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Abstract

Traditional computer vision models are trained to predict a fixed set of predefined
categories. Recently, natural language has been shown to be a broader and richer
source of supervision that provides finer descriptions to visual concepts than
supervised "gold" labels. Previous works, such as CLIP, use a simple contrastive
learning task to predict the pairings between images and text captions. CLIP,
however, is data hungry and requires more than 400M image-text pairs for training.
The inefficiency can be partially attributed to the fact that the image-text pairs are
noisy. To mitigate this, we propose to use online entropic optimal transport to find
a better image-text matching and using the matching as a soft training label for
contrastive learning. Our model transfers knowledge from pretrained image and
sentence encoders and achieves strong performance with only 3M image text pairs,
133x smaller than CLIP. We beat CLIP by 14% relatively on zero-shot evaluation
on Google Open Images (19,958 classes). Our method also exceeds the previous
SoTA of general zero-shot learning on ImageNet 21k+1k by 73% relatively with a
ResNet50 image encoder and DeCLUTR text encoder.

1 Introduction

In real-world image recognition tasks, input images can come from a broad range of distributions,
spanning tens of thousands of object categories unknown during training. It is thus important for
computer vision models to generalize to a large number of visual concepts that may or may not be
present in the training data. This problem is called zero-shot learning (ZSL), which aims to transfer
knowledge from some known classes with training data to a much larger number of unfamiliar classes.

Many works[46, 2, 1] in ZSL have focused on using attributes of unseen classes for knoweledge
propagation. These work are limited in scope and application to real-world datasets due to their
reliance on human-labeled attributes. Other traditional ZSL methods[20, 41] use the implicit image
and text/word representations from pretrained models and learn a mapping into a common embedding
space. More recent works[53, 32] have used graph convolutional networks and information from
predefined class hierarchies, such as WordNet[19], to model inter-class relationships.

More recently, natural language has become a powerful source of supervision for image representation
learning. [39] shows that pretraining by predicting hashtags on Instagram improves performance
on ImageNet by over 5%. [15, 49, 60, 30] all demonstrate the effectiveness of transformer-based
language modeling in learning image representation from text. CLIP [44] has applied natural language
supervision to the domain of ZSL. It collects an enormous dataset with over 400M image caption
pairs from the Internet, and trains an image encoder and a text encoder jointly with a contrastive
loss to maximize the cosine similarity of paired image and text embeddings and minimize the
similarity of unpaired ones. CLIP demonstrates good zero-shot classification results on a wide range
of downstream image classification datasets. However, one main constraint of CLIP is that it is data
hungry and requires over 400M image-text pairs for training. Collecting and training on such a huge



Figure 1: Caption and image pairings are noisy. Images may contain objects not mentioned in the
caption, and captions have words not related to the image (colored red). There is a many-to-many
relationship between a batch of images and captions, which is better modeled by soft probabilities
than hard labels. We use optimal transport to compute soft labels and distillation from them to
mitigate this noise. This enables us to achieve good performance with high data efficiency.

dataset is very expensive. The inefficiency can be partially attributed to the fact that the training
signals from image-text pairs are noisy. As shown in Figure 1, in most of the datasets, we observe
that images and captions are only loosely correlated. It is very common that one caption (image) can
potentially match several images (captions), and the "ground-truth" pairings are not the only sensible,
and sometimes not the optimal matchings between images and text captions. Despite this, CLIP uses
the InfoNCE loss [23] to train the image and text embeddings, treating the the ground-truth pairings
as hard labels. This ignores the many-to-many relationships between images and text captions, and
leads to inefficiency.

To improve data efficiency and mitigate data noise, we propose a data-efficient ZSL training pipeline
that enables any pretrained image encoders to generalize to unseen classes. We recognize the fact
that there is considerable noise in the image-text pairings collected from the Internet. Whereas CLIP
uses hard labels in the contrastive loss, we use a hybrid of hard contrastive and soft distillation losses.
Furthermore, we propose using optimal transport as a natural solution to combat batch-level data
noise under the contrastive learning setting. We use optimal transport to find the optimal coupling
between a batch of image-text pairs, and use this soft coupling as the target for distillation. Learning
from soft labels enables better modelling of the rich correlations between vision and language and
effectively account for cases where one caption matches objects in multiple images and vice versa.
We initialize our model with an image encoder pretrained on ImageNet[14] 1k and a pretrained text
encoder. Then, we train our models on the public Conceptual Captions[50] dataset, which contains
3M loosely correlated image caption pairs. This framework significantly improves performance
in zero-shot learning and is easily extensible to other domains such as contrastive self-supervised
learning. Different from many other works using optimal transport, we use the optimal matching as
labels for knowledge distillation, rather than directlying optimzing the Wasserstein loss.

With a ResNet50[25] image encoder and DeCLUTR[21] text encoder, we outperform the current
SoTA of general ZSL on ImageNet 21k+1k by 73% relatively. In addition, we recognize issues with
ImageNet21k and the 27 datasets used by CLIP[44] for ZSL evaluation in section 4.3.2. To bypass
these problems, we propose using Google Open Images[34], which contains 19,958 categories, as a
benchmark for zero-shot knowledge transfer to common visual concepts. Our model exceeds CLIP
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on GOI by 14% relatively, while using a >100x fewer image-text pairs.

2 Related Works

2.1 Zero-Shot Learning

Zero-shot learning(ZSL) studies the generalization of knowledge to unseen classes. Traditional ZSL
methods mainly follow three paradigms. The first paradigm uses pretrained word embedding vectors
to represent different categories and implicitly model their relationships. DeViSE[20] projects image
features from a pretrained CNN and word embeddings of labels into a common embedding space.
ConSE[41] proposes a convex combination of the top-K most likely image embeddings. The second
paradigm explicitly models class relationships as a graph, and use a graph convolutional network
(GCN), or a predefined class hierarchy, such as WordNet[19], to learn the knowledge propagation
between classes. GCNZ[53] and DGPZ[32] use a GCN to propagate knowledge into classifiers
of unseen classes, while using a CNN and word embeddings to encode image and label features.
HZSL[36] projects image and text embeddings into a hyperbolic space that groups together child and
parent classes in the WordNet[19] class hierarchy. Lastly, [46, 2, 1] rely on human-labeled attributes
to model semantics of classes.

These works, however, have several drawbacks. First, they focus on finding a better mapping between
image features extracted from pretrined CNNs and pretrained word embeddings such as GloVe[43].
The image and text embeddings are not trained end-to-end jointly, limiting the generalization power
and the quality of feature representations. Second, predefined class hierarchies, such as WordNet[19],
model categories in a tree structure, which fails to capture the complicated inter-class relationships
present in real-world objects. Third, reliance on class hierarchies also limits the scope of classifiable
objects to those present in the hierarchy. Fourth, methods that depend on attributes cannot generalize
to categories that do not have known attributes.

More recently, CLIP[44] applies large-scale language-supervision to ZSL by using over 400M image
caption pairs collected from the Internet. CLIP trains an image encoder and a text encoder jointly
with a contrastive loss to maximize the cosine similarity of paired image and text embeddings and
minimize that of unpaired ones. However, CLIP has not published their image-caption dataset. It’s
also an expensive and daunting task to collect, maintain and train vision models on datasets of that
size.

2.2 Optimal Transport

Optimal transport(OT) is a theory that enables comparison of two probability distributions whose
supports may not overlap. We follow the definition of optimal transport in [13]. Let µ and ⌫

be two probability measures defined on spaces X and Y , respectively. Define a cost function
c(x, y) : X ⇥ Y ! [0,1] that measures the cost of transporting one unit of mass from x 2 X

to y 2 Y . Optimal Transport solves how to transport µ to ⌫ while minimizing the cost c. In the
discrete setting, optimal transport solves for the optimal strategy T 2 Rn1⇥n2 in the space of joint
distributions ⇧(µ, ⌫) that minimizes the Wasserstein loss:

Wc(µ, ⌫) = min
T2⇧(µ,⌫)

hT ,CiF (1)

where h· , ·iF is the Frobenius dot product, C 2 Rn1⇥n2 is the cost matrix where Cij = c(xi, yj) and
n1, n2 the size of the supports for µ and ⌫.

Recently, OT has been applied to many areas such as domain adaptation[11], and generative
models[48]. [13] uses entropy regularized optimal transport to mitigate label noise in supervised
learning. [7] applies OT to cross-domain alignment. It models the objects in an image and the words
in a sentence as nodes in graphs, and tackles the problem of object and word alignment in a single
image-text pair. [8] uses OT in local contrastive knowledge distillation, where it directly minimizes
the Wasserstein loss between student and teacher embeddings in a batch. This, however, leads to
mode collapse in the multi-modal setting, when both image and text encoders are end-to-end trainable.
Instead, we keep an Exponential Moving Average(EMA) of the model, and calculate the optimal OT
coupling from the outputs of the EMA model.
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2.3 Knowledge Distillation

[26] first proposes knowledge distillation as a compression technique for deep neural networks, by
matching the output logits of a teacher and a student model. It has then been applied to a vast number
of different domains[47, 59, 54, 31, 28]. Distillation has long been used to address noise in data. [35]
combines distillation with a label knowledge graph to learn from noisy data. [58, 3] repeatedly distill
a student model with generated pseudo labels and show improved supervised learning performance.
Recently, distillation has been also applied to self-supervised learning(SSL) where labeled data
is scarce [10, 40, 18]. DINO[6] focuses on SSL with ViT[17] and proposes using a dynamically
evolving teacher built from the Exponential Moving Average(EMA) of the student model, obviating
the need for a pretrained fixed teacher during training. We extend upon the EMA distillation idea
of DINO to multi-modal learning. Specifically, We feed the image and text embeddings output by
the EMA teacher into the optimal transport module, and solve for the intra-batch optimal coupling,
which is used as soft labels for knowledge distillation.

3 Methods

Our model has a two-tower structure with an image encoder and a text encoder that outputs fixed-sized
embeddings for a batch of corresponding images and captions. Different from pervious ZSL works,
our model assumes no class hierarchy. This makes our method more general, and easily extensible to
datasets like Google Open Images[34].

3.1 Contrastive Learning

The contrastive learning[23] objective has been widely used in NLP and is at the core of several
unsupervised[29, 57, 27] and self-supervised learning works[24, 9]. Similar to CLIP[44], we also
use the contrastive loss, which measures the similarities of sample pairs in an embedding space.
Specifically, we use the InfoNCE[52] loss where similarity is measured by dot product. Take a batch
of N image and text pairs, the image and text encoders are joinly trained to maximize the cosine
similarity of the N positive image and text pairings while minimizing the cosine similarity of the
other N2 �N negative image text pairings. In a batch of N image text pairs, let zIi be the embedding
of the ith image, and z

T
j that of the jth text. The probability of the ith image matching the jth text is:

P (zIi , z
T
j ; ⌧) =

exp(zIi · zTj /⌧)PN
k=0 exp(z

I
i · zTk /⌧)

(2)

The InfoNCE loss for images is defined as:

LI = � 1

N

NX

i=0

logP (zIi , z
T
i ; ⌧) (3)

Symmetrically, we define the InfoNCE loss for texts:

LT = � 1

N

NX

i=0

logP (zTi , z
I
i ; ⌧) (4)

The contrastive loss function thus becomes:

LInfoNCE =
1

2
(LI + LT ) (5)

3.2 Optimal Transport

Image-text pairs collected from the Internet are usually only weakly correlated and noise is abundant.
In a single batch, it’s common for one caption to match objects in multiple images, and one image
to match words in multiple captions. While the InfoNCE loss provides important learning signals,
its supervision is noisy and fails to capture the many-to-many relationships in a batch of image-text
pairs. Hence, it’s not ideal to use hard labels as the only learning objective.
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Algorithm 1: PyTorch Pseudocode
# gs: Model initialized with pretrained image and text encoders.

# gt: EMA teacher initialized with gs.

# tpi, tpk: temperature for InfoNCE and KLDiv losses.

for img, txt in loader:

I_emb_s, T_emb_s = gs(img, txt) # Student embbeddings

logits_s = I_emb_s @ T_emb_s.T

I_emb_t, T_emb_t = gt(img, txt) # EMA embeddings

sim_ii, sim_tt, sim_it, sim_ti = compute_similarities(I_emb_t, T_emb_t)

# InfoNCE Loss

labels = torch.arange(n)

L_I = cross_entropy(logits_s * tpi, labels)

L_T = cross_entropy(logits_s.T * tpi, labels)

L_infoNCE = (L_I + L_T)/2

# Optimal Transport

I_cost = - (sim_ii + sim_tt + sim_it)

T_cost = - (sim_ii + sim_tt + sim_ti)

I_target = sinkhorn(I_cost, eps, iter)

T_target = sinkhorn(T_cost, eps, iter)

# KLDiv Loss

L_KL = [KL(logits_s * tpk, I_target) + KL(logits_s.T * tpk, T_target)]/2

loss = L_infoNCE + alpha * L_KL

loss.backward()

update_EMA(gs, gt)

def compute_similarities(I_emb, T_emb):

sim_ii, sim_tt = I_emb @ I_emb.T, T_emb @ T_emb.T

sim_it, sim_ti = I_emb @ T_emb.T, T_emb @ I_emb.T

return sim_ii, sim_tt, sim_it, sim_ti

As a solution, we keep an Exponential Moving Average (EMA) of our model during training, and
feed the output embeddings of the EMA model into an optimal transport (OT) module. The OT
module finds the optimal coupling between a batch of image-text pairs, which we use as soft labels
for knowledge distillation.

Solvers for the optimal transport problem defined in 1 are usually based on linear-programming. They
have super-cubic complexity and are not differentiable. Instead, we use the Sinkhorn algorithm [12],
which provides an efficient and differentiable way to solve the entropy regularized optimal transport
problem. Let {(zIi , zTi )}, i = 1, 2, . . . , N be the image and text embeddings extracted from the EMA
model in a batch of N image text pairs. Assuming a discrete uniform distribution µ over the batch,
we use the sinkhorn algorithm to solve for the optimal coupling T

⇤
I 2 RN⇥N from images to texts.

T
⇤
I = argmin

T2⇧(µ,µ)
hT ,CiF � �H(T ) (6)

where
Cij = �(zIi · zIj + z

T
i · zTj + z

I
i · zTj ) (7)

and
H(T ) = �

X

i,j

log(Tij)Tij (8)

Symmetrically, we solve T
⇤
T as the optimal coupling from texts to images. When comparing the ith

and jth image-text pairs, we take into account intra-domain and inter-domain embedding similarities.
When the image embeddings in the two image-text pairs are close, it’s more likely that there’s a
match in ith image and jth text. This formulation helps the model learn cross-modal connections
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based on the similarities of images and texts in two image-text pairs, when there’s considerable noise
in the data.

3.3 EMA Knowledge Distillation

The InfoNCE loss defined above is equivalent to the cross entropy loss with target probability
of 1 for corresponding images and texts. When learning from soft labels, it’s natural to use KL
divergence as an extension of the InfoNCE loss, with logits computed from dot products. Additionally,
Exponential Moving Average (EMA) has been empirically demonstrated to help models learn better
representations in domains like self-supervised learning[6, 24]. During training, we keep an EMA of
our model and use its output to solve for the soft targets for distillation.

Given T
⇤
I and T

⇤
T solved by the OT module, we use a KL divergence loss to match the outputs of our

model with the optimal coupling. According to equation (2), define PI as the probability distribution
of images over texts in a batch for our model. Symmetrically, define PT for texts over images.

LKL =
1

2
[KL(PI , T

⇤
I ) + KL(PT , T

⇤
T )] (9)

The final loss we use is:
L = LInfoNCE + ↵LKL (10)

where ↵ is set to 1.0 in our experiments.

4 Experiments

4.1 Visual and Language Pretraining

Pretraining has become a crucial procedure in many NLP tasks[16, 5, 37]. Likewise, BiT[33] and
ViT[17] has shown that transfer of pretrained visual representations leads to significant performance
gains. While image caption pairs are relatively expensive to collected, there are large-scale image
or text datasets available with pretrained models. Therefore, we initialize our model with an image
encoder pretrained on ImageNet[14] 1k and a pretrained text encoder, such as DeCLUTR[21],
Sentence Transformers[45], or Bert[16]. Sentence Transformers are pretrained on SNLI[4] and
MultiNLI[55]. DeCLUTR is pretrained on the OpenWebText Corpus[22] or the Semantic Scholar
Open Research Corpus[38]. Bert is pretrained on the English Wikipedia and the BookCorpus[61].

4.2 Training

We apply a training schedule similar to the finetuning step of BiT[33]. We use SGD with an initial
learning rate of 3e-3, a cosine annealing lr scheduler, momentum 0.9, and no weight decay. Input
images are resized to 256x256 and random cropped to 224x224. All of our models are trained
on the Conceptual Captions[50] 3M dataset. We train the model on 4 GPUs using Pytorch[42]
Distributed Data Parallel with a batch size of 128 per GPU for 30 epochs. While CLIP[44] computes
the contrastive loss using only the batch on each GPU, we find that it’s important to all gather logits
from the other GPUs and use them as negative samples.

4.3 Evaluation

During evaluation,we use a prompt template of “a photo of {label}" to augment the text labels of
the target categories. We then compute the text embeddings of test categories with the trained text
encoder, and fit a KNN using the embeddings. Given an image, we find the top k nearest neighors of
its embedding based on cosine similarity.

4.3.1 Evaluation Metric

The main metric we use for evaluating performance of ZSL is flat hit@k. Flat hit@k is the percentage
of test images such that the top k predictions the model returns overlap with any of the true labels. In
ImageNet[14], each image is only labeled with one synset, but in Google Open Images[34], each
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Dataset Image Encoder Text Encoder Params Flat Hit@k(%)
1 2 5 10

CLIP (400M) ResNet50* Bert Base* 102M 26.5 38.3 54.0 64.3
CLIP (400M) ViT-B/32* Bert Base* 151M 27.5 39.5 55.3 65.4

CC (3M) FBNet C[56] DeCLUTR Sci Base 114M 24.3 36.1 52.7 64.5
CC (3M) EfficientNet B0[51] DeCLUTR Sci Base 114M 26.1 38.6 56.1 68.5
CC (3M) ResNet50 Sentence Bert Base 134M 27.6 38.9 53.4 63.3
CC (3M) ResNet50 Bert Base 134M 27.5 39.1 54.5 64.6
CC (3M) ResNet50 DeCLUTR Sci Base 135M 30.2 43.1 59.3 70.5

Table 1: Flat hit @k on Google Open Images. In the Dataset column, CC is the Conceptual Captions
dataset. * means that the model is a modified version.

image is labeled with multiple classes. The formal definition of flat hit@k is:

flat hit@k =
1

N

NX

i=1

{{F (xi)}K \ Li 6= ?} (11)

where {F (xi)}K is the top k predictions for the ith image and Li is the set of true labels.

4.3.2 Evaluation Dataset

We measure the ZSL performance mainly on Google Open Images [34]. And for backward compati-
bility to compare with prior work, we also report the results on ImageNet 21K+1K benchmark. We
do not report results on the 27 datasets benchmark used by CLIP[44]. We discuss our considerations
below.

ImageNet 21K+1K: Despite its popularity, there are four main problems of using ImageNet[14] for
ZSL evaluation. First, based on the WordNet[19] structure, ImageNet has many repeated or trivially
different classes. For example, "sunglass" and "sunglasses" are two different classes. Out of 22843
synsets, 1128 of them have names identical to at least another synset. Second, ImageNet labels
don’t distinguish words with multiple meanings. For example, the word "crane" can mean either a
type of bird or machine. Both classes are in ImageNet but have the same label. This happens for
many words such as "ball". Third, each image in ImageNet is only labeled with exactly one class.
When there are 2 or more visual concepts in the image, the model is forced to guess which object to
classify. Fourth, ImageNet lacks interactions between different visual concepts. About 90% of the
images in ImageNet have only 1 distinct class, and almost no images have more than 4 distinct classes.

Google Open Image: Compared to ImageNet, Google Open Images[34] also contains a wide range
of concepts, and it fixes all four problems outlined above. There are no repeated labels for different
classes in GOI. Words with multiple meanings are also differentiated. For example, "crane" is
labeled with “Crane (Machine)" and “Crane (Bird)". More importantly, GOI labels each image
with multiple classes, largely eliminating false negatives. In addition, GOI contains much more
interactions between distinct classes per image, where more than 60% of images have 2 or more
distinct classes. Inter-class interactions are especially useful in zero-shot learning, when we aim to
transfer knowledge from seen to unseen classes.

CLIP benchmark with 27 datasets: CLIP[44] evaluates their model on 27 image classification
datasets. However, many of these datasets are domain specific, such as Stanford Cars and FGVC
Aircraft, which have specific models of cars or planes as categories. This makes evaluation on them
a test of knowledge memorization, rather than generalization. Similar to ImageNet, very few of
these datasets contain multiple distinct classes in the same image, reflecting a lack of visual richness.
Lastly, with only 3896 total categories, the 27 datasets altogether don’t cover nearly as many common
visual concepts as GOI.

4.4 Results on Google Open Images

We evaluate the models on the test set of Google Open Images V6[34], with 125,436 images.
Traditional ZSL baselines aren’t evaluated on GOI due to the lack of a class structure. The image
encoders are initialized with weights pretrained on ImageNet 1k. Sentence Bert[45] is pretrained
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Dataset Model Image Encoder Text Encoder Flat Hit@k(%)
1 2 5 10

IN1k (1.2M) DeViSE ResNet50 skip-gram 0.3 0.9 2.2 3.6
IN1k (1.2M) ConSE ResNet50 skip-gram 0.1 1.5 3.5 4.9
IN1k (1.2M) GCNZ ResNet50 GloVe 1.0 2.3 5.3 8.1
IN1k (1.2M) HZSL ResNet50 GloVe* 2.2 4.6 9.2 12.7

CC (3M) Ours FBNet C DeCLUTR Sci Base 2.8 4.3 8.0 11.9
CC (3M) Ours EfficientNet B0 DeCLUTR Sci Base 3.1 4.6 8.5 12.5
CC (3M) Ours ResNet50 Bert Base 3.2 5.7 10.6 15.7

CC (3M) Ours ResNet50 Sentence Bert Base 3.5 5.2 9.9 14.8
CC (3M) Ours ResNet50 DeCLUTR Sci Base 3.7 5.5 9.9 14.2

CLIP (400M) CLIP ResNet50* Bert Base* 13.5 19.7 30.5 39.4
CLIP (400M) CLIP ViT-B/32* Bert Base* 15.3 22.2 33.9 43.3

Table 2: Flat hit @k on ImageNet 21k+1k.

on SNLI[4] and MultiNLI[55], Declutr Sci Base[21] is pretrained on the S2ORC[38], and Bert[16]
on the English Wikipedia and the Book Corpus[61]. In table 1, we compare the flat hit@k of our
models with pretrained CLIP[44]. Our ResNet50 and DeCLUTR Sci Base model trained with the
joint contrastive and OT distillation loss exceeds CLIP ResNet50 and Bert[16] by 14% relatively in
FH@k=1, while using > 100x fewer image-text pairs.

4.5 Results on ImageNet 21k+1k

In this section, we present flat hit@k results on zero-shot transfer to the ImageNet 21k+1k[14] dataset,
which contains 21841 classes in total. Many traditional ZSL methods rely on a predefined class
hierarchy for explicit knowledge propagation. ImageNet, whose classes are a subset of WordNet,
becomes the ideal benchmark for these works. With 400M image text pairs, CLIP[44] vastly
outperforms previous methods. Our method uses Conceptual Captions[50] 3M, which is on the
same order of magnitude as ImageNet 1k, and outperforms the previous SoTA, HZSL[36], by 73%
relatively. In table 2, we demonstrate good performance on a variety of image and sentence encoder
architectures. The gap between our method and CLIP may be caused by the fact that ImageNet
classes contain many uncommon words, such as scientific names of animals or medical terms. CLIP’s
dataset is much larger and thus covers much more uncommon words. Optimal transport distillation
also encourages the model to output a softer probability output for multiple classes, which can be
present but just not labeled in ImageNet.

5 Analysis

5.1 What contributes to performance gain?

In this section, we evaluate the performance of contrastive zero-shot learning under different modes
of training, to demonstrate the effectiveness of OT distillation. In all three experiments, the image
encoder is a ResNet50 pretrained on ImageNet1k and the text encoder is a DeCLUTR Sci Base
pretrained on S2ORC. In the first experiment, we train the model with only contrastive loss using hard
labels (same as CLIP[44]). In the second experiment, we train the model with a hybrid of contrastive
loss and soft distillation loss, where we use the output of the EMA model directly as soft labels. In the
third experiment, we also train the model with a hybrid of hard contrastive and soft distillation losses,
but the soft labels are computed by the optimal transport module from the output of the EMA model.
In table 3, we show that initializing with pretrained image and text encoders alone yields good results
on GOI through joint end-to-end contrastive learning. Adding an EMA teacher and directly distilling
from its output helps mitigate noise in image-text pairings and achieves an improvement of 1.2%
on GOI F@K=1. Furthermore, we demonstrate that optimal transport under our cost formulation
in equation 7 is effective in finding an optimal intra-batch coupling and improves performance by
another 0.8% on GOI F@K=1.
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Mode Flat Hit@k(%)
1 2 5 10

CLIP (RN50+Bert) 26.5 38.3 54.0 64.3
Contrastive 28.2 40.6 57.6 68.7

EMA self-distillation 29.4 42.2 59.0 70.0
EMA + OT self-distllation 30.2 43.1 59.3 70.5

Table 3: Flat hit @k on Google Open Images under different modes of training. Here, the image
encoder is ResNet 50 and the text encoder is DeCLUTR Sci Base.

Image Encoder Text Encoder Flat Hit@k(%)
1 2 5 10

RN50(CLIP) Bert(CLIP) 26.5 38.3 54.0 64.3
RN50(IN1k) DeCLUTR(S2ORC) 30.2 43.1 59.3 70.5

RN50(IN1k) DeCLUTR(WebText) 12.2 19.1 30.7 40.0
RN50(IN1k) Bert(Wiki) 27.5 39.1 54.5 64.6
RN50(Rand) Bert(Rand) fails fails fails fails

Table 4: Flat hit @k on Google Open Images for models pretrained on different datasets.

5.2 Pretraining

In the section, we analyze the effects of using image and text encoders pretrained on different datasets.
From Table 4, pretraining clearly has a significant effect on the performance of the model. The Open
WebText Corpus[22] contains more than 8 million documents extracted from HTMLs crawled from
the Internet, and S2ORC [38] consists of over 2 million scientific papers. While models trained
from scratch struggles to converge, models pretrained on more structured data, such as S2ORC and
Wikipedia, perform much better than those pretrained on crawled web texts.

6 Conclusion

Language-supervised zero-shot learning trained under a contrastive loss has shown impressive
performance gains, but remains very data-hungry. CLIP, for example, requires 400M image-text
pairs. To improve data efficiency and mitigate data noise, we propose a data-efficient ZSL training
pipeline that enables any pretrained image encoders to generalize to unseen classes. We recognize the
noisy nature of the image-text pairs collected from the Internet, and the many-to-many relationships
in a batch of image-text pairs. While CLIP uses a hard InfoNCE loss, which ignores the potential
image-text matchings in different image-text pairs, we use a hybrid of hard contrastive and soft
distillation losses. The soft labels for distillation are solved by an optimal transport module with a
specifically designed cost function to guide cross-modal matching. Furthermore, we recognize the
many problems of previously used benchmarks such as ImageNet 21k+1k, and propose using Google
Open Images as a new multi-label benchmark for ZSL. Using >100x fewer image-text pairs than
CLIP, we demonstrate a highly efficient zero-shot learning method that exceeds CLIP’s performance
on Google Open Images, and achieves strong results on ImagetNet 21k+1k.
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