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Abstract

Real-time Robotic Safety Set Blending Schemes

by

Charles (Chuck) Tang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Claire Tomlin, Chair

Modern day robots deployed in the ground or sky have to frequently navigate a priori un-
known environments. In these scenarios, robots need to make goal-driven decisions while also
satisfying safety constraints imposed by obstacles. Guaranteeing safe operation in unknown
environments with limited-range sensors remains a challenging problem for autonomous ve-
hicles. Recent work proposed a Hamilton-Jacobi reachability framework for computing safe
operational regions for such scenarios. Unfortunately, controllers synthesized from this frame-
work are jerky and uncomfortable when deployed on the robot. Furthermore, evaluating HJI
algorithms in real-time scenarios remains difficult due to the curse of dimensionality. In this
work, we implement the BEACLS ROS toolbox which allows for real time computation of
HJI safety sets for robotic navigation tasks. The state-of-the-art algorithms are benchmarked
against MATLAB implementations and demonstrate a 6x speedup in computation time. We
then explore bang bang control, unconstrained optimization, and constrained optimization
formulations to blend the safety set and robot motion planner. We conclude by evaluating
each blending scheme’s ability to produce smooth, safe, feasible, and goal reaching trajecto-
ries for known and unknown environment point-goal navigation tasks.



i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Background 3
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Safe Autonomous Vehicle Navigation . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Hamilton-Jacobi Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Efficient BRS Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Software Tools for BRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Arbitration Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Real-Time BRS Calculations 9
3.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 BEACLS ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Blending Schemes for Safety Sets 13
4.1 Problem Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Blending Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion and Future Work 29

Bibliography 30



ii

List of Figures

3.1 A running example of BEACLS ROS in action. The goal is for the turtlebot
to reach the last green way point from the initial position. Big green circles
denote the circular sensing region. Blue denotes the robot obstacle. Black is the
turtlebot. Red is the safety set calculated by HJIPDE in real time. Note that for
this example, we use a 61x61x31 grid and can still evaluate the safety set in real
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 The ROS C++ Data pipeline for BEACLS ROS. Note that all modules in the
BEACLS ROS repo are colored while all black nodes represent the turtlebot
nodes. The robotic navigation stack goes from turtlebot odometry state⇒ turtle-
bot controls ⇒ environment occupancy grid update ⇒ beacls safety set ⇒ ROS
visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Signed Distance Potential Cost Function J . . . . . . . . . . . . . . . . . . . . . 16
4.3 Alpha Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Robot trajectories with different blending schemes: The robot is moving

from the start position in blue to the goal position (black X ). Several different
blending schemes are plotted in different colors. Value Alpha (Red): Value Func-
tion Alpha (4.10), Sample Alpha (Blue): Sampled Alpha (4.9), Mo and Karen
(Orange): Constrained Optimization (4.7), CDC (Pink): Bang Bang Control
(2.9). The reach avoid trajectory in green is the HJI solution that we use as an
optimal baseline. The pink outline is the BRS V . . . . . . . . . . . . . . . . . . 24

4.5 Trajectory Metrics We logged several metrics of the robot’s trajectory includ-
ing the linear jerk, angular jerk, alpha blend probability, average safety score
V (x), distance to goal, and distance to optimal trajectory (reach avoid trajectory) 25



iii

List of Tables

3.1 HJI Speed up in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Known Environment Results: The success metric counts the number of point
navigation scenarios that reached the goal location x∗ within 0.5 meters. The
crash metric counts the number of scenarios where the robot crashed into an
obstacle. The timeout metric counts the number of scenarios where the robot
ran for more than 1000 timesteps. The total number of test scenarios is 100.
For the 67 scenarios in which all 4 algorithms succeeded, we measured the jerk,
time taken, and number of safety controls each robot took. Jerk is measured in
m/s3. Time Taken is measured in seconds. Num Safety counts the total number
of safety controls the robot took to navigate through the environment to the goal. 23

4.2 Unknown Environment Results: The success metric counts the number of
point navigation scenarios that reached the goal location x∗ within 0.5 meters.
The crash metric counts the number of scenarios where the robot crashed into
an obstacle. The timeout metric counts the number of scenarios where the robot
ran for more than 1000 timesteps. The total number of test scenarios is 100.
For the 22 scenarios in which all 4 algorithms succeeded, we measured the jerk,
time taken, and number of safety controls each robot took. Jerk is measured in
m/s3. Time Taken is measured in seconds. Num Safety counts the total number
of safety controls the robot took to navigate through the environment to the goal. 23

4.3 Blending Scheme Properties for Known Environment . . . . . . . . . . . . . . . 26
4.4 Blending Scheme Properties for Unknown Environment . . . . . . . . . . . . . . 27



iv

Acknowledgments

I would first like to thank my research mentors Andrea Bajcsy and Somil Bansal for guiding
me through everything that I have learned in this year of research. Andrea and Somil’s
invaluable advice in formulating the right research questions and action-oriented approach
to devising research experiments was crucial to the insights of this thesis. Their empathetic
and insightful feedback pushed me to sharpen my thinking and brought my work to a higher
level.

Next, I would like to thank Professor Claire Tomlin for providing a supportive, exciting,
and fun lab environment to be in. It’s quite rare for seniors to take on new research oppor-
tunities but I’m glad Professor Tomlin took a chance on me last year. I would also like to
thank Professor Shankar Sastry for being a second reader for this thesis and teaching me
fascinating robotics algorithms in his undergraduate class.

Finally, I would like to thank my parents for their unconditional love and support. With-
out them, none of this could have been possible.



1

Chapter 1

Introduction

Autonomous navigation is an important problem in robotics that has received significant
attention in recent years. Developing a fully autonomous robot that can navigate in a
priori unknown environments remains challenging due to several issues such as modelling
external disturbances, generating smooth trajectories, and producing safe optimal controls.
As a vehicle travels towards a goal and receives new knowledge about the environment,
rigorous safety analysis is critical to ensure that the system does not enter into fatal collisions.
Balancing this safety analysis with the goal oriented planning algorithm is a challenging
task that involves important trade-offs in safety, latency, smoothness, and goal reaching
capabilities.

One way to approach this problem is to create a geometrically consistent map used for
collision-free, goal oriented motion planning methods. Unfortunately, the real-time genera-
tion of accurate maps is computationally expensive and challenging for real-world use cases.
Alternative methods suggest using end-to-end deep learning based controllers to side-step
this difficult map estimation problem. However, such approaches are both sample inefficient
and not interpretable for safety guarantees.

Hamiltonian Jacobi Isaacs (HJI) analysis is another promising research direction which
ensures strong safety guarantees for states that the robot can operate in without collision.
HJI analysis accounts for both external disturbances of the environment and dynamic mod-
elling errors, with its main drawback being that HJI suffers heavily from computational
constraints. Recently, [3] proposed an efficient Hamilton-Jacobi-Isaacs (HJI) reachability
framework that allows robots to navigate in a-priori unknown static environments in near
real-time. To do so, [3] leveraged efficient data structures and warm starting techniques
to alleviate the curse of dimensionality that traditional HJI suffers from. This thesis di-
rectly builds upon this line of research and re-implements the algorithms in [3] with a C++
framework that can take advantage of GPU speedups. We demonstrate a 6x speed up in
comparison to the MATLAB baselines and improve the algorithms in [3] to run in real-time
robotic navigation scenarios.
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After efficiently computing the safety set, [3] suggest a least restrictive controller that
only interferes with the goal reaching planner when the robot is on the safety set boundary.
Although this switch-based controller is minimally invasive to the goal reaching capabilities
of the robot, the ”bang bang” controller produced by this framework is jerky and uncom-
fortable in practice. Other authors have suggested using the safety sets as a constraint in the
optimization-based path planning framework [21]. Although provably safe and goal reach-
ing, such solutions may not always be feasible in real world navigation tasks. In a similar
optimization lens, [13, 33] has suggested blending different pieces of robot task information
using unconstrained optimization methods, thereby discarding any safety guarantees. In
this thesis, we extensively investigate different ways one can formulate the blending problem
between safety sets and goal reaching planners. We study bang bang control, constrained
optimization, and unconstrained optimization blending schemes and analyze the smooth-
ness, feasibility, efficiency, and safety of each algorithm across a variety of point navigation
scenarios.

The rest of this thesis is organized as follows. In Chapter 2, we give an overview of the
key equations, toolboxes, and algorithms for efficiently calculating and using safety sets in
robotic navigation tasks. In Chapter 3, we describe our software package BEACLS ROS and
demonstrate a robot planning with safety sets in a real time point navigation scenario. In
Chapter 4, we explore how to arbitrate the safety set with the original robot planner and
analyze the trade offs of different blending schemes. Lastly, in Chapter 5, we discuss future
directions of research and summarize our findings. Overall, we describe our contributions
as:

• Implementation of the BEACLS ROS toolbox which enables real-time calculations of
safety sets

• Demonstration of a 6x speed up for a robotic navigation task when baselined against
MATLAB

• Exploration of different blending schemes between safety sets and original robot plan-
ners
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Chapter 2

Background

This chapter is based in part on the papers “Efficient Reachability-Based Framework for
Provably Safe Autonomous Navigation in Unknown Environments” [3] written by Andrea
Bajcsy, Somil Bansal, Eli Bronstein, Varun Tolani, Claire J. Tomlin

2.1 Problem Statement

In this thesis, we study the problem of autonomous vehicle navigation in an indoor environ-
ment setting with a-priori unknown obstacles. Let x0 and x∗ denote the start and the goal
state of the vehicle. The vehicle aims to navigate from x0 to x∗ in an a priori unknown
environment, E , whose map or topology is not available to the robot. The dynamics of the
system are given by:

ṗx = v cosφ+ dx, ṗy = v sinφ+ dy, φ̇ = ω ,

v ≤ v ≤ v̄, |ω| ≤ ω̄, |dx|, |dy| ≤ dr
(2.1)

where x := (px, py, φ) is the state, p = (px, py) is the position, φ is the heading, and d =
(dx, dy) is the disturbance experienced by the vehicle. The control of the vehicle is u := (v, ω),
where v is the speed and ω is the turn rate. We assume that odometry is perfect (i.e. the
exact vehicle state is available), sensor hits are perfect (i.e. the exact obstacle state is given),
and obstacles are static. Working with state estimation, noisy sensors, and dynamic obstacles
are important problems of their own right and we defer them for future work.

The vehicle has a sensor which at any given time exposes a region of the state space
St ⊂ Rn, and provides a conservative estimate of the occupancy within St. The sensor hits
are aggregated over time into the binary occupancy grid Ot ⊂ Rn, where 1 denotes and 0
marks free space. At any time t and state x(t), the vehicle has a planner Π(x(t), x∗, Ot),
which outputs the control command u(t) to be applied at time t. The planner replans every
model predictive control (MPC) horizon T in order to update the planner trajectory ξplanner.
We note that ξt := (xt, ut) ∀ t ∈ [0− T ]. Throughout this work, we test our algorithms with
a spline planner [31] in order to generate smooth and continuous blended trajectories.
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Given x0, x∗, the planner Π, and the sensor S, the goal of this thesis is to design a real
time control mechanism that smoothly navigates the vehicle to the goal without collisions.

2.2 Safe Autonomous Vehicle Navigation

The point-goal navigation task described above serves as a test bed for autonomous vehicle
navigation progress [22, 35]. The main goal of these tasks is to design a collision-free control
policy that navigates the robot(s) to a destination goal given a set of potentially noisy sensor
inputs.

Recent approaches have suggested using end to end large scale reinforcement learning
methods [34, 18, 9] which have achieved state of the art results for environments without
external disturbances. Model based control methods such as [7, 27] have successfully in-
corporated optimal control and model priors to supervise the neural network controller for
similar point navigation tasks as well. Despite these neural network advancements, guar-
anteeing safety for these algorithms remain difficult due to the lack of interpret-ability of a
neural network module.

To ensure safety, many current methods use control barrier functions [2, 36] to design
stable controllers that navigate around obstacles. However, these methods assume that a
recursively feasible collision-free path can be obtained despite the unknown environment,
which may not be possible in real-world environments. Many other attempts at incorpo-
rating safety in path planning include sum-of-squares [19], linear temporal logic [20], and
reactive synthesis approaches [28]. Our framework builds upon more stronger guarantees of
safety which accounts for external disturbances and a-priori unknown environments using
HJ-reachability analysis.

2.3 Hamilton-Jacobi Reachability

The safety framework that this thesis builds upon is Hamilton Jacobi (HJ) reachability
analysis [23, 25]. HJ reachability analysis has been successfully applied in a variety of
domains, such as aircraft auto-landing and safe multi-vehicle path planning [5, 4]. In this
work, we will be using reachability analysis to compute a backward reachable set (BRS)
V(τ) given a set of unsafe states L. Intuitively, V(τ) is the set of states such that the
system trajectories that start from this set can enter L within a time horizon of τ for some
disturbance despite the best control efforts. In contrast, for any trajectory that starts from
Vc(τ), there exists a control such that the system trajectory will never enter L, despite the
worst-case disturbance. Here, Vc(τ) represents the complement of the set V(τ).

The computation of the BRS can be formulated as a differential game between the control
and disturbance, which can be solved using the principle of dynamic programming. The cost
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functional corresponding to this differential game is given by:

J(x, τ, u(·), d(·)) = inf
s∈[τ,0]

l(ξu,dx,τ (s)), (2.2)

where ξu,dx,τ (s) represents the system state at time s starting from state x at time τ and
applying control u(·) with disturbance d(·). In (2.2), the function l(x) is the implicit surface
function representing the unsafe set L = {x : l(x) ≤ 0}. Intuitively, J keeps track of whether
the system trajectory even entered the unsafe set during the time horizon [τ, 0], and if so,
the cost corresponding to that trajectory is negative.

The value function corresponding to the cost functional in (2.2) is given by:

V (τ, x) = min
d(·)∈Γ[u]

max
u(·)

J(x, τ, u(·), d(·)), (2.3)

where Γ represents the set of non-anticipative strategies [25]. If the value function is negative
for a given state, then starting from this state the system cannot avoid entering into the
unsafe set eventually. Thus, the value function in (2.3) keeps track of all unsafe trajectories
of the system, which in turn can be used to compute the safe trajectories for the system.
For further details on this formulation, we refer the interested readers to [25, 4].

The value function in (2.3) can be obtained using dynamic programming, which yields a
Hamilton Jacobi-Isaacs Variational Inequality (HJI-VI) [14, 23]. Ultimately, a BRS can be
computed by solving the following final value HJI-VI:

min{DτV (τ, x) +H(τ, x,∇V (τ, x)), l(x)− V (τ, x)} = 0

V (0, x) = l(x), τ ≤ 0.
(2.4)

Here, DτV (τ, x) and ∇V (τ, x) denote the time and space derivatives of the value function
V (τ, x) respectively. The Hamiltonian, H(τ, x,∇V (τ, x)), encodes the role of system dynam-
ics, control, and disturbance, and is given by

H(τ, x,∇V (τ, x)) = max
u∈Ui

min
d∈D
∇V (τ, x) · f(x, u, d). (2.5)

Once the value function V (τ, x) is computed, the BRS, and consequently, the set of safe
states are given by

V(τ) = {x : V (τ, x) ≤ 0}, (2.6)

W(τ) = Vc(τ) = {x : V (τ, x) > 0}. (2.7)

HJI reachability also provides the optimal control to keep the system in the safe set and is
given by

u∗(τ, x) = arg max
u∈U

min
d∈D
∇V (τ, x) · f(x, u, d). (2.8)

In fact, the system can safely apply any control as long as it is not at the boundary of
the unsafe region. If the system reaches the boundary of V(τ), the control in (2.8) steers
the system away from the unsafe states. This least restrictive controller provided by HJI
reachability is also the basis for ensuring safety in a least restrictive fashion that we employ
in our framework.
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Several challenges come up when one seeks to extend HJ reachability analysis for safe
robotic navigation problems. First, calculating the BRS in real-time is difficult due to the
curse of dimensionality [8] that HJI-VI suffers from. Second, integrating HJI-VI optimal
controls with other planners in a switching fashion [3] creates high jerk trajectories that are
uncomfortable for the user. In the next sections, we summarize the most relevant literature
that aims to tackle these two issues.

2.4 Efficient BRS Algorithms

There is a long history of prior work that aims to alleviate the curse of dimensionality that
comes with solving the HJI equations. Decomposition schemes [10], efficient initializiations
[16], offline methods [15], and using neural networks for safety sets [6] are all promising
research directions that have effectively sped up the BRS calculation for specific HJI tasks.
This thesis builds upon the safety framework in [3] which sped up BRS calculations for
indoor robots to near real time applications.

The key intuition in [3] is that the most recent HJI calculation at time t − δ is locally
similar to the new HJI calculation that needs to be done at time t. Thus, one can use the
previous safety set V last to warm start the computation for the current safety set Vnew. This
idea is similar to warm starting in reinforcement learning and transfer learning in computer
vision where one initializes the weights of an algorithm with a prior that is close to the final
solution. Another speed up introduced in [3] employs a queue based update algorithm to
remove unnecessary computations for value function states which remain unchanged during
each value function iteration. Our work directly extends these two ideas mentioned above
into a faster programming language codebase in C++.

More widely accessible and well-maintained software packages have been a key enabler
to the algorithmic advances presented above. We next summarize the relevant software
packages for solving the HJI equations that provide performance improvements in software
and hardware.

2.5 Software Tools for BRS

Level Set Toolbox

The level set toolbox (or toolboxLS) is the default toolbox implemented in MATLAB to
solve any final-value HJ PDE. Since different reachable set computations can be ultimately
posed as solving a final-value HJ-PDE, the level set toolbox is equipped to compute various
types of reachable sets [1]. Information on how to install and use toolboxLS can be found at
https://www.cs.ubc.ca/∼mitchell/ToolboxLS/. This toolbox can be incorporated with the
Hamilton Jacobi optimal control toolbox helperOC [17] for a subset of dynamical systems
such as the Dubins Car model. An introduction to the helperOC can be found at: https:

https://www.cs.ubc.ca/~mitchell/ToolboxLS/
https://github.com/HJReachability/helperOC/blob/master/tutorial.m
https://github.com/HJReachability/helperOC/blob/master/tutorial.m
https://github.com/HJReachability/helperOC/blob/master/tutorial.m
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//github.com/HJReachability/helperOC/blob/master/tutorial.m for quick start guide. The
safe navigation framework in [3] uses the helperOC and level set toolbox frameworks for HJI
computations and can be found at https://github.com/abajcsy/safe navigation.

BEACLS

The Berkeley Efficient API in C++ for Level Set methods (BEACLS) Toolbox implements
the functions from helperOC and toolboxLS for fast computation of reachability analyses. It
works by using GPUs to parallelize different computations in the level set toolbox. Specif-
ically, BEACLS divides the value function computation into separate regions which each
have individual threads, much similar to how matrix multiplication is sped up in GPU’s.
This GPU library has been used for large-scale multi-vehicle reachability problems, such
as safe path planning [11]. The installation instructions and user guide can be found at
http://www.github.com/HJReachability/beacls.

BEACLS ROS

The BEACLS ROS Toolbox is one of the main contributions of this thesis. It was developed
to provide a bridge between the Robot Operating System (ROS) and BEACLS so that
modern robotics applications could leverage efficient BRS computations for safety planning.
The library can be found at https://github.com/HJReachability/beacls ros. Within this
thesis, we demonstrate real-world examples of robots running through ROS and leveraging
the BEACLS library to plan safe trajectories around obstacles.

Optimized DP

The optimized dp toolbox [29] was built by Prof. Mo Chen at Simon Fraser University, with
the goal of having an easy python-based user interface to set up a reachability problem.
The python interface wraps the fast C++ BEACLS code via HeteroCL in order to provide
an intuitive scripting language entry point to the verbose C++ code. All software for this
codebase can be found at: https://github.com/SFU-MARS/optimized dp.

FlowStar

The flowstar toolbox [12] was built by Prof. Sriram Sankaranarayanan at CU Boulder with
the goal of computing safe sets for large numbers of states that do not have control and
disturbance inputs. It uses scalable methods that lead to an over approximation of the
safety set. All software for this codebase can be found at: https://flowstar.org/

https://github.com/HJReachability/helperOC/blob/master/tutorial.m
https://github.com/HJReachability/helperOC/blob/master/tutorial.m
https://github.com/HJReachability/helperOC/blob/master/tutorial.m
https://github.com/abajcsy/safe_navigation
http://www.github.com/HJReachability/beacls
https://github.com/HJReachability/beacls_ros
https://github.com/SFU-MARS/optimized_dp
https://flowstar.org/
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2.6 Arbitration Policies

The safety framework [3] that this thesis builds upon combines the BRS V described in
previous sections with the default planner Π in a switch control manner. Concretely,

u(t) =

{
Π(x(t), x∗, Ot), if x(t) ∈ Wt

u∗(t, x(t)), otherwise
(2.9)

If V (x) < 0, then the robot chooses to take the optimal safety control u∗ described in
equation (2.8) until the robot decides to replan for a new trajectory using the goal reaching
planner Π. This bang bang control leads to trajectories that have high jerk and are uncom-
fortable for users. In this section, we explore a series of alternative ways that blend the BRS
V , safety control u∗, and ξplanner.

Wang [33] proposes to add the value function of the BRS to the original cost function J
for the planner as seen in Equation (2.10).

J(x) = (1− λ)Jplanner(x) + λV (x) (2.10)

However, finding the correct λ between the value function and original objective is difficult
in practice and does not generalize well across novel environments. Alternatively, Leung
[21] suggests to use the value function as a constraint for the planner’s original optimization
algorithm as described in Equation (2.11).

max
x0...xT

T∑
t=0

J(xt) s.t. V (xt) > ε ∀t (2.11)

A cone of controls are taken such that the vehicle safety score only increases once the
robot enters an unsafe state where V (x) ≤ ε. Although optimal if HJI correctly models the
full state and dynamics of all unknown obstacles, such a constrained optimization approach
may suffer from being too closely constrained and thereby infeasible in practice. Volpe
[30] suggests a blending mechanism between velocity profiles for a similar task of robotic
manipulation where:

ublend = α ∗ ua + (1− α) ∗ ub (2.12)

We explored such a control space blending mechanism in our initial experiments and found
that blending velocities at earlier time steps would adversely affect the controls at later time
steps thereby rendering the trajectory meaningless. In a similar notion, Dragan [13] suggests
to arbitrate between trajectories of different agents for the shared autonomy task of human
and robot teleoperation as described in Equation (2.13).

xblend = α ∗ xa + (1− α) ∗ xb (2.13)

In our work, we extensively explore a series of arbitration schemes using this idea and analyze
the properties of blending in trajectory space.
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Chapter 3

Real-Time BRS Calculations

In this chapter we introduce the BEACLS ROS repository, a real-time C++ ROS library that
integrates the BEACLS toolbox with the Robot Operating System (ROS). BEACLS ROS
allows for efficient computations of backwards reachable sets and reusable code modules for
robot navigation tasks.

3.1 Running Example

To illustrate our toolkit, we introduce a simple running example: a 3-dimensional Dubins
car system with disturbances added to the velocity. The dynamics of the system are given
by:

ṗx = v cosφ+ dx, ṗy = v sinφ+ dy, φ̇ = ω ,

v ≤ v ≤ v̄, |ω| ≤ ω̄, |dx|, |dy| ≤ dr
(3.1)

where x := (px, py, φ) is the state, p = (px, py) is the position, φ is the heading, and d =
(dx, dy) is the disturbance experienced by the vehicle. The control of the vehicle is u := (v, ω),
where v is the speed and ω is the turn rate. Both controls have a lower and upper bound,
which for this example are chosen to be v = 0.1m/s, v̄ = 1m/s, ω̄ = 1rad/s. The disturbance
bound is chosen as dr = 0.1m/s.

The vehicle start and goal state are given by x0 = [−2,−2, π/2] and x∗ = [2, 2,−π/2].
The square grid environment that the robot lives in ranges from [−5,−5,−π] to [5, 5, π].
There is an rectangular obstacle in the environment which is not known to the vehicle
beforehand. The rectangular obstacle’s lower left corner lies at [−1.5, 0,−π] and upper right
corner at [3.5, 2, π]. The robot has a circular sensing region of radius 1.5 which allows it to
detect free and occupied regions. For this simple benchmark, we use a hand-coded trajectory
ξhand and planner Πhand that navigates the robot to the next individual waypoint. The goal
of the robot is to follow the green waypoints until it arrives at the final one.
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For safety calculation demonstrations, we replan for the safety set using the algorithms
described in [3] as soon as we receive new sensor updates from the environment. A snapshot
of the robot navigation task is shown in Figure 3.1.

Figure 3.1. A running example of BEACLS ROS in action. The goal is for the turtlebot to reach the last
green way point from the initial position. Big green circles denote the circular sensing region. Blue denotes
the robot obstacle. Black is the turtlebot. Red is the safety set calculated by HJIPDE in real time. Note
that for this example, we use a 61x61x31 grid and can still evaluate the safety set in real time.

3.2 BEACLS ROS

To calculate safety sets efficiently, we use BEACLS a powerful library written in C++. In
a CPU setting, BEACLS provides a 6x speed up [11] in comparison to the native MATLAB
helperOC dev computations. This 6x speed up is crucial for using safety sets in real-world
robotic applications. Unfortunately, BEACLS suffers from two issues: difficulty of usage
and lack of tooling for ROS modules. These two issues makes it hard for robotics users to
interface with this powerful toolbox.

BEACLS ROS aims to address these shortcomings by using a single roslaunch file to
seamlessly integrate different robotic modules such as the safety set calculation. All parts
of the robotic stack such as the simulation odometry state, sensed environment occupancy
grid, planning algorithm, safety set calculation, and visualization node can be launched
with one roslaunch script. Communication between different ROS nodes is achieved through
different ROS topics and messages as can be seen in Figure 3.2. The BEACLS ROS toolbox is
designed for usability so that users only need to edit one line in the yaml config files to change
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experiment hyperparameters (e.g. grid size, disturbance, vehicle dynamics, etc.). Another
design principle of BEACLS ROS is modularity. By employing roslaunch scripts, the user
can easily swap out different modules such as an RRT planner vs a hand coded trajectory
with a single line change. This improved modularity and usability of BEACLS ROS prevents
the need for the user to modify source code and rebuild the workspace every time they make
an experiment change.

Figure 3.2. The ROS C++ Data pipeline for BEACLS ROS. Note that all modules in the BEACLS ROS
repo are colored while all black nodes represent the turtlebot nodes. The robotic navigation stack goes from
turtlebot odometry state ⇒ turtlebot controls ⇒ environment occupancy grid update ⇒ beacls safety set
⇒ ROS visualization

The current BEACLS codebase reimplements the three safety set algorithms presented
in the safe navigation framework [3]: HJI-VI, warm start, and local Q. For these three
algorithms, we expect to see a 6x speed up in computation time when baselined against the
safe navigation paper’s MATLAB implementation.

To implement the algorithms correctly in software: legacy code modifications to BEA-
CLS, improved infrastructure tooling, and rigorous integration tests were key. First, ad-
ditional features in BEACLS such as early stopping and minVWithL were added to the
BEACLS toolkit. Next, getting local Q to work in C++ required modifying several of the
original BEACLS toolkit functions which took a bulk of the implementation time. Another
crucial step towards getting the algorithms running was porting the BEACLS codebase to
run on docker, and therefore any machine. Surprisingly, the biggest speed up in development
velocity was switching to VSCode which allowed for IDE based debugging of ROS tests. To
validate correctness, all C++ algorithm value functions were sanity checked against their
corresponding matlab implementation for a deterministic example.
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3.3 Results and Discussion

As expected, we see the predicted 6x speed up in warm start and HJI for the running
BEACLS ROS example as seen in table 3.1 below. We only saw a 1.4x speed up for the
Local Q update algorithm which we infer arises from the overhead when BEACLS copies
around a queue to parallelize the value function iteration.

Method Average Run Time (seconds) Matlab Speed Up
C++ HJI 2.43 6.64x

C++ Warm 0.72 5.67x
C++ Local Q 0.55 1.40x
Matlab HJI 16.17 1.0x

Matlab Warm 4.13 1.0x
Matlab Local Q 0.77 1.0x

Table 3.1. HJI Speed up in C++

Here are three demo videos of the HJI, warm start, and local q update algorithms for
computing safety sets in real time robotic navigation tasks. Some areas of future work for
the BEACLS ROS toolbox is to add in GPU benchmarks, NVIDIA GPU docker support,
and more high dimensional dynamic models for safety set calculations.

https://www.youtube.com/watch?v=zrYRec5iB5Q&t=2s
https://www.youtube.com/watch?v=oRPty6Qkz4M&t=16s
https://www.youtube.com/watch?v=cpP6_aU5Zao&t=1s
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Chapter 4

Blending Schemes for Safety Sets

4.1 Problem Set Up

Overview

In this chapter, we explore a series of model predictive control (MPC) based algorithms that
tackle the point navigation task. At each MPC planning iteration, the robot is given a goal
reaching planner and a safety aware BRS. We aim to explore several ways the robot can plan
with these two pieces of information such that the blended trajectory is safe, goal reaching,
feasible, and smooth.

Task Set Up

The robot begins at start position x0 and wants to navigate to goal position x∗. To accomplish
this, we employ the MPC framework where we replan towards the goal every T = 1.5 seconds.
The time discretization dt = 0.1 seconds and therefore the robot takes 15 time steps every
MPC iteration. We terminate with success once the robot reaches within 0.5 meters of the
goal x∗. We terminate with failure once the robot takes over 1000 time steps or crashes into
an obstacle.

The robot lives in a realistic Amazon robomaker bookstore world shown in Figure 4.1a.
The bookstore world lies between the range of [−10,−5.4,−π] to [10, 5.4, π] measured in
meters and is discretized by 51× 51× 16 grid cells. In the unknown environment, we use a
lidar sensing region of radius 2. Thus, at every MPC planning iteration, the robot attains a
new binary occupancy grid Ot with 15 new lidar hits. Using the binary occupancy grid Ot,
the robot can recalculate the BRS V using the efficient HJI algorithms described in Section
2.5. To generate 100 test bed point-goal navigation scenarios, we randomly sampled 100
random start and goal locations that lie at least 10 meters away from one another as seen
in Figure 4.1b.

For the robots dynamics model, we use the 3D Dubins Car model described in Equa-
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tion (3.1) with the exact same hyper-parameters. To calculate the BRS, we use the helpe-
rOC dev toolbox referenced in Section 2.5 with a disturbance of 0.1.

(a) AWS Robomaker Bookstore environment (b) Sampled Goals for Bookstore Map

Metrics

We define a series of metrics in this section to quantitatively measure the smoothness, ef-
ficiency, and safeness of our robot’s trajectories. Smoothness is measured by the average
jerk or d3x

dt3
of the robot’s trajectories. Efficiency is measured by the total number of tra-

jectories where the robot timed out and the average number of time steps the robot took to
successfully reach the goal. Safety is measured by the total number of trajectories where the
robot crashed and the average number of safety controls the robot took to successfully reach
the goal. We aim to optimize for each of the five metrics listed above in order to maximize
smoothness, efficiency, and safety.

Planner

For our experiments, we chose to use a spline planner [32] as it provides a one to one mapping
between the end robot position xT and candidate spline planner trajectory ξcandidate. This
planner choice provides us a simple interface to implement our optimization based blending
schemes as we can iterate over the set of all dynamically feasible candidate splines X to
find the optimal spline ξplanner. Furthermore, the differential flatness of our dynamics model
enables the spline planner to generate smooth and continuous trajectories.
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On a high level, the spline planner works by starting at position x0 with velocity v0

and enumerates over the set of all dynamically feasible candidate splines X that the robot
can reach. The spline planner selects the optimal spline trajectory ξplanner whose states
accumulate the least signed distance cost J as described in Equation (4.1).

min
x0...xT

T∑
t=0

J(xt)

s.t. xt = xt−1 + f(xt−1, ut−1)

ξt = (xt, ut)

ξ ∈ X

(4.1)

More concretely, X is the set of dynamically feasible splines that start from state x0,
velocity v0, and time t0 = 0 and end in a discrete environment grid state xf , velocity vf ,
after time tf = T seconds. To obtain a spline trajectory from the constraints mentioned
above, we fit a third order spline to the evolution of px(t) and py(t) and detail the initial and
terminal constraints as seen in Equation (4.2).

px(t) = a1t
3 + b1t

2 + c1t+ d

py(t) = a2t
3 + b2t

2 + c2t+ d

s.t. px(0) = px0 , px(tf ) = pxf , ṗx(0) = v0 cos(φ0), ṗx(tf ) = vf cos(φf )

py(0) = py0 , py(tf ) = pyf , ṗy(0) = v0 sin(φ0), ṗy(tf ) = vf sin(φf )

(4.2)

We can solve these set of equations and find the values of a1, b1, c1, d1 and a2, b2, c2, d2.
a1

b1

c1

d1

 =


0 0 0 1
t3f t2f tf 1
0 0 1 0

3t2f 2tf 1 0


−1 

px0
pxf

v0 cos(φ0)
vf cos(φf )

 (4.3)


a2

b2

c2

d2

 =


0 0 0 1
t3f t2f tf 1
0 0 1 0

3t2f 2tf 1 0


−1 

py0
pyf

v0 sin(φ0)
vf sin(φf )

 (4.4)

After finding the coefficients for px(t) and py(t), we can then leverage the differential flatness
of the Dubins Car dynamics model to solve for φ(t), v(t), and ω(t) as seen in Equation (4.5).

φ(t) = tan−1(
py(t)

px(t)
)

v(t) =
√
py(t)2 + px(t)2

ω(t) =
p̈y(t)ṗx(t)− p̈x(t)ṗy(t)

py(t)2 + px(t)2

(4.5)
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Finally, we can create our candidate spline trajectory ξcandidate from x(t), u(t) where
x(t) = (px(t), py(t), φ(t)) and u(t) = (v(t), ω(t)). If ξcandidate satisfies all dynamic constraints
where xt = xt−1 + f(xt−1, ut−1) for regularly interleaved time intervals between t = 0 to T,
we can then add ξcandidate to the candidate set of dynamically feasible splines X .

To choose the optimal spline ξplanner from the set X , one can solve an optimization
problem that minimizes the cost of a spline trajectories’ positions over a potential field J
as described in Equation (4.1). In fact, J can be comprised of a sum of different potential
fields. For our running example, J is equivalent to Equation (4.6) where Jobs(x) penalizes
states in obstacles only and Jgoal(x) gives higher cost to states that are further from the goal.

J(x) = Jgoal(x) + λJobs(x) (4.6)

Figure 4.2. Signed Distance Potential Cost Function J

In practice, we note that this spline algorithm described above suffers from fatal singu-
larity conditions. To address this, we add the 3rd order spline parameterizations for time
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described in [32] to our planner. We left out such details for notational brevity and en-
courage interested readers to read the original reference for a more robust spline planner
implementation. We also notice that this MPC based spline planner still crashes quite often
when λ = 1 (i.e. Jgoal and Jobs are weighted equally). Thus, this spline planner serves as an
ideal test bed for our safety and blending framework. Finally, we reiterate that our blending
framework is planner agnostic and any planner would have been viable.

Blending MPC Pipeline

In the model predictive control replan loop, we first query the spline planner derived above
to get the trajectory ξplanner. Next, if we are in an unknown environment, we resolve for
the BRS as described in (2.4) with the new occupancy grid Ot. In the known environment,
the BRS is already solved for in the first MPC iteration. With the BRS V , value function
V , and planner trajectory ξplanner, we can now blend these three pieces of information into
a new trajectory ξblend. The robot can then execute this trajectory ξblend until T timesteps
are up or the robot enters an unsafe state where V (x) < 0. In this unsafe state, the robot
switches to only taking safety controls for the remainder of the MPC horizon as described in
Equation (2.9). To summarize, Algorithm 1 captures the main logic of our robot navigation
pipeline.

Algorithm 1: Blending MPC Pipeline

1 x0, x
∗: The start and goal states

2 O0: The binary occupancy grid at x0

3 Π(·, x∗, O0): The planner for the vehicle
4 V : Calculate the initial backwards reachable set using O0 and (2.4)
5 T : The control horizon
6 while the vehicle is not at the goal do
7 Obtain the current sensor observation St
8 Update the binary occupancy grid Ot

9 Apply the least restrictive control u(t) given by (2.9)
10 for every T seconds do
11 Replan the trajectory ξplanner ←− Π(·, x∗, Ot)
12 Recalculate the BRS V using Ot and (2.4)
13 Blend the trajectory ξblend using ξplanner, Π, V , V and blending schemes in 4.2
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4.2 Blending Schemes

Overview

We want to blend the information between the safety-preserving optimal controls u∗ encoded
in the value function V , the BRS safety set V , and planner trajectory ξplanner while also
ensuring efficient, smooth, and minimum-cost trajectories ξblend. This question is very much
an open problem and below we outline five candidate approaches for how to leverage the
value function information at planning time.

Approach 1: Bang Bang Control

Prior work [3] has tried using a switch-based control scheme to incorporate the safety set with
the default planner. The blending scheme first employs the default controls of the original
plan until the robot reaches an unsafe state. Then, the robot switches to only taking the
optimal safety controls of the BRS for the remainder of the MPC loop. This switching logic
can be succintly explained by Equation (2.9).

This bang bang control approach achieves safety by design and is minimally invasive to
the goal-reaching planner. The drawbacks of this approach is that there is high jerk when one
switches from the spline planner to the safety trajectory which can ultimately have negative
effects on the robot’s sensing ability, hardware, and any humans that may be in the loop.

Approach 2: Value Function Constrained Optimization

Other approaches have tried using the value function as a constraint inside the original
planner’s optimization procedure [21]. In this case, the motion planner is imbued with
the reachability value function. When determining a cost-minimizing plan, the robot must
choose states which ensure that the robot never enters the unsafe, sub-zero level set of the
value function. Note that in practice, it’s often useful to allow for some small tolerance ε
near the zero-level set due to model mismatch.

min
x0...xT

T∑
t=0

J(xt)

s.t. V (xt) > ε

xt = xt−1 + f(xt−1, ut−1)

ξt = (xt, ut)

ξ ∈ X

(4.7)

This approach ensures safety through its value function constraint and finds the mini-
mally invasive yet goal reaching trajectory. It has low jerk because all blended trajectories
are splines. For known environments, we hypothesize that this blending scheme will per-
form close to optimal as it solves for a short horizon approximation of the reach avoid
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HJI problem which has optimal guarantees [24]. In unknown environments, we expect this
blending scheme to produce infeasible trajectories for some scenarios as the robot may be
over-constrained by the value function requirements.

Approach 3: Unconstrained Optimization

An unconstrained blending formulation would alleviate the issues of feasibility that con-
strained optimization suffers from with drawback being that any safety guarantees would
no longer be valid. To address this, we can do a post-processing of the unconstrained op-
timization solution to ”correct” any of the unsafe parts of the trajectory. Below we detail
three different ways we can formulate an unconstrained optimization problem to arbitrate
between a safety trajectory ξsafety and goal reaching trajectory ξplanner.

Constant Alpha Blending

The value function V and planner trajectory ξplanner live in different spaces. Thus, to effec-
tively blend the two pieces of information, a safety trajectory ξsafety can be created which
lies in the trajectory space of ξplanner. To generate ξsafety, one can unroll the optimal control
u∗t starting at the robot’s position x0 for T time steps as seen in Algorithm 2.

Algorithm 2: Unroll Safety Trajectory

1 x0: The current position of the robot
2 V : The most recent value function
3 T : The control horizon
4 t←− 0: The current time stamp
5 ξsafety ←− {}: Initialize empty safety trajectory
6 while t < T do
7 u∗t = getOptCtrl(V, xt): Get optimal safety control at current state
8 ξsafety = {(xt, u∗t )}+ ξsafety: Add state and control to safety trajectory
9 xt+1 = xt + f(xt, u

∗
t ): Update state with optimal safe control

10 t←− t+ 1: Update time stamp

Next, one can blend the safety trajectory ξsafety and goal reaching trajectory ξplanner in
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an unconstrained optimization problem as seen in Equation (4.8).

min
xblend
0 ...xblend

T

T∑
t=0

α‖xblendt − xplannert ‖2
2 + (1− α)‖xblendt − xsafetyt ‖2

2

s.t. xblendt = xblendt−1 + f(xblendt−1 , ublendt−1 )

ξblendt = (xblendt , ublendt )

ξplannert = (xplannert , uplannert )

ξsafetyt = (xsafetyt , usafetyt )

ξblend ∈ X

(4.8)

If we linearize the dynamics and exclude the spline constraints, this unconstrained optimiza-
tion problem can be recast as a canonical LQR problem [26]. The α blending parameter
controls how much we want to stay near the original planned trajectory ξplanner versus the
safe trajectory ξsafe and lies between [0, 1]. If α = 0, the robot will always choose the safety
trajectory and remain stuck in a loop. If α = 1, we return to the bang bang control scheme
described in Section 4.2. In practice, we found that no constant alpha was robust enough
to account for all real world point navigation scenarios. Thus, we seek to improve upon this
unconstrained optimization formulation with the following two approaches.

Sampled Alpha Blending

In order to guarantee the safety of the trajectories produced by alpha blending, one can
sample α from [0− 1] in a decreasing order and re-solve Equation (4.8) until the blended
trajectory ξblend is safe. This is similar to using the value function as a constraint as we
saw in Section 4.7, yet different due to the fact that we are resolving an unconstrained
optimization problem with each sampled α. This blending scheme searches through the
space of optimization loss functions by decreasing α until we arrive at a loss function whose
solution ξblend satisfies the safety constraint. Specifically, the optimization problem we solve
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for is shown in Equation (4.9).

max
α

min
xblend
0 ...xblend

T

T∑
t=0

α‖xblendt − xplannert ‖2
2 + (1− α)‖xblendt − xsafetyt ‖2

2

s.t. V (xblendt ) ≥ 0

0 ≤ α ≤ 1

xblendt = xblendt−1 + f(xblendt−1 , ublendt−1 )

ξblendt = (xblendt , ublendt )

ξplannert = (xplannert , uplannert )

ξsafetyt = (xsafetyt , usafetyt )

ξblend ∈ X

(4.9)

This approach achieves safety by constraint and finds the minimally invasive alpha to
blend the BRS V , value function V , and goal reaching trajectory ξplanner. For known and
unknown environments, we expect this blending scheme to perform close to optimal due to
its sampling nature of alpha that finds the minimally invasive optimization problem whose
solution is a safe trajectory.

Value Function Alpha Blending

Another way one might blend the safety trajectory ξsafety and goal reaching trajectory ξplanner

is to solve the unconstrained optimization problem described in Equation (4.8) with alpha
derived from the value function V (x). Intuitively, the value function is a good proxy of
when we should compare against the safety trajectory ξsafety or planned trajectory ξplanner.
Specifically, if we are in unsafe state where V (x) is low, we want to penalize staying away
from the original safe trajectory ξsafety so α should be low. Conversely, if we are in very safe
states where V (x) is high, we don’t need to stay close to the safety trajectory so α should be
high. Thus, the value function based optimization problem can be formulated in Equation
(4.10) as:

min
xblend
0 ...xblend

T

T∑
t=0

αt‖xblendt − xplannert ‖2
2 + (1− αt)‖xblendt − xsafetyt ‖2

2

s.t. αt = g(V (xt))

xblendt = xblendt−1 + f(xblendt−1 , ublendt−1 )

ξblendt = (xblendt , ublendt )

ξplannert = (xplannert , uplannert )

ξsafetyt = (xsafetyt , usafetyt )

ξblend ∈ X

(4.10)
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The value function output V (x) lies in a continuous space R of all real numbers while
α lies between [0, 1]. To account for this, we investigated a series of alpha functions g that
map a value function output to the space [0, 1] as seen in Figure 4.3

Figure 4.3. Alpha Functions

Experimentally, we found the optimal alpha function in known environments to be g(x) =

max(min(x
2
5 , 1), 0) and the optimal alpha function in unknown environments to be g(x) =

max(min(x
1
4 , 1), 0). Thus, for all future results, we use the aforementioned g functions to

map value function outputs to alphas α.
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4.3 Results

Table 4.1 shows the results of the algorithms mentioned above tested with 100 sampled sce-
narios in a known AWS bookstore environment. Table 4.2 shows the results of the algorithms
tested with 100 sampled scenarios in an unknown AWS bookstore environment. Figure 4.4
shows an example of a robot navigating in this simulated bookstore world with different
blending schemes. Figure 4.5 shows the key metrics we profile for a robot trajectory.

Table 4.1. Known Environment Results: The success metric counts the number of point navigation
scenarios that reached the goal location x∗ within 0.5 meters. The crash metric counts the number of
scenarios where the robot crashed into an obstacle. The timeout metric counts the number of scenarios
where the robot ran for more than 1000 timesteps. The total number of test scenarios is 100. For the
67 scenarios in which all 4 algorithms succeeded, we measured the jerk, time taken, and number of safety
controls each robot took. Jerk is measured in m/s3. Time Taken is measured in seconds. Num Safety counts
the total number of safety controls the robot took to navigate through the environment to the goal.

Method Success Crash Timeout Jerk Time
Taken

Num
Safety

Bang Bang (2.9) 82 14 4 0.33 22.75 41.5
Constrained Optimization
(4.7)

87 1 12 0.15 20.49 5.55

Sampled Alpha (4.9) 81 12 7 0.27 22.14 31.15
Value Function Alpha
(4.10)

85 7 8 0.28 23.30 32.75

Table 4.2. Unknown Environment Results: The success metric counts the number of point navigation
scenarios that reached the goal location x∗ within 0.5 meters. The crash metric counts the number of
scenarios where the robot crashed into an obstacle. The timeout metric counts the number of scenarios
where the robot ran for more than 1000 timesteps. The total number of test scenarios is 100. For the
22 scenarios in which all 4 algorithms succeeded, we measured the jerk, time taken, and number of safety
controls each robot took. Jerk is measured in m/s3. Time Taken is measured in seconds. Num Safety counts
the total number of safety controls the robot took to navigate through the environment to the goal.

Method Success Crash Timeout Jerk Time
Taken

Num
Safety

Bang Bang (2.9) 74 12 14 0.133 8.04 40.75
Constrained Optimization
(4.7)

67 2 32 0.085 7.735 8.21

Sampled Alpha (4.9) 82 4 14 0.075 11.56 7.3
Value Function Alpha
(4.10)

34 5 61 0.073 17.91 21.25

For the curious reader, one may look at the unknown environment results, known en-
vironment results, unknown environment plots, and known environment plots for a more

https://docs.google.com/spreadsheets/d/1iGt3TIhQT2URcAo91xGabPvCbsk9aFvviDL7tkEz02Q/edit#gid=1791201822
https://docs.google.com/spreadsheets/d/1iGt3TIhQT2URcAo91xGabPvCbsk9aFvviDL7tkEz02Q/edit#gid=472574939
https://docs.google.com/spreadsheets/d/1iGt3TIhQT2URcAo91xGabPvCbsk9aFvviDL7tkEz02Q/edit#gid=472574939
https://drive.google.com/drive/folders/1lL7ceeNvR0gybtQY76HfbGfKflXovyyx?usp=sharing
https://drive.google.com/drive/folders/1h-6rxeIYv7fhTN_vJiw0UwcAhmgnrwik?usp=sharing
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concrete understanding of each blending scheme’s performance. All blending scheme plots
have been grouped by success, crash, and time limit exceeded (TLE) outcomes so that one
can get a general sense of an blending scheme’s failure and success modes.

Figure 4.4. Robot trajectories with different blending schemes: The robot is moving from the start
position in blue to the goal position (black X ). Several different blending schemes are plotted in different
colors. Value Alpha (Red): Value Function Alpha (4.10), Sample Alpha (Blue): Sampled Alpha (4.9), Mo
and Karen (Orange): Constrained Optimization (4.7), CDC (Pink): Bang Bang Control (2.9). The reach
avoid trajectory in green is the HJI solution that we use as an optimal baseline. The pink outline is the BRS
V .
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Figure 4.5. Trajectory Metrics We logged several metrics of the robot’s trajectory including the linear
jerk, angular jerk, alpha blend probability, average safety score V (x), distance to goal, and distance to
optimal trajectory (reach avoid trajectory)

4.4 Discussion

Known Environments

The constrained optimization blending scheme achieved the highest success rate of 87% in
the known environment. Since constrained optimization plans around the obstacles, it took
significantly less safety controls than unconstrained optimization methods. However, all
algorithms reached greater than 80% success rate in the known environment indicating that
this environment may be too simple for conclusive results. As expected, the bang bang
control blending scheme had the highest jerk among all algorithms. Table 4.3 summarizes
the key properties of this section’s algorithms for a known environment.
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Algorithm Low Jerk Safe Trajectory Goal Reaching
Bang Bang (2.9) 7 3 3

Constrained Optimization
(4.7)

3 3 3

Sampled Alpha (4.9) 3 3 3

Value Function Alpha
(4.10)

3 7 3

Table 4.3. Blending Scheme Properties for Known Environment

Unknown Environments

The sampled alpha blending scheme achieved the highest success rate of 82% in the unknown
environment. We expect this is cause this blending scheme finds the minimally invasive
unconstrained optimization problem that blends both the safety and goal reaching planner.
The constrained optimization blending scheme timed out more frequently in the unknown
environment due to the blending scheme being over constrained as seen in Figure 4.6a.
We also witnessed the value function alpha blending scheme timing out significantly more
frequently with a lot of scenarios getting stuck in local minimums as seen in Figure 4.6b.

(a) Robot being overly constrained due to the con-
strained optimization blending scheme

(b) Robot getting stuck in local minimum for the
value function alpha blending scheme

Table 4.4 summarizes the key properties of this section’s algorithms for an unknown
environment.
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Algorithm Low Jerk Safe Tra-
jectory

Goal Reach-
ing

Feasible

Bang Bang (2.9) 7 3 3 3

Constrained Optimization
(4.7)

3 3 3 7

Sampled Alpha (4.9) 3 3 3 3

Value Function Alpha
(4.10)

3 7 3 7

Table 4.4. Blending Scheme Properties for Unknown Environment

Failure Modes

Two failure modes that we saw in our point navigation experiments included robots crashing
and robots exceeding the 1000 time step limit.

HJI-analysis based navigation has theoretical guarantees that the robot should never
crash. However, in real world environments, we witnessed several collisions similar to the
examples seen in Figure 4.7a and Figure 4.7b. We investigated all crash scenarios and found
that the robot collisions only occur near obstacles of size 1, 2, or 3. We also ran these
experiments on a simpler environment with a lack of small obstacles and report no crashes.
This indicates that HJI safety guarantees display numerical instabilities near small obstacles
for it’s current helperOC dev implementation described in Section 2.5. We suggest padding
small obstacles to reduce numerical instabilities for future experiments.

(a) Robot Crash Example 1 (b) Robot Crash Example 2
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Another issue lies in path planning algorithms getting stuck in infinite loops near tight
corridors and long objects. This can be seen in examples such as Figure 4.6b. Fixing this
issue would require some sort of memory for the robot’s previous history and is an interesting
direction for future work.

4.5 Summary

In this chapter, we explored a series of bang bang control, constrained optimization, and
unconstrained optimization blending schemes that incorporated the safety BRS V , value
function V , and spline planners Π to produce a new trajectory ξblend. Interesting future
work includes adding sensor noise to the dynamics models, incorporating uncertainty within
the occupancy grid values, and testing these blending algorithms with different planners.
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Chapter 5

Conclusion and Future Work

Providing safe, efficient, smooth, and goal-reaching planners for real-world autonomous sys-
tems operating in a priori unknown environments is a challenging but important problem.
In this thesis, we first introduced the BEACLS ROS toolkit that aims to speed up BRS cal-
culations for safe robotic navigation. Next, we explored how the BRS can be blended with
different planners to yield varying degrees of smooth, safe, feasible, and goal reaching poli-
cies. Finally, we demonstrated our approaches on an exhaustive test bed of 3D simulation
scenarios.

Many promising future directions emerge from this thesis. For starts, one big assumption
that we make in this thesis is that sensor measurements are accurate. Extending uncertainty
into state estimation would be necessary for bringing this thesis’ framework into real world
navigation tasks. Next, extensions to bridge the gap between this thesis’ static environment
assumption with the dynamic, multi-agent real world is another promising direction to re-
search. Finally, many failure cases in the point navigation tasks came from the difficulty of
long term planning with HJI-VI. More investigation into successful long term planning algo-
rithms will help drive the error rates of our algorithms down and will be vital to deploying
robotic navigation planners in the real world.
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