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Abstract

Usable and Efficient Systems for Machine Learning

by

Doris Xin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Aditya G. Parameswaran, Chair

Machine learning has become a key driver for technological advancement in the last decade
on the back of major progress in programming interfaces and scalable systems. Libraries such
as Scikit-learn and Keras have made it easier to implement machine learning algorithms and
applications, while innovations in distributed systems have enabled model training at an un-
precedented scale. However, machine learning tooling is far from perfect today; practitioners
still face many challenges when developing applications powered by machine learning.

This dissertation aims to improve the usability and resource efficiency of systems for devel-
oping and productionizing machine learning applications by investigating multiple directions
identified through extensive empirical evidence gathering and analysis. First, we study the
applied machine learning literature and execution traces of publicly available machine learn-
ing workflows to understand common practices and shed light on the highly iterative process
of model development. Using our insights, we present a solution to accelerate the itera-
tive model development process. Next, we analyze the provenance graph of thousands of
production pipelines to uncover latent inefficiencies when running these pipelines. Using
these insights, we propose a solution to significantly reduce wasted computation in such sys-
tems. Our solutions harness classic techniques from systems, databases, and programming
languages to automate data management and optimize computation in machine learning ap-
plication development. Finally, we synthesize findings from interviews with current users of
automated machine learning tools to examine the role of automation in model development,
as we look ahead to the future of machine learning developer tools.
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Chapter 1

Introduction

Machine learning (ML) has become a staple in data-driven applications and continues to be a
key driver of innovations transforming our everyday lives. Its rise to prominence in the tech-
nology landscape has been largely driven by major breakthroughs in developer experience
and systems engineering. ML developers are now empowered with simple APIs to imple-
ment ML algorithms and applications through popular libraries such as Scikit-learn [174],
Tensorflow [1], and PyTorch [148]. Software and hardware innovations such as parameter
servers [112] and tensor processing units [86] have made it possible to train large models
on massive datasets, which have been crucial for achieving high model accuracies. These
advancements in developer experience and systems have enabled ML to become a mature
technology that effectively serves a wide range of applications.

With the maturation of ML applications come new challenges around building and deploy-
ing ML models. Many have written about these challenges based on anecdotes or practical
experience [222, 175, 11, 195, 102]. In this dissertation, we take a more rigorous approach to
identifying challenges in developing and operationalizing ML models by gathering and ana-
lyzing empirical evidence from multiple sources, including applied ML literature, execution
traces of user-generated ML workflows on an open ML platform, semi-structured interviews
with ML practitioners, and provenance graphs of thousands of production ML pipelines at a
large technology company. This series of need-finding studies shed light on existing practices
around building and deploying ML models while exposing pain points and inefficiencies that
deserve attention from tool developers. At the highest level, we find that

1. model development is inherently an iterative, human-in-the-loop process involving te-
dious, repetitive tasks;

2. ML applications in production require an exorbitant amount of computation to sup-
port, but a large portion of the computation consumed by existing ML systems have
little impact on the application they support;

3. increasing interest in ML from a wide range of user personas pose profound questions
on the role of automation in ML tooling.
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We tackle many of the challenges we identify, using insights gathered from the need-
finding stage to inform how we design the solutions. At the heart of our approaches to solve
these challenges are reuse and redundancy minimization techniques to improve human effi-
ciency and resource utilization efficiency, which can oftentimes benefit from co-optimization.
Our solutions incorporate techniques from established fields, including databases, systems
and programming languages, for data management and computation optimization in the ML
setting.

In the rest of the chapter, we introduce common concepts used throughout the disserta-
tion in Section 1.1 and Section 1.2, discuss the underpinning of our approach in Section 1.3,
and provide an outline of the dissertation in Section 1.4.

1.1 The Machine Learning Workflow

A machine learning (ML) workflow, also commonly known as a machine learning pipeline1,
accomplishes a specific ML task, such as classification, entity recognition, and image cap-
tioning. It is a complex sequence of steps that, in turn, ingest raw input data, transforms
it (often involving feature engineering) into a format amenable to model training, trains a
model on the transformed data, and performs tasks using the trained model.

ML workflows commonly consist of three major components:

• Data Preprocessing (DPR). This stage contains all of the data manipulation op-
erations, such as data cleaning and feature extraction, used to turn raw data into a
format compatible with ML algorithms.

• Modeling via Learning & Inference (L/I). Once the data is transformed into a
learnable representation, such as feature vectors, learning (L) takes place, using the
transformed data to derive an ML model via optimization. Inference (I) refers to the
process by which the learned model is used to make predictions on unseen data and is
performed after learning.

• Post Processing (PPR). Post processing is the all-encompassing term for operations
following learning and inference. Bruha et al. [30] classifies PPR operations into four
categories: 1) rule-based knowledge filtering, 2) rule-based knowledge integration, 3)
interpretation and explanation, 4) evaluation. While 1) and 2) involve transformations
of the L/I output, 3) and 4) are about the analysis of the L/I output.

As we will demonstrate in Section 3.2.1 in Chapter 3, these three components are generic
and sufficient for describing a wide variety of supervised, semi-supervised, and unsupervised
settings. We will describe how we can represent an ML workflow as a directed acyclic graph
of data preprocessing and ML model operators.

1We use the term machine learning workflow instead of machine learning pipeline in this dissertation to
emphasize the complexity and non-linearity of the structure.
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Figure 1.1: Machine Learning Lifecycle.

1.2 The Machine Learning Lifecycle

The ML lifecycle describes the process by which an ML workflow is developed and deployed
to power applications. At a high level, the ML lifecycle comprises three stages, as shown
in Figure 1.1. The first stage in the lifecycle is ML development, in which an ML workflow
is developed offline through experimentation to accomplish a specific task. The developed
workflow is then deployed into the production environment where it undergoes the next two
stages in the lifecycle. The first production stage is training the model using the developed
workflow on live production data, which is usually carried out in an environment with much
more computation resources and on much larger scale data compared to the development
stage. Finally, the trained model is deployed to downstream applications to perform inference
on newly observed data.

ML Development. We start with our discussion on ML workflow development with a
concrete example from our bioinformatics collaborators who form part of a genomics center
at the University of Illinois [164].

Example 1 (Gene Function Prediction). The scientific goal of their ML application is to
discover novel relationships between genes and diseases by mining scientific literature. To
do so, they process published papers to extract entity—gene and disease—mentions, compute
embeddings using an approach like word2vec [131], and finally cluster the embeddings to
find related entities. They repeatedly iterate on this workflow to improve the quality of the
relationships discovered as assessed by collaborating clinicians. For example, they may (i)
expand or shrink the literature corpus, (ii) add in external sources such as gene databases
to refine how entities are identified, and (iii) try different NLP libraries for tokenization
and entity recognition. They may also (iv) change the algorithm used for computing word
embedding vectors, e.g., from word2vec to LINE [184], or (v) tweak the number of clusters
to control the granularity of the clustering. Every single change that they make necessitates
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waiting for the entire workflow to rerun from scratch—often multiple hours on a large server
for each single change, even though the change may be quite small.

As the example illustrates, ML development is governed by an iterative process: starting
with an initial workflow, developers iteratively modify their workflow, based on previous
results, to improve performance. They may add or modify data sources, features, hyper-
parameters, and training algorithms, among others. These iterations of trial-and-error are
necessary due to data variability, algorithmic complexity, and overall unpredictability of ML.

In the context of ML development, an iteration involves creating a version of the workflow,
either from scratch or by copying/modifying a previous version, and executing this version
end to end to obtain some results for a specific task. Program termination marks the end
of an iteration, and any results that are not written to disk during execution can only be
obtained by modifying the workflow to explicitly save the results and rerunning the workflow.
We explore the characteristics of ML development workloads by gathering and analyzing
evidence from real-world development processes in Chapter 2 and propose a solution for
accelerating ML development in Chapter 3.

Training. The final version of the workflow from the development stage is then run on a
different dataset to train the model that will be deployed to downstream applications. This is
a standard practice to avoid data leakage [92], i.e., the unintended side effect of introducing
signals that are not part of the training data into model training. The model is usually
trained on much more data than during development, wherein developers work with only a
small sample for agile development.

As we will see in Chapter 4, in many production use cases, the model training process
can be highly resource-intensive due to the scale of the full training data. Furthermore, the
model is constantly updated on live data in order to combat model performance degradation
due to data drift [64]. Given the enormous amount of computation resources required to
support ML in production, resource utilization efficiency is paramount. In Chapter 5, we
explore solutions to address a resource utilization efficiency issue uncovered in Chapter 4.

Inference. In the final stage of the ML lifecycle, the workflow produced from the training
stage is deployed to support applications by performing inference on live data, often in real-
time. A series of unique challenges arise in this setting due to the complexity and resource
demands of the inference workload, many of which have been addressed by prior work [5,
40, 178]. This stage of the ML lifecycle is largely out of the scope of this dissertation.

1.3 Core Principles of Our Approach

The research conducted as part of this dissertation is guided by several core principles.

• First, we take a rigorous, evidence-based approach to discovering the needs in real-world
use cases and use the results from the need-finding process to define the problems we
tackle and design the solutions. By adhering to this principle, we can ensure that the
outcome of the work in this dissertation has real-world impact.
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• Second, we take a user-centric approach to solution design, in that the solutions should
support existing practices rather than requiring drastic behavior changes from the
users. We show via multiple instances in this dissertation that current deficiencies in
the ML lifecycle can be addressed through better system design and implementation
instead of requiring new practices on the part of the developers. We are able to accom-
plish this by conducting extensive need-finding prior to solution design and employing
human-centered design practices.

• Finally, we recognize the fact that model training does not happen in a vacuum, and
performance is highly dependent on other pieces in the ML workflow, such as data
preprocessing [138]. Unlike the bulk of existing work on ML systems that focus solely
on model training, we treat the end-to-end ML workflow as first-class citizens in our so-
lutions. Considering the workflow end-to-end, as we show in Chapter 3 and Chapter 5,
unlocks cross-component optimizations that lead to larger gains.

The common thread between our approaches to solving every system challenge in this
dissertation is reuse and redundancy minimization techniques to improve human efficiency
and resource utilization efficiency, which oftentimes benefit from co-optimization. By co-
optimizing human efficiency and resource efficiency, we do not sacrifice one for the other. We
incorporate established techniques from a number of disciplines in computer science, includ-
ing databases, systems, and programming languages, for data management and computation
optimization in the ML setting. We inject new life into these tried-and-true techniques by
creatively adapting them to solve new challenges in machine learning tooling.

1.4 Dissertation Roadmap

The rest of the dissertation is organized into three parts, each containing a need-finding
component and, optionally, solutions to address the needs discovered.

• The first part focuses on ML development and spans Chapters 2 (includes material
from [210, 109]) and 3 (includes material from [209, 207]).

• The second part deals with ML in production and includes Chapter 4 and 5 (includes
material from [211]).

• The solutions presented in the first two parts all involve the use of intelligent automa-
tion. Our final part, comprising Chapter 6 (includes material from [212]), examines the
role of automation in ML tooling across the entire ML lifecycle, both as an introspective
and as a vision for what is to come.
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Chapter 2

Understanding Model Development

Machine learning model development has long been said to be a mysterious process—
developers rely on iterative trial-and-error to obtain their own set of battle-tested guide-
lines to inform their modeling decisions. These guidelines can often seem arbitrary and
paint a confusing picture of the underlying principles, if any, governing the process. Is there
method to the madness? Can we arrive at a more concrete description of the iterative model
development process?

To answer these questions and demystify the mysterious process that is ML model devel-
opment, we conducted two studies. The first study involved a survey of the applied machine
learning literature from five distinct application domains [210]. We use statistics collected
from the papers to understand the model development process and report preliminary trends
and insights from our investigation. This study served as a lens into how experts experiment
with model building. In the second complementary study, we study a wider population of
predominantly citizen data scientists [109]. We analyze over 475k user-generated workflows
on OpenML, an open-source platform for tracking and sharing ML workflows, to identify
popular practices as well as their efficacy.

Together, the results from the two studies present a detailed, statistical characterization
of how developers iteratively modify ML workflows, which can serve as a benchmark for
machine learning workflow development in practice, and can aid the development of future
human-in-the-loop machine learning systems. This is a step forward from the currently
popular approach of using anecdotal evidence to identify usage patterns and motivate design
decisions, such as in Kumar et al. and Zhang et al. [101, 222]. Based on our findings,
we finally describe desiderata for effective and versatile human-in-the-loop machine learning
systems that can cater to users in diverse domains.
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2.1 A Survey of the Applied Machine Learning

Literature

We conduct a statistical study of iteration by surveying the applied ML literature across
five application domains. The statistics collected in this study provide the first quantitative
evidence of how developers iterate on ML workflows, beyond anecdotal ones. Moreover, the
insights and trends discovered from our survey provide concrete guidelines on desired human-
in-the-loop ML system properties, while the models and statistics provide a starting point
for the development of benchmarks for standardized and automatic evaluation of human-in-
the-loop ML systems.

Statistical studies of end-to-end ML workflow development pose several challenges. First,
it is difficult to gather data that captures the entire process, and not just the final snapshot.
One approach, for example, may involve examining code repositories over time to deter-
mine what has changed—one downside of this approach is that developers may not commit
intermediate iterations, leading to less transparency for the overall process. Moreover, this
approach will require understanding code, and mapping code fragments to classes of iterative
modifications, both of which are extremely challenging to do. Second, we need to ensure
that our study captures a diverse set of application domains. Surveys [94, 185, 118, 137] of-
ten end up focusing on industry-relevant application areas (e-commerce, recommendations),
and data-types (language, vision). Since our eventual goal is to develop a benchmark for
general-purpose human-in-the-loop ML systems, this limited view may hinder our ability
to adequately support all application domains. Third, once the data is collected, we need
to devise methods to analyze the data and collect statistics related to iteration. Finally,
we need to turn the raw statistics into models that capture iteration and relate trends and
insights discovered from these models to ML system design.

Our study includes an analysis of 105 applied machine learning papers sampled from
multiple conferences in 2016 and across five application domains, including social sciences,
natural sciences, web application, computer vision, and natural language processing. We
collect statistics from each paper that capture iterative development and use these statistics
to infer common practices in each application domain surveyed. We describe the statistics
collected, how they are used to estimate iteration counts, and discuss the limitations of our
approach in the next section. To ensure the quality of our statistics, we take consensus over
results collected by multiple surveyors, and open-source the final aggregated data for further
studies by interested readers, as well as development of formal benchmarks.

2.1.1 Related Work

To the best of our knowledge, our survey is the first effort in conducting a statistical study
of machine learning model development from empirical evidence. However, the pursuit of
understanding iterative ML development is not singularly ours. Several surveys have been
conducted in recent years to profile industry and academic ML users [94, 185, 118, 137].
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These surveys differ from ours in that they were self-reported responses from a select set of
industry and academic users. Findings from self-reporting surveys are known to suffer from
response bias [139]. Many articles discuss general trends and design patterns in ML work-
flows [51, 85, 119], while a number of articles focus on providing guidance and taxonomies
for novice users to perform iteration better [223, 159, 170]. Other work such as [2] and [114]
study general trends and needs in data science using NLP techniques to study a large corpus
en masse. Vartak et al. [195] describe a system-building vision for iterative human-in-the-
loop ML. Kery et al. [93] specifically study the versioning aspect of iterative development,
whereas Koesten et al. [97] analyze in-depth surveys to understand the typical workflow for
data scientists.

2.1.2 Data & Methodology

In this section we describe the dataset and the methods used to collect the statistics that
enable analyses of iteration in publications.

2.1.2.1 Corpus

We surveyed 105 papers published in 2016 on applied data science. To ensure relevance,
we selected four venues that specifically publish applied machine learning studies: KDD
Applied Data Science Track, Association for Computational Linguistics (ACL), Computer
Vision and Pattern Recognition (CVPR), and Nature Biotechnology (NB). We randomly
sample 20 papers from ACL, CVPR, and NB each, and 45 papers from KDD. These pa-
pers span applications in social sciences (SocS), web applications (WWW), natural sciences
(NS), natural language processing (NLP), and computer vision (CV). Paper topics were de-
termined using the ACM Computing Classification System (CCS)1. Keywords in each paper
are matched with entries in the CCS tree, and each paper is assigned as its domain the
most appropriate high level entry containing its keywords. Figure 2.1 illustrates the domain
composition of the conferences surveyed. While ACL, CVPR, and Nature specialize in a
single domain, KDD embraces many domains, with a focus on web applications and social
science.

Limitations. Our approach is limited in its ability to accurately model iterations due to
several characteristics of the corpus:
1) While the corpus spans multiple domains, the number of papers in each domain is small,

which can lead to spurious trends.
2) Papers provide an incomplete picture of the overall iterative process. Machine learning

papers are results-driven and focus more on modeling than data preprocessing by con-
vention. Due to space constraints, authors often omit a large number of iterative steps
and report only on the small subset that led to the final results.

1https://www.acm.org/publications/class-2012
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Figure 2.1: Paper count per domain by conference.

3) Papers often present results side by side instead of the order they were obtained, making
it difficult to determine the exact transitions between the variants studied in the iterative
process.

We attempt to overcome some of these limitations by
• Having multiple surveyors and aggregating the results to reduce the change of spurious

results, to be elaborated in Section 2.1.2.2;
• Devising estimators that do no rely on information about the order of operations, to be

elaborated in Section 2.1.2.3.

2.1.2.2 Statistics Collection

Our goal in this survey is to collect statistics on how users iterate on ML workflows. However,
iterations are often not explicitly reported in publications. To overcome this challenge, we
design a set of statistics that allow us to infer the iterative process leading to the results
reported in each paper. We introduce the statistics for each individual component of the
ML workflow below.

Data Preprocessing (DPR). DPR encompasses all operations involved in transforming
raw data into learnable representations, such as feature engineering, data cleaning, and
feature value normalization. We record D, the set of distinct DPR operation types found in
each paper and collect nD = |D|. Mentions of DPR operations are usually found in the data
and methods sections in the paper.

Learning/Inference (L/I). Workflow modifications concerning L/I fall into one of three
categories: 1) hyperparameter tuning for a model (e.g., increasing learning rate, changing
the architecture of a neural net) and 2) switching between model classes (e.g., from decision
tree to SVM). For each paper, we record M, the set of all model classes and P , the set of
distinct hyperparameters tuned across all model classes, and collect nM = |M| and nP = |P|.
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Evidence for these statistics is usually found in the algorithms section, as well as result tables
and figures.

Post Processing (PPR). Evaluation and interpretation/explanation are the most com-
monly reported post-processing operations in papers, often presented in tables or figures.
For each paper, we record E , the set of evaluation metrics used, and collect nE = |E|. In
addition, we collect ntable and nfigure, the number of tables and figures containing results
and case studies, respectively.

We refer to D,M,P , E collectively as entity sets in the rest of the paper 2.

To ensure the quality of the statistics collected, we had three graduate students in data
mining, henceforth referred to as surveyors, perform the survey independently on the same
corpus. We reference the results collected by each surveyor with a subscript, e.g.,M1 is the
set of model classes recorded by surveyor 1. To increase the likelihood of consensus, we first
had the surveyors discuss and agree on a seed set for each entity set, e.g., E = {Accuracy,
RMSE, NDCG}. Surveyors were then asked to remove from and add to this set as they see
fit for each paper. Let n′x be the aggregated value of the statistic nx. We aggregate the three
sets of results as follows:
• For an entity set S (e.g., M, the set of model classes), let Sa = S1 ∪ S2 ∪ S3. We filter
Sa to obtain S ′ ⊆ Sa such that s ∈ S ′ is identified by at least two surveyors. That is, a
paper is considered to contain an operation only if it is identified to be in the paper by at
least two surveyors independently. We define n′S for the corresponding statistic as |S ′|.

• For ntable and nfigure, we define n′table/figure to be the average of the values obtained by
the three surveyors.

2.1.2.3 Estimating Iterations using Statistics

The information collected above indicate versions of the workflow studied but not the itera-
tive modifications themselves. To infer the number of iterations using the statistics collected
above, we make the following assumptions:
• Each iteration involves a single change. While it is possible for multiple changes to be

tested in a single iteration, it is unlikely the case since the interactions can obfuscate the
contribution of individual changes.

• Each element in an entity set is tested exactly once. For the authors to report on
a variant, there must have been at least one version of the workflow containing that
variant. Although it is likely for a variant to be revisited in multiple iterations in the
actual research process, papers, by convention, provide little information on this aspect.
Due to this lack of evidence, we take the conservative approach by taking the minimum
value.

2The complete entity sets and statistics can be found at https://github.com/gestalt-
ml/AppliedMLSurvey/blob/master/data/combinedCounts.tsv
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Let tDPR, tLI , tPPR be the number of iterations containing changes to the DPR, L/I, and PPR
components of the workflow, respectively. Using the two assumptions above, we estimate
tDPR, tLI , and tPPR as follows:
• t̂DPR = n′D
• t̂LI = (n′M − 1) + (n′P − 1)
• t̂PPR = min

(
n′E , n

′
table + n′figure

)
For t̂DPR, we assume that the authors start with the raw data and incrementally add more
data preprocessing operations in each iteration. We subtract one from n′M and n′P in t̂LI
to account for the fact that the initial version of the workflow must contain a model, a set
of hyperparameters, and an optimization algorithm. The estimator t̂PPR assumes that in a
PPR iteration, the authors can either gather all information on a single metric or generate
an entire figure/table.

2.1.3 Results and Insights

In this section we share interesting trends about ML workflow development discovered from
our survey.

2.1.3.1 Iteration Count

Figure 2.2 shows the histograms for the three iteration estimators t̂DPR, t̂LI , t̂PPR across the
entire corpus (top row) and by domain (rows 2-6). A bin in every histogram represents
an integral value for the estimators, and bin heights equal the fraction of papers with the
bin value as their estimates. The mean values for the estimators by domains are shown
in the stacked bar chart in Figure 2.3, where the total bar length is equal to the average
number of iterations in each domain. From these two figures, we see that 1) most papers
use ≥ 1 evaluation methods, evident from the fact that histograms in the third column in
Figure 2.2 are skewed towards t̂PPR ≥ 2; 2) PPR is the most common iteration type across all
domains, evident from the length of the E[t̂PPR] bars in Figure 2.3; and 3) on average, more
DPR iterations are reported than L/I iterations in every domain except computer vision, as
illustrated by the relative lengths of the E[t̂DPR] and E[t̂LI ] bars in Figure 2.3.

When grouped by domains, we see that the distributions for certain domains deviate a
great deal from the overall trends in Figure 2.2. Domains dominated by deep neural nets
(DNNs), which are designed to replace manual feature engineering for higher order features,
tend to skew towards fewer DPR and more L/I iterations, such as NLP and CV. Additionally,
there are only a few highly processed datasets studied in all NLP and CV papers, further
reducing the need for data pre-processing in these domains. On the other hand, social and
natural sciences exhibit the opposite trend in the histograms in Figure 2.2, biasing towards
more DPR iterations. This is largely due to the fact that both domains rely heavily on
domain knowledge to guide ML and strongly prefer explainable models. In addition, a large
amount of data is required to enable training of DNNs. The scale of data is often much
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Figure 2.2: Distribution of number of iterations by workflow component.
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smaller for SocS and NS than NLP and CV, thus preventing effective application of DNNs
and requiring more manual features.

2.1.3.2 Data Pre-processing by Domain

Table 2.1 shows the most popular DPR operations in each application domain, ordered
top to bottom by popularity, with abbreviations expanded in the caption. While the table
reaffirms common knowledge such as feature normalization is important, Table 2.1 also shows
two striking results: 1) joining multiple data sources is common in four of the five domains
surveyed; 2) 1

3
of the papers contain fine-grained features defined using domain knowledge

across all domains. Result 1) suggest that unlike classroom and data competition settings in
which the input data resides conveniently in a single file, data in real-world ML applications is
aggregated from multiple sources (e.g., user database and event logs). Result 2) contradicts
the common belief that ML applications have collectively progressed beyond handcrafted
features thanks to the advent of deep learning (DL). In addition to the incompatibilities
with DL in some domains mentioned in Section 2.1.3.1, the efficacy of features designed
using domain knowledge versus using DL to search for the same features without domain
knowledge is possibly another contributing factor.

2.1.3.3 Learning/Inference by Domain

Table 2.2 lists the most popular model classes for each application domain, with abbreviations
expanded in the caption. We have already discussed the disparity between the popularity
of DL in CV/NLP and other domains in Section 2.1.3.1. Most traditional approaches such
as GLM, SVM, and Random Forest are still in favor with most domains, since the large
additional computation cost for DL often fails to justify the incremental model performance
gain. Matrix factorization, which is highly amenable to parallelization, is popular in web
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applications for supporting recommendation engines. Interestingly, SVM is the most popular
method in natural sciences by a large margin (100% more popular than the second most
popular option), possibly due to its ability to support higher order functions through kernels.
NS applications experimenting with DL are mostly computer vision related.

Table 2.3 shows the most popular model tuning operations by domains. The top two
operations, learning rate and batch size, are both concerned with the training convergence
rate, suggesting that training time is an important factor in all domains. Cross validation and
regularization are both mechanisms to control model complexity and overfitting to observed
data. Lower complexity models usually result in faster inference time and better ability to
generalize to more unseen data.

2.1.3.4 Post Processing by Domain

Of the evaluation methods listed in Table 2.4, P/R, accuracy, correlation, and DCG are
summary evaluations of model performance while case study, feature contribution, human
evaluation, and visualization are fine-grained methods towards insights to improve upon the
current model. While the former group can be used automatically such as in grid search,
the latter group is aimed purely for human understanding.

2.2 Analysis of Machine Learning Workflow

Execution Traces

The study in this section complements the one in the preceding section in two important
ways: 1) while the study in the last section shed light on how experts develop ML models, the
study in this section offers a complementary view of the process by analyzing ML workflow
development behavior of users with a wider range of expertise; 2) the previous study relies
on results that have been curated and selectively reported by the developer, whereas the
dataset in this study provides a comprehensive view of every iteration carried out by the
developer in the model building process.

The data used in this study is gathered from OpenML, which is an open-source, hosted
platform for users to upload datasets and run ML workflows on these datasets by calling
an API. A relatively diverse mix of user skill levels is present on OpenML, from students
just getting started with ML to experienced data scientists and ML researchers. OpenML
publishes a database of the user-uploaded datasets as well as the workflow specifications
submitted by users and their corresponding executions. By performing targeted analyses
on the most common ML models and preprocessing operators as well as their associated
performance, we shed light on common ML workflow design patterns and their general
effectiveness. We study trends in iterative ML workflow changes across 295 users, 475,297
runs, and 793 tasks on the OpenML platform.

The main contributions in this study can be summarized as follows:
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• We characterize the frequency and performance of popular ML models and prepro-
cessing operators used by OpenML users. We highlight the impact of the operator
combinations and discuss their implications on general user awareness (or lack thereof)
of particular ML concepts (Section 2.2.3).

• We analyze sequences of changes to workflows to extract different styles of ML work-
flow iteration and shed light on the most common types of changes for each iteration
style, the amount of exploration typically performed, and performance gain users are
generally able to achieve (Section 2.2.4).

• We conduct case studies on exemplary instances to understand effective iteration prac-
tices. (Section 2.2.5).

2.2.1 Related Work

Psallidas et al.[158] analyzed publicly-available computational notebooks and enterprise data
science code and pipelines to illustrate growing trends and usage behavior of data science
tools. Other studies have employed qualitative, semi-structured interviews to study how
different groups of users engage with ML development, including how software engineers [11]
and non-experts [213] develop ML-based applications, and how ML practitioners iterate on
their data in ML development [78]. In comparison, we analyze practices and behavior for
users iterating on ML workflows, based on data collected from OpenML [192]—an online
platform for organizing and sharing ML experiments to encourage open science and collabo-
ration. Data from OpenML has been used extensively for meta-learning [191] to recommend
optimal workflow configurations, such as preprocessing [25, 157], hyperparameters [190], and
models [24, 180] for a given dataset and task. Benchmark datasets from OpenML, as well
as other similar dataset repositories [140, 43], have also been used for evaluating AutoML
algorithms [66, 34, 63]. However, these papers focus solely on using the datasets, models
and results from each workflow and do not study the iterative behavior of users.

This study differs from existing work in that we analyze the trace of user-generated ML
workflow iterations leading to insights such as which stages (preprocessing, model selection,
hyperparameter tuning) users focus most of their iterations on, their impact on the effective-
ness of the workflow, and which specific combinations of model and preprocessing operators
are the most widely used. Moreover, our study offers a complementary perspective to exist-
ing interview studies by providing empirical (based on code), population-level statistics and
insights on how people iterate on machine learning workflows. These insights are valuable
for helping AutoML and mixed-initiative-ML system builders understand the trends in the
ML development practices of target users.

2.2.2 Data & Methodology

Recall from Section 1.1, an ML workflow is a directed acyclic graph of data preprocessing,
ML model with their associated hyperparameters, and post processing operators. A workflow
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is created to accomplish a specific task, which consists of a dataset along with a machine
learning objective, such as clustering or supervised classification. A run is the execution of
a workflow applied to a particular task (multiple executions of the same workflow lead to
multiple runs), and a sequence consists of the time-ordered set of runs from a single user for
a particular task. In the OpenML dataset, workflows contain only data preprocessing and
model operators, and each run is associated with performance measures, such as classification
accuracy or Area Under the ROC Curve (AUC).

2.2.2.1 The Dataset

Our dataset is derived from a snapshot of the OpenML database from December 4, 2019.
We focus on a specific subset of the runs on OpenML that a) were uploaded by users who
are not OpenML developers3 or bots4, to focus on realistic human user behavior, b) use the
Scikit-Learn package [150], to increase the fidelity of our data extraction by focusing on a
single popular ML package used in 79% of the non-developer/non-bot runs, and c) have an
associated AUC score associated with them. This subset contains 475,297 runs (4.8% of the
total number of runs)

2.2.2.2 Workflow Effectiveness Metrics

Due to the variability in the range of evaluation metric values across tasks, raw AUC values
of runs are not directly comparable across tasks. Instead, we account for the difficulty of each
task by measuring relative AUC. For a run r, let ar be its raw AUC on the corresponding
task t. The relative AUC of a run r, is defined as pr = ar −µt, where µt is the average AUC
of all of the runs for task t. We measure the performance of a sequence S by the relative
maximum sequence AUC, pS = maxr∈S ar − 1

|Tt|
∑

Q∈Tt maxq∈Q aq, where Tt is the set of all
sequences for task t. In other words, pS is the difference between the maximum AUC in
the sequence S and the mean of the maximum AUCs of all sequences for task t. We use
maximum AUC per sequence to capture the fact that the best-performing workflow out of
all attempts is the final one that the user adopts.

2.2.3 Run-Level Insights

To better understand how users develop ML workflows, we first sought to understand: What
are the most prevalent ML operators in practice? In what combinations are these operators
used together and when do they lead to better performance?

Figure 2.4 shows the most common model and preprocessing combinations used by more
than four users on OpenML. Ensemble models that combine one or more base estimators were

3We filtered out runs uploaded by the core team and key contributors listed on https://www.openml.

org/contact.
4We also filtered out runs uploaded by users whose names contained “bot.” Removing developers and

bots left us with 6.1% of the total number of runs on OpenML.

https://www.openml.org/contact
https://www.openml.org/contact
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Distance from 
task mean AUC

Count (log scale)

1a
3

2a 2b

1b

1a

1b

Figure 2.4: Frequency and performance of the most common (Scikit-Learn model, prepro-
cessing) combinations in OpenML. The top displays frequency in terms of the user count,
while the bottom shows run count.
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excluded from the plot, to avoid duplication with other base estimators. DummyClassifier
was also excluded. The color indicates the performance of the combination, measured by pr,
averaged over all runs that include the combination, while the size of each circle is scaled by
the number of users (Figure 2.4 top) and runs (Figure 2.4 bottom) that contain the specific
combinations. Both the rows and columns are sorted based on their performance across all
of the specified operators. In other words, the best-performing combinations are located
at the top-right corner of the chart, whereas the worst-performing combinations are on the
bottom-left.

Certain models (AdaBoostClassifier, BaggingClassifier, DummyClassifier, GradientBoost-
ingClassifier, GridSearchCV, RandomizedSearchCV, and VotingClassifier) were intentionally
excluded from the plot. DummyClassifier was excluded because it is known to be used for
comparisons rather than for solving real problems [150]. The others were not shown because
they are wrappers that can take in one or more base estimators, and the most frequently
used of these base estimators are already shown in the plot.

Histograms showing the marginal distribution of frequency and performance for each
operator are displayed on the sides. For instance, the uppermost user frequency histogram
shows the average user count for each preprocessing operator, averaged across the models
that were used in combination with it, normalized by the total number of users.

We highlight various insights from Figure 2.4, with the enumerated points corresponding
to the enumerated boxed regions in the figure.
(1) Performance of Specific Combinations: Some combinations consistently yield high
relative AUC when compared to other combinations used for the same ML task. For instance,
there is a clear difference in performance between Random Forest (1a), the model used by
the most OpenML users, and SVC (C-Support Vector Classification) (1b), the model used
in the most runs. On average, the relative AUC of runs that include Random Forest (RF)
is pr = 9.89%. RF works especially well with SimpleImputer 5 as an added preprocessing
step, achieving pr = 15.57% on average. On the other hand, users tend to perform worse on
average (pr = −7.84%) when using SVC models for OpenML tasks.
(2) Effect of Preprocessing: Around 81% of users have run ML models on a dataset with-
out performing any data preprocessing beforehand (2a). This could be attributed to the fact
that many of the datasets on OpenML are already in a relatively clean, preprocessed state.
However, it is evident from Figure 2.4 that users can often still achieve higher performance by
including some form of dimensionality reduction, feature scaling and transformations, or data
sampling, indicating how preprocessing is often an overlooked but important aspect in ML
development. For instance, ADASYN and SMOTE [111], which are preprocessing strategies
for over-sampling data, are relatively infrequent among OpenML users (2b). However, when
combined with K-Nearest Neighbors (KNN) models, users are able to consistently achieve
higher AUC scores (by around pr = 19.4% for ADASYN and pr = 15.6% for SMOTE).
This suggests that when working with imbalanced datasets, certain techniques such as over-
sampling are extremely valuable in achieving high classification performance, and that there

5https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
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Model Run Freq User Freq Avg pr

DecisionTree 65.64% 6.06% 0.57%
KNeighbors 19.02% 60.61% 0.48%

RandomForest 9.82% 18.18% 3.1%

Table 2.5: Frequency and average distance from task mean AUC of the most commonly used
models for large datasets.

needs to be increased awareness of such data preprocessing methods.
(3) Frequency of Specific Combinations: The frequency distributions for both models
and preprocessing operators vary depending on whether we look at the number of runs or
the number of users (shown in box 3). For example, the most popular model measured by
the number of unique users is RF (used by 68.2% of users in our dataset) followed by KNN
(37.4% of users), with SVC in third place (24.2% of users). However, when determining
frequency from the perspective of the number of runs that included the model, SVC makes
up ≈ 50% of the runs in our dataset, while RF accounts for < 40% of the runs. This suggests
that there are variations in the iteration behavior across different users: some focus on tuning
the same model for many iterations, while others experiment with several different models.
We explore these trends and provide insights on their effectiveness in the Section 2.2.4.

2.2.3.1 Application of Run-Level Insights

Analyses such as those highlighted from (1)-(3) not only shed light on the usefulness of
particular ML operators, but they can also be used to validate whether users’ existing prac-
tices aligns with conventional wisdom in the form of guidelines from the ML community or
whether there is a gap in adopting these guidelines. As an example of this application, we
examine a particular case study of how users select which models to use for handling large
datasets.

First of all, we observe that for large datasets, users do indeed focus on specific models in a
different distribution than the overall trends shown in Figure 2.4. Table 2.5 shows the model
frequencies for only the runs on large datasets (with greater than 110,313 instances—the
mean across all the datasets that Scikit-Learn users constructed workflows for).

According to conventional guidelines [205], Decision Trees and ensemble methods like RF
are well-suited for medium to large datasets, while KNN works well for small to medium
datasets. Although Decision Tree makes up 65.64% of the runs, it is used by only 6% of
the users. Instead, 60% of the users opted for KNN for the largest datasets on OpenML.
However, KNN resulted in the lowest performance, (average pr = 0.48%), compared to
average pr = 3.1% for RF and 0.57% for Decision Tree. While the performance validates
the efficacy of the guidelines, the usage statistics reveal that most users fail to follow these
guidelines.

To better understand how users construct their workflows, next, we delve into how users
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iterate on their workflows and the impact of different aspects of these iterative changes on
the performance of the workflows.

2.2.4 Sequence-Level Insights

Users have a wide range of ML workflow development styles—some use a more manual
approach where they run a model, look at the results, make a change or two to address
the issue, and then repeat the process. Others may choose a more automated technique,
e.g., looping through a set of pre-determined values for certain hyperparameters of a model.
In the manual case, the human remains in the loop, while in the automated case, the user
has already set a search space a-priori and the changes to the workflow at each iteration
are independent of the previous iteration’s result. Others use a mixed sometimes-manual,
sometimes-automated strategy.

To classify a sequence as manual, automated, and mixed, we introduce the following
metrics.
• Interval (∆t): difference between start times of consecutive runs
• Interval difference (∆2t): difference between consecutive ∆ts
• Sequence length (|S|): the number of runs in sequence S

Based on these metrics, we categorize each sequence S as follows:
• Manual: (|S| ≤ 2, OR ∆t > 10 minutes for ≥ 50% of the runs in the sequence, OR

∆2t > 3 minutes for ≥ 75% of the runs in the sequence), AND |S| < 300
• Automated (Auto): |S| > 2, AND ∆t > 10 minutes for < 50% of the runs in the

sequence, AND ∆2t > 3 minutes for ≤ 25% of the runs in the sequence
• Mixed: the remaining sequences not in the two categories above

The thresholds were empirically determined through a process of random sampling and
spot-checking two sequences from the manual category that had over 30 iterations and two
from the automated category that had under 30 iterations (since these would be the more
ambiguous cases than shorter manual sequences and longer auto sequences). After the final
thresholds were set, five sequences from each of the categories were randomly sampled and
spot-checked to validate the sequence labels.

The motivation behind looking at both ∆t and ∆2t is that we would expect the actual
time difference between run submissions to be at least a couple of minutes if the user was
making adjustments manually, and we would expect the change in these ∆t’s to also be
non-zero due to the variability in making changes (while constant time differences are often
indicative of a loop). Sequence length is also highly indicative of whether or not most of the
runs were manual, since it would be unlikely to find hundreds or thousands of manual runs,
and indeed the highest number of runs in a manual sequence (after setting the 300 iteration
threshold) is 69. This categorization results in 2181 manual, 208 automated, and 168 mixed
sequences. The total number of runs in each group (sum of sequence lengths in the category)
are: 7,059 manual, 454,270 auto, and 13,968 mixed.

Overall, we observe that users who adopt a more hands-on approach achieve good perfor-
mance much faster than users who automate the search. Across the three categories, users
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Figure 2.5: (a) Cumulative distribution of sequence length, (b) % iterations after reaching
maximum AUC.

Figure 2.6: Cumulative distribution of (a) model and (b) preprocessing operators used across
all iterations in a sequence.

exert varying amounts of effort (number of iterations and number of model and preprocessing
combinations attempted) and focus on different areas of their workflow (choosing the best
model, optimizing a hyperparameter, or determining which data preprocessing operation to
add). Our in-depth analyses of the three categories of sequences reveal three major insights
on the effectiveness of users iterating with manual and automated iterations, described next.

2.2.4.1 On Efficiency

Users iterating with manual sequences are more efficient, achieving the
same performance gain in a small fraction of the number of iterations as
automated sequences, while wasting fewer iterations searching after reaching
their highest-performing workflow. However, users iterating with automated
sequences reach a higher pS than manual for the same task.

Figure 2.5(a) shows that the distribution of the number of iterations per sequence is
drastically different for each sequence category. Manual sequences are short (µ = 3.24, σ =
3.88) and automated sequences are the longest (µ = 2183.99, σ = 1953.74), while mixed
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Change Type Manual Mixed Auto

Model Operator 45.04% 3.95% 0.18%
Model Hyperparameter 28.31% 75.23% 92.69%
Preprocessing Operator 0.53% 0.55% 0.01%

Preprocessing Hyperparameter 0.18% 0.17% 0.04%
Model & Preprocessing 21.96% 6.60% 5.45%

No Change 3.98% 13.49% 1.63%

Table 2.6: Change types for manual, mixed, and automated.

lies somewhere in-between (µ = 83.14, σ = 283.98). Even though manual sequences are
on average < 0.2% the length of automated sequences, within the same span of time, the
maximum increase in AUC is equal for manual and automated (manual: µ = 6.63%, σ =
8.65%; auto: µ = 7.06%, σ = 12.66%)6. Moreover, Figure 2.5(b) shows that the manual
group has a lower percentage of wasted iterations, i.e., the iterations after pS has been
achieved, than the other two groups (manual: µ = 31%; mixed: µ = 49%; auto: µ = 47%).
This means that on average, manual users waste 1 iteration, mixed users waste 41 iterations,
and auto users waste 1026 iterations.

However, automated and mixed sequences result in a 3% higher pS compared to manual
sequences for the same task.This is likely due to a greater coverage of search space from the
mixed and automated sequences compared to manual. There is a delicate balance between
iterating in an efficient manner but exploring enough to achieve better results. We now
present our approach to quantitatively estimating a sequence’s breadth of exploration.

2.2.4.2 On Exploration

Exploring more model and preprocessing operators leads to higher pS in
manual sequences but does not improve pS in automated sequences. Users
iterating with manual sequences cover the same number of model types as
automated sequences, but a lower variety of preprocessing techniques.

As shown in Figure 2.6, manual sequences explore a similar number of models as mixed
and automated sequences (manual: µ = 3.08, σ = 1.63; mixed: µ = 2.64, σ = 1.37; auto: µ =
3.31, σ = 1.48). However, there tends to be less manual exploration on data preprocessing
when compared to the mixed and automated groups (manual: µ = 1.51, σ = 1.82; mixed:
µ = 2.49, σ = 1.44; auto: µ = 3.22, σ = 1.91). It is interesting to note that automated
sequences explore the same number of preprocessing operators as models on average, while
manual sequences have a higher tendency to completely leave out data preprocessing from
their workflows.

6Sequences with a length of 1 were excluded from this and other appropriate analyses in this section to
avoid inflation by deltas of 0, counts of 1, or percentages of 100.
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Figure 2.7: Joint distribution of model and preprocessing operators per sequence. Max AUC
is relative to only the sequences within each category.

When examining the number of model and preprocessing operators jointly, as shown in
Figure 2.7, we can see that for manual iterations, trying more combinations leads to bet-
ter performance, but this is not the case in mixed and auto sequences. For each of the
combinations that auto sequences explore, they typically perform many more iterations of
hyperparameter tuning than manual sequences do for a given combination, evident from
the fact that most auto iteration sequences comprise of hyperparameter tuning, as shown in
Table 2.6, and that auto sequences are much longer. These trends reveal two phenomena: 1)
when a combination is explored using default or rule-of-thumb hyperparameters in just a few
iterations, as is the case in typical manual sequences, the performance gap between different
combinations is large; 2) when a combination is explored with many hyperparameter tuning
iterations, as is the case in typical auto sequences, the performance gap shrinks between dif-
ferent combinations, leading to diminishing returns from exploring more combinations on pS
improvement. In other words, auto sequences often waste most iterations on hyperparameter
tuning to improve the performance of suboptimal combinations without improving pS, while
the potential of a combination can be estimated quickly with just a few iterations. However,
there is merit to extensive hyperparameter tuning, evident in the fact that auto sequences
achieve a 3% higher pS than manual ones as discussed in Section 2.2.4.1. Together, these
insights suggest that a hybrid approach, wherein coarse-grained search is first performed
over the combinations of preprocessing and model operators, followed by fine-grained search
doing hyperparameter tuning on the most promising combinations, would be both effective
and also efficient at finding a high-performing workflow.
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Figure 2.8: Model transition likelihood in consecutive manual iterations (row represents
current iteration, and column represents next iteration).

Model Manual Mixed Auto

RandomForest 40.83% 76.90% 53.32%
KNeighbors 37.99% 37.74% 50.54%

SVC 28.25% 23.73% 46.26%

Table 2.7: Mean % iterations per sequence for the top 3 models.
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2.2.4.3 On Model Tuning

While automated sequences are dominated by hyperparameter changes,
users iterating with manual sequences focus on model selection and even-
tually converge on high-performing models.

Since changing the ML model is the most common type of manual workflow change,
making up 45.04% of all manual runs as shown in Table 2.6, we look into which models are
abandoned and which are kept from one iteration to the next. Table 2.7 shows that in all
groups (manual, mixed, and auto), users are much less likely to stick with SVC thank RF
and KNN. Whenever SVC is used in a manual sequence, it accounts for only 28.25% of the
runs, compared to 40.83% for RF and 37.99% for KNN. Combined with our findings from
Figure 2.4 that RF and KNN perform better than SVC on average, we conclude that users
are able to waste fewer iterations on models that do not work as well.

Furthermore, the transition probabilities between different pairs of models in Figure 2.8
reveal that users tend to stay with the same model from one iteration to the next, as
evidenced by the high probabilities along the diagonal of the matrix. However, when a
switch occurs, the model that is switched to the most is RF, with 26.22% of all model
changes transitioning to RF.

2.2.5 Case Studies

So far, we have described insights aggregated across multiple users, reflecting the population-
level trends in ML development. In this section, we dive deep into a few examples of both
effective and ineffective practices to offer a complementary view on user behavior. We define
a highly effective sequence as one that achieves a high AUC score over just a few iterations,
wasting few to no iterations after pS has been achieved.

In Figure 2.9, we show examples of highly-effective sequences (A and B), and an ineffective
sequence (C) for the supervised classification task that was attempted by the highest number
of users on OpenML. The dataset used in this binary classification task most notably has a
very imbalanced class distribution, with 98.35% of the instances belonging to the majority
class. Workflows that account for the class imbalance problem are able to achieve higher
performance than those who do not.

Figure 2.9(A) illustrates one such example of a user who was successful in creating a
near-optimal ML workflow for this task. This user iterated on the workflow using a manual
sequence (based on our definition in Section 2.2.4), starting off by selecting a model, then
adding data preprocessing, beginning with StandardScaler and Principal Component Anal-
ysis (PCA). They then incorporated an oversampling strategy, ADASYN, to counter the the
class imbalance problem, resulting in a significant performance boost.

Similarly, Figure 2.9(B) also illustrates a user who iterated with a manual sequence,
experimenting with different combinations of model and preprocessing operators, before
discovering the high impact of data oversampling. As soon as they incorporated ADASYN,
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they were able to quickly run through a final model selection phase to achieve one of the
highest AUC scores for the task.

Finally, as shown in Figure 2.9(C), the user was off to a strong start by picking similar
models as chosen in (A) and (B). However, the user then spent over one hundred automated
iterations exhaustively tuning hyperparameters, resulting in over 95% of their iterations
being wasted, i.e., they did not improve pS. This user could benefit from learning the strategy
adopted in manual approaches in (A) and (B) to first examine dataset characteristics to guide
modeling decisions, instead of optimizing hyperparameters prematurely.

2.3 Implications for System Design

The results from the two studies demonstrate that ML model development is a highly iter-
ative, human-in-the-loop process. The qualitative and quantitative conclusions drawn from
these findings have many profound implications on designing systems to support human-in-
the-loop ML model development.

The results in Section 2.1 suggest a number of properties that a versatile and effective
human-in-the-loop ML system should possess:

• Iteration. Developers iterate on their workflows in every application domain and
test out changes to all components of the workflow. Understanding the most fre-
quent changes helps us develop systems that anticipate and respond rapidly to iterative
changes.

• Fine-grained feature engineering. Handcrafted features designed using domain
knowledge are still an indispensable part of the workflow development systems in all
domains and should therefore be adequately supported instead of dismissed as an
outdated practice.

• Efficient joins. Data is often pooled from multiple sources, thus requiring systems to
support efficient joins in the data pre-processing component.

• Explainable models. Many domains have yet to embrace deep learning due to
their needs for explainable models. The system should provide ample support to help
developer interpret model behaviors.

• Fast model training. The fact that the most tuned model parameters are related
to training time suggests that developers are in need of systems that have fast model
training, but also low latency for the end-to-end workflow execution in general.

• Fine-grained results analysis. Fine-grained and summary evaluation methods are
equally popular across all domains. Thus, model management systems should provide
support for not only summary metrics but also more detailed model characteristics.
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On the other hand, the findings in the second study involving analyzing over 475k user-
generated runs on OpenML unveil more fine-grained user behaviors. We find that users often
adopt a manual, automated, or mixed approach when iterating on their workflows, leading
to varying level of success, potentially due to the expertise of the user. Patterns in these
behaviors suggest a number of opportunities to assist and automate model development,
especially towards the goal of empowering novice users.

• Operator Recommendation. Run-level statistics in Section 2.2.3 illustrate the
prevalence of different operators and whether or not users are able to effectively use
them. The case study in Section 2.2.3.1 shows that there is a discrepancy between
the popularity and efficacy of the different operators. A human-in-the-loop ML sys-
tem [110] could surface lesser-known but high-potential operators to educate the users
and bridge the gap between the system’s capabilities and the user’s knowledge on
specific capabilities.

• Knowledge Transfer. In a similar vein, the case studies in Section 2.2.5 demonstrate
another opportunity for a human-in-the-loop ML system to assist in model development
by amassing crowdsourced best practices to guide novices to more effectively iterate
on the workflow.

• Balance between Manual Development and Automation. We observe that
manual approaches result in fewer wasted iterations compared to automated approaches.
Yet, automated approaches often involve more preprocessing and hyperparameter op-
tions explored, resulting in higher performance overall—suggesting potential benefits
for a human-in-the-loop ML system that appropriately recommends a clever combina-
tion of the two strategies.

Next, we present a declarative system aimed at accelerating iteration in human-in-the-
loop model development by optimizing the end-to-end ML workflow in Chapter 3, using many
of the findings listed above as guiding principles and for evaluation on realistic workloads.
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Chapter 3

Accelerating Model Development
with Helix

As shown in Chapter 2, machine learning workflow development is a process of trial-and-
error: developers iterate on the machine learning workflow by incrementally modifying steps
within, including (i) preprocessing: altering data cleaning or extraction, or engineering fea-
tures; (ii) model training: tweaking hyperparameters, or changing the objective or learning
algorithm; and (iii) postprocessing: evaluating with new data, or generating additional statis-
tics or visualizations. These iterations are necessitated by the difficulties in predicting the
performance of a workflow a priori, due to both the variability of data and the complexity
and unpredictability of machine learning.

Prior to this work, the majority of effort in building better tools to support machine
learning has focused on speeding up the model training process [27, 1, 181, 200, 179], which,
given the knowledge gleaned from the studies in Chapter 2, is only a small piece of the model
development process. In this chapter, we present Helix, a system that optimizes for the
iterative model development process by intelligently caching and reusing, or recomputing
intermediate results in the end-to-end ML workflow across iterations.

During development, users tend to rerun the entire ML workflow from scratch in every
iteration, due to the fact that it is common for users to develop the entire workflow in a
single script, which lends itself to end-to-end execution. However, as we saw in Chapter 2, the
changes across iterations are incremental, which suggests that most of the recomputation
in each iteration is in fact redundant. Given that each iteration can easily take hours to
execute, there is an opportunity here to eliminate a great deal of inefficiency.

One approach to address the redundant recomputation issue is for developers to explicitly
materialize all intermediates that do not change across iterations, but this requires writing
code to handle materialization and to reuse materialized results by identifying changes be-
tween iterations. Even if this were a viable option, materialization of all intermediates is
extremely wasteful, and figuring out how to best reuse the materialized results is not straight-
forward. Due to the cumbersome and inefficient nature of this approach, developers often
opt to rerun the entire workflow from scratch.
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Unfortunately, existing machine learning systems do not optimize for rapid iteration.
For example, KeystoneML [177], which allows developers to specify workflows at a high-
level abstraction, only optimizes the one-shot execution of workflows by applying techniques
such as common subexpression elimination and intermediate result caching. On the other
extreme, DeepDive [221], targeted at knowledge-base construction, materializes the results of
all of the feature extraction and engineering steps, while also applying approximate inference
to speed up model training. Although this näıve materialization approach does lead to reuse
in iterative executions, it is wasteful and time-consuming.

We present Helix, a declarative, general-purpose machine learning system that optimizes
across iterations. Helix is able to match or exceed the performance of KeystoneML and
DeepDive on one-shot execution, while achieving up to 95% computation time reduction
on iterative execution across four real-world applications. By optimizing across iterations,
Helix allows data scientists to avoid wasting time running the workflow from scratch ev-
ery time they make a change and instead run their workflows in time proportional to the
complexity of the change made. Helix is able to thereby substantially increase developer
productivity while simultaneously lowering resource consumption.

Developing Helix involves two types of challenges—challenges in iterative execution op-
timization and challenges in specification and generalization.

Challenges in Iterative Execution Optimization. ML workflows in practice can be
quite large and complex. As we described previously, one simple approach to enable iterative
execution optimization (adopted by DeepDive) is to materialize every single node, such that
the next time the workflow is run, we can simply check if the result can be reused from the
previous iteration, and if so, reuse it. Unfortunately, this approach is not only wasteful in
storage but also potentially very time-consuming due to materialization overhead. Moreover,
in a subsequent iteration, it may be cheaper to recompute an intermediate result, as opposed
to reading it from disk.

A better approach is to determine whether a node is worth materializing by considering
both the time taken for computing a node and the time taken for computing its ancestors.
Then, during subsequent iterations, we can determine whether to read the result for a node
from persistent storage (if materialized), which could lead to large portions of the graph being
pruned, or to compute it from scratch. In this paper, we prove that the reuse plan problem
is in PTIME via a non-trivial reduction to Max-Flow using the Project Selection
Problem [95], while the materialization problem is, in fact, NP-Hard.

Challenges in Specification and Generalization. To enable iterative execution opti-
mization, we need to support the specification of the end-to-end machine learning workflow
in a high-level language. This is challenging because data preprocessing can vary greatly
across applications, often requiring ad-hoc code involving complex composition of declara-
tive statements and UDFs [15], making it hard to automatically analyze the workflow to
apply holistic iterative execution optimization.

We adopt a hybrid approach within Helix: developers specify their workflow in an
intuitive, high-level domain-specific language (DSL) in Scala (similar to existing
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systems like KeystoneML), using imperative code as needed for UDFs, say for feature
engineering. This interoperability allows developers to seamlessly integrate existing JVM
machine learning libraries [49, 161]. Moreover, Helix is built on top of Spark, allowing data
scientists to leverage Spark’s parallel processing capabilities. We have developed a GUI on
top of the Helix DSL to further facilitate development [207].

Helix’s DSL not only enables automatic identification of data dependencies and data
flow, but also encapsulates all typical machine learning workflow designs. Unlike Deep-
Dive [221], Helix is not restricted to regression or factor graphs, allowing data scientists to
use the most suitable model for their tasks. All of the functions in Scikit-learn’s (a popular
ML toolkit) can be mapped to functions in the DSL [208], allowing Helix to easily capture
applications ranging from natural language processing, to knowledge extraction, to computer
vision. Moreover, by studying the variation in the dataflow graph across iterations, Helix
is able to identify reuse opportunities across iterations. Our work is a first step in a broader
agenda to improve human-in-the-loop ML [206].

Contributions and Outline. The rest of the chapter is organized as follows: Section 3.1
presents an architectural overview of the system, and a concrete workflow to illustrate con-
cepts discussed in the subsequent sections; Section 3.2 describes the programming interface
for effortless end-to-end workflow specification; Section 3.3 discusses Helix system internals,
including the workflow DAG generation and change tracking between iterations; Section 3.4
formally presents the two major optimization problems in accelerating iterative ML and
Helix’s solution to both problems. We evaluate our framework on four workflows from
different applications domains and against two state-of-the-art systems in Section 3.5. We
discuss related work in Section 3.6.

3.1 Background and Overview

In this section, we describe the Helix system architecture and present a sample workflow
in Helix that will serve as a running example.

3.1.1 System Architecture

The Helix system consists of a domain specific language (DSL) in Scala as the programming
interface, a compiler for the DSL, and an execution engine, as shown in Figure 3.1. The three
components work collectively to minimize the execution time for both the current iteration
and subsequent iterations :

1. Programming Interface (Section 3.2). Helix provides a single Scala interface named
Workflow for programming the entire workflow; the Helix DSL also enables embedding of
imperative code in declarative statements. Through just a handful of extensible operator
types, the DSL supports a wide range of use cases for both data preprocessing and machine
learning.
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Figure 3.1: Helix System architecture. A program written by the user in the Helix DSL,
known as a Workflow, is first compiled into an intermediate DAG representation, which is
optimized to produce a physical plan to be run by the execution engine. At runtime, the
execution engine selectively materializes intermediate results to disk.

2. Compilation (Sections 3.3, 3.4.1–3.4.2). A Workflow is internally represented
as a directed acyclic graph (DAG) of operator outputs. The DAG is compared to the
one in previous iterations to determine reusability (Section 3.3). The DAG Optimizer uses
this information to produce an optimal physical execution plan that minimizes the one-shot
runtime of the workflow, by selectively loading previous results via a Max-Flow-based
algorithm (Section 3.4.1–3.4.2).

3. Execution Engine (Section 3.4.3). The execution engine carries out the physical
plan produced during the compilation phase, while communicating with the materialization
operator to materialize intermediate results, to minimize runtime of future executions. The
execution engine uses Spark [219] for data processing and domain-specific libraries such as
CoreNLP [120] and Deeplearning4j [49] for custom needs. Helix defers operator pipelining
and scheduling for asynchronous execution to Spark. Operators that can run concurrently
are invoked in an arbitrary order, executed by Spark via Fair Scheduling. While by default
we use Spark in the batch processing mode, it can be configured to perform stream processing
using the same APIs as batch. We discuss optimizations for streaming in Section 3.4.
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Figure 3.2: Roles of system components in the Helix workflow lifecycle.

3.1.2 The Workflow Lifecycle

Given the system components described in the previous section, Figure 3.2 illustrates how
they fit into the lifecycle of ML workflows introduced in Section 1.2. Starting with W0, an
initial version of the workflow, the lifecycle includes the following stages:
• DAG Compilation. The Workflow Wt is compiled into a DAGGWt of operator outputs.
• DAG Optimization. The DAG optimizer creates a physical plan GOPT

Wt
to be executed

by pruning and ordering the nodes in GWt and deciding whether any computation can
be replaced with loading previous results from disk.

• Materialization Optimization. During execution, the materialization optimizer de-
termines which nodes in GOPT

Wt
should be persisted to disk for future use.

• User Interaction. Upon execution completion, the user may modify the workflow from
Wt to Wt+1 based on the results. The updated workflow Wt+1 fed back to Helix marks
the beginning of a new iteration, and the cycle repeats.
Without loss of generality, we assume that a workflow Wt is only executed once in each

iteration. We model a repeated execution of Wt as a new iteration where Wt+1 = Wt.
Distinguishing two executions of the same workflow is important because they may have
different run times—the second execution can reuse results materialized in the first execution
for a potential run time reduction.

3.1.3 Example Workflow

We demonstrate the usage of Helix with a simple example ML workflow for predicting
income using census data from Kohavi [98], shown in Figure 3.3a); this workflow will serve
as a running example throughout the paper. Details about the individual operators will be
provided in subsequent sections. We overlay the original workflow with an iterative update,
with additions annotated with + and deletions annotated with −, while the rest of the
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msExt

clExt

1. object Census extends Workflow {
2.    // Declare variable names (for consistent reference) omitted.
3.    data refers_to new FileSource(train="dir/train.csv", test="dir/test.csv") 
4.    data is_read_into rows using CSVScanner(Array("age", "education", ...)) 
5.    ageExt refers_to FieldExtractor("age")
6~9. // Declare other field extractors like ageExt.
    + msExt refers_to FieldExtractor("marital_status")
10.  target refers_to FieldExtractor("target")
11.  ageBucket refers_to Bucketizer(ageExt, bins=10)
12.  eduXocc refers_to InteractionFeature(Array(eduExt, occExt))
13.- rows has_extractors(eduExt, ageBucket,  eduXocc, clExt, target) 
    + rows has_extractors(eduExt, ageBucket,  eduXocc, msExt, target)
14.  income results_from rows with_labels target
15.  incPred refers_to new Learner(modelType="LR"”, regParam=0.1)
16.  predictions results_from incPred on income
17.  checkResults refers_to new Reducer( (preds: DataCollection) => {
18.     // Scala UDF for checking prediction accuracy omitted. })
19.  checkResults uses extractorName(rows, target)
20.  checked results_from checkResults on testData(predictions)
21.  checked is_output() 
22. }

a) Census Workflow Program b) Optimized DAG for original workflow
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Figure 3.3: Example workflow for predicting income from census data.

lines are retained as is. We begin by describing the original workflow consisting of all the
unannotated lines plus the line annotated with − (deletions).

Original Workflow: DPR Steps. First, after some variable name declarations, the user
defines in line 3-4 a data collection rows read from a data source data consisting of two
CSV files, one for training and one for test data, and names the columns of the CSV files
age, education, etc. In lines 5-10, the user declares simple features that are values from
specific named columns. Note that the user is not required to specify the feature type,
which is automatically inferred by Helix from data. In line 11 ageBucket is declared as a
derived feature formed by discretizing age into ten buckets (whose boundaries are computed
by Helix), while line 12 declares an interaction feature, commonly used to capture higher-
order patterns, formed out of the concatenation of eduExt and occExt.

Once the features are declared, the next step, line 13, declares the features to be extracted
from and associated with each element of rows. Users do not need to worry about how these
features are attached and propagated; users are also free to perform manual feature selection
here, studying the impact of various feature combinations, by excluding some of the feature
extractors. Finally, as last step of data preprocessing, line 14 declares that an example
collection named income is to be made from rows using target as labels. Importantly, this
step converts the features from human-readable formats (e.g., color=red) into an indexed
vector representation required for learning.

Original Workflow: L/I & PPR Steps. Line 15 declares an ML model named incPred

with type “Logistic Regression” and regularization parameter 0.1, while line 16 specifies that
incPred is to be learned on the training data in income and applied on all data in income to
produce a new example collection called predictions. Line 17-18 declare a Reducer named
checkResults, which outputs a scalar using a UDF for computing prediction accuracy. Line
19 explicitly specifies checkResults’s dependency on target since the content of the UDF is
opaque to the optimizer. Line 20 declares that the output scalar named checked is only to
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be computed from the test data in income. Lines 21 declares that checked must be part of
the final output.

Original Workflow: Optimized DAG. The Helix compiler first translates verbatim the
program in Figure 3.3a) into a DAG, which contains all nodes including raceExt and all
edges (including the dashed edge) except the ones marked with dots in Figure 3.3b). This
DAG is then transformed by the optimizer, which prunes away raceExt (grayed out) because
it does not contribute to the output, and adds the edges marked by dots to link relevant
features to the model. DPR involves nodes in purple, and L/I and PPR involve nodes in
orange. Nodes with a drum to the right are materialized to disk, either as mandatory output
or for aiding in future iterations.

Updated Workflow: Optimized DAG. In the updated version of the workflow, a new
feature named msExt is added (below line 9), and clExt is removed (line 13); correspond-
ingly, in the updated DAG, a new node is added for msExt (green edges), while clExt gets
pruned (pink edges). In addition, Helix chooses to load materialized results for rows from
the previous iteration allowing data to be pruned, avoiding a costly parsing step. Helix also
loads ageBucket instead of recomputing the bucket boundaries requiring a full scan. Helix
materializes predictions in both iterations since it has changed. Although predictions is not
reused in the updated workflow, its materialization has high expected payoff over iterations
because PPR iterations (changes to checked in this case) are the most common as per our
applied ML literature survey results shown in Figure 2.3. This example illustrates that
• Nodes selected for materialization lead to significant speedup in subsequent iterations.
• Helix reuses results safely, deprecating old results when changes are detected (e.g.,

predictions is not reused because of the model change).
• Helix correctly prunes away extraneous operations via dataflow analysis.

3.2 Programming Interface

To program ML workflows with high-level abstractions, Helix users program in a language
called HML, an embedded DSL in Scala. An embedded DSL exists as a library in the
host language (Scala in our case), leading to seamless integration. LINQ [125], a data
query framework integrated in .NET languages, is another example of an embedded DSL.
In Helix, users can freely incorporate Scala code for user-defined functions (UDFs) directly
into HML. JVM-based libraries can be imported directly into HML to support application-
specific needs. Development in other languages can be supported with wrappers in the same
style as PySpark [167].

3.2.1 Operations in ML Workflows

In this section, we argue that common operations in ML workflows can be decomposed
into a small set of basis functions F . We first introduce F and then enumerate its mapping
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onto operations in Scikit-learn [151], one of the most comprehensive ML libraries, thereby
demonstrating coverage. In Section 3.2.2, we introduce HML, which implements the capa-
bilities offered by F .

As mentioned in Section 3.1, an ML workflow consists of three components: data pre-
processing (DPR), learning/inference (L/I), and postprocessing (PPR). They are captured
by the Transformer, Estimator, and Predictor interfaces in Scikit-learn, respectively. Sim-
ilar interfaces can be found in many ML libraries, such as MLLib [126], TFX [22], and
KeystoneML.

Data Representation. Conventionally, the input space to ML, X , is a d-dimensional
vector space, Rd, d ≥ 1, where each dimension corresponds to a feature. Each datapoint
is represented by a feature vector (FV), x ∈ Rd. For notational convenience, we denote a
d-dimensional FV, x ∈ Rd, as xd. While inputs in some applications can be easily loaded
into FVs, e.g., images are 2D matrices that can be flattened into a vector, many others
require more complex transformations, e.g., vectorization of text requires tokenization and
word indexing. We denote the input dataset of FVs to an ML algorithm as D.

DPR. The goal of DPR is to transform raw input data into D. We use the term record,
denoted by r, to refer to a data object in formats incompatible with ML, such as text and
JSON, requiring preprocessing. Let S = {r} be a data source, e.g., a csv file, or a collection
of text documents. DPR includes transforming records from one or more data sources from
one format to another or into FVs Rd′ ; as well as feature transformations (from Rd to Rd′).
DPR operations can thus be decomposed into the following categories:
• Parsing r 7→ (r1, r2, . . .): transforming a record into a set of records, e.g., parsing an

article into words via tokenization.
• Join (r1, r2, . . .) 7→ r: combining multiple records into a single record, where ri can come

from different data sources.
• Feature Extraction r 7→ xd: extracting features from a record.
• Feature Transformation T : xd 7→ xd′ : deriving a new set of features from the input

features.
• Feature Concatenation (xd1 ,xd2 , . . .) 7→ x

∑
i di : concatenating features extracted in sepa-

rate operations to form an FV.
Note that sometimes these functions need to be learned from the input data. For example,
discretizing a continuous feature xi into four even-sized bins requires the distribution of xi,
which is usually estimated empirically by collecting all values of xi in D. We address this
use case along with L/I next.

L/I. At a high-level, L/I is about learning a function f from the input D, where f : X →
Rd′ , d′ ≥ 1. This is more general than learning ML models, and also includes feature trans-
formation functions mentioned above. The two main operations in L/I are 1) learning, which
produces functions using data from D, and 2) inference, which uses the function obtained
from learning to draw conclusions about new data. Complex ML tasks can be broken down
into simple learning steps captured by these two operations, e.g., image captioning can be
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broken down into object identification via classification, followed by sentence generation
using a language model [90]. Thus, L/I can be decomposed into:
• Learning D 7→ f : learning a function f from the dataset D.
• Inference (D, f) 7→ Y : using the ML model f to infer feature values, i.e., labels, Y from

the input FVs in D.
Note that labels can be represented as FVs like other features, hence the usage of a single D
in learning to represent both the training data and labels to unify the abstraction for both
supervised and unsupervised learning and to enable easy model composition.

PPR. Finally, a wide variety of operations can take place in PPR, using the learned models
and inference results from L/I as input, including model evaluation, data visualization,
and other application-specific activities. The most commonly supported PPR operations
in general purpose ML libraries are model evaluation and model selection, which can be
represented by a computation whose output does not depend on the size of the data D. We
refer to a computation with output sizes independent of input sizes as a reduce:
• Reduce (D, s′) 7→ s: applying an operation on the input dataset D and s′, where s′

can be any non-dataset object. For example, s′ can store a set of hyperparameters over
which reduce optimizes, learning various models and outputting s, which can represent a
function corresponding to the model with the best cross-validated hyperparameters.

3.2.1.1 Comparison with Scikit-learn

A dataset in Scikit-learn is represented as a matrix of FVs, denoted by X. This is concep-
tually equivalent to D = {xd} introduced earlier, as the order of rows in X is not relevant.
Operations in Scikit-learn are categorized into dataset loading and transformations, learn-
ing, and model selection and evaluation [174]. Operations like loading and transformations
that do not tailor their behavior to particular characteristics present in the dataset D map
trivially onto the DPR basis functions ∈ F introduced at the start of Section 3.2.1, so we
focus on comparing data-dependent DPR and L/I, and model selection and evaluation.

Scikit-learn Operations for DPR and L/I. Scikit-learn objects for DPR and L/I im-
plement one or more of the following interfaces [31]:
• Estimator, used to indicate that an operation has data-dependent behavior via a fit(X[,

y]) method, where X contains FVs or raw records, and y contains labels if the operation
represents a supervised model.

• Predictor, used to indicate that the operation may be used for inference via a predict(X)

method, taking a matrix of FVs and producing predicted labels. Additionally, if the
operation implementing Predictor is a classifier for which inference may produce raw
floats (interpreted as probabilities), it may optionally implement predict proba.

• Transformer, used to indicate that the operation may be used for feature transforma-
tions via a transform(X) method, taking a matrix of FVs and producing a new matrix
Xnew.
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Scikit-learn DPR, L/I Composed Members of F
fit(X[, y]) learning (D 7→ f)

predict proba(X) inference ((D, f) 7→ Y)

predict(X)
inference, optionally followed by
transformation

fit predict(X[, y]) learning, then inference

transform(X)

transformation or inference, de-
pending on whether operation is
learned via prior call to fit

fit transform(X) learning, then inference

Scikit-learn PPR Composed Members of F

eval: score(ytrue, ypred)
join ytrue and ypred into a single
dataset D, then reduce

eval: score(op, X, y) inference, then join, then reduce

selection: fit(p1, . . . , pn)

reduce, implemented in terms of
learning, inference, and reduce (for
scoring)

Table 3.1: Scikit-learn DPR, L/I, and PPR coverage in terms of F .

An operation implementing both Estimator and Predictor has a fit predict method, and an
operation implementing both Estimator and Transformer has a fit transform method, for
when inference or feature transformation, respectively, is applied immediately after fitting to
the data. The rationale for providing a separate Estimator interface is likely due to the fact
that it is useful for both feature transformation and inference to have data-dependent behav-
ior determined via the result of a call to fit. For example, a useful data-dependent feature
transformation for a Naive Bayes classifier maps word tokens to positions in a sparse vector
and tracks word counts. The position mapping will depend on the vocabulary represented
in the raw training data. Other examples of data-dependent transformations include feature
scaling, descretization, imputation, dimensionality reduction, and kernel transformations.

Coverage in terms of basis functions F . The first part of Table 3.1 summarizes the mapping
from Scikit-learn’s interfaces for DPR and L/I to (compositions of) basis functions from F . In
particular, note that there is nothing special about Scikit-learn’s use of separate interfaces
for inference (via Predictor) and data-dependent transformations (via Transformer); the
separation exists mainly to draw attention to the semantic separation between DPR and
L/I.

Scikit-learn Operations for PPR. Scikit-learn interfaces for operations implementing
model selection and evaluation are not as standardized as those for DPR and L/I. For
evaluation, the typical strategy is to define a simple function that compares model outputs
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with labels, computing metrics like accuracy or F1 score. For model selection, the typical
strategy is to define a class that implements methods fit and score. The fit method takes
a set of hyperparameters over which to search, with different models scored according to
the score method (with identical interface as for evaluation in Scikit-learn). The actual
model over which hyperparameter search is performed is implemented by an Estimator that
is passed into the model selection operation’s constructor.

Coverage in terms of basis functions F . As summarized in the second part of Table 3.1,
Scikit-learn’s operations for evaluation may be implemented via compositions of (optionally)
inference, joining, and reduce ∈ F . Model selection may be implemented via a reduce
that internally uses learning basis functions to learn models for the set of hyperparameters
specified by s′, followed by composition with inference and another reduce ∈ F for scoring,
eventually returning the final selected model.

3.2.2 HML

HML is a declarative language for specifying an ML workflow DAG. The basic building
blocks of HML are Helix objects, which correspond to the nodes in the DAG. Each Helix
object is either a data collection (DC) or an operator. Statements in HML either declare
new instances of objects or relationships between declared objects. Users program the entire
workflow in a single Workflow interface, as shown in Figure 3.3a). The complete grammar
for HML in Backus-Naur Form can be found in Figure 3.4 and the semantics of all of the
expressions can be found in Table 3.2. Here, we describe high-level concepts including DCs
and operators and discuss the strengths and limitations of HML in Section 3.2.3.

3.2.2.1 Data Collections

A data collection (DC) is analogous to a relation in a RDBMS; each element in a DC is
analogous to a tuple. The content of a DC either derives from disk, e.g., data in Line 3
in Figure 3.3a), or from operations on other DCs, e.g., rows in Line 4 in Figure 3.3a). An
element in a DC can either be a semantic unit, the data structure for DPR, or an example,
the data structure for L/I.

A DC can only contain a single type of element. DCSU and DCE denote a DC of semantic
units and a DC of examples, respectively. The type of elements in a DC is determined by
the operator that produced the DC and not explicitly specified by the user. We elaborate
on the relationship between operators and element types in Section 3.2.2.2, after introducing
the operators.

Semantic units. Recall that many DPR operations require going through the entire dataset
to learn the exact transformation or extraction function. For a workflow with many such
operations, processing D to learn each operator separately can be highly inefficient. We
introduce the notion of semantic units (SU) to compartmentalize the logical and physical
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representations of features, so that the learning of DPR functions can be delayed and batched.

Formally, each SU contains an input i, which can be a set of records or FVs, a pointer
to a DPR function f , which can be of type parsing, join, feature extraction, feature trans-
formation, or feature concatenation, and an output o, which can be a set of records or FVs
and is the output of f on i. The variables i and f together serve as the semantic, or logical,
representation of the features, whereas o is the lazily evaluated physical representation that
can only be obtained after f is fully instantiated.

Examples. Examples gather all the FVs contained in the output of various SUs into a single
FV for learning. Formally, an example contains a set of SUs S, and an optional pointer to
one of the SUs whose output will be used as the label in supervised settings, and an output
FV, which is formed by concatenating the outputs of S. In the implementation, the order
of SUs in the concatenation is determined globally across D, and SUs whose outputs are not
FVs are filtered out.

Sparse vs. Dense Features. The combination of SUs and examples affords Helix a great
deal of flexibility in the physical representation of features. Users can explicitly program
their DPR functions to output dense vectors, in applications such as computer vision. For
sparse categorical features, they are kept in the raw key-value format until the final FV
assembly, where they are transformed into sparse or dense vectors depending on whether
the ML algorithm supports sparse representations. Note that users do not have to commit
to a single representation for the entire application, since different SUs can contain different
types of features. When assembling a mixture of dense and spare FVs, Helix currently
opts for a dense representation but can be extended to support optimizations considering
space and time tradeoffs.

Unified learning support. HML provides unified support for training and test data by
treating them as a single DC, as done in Line 4 in Figure 3.3a). This design ensures that
both training and test data undergo the exact same data preprocessing steps, eliminating
bugs caused by inconsistent data preprocessing procedures handling training and test data
separately. Helix automatically selects the appropriate data for training and evaluation.
However, if desired, users can handle training and test data differently by specifying separate
DAGs for training and testing. Common operators can be shared across the two DAGs
without code duplication.

3.2.2.2 Operators

Operators in Helix are designed to cover the functions enumerated in Section 3.2.1, using
the data structures introduced above. A Helix operator takes one or more DCs and outputs
DCs, ML models, or scalars. Each operator encapsulates a function f , written in Scala, to be
applied to individual elements in the input DCs. As noted above, f can be learned from the
input data or user defined. Like in Scikit-learn, HML provides off-the-shelf implementations
for common operations for ease of use. We describe the relationships between operator
interfaces in HML and F enumerated in Section 3.2.1 below.
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Scanner. Scanner is the interface for parsing ∈ F and acts like a flatMap, i.e., for each
input element, it adds zero or more elements to the output DC. Thus, it can also be used
to perform filtering. The input and output of Scanner are DCSUs. CSVScanner in Line 4
of Figure 3.3a) is an example of a Scanner that parses lines in a CSV file into key-value pairs
for columns.

Synthesizer. Synthesizer supports join ∈ F , for elements both across multiple DCs and
within the same DC. Thus, it can also support aggregation operations such as sliding windows
in time series. Synthesizers also serve the important purpose of specifying the set of SUs
that make up an example (where output FVs from the SUs are automatically assembled into
a single FV). In the simple case where each SU in a DCSU corresponds to an example, a
pass-through synthesizer is implicitly declared by naming the output DCE, such as in Line
14 of Figure 3.3a).

Learner. Learner is the interface for learning and inference ∈ F , in a single operator. A
learner operator L contains a learned function f , which can be populated by learning from
the input data or loading from disk. f can be an ML model, but it can also be a feature
transformation function that needs to be learned from the input dataset. When f is empty,
L learns a model using input data designated for model training; when f is populated, L
performs inference on the input data using f and outputs the inference results into a DCE.
For example, the learner incPred in Line 15 of Figure 3.3a) is a learner trained on the “train”
portion of the DCE income and outputs inference results as the DCE predictions.

Extractor. Extractor is the interface for feature extraction and feature transformation ∈ F .
Extractor contains the function f applied on the input of SUs, thus the input and output to
an extractor are DCSUs. For functions that need to be learned from data, Extractor contains
a pointer to the learner operator for learning f .

Reducer. Reducer is the interface for reduce ∈ F and thus the main operator interface for
PPR. The inputs to a reducer are DCE and an optional scalar and the output is a scalar,
where scalars refer to non-dataset objects. For example, checkResults in Figure 3.3a) Line
17 is a reducer that computes the prediction accuracy of the inference results in predictions.

3.2.3 Scope and Limitations

Coverage. In Section 3.2.1, we described how the set of basis operations F we propose
covers all major operations in Scikit-learn, one of the most comprehensive ML libraries. We
then showed in Section 3.2.2 that HML captures all functions in F . While HML’s interfaces
are general enough to support all the common use cases, users can additionally manually
plug into our interfaces external implementations, such as from MLLib [126] and Weka [73],
of missing operations. Note that we provide utility functions that allow functions to work
directly with raw records and FVs instead of HML data structures to enable direct application
of external libraries. For example, since all MLLib models implement the train (equivalent
to learning) and predict (equivalent to inference) methods, they can easily be plugged into
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〈var〉 ::= 〈string〉
〈scanner〉 ::= 〈var〉 | 〈scanner-obj〉
〈extractor〉 ::= 〈var〉 | 〈extractor-obj〉
〈typed-ext〉 ::= ‘(’ 〈var〉 ‘,’ 〈extractor〉 ‘)’
〈extractors〉 ::= ‘(’ 〈extractor〉 { ‘,’ 〈extractor〉 } ‘)’
〈typed-exts〉 ::= ‘(’ 〈typed-ext〉 {‘,’ 〈typed-ext〉} ‘)’
〈obj〉 ::= 〈data-source〉 | 〈scanner-obj〉 | 〈extractor-obj〉 | 〈learner-obj〉 | 〈synthesizer-obj〉 | 〈reducer-obj〉
〈assign〉 ::= 〈var〉 ‘refers_to’ 〈obj〉
〈expr1〉 ::= 〈var〉 ‘is_read_into’ 〈var〉 ‘using’ 〈scanner〉
〈expr2〉 ::= 〈var〉 ‘has_extractors’ 〈extractors〉
〈list〉 ::= 〈var〉 | ‘(’ 〈var〉 ‘,’ 〈var〉 { ‘,’ 〈var〉 } ‘)’
〈apply〉 ::= 〈var〉 ‘on’ 〈list〉
〈expr3〉 ::= 〈apply〉 ‘as_examples’ 〈var〉
〈expr4〉 ::= 〈apply〉 ‘as_results’ 〈var〉
〈expr5〉 ::= 〈var〉 ‘as_examples’ 〈var〉

‘with_labels’ 〈extractor〉
〈expr6〉 ::= 〈var〉 ‘uses’ 〈typed-exts〉
〈expr7〉 ::= 〈var〉 ‘is_output()’
〈statement〉 ::= 〈assign〉 | 〈expr1〉 | 〈expr2〉 | 〈expr3〉 | 〈expr4〉 | 〈expr5〉 | 〈expr6〉 | 〈expr7〉 | 〈Scala expr〉
〈program〉 ::= ‘object’ 〈string〉 ‘extends Workflow {’

{ 〈statement〉 〈line-break〉 }
‘}’

Figure 11: HELIX syntax in Extended Backus-Naur Form. <string> denotes a legal String object in Scala; <*-obj> denotes the correct syntax for instantiating
object of type “*”; <Scala expr> denotes any legal Scala expression. A HELIX Workflow can be comprised of any combination of HELIX and Scala
expressions, a direct benefit of being an embedded DSL.

22

Figure 3.4: HML syntax in Extended Backus-Naur Form. <string> denotes a legal String
object in Scala; <*-obj> denotes the correct syntax for instantiating object of type “*”;
<Scala expr> denotes any legal Scala expression. A Helix Workflow can be comprised of
any combination of HML and Scala expressions, a direct benefit of being an embedded DSL.

Learner in Helix. We demonstrate in Section 3.5 that the current set of implemented
operations is sufficient for supporting applications across different domains.

Limitations. Since Helix currently relies on its Scala DSL for workflow specification, pop-
ular non-JVM libraries, such as TensorFlow [1] and Pytorch [148], cannot be imported easily
without significantly degrading performance compared to their native runtime environment.
Developers with workflows implemented in other languages will need to translate them into
HML, which should be straightforward due to the natural correspondence between Helix
operators and those in standard ML libraries, as established in Section 3.2.2. That said, our
contributions in materialization and reuse apply across all languages. In the future, we plan
on abstracting the DAG representation in Helix into a language-agnostic system that can
sit below the language layer for all DAG based systems, including TensorFlow and Spark.

The other downside of HML is that ML models are treated largely as black boxes. Thus,
work on optimizing learning, e.g., [163, 224], is orthogonal to (and can therefore be combined
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Figure 3.5: Metrics aggregation and version comparison in the Helix IDE. Users can select
and compare specific versions, represented as points on the metric trend lines, for code change
and visualized execution plans, in order to better understand the performance impact of
specific modifications.

with) our work, which operates at a coarser granularity.

3.2.4 Integrated Development Environment

To demonstrate the full range of capabilities in Helix, we implemented a prototype inte-
grated development environment (IDE) that provides versioning and metrics tracking capa-
bilities on top of the DSL. The IDE comprises three sections that the user can toggle between
to perform different tasks: code editor, versions, metrics.

Code Editor. The Helix IDE provides Helix DSL specific autocomplete and syntax
highlighting to facilitate programming. A “Suggest Modifications” button lets user request
machine-generated edits to be shown inline using Github-style code change highlighting, as
illustrated in Figure 3.3a), thus allowing users to iterate rapidly on the workflow without
mastering the DSL. Once the workflow is executed, the user will be able to inspect the
optimized execution plan in the DAG format, as shown in Figure 3.3b). Individual runtime
and storage for each operation are displayed by hovering over them.

Versions. Users can quickly browse through all past versions of a workflow in a summarized
view with similar aesthetics to code version control tools such as git. Each version is shown
as a commit log entry, with buttons that allow users to instantly checkout the code or obtain
additional metadata. We also provide shortcuts to the version with the best evaluation
metrics as well as the latest version at the top of the page.

Metrics. As shown in Figure 3.5, the Metrics tab aggregates the evaluation metrics for the
workflow across iterations into plots with the metric value on the y-axis and the iteration
number on the x-axis. Each point in the plot represents a version of the workflow. Users
can select a single point to load the associated code version or two points for comparison.
In Figure 3.5, Version 2 and 3 are selected in the Accuracy plot for comparison. The com-
parative view visualizes the DAG and highlights changes in the DAG using git-like visual
comparison cues, in addition to showing the two versions of the workflow code also with
changes highlighted. This feature enables rapid exploration of the relationships between var-
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ious metrics and changes to specific components of the workflow. Understanding the impact
of each past iteration is crucial for making effective future improvements, thus reducing the
overall number of iterations to achieve the desired outcome.

3.3 Compilation and Representation

In this section, we describe the Workflow DAG, the abstract model used internally by Helix
to represent a Workflow program. The Workflow DAG model enables operator-level change
tracking between iterations and end-to-end optimizations.

3.3.1 The Workflow DAG

At compile time, Helix’s intermediate code generator constructs a Workow DAG from
HML declarations, with nodes corresponding to operator outputs, (DCs, scalars, or ML
models), and edges corresponding to input-output relationships between operators.

Definition 1. For a Workow W containing Helix operators F = {fi}, the Workow

DAG is a directed acyclic graph GW = (N,E), where node ni ∈ N represents the output of
fi ∈ F and (ni, nj) ∈ E if the output of fi is an input to fj.

Figure 3.3b) shows the Workflow DAG for the program in Figure 3.3a). Nodes for operators
involved in DPR are colored purple whereas those involved in L/I and PPR are colored
orange. This transformation is straightforward, creating a node for each declared operator
and adding edges between nodes based on the linking expressions, e.g., A results from B

creates an edge (B,A). Additionally, the intermediate code generator introduces edges not
specified in the Workflow between the extractor and the synthesizer nodes, such as the edges
marked by dots (•) in Figure 3.3b). These edges connect extractors to downstream DCs in
order to automatically aggregate all features for learning. One concern is that this may lead
to redundant computation of unused features; we describe pruning mechanisms to address
this issue in Section 3.4.4.

3.3.2 Tracking Changes

As described in Section 3.1.2, a user starts with an initial workflow W0 and iterates on this
workflow. Let Wt be the version of the workflow at iteration t ≥ 0 with the corresponding
DAG Gt

W = (Nt, Et); Wt+1 denotes the workflow obtained in the next iteration. To describe
the changes between Wt and Wt+1, we introduce the notion of equivalence.

Definition 2. A node nt
i ∈ Nt is equivalent to nt+1

i ∈ Nt+1, denoted as nt
i ≡ nt+1

i , if a) the
operators corresponding to nt

i and nt+1
i compute identical results on the same inputs and b)

nt
j ≡ nt+1

j ∀ nt
j ∈ parents(nt

i), n
t+1
j ∈ parents(nt+1

i ). We say nt+1
i ∈ Nt+1 is original if it has

no equivalent node in Nt.

Equivalence is symmetric, i.e., nt′
i ≡ nt

i ⇔ nt
i ≡ nt′

i , and transitive, i.e., (nt
i ≡ nt′

i ∧ nt′
i ≡

nt′′
i ) ⇒ nt

i ≡ nt′′
i . Newly added operators in Wt+1 do not have equivalent nodes in Wt;
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neither do nodes in Wt that are removed in Wt+1. For a node that persists across iterations,
we need both the operator and the ancestor nodes to stay the same for equivalence. Using
this definition of equivalence, we determine if intermediate results on disk can be safely
reused through the notion of equivalent materialization:

Definition 3. A node nt
i ∈ Nt has an equivalent materialization if nt′

i is stored on disk,
where t′ ≤ t and nt′

i ≡ nt
i.

One challenge in determining equivalence is deciding whether two versions of an operator
compute the same results on the same input. For arbitrary functions, this is undecidable
as proven by Rice’s Theorem [165]. The programming language community has a large
body of work on verifying operational equivalence for specific classes of programs [204, 154,
69]. Helix currently employs a simple representational equivalence verification—an operator
remains equivalent across iterations if its declaration in the DSL is not modified and all of its
ancestors are unchanged. Incorporating more advanced techniques for verifying equivalence
is future work.

To guarantee correctness, i.e., results obtained at iteration t reflect the specification for
Wt and are computed from the appropriate input, we impose the constraint:

Constraint 1. At iteration t+ 1, if an operator nt+1
i is original, it must be recomputed.

With Constraint 1, our current approach to tracking changes yields the following guar-
antee on result correctness:

Theorem 1. Helix returns the correct results if the changes between iterations are made
only within the programming interface, i.e., all other factors, such as library versions and
files on disk, stay invariant, i.e., unchanged, between executions at iteration t and t+ 1.

Proof. First, note that the results for W0 are correct since there is no reuse at iteration 0.
Suppose for contradiction that given the results at t are correct, the results at iteration t+ 1
are incorrect, i.e., ∃ nt+1

i s.t. the results for nt
i are reused when nt+1

i is original. Under the
invariant conditions in Theorem 1, we can only have nt+1

i 6≡ nt
i if the code for ni changed or

the code changed for an ancestor of ni. Since Helix detects all code changes, it identifies
all original operators. Thus, for the results to be incorrect in Helix, we must have reused
nt
i for some original nt+1

i . However, this violates Constraint 1. Therefore, the results for Wt

are correct ∀ t ≥ 0.

3.4 Optimization

In this section, we describe Helix’s workflow-level optimizations, motivated by the ob-
servation that workflows often share a large amount of intermediate computation between
iterations; thus, if certain intermediate results are materialized at iteration t, these can be
used at iteration t + 1. We identify two distinct sub-problems: Opt-Exec-Plan, which
selects the operators to reuse given previous materializations (Section 3.4.2), and Opt-Mat-
Plan, which decides what to materialize to accelerate future iterations (Section 3.4.3). We
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finally discuss pruning optimizations to eliminate redundant computations (Section 3.4.4).
We begin by introducing common notation and definitions.

3.4.1 Preliminaries

When introducing variables below, we drop the iteration number t from Wt and Gt
W when

we are considering a static workflow.

Operator Metrics. In a Workflow DAG GW = (N,E), each node ni ∈ N corresponding
to the output of the operator fi is associated with a compute time ci, the time it takes to
compute ni from inputs in memory. Once computed, ni can be materialized on disk and
loaded back in subsequent iterations in time li, referred to as its load time. If ni does not
have an equivalent materialization as defined in Definition 3, we set li =∞. Root nodes in
the Workflow DAG, which correspond to data sources, have li = ci.

Operator State. During the execution of workflow W , each node ni assumes one of the
following states:
• Load, or Sl, if ni is loaded from disk;
• Compute, or Sc, ni is computed from inputs;
• Prune, or Sp, if ni is skipped (neither loaded nor computed).

Let s(ni) ∈ {Sl, Sc, Sp} denote the state of each ni ∈ N . To ensure that nodes in the
Compute state have their inputs available, i.e., not pruned, the states in a Workflow DAG
GW = (N,E) must satisfy the following execution state constraint:

Constraint 2. For a node ni ∈ N , if s(ni) = Sc, then s(nj) 6= Sp for every nj ∈ parents(ni).

Workflow Run Time. A node ni in state Sc, Sl, or Sp has run time ci, li, or 0, respectively.
The total run time of W w.r.t. s is thus

T (W, s) =
∑
ni∈N

I {s(ni) = Sc} ci + I {s(ni) = Sl} li (3.1)

where I {} is the indicator function.
Clearly, setting all nodes to Sp trivially minimizes Equation 3.1. However, recall that

Constraint 1 requires all original operators to be rerun. Thus, if an original operator ni is
introduced, we must have s(ni) = Sc, which by Constraint 2 requires that S(nj) 6= Sp ∀nj ∈
parents(ni). Deciding whether to load or compute the parents can have a cascading effect
on the states of their ancestors. We explore how to determine the states for each nodes to
minimize Equation 3.1 next.

3.4.2 Optimal Execution Plan

The Optimal Execution Plan (OEP) problem is the core problem solved by Helix’s DAG
optimizer, which determines at compile time the optimal execution plan given results and
statistics from previous iterations.
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Problem 1. (Opt-Exec-Plan) Given a Workow W with DAG GW = (N,E), the
compute time and the load time ci, li for each ni ∈ N , and a set of previously materialized
operators M , find a state assignment s : N → {Sc, Sl, Sp} that minimizes T (W, s) while
satisfying Constraint 1 and Constraint 2.

Let T ∗(W ) be the minimum execution time achieved by the solution to OEP, i.e.,

T ∗(W ) = min
s

T (W, s) (3.2)

Since this optimization takes place prior to execution, we must resort to operator statistics
from past iterations. This does not compromise accuracy because if a node ni has an equiv-
alent materialization as defined in Definition 2, we would have run the exact same operator
before and recorded accurate ci and li. A node ni without an equivalent materialization, such
as a model with changed hyperparameters, needs to be recomputed (Constraint 1).

Deciding to load certain nodes can have cascading effects since ancestors of a loaded
node can potentially be pruned, leading to large reductions in run time. On the other hand,
Constraint 2 disallows the parents of computed nodes to be pruned. Thus, the decisions to
load a node ni can be affected by nodes outside of the set of ancestors to ni. For example, in
the DAG on the left in Figure 3.6, loading n7 allows n1−6 to be potentially pruned. However,
the decision to compute n8, possibly arising from the fact that l8 � c8, requires that n5 must
not be pruned.

Despite such complex dependencies between the decisions for individual nodes, Problem 1
can be solved optimally in polynomial time through a linear time reduction to the project-
selection problem (PSP), which is an application of Max-Flow [95].

Problem 2. Proj-Selection-Problem (PSP) Let P be a set of projects. Each project
i ∈ P has a real-valued profit pi and a set of prerequisites Q ⊆ P . Select a subset A ⊆ P
such that all prerequisites of a project i ∈ A are also in A and the total profit of the selected
projects,

∑
i∈A pi, is maximized.

Reduction to the Project Selection Problem. We can reduce an instance of Problem 1
x to an equivalent instance of PSP y such that the optimal solution to y maps to an optimal
solution of x. Let G = (N,E) be the Workflow DAG in x, and P be the set of projects in y.
We can visualize the prerequisite requirements in y as a DAG with the projects as the nodes
and an edge (j, i) indicating that project i is a prerequisite of project j. The reduction, ϕ,
depicted in Figure 3.6 for an example instance of x, is shown in Algorithm 1. For each node
ni ∈ N , we create two projects in PSP: ai with profit −li and bi with profit li − ci. We set
ai as the prerequisite for bi. For an edge (ni, nj) ∈ E, we set the project ai corresponding
to node ni as the prerequisite for the project bj corresponding to node nj. Selecting both
projects ai and bi corresponding to ni is equivalent to computing ni, i.e., s(ni) = Sc, while
selecting only ai is equivalent to loading ni, i.e., s(ni) = Sl. Nodes with neither projects
selected are pruned. An example solution mapping from PSP to OEP is shown in Figure 3.6.
Projects a4, a5, a6, b6, a7, b7, a8 are selected, which cause nodes n4, n5, n8 to be loaded, n6 and
n7 to be computed, and n1, n2, n3 to be pruned.
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Figure 3.6: Transforming a Workflow DAG to a set of projects and dependencies. Check-
marks (X) in the RHS DAG indicate a feasible solution to PSP, which maps onto the node
states (Sp, Sc, Sl) in the LHS DAG.

Overall, the optimization objective in PSP models the “savings” in OEP incurred by
loading nodes instead of computing them from inputs. We create an equivalence between
cost minimization in OEP and profit maximization in PSP by mapping the costs in OEP to
negative profits in PSP. For a node ni, picking only project ai (equivalent to loading ni) has
a profit of −li, whereas picking both ai and bi (equivalent to computing ni) has a profit of
−li + (li− ci) = −ci. The prerequisites established in Line 7 that require ai to also be picked
if bi is picked are to ensure correct cost to profit mapping. The prerequisites established in
Line 9 corresponds to Constraint 2. For a project bi to be picked, we must pick every aj
corresponding to each parent nj of ni. If it is impossible (lj = ∞) or costly to load nj, we
can offset the load cost by picking bj for computing nj. However, computing nj also requires
its parents to be loaded or computed, as modeled by the outgoing edges from bj. The fact
that ai projects have no outgoing edges corresponds to the fact loading a node removes its
dependency on all ancestor nodes.

Theorem 2. Given an instance of Opt-Exec-Plan x, the reduction in Algorithm 1 pro-
duces a feasible and optimal solution to x.

We first formulate Opt-Exec-Plan as an integer linear program (ILP) before presenting
the proof itself. The proof depends on the ILP formulation to establish a mapping between
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Algorithm 1: OEP via Reduction to PSP

Input: GW = (N,E), {li}, {ci}
1 P ← ∅;
2 for ni ∈ N do
3 P ← P ∪ {ai} ; // Create a project ai
4 profit[ai]← −li ; // Set profit of ai to −li
5 P ← P ∪ {bi} ; // Create a project bi
6 profit[bi]← li − ci ; // Set profit of bi to li − ci

// Add ai as prerequisite for bi.;
7 prerequisite[bi]← prerequisite[bi] ∪ ai;
8 for (ni, nj) ∈ {edges leaving from ni} ⊆ E do

// Add ai as prerequisite for bj.;
9 prerequisite[bj]← prerequisite[bj] ∪ ai;

// A is the set of projects selected by PSP;
10 A← PSP(P, profit[], prerequisite[]);
11 for ni ∈ N do // Map PSP solution to node states

12 if ai ∈ A and bi ∈ A then
13 s[ni]← Sc;
14 else if ai ∈ A and bi 6∈ A then
15 s[ni]← Sl;
16 else
17 s[ni]← Sp;

18 return s[] ; // State assignments for nodes in GW .

Opt-Exec-Plan and PSP.

Integer Linear Programming Formulation. Problem 1 can be formulated as an integer
linear program (ILP) as follows. First, for each node ni ∈ G, introduce binary indicator
variables Xai and Xbi defined as follows:

Xai = I {s(ni) 6= Sp}
Xbi = I {s(ni) = Sc}

That is, Xai = 1 if node ni is not pruned, and Xbi = 1 if node ni is computed. Note that it is
not possible to have Xai = 0 and Xbi = 1. Also note that these variables uniquely determine
node ni’s state s(ni).
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With the {Xai} and {Xbi} thus defined, our ILP is as follows:

minimize
Xai , Xbi

|N |∑
i=1

Xaili +Xbi(ci − li) (3.3a)

subject to Xai −Xbi ≥ 0, 1 ≤ i ≤ |N |, (3.3b)∑
nj∈Pa(ni)

Xaj −Xbi ≥ 0, 1 ≤ i ≤ |N |, (3.3c)

Xai , Xbi ∈ {0, 1}, 1 ≤ i ≤ |N | (3.3d)

Equation (3.3b) prevents the assignmentXai = 0 (ni is pruned) andXbi = 1 (ni is computed),
since a pruned node cannot also be computed by definition. Equation (3.3c) is equivalent to
Constraint 2 — if Xbi = 1 (ni is computed), any parent nj of ni must not be pruned, i.e.,
Xaj = 1, in order for the sum to be nonnegative. Equation (3.3d) requires the solution to
be integers.

This formulation does not specify a constraint corresponding to Constraint 1. Instead,
we enforce Constraint 1 by setting the load and compute costs of nodes that need to be
recomputed to specific values, as inputs to Problem 1. Specifically, we set the load cost to
∞ and the compute cost to −ε for a small ε > 0. With these values, the cost of a node in
Sl, Sp, Sc are ∞, 0,−ε respectively, which makes Sc a clear choice for minimizing Eq(3.3a).

Although ILPs are, in general, NP-Hard, the astute reader may notice that the constraint
matrix associated with the above optimization problem is totally unimodular (TU), which
means that an optimal solution for the LP-relaxation (which removes constraint 3.3d in the
problem above) assigns integral values to {Xai} and {Xbi}, indicating that it is both optimal
and feasible for the problem above as well [173]. In fact, it turns out that the above problem
is the dual of a flow problem; specifically, it is a minimum cut problem [214, 77]. This
motivates the reduction introduced in Section 3.4.2.

Main proof. The proof for Theorem 2 follows directly from the two lemmas proven below.
Recall that given an optimal solution A to PSP, we obtain the optimal state assignments for
OEP using the following mapping:

s(ni) =


Sc if ai ∈ A and bi ∈ A
Sl if ai ∈ A and bi 6∈ A
Sp if ai 6∈ A and bi 6∈ A

(3.4)

Lemma 1. A feasible solution to PSP under ϕ also produces a feasible solution to OEP.

Proof. We first show that satisfying the prerequisite constraint in PSP leads to satisfying
Constraint 2 in Opt-Exec-Plan. Suppose for contradiction that a feasible solution to PSP
under ϕ does not produce a feasible solution to OEP. This implies that for some node ni ∈ N
s. t. s(ni) = Sc, at least one parent nj has s(nj) = Sp. By the inverse of Eq (3.4), s(ni) = Sc

implies that bi was selected, while s(nj) = Sp implies that neither aj nor bj was selected. By
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construction, there exists an edge aj → bi. The project selection entailed by the operator
states leads to a violation of the prerequisite constraint. Thus, a feasible solution to PSP
must produce a feasible solution to OEP under ϕ.

Lemma 2. An optimal solution to PSP is also an optimal solution to OEP under ϕ.

Proof. Let Yai be the indicator for whether project ai is selected, Ybi for the indicator for bi,
and p(xi) be the profit for project xi. The optimization object for PSP can then be written
as

max
Yai ,Ybi

|N |∑
i=1

Yaip(ai) + Ybip(bi) (3.5)

Substituting our choice for p(ai) and p(bi), Eq (3.5) becomes

max
Yai ,Ybi

|N |∑
i=1

−Yaili + Ybi(li − ci) (3.6)

= max
Yai ,Ybi

−
|N |∑
i=1

(Yai − Ybi)li + Ybici (3.7)

The mapping established by Eq (3.4) is equivalent to setting Xai = Yai and Xbi = Ybi . Thus
the maximization problem in Eq (3.7) is equivalent to the minimization problem in Eq (3.3a),
and we obtain an optimal solution to OEP from the optimal solution to PSP.

Computational Complexity. For a Workflow DAG GW = (NW , EW ) in OEP, the re-
duction above results in O (|NW |) projects and O (|EW |) prerequisite edges in PSP. PSP
has a straightforward linear reduction to Max-Flow [95]. We use the Edmonds-Karp algo-
rithm [56] for Max-Flow, which runs in time O (|NW | · |EW |2).
Impact of change detection precision and recall. The optimality of our algorithm for
OEP assumes that the changes between iteration t and t+ 1 have been identified perfectly.
In reality, this maybe not be the case due to the intractability of change detection, as
discussed in Section 3.3.2. An undetected change is a false negative in this case, while falsely
identifying an unchanged operator as deprecated is a false positive. A detection mechanism
with high precision lowers the chance of unnecessary recomputation, whereas anything lower
than perfect recall leads to incorrect results. In our current approach, we opt for a detection
mechanism that guarantees correctness under the assumption of idempotence, at the cost of
some false positives such as a+ b 6≡ b+ a.

3.4.3 Optimal Materialization Plan

The Opt-Mat-Plan (OMP) problem is tackled by Helix’s materialization optimizer: while
running workflow Wt at iteration t, intermediate results are selectively materialized for the
purpose of accelerating execution in iterations > t. We now formally introduce OMP and
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show that it is NP-hard even under strong assumptions. We propose an online heuristic for
OMP that runs in linear time and achieves good reuse rate in practice (as we will show in
Section 3.5), in addition to minimizing memory footprint by avoiding unnecessary caching
of intermediate results.

Materialization cost. We let si denote the storage cost for materializing ni, representing
the size of ni on disk. When loading ni back from disk to memory, we have the following
relationship between load time and storage cost: li = si/(disk read speed). For simplicity,
we also assume the time to write ni to disk is the same as the time for loading it from disk,
i.e., li. We can easily generalize to the setting where load and write latencies are different.

To quantify the benefit of materializing intermediate results at iteration t on subsequent
iterations, we formulate the materialization run time TM(Wt) to capture the tradeoff between
the additional time to materialize intermediate results and the run time reduction in iteration
t + 1. Although materialized results can be reused in multiple future iterations, we only
consider the (t + 1)th iteration since the total number of future iterations, T , is unknown.
Since modeling T is a complex open problem, we defer the amortization model to future
work.

Definition 4. Given a workflow Wt, operator metrics ci, li, si for every ni ∈ Nt, and a subset
of nodes M ⊆ Nt, the materialization run time is defined as

TM(Wt) =
∑
ni∈M

li + T ∗(Wt+1) (3.8)

where
∑

ni∈M li is the time to materialize all nodes selected for materialization, and T ∗(Wt)
is the optimal workflow run time obtained using the algorithm in Section 3.4.2, with M
materialized.

Equation 3.8 defines the optimization objective for OMP.

Problem 3. (Opt-Mat-Plan) Given a Workow Wt with DAG Gt
W = (Nt, Et) at

iteration t and a storage budget S, find a subset of nodes M ⊆ Nt to materialize at t in order
to minimize TM(Wt), while satisfying the storage constraint

∑
ni∈M si ≤ S.

Let M∗ be the optimal solution to OMP, i.e.,

argmin
M⊆Nt

∑
ni∈M

li + T ∗(Wt+1) (3.9)

As discussed in [210], there are many possibilities for Wt+1, and they vary by application
domain. User modeling and predictive analysis of Wt+1 itself is a substantial research topic
that we will address in future work. This user model can be incorporated into OMP by using
the predicted changes to better estimate the likelihood of reuse for each operator. However,
even under very restrictive assumptions about Wt+1, we can show that Opt-Mat-Plan is
NP-Hard, via a simple reduction from the Knapsack problem.

Theorem 3. Opt-Mat-Plan is NP-hard.
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0 l0 ← ε� mini si

1 2 . . . N

li ← si
ci ← pi + 2si

Figure 3.7: OMP DAG for Knapsack reduction.

We show that OMP is NP-hard under restrictive assumptions about the structure of
Wt+1 relative to Wt, which implies the general version of OMP is also NP-hard.

In our proof we make the simplifying assumption that all nodes in the Workflow DAG
are reusable in the next iteration:

nt
i ≡ nt+1

i ∀nt
i ∈ Nt, n

t+1
i ∈ Nt+1 (3.10)

Under this assumption, we achieve maximum reusability of materialized intermediate results
since all operators that persist across iterations t and t + 1 are equivalent. We use this
assumption to sidestep the problem of predicting iterative modifications, which is a major
open problem by itself.

Our proof for the NP-hardness of OMP subject to Eq( 3.10) uses a reduction from the
known NP-hard Knapsack problem.

Problem 4. (Knapsack) Given a knapsack capacity B and a set N of n items, with each
i ∈ N having a size si and a profit pi, find S∗ =

argmax
S⊆N

∑
i∈S

pi (3.11)

such that
∑

i∈S∗ si ≤ B.

For an instance of Knapsack, we construct a simple Workflow DAG W as shown in
Figure 3.7. For each item i in Knapsack, we construct an output node ni with li = si and
ci = pi + 2si. We add an input node n0 with l0 = ε < min si that all output nodes depend
on. Let Yi ∈ {0, 1} indicate whether a node ni ∈ M in the optimal solution to OMP in Eq
(3.9) and Xi ∈ {0, 1} indicate whether an item is picked in the Knapsack problem. We use
B as the storage budget, i.e.,

∑
i∈∈{0,1} Yili ≤ B.

Theorem 4. We obtain an optimal solution to the Knapsack problem for Xi = Yi ∀i ∈
{1, 2, . . . , n}.

Proof. First, we observe that for each ni, T
∗(W ) will pick min(li, ci) given the flat structure

of the DAG. By construction, min(li, ci) = li in our reduction. Second, materializing ni helps
in the first iteration only when it is loaded in the second iteration. Thus, we can rewrite Eq
(3.9) as

argmin
Y∈{0,1}N

N∑
i=1

Yili +

(
N∑
i=1

Yili + (1− Yi)ci

)
(3.12)
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Algorithm 2: Streaming OMP

Data: Gw = (N,E), {li}, {ci}, {si}, storage budget S
1 M ← ∅;
2 while Workflow is running do
3 O ← FindOutOfScope(N);
4 for ni ∈ O do
5 if C(ni) > 2li and S − si ≥ 0 then
6 Materialize ni;
7 M ←M ∪ {ni};
8 S ← S − si

where Y = (Y1, Y2, . . . , YN). Substituting in our choices of li and ci in terms of pi and si in
(3.12), we obtain argminY∈{0,1}N

∑N
i=1−Yipi. Clearly, satisfying the storage constraint also

satisfies the budget constraint in Knapsack by construction. Thus, the optimal solution to
OMP as constructed gives the optimal solution to Knapsack.

Streaming constraint. Even when Wt+1 is known, solving Opt-Mat-Plan optimally
requires knowing the run time statistics for all operators, which can be fully obtained only
at the end of the workflow. Deferring materialization decisions until the end requires all
intermediate results to be cached or recomputed, which imposes undue pressure on mem-
ory and cripples performance. Unfortunately, reusing statistics from past iterations as in
Section 3.4.2 is not viable here because of the cold-start problem—materialization decisions
need to be made for new operators based on realistic statistics. Thus, to avoid slowing down
execution with high memory usage, we impose the following constraint.

Definition 5. Given a Workow DAG Gw = (N,E), ni ∈ N is out-of-scope at runtime if
all children of ni have been computed or reloaded from disk, thus removing all dependencies
on ni.

Constraint 3. Once ni becomes out-of-scope, it is either materialized immediately or re-
moved from cache.

OMP Heuristics. We now describe the heuristic employed by Helix to approximate OMP
while satisfying Constraint 3.

Definition 6. Given Workow DAG Gw = (N,E), the cumulative run time for a node ni

is defined as

C(ni) = t(ni) +
∑

nj∈ancestors(ni)

t(nj) (3.13)

where t(ni) = I {s(ni) = Sc} ci + I {s(ni) = Sl} li.
Algorithm 2 shows the heuristics employed by Helix’s materialization optimizer to decide
what intermediate results to materialize. In essence, Algorithm 2 decides to materialize if
twice the load cost is less than the cumulative run time for a node. The intuition behind
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this algorithm is that assuming loading a node allows all of its ancestors to be pruned, the
materialization time in iteration t and the load time in iteration t + 1 combined should be
less than the total pruned compute time, for the materialization to be cost effective.

Note that the decision to materialize does not depend on which ancestor nodes have been
previously materialized. The advantage of this approach is that regardless of where in the
workflow the changes are made, the reusable portions leading up to the changes are likely
to have an efficient execution plan. That is to say, if it is cheaper to load a reusable node ni

than to recompute, Algorithm 2 would have materialized ni previously, allowing us to make
the right choice for ni. Otherwise, Algorithm 2 would have materialized some ancestor nj of
ni such that loading nj and computing everything leading to ni is still cheaper than loading
ni.

Due to the streaming Constraint 3, complex dependencies between descendants of ances-
tors such as the one between n5 and n8 in Figure 3.6 previously described in Section 3.4.2,
are ignored by Algorithm 2—we cannot retroactively update our decision for n5 after n8

has been run. We show in Section 3.5 that this simple algorithm is effective in multiple
application domains.

Limitations of Streaming OMP. While Streaming OMP performs well on real-world

workloads as we will demonstrate in Section 3.5, it can behave poorly in pathological cases.
For one simple example, consider a workflow given by a chain DAG of m nodes, where node
ni (starting from i = 1) is a prerequisite for node ni+1. If node ni has li = i and ci = 3,
for all i, then Algorithm 2 will choose to materialize every node, which has storage costs of
O (m2), whereas a smarter approach would only materialize later nodes and perhaps have
storage cost O (m). If storage is exhausted because Algorithm 2 persists too much early on,
this could easily lead to poor execution times in later iterations. We did not observe this
sort of pathological behavior in our experiments.

3.4.4 Workflow DAG Pruning

In addition to optimizations involving intermediate result reuse, Helix further reduces over-
all workflow execution time by time by pruning extraneous operators from the Workflow

DAG.
Helix performs pruning by applying program slicing on the Workflow DAG. In a nut-

shell, Helix traverses the DAG backwards from the output nodes and prunes away any
nodes not visited in this traversal. Users can explicitly guide this process in the program-
ming interface through the has extractors and uses keywords, described in Table 3.2. An
example of an Extractor pruned in this fashion is raceExt(grayed out) in Figure 3.3b), as
it is excluded from the rows has extractors statement. This allows users to conveniently
perform manual feature selection using domain knowledge.

Helix provides two additional mechanisms for pruning operators other than using the
lack of output dependency, described next.

Data-Driven Pruning. Furthermore, Helix inspects relevant data to automatically iden-
tify operators to prune. The key challenge in data-driven pruning is data lineage tracking



CHAPTER 3. ACCELERATING MODEL DEVELOPMENT WITH HELIX 57

across the entire workflow. For many existing systems, it is difficult to trace features in
the learned model back to the operators that produced them. To overcome this limitation,
Helix performs additional provenance bookkeeping to track the operators that led to each
feature in the model when converting DPR output to ML-compatible formats. An example
of data-driven workflow optimization enabled by this bookkeeping is pruning features by
model weights. Operators resulting in features with zero weights can be pruned without
changing the prediction outcome, thus lowering the overall run time without compromising
model performance.

Data-driven pruning is a powerful technique that can be extended to unlock the possi-
bilities for many more impactful automatic workflow optimizations. Possible future work
includes using this technique to minimize online inference time in large scale, high query-
per-second settings and to adapt the workflow online in stream processing.

Cache Pruning. While Spark, the underlying data processing engine for Helix, provides
automatic data uncaching via a least-recently-used (LRU) scheme, Helix improves upon the
performance by actively managing the set of data to evict from cache. From the DAG, Helix
can detect when a node becomes out-of-scope. Once an operator has finished running, Helix
analyzes the DAG to uncache newly out-of-scope nodes. Combined with the lazy evaluation
order, the intermediate results for an operator reside in cache only when it is immediately
needed for a dependent operator.

One limitation of this eager eviction scheme is that any dependencies undetected by
Helix, such as the ones created in a UDF, can lead to premature uncaching of DCs before
they are truly out-of-scope. The uses keyword in HML, described in Table 3.2, provides a
mechanism for users to manually prevent this by explicitly declaring a UDF’s dependencies
on other operators. In the future, we plan on providing automatic UDF dependency detection
via introspection.

3.5 Empirical Evaluation

The goal of our evaluation is to test if Helix 1) supports ML workflows in a variety of
application domains; 2) accelerates iterative execution through intermediate result reuse,
compared to other ML systems that don’t optimize iteration; 3) is efficient, enabling optimal
reuse without incurring a large storage overhead.

3.5.1 Systems and Baselines for Comparison

We compare the optimized version of Helix, Helix Opt, against two state-of-the-art ML
workflow systems: KeystoneML [177], and DeepDive [221]. In addition, we compare Helix
Opt with two simpler versions, Helix AM and Helix NM. While we compare against
DeepDive, and KeystoneML to verify 1) and 2) above, Helix AM and Helix NM are used
to verify 3). We describe each of these variants below:
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KeystoneML. KeystoneML [177] is a system, written in Scala and built on top of Spark,
for the construction of large scale, end-to-end, ML pipelines. KeystoneML specializes in
classification tasks on structured input data. No intermediate results are materialized in
KeystoneML, as it does not optimize execution across iterations.

DeepDive. DeepDive [221, 45] is a system, written using Bash scripts and Scala for the
main engine, with a database backend, for the construction of end-to-end information ex-
traction pipelines. Additionally, DeepDive provides limited support for classification tasks.
All intermediate results are materialized in DeepDive.

Helix Opt. A version of Helix that uses Algorithm 1 for the optimal reuse strategy and
Algorithm 2 to decide what to materialize.

Helix AM. A version of Helix that uses the same reuse strategy as Helix Opt and always
materializes all intermediate results.

Helix NM. A version of Helix that uses the same reuse strategy as Helix Opt and never
materializes any intermediate results.

3.5.2 Workflows

We conduct our experiments using four real-world ML workflows spanning a range of appli-
cation domains. Table 3.3 summarizes the characteristics of the four workflows, described
next. We are interested in four properties when characterizing each workflow:
• Number of data sources: whether the input data comes from a single source (e.g., a CSV

file) or multiple sources (e.g., documents and a knowledge base), necessitating joins.
• Input to example mapping: the mapping from each input data unit (e.g., a line in a file)

to each learning example for ML. One-to-many mappings require more complex data
preprocessing than one-to-one mappings.

• Feature granularity: fine-grained features involve applying extraction logic on a spe-
cific piece of the data (e.g., 2nd column) and are often application-specific, whereas
coarse-grained features are obtained by applying an operation, usually a standard DPR
technique such as normalization, on the entire dataset.

• Learning task type: while classification and structured prediction tasks both fall under
supervised learning for having observed labels, structured prediction workflows involve
more complex data preprocessing and models; unsupervised learning tasks do not have
known labels, so they often require more qualitative and fine-grained analyses of outputs.

Census Workflow. This workflow corresponds to a classification task with simple features
from structured inputs from the DeepDive Github repository [48]. It uses the Census Income
dataset [50], with 14 attributes representing demographic information, with the goal to
predict whether a person’s annual income is >50K, using fine-grained features derived from
input attributes. The complexity of this workflow is representative of use cases in the social
and natural sciences, where covariate analysis is conducted on well-defined variables. Helix
code for the initial version of this workflow is shown in Figure 3.3a). This workflow evaluates
a system’s efficiency in handling simple ML tasks with fine-grained feature engineering.
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Genomics Workflow. This workflow is described in Example 1, involving two major steps:
1) split the input articles into words and learn vector representations for entities of interest,
identified by joining with a genomic knowledge base, using word2vec [131]; 2) cluster the
vector representation of genes using K-Means to identify functional similarity. Each input
record is an article, and it maps onto many gene names, which are training examples. This
workflow has minimal data preprocessing with no specific features but involves multiple
learning steps. Both learning steps are unsupervised, which leads to more qualitative and
exploratory evaluations of the model outputs than the standard metrics used for supervised
learning. We include a workflow with unsupervised learning and multiple learning steps to
verify that the system is able to accommodate variability in the learning task.

Information Extraction (IE) Workflow. This workflow involves identifying mentions
of spouse pairs from news articles, using a knowledge-base of known spouse pairs, from
DeepDive [45]. The objective is to extract structured information from unstructured input
text, using complex fine-grained features such as part-of-speech tagging. Each input article
contains ≥ 0 spouse pairs, hence creating a one-to-many relationship between input records
and learning examples. This workflow exemplifies use cases in information extraction, and
tests a system’s ability to handle joins and complex data preprocessing.

MNIST Workflow. The MNIST dataset [108] contains images of handwritten digits to
be classified, which is a well-studied task in the computer vision community, from the Key-
stoneML [177] evaluation. The workflow involves nondeterministic (and hence not reusable)
data preprocessing, with a substantial fraction of the overall run time spent on L/I in a
typical iteration. We include this application to ensure that in the extreme case where there
is little reuse across iterations, Helix does not incur a large overhead.

Each workflow was implemented in Helix, and if supported, in DeepDive and KeystoneML,
with X* in Table 3.3 indicating that we used an existing implementation by the developers
of DeepDive or KeystoneML, which can be found at:
• Census DeepDive: https://github.com/HazyResearch/deepdive/blob/master/examples/

census/app.ddlog

• IE DeepDive: https://github.com/HazyResearch/deepdive/blob/master/examples/

spouse/app.ddlog

• MNIST KeystoneML: https://github.com/amplab/keystone/blob/master/src/main/

scala/keystoneml/pipelines/images/mnist/MnistRandomFFT.scala

DeepDive has its own DSL, while KeystoneML’s programming interface is an embedded DSL
in Scala, similar to HML. We explain limitations that prevent DeepDive and KeystoneML
from supporting certain workflows (grey cells) in Section 3.5.5.1.

3.5.3 Running Experiments

Simulating iterative development. In our experiments, we modify the workflows to sim-
ulate typical iterative development by a ML application developer or data scientist. Instead
of arbitrarily choosing operators to modify in each iteration, we use the iteration frequency

https://github.com/HazyResearch/deepdive/blob/master/examples/census/app.ddlog
https://github.com/HazyResearch/deepdive/blob/master/examples/census/app.ddlog
https://github.com/HazyResearch/deepdive/blob/master/examples/spouse/app.ddlog
https://github.com/HazyResearch/deepdive/blob/master/examples/spouse/app.ddlog
https://github.com/amplab/keystone/blob/master/src/main/scala/keystoneml/pipelines/images/mnist/MnistRandomFFT.scala
https://github.com/amplab/keystone/blob/master/src/main/scala/keystoneml/pipelines/images/mnist/MnistRandomFFT.scala
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in Figure 3 from our literature study [210] to determine the type of modifications to make
in each iteration, for the specific domain of each workflow. We convert the iteration counts
into fractions that represent the likelihood of a certain type of change. At each iteration,
we draw an iteration type from {DPR, L/I, PPR} according to these likelihoods. Then, we
randomly choose an operator of the drawn type and modify its source code. For example,
if an “L/I” iteration were drawn, we might change the regularization parameter for the ML
model. We run 10 iterations per workflow (except NLP, which has only DPR iterations),
double the average iteration count found in our survey in Section 2.1.3.

Note that in real world use, the modifications in each iteration are entirely up to the
user. Helix is not designed to suggest modifications, and the modifications chosen in our
experiments are for evaluating only system run time and storage use. We use statistics
aggregated over > 100 papers to determine the iterative modifications in order to simulate
behaviors of the average domain expert more realistically than arbitrary choice.

Environment. All single-node experiments are run on a server with 125 GiB of RAM, 16
cores on 8 CPUs (Intel Xeon @ 2.40GHz), and 2TB HDD with 170MB/s as both the read and
write speeds. Distributed experiments are run on nodes each with 64GB of RAM, 16 cores
on 8 CPUs (Intel Xeon @ 2.40GHz), and 500GB of HDD with 180MB/s as both the read and
write speeds. We set the storage budget in Helix to 10GB. That is, 10GB is the maximum
accumulated disk storage for Helix Opt at all times during the experiments. After running
the initial version to obtain the run time for iteration 0, a workflow is modified according
to the type of change determined as above. In all four systems the modified workflow is
recompiled. In DeepDive, we rerun the workflow using the command deepdive run. In
Helix and KeystoneML, we resubmit a job to Spark in local mode. We use Postgres as
the database backend for DeepDive. Although Helix and KeystoneML support distributed
execution via Spark, DeepDive needs to run on a single server. Thus, we compare against
all systems on a single node and additionally compare against KeystoneML on clusters.

3.5.4 Metrics

We evaluate each system’s ability to support diverse ML tasks by qualitative characterization
of the workflows and use-cases supported by each system. Our primary metric for workflow
execution is cumulative run time over multiple iterations. The cumulative run time considers
only the run time of the workflows, not any human development time. We measure with wall-
clock time because it is the latency experienced by the user. When computing cumulative
run times, we average the per-iteration run times over five complete runs for stability. Note
that the per-iteration time measures both the time to execute the workflow and any time
spent to materialize intermediate results. We also measure memory usage to analyze the
effect of batch processing, and measure storage size to compare the run time reduction to
storage ratio of time-efficient approaches. Storage is compared only for variants of Helix
since other systems do not support automatic reuse.
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3.5.5 Evaluation vs. State-of-the-art Systems

3.5.5.1 Use Case Support

Helix supports ML workflows in multiple distinct application domains, spanning tasks
with varying complexity in both supervised and unsupervised learning.

Recall that the four workflows used in our experiments are in social sciences, NLP, com-
puter vision, and natural sciences, respectively. Table 3.3 lists the characteristics of each
workflow and the three systems’ ability to support it. Both KeystoneML and DeepDive have
limitations that prevent them from supporting certain types of tasks. The pipeline program-
ming model in KeystoneML is effective for large scale classification and can be adapted to
support unsupervised learning. However, fine-grained features are cumbersome to program
since operators are designed to operate on the entire dataset, making it not suitable for struc-
tured prediction tasks due to complex data preprocessing. On the other hand, DeepDive is
highly specialized for information extraction and focuses on supporting data preprocessing.
Unfortunately, its learning and evaluation components are not configurable by the user, lim-
iting the type of ML tasks supported. DeepDive is therefore unable to support the MNIST
and genomics workflows, both of which required custom ML models. Additionally, we are
only able to show DeepDive performance for DPR iterations for the supported workflows in
our experiments.

3.5.5.2 Cumulative Run Time

Helix achieves up to 19× cumulative run time reduction in ten iterations over state-
of-the-art ML systems.

Figure 3.8 shows the cumulative run time for all four workflows. The x-axis shows the
iteration number, while the y-axis shows the cumulative run time in log scale at the ith
iteration. Each point represents the cumulative run time of the first i iterations. The color
under the curve indicates the workflow component modified in each iteration (purple =
DPR, orange = L/I, green = PPR). For example, the DPR component was modified in
the first iteration of Census. Figure 3.9 shows the breakdown by workflow components and
materialization for the individual iteration run times in Helix, with the same color scheme
as in Figure 3.8 for the workflow components and gray for materialization time.

Census. As shown in Figure 3.8(a), the census workflow has the largest cumulative run
time gap between Helix Opt and the competitor systems—Helix Opt is 19× faster than
KeystoneML as measured by cumulative run time over 10 iterations. By materializing and
reusing intermediate results Helix Opt is able to substantially reduce cumulative run-time
relative to other systems. Figure 3.9(a) shows that 1) on PPR iterations Helix recomputes
only the PPR; 2) the materialization of L/I outputs, which allows the pruning of DPR and
L/I in PPR iterations, takes considerably less time than the compute time for DPR and L/I;
3) Helix Opt reruns DPR in iteration 5 (L/I) because Helix Opt avoided materializing
the large DPR output in a previous iteration. For the first three iterations, which are DPR
(the only type of iterations DeepDive supports), the 2× reduction between Helix Opt and
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Figure 3.8: Cumulative run time for the four workflows. The color under the curve indicates
the type of change in each iteration: purple for DPR, orange for L/I, and green for PPR.

DeepDive is due to the fact that DeepDive does data preprocessing with Python and shell
scripts, while Helix Opt uses Spark. While both KeystoneML and Helix Opt use Spark,
KeystoneML takes longer on DPR and L/I iterations thanHelix Opt due to a longer L/I
time incurred by its caching optimizer’s failing to cache the training data for learning. The
dominant number of PPR iterations for this workflow reflects the fact that users in the social
sciences conduct extensive fine-grained analysis of results, per our literature survey [210].

Genomics. In Figure 3.8(b), Helix Opt shows a 3× speedup over KeystoneML for the
genomics workflow. The materialize-nothing strategy in KeystoneML clearly leads to no
run time reduction in subsequent iterations. Helix Opt, on the other hand, shows a per-
iteration run time that is proportional to the number of operators affected by the change in
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Figure 3.9: Run time breakdown by workflow component and materialization time per iter-
ation for Helix.

that iteration. Figure 3.9(b) shows that 1) in PPR iterations Helix Opt has near-zero run
time, enabled by a small materialization time in the prior iteration; 2) one of the ML models
takes considerably more time, and Helix Opt is able to prune it in iteration 4 since it is
not changed.

NLP. Figure 3.8(c) shows that the cumulative run time for both DeepDive and Helix
Opt increases linearly with iteration for the NLP workflow, but at a much higher rate for
DeepDive than Helix Opt. This is due to the lack of automatic reuse in DeepDive. The
first operator in this workflow is a time-consuming NLP parsing operator, whose results are
reusable for all subsequent iterations. While both DeepDive and Helix Opt materialize this
operator in the first iteration, DeepDive does not automatically reuse the results. Helix
Opt, on the other hand, consistently prunes this NLP operation in all subsequent iterations,
as shown in Figure 3.9(c), leading to large run time reductions in iterations 1-5 and thus a



CHAPTER 3. ACCELERATING MODEL DEVELOPMENT WITH HELIX 65

(a)

0 1 2 3 4 5 6 7 8 9
Iteration

101

102

103

104

105

C
um

ul
at

iv
e 

R
un

 T
im

e 
(s

)

KeystoneML
Helix Opt
KeystoneML 10x
Helix Opt 10x

(b)

0 1 2 3 4 5 6 7 8 9
Iterations

102

103

104

105

C
um

ul
at

iv
e 

R
un

 T
im

e 
(s

)

Helix-2
Helix-4
Helix-8

KeystoneML-2
KeystoneML-4
KeystoneML-8

Figure 3.10: a) Census and Census 10x cumulative run time for Helix and KeystoneML on
a single node; b) Census 10x cumulative run time for Helix and KeystoneML on different
size clusters.

large cumulative run time reduction.

MNIST. Figure 3.8(d) shows the cumulative run times for the MNIST workflow. As men-
tioned above, the MNIST workflow has nondeterministic data preprocessing, which means
any changes to the DPR and L/I components prevents safe reuse of any intermediate result.
However, iterations containing only PPR changes can reuse intermediates for DPR and L/I
had they been materialized previously. Furthermore, we found that the DPR run time is
short but cumulative size of all DPR intermediates is large. Thus, materializing all these
DPR intermediates would incur a large run time overhead. KeystoneML, which does not
materialize any intermediate results, shows a linear increase in cumulative run time due
to no reuse. Helix Opt, on the other hand, only shows slight increase in runtime over
KeystoneML for DPR and L/I iterations because it is only materializing the L/I results on
these iterations, not the nonreusable, large DPR intermediates. In Figure 3.9(d), we see
1) DPR operations take negligible time, and Helix Opt avoids wasteful materialization of
their outputs; 2) the materialization time taken in the DPR and L/I iterations pays off for
Helix Opt in PPR iterations, which take negligible run time due to reuse.

3.5.5.3 Scalability vs. KeystoneML

Dataset Size. We test scalability of Helix and KeystoneML with respect to dataset size
by running the ten iterations in Figure 3.8(a) of the Census Workflow on two different sizes
of the input. Census 10x is obtained by replicating Census ten times in order to preserve the
learning objective. Figure 3.10(a) shows run time performance of Helix and KeystoneML
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Figure 3.11: Fraction of states in Sp, Sl, Sc as determined by Algorithm 1 for the Census and
Genomics workflows for Helix Opt and Helix AM.

on the two datasets on a single node. Both yield 10x speedup over the smaller dataset,
scaling linearly with input data size, but Helix continues to dominate KeystoneML.

Cluster. We test scalability of Helix and KeystoneML with respect to cluster size by
running the same ten iterations in Figure 3.8(a) on Census 10x described above. Using a
uniform set of machines, we create clusters with 2, 4, and 8 workers and run Helix and
KeystoneML on each of these clusters to collect cumulative run time.

Figure 3.10(b) shows that 1) Helix has lower cumulative run time than KeystoneML on
the same cluster size, consistent with the single node results; 2) KeystoneML achieves ≈ 45%
run time reduction when the number of workers is doubled, scaling roughly linearly with the
number of workers; 3) From 2 to 4 workers, Helix achieves up to 75% run time reduction
4) From 4 to 8 workers, Helix sees a slight increase in run time. Recall from Section 3.2
that the semantic unit data structure in HML allows multiple transformer operations (e.g.,
indexing, computing discretization boundaries) to be learned using a single pass over the
data via loop fusion. This reduces the communication overhead in the cluster setting, hence
the super linear speedup in 3). On the other hand, the communication overhead for PPR
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Figure 3.12: Cumulative run time and storage use against materialization heuristics on the
same four workflows as in Figure 3.8.
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operations outweighs the benefits of distributed computing, hence the slight increase in 4).

3.5.6 Evaluation vs. Simpler Helix Versions

Helix Opt achieves the lowest cumulative run time on all workflows compared to
simpler versions of Helix. Helix AM often uses more than 30× the storage of Helix
Opt when able to complete in a reasonable time, while not being able to complete
within 50× of the time taken by Helix Opt elsewhere. Helix NM takes up to 4× the
time taken by Helix Opt.

Next, we evaluate the effectiveness of Algorithm 2 at approximating the solution to the
NP-hard Opt-Mat-Plan problem. We compare Helix Opt that runs Algorithm 2 against:
Helix AM that replaces Algorithm 2 with the policy to always materialize every operator,
and Helix NM that never materializes any operator. The two baseline heuristics present
two performance extremes: Helix AM maximizes storage usage, time for materialization,
and the likelihood of being able to reuse unchanged results, whereas Helix NM minimizes
all three quantities. Helix AM provides the most flexible choices for reuse. On the other
hand, Helix NM has no materialization time overhead but also offers no reuse.

Figures 3.12(a), (b), (e), and (f) show the cumulative run time on the same four workflows
as in Figure 3.8 for the three variants.

Helix AM is absent from Figures 3.12(e) and (f) because it did not complete within
50× the time it took for other variants. The fact that Helix AM failed to complete for
the MNIST and NLP workflows demonstrate that indiscriminately materializing all inter-
mediates can cripple performance. Figures 3.12(e) and (f) show that Helix Opt achieves
substantial run time reduction over Helix NM using very little materialization time over-
head (where the red line is above the yellow line).

For the census and genomics workflows where the materialization time is not prohibitive,
Figures 3.12(a) and (b) show that in terms of cumulative run time, Helix Opt outperforms
Helix AM, which attains the best reuse as explained above. We also compare the storage
usage by Helix AM and Helix NM for these two workflows. Figures 3.12(c) and (d) show
the storage size snapshot at the end of each iteration. The x-axis is the iteration numbers,
and the y-axis is the amount of storage (in KB) in log scale. The storage use for Helix NM
is omitted from these plots because it is always zero.

We find that Helix Opt outperforms Helix AM while using less than half the storage
used by Helix AM for the census workflow in Figure 3.12(c) and 1

30
the storage of Helix

AM for the genomics workflow in Figure 3.12(d). Storage is not monotonic because Helix
purges any previous materialization of original operators prior to execution, and these oper-
ators may not be chosen for materialization after execution, thus resulting in a decrease in
storage.

Furthermore, to study the optimality of Algorithm 2, we compare the distribution of
nodes in the prune, reload, and compute states Sp, Sl, Sc between Helix Opt and Helix
AM for workflows with Helix AM completed in reasonable times. Since everything is
materialized in Helix AM, it achieves maximum reuse in the next iteration. Figure 3.11
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shows that Helix Opt enables the exact same reuse as Helix AM, demonstrating its
effectiveness on real workflows.

Overall, neither Helix AM nor Helix NM is the dominant strategy in all scenarios,
and both can be suboptimal in some cases.

3.6 Related Work

Many systems have been developed in recent years to better support ML workflows. We
begin by describing ML systems and other general workflow management tools, followed by
systems that target the reuse of intermediate results.

Machine Learning Systems. We describe machine learning systems that support declar-
ative programming, followed by other general-purpose systems that optimize across frame-
works.

Declarative Systems. Due to the challenges in developing ML workflows, there has been re-
cent efforts to make it easier to do so declaratively. Boehm et al. categorize declarative ML
systems into three groups based on the usage: declarative ML algorithms, ML libraries, and
declarative ML tasks [27]. Systems that support declarative ML algorithms, such as Tensor-
Flow [1], SystemML [65], OptiML [181], ScalOps [200], and SciDB [179], allow ML experts
to program new ML algorithms, by declaratively specifying linear algebra and statistical
operations at higher levels of abstraction. Although it also builds a computation graph like
Helix, TensorFlow has no intermediate reuse and always performs a full computation e.g.
any in-graph data preparation. TensorFlow’s lower level linear algebra operations are not
conducive to data preprocessing. Helix handles reuse at a higher level than TensorFlow
ops. ML libraries, such as Mahout [145], Weka [73], GraphLab [115], Vowpal Wabbit [106],
MLlib [126] and Scikit-learn [151], provide simple interfaces to optimized implementations
of popular ML algorithms. TensorFlow has also recently started providing TFLearn [42], a
high level ML library targeted at deep learning. Systems that support declarative ML tasks
allow application developers with limited ML knowledge to develop models using higher-level
primitives than in declarative ML algorithms. Helix falls into this last group of systems,
along with DeepDive [221, 45] and KeystoneML [177]. These systems perform workflow-level
optimizations to reduce end-to-end execution time. Finally, at the extreme end of this spec-
trum are systems for in-RDBMS analytics [75, 59, 196] that extend databases to support
ML.

Declarative ML task systems, like Helix, can seamlessly make use of improvements in
ML library implementations, such as MLlib [126], CoreNLP [120] and DeepLearning4j [49],
within UDF calls. Unlike declarative ML algorithm systems, that are targeted at ML experts
and researchers, these systems focus on end-users of ML.

Systems that Optimize Across Frameworks. These systems target a broad range of use-
cases, including ML. Weld [147] and Tupleware [41] optimize UDFs written in different
frameworks by compiling them down to a common intermediate representation. Declarative
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ML task systems like Helix can take advantage of the optimized UDF implementations;
unlike Helix, these systems do not benefit from seamless specification, execution, and end-
to-end optimizations across workflow components that come from a unified programming
model.

Systems for Optimizing Data Preprocessing. The database community has identified various
opportunities for optimizing DPR. Several approaches identify as a key bottleneck in DPR
and optimize it [103, 36, 143, 105]. Kumar et al. [103] optimizes generalized linear models
directly over factorized / normalized representations of relational data, avoiding key-foreign
key joins. Morpheus [36] and F [143] extend this factorized approach to general linear algebra
operations and linear regression models, respectively (the latter over arbitrary joins). Some
work [105] even attempts to characterize when joins can be eschewed altogether, without
sacrificing performance. All of these optimizations are orthogonal to those used by Helix.
Another direction aims at reducing the manual effort involved in data cleaning and feature
engineering [162, 222, 99, 14, 13]. All of these optimizations are orthogonal to those used
by Helix, which targets end-to-end iterative optimizations. Snorkel [162] supports training
data engineering using rules. Columbus [222] optimizes feature selection specifically for
regression models. ActiveClean [99] integrates data cleaning with learning convex models,
using gradient-biased samples to identify dirty data. Brainwash [14] proposes to expedite
feature engineering by recommending feature transformations. Zombie [13] speeds up data
preparation by learning over smaller, actively-learned informative subsets of data during
feature engineering. These approaches are bespoke for the data preprocessing portion of
ML workflows and do not target end-to-end optimizations, although there is no reason they
could not be integrated within Helix.

ML and non-ML Workflow Management Tools. Here we discuss ML workflow systems,
production platforms for ML, industry batch processing workflow systems, and systems for
scientific workflows.

ML Workflow Management. Prior tools for managing ML workflows focus primarily on
making their pipelines easier to debug. For example, Gestalt [149] and Mistique [194] both
tackle the problem of model diagnostics by allowing users to inspect intermediate results.
The improved workflow components in these systems could be easily incorporated within
Helix.

ML Platforms-as-Services. A number of industry frameworks [22, 54, 19, 124, 113, 217], at-
tempt to automate typical steps in deploying machine learning by providing a Platform-as-a-
Service (PaaS) capturing common use cases. These systems vary in generality — frameworks
like SageMaker, Azure Studio, and MLFlow are built around services provided by Amazon,
Microsoft, and Databricks, respectively, and provide general solutions for production de-
ployment of ML models for companies that in-house infrastructure. On the other hand,
TFX, FBLearner Flow, and Michelangelo are optimized for internal use at Google, Face-
book, and Uber, respectively. For example, TFX is optimized for use with TensorFlow, and
Michelangelo is optimized for Uber’s real-time requirements, allowing production models
to use features extracted from streams of live data. However, as we will discuss in Chap-
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ter 4, TFX has begun to gain industry-wide traction and is now capable of supporting more
general-purpose workloads.

The underlying “workflow” these frameworks manage is not always given an explicit
representation, but the common unifying thread is the automation of production deployment,
monitoring, and continuous retraining steps, thereby alleviating engineers from the labor of
ad-hoc solutions. Helix is not designed to reduce manual effort of model deployment, but
rather model development. The workflow Helix manages sits at a lower level than those of
industry PaaS systems, and therefore the techniques it leverages are quite different.

General Batch Processing Workflow Systems. A number of companies have implemented
workflow management systems for batch processing [23, 182]. These systems are not con-
cerned with runtime optimizations, and rather provide features useful for managing large-
scale workflow complexity.

Scientific Workflow Systems. Some systems address the significant mental and computa-
tional overhead associated with scientific workflows. VisTrails [33] and Kepler [116] add
provenance and other metadata tracking to visualization-producing workflows, allowing for
reproducibility, easier visualization comparison, and faster iteration. Other systems attempt
to map scientific workflows to cluster resources [215]. One such system, Pegasus [47], also
identifies reuse opportunities when executing workflows. The optimization techniques em-
ployed by all systems discussed leverage reuse in a simpler manner than does Helix, since
the workflows are coarser-grained and computation-heavy, so that the cost of loading cached
intermediate results can be considered negligible.

Intermediate Results Reuse. The OEP/OMP problems within Helix are reminiscent
of classical work on view materialization in database systems [38], but operate at a more
coarse-grained level on black box operators. However, the reuse of intermediate results
within ML workflows differs from traditional database view materialization in that it is
less concerned with fine-grained updates, and instead treats operator outputs as immutable
black-box units due to the complexity of the data analytics operator. Columbus [222]
focuses on caching feature columns for feature selection exploration within a single workflow.
ReStore [57] manages reuse of intermediates across dataflow programs written in Pig [141],
while Nectar [70] does so across DryadLINQ [216] workflows. Jindal et al. [84] study SQL
subexpression materialization within a single workflow with many subqueries. Perez et
al. [152] also study SQL subexpression materialization, but in an inter-query fashion that
uses historical data to determine utility of materialization for future reuse. In the same
vein, Mistique [194] and its spiritual predecessor Sherlock [195] use historical usage as part
of their cost models for adaptive materialization. Helix shares some similarities with
the systems above but also differs in significant ways. Mistique [194], Nectar [70], and
ReStore [57] share the goal of efficiently reusing ML workflow intermediates with Helix.
However, the cost models and algorithms proposed in these systems for deciding what to
reuse do not consider the operator/subquery dependencies in the DAG and make decisions for
each operator independently based on availability, operator type, size, and compute time.
We have shown in Figure 3.6 that decisions can have cascading effects on the rest of the
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workflow. The reuse problems studied in Columbus [222] and Jindal et al. [84] differ from
ours in that they are concerned with decomposing a set of queries Q into subqueries and
picking the minimum cost set of subqueries to cover Q. The queries and subqueries can be
viewed as a bipartite graph, and the optimization problem can be cast as a Set Cover.
They do not handle iteration but rather efficient execution of parallel queries. Furthermore,
the algorithms for choosing what to materialize in Mistique [194] and Perez et al. [152]
use historical data as signals for likelihood of reuse in the future, whereas our algorithm
directly uses projected savings for the next iteration based on the reuse plan algorithm.
Their approaches are reactive, while ours is proactive.

3.7 Conclusion

We presented Helix, a declarative system aimed at accelerating iterative ML application
development. In addition to its user friendly, flexible, and succinct programming interface,
Helix tackles two major optimization problems, namely Opt-Exec-Plan and Opt-Mat-
Plan, that together enable cross-iteration optimizations resulting in significant run time
reduction for future iterations. We devised a PTIME algorithm to solve Opt-Exec-Plan
by using a reduction to Max-Flow. We showed that Opt-Mat-Plan is NP-Hard and
proposed a light-weight, effective heuristic for this purpose. We evaluated Helix against
DeepDive and KeystoneML on workflows from social sciences, NLP, computer vision, and
natural sciences that vary greatly in characteristics to test the versatility of our system. We
found that Helix supports a variety of diverse machine learning applications with ease and
and provides 40-60% cumulative run time reduction on complex learning tasks and nearly
an order of magnitude reduction on simpler ML tasks compared to both DeepDive and
KeystoneML. While Helix is implemented in a specific way, the techniques and abstractions
presented in this work are general-purpose; other systems can enjoy the benefits of Helix’s
optimization modules through simple wrappers and connectors.

Post model development, the next stage in the ML lifecycle is model deployment, which
has a different set of requirements and challenges from the development phase. We delve
into in deployment in Chapter 4.
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Chapter 4

Understanding Production Pipelines

As introduced in Section 1.2 in Chapter 1, the model deployment, also commonly referred
to as model productionization, stage comes after model development. Many industry ML
practitioners have written, usually anecdotally, about the infrastructure and practices at their
organizations for productionizing ML models [175, 21, 35]. While each organization has a
slightly different setup, the consensus across the board is that ML production pipelines are
complex, with many interlocking analytical components beyond training. This has spurred
on the development of many end-to-end ML systems (e.g., TFX [21], MLFlow [218], Microsoft
Azure ML [201], AWS Sagemaker [113]) and open-source ML libraries (e.g., MLlib [117],
MetaFlow [127], and Scikit-Learn [176]), all of which provide native support for data pre-
processing, data validation, model validation, and model deployment, in addition to modeling
training, all within a single environment.

As an example, TFX [21] includes pipeline steps that perform different flavors of data
analysis and transformation, or of data- and model-validation, both before and after the
training step. The topology of the corresponding graph can be complicated. For instance,
model chaining (where a model is used to generate data for another model) is becoming
increasingly common, introducing model-to-model dependencies in the same pipeline. And
of course, there is the step of deploying a model after training, in a scalable serving infras-
tructure. Moreover, production ML pipelines often work in a continuous mode, with periodic
retraining and deployment as fresh data becomes available. Overall, the steps across these
pipelines interact in complex ways, and their compound effects might be hard to predict
or debug, necessitating the management of provenance across them. Provenance manage-
ment is one of the key value adds of existing end-to-end ML platforms, such as TFX [22],
MLFlow [218] or MetaFlow [127].

While there is anecdotal evidence for these end-to-end concerns beyond training, little is
known about production ML deployments and the challenges they surface in terms of data
management:

• Coarse-grained pipeline characteristics. What do production ML pipelines look like
in a large data-driven organization? What types of models are used? What types of
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feature engineering procedures are used, and how complex are they from a data processing
standpoint? What is the lifespan of typical pipelines?

• Fine-grained pipeline characteristics. How much overlap exist between executions of
a given pipeline? For portions of a pipeline that are executed repeatedly to derive models,
how does the data distribution change? How often are they executed, and how often are
the resulting models deployed?

• Opportunities. Are there uniform ways to represent and reason about these pipelines?
Any opportunities to make these pipelines more efficient, e.g., by leveraging sharing of com-
putation, pruning redundant computation, making more efficient use of system resources,
and leveraging incremental view maintenance?

Answering these questions can improve our understanding of production ML. In turn, this in-
creased awareness can help the research community move beyond training efficiency to more
effectively supporting the end-to-end production ML pipelines. This involves addressing new
incarnations of familiar database research challenges—from efficient data preparation and
cleaning, to optimized query plans, to dealing with streaming data, to sharing of computa-
tion, to materialization and reuse, to provenance for reproducibility and debugging.

In this chapter, we take a first step in this direction by analyzing a large corpus of 3000
production ML pipelines at Google, comprising over 450,000 trained models, over a period
of four months. To the best of our knowledge, no similar corpus has ever been analyzed in
prior literature. This unique corpus of thousands of TensorFlow Extended (TFX) pipelines,
with hundreds of thousands of generated models, spans different modalities (tabular data,
video and text embeddings, personalization), tasks (regression, classification), and environ-
ments (production, development). Our analysis reveals a number of interesting insights,
including the fact that: (a) training accounts for only 20% of the total computation time,
despite ∼ 60% of models being deep neural nets (DNNs); (b) the rest 40% of the pipelines
train traditional, non-DNN, ML models, showing the value of simpler model architectures
in production, but also the need to manage a diverse set of model types; (c) the input data
used for consecutive model updates have large overlaps but also significant differences in
data distribution, underlining the need to cope with data and concept drift, (d) models in
each pipeline are updated 7 times per day on average, with a substantial fraction (1.12%) of
pipelines updating models over 100 times a day(!), giving rise to potential instability that
require special care, (e) only one in four model retraining results in model deployment, with
the three undeployed model updates representing wasted computation, discussed more later.
While our results stem from analyzing production ML pipelines at Google, due to the com-
monalities between TFX and other end-to-end ML platforms, as well as the adoption of TFX
in other large organizations [91], we expect our findings to generalize to other production use
cases and thus be of general interest. Additionally, we hope our approach to analyzing this
complex corpus can serve as inspiration for studying other corpora of ML systems history.

Specifically, we make the following contributions:

Coarse-grained analysis of pipeline lifespan, components, architecture, and com-
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plexity (Section 4.3). We provide the first-ever study of 3000 ML production pipelines
captured over a four-month period to understand the underlying data management chal-
lenges. This analysis surfaces coarse-grained characteristics about these pipelines, such as
their lifespan in the end-to-end training of several models, proportion of resources devoted
to data analytics (beyond training), and the features, feature transformations, and model
architectures in the pipelines.

Model graphlet abstraction and fine-grained analysis of frequency, failure, and
overlap (Section 4.4). We proceed to analyze finer-grained properties of these pipelines
through provenance analysis. Many previous studies analyzed provenance graphs in data
workflows, but the complexity and unique characteristics of production ML necessitate a
new approach. We introduce the notion of model graphlets, wherein the provenance graph
is decomposed into sub-graphs to capture the end-to-end execution of the pipeline including
several instances of model training. One can view model graphlets as a ML-oriented applica-
tion of the more general concept of provenance segmentation [3]. We then characterize these
graphlets in terms of their lifespan, complexity, overlap, failure points, and their connection
to model deployment.

4.1 Related Work

We briefly cover previous studies related to tracking, analyzing, and optimizing ML pipelines
in production.

Provenance management and analysis. Provenance for complex systems has been stud-
ied for relational databases [37], scientific workflows systems [62], dataflow systems [12, 82],
data lakes [72, 74], and ML systems [218, 193, 128]. Previous work has even led to the stan-
dardization of provenance representations for workflows in the form of graphs [80, 136, 135].
Other research has proposed various ways to explore and analyze such provenance graphs,
e.g., visualization [20], reachability query support [18], support for user-defined views [26],
segmentation and summarization [3, 7, 129]. Our work introduces a framework to segment
ML provenance graphs and demonstrates how this segmentation leads to further analysis
and optimizations for ML pipelines.

Metadata tracking for the ML Lifecycle. In modern end-to-end ML systems, e.g.,
TFX [21], MLFlow [218], Kubeflow [100], and MetaFlow [127], data science development
tools, e.g., ModelDB [193], noWorkflow [153], and Pachyderm [146], as well as model devel-
opment practices in the industry, e.g., [171, 169], there is an effort towards tracking metadata
to facilitate workflow orchestration and aid model reproducibility over the ML project life-
cycle. These metadata tracking solutions vary in terms of ingestion method (user input
vs. transparent), data model (relational vs. graph), and scope of the metadata (training
vs. end-to-end). Our work here is based on a specific framework, MLMD [132] in TFX [22,
186], which automatically records the end-to-end provenance using a graph-based model. We
build on this framework and introduce a method to segment large provenance graphs into
smaller model-centric graphs. However, our analysis and this decomposition is orthogonal
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(b) A more typical TFX pipeline that comprises additional
operators for data preprocessing, data and model valida-
tion, and tuning. Shaded operators correspond to the ad-
ditional functionality compared to the simple pipeline in
(a).

Figure 4.1: Examples of TFX pipelines

from the specific representation of complete provenance, and the same methodology could
apply to other systems. Moreover, our final contribution with respect to pruning redundant
graphlets has not been explored in previous work to the best of our knowledge.

Understanding ML workflows. While our work is, to the best of our knowledge, the first
large-scale study of production ML pipelines, a few prior works have conducted empirical
studies on ML and data science (DS) workflows. The work presented in Chapter 2 aims to
understand how ML developers iterate on models by studying ML workflows generated by
novice and intermediate ML developers on Kaggle-style tasks with static datasets and no
model deployment. Our study in this chapter is fundamentally different in the nature of the
ML tasks studied—with an emphasis on production ML and pipelines that are run over a
long period. Some works in the HCI community study ML/DS workflows by interviewing
ML developers and data scientists [220, 88, 11]. Another related area of work is anecdotal
reports and retrospectives by industry ML practitioners [155, 172, 175] that shed light on
real-world ML practices and challenges. We complement this line of work with quantitative
insights from a corpus of production ML pipelines.

4.2 Preliminaries

Our corpus comprises TensorFlow Extended (TFX) [22] pipelines. TFX is an end-to-end
platform for production ML used by product teams across Google. The platform has been re-
cently open-sourced and has been adopted by major organizations outside Google as well [91].
TFX provides a set of operators that can be strung together into a pipeline that conceptually
accepts data as input and produces a model as output. (The actual topology of the pipeline
can get much more complicated in practice, as we describe later.) Even though our discus-
sion here is centered around TFX (to match the actual corpus), we note that the concepts
that we introduce are present in other end-to-end ML frameworks discussed previously.
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(b) A real-world trace from our corpus, using operators shown
in Fig. 4.1(b).

Figure 4.2: Examples of pipeline traces. The left-to-right order preserves the time of artifact
generation.

4.2.1 Basic Concepts

We use the term pipeline to represent a graph of operators that are connected in a produc-
er/consumer fashion. Figure 4.1(a) shows a simple TFX pipeline comprising three operators:
ExampleGen, which imports data in a format suitable for training; Trainer, which uses the
imported data to train a model; and Pusher, which takes the generated model and deploys
it for inference in some external service (e.g., TensorFlow.Serving1). The topology of the
pipeline graph corresponds to the input/output relationships between operators. Moreover,
we assume that these relationships are “type-checked”, e.g., ExampleGen outputs data in a
format that is understood by the Trainer, when the pipeline is authored. The specifics of
pipeline authoring are orthogonal to our work.

In itself, a pipeline encodes only coarse-grained dependencies between its operators. In
contrast, a pipeline trace records the fine-grained relationship between individual executions
of the operators and the provenance of their input/output artifacts when the pipeline runs
in production. Formally, a trace is a directed acyclic graph of execution nodes and artifact
nodes, with edges linking execution nodes to their input/output artifacts. Figure 4.2(a)
shows a sample trace of the pipeline in Figure 4.1(a), where the nodes are arranged horizon-
tally, left to right, in increasing order of the finish time for executions and creation time for
artifacts. In this trace, the ExampleGen operator has executed three times, producing one
data span artifact per execution. A data span artifact corresponds to a chunk of data whose
semantics depend on the pipeline. For instance, if the pipeline trains models to recommend
videos to users, then a single data span might correspond to previous user interactions with
the video service over the period of a single day. Continuing with the example, the Trainer
operator has executed two times, each time reading the last two data spans in the pipeline
and producing the corresponding model. We note that this pattern is quite common in

1https://github.com/tensorflow/serving

https://github.com/tensorflow/serving
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practice: there is a data ingestion process (here, the ExampleGen operator) that produces
outputs at a fine level of granularity (e.g., each span corresponds to a single day of data)
and the model training process reassembles the data into coarser granularity (e.g., a rolling
window of the last two days). The example trace concludes with the Pusher operator, which
executes once for the first model but not for the second model, which means that the sec-
ond model was not deployed. The latter case is not uncommon in production and can be
attributed to several reasons, e.g., the model does not have better performance than the
previous model or fails certain validation checks, or the deployment mechanism throttles
model pushes to avoid overloading.

Note that a trace does not reflect any information about the orchestration of the pipeline
operators. For instance, the example trace might be generated through a serial execution of
operators, or by asynchronous scheduling where several operators with overlapping inputs
can run at the same time. Moreover, a pipeline may be triggered periodically (e.g., by
ingesting the newest span of data every hour and triggering new runs of the operators) or
manually (e.g., a model developer reruns the pipeline after making changes to the input data
or training code). All we assume is that some external system is responsible for scheduling
operators, and the trace will grow over time with every run of the pipeline to contain the
full history of operator executions and generated artifacts.

Up to this point, we used a simple example comprising the most elemental steps of an
ML production pipeline: data ingestion, training, and deployment. In practice, pipelines
are more complicated. First, there are several other operators that correspond to important
stages and safety checks in production ML. Figure 4.1(b) shows a more typical pipeline that
expands on the simple pipeline of Figure 4.1(a) by including operators for data analysis and
validation, data pre-processing, and model analysis and validation. Pipeline authors may
also introduce custom operators depending on their ML task. Second, these operators can
be wired in different topologies, e.g., a Trainer operator might generate an initial model that
is then distilled through a separate Trainer operator to produce the final model, or the data-
validation operator might block the execution of downstream operators if the data contains
any errors. Last, the configuration of the pipeline may change over time. For instance, the
pipeline might start with training a single “production” model, then be augmented over time
with more Trainer operators that correspond to “experiment” models (some of which might
become production models eventually).

This pipeline-level complexity carries over to the recorded traces. Moreover, it is common
to have long-running production pipelines that continuously ingest data spans and output
“fresh” models, resulting in traces that continuously grow over time. Add to that the fact
that executions often share artifacts (e.g., through the rolling-window mechanism described
in Figure 4.2(a)), and it becomes clear that traces can easily become large graphs with
complicated structure that are challenging to analyze. Figure 4.2(b) shows one such large
real-world trace; our corpus has pipelines with as many as 6900 nodes. This observation
motivates our proposal to analyze traces through lower-complexity or finer-grained model
graphlets that essentially “unnest” each trace graph with respect to the generated models—
more on this in Section 4.4.
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4.2.2 Corpus of Traces for Analysis

The main contribution of this paper is the first-ever analysis of a corpus of production ML
pipelines. The corpus comprises the traces of 3000 TFX pipelines (each with up to 6900
nodes) deployed at Google over a period of four months. We focused on pipelines that gen-
erated at least one trained model and had at least one model deployed outside the pipeline.
These are the production pipelines whose models support downstream applications. The re-
sulting pipelines correspond to hundreds of teams that span product areas (e.g., advertising,
video recommendations, app recommendations, and maps), ML tasks (e.g., single-/multi-
label classification, regression, and ranking), and model architectures (linear and deep mod-
els of varying complexity). In total, the collected traces contain 7.7M execution nodes and
20M artifact nodes.

The traces were collected using the ML Metadata [132] framework (MLMD), which pow-
ers the management of metadata and provenance in TFX [21]. Similar to our earlier defini-
tion, MLMD models a pipeline trace as a graph of Execution and Artifact nodes with their
input/output relationships. We note that the recorded MLMD traces also carry Context
nodes to represent the grouping of Artifacts and Executions, but this information is not
used in our analysis. Note that provenance graph in MLMD is different from the operator
DAG presented in Section 3.3.1 in Chapter 3, where the nodes are the operators instead of
executions and artifacts. While TFX also has a notion of the operator DAG in the pipeline
configuration, MLMD tracks executions instead since there is control flow that can skip
operators during execution. MLMD records additional metadata per node (e.g., start and
completion time of Executions, creation time of Artifacts), which we use to glean information
about the triggering cadence of pipelines. Moreover, the corpus records high-level informa-
tion for each data span artifact, comprising the features present in the span, their types,
and statistics for different feature types (e.g., the unique values for a categorical feature, or
the mean and standard deviation for a numerical feature). It’s worth mentioning that both
TFX and MLMD are open sourced and similar traces with those operators can be derived
by other TFX users.

4.3 Pipeline-level Analysis

We begin with an analysis of the corpus at the level of entire traces, aiming to understand
higher-level characteristics of ML pipelines, such as the structural properties of the corre-
sponding graphs, common data types and transformations, common ML model architectures,
and the cost of different operators in addition to training. Section 4.4 will present a finer-
grained analysis at the level of sub-traces, to understand the behavior of ML pipelines from
the perspective of individual models.
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4.3.1 Pipeline Lifespan and Activity

We first examine two aspects of ML pipelines: their typical lifespan and model training
frequency.We define the lifespan of a pipeline as the count of days between the timestamps
of the newest and the oldest nodes in its trace. Hence, the lifespan is an indication of how
long the pipeline is active. The distribution in Figure 4.3(a) shows that, on average, pipelines
are active for 36 days, with some being active for the entire span of our corpus (130 days).
The longer lifespans correspond to continuous pipelines that generate a stream of models
based on a stream of incoming data and are common within product groups that are heavy
users of ML. Figure 4.3(d) shows the distribution of lifespan broken down by model type,
where “DNN” refers to all deep learning models, “Linear” refers to all generalized linear
models, and “Rest” contains all other models, including tree-based models. Interestingly,
the pipelines with linear models live longer than the ones with DNN models.

Figure 4.3(b) shows a different dimension of pipeline activity in terms of the average
number of trained models in the trace, per day. The majority of pipelines generate one
model per day but there is also a wide spread of cadences, with some pipelines training close
to a thousand models per day! Upon closer investigation, these are continuous pipelines
that have a fast stream of incoming data and the ability to quickly produce updated models.
As in the previous figure, these pipelines correlate well with product teams that are heavy
users of ML. In addition, in Figure 4.3(e), we find that the cadence of pipelines using DNN
are more diverse than the other methods, which reflect a wide adoption of it in different
problems.

Overall, pipelines can have a large lifespan and generate models at a high rate. In turn,
the accumulated state of these pipelines can become complex. For instance, the trace of
the more complicated pipelines can have up to 6953 (artifact or execution) nodes. Tools to
efficiently query or summarize these complex traces can become indispensable for humans
to debug or manage these pipelines.

4.3.2 Pipeline Complexity

Next, we analyze the complexity of ML pipelines. Specifically, we examine three aspects: 1)
the shape of the input data; 2) the typical transformations for training; 3) the diversity of
model architectures.

Input Data Shape. Figure 4.3(c) and Figure 4.3(f) show the distributions of the feature
count in the input data. We use “feature” to refer to a column in the data (e.g., the ‘video-
id’ column) and “domain” for the set of values that this feature has in the input examples.
We compute the distribution of feature count as follows: we identify the data span nodes
in all traces, and use the associated MLMD metadata for each data span (Section 4.2.2) to
retrieve the number of features. As shown, the vast majority of the pipelines utilize up to
100 features. However, higher feature counts do appear and there are extreme cases of tens
of thousands of features in a pipeline.
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We also examine the composition of features in each pipeline in terms of numerical (e.g.,
length of a video) and categorical/sparse features (e.g., id of a video, query text). Note that
this distinction does not necessarily reflect the type used to encode the feature. For instance,
a ‘video id’ feature might be encoded as a number but treated as a sparse/categorical feature
in training as well as in our breakdown. We find that the features of each pipeline are equally
distributed among these two types: on average, 53% of the features are categorical. Moreover,
we analyzed the domain of the categorical features and found that each categorical feature
has, on average, 10.6 million unique values in its domain. For pipeline with DNN models,
the average is 13.6 millions, while for the ones having Linear models, it is larger than 20
million. This large domain size indicates high data complexity and thus increased cost and
complexity for data transformations prior to training. For instance, we discuss below how
such categorical features are typically embedded in vocabularies prior to training.

Feature Transformation. The additional metadata that we collect in our corpus (see
Section 4.2.2) provides a glimpse into the types of transformations applied to the raw data
before model training. These transformations are often applied in two stages: the (optional)
first stage performs an analysis of the data to derive required statistics for the transformations
deriving necessary statistics for the transformation; the second stage uses these statistics to
apply the transformations. As an example, consider the common z-score transform for
numerical features: the first stage computes the mean and standard deviation of the feature
values, and the second stage uses these two metrics to normalize each feature value. In
general, the second stage is embarrassingly parallel and can thus easily scale to large datasets.
The first analysis stage, however, is much more expensive as it requires potentially expensive
aggregations over the data (e.g., sorting a large space of video ids based on frequency), which

Percentage of pipelines where analysis appears at least once

vocabulary
uniques

sum
max

custom
quantiles

mean
var
min
size
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custom
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Figure 4.4: Analyzer Usage
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are not embarrassingly parallel. We thus focus on this analysis stage in what follows, since
that is where we see opportunities for data processing-related optimizations.

Figure 4.4 shows the different types of analyses applied in the first stage of feature
transformations. The “vocabulary” analyzer performs the aforementioned truncation of a
sparse feature into a smaller numerical domain. As an example, given a feature that contains
text tokens (e.g., words), this analysis computes the top-K tokens based on frequency and
then maps the features to the numerical domain [0, K]. The other types correspond to
more straightforward analyses over numerical features (e.g., min, max, and so on). Finally,
“custom” refers to a black-box analysis (essentially, a UDF) that is pipeline-specific and
tailored to the business logic of the corresponding ML task. Pipeline authors resort to these
UDF-style analyses when their features require more complex handling than what TFX offers
out of the box.

Figure 4.4 shows two views of the same data. At the top, we show the percentage of
pipelines that reference each analysis at least once, which indicates the relevance of these
analyses across the pipelines in our corpus. The bottom view shows the total usage of these
analyses across all traces and indicates the frequency of their usage in production. Both
views confirm the prominence of vocabulary computations over categorical features. This
becomes even more pronounced when looking at the actual usage in traces (bottom view).
We observe that custom analyses are also used in several pipelines, although their total
usage is much lower in the bottom chart. Our hypothesis is that such UDF-based analyses
are more relevant for experimental pipelines that have a short lifespan and less activity,
whereas canonical analyses provide good coverage for “steady-state” pipelines.

Both views in Figure 4.4 confirm the prominence of vocabulary computations over cat-
egorical features, which provides an interesting opportunity for the data management com-
munity, in two respects. First, this computation is a top-K query over an aggregation of the
data where K can be very large, e.g., values of K from hundreds of thousands to millions are
not uncommon. It is interesting to consider how these queries can be optimized for different
representations of the data. Second, the choice of K has non-trivial implications on model
quality and performance. A higher K implies better coverage of “important” sparse values,
which in some cases results in significant improvements in accuracy. At the same time, since
this mapping becomes part of the model, a higher K implies larger model sizes (to store
the mapping) and perhaps higher processing time (to perform the mapping). To make an
informed choice, the model developer needs to understand the tradeoffs for different values
of K in terms of these dimensions, and this, in turn, introduces an interesting data analysis
problem that may be amenable to techniques from data management (e.g., approximate
query answering for this class of queries).

Model Diversity. We next examine the type of models used across pipelines. Doing so
helps us characterize the diversity of training methods in production. Moreover, the choice
of model architecture affects the selection of other operators and hence other characteristics
of the pipeline. Figure 4.5 shows the usage of different architectures as a percentage of all
models in our corpus. As we can see, 64% of the Trainer runs use deep neural networks
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Figure 4.5: Percentage of Trainer runs with each model type

(DNNs), with an additional 2% that use a combination of DNNs with linear models. A
smaller percentage of pipelines employ linear models and tree-based methods. Finally, a
small fraction of the pipelines deal with specialized tasks requiring ensemble models or
custom methods that we lump in the “other” slice.

It is interesting to relate this breakdown to recent papers that embed ML techniques
inside database management systems and thus aim to jointly optimize data access and model
training [104, 76, 142, 89]. A focus on a specific class of models (e.g., linear or DNN models)
is still relevant in practice and can cover a significant fraction of production ML workloads.
However, this would leave on the table a much bigger fraction of pipelines outside of the
selected class that could also benefit from optimized systems. Moreover, the diversity shown
in Figure 4.5 is an indication that ML practitioners need access to a wide range of choices,
and hence are likely to “outgrow” a system that offers a few choices for model architectures.

4.3.3 Resource Consumption

Finally, we turn our attention to the composition of pipelines in terms of the different
operators and their corresponding resource footprints.

Figure 4.6 shows the different types of TFX operators present in our traces and the cor-
responding percentage of pipelines using these operators. Here we group them in terms of
their high-level functionality in the pipeline: data ingestion; data analysis and validation;
data pre-processing; training; model analysis and validation; and model deployment. Per-
haps unsurprisingly, the most common operators include data ingestion, data pre-processing,
training, and deployment, with training and deployment in 100% of the pipelines since our
corpus focuses on ML pipelines that support production applications. It is also worth noting
that about half of the pipelines employ data- and model-validation operators, which essen-
tially block the deployment of the trained models if there are errors in the data or if the
model metrics are not sufficiently good, respectively [28, 52]. These operators act as safety
checks and are common in pipelines that trained models used in downstream production
systems.
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Figure 4.7: Compute cost of different operators.

Figure 4.7 shows a different breakdown of operators based on their resource usage. For
each group, the figure shows the total compute cost as a percentage of the overall compute
cost by all groups. Perhaps surprisingly, we see that the training operators account for less
than a third of the total computation. This finding goes against the conventional picture
that ML is mostly about the training algorithm. In contrast, our results indicate that
production ML involves more steps that are also more costly, e.g., the data/model analysis
and validation operators account for ∼35% of the total compute cost of the pipelines and are
more expensive than training. Note that like data analysis and validation, model analysis
and validation also boils down to traditional data processing operations, since it involves
the computation of model metrics (e.g., average loss, area-under-the-curve) on slices of the
input data, i.e., group-by queries with a model-driven aggregation per group. The figure also
shows a significant cost for data ingestion (∼22%). This happens because, in many cases,
TFX initiates a “hermetic” copy of each data span from the external data source, along
with shuffling/partitioning of the examples to different splits (training/testing/eval) for the
downstream model. This cost can be avoided for data sources that provide snapshot-based
access with randomization guarantees for the individual examples.

Besides showing the cost of operators beyond training, the breakdown in Figure 4.7
reveals one more point: pipeline failures can be costly in terms of resources. Specifically,
ML pipelines have several failure points corresponding to the different operators, e.g., the
pipeline may stop because the data contains errors, or because the training code has faults,
or because model validation failed. In turn, each failure point may occur after the successful
completion of upstream operators, several of which can be costly based on our analysis. In



CHAPTER 4. UNDERSTANDING PRODUCTION PIPELINES 86

ExampleGen ExampleGen ExampleGen

Data Span Data Span Data Span

Trainer Data 
Preprocessing

Model Processed 
Input

Model 
Aanalysis

t

Data
Aanalysis

Data Stats

Pusher

Model Stats

Trainer

Model

Execution

Artifact

Input/output

Model 
Graphlet

Figure 4.8: A model graphlet example

other words, failures are not cheap and there is an upside to preventing them or dealing
with them proactively. Moreover, artifact caching and reuse, when feasible, can cut down
significantly on the cost of different stages. One example is restarting a failed pipeline due
to errors in the training code—since the data has not changed, it should be feasible to reuse
any data transformations and thus avoid the cost of re-analyzing the data. We can use
the costs in Figure 4.7 (in conjunction with failure probabilities) to determine optimized
materialization policies, identifying where it might be most valuable to cache artifacts, e.g.,
after pre-processing, training, or model validation, as was done in recent work [209].

4.4 Fine-Grained Graphlet Analysis

The previous section presented a coarse-grained analysis that focused on aggregated char-
acteristics across pipelines. In this section, we dial up the resolution of the analysis to
investigate fine-grained characteristics within each pipeline, and in particular, the cadence
and characteristics of model training and deployment—which, as stated earlier, can happen
several times within a trace.

4.4.1 Model Graphlets

Recall that pipelines can be continuous, in that they consume a stream of incoming data
spans to train and produce fresh models. Hence, a single pipeline trace may contain multiple
executions of the Trainer operator (and associated downstream and upstream operators) on
overlapping inputs. For instance, when using a rolling-window on the input data spans to
update models, a data span might contribute to several models; when using warm-start
during training, a generated model artifact might be used as an input to other Trainer
executions. As a result, the pipeline trace is intricately tied to the complexity of ML in
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practice, and it is not uncommon for the trace to have a single large connected component
that encompasses all nodes, which in turn makes it difficult to examine the finer-grained
characteristics of the pipeline (e.g., Figure 4.2).

The issues of inter-connectedness and size of provenance graphs have similarly emerged
in different domains, wherein techniques such as user views, segmentation, and aggregation
have been explored to transform the graphs to usable or interpretable ones [26, 3, 129, 134].
We adopt a similar approach but we leverage the semantics of production-ML operators and
connections between them. Specifically, we segment the trace graph into several subgraphs,
so that each subgraph represents a single (logical) end-to-end pipeline run related to an
individual model. We provide some intuition for this definition in the context of an example
below. We refer to such a subgraph as a model graphlet, or graphlet for short.

Datalog Queries for Graphlet Segmentation. Formally, a trace is a directed acyclic
graph G(V,E), where V = A ∪ E includes all artifacts A and executions E over time, and
E is the union of all input (A × E) and output (E × A) relations between those operator
executions and pipeline artifacts. Given a trainer execution n ∈ E , a corresponding graphlet
gn ⊆ G is a subgraph of the trace, where its nodes gn(V ) include n and can be derived by
the following datalog query:

g(V) :- E(V, X), g(X)

g(V) :- g(X), E(X, V), NOT sc(V)

where sc is a predicate excludes descendant executions that are on the path to other trainer
executions. In our context, the sc is either Transform or Trainer executions as shown in
Figure 4.1(b).

Example. Figure 4.8 shows the graphlets extracted on a sample trace. Intuitively, each
graphlet corresponds to a model and captures the subgraph of the trace that is relevant for
the generation of the model. Note that the first model is used to warmstart the Trainer
for the second model, yet this edge is a “cut” between the two graphlets. The motivation
for graphlets is to create smaller graphs of bounded complexity, so that we can analyze the
corpus at the granularity of individual models. The graphlets also include data-analysis
artifacts, so that we can analyze data-related metrics (reuse and similarity) across graphlets.

From this point onward, we recast our analysis on the set of graphlets that we extract
from the corpus. In total, this gives rise to 450,000 graphlets.

[0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1] µ
Jaccard 30.2% 8.2% 4.4% 57.3% 0.647
Dataset 89.7% 0.3% 0.1% 9.9% 0.101

Avg Dataset 87.3% 5% 3.1% 4.6% 0.092

Table 4.1: Similarity metrics for consecutive model graphlets; percentage of consecutive
graphlet pairs in each similarity range, along with the mean similarity.
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4.4.2 Data Change across Graphlets

Data characteristics, and the evolution thereof, can have a significant impact on ML model
performance [156]. We thus begin our analysis by investigating data evolution across graphlets
of the same pipeline. Specifically, we seek to understand to what extent data is reused across
different graphlets and the rate at which data distribution shifts over time. Answering these
questions can provide useful insights related to ML data management, e.g., whether mate-
rialization of intermediate data transformations and incremental computation can be useful
for ML pipelines. The analysis that follows uses the notion of consecutive graphlets. Two
graphlets g and g′ from the same pipeline are said to be consecutive if and only if the cor-
responding trainer executions are adjacent in chronological order, using the timestamps of
the trainer executions for ordering.

4.4.2.1 Reuse

We quantify data reuse with the Jaccard similarity between the data spans of consecutive
graphlets g and g′, i.e., |I(g)∩I(g′)|/|I(g)∪I(g′)|, where I(g) is the set of input data spans
in g.

The first row in Table 4.1 shows the histogram of the similarity values in the corpus. The
high value at (0.75, 1]—57% of all pairs of consecutive graphlets—is due to the fact that
many pipelines train multiple parallel models on the same inputs for A/B testing. Moreover,
consecutive graphlets can correspond to retrainings on the same data after the pipeline author
changes other details of the process, e.g., the training algorithm or feature transformations.
The mean similarity of .647 indicates that, on average, graphlets share two thirds of the
data spans. Moreover, several consecutive graphlets have a > 80% similarity of their inputs.
These results point to interesting optimization opportunities on data preparation for training
(e.g., data pre-processing, data transformation, or data validation). Specifically, we can
leverage this overlap and employ techniques from incremental data computation and view
maintenance to efficiently perform the data preparation steps for a new training run. Indeed,
most of the data analysis operators in Section 4.3.2 lend well to incremental view maintenance
techniques [96].

4.4.2.2 Dataset Similarity

The previous analysis focused on the reuse of the same data spans across graphlets. However,
what if the data spans are different but their contents have similar distribution? Answering
this question can help us identify further opportunities for reuse and optimization, albeit of
a different nature. For instance, if two consecutive graphlets have data inputs with the same
distribution, then some aspects of data preparation can be reused even if the data spans
are different, e.g., the second graphlet can reuse the vocabularies of the first graphlet over
the same categorical features (see also Section 4.3.2). One “extreme” optimization is to skip
training altogether, given that the data distribution is the same!
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How can we measure dataset similarity between consecutive graphlets? As noted above,
the input to a graphlet can include multiple data spans. However, we do not have access
to the actual data in each graphlet, since this data is not part of our corpus and it might
also be siloed for privacy reasons. Instead, the only information we have about each data
span is summary statistics for the set of numerical and categorical features in the span (see
Section 4.3.2). These limitations make it hard to reuse existing data-similarity metrics as
is, which either require full knowledge of the data, not just summary statistics, or do not
handle comparisons of sets of data spans.

We thus adapt existing metrics to quantify dataset similarity in our specific setup. We
do not claim novelty of this metric; rather, our goal is convey that this adapted metric
provides reasonable and intuitive results for quantifying span-content similarity. A formal
investigation on similarity metrics for this type of data is beyond the scope of our work. Next,
we first give a high-level overview of our proposed similarity metric to establish intuition and
then define the metric formally in detail.

The proposed metric has a layered formulation. First, we consider how to compare a
pair of data spans using summary statistics on the constituent features. We treat each span
as a set of features and use Earth Mover’s distance [168] to compare the two sets, with
a feature-to-feature similarity that is based on a hashing scheme on probability distribu-
tions [121]. Second, given this span-pair metric as a building block, we introduce a metric
to compare two sequences of spans that come from different graphlets. The metric aligns
the two sequences by position and computes the sum of span-to-span similarity values nor-
malized by the length of the longer sequence. We use sequences instead of sets to model
the sequential visitation of data for certain ML algorithms. If this aspect is not important
for a different workload/system, then it is possible to use other metrics such as maximum
bipartite matching.

We provide a detailed description of the metric below for readers who might be interested
in applying the metric to other use cases.

Comparing a pair of data spans using summary statistics. A data span D comprises
n features {f1, f2, . . . , fn}, with each feature being either categorical or numerical. For
data privacy concerns, the raw feature statistics are not recorded. Instead, for a numerical
feature, we have the discrete distribution of the feature values over 10 equi-width bins, with
the range rescaled to [0, 1]; for a categorical feature, we have the count of the top 10 most
frequent terms, the count of the unique terms, and the total number of datapoints, with all
terms anonymized. First, we transform the term frequencies for categorical features into a
probability distribution by sorting the normalized term frequencies in the descending order
and setting the bin width to be 1

N
, where N is the number of unique terms, to obtain a

discrete distribution over [0, 1]. For terms outside of the top 10 most frequent terms, we
distribute the remaining mass evenly over the N − 10 bins. Note that we introduce sorting
so that we can capture similarity over the shape of the distribution, independent of the
obfuscation of the actual categorical values.

Standardizing feature representation across numerical and categorical features allows us
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to devise a single unified feature similarity metric for both types of features. For efficiency,
we use a locality sensitive hashing scheme called S2JSD-LSH designed for probability distri-
bution [121] to compute an integer hash value h(fi) for a feature fi. The similarity s(f1, f2)
between two features f1, f2 with feature names n1, n2 is then defined as

s(f1, f2) = α · I(h(f1) = h(f2)) + β · I(n1 = n2) (4.1)

, where I is the indicator function. We only compare features of the same type; the similarity
between a numerical feature and a categorical feature is always 0.

Comparing two sequences of spans. Given two data spans D1 = {fi} and D2 = {f ′i},
where the fi’s and f ′i ’s are the features in the respective datasets, the dataset similarity
S(D1, D2) is defined as the Earth Mover’s distance (EMD) [168] where features are treated
as clusters with equal weights within each dataset and the distance between clusters is the
feature similarity defined in Eq(4.1). Since it is difficult to determine a one-to-one mapping
between the features given that the feature names are anonymized, we use EMD to capture
the uncertainty in the mapping. This metric enjoys the property of being symmetric and
having a range of [0, 1]. Moreover, S(∅, D) = 0 where ∅ is the empty data span, and
S(D,D) = 1.

We extend S(D1, D2) to compare two sets of data spans as follows. LetD = (D1, D2, . . . , Dn)
and D′ = (D′1, D

′
2, . . . , D

′
m) be the sets of input data spans for the two graphlets, where the

indices within each set denote order by time of ingestion. We define the overall data similarity
as

S(D,D′) =
1

max(n,m)

min(n,m)∑
i=1

S(Di, D
′
i) (4.2)

Simply put, S is the sum of pairwise data spans matched by ordinal position, normalized
by the maximum number of spans between D,D′. We match by ordinal position instead of
by identity of the data spans because ordinal positions can better handle rolling windows
of data spans that may or may not overlap. Furthermore, certain training algorithms visit
data spans sequentially ordered by ingestion timestamp. Like S, S is also symmetric and
falls into [0, 1].

The second row in Table 4.1 shows the quartiles of data-similarity values over all pairs
of consecutive graphlets in the corpus. Similar to Jaccard similarity (first row), dataset
similarity is bimodal at the first and last quartiles. However, the trend is reversed, due to
the fact that data spans common in both sets may not be paired up in to ordinal position
matching. As explained above, this is by design to account for cases of sequential data
visitation in training. The third row in Table 4.1 shows the quartiles of data similarity when
the latter is averaged over all graphlets in the same pipeline. Compared to the second row,
we observe a drop in the higher quartiles, which indicates that pipelines with a large number
of graphlets have more dissimilar pairs. Put differently, long-running pipelines belonging to
power users have higher data volatility, motivating the need for data validation to safeguard
against data errors and drift.
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4.4.3 Model Retraining and Deployment

In this section, we use the graphlet decomposition to examine the relationship between model
(re)training and deployment in the pipelines. We measure the duration of a graphlet as the
difference between the start of the execution with the earliest timestamp in the graphlet
and the end of the execution with the latest timestamp. As our analysis shows below,
the conclusion is that (a) there are many trained models that are not deployed, and (b)
very likely they correspond to wasted computation, which in turn introduces an interesting
optimization opportunity.

4.4.3.1 Training vs. Deployment

A model push marks the deployment of a trained model to a downstream service, thus making
the model “visible” outside of the pipeline. In TFX, a push is performed via the execution
of the Pusher operator. Note that a newly generated model may remain unpushed (e.g.,
due to failure to validate, or downstream throttling), in which case downstream services will
keep using the last-pushed model. In this sense, a model push causes a model “refresh” for
the downstream services.

Figure 4.9(a) shows the distributions of this time gap (in hours) for the two classes, while
Figure 4.9(b) shows the cumulative view of the same distributions, both in log scale on the
x axis. Immediately, we see that the two distributions have the same shape, but the mean
is upshifted by ∼15 hours for the time between pushed graphlets. This is corroborated by
the CDFs, which show that the time between 80% of all graphlet pairs is less than the
median value for the time between pushed graphlets. These trends can have two possible
explanations: 1) pushed graphlets tend to have longer duration than unpushed graphlets, or
2) pushed and unpushed graphlets have similar durations but are interleaved, thus widening
the time gap between pushes. The second explanation has important implications for system
optimization, motivating further effort to unearth the cause.

To further investigate the discrepancy between model training cadence and model push
cadence, we plot the distribution of the number of graphlets between consecutive model
pushes in Figure 4.9(c). We see that very few pipelines have no intervening unpushed
graphlets between consecutive pushes, while most pipelines have between 1 to 10 unpushed
graphlets between consecutive model pushes, with an average of ∼3. Furthermore, Fig-
ure 4.9(d) shows that unpushed graphlets have higher CPU usage for model training than
pushed ones overall. These two facts together confirm that the second explanation presented
above, namely the interleaving of pushed and unpushed graphlets with similar duration, is
indeed the cause for the difference in distribution observed in Figure 4.9(a).

4.4.3.2 Model Freshness vs. Wasted Computation

The conclusion that pushed graphlets are interleaved with unpushed graphlets is a cause
for concern for two reasons: 1) if the application requires model pushes to keep up with
the ingestion of new data, i.e., the model must be trained and deployed before the the next
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batch of new data is ingested by the pipeline, then a mismatch between the cadences of
model training and model pushing implies an “unhealthy” pipeline; 2) if the application is
tolerant of a slower model refresh cadence than data ingestion cadence, model training runs
that do not lead to model pushes can be skipped to minimize wasted computation. In either
case, the unpushed graphlets are potentially wasted computation.

While we do not have the requisite telemetry to precisely characterize when unpushed
graphlets are indeed wasteful (e.g., unpushed models might be transitively useful by warm-
starting models that do get pushed), our analysis results present quantitative evidence that
the total amount of wasted computation is high. First, we observe that approximately 80%
of all graphlets are unpushed. If none of the graphlets were used for warmstarting and there
were no overlaps between graphlets, 80% of graphlets would account for ∼80% of overall
computation since pushed and unpushed graphlets have similar CPU usage. To account for
warmstarting and potential overlaps between graphlets, we can simply 1) remove graphlets
belonging to pipelines with warmstarting, which account for 9% of total graphlets, and 2)
remove all computation cost for operators that could potentially overlap, which accounts for
∼ 60% of overall computation resource consumption, computed by removing the warmstart-
ing pipelines from the results in Figure 4.7. Even with these generous assumptions the waste
is still at > 30%.

There is clearly an interesting question in whether we can identify the root cause of this
inefficiency. However, further analysis shows that it is unlikely to find simple explanations.
(We develop a more involved solution for the problem in Chapter 5.) Specifically, suppose
that we attempt to explain the inefficiency through the following hypotheses: 1) rate-limited
push: model pushes are configured to be at least a certain time apart, and models are trained
faster than the predetermined push rate; 2) model types: certain model types can be more
error prone and fail due to non-determinism with all else held equal; 3) data drift: shift in
data distribution prevents models from passing validation checks; 4) code change: updating
the code for the Trainer introduces system or model bugs.

To check (1), we compare the distribution of the model training time shown in Fig-
ure 4.9(e) with the distribution of the time gap between graphlets shown in Figure 4.9.
While the average time gap between pushed graphlets is ∼40 hours, the mean model train-
ing time is 168 hours, making it highly unlikely that models are trained faster than the
allowed push rate. This eliminates 1) as the cause of wasted computation.

To check (2), we observe from Figure 4.9(f) that the likelihoods of graphlets being pushed
for different model types is highly variable. Moreover, all model types have a likelihood < 0.6,
indicating that no single one is the culprit. However, it is unclear whether the low likelihood
for some model types is due to the model type being error prone or other confounding factors.

Finally, to check (3) and (4), we compare the means for input data similarity, as measured
by the metric introduced earlier, and code match (where 1 indicates match and 0 indicates
no match) with the immediate preceding graphlet for the pushed and unpushed graphlets
shown in Table 4.2. Overall, between consecutive graphlets, the input data similarity is
0.101, and the code stays the same 84.5% of the time. For both measures, we observe no
significant difference between the pushed and unpushed groups. These findings suggest that
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µpushed µunpushed µ
Input data similarity 0.109 0.099 0.101

Code match 0.838 0.846 0.845

Table 4.2: Model push vs. data drift and code change.

code change and data drift are not correlated with a graphlet not pushing a model.

4.5 Conclusion

To our knowledge, we presented the first ever large-scale analysis of production ML pipelines,
based on a large corpus of pipelines from Google. Our analysis demonstrates the high com-
plexity of these pipelines and the importance of operators other than training, in particular
operators related to data preprocessing and analytics. Furthermore, we analyzed the cadence
and characteristics of the generated models and characterized their relationship with respect
to the input training data. The overall analysis revealed several points where techniques
from data management can optimize different steps of these pipelines, including approximate
query processing for determining the vocabulary size for categorical features and incremen-
tal view maintenance for computing features that depend on summary statistics in a data
stream. Our analysis also revealed that unpushed graphlets represent a significant portion
of the total pipeline computation, even though they are not likely to have an observable
impact on subsequent models or downstream services. In the next chapter, we discuss an
optimization to minimize wasted computation associated with unpushed graphlets.
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Chapter 5

Improving Computation Efficiency in
Production Model Deployment

As an immediate consequence of (and evidence for the value of) our analysis in Chapter 4,
we identify a significant optimization opportunity involving preemptively skipping pipeline
executions. Overall, there are many wasteful graphlets that neither deploy models to serve
applications nor help warmstart subsequent model training. We show that such graphlets
have significant resource costs. Moreover, we show that the root causes for the wasteful
graphlets are varied; hence, it is difficult to come up with simple heuristic strategies to
identify them. Instead, we leverage the dataset at hand and develop an ML-based solution—
we train a model that uses the current state of the pipeline to predict whether the graphlet
run will result in a deployed model prior to its execution. The prediction is used to adjust
the execution of the graphlet in order to conserve compute cost. For instance, the pipeline
scheduler may choose to down-prioritize or stall such graphlets until the pipeline owner
intervenes and fixes the underlying issue(s). The model achieves high accuracy and allows
us to save up to 50% of wasted computation, without compromising graphlet runs that deploy
models. Beyond this direct benefit, this optimization is indicative of the opportunities to
optimize ML deployments through a holistic analysis of the ML provenance graph, in addition
to localized optimizations of individual steps (e.g., reducing the footprint of the trainer).

Next, we introduce the decision function we designed for this prediction task. Clearly, the
decision function has to balance between different types of errors and their effects. A false
negative, i.e., skipping a graphlet that would have resulted in a model push, compromises
model freshness, while a false positive, i.e., running a model graphlet that does not result in
a model push, contributes to wasted computation. Model freshness is measured by nTP

nTP+nFN
,

where nTP is the number of true positives and nFN is the number of false negatives. We
discuss later a method to explore the tradeoff between the two error types and show that we
can eliminate nearly half of the wasted computation.

Data. To study this problem, we form a dataset by filtering the previous corpus to only
include pipelines that do not warmstart model training with previous versions of the model.
Unpushed graphlets are useful if they help warmstart subsequent model training (see Sec-
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tion 4.4.3) and so we should not consider them as wasted computation. This leaves us
with 2827 pipelines containing 420k graphlets in total. The dataset contains 80% unpushed
graphlets and 20% pushed graphlets. To account for class imbalance, we use balanced accu-
racy to measure the fitness of decision functions.

5.1 Problem Statement

Let G = {g} be a set of model graphlets and Y : G → {0, 1} be the indicator function that
evaluates to 1 for pushed graphlets and 0 otherwise. The objective of the waste mitigation
problem is to find

argmin
Ŷ∈H

∑
g∈G

Lm

(
Y(g) · (1− Ŷ(g))

)
+ Lw

(
Ŷ(g) · (1− Y(g))

)
(5.1)

where H is the space of decision functions that we will explore to find Ŷ , an approximation
for Y , Lm is the loss function for model freshness that depends only on false negatives, and Lw

is the loss function for wasted computation that depends only on false positives. Intuitively,
model freshness is only affected by false negatives, where pushed graphlets are incorrectly
predicted as unpushed and therefore prevented from updating the externally visible model;
on the other hand, wasted computation can only be incurred by false positives where an
unpushed graphlet was erroneously run without resulting in a refreshed model downstream.

The loss functions can be designed to prioritize either cost saving or model freshness.
However, it is difficult, in practice, to determine the tradeoff apriori without getting a sense
of the complexity of the dataset and the decision function. To overcome this challenge,
one can use a single loss function L for both Lm and Lw to weigh the two types of errors
equally and allow Ŷ to be a real-valued function that assigns likelihoods to the two labels,
namely pushed and unpushed. Once Ŷ is found, the tradeoff between compute cost and
model freshness can then be made post-hoc by setting a specific threshold on Ŷ to produce
a binary decision function. Another convenient consequence of setting Lm = Lw is that the
problem becomes a standard binary classification problem that can be solved using standard
approaches.

5.2 Limitations of Simple Heuristics

The analyses from Sections 4.3 and 4.4 in Chapter 4 surface numerous candidate signals that
can be used to solve the binary classification problem. We experimented with a few simple
heuristics for solving Equation 5.1 derived from our findings.

Model type. Since Figure 4.9(f) shows that model push rate is correlated with the model
type, we created a simple heuristic that predicts pushed if the model type in the graphlet
has an average push rate higher than the push rate averaged over all model types. This
heuristic yielded a balanced accuracy of 0.599.
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Input overlap. The input overlap heuristic predicts pushed if the Jaccard similarity (from
Section 4.4.2.1) with the previous graphlet is > 0.65, the average across all graphlets. This
heuristic yielded a balanced accuracy of 0.580.

Code match. Finally, as a baseline, we created a heuristic that predicts pushed if the
code does not change from the previous graphlet. The code match attribute is shown to be
low-signal by the results in Table 4.2. This heuristic yielded a balanced accuracy of 0.517.

The best handcrafted heuristic (model type) achieved a balanced accuracy of 0.6. The
large search space of heuristics, on top of the low performance of heuristics we handcrafted,
motivates the machine learning approach to automatically utilize complex signals for decision
making.

5.3 Machine Learning Based Approach

We approximate the decision function Ŷ in Equation 5.1 by training a supervised ML model.
Each graphlet in the training data is labeled as pushed or unpushed as described above.
For each graphlet, we create features based on its structure and associated metadata, mostly
relying on the insights discussed in Sections 4.3 and 4.4 in Chapter 4. We also introduce
features involving the immediately preceding graphlets in order to capture temporal signals
such as data-span similarity.

5.3.1 Features

We partition graphlet features into four categories described below. The first two categories
(shape and model information) are features extracted from the graphlet itself. The remaining
two categories (input data and code change) are history-based, i.e., they are derived by
comparing a graphlet with a window of graphlets that immediately precede it. A distinct
feature is created for each ordinal position in the window, e.g., for a window size of three,
code change 1, code change 2, and code change 3, are created to indicate whether the
code in graphlet g has changed compared to those that are 1, 2, or 3 graphlets prior to g.

Graphlet shape. Shape features include the count of executions corresponding to each
operator, as well as the average input and output count for each execution. We partition
the operators into pre-trainer operators that can execute without the output of the Trainer,
the Trainer, and post-trainer operators that validate the output of the Trainer for safety
and quality. For example, the graphlet in orange in Figure 4.8 has 2 ExampleGen with on
average 1 output, 1 Trainer with on average 2 input and 1 output, 1 Data Analysis and 1
Model analysis both with average input and output count both being 1, and 1 Pusher with
on average 1 input. Note that to obtain the execution count for a particular operator, we
need to run the graphlet up to that operator, incurring computation overhead to obtain
these features. Recall that the additional cost to run the post-trainer operators is ∼30% of
the cost to run the pre-trainer operators, as shown in Figure 4.7.
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Model information. We include the model type, e.g. Linear, DNN, etc., as well as
the model architecture for graphlets containing DNN models, as one-hot encoded features.
Figure 4.9(f) indicates that model type and model pushes are correlated.

Input data. Input data-related features include both overlap computed using the input Jac-
card similarity (Section 4.4.2.1), and dataset similarity (Section 4.4.2.2), between a graphlet
g and the graphlets preceding g as history-based features.

Code change. A binary feature for whether the code versions for the Trainer operator
match between a graphlet g and the graphlets preceding g, as history-based features. While
previous results in Section 5.1 have shown that the code change as a standalone feature
is low-signal, we include it in the feature set to explore potential interactions with other
features.

We also experimented with pipeline-level features inspired by the findings in Section 4.3,
such as the data transformations, average time between graphlets and average graphlet
duration in a pipeline, but found no significant improvement in model performance.

5.3.2 ML Model Training and Testing

We split pipelines in the corpus at random into a training and a test set, such that the total
number of graphlets belonging to pipelines in the training set is ∼80% of the total number
of graphlets in the entire corpus, and the distribution of pushed and unpushed graphlets are
roughly the same in the training and test sets.

We experimented with a large variety of models including DNNs and Gradient Boosted
Decision Trees, as well as more interpretable models, such as Logistic Regression and Ran-
dom Forest, using the Scikit-learn library [150], and found that Random Forest performed
comparably with the more complex models explored by the Auto-ML tool. We report our
results from using the Random Forest model below and discuss lessons learned from the
model next.

5.4 Evaluation

We evaluate the models on both model performance and their ability to generate execution
policies for reducing wasted computation.

5.4.1 Classification performance

As mentioned above, Random Forest is the most accurate among interpretable models and
has comparable performance with much more complex models. We present the results for
four variants of the Random Forest model:
RF:Input has all of the features except the graphlet shape features;
RF:Input+Pre has all of the features in RF:Input plus the graphlet shape features for
pre-trainer operators;
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Model Balanced Acc. Feature Cost

RF:Input 0.737 0.31
Random RF:Input+Pre 0.801 (+9%) 0.53 (+71%)

Forest RF:Input+Pre+Trainer 0.818 (+2%) 0.77 (+ 45%)
RF:Validation 0.948 (+16%) 1.00 (+30%)

Ablation

RF:Input 0.737 0.31
RF:History 0.738 0.77

RF:Shape 0.680 0.77
RF:Model-Type 0.592 0.77

Table 5.1: Balanced accuracy for all model variants. The feature cost column indicates the
compute cost to obtain the necessary features required by the models (rescaled to [0, 1] with
RF:Validation = 1).

RF:Input+Pre+Trainer has all of the features in RF:Input+Pre plus graphlet shape
features for Trainers;
RF:Validation has all of the features in
RF:Input+Pre+Trainer plus shape features for post-trainer operators in the graphlet.

The four variants can be thought of as incrementally revealing more features about the
shape of the graphlets as more operators are executed. They represent points in the pipeline
execution that the system can intervene and abort execution to minimize wasted computa-
tion. For example, with RF:Input, the system can decide to abort as soon as the data is
ingested; with RF:Input+Pre, the system has the option to abort right before model train-
ing. Note that RF:Validation is rather impractical in term of reducing wasted computation,
as it requires all operators in the graphlet to be run to obtain the features. Also, the exe-
cution of validation operators can be highly correlated with whether the graphlet is pushed.
We include RF:Validation as a proxy for an upper bound on prediction performance given
complete (i.e., oracular) information.

Table 5.1 shows the model accuracy and the computation cost for the features used in
each model, with the cost rescaled to [0, 1] by dividing by the maximum cost attained by
RF:Validation. Adding additional information leads to better model accuracies, however, the
gain in accuracy does not grow linearly with the compute cost. Notably, from RF:Input+Pre
to RF:Input+Pre+Trainer, the difference between the two models corresponds to shape
features for the Trainer operator, which incurs a 45% increase in computation cost, for a
measly 2% lift in model accuracy. All of the models significantly outperform the heuristics
presented in Section 5.1, suggesting that there are complex interactions between signals that
are hard to capture with heuristics looking at one signal at a time.
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Figure 5.1: Evaluation Results.

5.4.2 System Performance Improvement

We now examine how the trained classifier can help balance the tradeoff discussed earlier:
skipping unpushed graphlets reduces wasted computation, but skipping pushed graphlets
compromises model freshness in downstream applications.

Figure 5.1(a) depicts this empirical tradeoff between model freshness (y-axis) and wasted
computation (x-axis) for the trained classifier. We compute this curve by doing a parame-
ter sweep of the binary-classifier’s threshold. Each threshold value results in specific false
positive and true positive rates over the evaluation dataset, which we translate to values for
wasted computation and model freshness respectively. As an example, consider the rates
(0.65, 1) for a specific threshold value, which corresponds to a decision function that clas-
sifies correctly all the pushed graphlets and mis-classifies 65% of the unpushed graphlets
(based again on our evaluation dataset). Since all pushed graphlets are identified correctly,
model freshness is equal to 100%. Moreover, we can aggregate the total compute cost of the
mis-classified unpushed graphlets, which in this case sums up to 70% of the total compute
cost for these graphlets (equivalently, we recover 30% of the wasted computation). Hence,
we map the decision function to point (0.7, 1) in Figure 5.1(a).

We highlight two important takeaways from Figure 5.1(a). First, we can eliminate 50%
of all wasted computation without sacrificing model freshness at all. For a large-scale ML
system like TFX, this amounts to a great deal of computation resources saved without
affecting end-user experience. Second, model freshness does not drop substantially if we
cut computation even further from 50% to 60%. However, following that, model freshness
drops dramatically from 0.4 to 0, implying that we cannot hope to do much better than
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removing 60% of the wasted compute without significant sacrifice on model freshness. While
RF:Input is cheaper than RF:Input+Pre and RF:Input+Pre+Trainer as shown in Table 5.1,
it is also a much worse execution policy. It can eliminate at most 30% of the wasted compute
before model freshness suffers from serious decline. On the other hand, RF:Input+Pre
and RF:Input+Pre+Trainer can easily eliminate 50% of the wasted computation with no
impact on freshness. Thus, for a frugal user who is tolerant of model staleness, RF:Input
might be the preferred model. A user who has strict model freshness requirements might
prefer RF:Input+Pre to help them minimize waste without sacrificing model quality. The
negligible improvement in prediction performance by RF:Input+Pre+Trainer compared to
RF:Input+Pre does not justify the 45% computation overhead to obtain the features. Thus,
RF:Input+Pre+Trainer, despite leading in prediction performance, is not as effective from
a cost saving perspective.

5.4.3 Feature Ablation Study

To better understand the impact of the different groups of features introduced in Section 5.3,
we conduct a feature ablation study, where Random Forest models are trained and evaluated
with a subset of the features. The balanced accuracies for the ablated models are shown in the
last four rows of Table 5.1. RF:History contains both the input data features and code change
features. RF:Shape contains only the counts for the operators excluding validators. Of the
four groups of features, RF:Input, while being the cheapest in terms of cost to obtain feature
values, achieves the best performing model. Interestingly, adding the code features to the
input features, as is done in RF:History, has no effect on the model performance. RF:Shape
performs significantly worse than RF:Input but better than RF:Model-Type, which achieved
the same performance as the simple heuristic involving model type.

Figure 5.1(b) shows the freshness vs. wasted computation curves for models in the feature
ablation study. We use RF:Input+Pre+Trainer as the baseline since it is the best performing
Random Forest model. Of all the feature classes, model features are the least informative
by a long shot. The fact that RF:Input and RF:History have identical performance serves
to validate that code changes are uncorrelated with model pushes. The interweaving of
the RF:Input and RF:Shape curves suggest that these two groups of features are predictive
for different subset of graphlets. The ablation study shows that no single group of features
captures most of the accuracy gains, suggesting that there exist complex interactions between
the different groups of features driving the performance of the best models.

5.5 Conclusion

In this chapter we tackled one of the optimization opportunities discovered from the anal-
ysis in Chapter 4, namely the problem of wasted computation for pipeline runs that were
automatically triggered by new data ingestion but failed to deploy updated models to down-
stream services. The trade-off in this problem is between the amount of wasted computation
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saved by skipping pipeline runs that would not have resulted in updated models and the
risk of compromising model freshness by skipping runs that would have led to a model re-
fresh. We show that our proposed ML-based solution is able to eliminate up to 50% of
the wasted computation without sacrificing model freshness, with the potential to save even
more provided tolerance of low-level impact on model freshness.

The problem and the solution presented in this chapter highlight an interesting duality
of the impact of automation on ML systems: while indiscriminate automation in the model
retrain policy led to the problem of wasted computation, better automation driven by key
data insights is also the solution. This raises the question of what role automation should
play in the ML tooling landscape. To answer this question, we turn yet again to need finding
in Chapter 6.
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Chapter 6

Understanding the Role of
Automation in Machine Learning
Development

In recent years, automated machine learning, or Auto-ML1, a new field targeted at increas-
ing automation during ML, has witnessed a rapid rise in popularity, driving an explosion
in self-proclaimed Auto-ML tools. Auto-ML holds the promise to make ML more easily
accessible to users to employ for new domains and to reduce cumbersome manual effort
when applying ML to existing ones. Auto-ML was initially introduced to automate model
hyperparameter search. Over time, Auto-ML has evolved beyond that to include, as part of
its goal, automation for other tasks in the ML workflow such as feature engineering, data
cleaning, model interpretability, and model deployment. The ultimate promise of Auto-ML
tools is to make ML more accessible by providing off-the-shelf solutions for users with less
technical backgrounds.

In order for Auto-ML tools to effectively meet user needs, we must first understand what
those needs are and what roles automation currently plays in the ML workflow. Towards
this goal, we conducted an in-depth, qualitative study of sixteen Auto-ML users. We con-
ducted semi-structured interviews with current users of Auto-ML, ranging from hobbyists to
industry researchers across a diverse set of domains, to take a careful look at their use cases
and work practices, as well as their needs and wants. We asked about their uses of ML, their
experiences working with and without Auto-ML tools, and their perceptions of Auto-ML
tools. Our approach enabled us to not only gain a better understanding of user needs with
respect to Auto-ML, and the strengths and weaknesses of existing Auto-ML tools, but also
to gain insights into the respective roles of the human developer and automation in ML
development.

Our findings indicate that human developers are indispensable in ML development. Not
only do humans excel at bringing in valuable domain knowledge, human intuition can also be

1Stylized as Auto-ML to avoid confusion with Google AutoML.
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effective in filling in the blind spots in Auto-ML. Furthermore, human involvement is crucial
for the effective and socially-responsible use of ML in real-world applications. Therefore,
rather than attempting to automate human developers “out of the loop” as has been the
objective of many Auto-ML tool builders, we advocate for a symbiotic relationship between
the human developer and Auto-ML to integrate the human into the loop in the most produc-
tive manner. We, in fact, advocate that the moniker “Auto-ML” be discarded, because our
evidence suggests that complete automation is infeasible; instead, these tools can be better
thought of as offering mixed-initiative ML solutions.

Several prior studies have advocated for a human-guided approach to Auto-ML [110,
67, 197] and proposed design requirements. Rather than designing top-down, we build
our case for human-AI integration based on bottom-up findings of work practices, allowing
us to arrive at unique, specific insights that are difficult to develop without taking the
perspectives of the practitioner into account. We make concrete recommendations on what
functionalities tool developers should enhance while preserving existing benefits, and, more
importantly, what roles of humans they should preserve rather than attempt to replace.
Our recommendations are based on both the perception and usage of a range of users of
state-of-the-art Auto-ML tools. We hope that these insights and design recommendations
can guide future development of Auto-ML tools to expand the current focus on system and
model performance to emphasize human agency and control.

The rest of the chapter is structured as follows: we discuss the relationships between
our work and relevant HCI contributions and present state-of-the-art on Auto-ML tooling
in Section 6.1; we describe our study methodology in Section 6.2; we present findings on
the benefits and deficiencies of current Auto-ML tools as well as the respective roles of the
human developer and automation in the ML workflow in Section 6.3; we discuss the design
implications of our findings on Auto-ML tools in Section 6.4 and conclude in Section 6.5.

6.1 Related Work

Auto-ML systems are often aimed at developing an end-to-end ML workflow or model, unlike
other human-in-the-loop ML tools that are more focused on specific parts of the ML workflow,
such as collection of training examples, model debugging, and model interpretation. Our
work builds on multiple areas of prior work: existing Auto-ML systems, human-centered ML
work practices, and human-in-the-loop ML tools.

6.1.1 Auto-ML Systems

The current landscape of Auto-ML tools is fast-growing and diverse. Existing Auto-ML
offerings can be categorized into three groups: open-source software, hosted commercial so-
lutions offered by cloud providers, and enterprise solutions offered by companies dedicated
to developing Auto-ML platforms. Cloud-hosted Auto-ML solutions exist as part of a larger
ecosystem of tools in the cloud, whereas enterprise solutions are standalone and therefore
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must either provide end-to-end support or integrate with external tools, resulting in appre-
ciable differences in the user experience.

As introduced in Section 1.1 in Chapter 1, a typical ML workflow can be partitioned
into three stages: data preprocessing, modeling, and post processing, and Auto-ML solutions
provide varying levels of support for each of these stages. Below we offer a brief overview of
tools in these three categories and comment on their support for the three stages in the ML
workflow.

Open-Source Software (OSS). Auto-ML tools in this category include libraries such as
Auto-sklearn (based on Scikit-learn) [60], TPOT (based on Scikit-learn) [107], and AutoK-
eras (based on Keras) [83], all developed in academic labs, as well as TransmogrifAI (based
on Apache Spark) [187], AdaNet (based on Tensorflow) [39], Ludwig [133], and H2O [71]
from industry. Of these tools, AutoKeras, AdaNet, and Ludwig are designed specifically for
deep learning, tackling issues such as efficient neural architecture search, while the others are
designed for traditional ML. Of the three categories of Auto-ML tools, OSS tools are the best
at keeping up with cutting-edge ML research since many of the OSS tool developers are also
involved in ML research. Overall, users of these libraries are afforded great flexibility since
they can easily integrate custom code with the Auto-ML API, but they must provision their
own computation resources. For the specific stages in the ML workflow, the Scikit-learn-
based libraries are better suited for structured data and have better support for automated
data preprocessing than the other libraries, while the Tensorflow and Keras-based libraries
can support more complex models involving text and images. OSS tools generally lack on
post-processing support, which involves evaluation, deployment, and monitoring of models.

Cloud Provider Solutions. The major players in this category are Google Cloud AutoML,
Microsoft Azure Automated ML, and Amazon SageMaker Autopilot [68, 130, 8]. Solutions
in this category differ from the previous category in three significant ways: 1) Since they are
hosted, compute resources are provided and managed by the cloud provider, and users pay
proportional to the amount of compute consumed during the process of Auto-ML; 2) They
tend to be much more end-to-end and include model evaluation and deployment to help
users derive business value from the models trained; 3) Some system internals are opaque
to the user, who can only interact with the system at specific decision points. Overall,
while cloud-hosted solutions tend to require less programming expertise to use, they are also
less configurable and transparent. For example, Google Cloud AutoML, which boasts “more
than 10 years of proprietary Google Research technology to help your ML models achieve
faster performance and more accurate predictions”, neither allows users to specify the type
of models nor provides visibility into the model internals. Amazon SageMaker Autopilot, on
the other hand, places a strong emphasis on visibility and control by allowing users to easily
export the Auto-ML code and intermediate results into computational notebooks. All three
providers offer no-code UIs for non-programming users, in conjunction with Python APIs.
While Microsoft and Amazon enable additional customizability through their Python APIs,
Google’s APIs are solely designed for programmatic compatibility and offer no additional
control or transparency. When it comes to model evaluation, Microsoft and Amazon provide
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summaries of the models explored while Google offers only high-level information about the
final model.

Auto-ML Platforms. As self-proclaimed “platforms”, tools in this category tend to posi-
tion themselves as turnkey, end-to-end Auto-ML solutions. They manage compute resource
provisioning by integrating with either cloud providers or on-premise hardware infrastruc-
ture. Major players in this category include DataRobot [44] and H20 Driverless AI [71].
Compared to their cloud provider counterparts, solutions in this category tend to be more
feature-complete, providing more technical support and customizability in each stage of the
workflow. Since these solutions target business users, special attention is paid to the op-
erationalization of the resulting model, including an expansive set of model interpretability
and deployment options. Additionally, to address increasing concerns around data privacy
and security, these solutions allow on-premise deployment instead of forcing users to migrate
their data to the cloud.

Thus far, there has been little evaluation on how these three types of Auto-ML tools are
used in practice. In this paper, we sought to understand the adoption of Auto-ML tools,
their usage, and the current bottlenecks that users face with these tools. Our eventual goal is
to identify design requirements and considerations for more effective collaboration between
the human developer and ML/AI.

6.1.2 Human-Centered ML Work Practices

HCI research in Auto-ML has proposed a human-guided approach to ML [67, 110, 197], with
the aim of balancing the trade-off between user control and automation. Human-guided ML
builds on the premise that ML development should be a collaborative activity between human
users (i.e., data scientists or model developers) and the machine, wherein users specify their
domain knowledge or desirable model behavior at a high-level and the system performs some
form of automated search to generate an appropriate ML pipeline or model [67, 110]. This
work is related to a larger body of studies on ML work practices [87, 11, 213, 81, 79] of
specific groups of practitioners, including software engineers using ML [11], non-expert ML
users [213], as well as specific aspects of work practices, such as model interpretation [81]
and iterative behavior in ML development [79], including the study in Chapter 2.

Existing work has explored the use of visualization to help users gain insights into the
black-box process of Auto-ML and obtain higher control during Auto-ML [198, 199]. An-
other crucial step towards human-guided ML requires understanding the perspective of data
science practitioners’ and their attitudes towards Auto-ML systems [197]. In particular,
Drozdal et al. study the perceptions of transparency and trust in Auto-ML and identify
components within Auto-ML tools most likely to improve trust [53]. We expand upon this
work by studying the role of humans and Auto-ML in the end-to-end ML workflow, as well as
additional important user requirements, such as customizability, completeness, ease-of-use,
efficiency, effectiveness, and generalizability.
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These prior studies have largely focused on participants without Auto-ML experience.
As a result, most of these studies elicited user feedback regarding Auto-ML by demoing
new Auto-ML prototypes to study subjects. These prototypes have limited features, largely
supporting only the modeling stage of the ML process. For example, the study by Drozdal
et al. involves university students and uses hypothetical tasks to determine the relative
value of components of Auto-ML in communicating trust, rather than centering on the
real-world experiences of Auto-ML tool users. Our paper builds on this line of work by
studying users who have worked with present-day Auto-ML tools in real-world applications
to investigate how Auto-ML fits into their end-to-end ML workflow, as well as its limitations.
Our methodology and choice of participants afford novel findings beyond existing studies on
the matter of trust and transparency, such as the broader social context surrounding the use
of Auto-ML in the real world, e.g., getting others in the organization to adopt the results
from an Auto-ML model, or Auto-ML playing a role in reproducibility and institutional
knowledge should the original user leave the organization. Moreover, we identify various
ways hands-on human agency and control promotes trust—something left unaddressed by
studies involving hypothetical Auto-ML interfaces.

6.1.3 Human-in-the-loop ML Tools

The idea of incorporating human knowledge into ML workflow development has been well
studied in research on interactive tools for ML model interpretation. Interactive machine
learning (IML) is a paradigm wherein human users train an ML model by manually eval-
uating and correcting the model result through a tight interactive feedback loop [58, 61,
160, 10]. IML often focuses on collecting user input for labels for training data in order
to train and correct ML classification models. IML lowers the barrier to interacting with
ML-powered systems by empowering end-users without ML expertise to interactively provide
exemplar feedback to the system [10, 213] (e.g., recommendation systems can learn from
the relevance feedback of approving/rejecting an item), often eliminating the need for the
highly-technical feature engineering step [58]. In addition to IML, human-in-the-loop sys-
tems have also been developed for model debugging and verification [149, 9, 144], iterative
model development [209], and model interpretation [6, 203, 183] often through an interactive
environment and/or visualizations. We study the impact of such capabilities as reflected in
present-day Auto-ML tools.

Prior work questions the validity of humans in the loop [188]. However, the study exper-
iments only examined the effects of ML recommendations on human decision making after a
model has been trained. Our study shows that humans are in the loop throughout the ML
workflow even as Auto-ML attempts to automate away ML development. Along the way,
humans can iteratively influence the directions of ML outputs via several touch points. Fur-
ther research is necessary to understand the effects of mixing ML and humans in real-world
settings.
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6.2 Study Design

Our paper seeks to understand how users incorporate Auto-ML tools in their existing work-
flows and their perceptions of the tools.

6.2.1 Recruitment

Since, to the best of our knowledge, no prior work has focused on participants with real-world
Auto-ML experience, we focused on users who have applied Auto-ML to real-world use cases
across a broad set of application domains. We recruited participants by posting recruitment
messages to relevant mailing lists and Slack channels (N=5), through personal connections
(N=9), and by reaching out to users on social media who mentioned or were mentioned in
posts about Auto-ML(N=2).

We invited participants to fill out a screening survey that asked whether they had ex-
perience using Auto-ML tools. Select participants either had experience using at least one
of the tools that were listed in the survey (the list includes tools discussed in Section 6.1.1)
or had used other tools that our team verified to be Auto-ML tools. The tool-based eli-
gibility criteria was motivated by our pilot recruitment strategy where a large number of
survey respondents expressed that they had general ML experience but were unfamiliar with
Auto-ML, mistaking manual ML for “automated ML”.

6.2.2 Participants

We interviewed a total of 16 participants who had prior experience applying Auto-ML in
professional capacities. Information about each participant is shown in Table 6.1. Of the 16
participants, 14 were male (87.5%) and 2 were female (12.5%). Recruiting participants past
March 2020 was difficult due to COVID-19, but we gathered a sample of users that spanned
a diverse set of organizations and use cases.

Participants had, on average, 10 years of experience in programming and an average
of 5 years of experience with ML. Participants spanned three continents and a diverse set
of job roles and industries, from a product manager at a large retail corporation, to a
director of commercial data science at a travel technology company, to academic researchers
at universities. The tools that the participants used also varied from proprietary tools, to
open-source software, to commercial solutions. To preserve participant anonymity, we report
the category of the Auto-ML tool used but omit the identities of the specific tools used, as
some tool-application combinations can reveal the identity of the participant.

6.2.3 Interview Procedure

We conducted semi-structured interviews with participants about their experience in using
Auto-ML for real-world applications. Interviews were conducted from October 2019 to March
2020, either in person (N =2) or remotely (N=14). Each interview lasted for approximately
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one hour. The interview guide can be found in the supplemental materials in [212]. Every
participant received a $15 gift card for compensation. The interviews were largely semi-
structured and involved three main components:

• Participants were asked to describe their job role, organization, and ML use cases.

• We asked the participants about their experience in developing ML workflows (without
Auto-ML) and the challenges they faced.

• We asked the participants about their experience using Auto-ML tools, including the
features of the specific tool used and how they integrated Auto-ML in their ML work-
flows, and their perceptions of Auto-ML tools in general, including customizability,
effectiveness, interpretability, and transparency.

6.2.4 Study Analysis

We audio-recorded and transcribed all but one interview, where the participant did not
consent to being recorded. After completing all the interviews, we engaged in an iterative
and collaborative process of inductive coding to extract common themes that repeatedly
arose in our data. The three interviewers independently coded the data using Dedoose [46],
an online tool for open coding, to map data onto these categories. The interviewers met
weekly and discussed themes and concepts to clarify ambiguity in the codes and established
consensus in a code book. Afterwards, we conducted a categorization exercise, wherein some
of our initial categories included advantages and disadvantages of Auto-ML, perceptions of
Auto-ML, workflow strategies with and without Auto-ML, Auto-ML desiderata, general ML
challenges, and Auto-ML adoption decisions. We used codes to facilitate the process of
theory development and refrained from calculating inter-rater reliability to avoid potential
marginalization of perspectives [122].

6.2.5 Limitations

Our interviews were structured around the participants’ experience with a single ML task.
While this practice afforded concreteness to the discussion, we may have missed out on
diversity of use cases. The interviews focused on work practices around Auto-ML, which
allow us to gain understanding of the strategies participants employed to integrate Auto-ML
into their data science workflow, but limited our time in studying any particular conceptual
perception (i.e. transparency, interpretability) of Auto-ML in-depth.

We acknowledge that while our participant population comes from a diverse background
(with respect to geographical location, organization size and type, expertise, use cases, and
tool type), it may not be a representative sample of the overall Auto-ML user base. For
example, the proportion of women in our sample (14 male, 2 female) is slightly lower than
the gender ratio (15% women) in the data science profession referenced in the 2020 BCG
report [55].
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6.3 Results

In this section, we present our findings from the interviews. This section is organized as
follows: we describe how we group the users and use cases into high-level categories in
Section 6.3.1; we enumerate common tasks in ML workflows reported by the participants
in Section 6.3.2; we present the benefits of Auto-ML perceived by the participants in Sec-
tion 6.3.3, the deficiencies of existing Auto-ML tools that we believe can be addressed by
system and UI improvements in Section 6.3.4, and the roles of the human developer that
the Auto-ML tools must respect and preserve in Section 6.3.5. Note that while the func-
tionalities presented in Section 6.3.4 and Section 6.3.5 are both absent or lacking in existing
Auto-ML tools, the deficiencies as described in Section 6.3.4 have near-term solutions using
existing techniques (we provide many such suggestions in Section 6.4), whereas the roles
in Section 6.3.5 may one day become within reach of Auto-ML tools through fundamental
breakthroughs in knowledge representation and programming paradigms. We believe that
assuming the roles in Section 6.3.5 should not be the objective of Auto-ML tool developers
until then.

6.3.1 User and Use Case Segmentation

A given participant’s ML skill-set and use cases can potentially influence how they use and
perceive Auto-ML tools. Therefore, we wanted to study the relationship between users’
expertise and their behavior around and perception of Auto-ML. To facilitate the discussion
on how contextual information serves to explain user behavior and sentiment, we categorize
the participants and their use cases as follows.

6.3.1.1 User Skill Levels

We group participants based on their past experience with ML into the following three
categories.

ML Innovators. Participants in this group have formally conducted ML research, either on
fundamental algorithms (P4, P11, P14, P15) or the application of ML for scientific discoveries
(P5, P8). They command deep understanding of the mathematical underpinnings of the ML
models they use.

ML Engineers. Participants in this group are skilled and experienced ML practitioners
with formal training in applied ML (P1, P2, P3, P6, P7, P10, P12, P13). They are intimately
familiar with popular ML models as well as ML libraries and tools.

Novices. Participants in this group (P9, P16) have no formal training in ML. They are
domain experts in non-ML fields.
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Auto-ML Platform 2 2 4 ★★★ ★★★ ★★★ 3.5 4.5 3.5 3.75 4 5 4.25 4.5
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Figure 6.1: Tools: Characterization of Auto-ML tools used by participants by category. The
tool categories are the same as the ones presented in Section 6.1.1, with the addition of
“proprietary” for anonymous in-house Auto-ML solutions. The first three columns contain
the cross tabulation of tool categories and use case categories. The next three columns in blue
contain the cross tabulation of the tool categories and user expertise levels. The following
three orange columns indicate the level of support for each of the three ML workflow stages
based on features offered (not based on interview results). The next eight columns contain
the average Likert scores provided by our participants. Cells in green are above average.

6.3.1.2 Use Case Categories

Production Applications. Use cases in this category pertain to developing ML models
that drive applications or decision making with significant impact. Examples include training
models to assist in financial service decisions, building recommendation systems for content
curation, and fraud detection. P1, P3, P4, P7, P12, and P16 have use cases in this category.

Prototype. Use cases in this category involve prototyping ML models for industry ap-
plications, which are lower stake than the production application scenario since the model
performance has no direct impact on business metrics or end-user experience. P2, P6, P9,
P10, P11, P13, P14, and P15 have use cases in this category.

Research. Use cases in this category involve building ML modelings for academic research,
where model results are shared and examined in detail. Figure 6.1 shows the cross tabulation
of the Auto-ML tools category with use case categories and user expertise, the level of support
for each of the three ML workflow stages based on features offered by each category of tools,
and the average Likert scores that our participants gave to their Auto-ML tools. The support
ratings for “proprietary” tools are omitted as we do not have full visibility into the these
tools. While Likert scores are commonly treated as ordinal data, they are treated as interval
data in our setting due to the natural correspondence between the scores and quintiles. Thus,
the average Likert scores are sound and meaningful.

6.3.2 Data Preprocessing, Modeling, and Post Processing Tasks

In this section, we focus on how practitioners integrate Auto-ML tools into the end-to-end
ML workflow. As mentioned in Section 1.1, an ML workflow is commonly partitioned into
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three stages: data preprocessing, modeling, and post-processing. In this section, we report
the common patterns of how Auto-ML fits into the each stage. Figure 6.2 shows a complete
set of tasks the participants reported for each stage of the ML workflow. We characterize
these three stages as follows:

1. In the data preprocessing stage, users prepare the data for ML, performing tasks in-
cluding data acquisition, cleaning, transformation, labeling, and feature engineering.

2. In the modeling stage, models are trained on the data prepared in the preprocessing
stage.

3. After models are trained, the post-processing stage span a broad range of activities,
including model evaluation, interpretation, deployment, and user studies.

6.3.2.1 Data Preprocessing

Overall, data preprocessing is a time consuming and primarily manual process for most par-
ticipants, who need to write code for exploratory data analysis and data manipulation. On
average, participants reported spending roughly 50% of their time on data preprocessing,
and roughly 80% of all data preprocessing tasks were performed manually. While some
participants expressed the desire for Auto-ML to provide more automated support for data
preprocessing, others believe that data preprocessing relies on human intuition and knowl-
edge that is impossible or at least extremely challenging to codify and therefore cannot be
automated. In either case, participants agree that data preprocessing is a crucial component
in the workflow due to the adage “garbage in, garbage out.” We defer discussions on desired
but missing automated data preprocessing features and the role(s) of the human to Sec-
tion 6.3.4 and Section 6.3.5, respectively. Here, we report on the common tasks in the data
preprocessing stage and whether each task is currently carried out by Auto-ML or human
developers.

Data collection. The first task in data preprocessing is data collection [166] for most
participants except P3, P5, P6, and P15, who were provided and limited to specific data
sources. Others had the freedom to incorporate organizational data assets obtained from
relevant stakeholders (P4, P7, P8, P9, P10, P11, P12, P13, P14, P16) as well as open datasets
(P1, P2) from the web, which are much less commonly used. A specific data collection task
worth noting is data labeling, where significant human attention is required to annotate
examples with the desired target label. P9 and P13 reported performing labeling themselves
because it provided them with intuition about the data and allowed for fast turnaround.
P11 and P12, both of whom worked with unstructured data, relied on crowdsourcing for
data labeling. Data labeling is inherently manual, although there are recent developments
in systems to lower the manual effort for data labeling [16, 29].

Data Wrangling & EDA. Following data collection is data wrangling, including data
cleaning and missing data imputation, formatting, and transformation. Exploratory data
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P6 P10 P1 P3 P7 P12 P2 P13 P9 P16 P4 P5 P8 P11 P14 P15
Tool Type PF PF PF PF CP CP CP CP CP P P OSS OSS OSS OSS OSS
Expertise E E E E E E E E N N I I I I I I
Use Case T T PA PA PA PA T T T PA PA R R T T T

Data 
Preprocessing 

Tasks

Data Collection M M M M M M M M M M M M
    DC: Data Labeling M M M M

Data Wrangling & EDA M M M M M M M M M M,A M M,A M,A M M
Feature engineering M M,A A M,A M M A A M

Data 
Preprocessing 

Tools

Python (pandas, numpy) M M M M M M M M M M M M
Python (ML libraries) M M M

SQL M M M M M M M
Other PL (R, C++/#) M M M

Visualization tools M M M
Other M M M M M M

Modeling 
Tasks

Hyperparameter Tuning A A A A A A A A A A A
    HT: Neural Architecture Search A A A A

Model Selection A A A A A A A A
Feature Selection A A M M A A

Inform Manual Development A A A A A A A
Business Req. to ML Objectives M M M M

Feature Engineering A A

Modeling 
Tools

Custom Python/R M M M M M M M M
Scikit-Learn M M M M M M M

Pytorch/Keras/Tensorflow M M M M M M

Post 
Processing 

Tasks

Generate Reports M A M,A A M A M M M A M M M M M M
Present to Stakeholders M M M M M M M

Model Export/Deployment M A A A A A M A M M M
Fine tune/Validate predictions M A A M M M M M M

Model interpretation M M A M M
Monitoring M A A M

Model Management A A M
Other M M M

Post 
processing 

tools

Visualization Tools M M M M M M M M
Python (pandas, NumPy) M M M M M M M

Deployment (Flask, Algorithmia) M M
Other (proprietary, W&B) A A M,A

Figure 6.2: Use cases: tasks performed and tools used by participants in each stage of the
ML workflow. The three rows at the top contain metadata about each participants. “Tool
type” corresponds to the tool types in Figure 6.1: PF = Auto-ML platform, CP = Cloud
Provider, and P = Proprietary. “Use case” corresponds to the use case categories introduced
in Section 6.3.1: T = Prototype, PA = Production Application, R = Research. “Expertise”
corresponds to the user skill levels introduced in Section 6.3.1: E = ML Engineers, N =
novices, I = ML Innovators. In each task cell, “M” indicates that the participant performed
the task manually while “A” indicate automation. A green tool cell indicates that the
participant has used the tool for the given ML workflow stage. Columns as ordered to
cluster participants who use the same type of tools and have the same expertise levels.
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analysis (EDA) is integral to all data wrangling tasks. All participants except P11, who
worked with image data, reported that they spent time on data wrangling. In addition to
Auto-ML tools used by P5, P8, P16 to help with data wrangling, the Python pandas [123]
and numpy [189] libraries are the most popular choices for data wrangling, followed by
SQL. Tools in the “Other” category in Figure 6.2 include domain specific tools, Spark, and
proprietary tools.

Data cleaning, especially missing data identification and imputation, is a common task.
While most Auto-ML tools handle missing data imputation, participants stated manual
intervention is necessary to decide on the appropriate imputation technique based on context
(P1, P4, P5, P7). Participants reported that they spent significant manual effort to format
the data for ingestion by the Auto-ML tool (P2, P3, P8, P10, and P12.) Specialized data
wrangling tasks included data anonymization (P3), time series test set generation (P10), and
resampling for class imabalance (P16).

Feature engineering. Feature engineering and feature selection are among the most au-
tomated data preprocessing tasks. Most Auto-ML tools are capable of both simple feature
engineering such as one-hot encoding [202] and building complex features involving multiple
input signals. However, over half the participants who performed feature engineering man-
ually because they felt existing Auto-ML solutions are incomplete or inefficient (P6, P10,
P14) or they believed that human intuition and domain knowledge could not be replaced
by automation (P3, P4, P12). Interestingly, P5 and P14 both reported repurposing, or
“misusing” (P14) modeling capabilities for feature engineering.

6.3.2.2 Modeling

As one would expect, the most common tasks that participants used Auto-ML for dur-
ing modeling are hyperparameter tuning and model selection. Feature selection is generally
carried out by the Auto-ML tool as a byproduct of model training. Participants who per-
form feature selection all use Auto-ML for feature selection except P4, who manually selects
features before model training because they work with petabyte-scale data, and P13, who
deploy models to edge devices with limited memory.

An interesting use case for Auto-ML modeling is to inform manual development (P2,
P8, P9, P10, P11, P13, P15.) For example, P13 reported that they use the Auto-ML
tool as a quick check for data quality and to validate manual data preprocessing. They
would perform data wrangling manually if the Auto-ML tool identified anomalies in the
data. Auto-ML also empowers exploration of unfamiliar models and hyperparameters (P2,
P8, P10, P13, P15, and P16.) Auto-ML results are often used as a benchmark for validating
manual model performance (P4, P5, P9.) Many participants reported that they performed
the same modeling tasks manually alongside Auto-ML to understand and verify the Auto-
ML results and to correct any errors made by Auto-ML. The modeling tools in Figure 6.2
refer to tools for manual modeling.



CHAPTER 6. UNDERSTANDING THE ROLE OF AUTOMATION IN MACHINE
LEARNING DEVELOPMENT 116

6.3.2.3 Post-processing

Post-processing spans a large variety of tasks depending on the participants’ use cases.
Visualization is an integral part of many of the tasks below.

Generating reports and sharing results. The most common post-processing task is to
generate a report of the model results and relevant model search history. Most platform tools
automatically generate such reports, in the form of summary statistics, leaderboards, and
other visualizations. P10 enthusiastically shared that their platform tool was able to auto-
generate documentation for legal compliance thereby greatly reducing the manual overhead
for governance. While all of the cloud-hosted Auto-ML tools also auto-generate reports and
visualizations, it is interesting that many participants adopted manual approaches to modify
the default reports. In addition to generating reports for their own consumption, a subset
of the participants (P1, P3, P5, P7, P11, P14, P15) who had to share and explain their
results to other stakeholders needed to present their findings in text documents or slides
with human readable explanations.

Deploying Models. Model export and deployment is the second most common post-
processing task. Participants who did not perform model deployment were either using the
models to inform human decision making (P1), handed off the model to a separate Dev
Ops team for deployment (P7, P11) or used model results solely for research findings (P5,
P15). Automated deployment was only afforded to users of hosted Auto-ML tools. The
reason for manual deployment for participants who used hosted tools include 1) the model
for a financial application needed to be vetting for security (P7), 2) the Auto-ML tool
did not support automated deployment (P6), 3) the application relied on complex logic to
incorporate the model output (P9), and 4) the model directly impacted end-user experienced
and required staggered roll-out with human supervision (P4). Tools for deployment included
Flask, Algorithmia, custom Python, and proprietary infrastructure.

Validating and Interpreting Models and Predictions. The two main techniques
for building trust in and understanding Auto-ML outputs are point queries on the pre-
dictions, feature importance, and holistic visualization of high-level model characteristics.
Most hosted solutions focus on supporting point queries and feature importance via visu-
alizations. Manual efforts in this category were mainly for 1) cross validating with manual
modeling results (P3, P10, P11), 2) application domain specific checks (P6, P12), 3) field
testing specific predictions (P13, P16), 4) custom feature importance computation (P5).

Miscellaneous. Less common, nevertheless noteworthy tasks included model versioning
(P2, P3, P4), on-device user studies (P13, P15), debugging manual implementation (P15),
and most interestingly, converting an ML model into a set of if-else statements for more
predictable and interpretable inference (P10).

6.3.3 Benefits of Auto-ML

In this section, we present findings on the major benefits of Auto-ML from our interview
study. As shown in Figure 6.1, ease of use, effectiveness, and efficiency are the highest-
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rated qualities of Auto-ML tools by the interview participants. We present specific benefits
reported by the participants that corroborate these ratings below.

Enables and empowers novices. To ML novices, the greatest benefit of Auto-ML is that
it enables business users to nimbly use ML to inform business decisions without “a massive
engagement with multiple consultants in multiple different teams”(P16). P16 believes that
Auto-ML leads to “the democratization of advanced analytics throughout business units for
people that don’t have experience doing that kind of work”, and this sentiment is echoed by
P10:

“It allows for . . . citizen data science to become a reality with the proper gover-
nance controls and proper management in place. At the bank I worked at pre-
viously . . . Auto-ML was becoming adopted . . . for robotic process automation.
. . . Anyone who’s analytically competent . . . starts rolling with it immediately.”

However, Auto-ML can be a double-edged sword for novice users—users who treat it as
largely a black box find Auto-ML to be a great enabler, while curious users who attempt
to look inside the black box can become distracted and suffer from choice paralysis. P9
reported that while they were able to achieve a few percentage points in model performance
improvement, Auto-ML increased their development time, due to the fact that the Auto-ML
tool exposed them to a large number of new model types that led to many lengthy manual
explorations out of curiosity. In addition to avoiding distractions, treating Auto-ML as a
black box also leads to the added benefit of standardization.

Standardizes the ML workflow for better reproducibility, code maintainability,
knowledge sharing. Another benefit of the black-box nature of Auto-ML tools is that by
having a predetermined search space that doesn’t change, there is more standardization of the
ML development process, leading to better comparisons across models, code maintainability,
and effortless knowledge transfer. The need to search through a large number of model types,
which are often implemented in different libraries, has prompted Auto-ML tools to create a
standardized abstraction of the ML workflow decoupled from specific APIs and model types.
As a result,

• different models are easily comparable using standardized, normalized metrics (P3),

• the amount of code needed to implement different models is greatly reduced (P3),

• models are more reproducible (P15, P3),

• latest ML research can be easily incorporated into existing workflows (P3, P13),

• model training requires less human intervention as there are fewer errors (P2)

For hosted Auto-ML solutions that generate extensive reports on the end-to-end process,
Auto-ML serves as a self-documenting, reproducible knowledge sharing platform (P10, P3).
This is especially beneficial in industry, as P3 points out:
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“Data scientists are expensive and very in demand, and people leave the job a
lot and, and the algorithms change all the time. If I quit my job today . . . I could
be like, here’s all the history.”

Prevents suboptimal results due to idiosyncrasies of ML Innovators. A unique
benefit of Auto-ML applicable only to ML Innovators is its ability to prevent suboptimal
model performance resulting from idiosyncratic practices by ML Innovators with extensive
ML experience. P5 relayed instances where the Auto-ML tool found models that they
never would have tried manually but outperformed the conventional choices they made.
They therefore dubbed Auto-ML the “no assumptions approach” to ML development. P8
preferred the fact that the only factor driving the decisions made by the Auto-ML tool is
“the statistical properties of the data” and not their own familiarity of specific model types,
thus removing “bias” from the process.

Builds models more effectively and efficiently. The ability to build better models faster
is a major benefit of Auto-ML tools reported by many participants, especially ML Engineers.
Most participants reported that Auto-ML led to significant improvements in efficiency, the
time for developing models, and a moderate increase in effectiveness, the performance of the
final model obtained. On a five-point Likert scale, participants on average rated improve-
ment in efficiency (µ = 4.1) higher than improvement in effectiveness (µ = 3.88). Some
participants reported an order of magnitude reduction in development time (P10, P16). Im-
provements in effectiveness experienced by the participants were often incremental; thus,
participants did not deem more accurate models in isolation as a compelling reason for
Auto-ML adoption.

In addition to reduction in model development time, another dimension of efficiency is
the ability to experiment with significantly more models in the same time it took for manual
development. Even if the overall model performance does not change, exploring more models
in itself provides downstream benefits. Many participants felt that they were much more
productive because they were able to explore more models in the same amount of time. For
P10, extensive experimentation also led to better insights into the features and models:

“The team that built out the manual process were only able to review two or
three different models. I was able to look at 50. I was able to report on more
insights, more understanding of the variable inputs than they were in the same
amount of time, more understanding around why the model performed the way
that it did.” (P10)

Enables rapid prototyping. Traditionally, incorporating ML into an application from
scratch is a lengthy process involving many stakeholders. The substantial overhead of adop-
tion, on top of the uncertainty about whether ML will improve the application behavior,
deters many from ML adoption. Auto-ML has significantly lowered the barrier to entry by
enabling users to build quick prototypes to gauge the feasibility and potential impact of
ML, without the cumbersome process of setting up infrastructure and codebase (P9, P11)
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and full integration (P12, P13), especially in industry settings. The caveat is that for many
industry users, Auto-ML is used for rapid prototyping only but not full development, due to
a lack of confidence in its performance (P4, P13)

“[I use Auto-ML] just to prototype and see how it works. I don’t use it within
the system within my industry job, but I use it as a prototype system there just
to see how easy this task is.” (P4)

“I would use Auto-ML first to try things out, to understand. It would be a good
starting point for a new application. I am convinced that it would generalize,
but if I want a particular performance number, then I am less confident about
how it would perform.” (P13)

Fosters Learning.
Users who were able to inspect the search history of the Auto-ML tools reported that

they learned about new modeling techniques (P8), implementation of specific ML algorithms
(P9), model architecture (P11, P14), model performance on specific types of tasks (P10), and
model resource consumption (P15). These learning opportunities emerged serendipitously, as
the users were validating the predictions and interpreting the models. However, for P2 who
specifically sought to learn from their Auto-ML tool T (tool name anonymized to preserve
participant privacy), the lack of transparency greatly hindered learning:

“Getting the model out of T proved to be extremely challenging. It was like
94% accuracy 94% precision. And when we tried that we didn’t see anywhere
close to that. We tried to actually open up the model and see how it actually
structured it, which was extremely challenging. It took a couple of hours, and
then we learned that their structure was something that [they have written a
paper on], so it was extremely hard to use . . . It basically looks more like a black
box.”

Prior to their experience with T , P2 regarded T highly on account of the cutting edge
ML algorithms that T claims to incorporate. However, due to their frustrations with the
blackbox nature of the tool and the lack of offline reproducibility, P2 eventually abandoned
Auto-ML and reverted back to manual ML development.

6.3.4 Deficiencies of Auto-ML

In this section, we present findings on the deficiencies of existing Auto-ML tools that can
potentially be addressed via systems innovations. We discuss the design implications of
our findings in Section 6.4. There are other limitations of Auto-ML tools that stem from
the complex social and psychological implications of human-machine collaboration in ML
workflows, and we discuss these limitations in Section 6.3.5.
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Lacks comprehensive end-to-end support. Figure 6.1 shows that completeness, the
extent to which Auto-ML covers the end-to-end ML workflow requirements, is the second
lowest scoring rating. As evident in Figure 6.2, Auto-ML is currently used primarily for
automating model training, requiring users to do the heavy lifting for both data preprocessing
and, to a lesser extent, post-processing using other tools. This reality directly contradicts
some claims made by Auto-ML tool developers. In the Auto-ML platform category:

“[DataRobot] supports all of the steps needed to prepare, build, deploy, monitor,
and maintain powerful AI applications at enterprise scale. [It] even automates
model deployment, monitoring, and management.”

“[H2O Driverless AI delivers] automatic feature engineering, model validation,
model tuning, model selection and deployment, machine learning interpretability,
bring your own recipe, time-series and automatic pipeline generation for model
scoring.”

Cloud and OSS solution developers are less aggressive in claiming end-to-end support,
since OSS could rely on programmatic interoperability with other libraries, and cloud providers
in theory could integrate with their other offerings for other stages of the ML workflow.
While intended for flexibility, the interoperable design led to a fragmented data ecosystem,
causing users to “spend most of the time gluing everything together.” (P14) In practice, all
participants who used cloud-hosted Auto-ML reported using it in isolation, necessitating
significant manual effort for data ingress and egress. P12, user of a cloud-based Auto-ML
tool C lamented:

“The biggest challenge is . . . manipulating the data in a way that can be used
with [C]. That is not something that we would have done if not for C. . . . For
each project you’ll have to spend considerable amount of time structuring the
data in a way that can be fed into C.” (P12)

This drawback places cloud solutions below OSS in participant-rated completeness, despite
the fact that cloud solutions provide more built-in features for model deployment and inter-
pretability.

Limited data preprocessing. In terms of functionalities, a common complaint across all
tools categories is inadequate support for data wrangling. As P1 pointed out, data pre-
processing support in Auto-ML tools is primarily for feature engineering, which is deemed
satisfactory by many Auto-ML users, and does not cover data cleaning and wrangling needs.
In fact, P1, P3, and P15 stated that their Auto-ML tools did not support data preprocessing
even though they acknowledged the feature engineering functionalities of their tools, since
most of their time is spent on data wrangling and not feature engineering. P6’s choice of
Auto-ML tool was determined entirely by the tool’s ability to automate domain specific data
wrangling.

Among the host of data wrangling tasks enumerated in Section 6.3.2.1, participants
expressed the need for improved system support for the following tasks:
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• automated data discovery (P1)

• data cleaning for domain specific data (P6) and with more user control (P7) to avoid
“garbage in, garbage out”

• data transformation for domain specific data (P9, P10, P13) and for mitigating com-
mon data problems such as class imbalance (P16)

• large-scale data processing using distributed architecture (P14)

• dataset augmentation using state-of-the-art research (P11).

Limited Support for complex models and data types. Classification and regression are cur-
rently the only types of tasks supported by Auto-ML tools. While some tools are beginning
to support unstructured data such as text and images by harnessing recent development in
deep learning, tabular data remains the focus for most Auto-ML tools. The existing user-
base for Auto-ML is self selected to fit into the capabilities of current offerings. Even so,
many participants expressed the desire for more broad-ranging support, such as unsuper-
vised learning (P3, P6, P10, P15, P16) and domain-specific data models (P6: healthcare,
P10: time series).

Causes system failures due to compute intensive workloads. A common complaint
about Auto-ML by participants who used OSS solutions is system performance, a major
contributing factor to OSS being rated lower than the other categories of tools on ease
of use in Figure 6.1. P14 reported that “running out of main memory was the biggest
technical challenge.” P8, whose models had 18 million columns, also reported that running
out of memory, which crashed model training, was a frequent frustration. P5 had to run
experiments on limited computation resources provided to her research lab, and she had to
modify the model search space to reduce the total run time:

“[It was] time consuming for [Auto-ML] for large dataset, and some pipelines are
just too heavy and crash the process. For large feature set and sample set, some
operators to further expand the data set were [slow and had to be] removed from
the search space.” (P5)

P11, P14, and P15 also reported that they needed to define the model search space carefully
to cope with the compute-intensive nature of Auto-ML workloads, and P15 would even revert
back to manual development for large models. The need to switch between development on
laptops and on servers posed a major “annoyance” for P11. P5, P8, P11, P14, and P15
all reported spending only a fraction of their time on model development, thus their heavy
Auto-ML compute needs are intermittent.

Lacks customizability. Customizability is the third lowest rated quality of Auto-ML tools
by the participants, as shown in Figure 6.1. Interestingly, both too little customizability and
too much customizability contributed to the low rating for customizability.
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Wanting more customizability is a sentiment shared by many ML Engineers and ML
Innovators, especially users of cloud-hosted solutions. Participants wanted more custom
control for computation resource allocation (P2, P4), data cleaning procedures (P6, P7),
model search space (P4, P13), and model interpretability techniques (P5).

On the other hand, too many customization options could lead to cognitive overload and
hinder progress. P15 reported feeling overwhelmed by the number of hyperparameters that
could be customized and needed to consult the documentation. P9, a novice, shared that
they believed “there’s a lot of tools higher than a five [for customizability] but in a bad way.”
P3 described the phenomenon of gratuitous customizability:

“You don’t necessarily know what some of the hyperparameters mean some of
the time in extensive detail, but you do have the ability to control them all.”

Most notably, P16 realized during the course of the interview that the additional cus-
tomizability they wanted was in fact unnecessary for their use case:

“I’ve kind of been harping on how it’s not as customizable . . . But the tools that
I’ve looked at lets you select the types of models to evaluate and change your
features. They give you capability of managing the the information and shaping
the underlying model . . . It’s handled quite well.”

We delve deeper into the issue of customizability and control in Section 6.3.5.

Lacks Transparency and Interpretability. The lowest rated quality of Auto-ML tools
is transparency for the cloud solutions due to their black-box nature and relative lack of
opportunities for user agency in comparison to other tool categories. For increased trans-
parency and usability, a couple of participants expressed the desire for a simple progress bar
that gives them insights into how long Auto-ML would take (P2, P13.) However, different
user populations desire different levels of transparency to ensure trust:

“Auto-ML is also an ML model. What that ML model is, how the ML model
was trained, how the ML model learns from newer data—that piece is a black
box. And so that makes it less trustworthy for people like me who are also ML
engineers who knows the success probability of machine learning models. For
someone who’s not in ML, it’s like magic. You just click a button and it works.
But for someone who knows ML . . . I know one of the things that can go wrong
[is] a ML model that is not trained well. One of the problems . . . with Auto-ML
is that they don’t give you a lot of information about what is actually going on
behind the scenes, and that makes it really hard for me to trust.” (P12)

Although widely reported by prior work on human-centered Auto-ML [53, 198] that
transparency mechanisms increase user trust in Auto-ML systems, our results indicate that
transparency mechanisms alone, such as visualization, do not suffice for the level of trust
required in high-stake industrial settings, wherein participants need to reason and justify
for how and why the model design and selection decisions are made. In order to gain the
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level of interpretability and trust required for mission-critical projects, participants reported
switching to complete manual development for increased user agency and control (P1, P4,
P9, P11, P12, P15), as further discussed in Section 6.3.5. Conversely, lack of agency and
tinkering can result in a lack of interpretability and the type of non-transparency caused by
illiteracy [32]. Humans develop understanding by doing, as illustrated by P3:

“You don’t have a fundamental understanding of what’s happening under the
hood. And the other challenges with that . . . are interpretability . . . The onus is
on me to actually build a competency in them . . . It makes it basically impossible
to go to a business person . . . [to explain] how do you decide on this transaction.
. . . I actually have to go back . . . and look at the 300 algorithms documentation,
not the best one that I just deployed without really reading up all the details.
There is a lot that you let go.”

6.3.5 Roles of the Human in Auto-ML

Contrary to the moniker “automated ML”, practitioners do not use Auto-ML tools as push-
button, one-shot solutions. Instead, they collaborate with Auto-ML during the model de-
velopment process—instructing, advising, and safeguarding Auto-ML. Humans are valuable
contributors, mentors, and supervisors to Auto-ML, improving its efficiency, effectiveness,
and safety. Their place “in the loop” cannot be replaced with complete automation. The
consequences of removing humans out of the process are ineffectiveness, unpredictability,
and harm to end users caused by spurious model behavior. Below we discuss the crucial
roles humans play alongside Auto-ML.

6.3.5.1 Humans boost Auto-ML’s performance and efficiency

Auto-ML, despite all its benefits, cannot be efficient and effective without humans in the
loop, because humans’ contextual awareness, domain expertise, and ML experience cannot
be automated away. Humans are especially indispensable for non-standard uses cases and
domains. Without human involvement, Auto-ML cannot meet the stringent requirements of
real-world applications.

Human guidance constricts the search space of Auto-ML. The flip side of Auto-
ML’s comprehensiveness (as a benefit in Section 6.3.3) is the enormous search space that
requires an unwieldy amount of compute and time resources, when attempting to maximize
model performance (accuracy, or other performance metrics). The results in Chapter 3 and
Chapter 4 show that a single model training can take hours. Due to Auto-ML’s exhaustive
search process, participants often only use Auto-ML for light and basic models that can be
trained very quickly with a data set that is not too big (P9, P11, P14, P15). Auto-ML blindly
searches through the entire space possible, resulting in intractable compute requirements,
where “you will be there for years and years searching for models. It’s not possible.” (P11).
Paradoxically, present day Auto-ML tools have no memory of and do not learn from the
previous searches to narrow down the space in the next iteration, as P11 described:
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“But [Auto-ML] doesn’t learn how to learn, and it doesn’t learn the environment
in which it learns . . . I could put in more samples if I want to iterate again . . . I
have to do a whole new Auto-ML search, which is much more time consuming.”

Humans, in contrast, learn from their previous experiences, and can guide Auto-ML
using heuristics, thus narrowing the search space for Auto-ML, so that it can return outputs
that meet the quality standards within time constraints. The most prevalent strategy that
participants applied is to define the inclusion and/or exclusion criteria for models and/or
hyperparameters (P7, P8, P12.) For example, P8 reported having to curate a list of models
to feed into Auto-ML to constrain the search space. P14 also discussed the importance of
manually limiting the hyperparameter search space:

“I think one problem with Auto-ML is that it’s very compute intensive. So you
actually need to define your space in a good way. For example, if you want to
find the range of hyperparameters, you need to have some kind of notion of what
you want to use as initial parameters. So basically you have a trade-off between
time and model accuracy.” (P14)

P14’s use case requires them to hold the time constraint as a constant, wherein model
performance and search space size are inversely related, because for large search spaces
untamed by human guidance, Auto-ML would ‘cut corners’ by skipping some search areas,
weakening its performance. P9 described their mental model of Auto-ML’s search process
when they configured a time limit on Auto-ML runs:

“It (Auto-ML) wouldn’t necessarily do hyperparameter tuning. I’m only real-
istically going to be able to do that, if I’m using simpler models. Otherwise, I
have to sit down with someone who knows the models really well and get a good
default set of hyperparameters.”

Humans compensate for Auto-ML shortcomings, boosting its performance. Auto-
ML’s shortcomings become more evident in non-standard use cases and domains (P4, P6,
P9, P11, P12). In such cases, humans use Auto-ML 1) to establish an baseline for perfor-
mance scores 2) to learn from Auto-ML’s strategies 6.3.3 and manually improve ML model
performance. For example, P4 reported:

“When the task gets too complicated, Auto-ML breaks down . . . you won’t get
good state-of-the-art results. As soon as the task becomes something out of the
normal, I switch to manual. Auto-ML is just a good way to get the intuition
behind what kind of performance you should expect in these cases. And then
you try to beat that.”

Auto-ML also often “over-thinks” and “over-complicates”, resulting in diminished perfor-
mance. Some participants respond by comparing manual and Auto-ML models and objec-
tively select the best performing one based on certain performance metrics.
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“A couple of times, I ended up not using Auto-ML, because it was giving me a
very complicated pipeline for regression problem. So I limited it to elastic net
only, and that works better than what Auto-ML gave me. . . . I select the best
ones among manual and auto models.”(P5)

Many participants describe their working relationship with Auto-ML as if they are collab-
orators [197], working in alternating cycles, iterating based on the feedback from each other
(P10, P11, P13.) Humans leverage Auto-ML’s strengths and compensate for its shortcom-
ings, engaging with Auto-ML when it needs help. Together, they achieve higher performance
(in speed and accuracy) than if they were each to work on their own.

For example, P10 jump-starts their ML workflow with a quick Auto-ML run to narrow
down the variables/features, followed by manual feature engineering and refinement via
several iterations with Auto-ML before finalizing the training sample for Auto-ML to build
models with.

“What types of preprocessing is Auto-ML automating for you? Oh, it’s just
sample selection. We can quickly run through modeling exercises and see which
features or variables that we’ve tossed in are most important, and we’re going
to start chopping things out . . . really quickly. And then go back to potentially
doing some additional feature engineering ourselves manually or pulling more
data in, but on a much limited scope . . . And I’m going to continue to refine with
multiple iterations of modeling, what ultimately I’m going to use as a training
sample.” (P10)

P10 compensates for Auto-ML’s shortcoming in feature engineering, while also supporting
Auto-ML with data collection—one of the tasks that are extremely to automate.

Humans do what Auto-ML cannot do at all, using contextual awareness and
domain expertise. As reported in Section 6.2, many participants do not believe that
tasks such as data preprocessing can ever be automated. The most common steps in the
ML workflow where humans are indispensable are data collection (including data labeling),
data cleaning, and feature engineering.(P1, P2, P3, P5, P6, P9, P10, P12, P14). Some ML
tasks are extremely difficult to automate, such as unsupervised learning and semi-supervised
learning (P7, P16.) Certain common data types also require substantial domain expertise,
such as text (P9.) Automation’s rigidity and lack of contextual awareness are well-studied in
HCI [4]. The same is true for Auto-ML. As P6 puts it “Auto-ML is not smarter. It doesn’t
do what humans cannot do. It is just faster.”

6.3.5.2 Humans increase ML safety and prevent misuse of Auto-ML

Participants reported Auto-ML’s excessive ease of use to be a downfall (P9, P15). P10
suggested that Auto-ML is effective “under proper governance and management.” P9 re-
sponded to the question “If an Auto-ML and a manual model have the same performance,
in which model would you have more confidence?” with “It depends on the person who
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used Auto-ML.” To ensure the safety of Auto-ML decisions and prevent misuse, participants
actively engage in the entire workflow as supervisors of Auto-ML, implementing governance
and management. The common strategies include the following:

Humans compare manual and Auto-ML strategies as a safety check and to in-
crease trust. Because of the shortcomings of Auto-ML, participants expressed the need to
personally validate Auto-ML to establish confidence in Auto-ML models, which often entails
manually developing models to compare with Auto-ML outputs (P5, P10, P11, P12, P16.) In
addition, practitioners often engage with Auto-ML with a prior expectation of performance.
As P16 reported:

“There are certain times where running your own model, even if it’s just as
another perspective on the approach, and a validation step is still a good idea
. . . making sure that the direction of the predictions are in line with expectations
[and] there’s nothing abnormal happening.”(P16)

Prior work found that ML interpretability seeks to establish trust not only between humans
and models, but also between humans [81]. Participants reported comparing Auto-ML to
manual ML for building trust between people.

“My goal is to bring to my collaborators interpretable models . . . the biggest
challenge [with Auto-ML] is how to convince my collaborators to trust it. [The
way I convince them is] we produce the standard approach models and show
them that this one (Auto-ML) is actually better in performance terms.” (P5)

Humans correct for Auto-ML idiosyncrasies. Ironically, as much as Auto-ML prevents
suboptimal performance due to practitioners’ idiosyncrasies (as mentioned in Section 6.3.3),
humans correct for Auto-ML’s idiosyncracies to safeguard Auto-ML outputs and improve
overall performance. P10 describes one such issue with data leakage:

“The only way that [Auto-ML]detects target leakages is if you have like a 99.99%
correlation to the target label. So there’s still things you need to know as a data
scientists to use Auto-ML effectively.”

P10 manually structured the data to ensure Auto-ML has the appropriate data as input to
safeguard the model’s generalizability and safety.

P16 worked with heavily imbalanced data and had to manually correct the biases in the
data to prevent suboptimal performance before feeding the dataset to Auto-ML.

“I know Auto-ML features allow you to do variable weighting. But . . . I haven’t
found that to always work necessarily. ”(P16)

Humans manually develop ML for understandability and reliability for mission-
critical projects. Visibility into Auto-ML work process does not suffice for the level of
understanding, trust, and explainability participants need for high-stake projects, where



CHAPTER 6. UNDERSTANDING THE ROLE OF AUTOMATION IN MACHINE
LEARNING DEVELOPMENT 127

humans are ultimately accountable for the reliable performance of ML models. Participants
reported switching back to manually developing ML pipelines for mission-critical settings,
because they need to reason and justify why the architecture and hyperparameters are chosen
and how classification or prediction decisions are arrived at (P1, P4, P9, P11, P12, P15.)

Prior work concludes that transparency mechanisms, such as visualization, increase user
understanding and trust in Auto-ML [53]. We found that transparency alone does not
suffice for trust and understanding between humans and the tool-built model. Humans need
agency to establish the level of understanding to trust Auto-ML. For example, P11, despite
having visibility into Auto-ML, was afforded little understanding. P11 rated transparency
of Auto-ML as being extremely transparent.

“To what extent do you have visibility into the inner workings of what the Auto-
ML is doing? If you want, it is a five (extremely visible). You can log whatever
you want. And you can see what it’s doing and it saves all the run and you
can look at them in tensor board, you can even explore the architectures, so
extremely [visible].”

However, P11 distrusted in Auto-ML and resorted to manual involvement.

“[With] Auto-ML models, I can look at the architecture and I got no idea what
it’s doing. It is making connections all over the place. It is using non-conventional
convolutional layers and you’re like this is not predictable. Granted it’s got good
performance on one run . . . You can’t afford to have that kind of uncertainty
. . . You haven’t had the hands-on experience to at least put your signature on
the models and say put into production, so that’s the issue.”

P11 reported that lack of certainties and predictability in how Auto-ML selects model
architecture undermined their trust in Auto-ML and that human agency increased model
reliability and assures confidence in the model. This sentiment is also supported by other
participants. For example P7, P13 prefer manual development for use cases where Auto-
ML’s strength in efficiency is irrelevant, because through manual ML development they can
gain a deeper understanding and higher trust in the models.

6.4 Discussion

Our findings show that Auto-ML tools have been effective at making ML more accessible
by creating high-level abstractions that streamline the process for training and deploying
models. By effectively hiding away the complexities commonly associated with ML and
acting as a source of knowledge, Auto-ML tools make ML accessible to novices and increase
productivity for experts. However, we argue that current efforts in Auto-ML that strive for
an eventual fully automated system through more tool capabilities and more accurate models
fail to consider the ways the technology is actually used in practice and what users really
need. In this work, we found that complete automation is neither a requirement nor a desired
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outcome for users of Auto-ML. To make Auto-ML tools more effective, the goal should not
be to completely remove the user from the process but instead to build human-compatible
tools by working to achieve trust, understanding, and a sense of agency in the user. In this
section, we discuss directions for the further development of Auto-ML tools based on our
findings.

Adapt to the proficiency level of the intended user. Especially because Auto-ML
tools mainly target citizen data scientists who often are intimated by ML due to perceived
self-inefficacy, developers need to consider users’ psychological readiness, designing from the
position of a partner who has a sensitivity to the other’s level of comfort (P12, P16.) P16
expressed this as follows:

“A lot of the Auto-ML tools make an assumption about the technical competency
of the user. That’s to their detriment. I think if the goal is really to try and
make it easier to use, there needs to be substantial effort put into the UX, and
understanding of potential users that don’t have. . . the depth of knowledge. . . [It
is used] more as exploratory analytics or proof of concept.”

Therefore Auto-ML tools need to be designed to adapt to users with varying comfort level
instead of taking a one-size-fits-all approach.

Lingua Franca for ML. Developers of Auto-ML tools need to grapple with all the different
roles that humans play in real-world data science work practices and how tools often need
to take on a translator role among collaborators. P1 reported that even though many data
science projects are initiated by business teams, the data scientists also often proactively
propose innovative solutions to business teams based on their awareness of the challenges
faced by business teams. ML engineers in real-world working environments do not simply
passively react to requests from stakeholders. They also make contributions to the framing
of the problem based on their ML expertise. Prior work highlights a translator role who sits
between the data scientists and other stakeholders in collaborative data science projects [197].
We found that many ML engineers perform the role of the translator, directly interfacing
with stakeholders, interpreting business problems and framing them into objectives that
can be evaluated by ML. P9 described this challenge of mismatched mental models among
collaborators:

“The way business thinks about accuracy is often really really different from how
you would calculate any sort of traditional metrics. . . You have to sync with a
lot of people on exactly how they think accuracy works and how they want to
report it.”

Auto-ML tools need to be aware of this mismatch and adapt their language accordingly to
proactively act as a translator. For example, data scientists measure model performance by
accuracy whereas business analysts measure it by revenue generated.

Holistic platform. An important lesson to be learned from the large difference in favora-
bility between the different categories of Auto-ML tools is that an end-to-end solution that
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handles all stages of the ML workflow in a single environment is a highly desirable design
choice for Auto-ML solutions. As mentioned in Section 6.1.1, Auto-ML platforms tend to
have self-sufficient end-to-end ML workflow support due to limited options to integrate with
external solutions, unlike OSS and Cloud Provider solutions. This has led to Auto-ML plat-
forms being not only the most complete solution but also the easiest to use, the most efficient
(no data transfer), and the most interpretable (comprehensive data lineage). Since Auto-ML
is a highly complex system catered towards users with diverse backgrounds performing cog-
nitively taxing tasks, interoperability with external solutions can add additional complexity.
This is not to say that there is no use for non-platform Auto-ML solutions, but rather there
needs to be a common substrate for the disparate Auto-ML tools and libraries, akin to Weld
for data analytics [147]. Weld itself is too low level to serve as the desired substrate for
Auto-ML, which needs to deal in model and task specifications.

Serverless Computing. As presented in Section 6.3.4, Auto-ML workloads are compute
intensive but bursty, and the optimal hardware is highly variable depending on the dataset
and model characteristics. These conditions motivate the need for elastic, ephemerally pro-
visioned computation resources with variable specs. For example, for P8 whose dataset
contained 18 million columns, they could be temporarily allocated machines with ample
RAM, instead of the fixed-architecture university cluster they were using, to avoid crashing
due to out-of-memory errors and accelerate model search. Recent advancements in serverless
computing [17] can be harnessed to solve this problem. However, the Auto-ML setting poses
new challenges in terms of the economics of trading compute cost for model accuracy.

Adaptive UI. Supporting users with diverse skills and expertise is an inherent challenge
Auto-ML solutions must embrace. Evidence from Section 6.3.3 suggests that a blackbox
interface for Auto-ML can be beneficial to novices and lower the maintenance overhead for
all, but low customizability and transparency associated with blackbox interfaces hinder
trust and agency based on evidence from Section 6.3.4. Auto-ML tool developers are forced
to grapple with competing design objectives, and a natural solution to this conundrum is to
provide multi-modal interfaces covering a spectrum of interaction levels.

The Auto-ML tooling landscape has progressed towards the low code/no code direction,
with some solutions allowing experienced users to assume more control via a secondary
programmatic interface. However, these tools do not offer true multi-modal interfaces but
merely the option to export the raw model training code for further manual exploration,
creating a clunky user interface “geared towards ML engineers who can learn to deal with
broken UIs” (P12). Furthermore, the success of a multi-modal interface is contingent upon
a user’s ability to self select the most appropriate modality, which is not easily achievable as
illustrated by P16’s experience with customizability. A possible solution to this UX challenge
is instead of having multiple distinct modalities, the Auto-ML tool can adaptively reveal or
hide customization capabilities piecemeal, based on some approximation of user skill level
and intent.

Interactive Exploration. Our findings in Section 6.3.5 show that a human in the loop
can be an indispensable resource to complement Auto-ML and make it more efficient and
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effective. In tools that support search space customization, human supervision is provided in
a one-shot fashion. If the user wanted to iteratively refine the search space, they would have
to manually kick off multiple rounds of the one-shot process, keeping track of intermediate
results manually between iterations. Iterating with Auto-ML can be better supported by
an interactive exploration interface designed specifically with iteration in mind. Such an
interface needs to display summaries of all previous iterations and make it easy for the user
to specify new search sub-spaces. It also needs to reconcile the high latencies of Auto-ML
workloads and interactivity.

Balance between Human Control and Automation. In Section 6.3, we presented
several deficiencies of the tools that can be improved with some of the suggestion above, as
well as roles that are important for the human to assume when using Auto-ML. The decisions
for what functionalities belong in either group are predicated upon, first and foremost, how
to establish trust and agency in the human users, and the current state of ML, systems,
and HCI research. Depriving users of trust and agency prevents Auto-ML from making an
impact in real-world use cases, while attempting to automate certain features prematurely,
without fundamental shifts in the underlying technology, requires strenuous efforts with little
payoff in the user experience.

Certain tasks cannot be addressed with human control or automation alone but rather
require a delicate balance between the two. Take data preprocessing for example. Evidence
in Section 6.3.5 suggests that many users deem complex feature engineering simply out-of-
reach for existing Auto-ML systems, due to their inability to capture domain knowledge.
However, many also feel that existing tools lack basic support for mechanical tasks such
as distributed processing and canonical data transformations (Section 6.3.4). Thus, the
future of data preprocessing is a combination of adding support for mechanical tasks in the
near term, and providing intuitive ways to specify high-level domain knowledge to integrate
human intuition with Auto-ML long term.

Another example is the collaboration of humans and the machine for efficient hyperpa-
rameter tuning. While expert users believe that they can improve the efficiency of Auto-ML
through intuition and experience, this belief is juxtaposed with their recognition that auto-
mated search can also correct for their biases and idiosyncrasies (Section 6.3.3). To strike
a balance, we envision an interactive dialog between the human and the machine to itera-
tively discover and fill in each other’s blindspots. Human guidance will be treated as strong
priors on certain model subspaces but does not preclude the exploration of other subspaces,
allowing the machine to nudge the human towards promising but underexplored subspaces.

6.5 Conclusion

Automation has become a central theme in ML tooling. This dissertation has proposed
several ways to enhance ML tooling with intelligent automation. ML tools with automation
has been given the moniker Auto-ML and have started to gain traction in recent year. In
this chapter, we presented results from a semi-structured interview study of 16 practitioners
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who have used Auto-ML in real-world applications to better understand what Auto-ML is
today and what role automation should play in ML tooling. Our participants all reported
various types of hybrid manual-auto strategies in leveraging Auto-ML in their development
workflow, providing hints, safeguarding outputs, and massaging inputs into a form digestible
by Auto-ML tools, among others. Current work practices around Auto-ML and perceptions
of these tools demonstrate that complete automation of ML is neither realistic nor desirable.
Our study sheds light on various forms of partnership or collaboration between humans
and ML/AI, depending on user motivations, needs, skill-set, and use-cases, and provides
next-generation Auto-ML tool developers with design guidelines for how to best incorporate
pragmatic guidance and empower effective engagement with Auto-ML tools.
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Chapter 7

Conclusion & Future Work

Machine learning has become a mainstream technology due to the previous decade’s progress
on programming interfaces for ML development and scalable data processing. Recent years
have seen an explosion in the adoption of ML in a wide array of applications, creating
new challenges around the usability and efficiency of systems for supporting ML, both in
the development and deployment stages. In this dissertation, we conducted need-finding
studies to better understand challenges in developing and deploying ML applications, thereby
identifying opportunities for better tooling. We then presented solutions to address some of
the opportunities uncovered by need finding, which we demonstrated to be effective due to
the fact that they directly incorporate results from need finding to tackle the problem at
hand.

In Chapter 2, our study results showed that ML development is driven by iterative
trial-and-error, wherein the developer experiments with a large number of workflow config-
urations to achieve desired model performance. We observe that the configurations tend to
have large overlaps that lead to redundant computation when executed in isolation, resulting
in both computational resource inefficiencies and human inefficiencies. Developers are forced
to stand idly by while the system churns through hours of redundant computation, disrupt-
ing continuity in their train of thought and lowering their productivity. To address this
problem, Chapter 3 presented a solution that incorporates classic database techniques such
as materialization and query rewriting to accelerate the development process by improving
interactivity in data preprocessing and the end-to-end ML workflow development. Since the
proposed solution was designed with findings from real-world workloads in mind, they were
shown to be highly effective at tackling the original problems.

In Chapter 4, we found through a study of thousands of production ML pipelines that
a vast amount of computation resources go into support ML applications in production,
bringing resource utilization efficiency into focus. The corpus in this study contains highly
complex provenance graphs of ML pipelines with continuous model updates, i.e., newly ob-
served data automatically triggers the retrain and redeployment of the model. We proposed
novel analysis techniques to work with the complexity of the provenance graph, which led to
a wealth of interesting discoveries that present novel, fruitful directions for future research
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on ML tooling. In Chapter 5, we focused specifically on the problem of improving resource
utilization efficiency in the automatic retraining and redeployment of models in continuous
pipelines. The ML-based solution we presented was shown to be able to eliminate over 50%
of wasted computation without compromising the model refresh cadence by introducing in-
telligent execution policies to avoid pipeline runs that are not predicted to result in model
refresh.

Finally, in Chapter 6, we turned our attention to the role of automation in ML develop-
ment. As evident in the work presented in this dissertation as well as general research trends,
automation is playing an increasingly prominent role in the ML tooling landscape, giving
rise to the new field of Auto-ML. Efforts to make machine learning more widely accessible
have led to a rapid increase in Auto-ML tools that aim to automate the process of training
and deploying machine learning. To understand how Auto-ML tools are used in practice
today, we performed a qualitative study with participants ranging from novice hobbyists to
industry researchers who use Auto-ML tools. We presented insights into the benefits and
deficiencies of existing tools, as well as the respective roles of the human and automation in
ML workflows. We discussed design implications for the future of Auto-ML tool development
and argued that instead of full automation being the ultimate goal of Auto-ML, designers
of these tools should focus on supporting a partnership between the user and the Auto-ML
tool.

Our work in this dissertation is part of a broader agenda towards the democratization of
machine learning and data science. Standing between ML and those who wish to adopt ML
are the tools for building and deploying ML workflows. Thus, the design and implementation
of such tools have profound impact on the accessibility of ML to a wide range of audience.
This dissertation aims to increase accessibility by designing solutions to lower the skill and
resource barriers for ML adoption, based on insights gleaned from studies of existing user
behavior and system performance. Our efforts are simply a small step towards the broader
agenda. We provide a few examples of fruitful future directions below.

7.1 Future Work

Understanding User Behavior. While our studies in Chapter 2 surfaced many interesting
patterns in iterative ML workflow development, our datasets provide a limited view into the
user’s thought process behind performing the manual iterations, as shown in the case studies.
A more in-depth user study is a promising direction for future work towards understanding
the motivations and cognitive processes behind ML model development. This understanding
can form the basis of a more effective and efficient Auto-ML strategy by mimicking human
experts. Likewise, human-in-the-loop ML systems can benefit from automated guidance
suggesting areas of exploration that the ML developer may not have thought of. Further
work along this line will shed light on design insights for building more usable and more
intelligent machine learning development systems.
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Supporting ML Development. The solution we proposed for ML development focused on
accelerating the execution of user-designed experiments. However, our need finding studies
in Chapter 2 suggest that users often are aimlessly experimenting with random configura-
tions in hopes of happening upon an effective workflow. In such scenarios, the system can
make intelligent recommendations on new experiments to bypass the need for exhaustive,
unfocused search. Furthermore, the work in this dissertation focused primarily on supporting
a linear sequence of human-in-the-loop experiments for developing ML workflows. As ML
tooling trends more towards automation, the experimentation process is becoming increas-
ingly parallel, posing new challenges in data management across concurrently evaluated ML
workflows that share intermediate results.

Supporting ML Deployment. Chapter 4 discussed many research opportunities exposed
by the large-scale study of production ML pipelines, including the fact that 1) vocabulary
computation over categorical features are highly prevalent in production ML and can benefit
a great deal from data management techniques for improved efficiency, 2) a wide variety
of model types are run in production at the same organization, motivating the need for a
common platform that is able to support different types of learning, 3) consecutive runs of
the same pipeline for model update consume overlapping data spans, leading to redundant
computation that can be eliminated through better data management, 4) many pipeline
runs fail to produce an updated model, leading to wasted computation that has no effect on
downstream applications. We presented a solution for the last problem in this dissertation,
but the other opportunities are equally worth pursuing.

Human-ML Collaboration. At the end of Chapter 6, we discussed several ways to design
and implement tools towards better human-ML collaboration. We argued that the viable
future of ML tooling is not removing the human from the loop but rather augmenting
the human via better human-ML collaboration, which can come in many different flavors
depending on the use case and user persona. For example, a novice user might want more
guidance in the experimentation process with recommendations generated from best practices
and potentially tailor-fitted to their specific use cases. On the other hand, expert ML
practitioners might be looking for capabilities to automate repetitive data management tasks.
In either case, the tool must not take away agency from the user, and the tool behavior must
be explainable and audible. While we offered some core insights into the principles behind
designing for better human-ML collaboration in Chapter 6, acting on these principles to
implement usable tools remains an open problem.
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Applications. Tech. rep. 2016, pp. 1–23.

[206] Doris Xin et al. “Accelerating Human-in-the-loop Machine Learning: Challenges and
Opportunities (Vision Paper)”. In: Proceedings of the Second Workshop on Data Man-
agement for End-To-End Machine Learning. DEEM’18. ACM, 2018.

[207] Doris Xin et al. “Helix: Accelerating Human-in-the-loop Machine Learning (Demo
Paper)”. In: Proceedings of the VLDB Endowment (2018).

[208] Doris Xin et al. “Helix: Holistic Optimization for Accelerating Iterative Machine
Learning”. In: Technical Report http://data-people.cs.illinois.edu/helix-tr.pdf (2018).

[209] Doris Xin et al. “Helix: holistic optimization for accelerating iterative machine learn-
ing”. In: Proceedings of the VLDB Endowment 12.4 (2018), pp. 446–460.

[210] Doris Xin et al. “How Developers Iterate on Machine Learning Workflows–A Survey
of the Applied Machine Learning Literature”. In: KDD IDEA Workshop (2018).

https://doi.org/10.1145/3359313
https://doi.org/10.1145/3359313
https://doi.org/10.1145/3290605.3300911
https://doi.org/10.1145/3290605.3300911
https://doi.org/10.1145/3290605.3300911
https://arxiv.org/abs/1912.06723
https://en.wikipedia.org/w/index.php?title=One-hot&oldid=975049657
https://en.wikipedia.org/w/index.php?title=One-hot&oldid=975049657
https://doi.org/10.1109/TVCG.2017.2744878


BIBLIOGRAPHY 151

[211] Doris Xin et al. “Production Machine Learning Pipelines: Empirical Analysis and
Optimization Opportunities”. In: Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference. ACM, 2021. doi: 10.1145/3448016.

3457566.

[212] Doris Xin et al. “Whither AutoML? Understanding the Role of Automation inMachine
Learning Workflows”. In: Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. Association for Computing Machinery, 2021. doi: 10.1145/

3411764.3445306.

[213] Qian Yang et al. “Grounding Interactive Machine Learning Tool Design in How Non-
Experts Actually Build Models”. In: Proceedings of the 2018 Designing Interactive
Systems Conference. DIS ’18. Hong Kong, China: Association for Computing Ma-
chinery, 2018, pp. 573–584. isbn: 9781450351980. doi: 10.1145/3196709.3196729.
url: https://doi.org/10.1145/3196709.3196729.

[214] Mihalis Yannakakis. “On a class of totally unimodular matrices”. In: Mathematics of
Operations Research 10.2 (1985), pp. 280–304.

[215] Jia Yu and Rajkumar Buyya. “A taxonomy of workflow management systems for grid
computing”. In: Journal of Grid Computing 3.3-4 (2005), pp. 171–200.

[216] Yuan Yu et al. “DryadLINQ: A System for General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language.” In: OSDI. Vol. 8. 2008, pp. 1–14.

[217] Matei Zaharia. Introducing MLflow: an Open Source Machine Learning Platform.
https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-
learning-platform.html. Accessed October 8, 2018.

[218] Matei Zaharia et al. “Accelerating the Machine Learning Lifecycle with MLflow.” In:
IEEE Data Eng. Bull. 41.4 (2018), pp. 39–45.

[219] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association. 2012.

[220] Amy X Zhang, Michael Muller, and Dakuo Wang. “How do data science workers
collaborate? roles, workflows, and tools”. In: Proceedings of the ACM on Human-
Computer Interaction 4.CSCW1 (2020), pp. 1–23.

[221] Ce Zhang. “DeepDive: A data management system for automatic knowledge base
construction”. PhD thesis. Citeseer, 2015.

[222] Ce Zhang, Arun Kumar, and Christopher Ré. “Materialization optimizations for fea-
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