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Abstract

Theory and Application of Bonus-based Exploration in Reinforcement Learning

by

Bryan Chen

Master of Science in EECS

University of California, Berkeley

Professor Jiantao Jiao, Chair

In this work, we strive to narrow the gap between theory and practice in bonus-based explo-
ration, providing some new connections between the UCB algorithm and Random Network
Distillation as well as some observations about pre- and post-projection reward bonuses.
We propose an algorithm that reduces to UCB in the linear case and empirically evalu-
ate the algorithm in challenging exploration environments. In the Randomised Chain and
Maze environments, our algorithm consistently outperforms Random Network Distillation
in reaching unseen states during training.
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Chapter 1

Introduction

Recently, deep reinforcement learning has been applied to a variety of problems with great
success. However, even though there has been a flurry of work on theoretical results in
reinforcement learning, the advancements are still quite far from the algorithms commonly
used in practice. In particular, the analysis of one of the central questions of RL, the
exploration-exploitation tradeo↵, remains mostly limited to the linear function approxima-
tion case. Meanwhile, the plethora of algorithms used in practice with deep neural networks
have little theoretical basis.

On tackling the exploration problem, one general idea that appears in both theory and
practice is adding a bonus to the reward to encourage visiting unique states/actions. In
theory, a common approach is to utilize the framework of optimism in the face of uncertainty

to take actions. The intuition is to take actions that gives the largest plausible reward given
the history; adding a bonus allows one to quantify the agent’s uncertainty of the reward from
an action. By contrast, in practice, reward bonuses are often used to augment the MDP,
biasing the agent’s learned model towards unseen actions.

Some practical reward bonuses [35], [9] attempt to estimate the visit counts of similar
states/actions, motivated in a general sense by the provably e�cient algorithms in the tabular
RL case that use visit count bonuses for optimism [11],[33], [16], [6]. However, although
demonstrating some success in practice, the motivation is unprincipled as the setting is
actually the function approximation case. Thus, it is natural to ask whether we can devise
algorithms that are inspired for this case.

The focus of this work is to demonstrate some connections between the algorithms used in
practice and in theory for the function approximation case. We further propose an e�cient
algorithm utilizing these insights. In particular, our algorithm reduces to the celebrated
UCB algorithm in the linear case [19], and works well in some empirical evaluations. On the
Randomised Chain and Maze environments, our algorithm outperforms a popular practical
algorithm, Random Network Distillation [12], in reaching unseen states during training.
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Chapter 2

Related Work

Linear and nonlinear bandits: The stochastic linear (contextual) bandit case is well-
studied [see [5], [14], [1], [28], [19]]. There are algorithms that can achieve near-optimal
pseudoregret of Õ(d

p
T ) [1] for the linear bandit case. Note that this case can be seen

as a linear MDP with a one-length horizon. Next, the nonlinear bandit is much less well
understood. The Eluder dimension was introduced by [29] as a measure of the complexity
of a function class based on the degree of dependence among action rewards, allowing for
regret bounds for general function approximation. However, [15] demonstrated that even for
simple 2-layer neural networks, the Eluder dimension could be exponential in the input.

Tabular RL: There are many works on provably e�cient algorithms in the tabular case.
In particular, the model-based algorithms [11], [33], [16], [6] are all based on the optimism
principle, using state-action counts to calculate a reward bonus. In the model-free case, [32],
[17] are also provably e�cient, with [17] utilizing state action counts for the bonus.

RL with function approximation: In the linear case, there has been some classical work
proposing various algorithms without guarantees [see [23], [10], [7], [20]]. Recently, [18]
demonstrated a provably e�cient algorithm in this case. More generally, [37], [38] demon-
strate regret bounds for algorithms with general function approximation in the deterministic
case and [36] in the stochastic case, but these results depend on the Eluder dimension. There
are also some results for policy-based methods such as [2], but we focus on value-based meth-
ods in our setting.

Practical bonus-based exploration: Recently in deep RL, there have been many practical
methods proposed that add a bonus term to the reward. They attain great sample e�ciency
on hard exploration environments from the Arcade Learning Environment [8]. Most belong
in the category of adding an intrinsic reward: count-based rewards that estimate how often
similar states have been visited [9], [35] and next-state prediction rewards that use predictions
about the transition to estimate the uncertainty of the state action pair [26], [12], [31], [25].
In particular, our method is closely related to [12], which is known for achieving amazing
performance on Montezuma’s Revenge. Many of these techniques are evaluated under a
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common setting by [34], which finds that although they can reproduce the performance gains
on the hard exploration environments, the methods often fail to outperform epsilon greedy
on easy environments. Note that all of these bonuses have little to no theoretical guarantees
or even grounded in provable ideas. The idea of entropy regularization for policy-based
methods [21] can be viewed as a bonus and has some convergence guarantees in simple cases
[13], but [3] finds that its usefulness may be in aiding optimization rather than overcoming
aleatoric uncertainty.
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Chapter 3

The Linear Bandits Connection

In this section we highlight some of the theoretical motivations behind our approach. To
this end, we analyze the simple case of linear bandits and demonstrate some connections to
the practical ideas.

3.1 Problem Setup

We consider the stochastic bandits setting [19]. Let ✓
⇤ 2 ⇥ be the true model parameter

that determines the bandit instance, a 2 A be the action in the action space, �(a) 2 Rd be
a feature mapping, the noise ✏ ⇠ N (0, 1), and r(a, ✓⇤) be the reward function. Then at each
timestep t, the agent selects an action at and receives the reward r(at, ✓⇤) + ✏. The goal of
the agent is to minimize the pseuodoregret

TX

t=1

argmax
a2A

E[r(a, ✓⇤)� r(at, ✓
⇤)]

In this section we discuss the linear bandits case, but our practical algorithms are for the
nonlinear case. Here, we consider the stochastic linear case, where r(a, ✓⇤) = h✓⇤,�(a)i.

The celebrated UCB algorithm [19] allows us to achieve a near-optimal pseudo-regret.
The idea is to act on the principle of optimism in the face of uncertainty, or to take actions
that are as good as plausible based on the evidence so far. In the linear case, the algorithm
centers on the least squares estimate and creates an ellipsoidal confidence set around it that
contains the ”true” model parameters with high probability. The optimistic action then
takes the form of an added bonus to the least squares estimate.
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Algorithm 1 LinUCB algorithm

X 2 RT⇥d is a design matrix with observations in each row

r 2 RT is a vector of the rewards over time

✓̂ 2 Rd is the weights of the estimator of the reward.

for t = 1, 2, ... T do

Observe context xt,a

Choose arm at = argmaxa2A(✓̂
T
xt,a + 2

q
�xT

t,a(XTX + �I)�1xt,a) and observe reward rt

Update X and r with the observed context and reward

✓̂  (XT
X + �I)�1

X
T
r

end for

3.2 Connection to RND

In Random Network Distillation (RND), a popular practical method, [12] considered using
the prediction error of a random network as a bonus. A neural network fRND parameterized
by ✓ is trained to predict the output of a frozen, randomly initialized neural network f with
the same architecture:

bRND(s) = ||fRND(s; ✓)� f(s)||22
It turns out that in the linear case, there is a close connection between RND and the

linear UCB discussed previously. To be precise, we will show that a linear version of the
RND bonus where the target is perturbed by Gaussian noise has the same form as the linear
UCB bonus:

Theorem 3.2.1. Let X 2 Rn⇥m
be a design matrix with each row as a feature, v 2 Rm

be the frozen, randomly initialized teacher weights, ✓ 2 Rm
be the RND predictor, and ~✏ ⇠

N (~0, �2
I). Then, assuming that the targets have added Gaussian noise ✏, the form of the

RND bonus for a incoming feature � is given by �
2
�
T (XT

X)�1
�.

Proof. As in RND, we train ✓ on the observations X to match the teacher, but we add noise
to the final labels, i.e. Xv + ~✏. The problem and the least squared solution are as follows:

min
✓

||X✓ � (Xv + ~✏)||2 (3.1)

✓̂ = (XT
X)�1

X
T (Xv + ~✏) (3.2)

The bonus value for an incoming observation � is the squared prediction error of the
learned fRND(�, ✓). We analyze the expected bonus value bRND:

bRND(�) , ((✓̂ � v)T�)2 (3.3)



CHAPTER 3. THE LINEAR BANDITS CONNECTION 6

E[bRND(�)] = E[�T (XT
X)�1

X
T
✏✏

T
X(XT

X)�1
�] (3.4)

= �
T (XT

X)�1
X

TE[✏✏T ]X(XT
X)�1

� (3.5)

= �
2
�
T (XT

X)�1
� (3.6)

Next, for intuition, note that the linear UCB bonus can be derived as the closed form of
the width function of a particular confidence set (similar ideas are found in [36]):

Lemma 3.2.2. Let the width w of a function family F at a point z be defined as w(F , z) =
maxf1,f22F f1(z)�f2(z). Then, if Fl is given by all linear functions satisfying {f :

P
i(f(�i)�

f̂(�i))2  �} for some linear function f̂ , then w(Fl, z) = 2
p

�zT (XTX)�1z.

Under the interpretation from this lemma, the forms of the bonuses imply that � and �

take on similar roles. In the UCB bonus, � is a measure of the error tolerance we want to
incorporate to the estimator to capture the true reward function. In the RND interpretation,
the uncertainty is captured by the standard deviation of the added Gaussian noise. When
� = 0, then there is no uncertainty, so in the RND interpretation we would have � = 0,
✓̂ = v, and the bonus is 0. Otherwise, the added noise represents the uncertainty we are
giving the estimator.
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Chapter 4

Approximate RND

We introduce an algorithm that reduces to UCB in the linear case and utilizes the connection
to RND for a practical implementation.

4.1 Motivation

Before we establish the algorithm, we highlight an important di↵erence between practical ”in-
trinsic reward” style bonuses and UCB-type bonuses. In the former, it is a ”pre-projection”
bonus in the sense that the learner uses the bonus to influence how it learns the model; in
the latter, the bonus is used to adjust a learned model to ensure certain properties during
exploration. In this section we argue that only using intrinsic rewards in the linear bandit
case could su↵er from linear regret, suggesting that optimism should be used in exploration.

We begin by introducing the general algorithm in the linear case that uses intrinsic reward
bonuses:

Algorithm 2 Pre-proj bonus algorithm

X 2 RT⇥d is a design matrix with observations in each row

r 2 RT is a vector of the rewards over time

✓̂ 2 Rd is the weights of the estimator of the reward.

b 2 RT is a vector of the bonuses over time

for t = 1, 2, ... T do

Observe context xt,a

Choose arm at = argmaxa2A✓̂
T
xt,a and observe reward rt

Update X, r, and b with observed context, reward, and computed bonus

✓̂  (XT
X + �I)�1

X
T (r + b)

end for
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Now, we argue that this type of algorithm cannot be optimal:

Theorem 4.1.1. In Algorithm 2, for all possible bonus added, there exists an instance on

which the algorithm su↵ers linear regret.

Proof. We prove this by counterexample: Let ✓
⇤ =


c

2c

�
, 0 < c < 1/2. The actions are

a 2 {0, 1} and the corresponding context vectors are fixed for all t, x0 := xt,0 =


1
0

�
, x1 :=

xt,1 =


0
1

�
. In the following, we show that if the first action is 0, regardless of the bonus,

following the greedy algorithm will never explore the other action.
First, we show that given the first action is 0, the action afterwards is still 0. Let M :=

x0x
T
0 +�I =


1 + � 0
0 �

�
and least squares fitted to rewards is ✓r = M

�1
x0r1 =


r1/(�+ 1)

0

�
.

Similarly, least squares fitted to bonus is ✓b = M
�1
x0b1 =


b1/(�+ 1)

0

�
. On each timestep

we take the action:

argmax
a2{0,1}

✓
T
r xa + ✓

T
b xa (4.1)

Thus action 0 gives r1+b1
�+1 and 1 gives 0, so the agent chooses 0. Now, assume that at a

given timestep t, action 0 is chosen for all previous timesteps. Mt = X
T
X+�I =


t+ � 0
0 �

�

so that

✓r = M
�1

tX

⌧=1

x⌧r⌧ =

P
i ri/(�+ t)

0

�
(4.2)

✓b = M
�1

tX

⌧=1

x⌧b⌧ =

P
i bi/(�+ t)

0

�
(4.3)

(4.4)

Clearly, action 1 will never be chosen. Thus the regret is given by

R(T ) = E[
TX

t=1

x
T
⇤ ✓

⇤ � x
T
at✓

⇤] (4.5)

= T · (2c� c) = Tc (4.6)

In comparison, the UCB algorithm will choose action 1 when:
Pt

⌧=1 r⌧

�+ t
+ ↵

r
1

�+ t
< 0 +

p
1/� (4.7)

Note that if � = 1 and ↵ = 1, it will choose action 1 after the first step.
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Note that while the intrinsic reward cannot introduce provable exploration in the linear
case, in the deep RL setting it is widely used, possibly due to making the optimization
landscape easier [27], [3]. This is part of the wide gap between theory and practice, and we
find that our bonus can be used as an intrinsic reward e↵ectively as well.

4.2 Algorithm

We first present an algorithm in the nonlinear bandit setting, which can be seen as a sim-
plification of the standard deep RL setting.

Intuition. We would like to utilize a value estimate in order to help the agent make better
decisions. Further, the first order approximation of the true reward nearby a model estimate
✓t is approximately linear in the gradient and ✓

⇤. Thus, we may be able to benefit from
the ideas in the provably e�cient algorithms in the linear case. As with other value-based
methods, the algorithm maintains an estimate of the reward at each timestep based on the
historical actions and rewards it has observed. The key idea is that it uses the gradient with
respect to the current model ✓t as the feature space � for each step. Then, the standard
linear UCB bonus is added to help explore when selecting actions.

Reduction to linear case. If we assume that the reward parameterizations are linear in
the actions, then our algorithm exactly recovers the linear UCB algorithm. This is due to
the fact that the gradient features are simply the actions themselves in this simple case.
However, note that the algorithm is di↵erent than the setting where it is linear in the feature
transformation of the actions �(a). This is because the features �t are changing with each
step as we update the model.

Algorithm 3 Nonlinear Bandit Algorithm
✓0 2 Rm is the initial parameterization of our model

⌃0 = �I is the initial covariance of the features

for t = 1, 2, ... T do

Set �t(·) to be r✓r(·, ✓)|✓=✓t

at  argmaxa2At
r(a, ✓t) + �

p
�t(a)T⌃

�1
t �t(a)

Pull at to receieve reward rt

✓t ⇡ argmin✓

Pt
s=1(rs � r(as, ✓))2

⌃t  ⌃t + �t(ai)�t(ai)T

end for



CHAPTER 4. APPROXIMATE RND 10

Deep RL

In order to devise a practical algorithm for the deep RL setting, we modify the well-known
DQN algorithm [22]. The underlying algorithm itself is not too di↵erent: we maintain an
estimate of a state-action value (Q) function through gradient descent, and add the same
bonus when selecting actions at each step. Additionally, in order to work well in practice,
we make use of the following details:

Approximate RND. In modern neural networks, overparameterization seems to be key
to the amazing generalization performance [4]. However, utilizing our method would mean
a feature space that grows linearly in the number of parameters, which could be a very
large amount even for simple problems. Indeed, it would be unfeasible to invert (or even
calculate) the covariance matrix for the bonus as it scales at least quadratically in the number
of parameters. To deal with this, we use our insight in section 3, that RND has the same form
as the UCB in the linear case. Thus, we replace our bonus with a prediction error bonus,
where the networks are linear in the gradient features. This approach would be feasible as
it scales only linearly in the number of parameters by using gradient descent to update the
network.

Representation Size. As in [12], the prediction task is actually to output an embedding
instead of a scalar. It fits with our earlier interpretation as the MSE in this case would
simply be averaging the prediction error among multiple instances of the bonus, providing
an estimate of the expected value.

Normalization. Following [12], we keep track of the running standard deviation of the
bonus and divide rewards by it. This is due to the fact that the scale of the reward could
be quite di↵erent among settings and it would be di�cult to choose hyperparameters that
work well.
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Chapter 5

Results

In order to verify that our algorithm works well in practice, we test it on a few environments
known for hard exploration. The environments used are the same as in [27] and we utilize
their code for the baselines and experiments as well. Any deviations from their setting are
noted in the descriptions.

5.1 Randomised Chain

We start with the simple environment of a randomised chain introduced in [24]. Like in [27],
we use a chain of length 100. The agent starts the episode in the pictured state, and interacts
with the given MDP for N+9 steps, after which the episode ends and the agent is reset. At
each step, the agent has two actions available to it, moving left or right. Before the training
begins, the environment is randomly initialized so that the action that moves left or right
at each step is chosen randomly and fixed throughout the agent interactions. The agent
receives a reward of 0.001 for going left in the state labeled 1, a reward of 1 for going right
in the last state furthest to the right, and no reward otherwise. Thus, the optimal policy is
to pick the action that goes right at each timestep. See Figure 5.1 for the representation of
the chain we use. We also follow [24], [27] and use a thermometer encoding for the state.

Figure 5.1: The Randomised Chain Environment
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Experimental Details

Please refer to [27] for the default setup of the algorithm. We have the additional hyperpa-
rameters as follows: For RND, we use a representation size of 64, the network architectures
are the same as the value networks, the networks are updated once using every 32 samples,
and the optimizer is the same setting as the main networks (RMSProp with 5e-4). For
our bonus, we use a representation size of 64, the networks are updated once using every 2
samples, and the learning rate is 1e-2.

To determine the sensitive hyperparameter � of scaling the bonus, we do sweeps: for the
RND baseline, we do a search using 3 seeds each across � = {0.001, 0.01, 0.1, 1, 10} and use
� = 0.01. Similarly, we do the same search for our bonus across the same values, and we use
� = 0.001 for intrinsic reward and � = 0.01 for the action selection. These values are then
used for 6 seeds for the results shown.

Experimental Results

We compare the use of our bonus to a baseline RND intrinsic reward implementation. To
do this, we implement our bonus both for the action optimism and as an intrinsic reward.
Figure 5.2 demonstrates the unique states visited during the agent exploration per episode.
It shows that our bonus, used in either way, works much better than the baseline RND in
practice to encourage exploring unseen states.

Figure 5.2: Comparison on the 100Chain environment. The median unique states visited is
plotted, with standard error shaded in.
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5.2 Maze

Next, we move to a more di�cult environment, the Maze. In particular, it is a 2-dimensional
gridworld where the agent can move up, down, left, or right. The objective is to navigate
the maze to reach the marked goal, getting a reward of +10 at the goal and 0 otherwise.
The horizon is 250, and the states are grayscale, 24 x 24 images in [0, 1]. Like in the chain
environment, the e↵ects of actions are randomised at the beginning of training. Figure 5.3
shows an example state in the environment.

Figure 5.3: The Maze environment.

Experimental Details

Please refer to [27] for the default setup of the algorithm. The number of episodes is changed
to 200k, and we use a target update interval of 200. Note that for the RND baseline-specific
hyperparameters it is the same as [27], but in our setting it has stronger results. We have
the additional hyperparameters as follows: For our bonus, we use a representation size of
128, the networks are updated once using every 32 samples, and the learning rate is 1e-2.

To determine the sensitive hyperparameter � of scaling the bonus, we do the same sweep
as before, choosing � = 0.1 for the action selection. The values are used for 6 seeds for the
results shown.

Experimental Results

Again, we compare the use of our bonus to a baseline RND intrinsic reward implementation.
Here, we only use our bonus for optimistic action selection. Figure 5.4 demonstrates the
unique states that are visited over episodes. Utilizing our bonus demonstrates increases
exploration of unseen states, eventually reaching almost all of them (340 total).
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Figure 5.4: Comparison on the Maze environment. The median unique states visited is
plotted, with standard error shaded in.
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Chapter 6

Conclusion

In this work, we strive to narrow the gap between theory and practice in bonus-based ex-
ploration, providing some new connections between the UCB algorithm [19] and RND [12]
as well as some observations about pre- and post-projection reward bonuses. We propose
an algorithm that reduces to UCB in the linear case [19] and demonstrate empirically that
it outperforms Random Network Distillation [12] in challenging exploration environments.
For future work, we ask whether similar algorithms can provably converge to local optima
and at what rates. Other interesting directions are to scale the algorithm to challenging
environments like Montezuma’s Revenge, or to try di↵erent algorithms based on other linear
bandit ideas such as Thompson sampling [30].
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