the eigenvalues of the system lie strictly in
the left-half plane, then the system is said to be locally exponentially minimum phase; if one
or more of the eigenvalues lies on the jω axis, then the system may only be asymptotically
minimum phase. Finally, if any of the eigenvalues of the linearization lie in the right-half
plane, then the system is said to be non-minimum phase. Effectively, this analysis amounts
to the question of stability in the eta dynamics. If, in the process of regulating the controlled
outputs to zero, the residual eta dynamics are stable with respect to the systems eigenvalues,
then the eta dynamics will pose no issues. If, however, the eta dynamics are not stable, then
the system may act erroneously in a manner that is not conducive to safe operation. Some
specific examples of non-minimum phase systems are discussed in chapter 3 to provide more
concrete insight into the possible difficulties of non-minimum phase systems, and how we
hope to address them.

1.4 Optimal Control and Planning

The transformation of the previously nonlinear dynamics into a linear system of the form
(1.8) enables the use of a wide range of possible linear control and path planning techniques
that present greater opportunity for guarantees in performance and safety. Central to the
path tracking approach used in this work is the continuous-time LQR:

min
v

∫∞
0

(xTQx+ vTRv) (1.11)

Where x ∈ Rγ is the system state, v ∈ Rq is the input and Q ∈ Rγ×γ and R ∈ Rq×q are
weight matrices determined by the designer. The solution of this optimization problem can
be readily found by solving the continuous-time algebraic ricatti equation:

ATP + PA− PBR−1BTP +Q = 0 (1.12)

Solving this equation for a unique, positive definite solution, P, provides sufficient information
to construct an optimal feedback control law:

v∗ = Fx = R−1BTPx (1.13)

The ease of solution of equation (1.12), paired with the simple control law (1.13) and
guarantees of optimality in control make this ideal as a feedback control strategy to regulate
the car to the commands of a higher-level path-planner, which we construct as a discrete-
time, constrained LQR problem:

min
v

∑N−1
k=1 (xTQxk + vTkRvk) + xTNQfxN

s.t. xτ+1 = A′xτ +B′vτ
x(T ) = xf
x(0) = x0

|v(k)|∞ ≤ vbnds

(1.14)
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Here, N is the number of execution steps in the desired look-ahead time, T . τ represents the
current time-step, xf and x0 represent the desired final and initial locations of the system’s
linear state respectively. xτ and vτ represent the linear system state and input, respectively,
at time-step τ . Finally, Q ∈ Rγ×γ, Qf ∈ Rγ×γ, and R ∈ Rq×q are weight matrices determined
by the designer. Further,

v = [v1, .., vN−1]

x = [x1, ..., xN ]
(1.15)

This configuration is ideal for multiple reasons. While the unconstrained version of (1.14)
can be solved readily using a ricatti equation similar to (1.12), we choose to formulate this
system with the additional constraints of a starting and ending location, Other constraints
are added to enforce mechanical limitations like only having the ability to accelerate so
quickly. This effectively forces the planner to account for the boundary conditions of the
car’s starting location, mechanical limitations, and where it should be at the end of its look-
ahead period. The addition of constraints to enforce waypoint tracking between the start
and finish locations can be used to further constrain the planner to a desired path. In the
exactly linearizing case of chapter 2, both the state path and inputs that we calculate in
this approach can be used limiting the need for the continuous time LQR solution (1.13),
However, in the approximate controller case, we will need a more active form of feedback
control to correct for the unknown true dynamics of the system. It is convenient to note that
in both cases, (1.14) a linearly constrained quadratic programming problem that is easily
solvable by most off-the-shelf solvers quickly and thus is ideal for a waypoint following-based
path planning approach. Specifically, this formulation can be iteratively solved as the system
evolves to update the planned path as the vehicle successively approaches and passes new
waypoints, akin to an MPC approach.

1.5 Reinforcement Learning

While we construct our control approach in this work to be amenable to any common Rein-
forcement Learning algorithm, we have opted throughout this work to use an implementation
of Soft Actor-Critic (SAC). a state-of-the-art model-free deep RL algorithm. SAC is an off-
policy algorithm that optimizes over a stochastic policy with entropy regularization, which
augments its objective to be

J(π) =
T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (1.16)

where H(π(·|st)) is the entropy term that measures the randomness of the policy under st and
α is a temperature hyper-parameter that determines the relative importance of the entropy
[47]. Detailed implementations and novelty designs [48] of SAC will not be mentioned in
this work. We have opted to use SAC for a variety of reasons, including it’s success in the
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related work posed by [9], it’s general performance, and overall desirable sample complexity
properties.
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Chapter 2

Non-Linear Vehicle Control

2.1 Vehicle Dynamics and Feedback Linearization

For the purposes of this work, we address only the lateral dynamics of a vehicle, or, the
dynamics from a ”top down” view. The intricacies of a vehicle’s suspension, the possibility of
tire slip, and the dynamics of the car’s drive train will ideally be learned by the preprocessing
network posited in section 2.2. With this in mind, we consider a dynamically extended bicycle
model of the vehicle dynamics:

ẋ = V cos(ψ + β)
ẏ = V sin(ψ + β)

ψ̇ = V
lr
sin(β)

V̇ = a

β̇ = b

(2.1)

Where x and y are the coordinates of the vehicle’s center of mass in an inertial frame
(X, Y ), ψ is the inertial heading of the car, V is the velocity of the car, lr is the distance
from the center of mass to the vehicle’s rear axle, and β is the angle of the velocity of the
center of mass with respect to the longitudinal axis of the car. Here, we choose x and y as
the outputs of the system that we seek to control and further choose a and b as the inputs
through which we will do so. A visualization of this system is provided in figure 2.1. A
first-principles analysis of this system reveals further:

β = tan−1(
lr

lf + lr
(tan(δf )) (2.2)

where δf is the angle of steering of the front tires and lf is the distance from the center of
mass to the vehicle’s front axle. While δf is more intuitively meaningful as a choice of input,
the complicated nature of its relationship to the vehicle’s dynamics make it preferable for
our formulation to control β̇ directly and back-calculate δf uniquely in the case of a steering
angle limited to at most ±90 degrees from a neutral orientation. This easily covers the range
of any standard vehicle’s max steering angle.
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With this form of the dynamics, we can start deriving the system’s linearized normal
form. We first take derivatives of the outputs with respect to time until the inputs appear:

x = x
ẋ = V cos(ψ + β)

ẍ = V̇ cos(ψ + β)− β̇V sin(ψ + β)− V
lr
sin(ψ + β)

ẍ = cos(ψ + β)a− V sin(ψ + β)b− V
lr
sin(ψ + β)

(2.3)

similarly, the derivatives of y can be found:

y = y
ẏ = V sin(ψ + β)

ÿ = V̇ sin(ψ + β) + β̇V cos(ψ + β) + V
lr
sin(ψ + β)

ÿ = sin(ψ + β)a+ V cos(ψ + β)b+ V
lr
sin(ψ + β)

(2.4)

With this, our vector relative degree is:[
γ1

γ2

]
=

[
2
2

]
(2.5)

Figure 2.1: Visual representation of kinematic bicycle model
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By applying the transformation x = ξ1
1 , and y = ξ1

2 , the normal form can be written as:

ξ̇1
1 = ξ1

2

ξ̇1
2 = ξ1

3

ξ̇1
3 = cos(ψ + β)a− V sin(ψ + β)b− V

lr
sin(ψ + β)

ξ̇2
1 = ξ2

2

ξ̇2
2 = ξ2

3

ξ̇2
3 = sin(ψ + β)a+ V cos(ψ + β)b+ V

lr
sin(ψ + β)

(2.6)

with corresponding decoupling matrix:

A =

[
cos(ψ + β) −V sin(ψ + β)
sin(ψ + β) V cos(ψ + β)

]
(2.7)

and associated drift term:

b =

[
−V
lr
sin(ψ + β)

V
lr
sin(ψ + β)

]
(2.8)

This yields the equations for our linearizing inputs:

u = −A−1b+−A−1v (2.9)

where v is the virtual input to the desired linear system and u is the corrected input that
accounts for the nonlinearities of the system. Finally, we arrive at the linearized dynamics
relating the virtual inputs to the outputs:

ẍ = v1

ÿ = v2
(2.10)

It is clear from inspection that the appropriate choice of v1 and v2 allows us to exactly
control the desired output, x and y. The resulting linear system as expressed in (1.8) is

A′ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B′ =


0 0
1 0
0 0
0 1

 (2.11)

C ′ =

[
1 0 0 0
0 0 1 0

]
(2.12)

2.2 Problem Formulation

Learning Feedback Linearization

The primary shortcoming of feedback linearization as a methodology is it’s inherent depen-
dence on exact knowledge of the dynamics governing the plant, or, the system that is being
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controlled. This naturally leads to two sets of dynamics that must be considered in practice,
the plant dynamics that represent the true behavior of the system, and the model dynamics
designed by the engineer attempting to control the system; consider:

ẋp = fp(xp) + gp(x)up

yp = hp(x),
(2.13)

ẋm = fm(xm) + gm(x)um

ym = hm(x),
(2.14)

Where a subscript p denotes that we are referring to the plant and a subscript m indicates
that we are referring to the model. With the technique of Learning Feedback Linearization,
we aim to rectify the aforementioned model mismatch by learning how to appropriately
deviate the nonlinear input up to better match the output of the plant to what we would
expect based on the model. In this way, we are not only learning an exactly linearizing
controller, but also forcing the plant to behave according to the dynamics designated by
our model. For learning feedback linearization to be applicable, we first require that the
system(s) (2.13), (2.14) have the same, well-defined relative degree:

(γp1 , ..., γ
p
q ) = (γm1 , ..., γ

m
q ) (2.15)

With this assumption, we can guarantee the existence of feedback control laws of the form:

up(x, v) = βp(x) + αp(x)v (2.16)

um(x, v) = βm(x) + αm(x)v (2.17)

With βp(x), βm(x) ∈ Rq, and αp(x), αm(x) ∈ Rq×q. up is, as of yet, unknown, but owing to
the structure and assumptions reviewed here, we can relate the dynamics of the plant and
model as follows:

βp(x) = βm(x) + ∆β(x) (2.18)

αp(x) = αm(x) + ∆α(x) (2.19)

Here, ∆β(x) and ∆α(x) are two continuous functions with parameterized estimates:

∆β(x) ≈ βθ1(x),∆α(x) ≈ αθ2(x) (2.20)

Where θ1, θ2 represent the parameters to be learned through experimentation of the
reinforcement learning agent. It is through learning the approximations (2.20) that the model
mismatch is rectified and exact feedback linearization of the dynamic system in question can
be achieved with the control law:

ûθ(x, v) = [βm(x) + βθ1 ] + [αm(x) + αθ2 ]v (2.21)
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Formulating the Learning Problem

We know from section 1.2 that the dynamics relating the inputs to the outputs under control
law (2.21) are of the form:

y(γ) = bp(x) + Ap(x)ûθ(x.v)︸ ︷︷ ︸
Wθ(x,v)

(2.22)

Where bp(x) and Ap(x) are unknowns. We seek to find the parameters θ such that
Wθ∗(x, v) ≈ v, leading to the choice of a point-wise loss ` : Rn × Rq × RK1+K2 → R:

`(x, v, θ) = ||v −Wθ∗(x, v)||22 (2.23)

This relatively simple 2-norm loss measures the learned controller’s performance in lin-
earizing the plant dynamics as a function of the control ûθ and the state x when virtual
input v is applied to the linear reference model whose behavior we seek to match. Next we
can define a probablity distribution X over Rn with V , the uniform distribution over the set
{v ∈ Rq : ||v|| ≤ 1} and define the weighted loss:

L(θ) = Ex∼X,v∼V l(x, v, θ) (2.24)

With this, we chose to formulate our learned controller to optimize over parameters, θ
to solve the problem:

minθ L(θ) (2.25)

The primary concern in formulating the learning problem like this is the unknown nature
of the terms that constitute Wθ∗(x, v), however, this can be circumvented by measuring the
outputs of the plant, y(γ) as there is an equivalence between the two as defined in (2.22).
Further detail on the continuous time formulation of this problem, including the conditions
under which global minima can be found, can be found in [9].

Preprocessing Network

The gym environment ‘CarRacing-v0‘ takes in tuples of actions in the form {s, g, b}, corre-
sponding to the steering, gas, and brake applied respectively. In an end-to-end reinforcement
learning task, there exists no need to investigate the detailed effects and properties of indi-
vidual actions, as the learning algorithm would implicitly learn some representations of the
actions, such as a Q functions, through the training process [49].

In this task, however, the gym environment can be modified to return the inputs needed
for the LFBL controller, but not to receive it’s outputs. That is, the LFBL controller provides
commands for acceleration and steering angle, while the racing environment requires inputs
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in terms of steering angle, gas and brake. This signal mismatch makes it necessary to
develop a methodology for converting between the two types of inputs, and motivated the
development and training of ”preprocessing network” using traditional supervised learning
techniques.

Since the relationship between linear acceleration and the required control inputs is rea-
sonably simple, a shallow feed-forward neural network can approximate the relationship well.
The input layer has size (1× 200) followed by a leakyReLU activation, and the output has
size (200× 1) with identity output activation. The Adam optimizer is used with a learning
rate of 0.05 over the MSE loss.

Overall Control Architecture

To briefly summarize the overall control architecture posited in this paper, we direct the
reader to figure 2.2 which is a visual representation of how the path and corresponding
control signals are created and fed to the environment. In general, the entire system is
guided by a path planner that calculates an optimal path from a desired starting point to a
desired end-point, as-in (1.14). Then the LFBL controller can be used to calculate an input to
the nonlinear dynamics of the car that will behave as-in the desired linear relationship, (1.7).
The output of this controller, acceleration, is then converted into gas and brake signals that
are fed directly to the racing environment in tandem with the other output of the linearizing
controller, steering angle. The effect of these inputs is observed and used to further train
the LFBL controller. Note that, in the case of the exact learned controller desribed below,
the preprocessing network is not needed, as the dynamics being learned are strictly of the
form of the LFBL controller.

2.3 Experiments, Results, and Discussion

Exact Learned Controller

We first sought to learn a controller that starts with a linearizing controller based on a
set of nominal dynamics that can be exactly linearized relative to the true dynamics being
learned. The setup for running experiments to this end involves the instantiation of two sets
of dynamic equations of the form (2.1). The key difference is the differing choice of lr. This
inherently affects how the inertial heading evolves and has downstream consequences for how
the outputs we seek to control evolve. In particular, this mostly effects the drift term. Thus
the problem is for the agent to learn a corrective drift term that accurately accounts for the
difference in lr and causes the true dynamics to behave exactly as the nominal dynamics
would dictate. For the tests performed, the nominal dynamics were instantiated with an lr
value of .5, idicating a distance between the front wheels and the center of mass of .5 meters.

With this setup we began training. The LQR planner discussed in section 1.4 was con-
figured to plan a path for the car from a starting location of [x, y] = [0, 0] at t = 0 to a
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Figure 2.2: Diagram depicting the overall flow of the proposed control scheme

final location of [x, y] = [5, 5] at t = 5s with a time step of .02s, resulting in episodes of
249 steps of the environment. because the car begins aligned with the y axis, this involves
turning, which will in turn require that the agent learn to correct for turning as well as ac-
celeration. The step reward is calculated as the 2-norm distance of the vehicle’s linear state
from the desired state calculated by the planner at that time. the sum of these values over
an episode is therefore a good indication of the ability of the controller to follow the desired
path and is consequently a good proxy for the quality of the learned controller. To begin,
we removed the ability of the agent to actively effect the controller in order to set a baseline
that reflects the performance of the controller as it was nominally designed with lr = .5. We
found that in an episode of 249 steps the total loss for an episode was constant, as there
was no way for the agent to interact with, and correct, the controller. The baseline average
episode return value we observed was −1.4× 103. We next tried to run the algorithm using
the default parameters of the SAC implementation being used and received a max average
episode return of -350 at epoch 56 of 200. This is slightly less than a four-fold reduction,
indicating significant improvements in the performance of the learned controller, a plot for
the learning curve of this agent, as well as a visualization of the path it followed vs the path
it was intended to follow are in figures 2.3 and 2.4, respectively. Once the performance of
a naively tuned agent was found, we began a hyperparameter sweep to determine the best
performing set of parameters. We opted to run these sweeps over a single variable, keeping
the rest of the hyperparameters as the default setting used in the previous experiment. We
ran tests varying learning rate, the batch size of training updates, the discount factor, γ,
as well as the polyak iterpolation factor, ρ, the result of most of these experiments was the
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same; within roughly 10 eopchs of starting the experiment, the agent would converge to an
Average episode return fluctuating between -700 and -900, although it would occassionally
show chaotic behavior where it either performed exceptionally well, as in the trial reported
above, or blowing up and returning NaN values after several epochs. This seems to indicate
that the performance of the agent is sensitive to the seed used in the training process, which
was selected at random for each trial. We further note that these trials were run in roughly
one hour per trial on both a personal laptop and desktop.

From inspection of 2.4, a few things are clear. While the desired path is relatively smooth,
the path that is followed by the nominal controller with no learning performs quite poorly,
diverging from the initial path very quickly, performing chaotic maneuvers and not arriving at
the correct final location. This is to be expected as the controller is designed not to match
the model that is actually being controlled. More interesting is the path followed by the
learned controller, reported above to have an average episode return of -350. It is clear that
this controller does not follow the path very closely, makes erroneous maneuvers, and fails
to reach the specified endpoint. It does, however, reach roughly the correct y-coordinate,
y = 5 and manages to stay much closer to the desired path than the the controller with
no learning. There might be a few reasons for this lackluster performance. As previously
mentioned, this trial appears to be the product of a good initial seed without any special
hyperparameter tuning. Thus, performing a second hyperparameter sweep using this initial
seed will likely improve performance significantly.

Figure 2.3: Plot of the learning curve for the exactly linearizing agent.
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Approximate Learned Controller

The next case to consider is the approximate learned controller. here the true dynamics are
modeled by the car racing environment discussed in section III. Beyond simply learning a
corrective term for 2.1, this set of true dynamics also models more complicated behaviors
relating to the application of brakes, steering, and gas as well as accounting for the delays
in their effect on the acceleration and steering that we seek to control. This is where the
preprocessing network is used to learn those more complicated relationships and relate them
to the acceleration and steering angle that we command from our linearized controller.
This involves not only a well-trained linearizing controller, but a well trained preprocessing
network. As such, we though it best to decouple the problem of training the controller and
preprocessing networks before we could begin experiments to this end in-earnest. While
an initial version of the preprocessing network has been trained as per section 2.3, the fact
that we are still in the process of training an optimally performant linearizing controller
has limited our ability to test the performance of the controller and preprocessing network
combined.

Figure 2.4: Plot of desired path versus learned path versus no learning path
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Preprocessing Network Training

The aim of the preprocessing network is to take in the desirable linear acceleration that
the feedback linearizing controller outputs, and return the tuple {gas, brake} which can be
directly sent as a control action to the gym environment.

The training data set is collected by sampling random actions from the ‘CarRacing-v0‘
environment with the steering angle fixed to be zero. Once an action vector is sampled,
it is fixed and kept applied to the environment for certain number of steps (usually 10).
The acceleration is calculated by taking the average of the differences in velocity between
consecutive steps. Our final data set consists of 5000 {acceleration, gas, break} observations,
where the last two variables serve as the label in the supervised learning task. A plot of the
learning curve for the initial preprocessing network implementation is shown in figure 2.5.
While it appears to have convereged by iteration 20 of training, we have not yet had the
opportunity to test it in tandem with the linearizing controller.

Figure 2.5: Plot depicting the learning curve of the preprocessing network.
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Chapter 3

Non-Minimum Phase Control

3.1 Example Dynamics and Feedback Linearization

Planar Vertical Take Off and Landing

Planar Vertical Take Off and Landing (PVTOL) is an oft-studied example of non-minumum
phase behavior and consists of an aircraft, assumed to be operating strictly in the 2D plane
whose normal vector is defined by the roll axis of the aircraft at the beginning of the trial.
The most common real-world example of this can be found in the harrier jet. In general,
we choose the state of the plane to be the x and y coordinates of the center of mass, the
roll angle, θ, as well as their derivatives, ẋ, ẏ, θ̇. A visualization of this problem is shown
below in [figure from textbook]. The nominal nonlinear dynamics of this system can be
described as:

ẍ = −sin(θ)u1 + εcos(θ)u2

ÿ = cos(θ)u1 + εsin(θ)u2 − 1

θ̈ = u2
(3.1)

Here, ε ≥ 0 intuitively represents the coupling term between the roll moment and lateral
acceleration of the aircraft being studied, which is, in turn, determined based on the design
of the specific aircraft being studied. The decoupling matrix of this system is:

A =

[
−sin(θ) εcos(θ)
cos(θ) εsin(θ)

]
(3.2)

with associated drift term:

b =

[
0
−1

]
(3.3)

It is important to note that det(A) = −ε, implying that the decoupling matrix is non-singular
so long as the strict inequality ε > 0 is maintained. With this linearization scheme in mind,
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the resulting linear system can be described by the following system of equations:

ẍ = v1

ÿ = v2

θ̈ = 1
ε
(sin(θ) + cos(θ)v1 + sin(θ)v2)

(3.4)

The resulting linear input-output system is of the form we seek, with the residual effect
of rendering the θ dynamics unobservable. To address the idiosyncrasies of this, we must
analyze the zero dynamics of the system. By choosing v1 = v2 = 0, we find the resulting
zero dynamics to be:

θ̈ =
1

ε
sin(θ) (3.5)

This corresponds to the motion of an undamped pendulum and indicates that the PVTOL
system is non-minimum phase. Intuitively, this indicates that the system, unperturbed by
inputs, will naturally rotate back and forth or repeatedly roll over, depending on it’s initial
conditions. In the case of this work, we assume perfect model knowledge, resulting in only
3.4 being simulated for computational efficiency. Further we strictly abide the condition
ε > 0 to insure the efficacy of this approach. Further details of this derivation, as well as the
intracacies of the ε = 0 case can be found in [1]

Bicycle

The case of a two-wheeled bicycle is a particularly challenging example of a non-minimum
phase system due primarily to the nature of it’s non-holonomic dynamics. Intuitively, we
seek to feedback to linearize the bicycle to control it’s x and y location through choice of
linear inputs v1, and v2. The difficulty arises in enforcing the no slip condition between the
bicycle’s tires and the road. Because the tire cannot slip, the bicycle is forced to move in
such a way that the front tire is constantly moving forward along the plane of the tire.

The bicycle model chosen utilizes some key assumptions that simplify the construction
of a dynamic model. First, the upright bicycle is assumed to have a fixed steering axis
perpendicular to the ground. The introduction of tilt to the steering axis has multiple
desireable residual effects on the dynamics of the bicycle including allowing the bicycle to be
self-stabilizing in some situations[45], but the modelling of this condition would be needlessly
complicating for our purposes. Second, a single inertia tensor, J, is associated with both the
bicycle frame and any rigidly attached payload and is expressed in the center of mass frame
of the vehicle. Further, J is assumed to be a scalar multiple of the 3 by 3 identity matrix.
Finally, instead of modelling the driving force of the car as a common chain and sprocket
mechanism, we place a force generator at a point opposite the forward direction of the
bicycle, in the plane of the bicycle frame and at the height of the center of mass to avoid
a net pitch moment on the bicycle. Diagrams of the bicycle configuration can be found in
figures 3.1, and 3.2.
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A Lagrangian formulation of the bicycle’s dynamics results in the following equations:

ṡ = ω
M(q1)q̈ = F (q1, q̇) +B(q1)u+ AT (s, q1)λ

A(s, q1)q̇ = 0
(3.6)

Where q1 = [α, θ]T , q2 = [x, y]T and q is the stacked vector of q1 and q2, and u is the force
generated by the force generator. Further, x and y represent the location of the center of
mass, α is the roll-angle, and θ is the yaw angle, or, the angle formed between the x-axis and
the contact line formed by the point of contact of both wheels. φ is the steering-angle of the
bicycle, and s := tan(φ)/b is the steering variable with derivative ω. M is symmmetric and
positive definite, A is full-rank and λ ∈ R2 are the lagrange multipliers used to enforce the
non-holonomic constraints of the system. The zero dynamics resulting from this formulation
can be described as:

α̈ =
gpsin(α)

j + p2
(3.7)

Where g is gravity, p and j are constants determined by the shape, size, and mass of the
bicycle. This corresponds to the equation of an inverted pendulum that is unstable about
α = 0. Consequently, the system is non-minimum phase.

To ameliorate the issues surrounding the non-holonomic constraints, the system can
further be transformed to be in terms of ˙̃q = [α̇, vr, θ̇, vp], via the tranformation q̇ = T ˙̃q.

Figure 3.1: Side view visualization of bicycle configuration [37]
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Figure 3.2: Top-down visualization of bicycle configuration [37]

As in q, ˙̃q can be decomposed into ˙̃q1 = [α̇, vr]
T and ˙̃q2 = [θ̇, vp]

T . The result of this
transformation is a simplified set of dynamics that is not dependent on the A matrix:

M̃ ¨̃q1 = F̃ + B̃ū (3.8)

Here ū := [w, u]T is the vector of nonlinear inputs to the transformed system. Supposing
B̃ is invertable, vr > 0, and letting ¨̃q = v, the nonlinear input can be found as:

ū = B̃−1(−F̃ + M̃v) (3.9)

Further, letting αd(t) and vrd(t) be the desired twice differential trajectories for the roll and
rear-wheel velocity, with vrd(t) 6= 0 for all times, t, and choosing real numbers c11, c10, c20

such that the polynomials r2 + c11r + c10 and r + c20 are stable, we can construct our new
inputs as:

v =

[
¨(αd)− c11(α̇− α̇d)− c10(α− αd)

v̇rd − c20(vr − vrd)

]
(3.10)

This choice of input will serve to stabilize the the roll angle and bicycle velocity to the
desired values defined above, effectively accounting for the otherwise non-minimum phase
behavior of the bicycle. One unfortunate side effect of this control technique is that it ef-
fectively sacrifices control of the bicycles x and y coordinates to insure the stability of the
roll dynamics, causing this control approach to be severely limited in use. A more in depth
explanation, as well as a complete derivation of the above dynamics can be found in [37].
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The limited use of the controller posed above led to a reformulation of the feedback lin-
earizing controller to directly control x and y, leaving the non-minimum phase zero dynamics
to evolve unabated. We begin again, as in 2.1, taking derivatives of the output values we
seek to control:

x = x
ẋ = cos(θ)vr
ẍ = −sin(θ)θ̇vr + cos(θ)v̇r

(3.11)

As well as:

y = y
ẏ = sin(θ)vr
ÿ = cos(θ)θ̇vr + sin(θ)v̇r

(3.12)

This, in tandem with the relationship, θ̇ = sv̇, leads us to our final form of the derivatives:

ẍ = −sin(θ)sv2
r + cos(θ)v̇r, ÿ = cos(θ)sv2

r + sin(θ)v̇r (3.13)

It can further be shown that v̇r can be expressed as:

v̇r = (M̂−1F̂ )2,1 + (M̂−1B̂)2,1u+ (M̂−1B̂)2,2ω (3.14)

Where the notation (A)n,m denotes the (n,m) entry of matrix A. It is important to observe
that 3.14 provides a relationship between v̇r and ω, which would provide an avenue for
controlling the system using ω. Upon closer inspection, it can be shown that the decoupling
matrix for this formulation of the controller would be singular with respect to u, and ω. So
we instead seek to formulate this problem, without substitution, in terms of s and v̇:[

ẍ
ÿ

]
=

[
−sin(θ)v2

r cos(θ)
cos(θ)v2

r sin(θ)

]
︸ ︷︷ ︸

A

[
sd
v̇r,d

]
(3.15)

Where A is the decoupling matrix of this new formulation and the desired values can be
calculated as: [

sd
v̇r,d

]
= A−1v (3.16)

Here, v is the input calculated by the linear controller. This formulation does have some
idocycracies; foremost, while we calculate control in terms of s, the dynamics explicitly
require an input in terms of ω, hence we calculate:

ω = −γ(s− sd) (3.17)

Where γ > 0 is chosen so that s tracks sd as close as reasonably possible without causing
instability in the dynamics or other erroneous behavior. rearranging 3.14 further provides a
way to calculate u:

u =
1

(M̂−1B̂)2,1

(v̇r,d − (M̂−1F̂ )2,1 − (M̂−1B̂)2,2ω) (3.18)
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This choice of u will implicitly cause the relationship v̇r = v̇r,d to hold, as desired. This
controller formulation allows a specific sequence of x and y coordinates to be tracked while
sacrificing any guarantees of stability of the roll angle of the bicycle. While this is normally
not ideal, this is a natural formulation for the learning approach that will be developed in
section 3.2

3.2 Formulating the Learning Problem

As discussed in section 1.3, the major difficulty of non-minimum phase systems rests in
the eta dynamics, which are, by definition, not asymptotically stable, and some times even
unstable when the ξ states are set to 0. these two types of behavior are demonstrated in
the PVTOL and bicycle examples discussed in section 3.1, respectively. To rectify this,
we have opted to learn how to account for the zero dynamics using reinforcement learning.
Specifically, we aim to train an agent that can accept a desired nominal path for the system
to follow and subsequently outputs a corrected path that deviates nominally from the desired
path in an effort to keep the eta dynamics within a desired ”safe” range. To formalize this
approach, lets consider a set of dynamics in the standard, feedback linearized form:

ξ̇ = Aξ +Bv
η̇ = q(ξ, η) + p(ξ, η)v

(3.19)

Where ξ ∈ RP , and η ∈ Rl, implying (ξ, η) ∈ Rn. Then we can formulate this problem as
the following optimization problem:

inf
θ∈Θ

E(ξ0,η0)∼X,φ∼Φ

∫ T

0

λP‖ξd(t, φ)− ξ(t)‖+ λZDH(η(t)) + λI‖v(t)‖+ λT‖ξd(T, φ)− ξ(T )‖dt

ξ̇(t) = Aξ(t) +Bv(t)

η̇(t) = q(ξ(t), η(t)) + p(ξ(t), η(t))v(t)

v(t) = ỹ
(γ)
d (t, α) +K(ξ̃d(t, α)− ξ(t))

(ξ(0), η(0)) = (ξ0, η0)

α = Mθ(ξ0, η0, φ)
(3.20)

Where ξd(·, φ) : [0, T ] −→ Rp is the nominal trajectory that we seek to track, ξ̃d(·, α) :
[0, T ] −→ Rp is the corrected trajectory to be followed in actuality, Mθ is the neural network
parameterized by θ, and K is the fixed feedback gain matrix calculated as the solution of the
continuous time LQR problem described in section 1.4. Further Φ is a distribution over some
subset of Rk, with K, the number of parameters for the trajectories to be tracked. The cost
function is constituted by four terms; ‖ξd(t, φ)− ξ(t)‖ seeks to penalize the neural network
for deviation from the desired path, with weight λP ≥ 0. H(η(t)) is a function that serves
to penalize the growth of the eta dynamics beyond the pre-defined safe range with weight
λZD ≥ 0 and ‖v(t)‖ is intended to place a cost on the use of the inputs with weight λI ≥ 0.
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Finally, ‖ξd(T, φ) − ξ(T )‖ penalizes the difference between the desired and actual terminal
states at time T with weight term λT ≥ 0. Turning now to the constraints of this problem,
the first two constraints serve to enforce the feasibility of the dynamics. The third constraint
enforces that the linear input is calculated as expected. The fourth constraint enforces the
initial conditions of the system and the final constraint simply indicates that the α value
used to calculated our desired values is the output of the trained neural network. In practice,
the desired path is posed as a sequence of way points that are then used to interpolate an
appropriate spline; The spline is then symbolically differentiated and the spline as well as its
derivatives are quarried to determine the overall path to be followed. Similarly, the network
outputs a set of way points and a similar process is used to determine the corrected path.

Of particular interest in this formulation is the cost on the zero-dynamics, H(η(t)) > 0.
We began with a few basic conditions; First, the function must be piece-wise continuous
on R. Second, the function must be convex in order to insure the existence of one or more
minima in that the algorithm can seek through experimentation. With this in mind, a
piecewise continuous function was chosen:

H(η(t)) =


|(η(t)−BU)ch| η(t) > BU

0 BL < η(t) < BU

|(η(t) +BL)ch| η(t) < BL

(3.21)

Here, BU > 0 and BL < 0 are upper and lower bounds chosen by the engineer to
demarcate ”soft” boundaries for a safe range of operation for the eta dynamics. ch is a
constant coefficient tuned in order to control how quickly the cost on the eta dynamics
begins to increase from zero outside of the ”soft” safe zone. This cost scheme is convenient
for multiple reasons; First, it is piece wise continuous and forms a convex function for which
the set [BL, BU ] are all minimizing solutions. An additional benefit of this approach is the
ability to tune the cost with only two coefficients. by increasing λZD and ch, the plot can be
made arbitrarily steep, allowing for a gradual increase of cost where a wider range of η(t)
values is acceptable and an almost directly vertical, ”psuedo-hard” constraint when a certain
range must be strictly adhered to.

3.3 Experiments, Results, and Discussion

Planar Vertical Take-Off and Landing

As the simpler of the two examples, we sought to demonstrate the overall performance of
our approach on the PVTOL case. We assume that the system starts at an origin in the
air, allowing it to maneuver in any direction the learned agent sees fit. For this experi-
ment, we chose to use ε = .3, which, in accordance with 3.4, corresponds to a relatively
large constant multiplier on the zero dynamics and providing an approachable challenge to
learn a correcting path-planning agent. The agent was allowed to train on 300,000 simulated
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PVTOL scenarios where, in each case, it was tasked with achieving x, and y coordinates
selected randomly from [−5, 5] within a 3 second window of simulation while maintaining
the stability of the eta dynamics. In this case, the soft constraint we aimed for was keeping
the eta dynamics in the range [−1, 1], with coefficients λZD = 300 and ch = 2. BU and BL

were chosen so that H(1) = H(−1) = 1. Finally, the other coefficients were chosen to be:
λP = 1, λI = 0, λT = 1000. This configuration was constructed to give the agent the most
flexibility and incentive to reach the terminal condition while keeping the eta dynamics as
in check.

To test the trained agent, we tasked it with accomplishing an x,y coordinate of [3,3] in
the same 3 second period. A plot of the resulting path it created and followed can be found
in 3.4. For comparison, a plot of the nominal path, a straight line from [0, 0] to [3, 3] without
any learned path correction is shown in fig 3.3. We observe that the uncorrected path results
in exact tracking of the straight line, but further causes the zero dynamics to become rela-
tively large compared to our ”soft” safety bounds, reaching a roll angle of over 4 rads, which
would correspond to more than one complete rotation of the system. The learned agent,
however, decreases the max roll angle achieved significantly. By deviating from the nominal
path, it can actively account for the eta dynamics. It performs well to keep the system at a
roll angle just below 1 rad for the first 2 seconds of the simulation, and begins turning the
opposite direction achieving a minimum roll angle of roughly -2 rads. It is also important to

Figure 3.3: Plot demonstrating performance of default controller
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Figure 3.4: Plot demonstrating performance of agent on PVTOL problem

note that the agent achieves a final x,y, coordinate of [3.08, 3.04].

While this is a marked improvement over following the nominal path, even these smaller
rotations may be uncomfortable for an operator on a real physical system. So, even tighter
constraints should be explored moving forward, making the problem even more challeng-
ing. In total, while we have demonstrated significant progress on this problem, there are
still improvements to be made, the costs of the λ values need to continue being tuned to
better meet the desired eta conditions and terminal state. Further, the parameters of the
SAC algorithm being used to train the agent need to be tuned to insure more consistant,
reproducible performance.

Bicycle

For the bicycle example, We first sought to reproduce the controller of [37], defined by
3.10, in order to verify that the simulated dynamics were correct. Specifically, we aimed to
reproduce experiment 1, which involved starting the bicycle at an initial roll angle α(0) =
−π/4, vr(0)=2, x(0) = y(0) = 0, and neutral steering angle with controller parameters
c11 = 2, c10 = 6, c20 = 1. Full details of the experiment can be seen in [37]. A comparison of
our simulated results to those of Getz can be seen below in 3.5. This figure demonstrates an
exact reproduction of the path traveled by Getz’ simulation and confirmed that the dynamics
were implemented correctly.
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Figure 3.5: Comparison of plots in reproduction of experiment 1 [37].

Next, we sought to implement the posited linearizing controller of 3.16. We opted to
start the bicycle at [0,0] with initial conditions α(0) = 0 and vr(0) = 2 and β = 2 and other
parameters as in experiment 1. The controller was asked to follow a straight-line path of
y(t)=x(t)=t for 30 seconds and the results of this experiment are shown below in figures
3.6 and 3.7. Because the bicycle is made to start oriented along the x axis, it must start
going straight and slowly turn to better align itself with the desired path, after overshooting
the path it must correct by turning again, continuing on in this fashion for the majority of
the trial, but overshooting less each time. Finally by the end of the trial at 30 seconds, the
controller has nearly converged to the desired path. The calculated roll angle, as expected is
left unchecked and diverges to unreasonably large numbers, nearing 200 rads of tilt on the
bicycle. This is, of course, not possible due to the nature of a bike and it’s roll angle, but
acts as a good indication that there may be use for our posited algorithm in the control of
a bicycle. Finally, the forward velocity cycles higher and lower to keep the bicycle near it’s
desired waypoint while ultimately settling at approximately 1.4 m/s.

Finally, we had hoped to begin running trials of the full learning problem as in the
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PVTOL case, but a few key issues arose. First, the lagrangian formulation of the dynamics
proved significantly more complicated than that of PVTOL, requiring a greater number of
nontrivial matrix operations per time step simulated. Second, we found that this formulation
required much smaller time steps in simulation to insure the convergence of the differential
equations being simulated. These two facts together made the run time of a single trial of the
simulation roughly 2-3 seconds, as opposed to the fraction of a second that a single PVTOL
simulation takes. The result of this is that the paradigm of running hundreds of thousands of
simulations to train an agent is currently intractable on a consumer grade personal computer.
It is possible that this may be rectified through one or more steps moving forward. First, we
may consider attempting to learn paths that are relatively short, requiring less simulation
time to execute and fewer times steps to simulate overall. Further, there may be performance
gains to be had in optimizing the code for the particular case of a bicycle.

Figure 3.6: Path of bicycle in feedback linearization experiment
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Figure 3.7: Roll angle and Velocity of bicycle in feedback linearization experiment
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Chapter 4

Concluding Remarks

4.1 Summary

We have presented two techniques for the control of non-linear, and later, non-minimum
phase systems. The technique of Learning Feedback Linearization, first posed by [9] was ap-
plied to the case of a race car that was feedback linearized based on a dynamically extended
bicycle model. an exactly feedback linearizing controller was learned via LFBL in the case
where exact linearization was possible; that is, when the error between the initial estimate
of the model and the true dynamics was defined only by a difference in the coefficients of
the same overall dynamic model. We then attempted to apply this to the case of a more
complicated dynamic model, simulated using the CarRacing-v0 gym environment. This en-
vironment serves to model additional behaviors not considered in a dynamically extended
bicycle model, including things like tire slip and delays in steering and acceleration. To ac-
complish this, a preprocessing network was posited to convert the nominal inputs calculated
by the LFBL into the inputs for the race car environment. Data of the race car’s response
to randomly selected inputs to the racing environment was collected to train the network.
As this line of work currently stands, initial experiments in the exact linearization case have
yielded promising early results, but do not, as of yet, seem to work as expected. This could
be due to a variety of reasons, but is most likely due to the need for further experimentation
with the parameters of the reinforcement learning algorithm being used. Because The more
complex task of controlling a race car with additional dynamic considerations implicitly re-
quires fitting an approximate linearizing model, we have yet to begin experimentation in
earnest. We have instead opted to reserve those experiements until the exact linearizing
controller can be fine-tuned and demonstrated to perform as well as reasonably possible.

next, we developed a Reinforcement Learning methodology for the control of non-minimum
phase systems based intuitively on the notion of correcting a desired path to better account
for the zero dynamics of the system in question. The formulation was made to learn this
corrected path by the choice of cost coefficients that implicitly encode the relative impor-
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tance of several key factors in the systems evolution, including, how close it is to the nominal
desired path, consistently keeping the zero dynamics of the system within a desired envelope,
minimizing the use of input signals, and insuring that the desired terminal state is met. This
is accomplished while explicitly enforcing the dynamics of the system being studied. This
technique was applied to the case of an aircraft attempting Planar Vertical Take Off and
Landing. Further, a dynamic simulation of a two-wheeled bicycle based on [37] was imple-
mented, debugged, and a new linearizing controller was designed to better suit the needs
of our project. At the time of writing, this line of work is still mid-development. As such,
we have begun initial experiments on the PVTOL case with mixed results. While the agent
appears to improve it’s performance over many iterations of attempting to learn a corrected
path, it still does not consistently converge to a solution that can routinely find a corrected
path that abides the desired bounds on the zero dynamics. We suspect that this is, again,
due to the need for further experimentation and tuning of the Reinforcement Learning algo-
rithm being used. The bicycle example entails much more complicated dynamics than the
PVTOL system, and has consequently introduced some practical difficulties to the project.
Specifically, the time it takes to simulate the bicycle in one trial with the agent is roughly
an order of magnitude greater than that of the PVTOL system, primarily owing to the la-
grangian formulation used. This significantly increases the time to train an agent beyond
what is practical on a consumer grade PC. We do expect that there are performance gains to
be made through code optimizations and tweaking of experimental parameters, but it may
ultimately require computational resources beyond what is currently available to us. This
may include something like a dedicated server in the lab or outsourcing the computation to
a cloud computing provider like Amazon or Google.

4.2 Future Work

Due in part to the current state of these two lines of work, as discussed above, there are some
obvious next steps to be taken in the continuation of this project. In terms of controlling
a race car with LFBL, there is further work to be done in experimenting with the exactly
linearizing controller in order to refine its ability to learn an effective corrective controller
and follow a desired path. This would involve performing multiple sweeps across various
parameters of the Reinforcement Learning algorithm being used. Once the LFBL agent
can be trained suitably well on the exactly linearizing case, we can begin implementing
the controller for the full use in the approximately linearizing controller. This would involve
training a new agent to learn the dynamics of the more complicated racing environment as an
approximated bicycle model, this would again require an extensive cycle of experiementation
to determine the best set of hyperparameters for the learning agent. After that, the proposed
preprocessing network can be retrained and tested to verify it’s ability to faithfully convert
the inputs provided by the controller into the inputs needed for the racing environment. In
terms of learning for non-minimum phase control, the first step would be continuing to fine
tune the learning algorithm’s hyperparameters to demonstrate more consistant performance
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on the task of achieving a (x,y) terminal condition while respecting the constraints placed on
the zero dynamics and the path we want it to follow. Once that has been accomplished and
the overall approach demonstrated in earnest, we intend to address the looming issue with
the bicycle dynamics. That being, it’s relatively slow performance in completing a single
run. This will be done by seeking to restructure and optimize the code that was written to
perform the simulation with the hope that major performance gains can be achieved. If not,
then an outside source of computational resources will be sought. It may alternatively be the
case that a different, simpler dynamic model demonstrating non-minimum phase behavior
will be chosen and implemented. With a practical and functional set of bicycle dynamics,
we will begin experiments in earnest. Specifically we hope to construct an example of a
bicycle trying to make a turn. This maneuver would excite the zero dynamics in a way
that a successfully trained agent could correct the desired path while still arriving at the
appropriate end state.

Beyond further refinement of the approaches and methods discussed here, there are a
number of exciting possible avenues to take this work. Once the LFBL controller can be
demonstrated to perform well in the racing environment, then we can consider expanding
the method to work on hardware such as the ROAR cars, or even full scale vehicles. While
the current methodology would work in principle for a physical car on a flat surface, the
development of a similar controller that can account for changes in height (e.g. ascending a
hill) would motivate the search for a way to reformulate the dynamics for the 3D case.
The non-minimum phase control work also has some natural ways in which we hope to extend
it’s performance. First, we would seek to develop the learning agent to iteratively plan longer
paths than the single time horizon over which it currently plans. We would accomplish this
by generalizing the training and overall formulation of the agent to work with arbitrary
initial conditions, instead of the nominal zero state that all of our experiments are currently
initialized at. With this, the agent could then be used to continually replan as it progresses
along a predefined path that would take longer than the planner could reasonably expect to
travel over a single look-ahead period. An example of a scenario where this may be useful is
the execution of a slalom with the bicycle. A nominal path can be designated as a sin wave
going around the markers that define the course. While the agent as we envision it here
might only be able to plan once through a small portion of the course due to its finite time
horizon, it can be iteratively applied to follow the slalom from whatever starting conditions
it may be in when a new plan is formulated. This example also poses the interesting question
of how the planner can be formulated to avoid obstacles like the markers, motivating the
study of how this formulation can be developed to account for obstacles that it cannot or
should not interact with.
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