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Abstract
Recent work learns contextual representations of
source code by reconstructing tokens from their
context. For downstream semantic understand-
ing tasks like summarizing code in English, these
representations should ideally capture program
functionality. However, we show that the popular
reconstruction-based BERT model is sensitive to
source code edits, even when the edits preserve

semantics. We propose ContraCode: a contrastive
pre-training task that learns code functionality,
not form. ContraCode pre-trains a neural net-
work to identify functionally similar variants of a
program among many non-equivalent distractors.
We scalably generate these variants using an au-
tomated source-to-source compiler as a form of
data augmentation. Contrastive pre-training im-
proves JavaScript summarization and TypeScript
type inference accuracy by 2% to 13%. We also
propose a new zero-shot JavaScript code clone de-
tection dataset, showing that ContraCode is both
more robust and semantically meaningful. On it,
we outperform RoBERTa by 39% AUROC in an
adversarial setting and up to 5% on natural code.

1. Introduction
Programmers increasingly rely on machine-aided program-
ming tools to aid software development (Kim et al., 2012).
These tools analyze or transform code automatically. Tradi-
tionally, code analysis uses hand-written rules, though the
wide diversity of programs encountered in practice can limit
their generality. Recent work uses machine learning to im-
prove performance through richer language understanding,
such as learning to detect bugs (Pradel & Sen, 2018) and
predict performance (Mendis et al., 2019).

Still, program datasets suffer from scarce annotations due to
the time and expertise needed to label code. Synthetic auto-
generated labels are used for method naming (Alon et al.,
2019a;b) and bug detection (Ferenc et al., 2018; Pradel &

*Equal contribution 1University of California, Berkeley. Cor-
respondence to: Paras Jain <parasj@berkeley.edu>, Ajay Jain
<ajayj@berkeley.edu>.

Figure 1. Robust code clone detection: When trained on source
code, BERT is not robust to simple label-preserving code edits
like renaming variables. Adversarially selecting between possible
edits lowers performance below random guessing. Contrastive
pre-training with ContraCode learns a more robust representation
of functionality that is consistent across code transforms.

function (len) {
  for (i = 0; i < len, i++) {
    ...
  }
}

function (n) { while (i < n) { ... } }

function (str, len) { return str.slice(0, len); }

function f(n) { return n<2 ? 1 : f(n-1) + f(n-2); }

function (arr) { for (i of arr) { ... } }

Maximize similarity with equivalent programs

Minimize similarity with
functionally different programs

Given a program,

Figure 2. For many learned analyses, programs with the same func-
tionality should have similar representations. ContraCode learns
such representations by pre-training an encoder to retrieve equiva-
lent, transformed programs among many distractors.

Sen, 2018; Benton et al., 2019). However, synthetic code
datasets have duplication issues (Allamanis, 2019) and bi-
ases (Shin et al., 2019) that can degrade generalization.
Moreover, supervised models are not robust to adversarial
code edits, suffering significant accuracy loss when vari-
ables are renamed (Yefet et al., 2019), statements are per-
muted, or other semantics-preserving transformations are
applied (Wang & Christodorescu, 2019; Wang & Su, 2019;
Rabin & Alipour, 2020).

In contrast, self-supervised models can acquire knowledge
from large open-source repositories such as GitHub with-
out annotations. Inspired by the success of pre-training in
natural language processing, Ben-Nun et al. (2018) use self-
supervision to learn code token embeddings like word2vec.
More recently, the popular BERT model family (Devlin
et al., 2018) has been applied to code (Kanade et al., 2020;
Feng et al., 2020; Guo et al., 2020). BERT pre-trains a
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Figure 3. A UMAP visualization of JavaScript method represen-
tations learned by RoBERTa and ContraCode, in R2. Programs
with the same functionality share color and number. RoBERTa’s
embeddings often do not cluster by functionality, suggesting that
it is sensitive to implementation details. For example, many dif-
ferent programs overlap, and renaming the variables of Program
19 significantly changes the embedding. In contrast, variants of
Program 19 cluster in ContraCode’s embedding space.

Transformer (Vaswani et al., 2017) on programs by recon-
structing masked or replaced tokens from context. This
objective is called masked language modeling (MLM).

However, we find that BERT is sensitive to implementa-
tion details. Figure 1 shows the performance of two self-
supervised models on a binary classification task: detecting
whether two programs solve the same problem. We mine
these programs from the HackerRank interview prepara-
tion website. While BERT has comparable performance
on the original user-submitted programs (0 edits), BERT’s
performance greatly degrades when the programs are adver-
sarially transformed e.g. by renaming variables and deleting
dead code (1-16 edits). These transforms do not change the
functionality of the programs, so are label-preserving. Qual-
itatively, program representations are not invariant to edits
(Figure 3). This could be because accurate reconstructions
during pre-training mostly depend on syntactic and program
implementation details.

Motivated by the sensitivity of supervised learning and
reconstruction-based pre-training, we develop ContraCode:
a self-supervised learning algorithm that explicitly opti-
mizes for representations of program functionality. We hy-
pothesize that programs with the same functionality should

have similar underlying representations for downstream
code understanding tasks. ContraCode generates syntacti-
cally diverse but functionally similar programs with source-
to-source compiler transformation techniques (e.g., dead
code elimination, obfuscation and constant folding). Con-

traCode uses these programs in a challenging discriminative
pretext task that requires the model to identify equivalent
programs out of a large dataset of distractors, illustrated in
Figure 2. To solve this task, the model has to embed code
semantics rather than syntax. In essence, we specify domain
knowledge about desired invariances through code trans-
formations. ContraCode improves robustness even under
the most adversarial setting in Figure 1, and consistently
improves downstream code understanding on other tasks.
The contributions of our work include:

1. the novel use of compiler-based transformations as data
augmentations for code,

2. the concept of program representation learning based
on functional equivalence, and

3. a detailed analysis of architectures, code transforms
and pre-training strategies, showing ContraCode im-
proves type inference top-1 accuracy by 9%, learned
inference by 2%–13%, summarization F1 score by up
to 8% and clone detection AUROC by 2%–46%.

2. Related Work
Self-supervised learning (SSL) is a general representa-
tion learning strategy where some dimensions or attributes
of a datapoint are predicted from the remaining parts.
These methods are unsupervised in the sense that they
do not rely on labels, but SSL tasks often adapt losses
and architectures designed for supervised learning. Self-
supervised pre-training has yielded large improvements in
both NLP (Howard & Ruder, 2018; Devlin et al., 2018;
Radford et al., 2018; 2019) and computer vision (Maha-
jan et al., 2018) by improving generalization (Erhan et al.,
2010; Hao et al., 2019). Weak visual features, such as ori-
entation (Gidaris et al., 2018), color (Zhang et al., 2016),
and context (Pathak et al., 2016), are meaningful signals for
representations (Mahajan et al., 2018).

Contrastive learning unifies many past SSL approaches
that compare pairs or collections of similar and dissimi-
lar items (Hadsell et al., 2006). Rather than training the
network to predict labels or reconstruct data, contrastive
methods minimize the distance between the representations
of similar examples (positives) while maximizing the dis-
tance between dissimilar examples (negatives). Examples
include Siamese networks (Bromley et al., 1994) and triplet
losses (Schroff et al., 2015). Contrastive predictive cod-
ing (Oord et al., 2018; Hénaff et al., 2019) learns to encode
chunks of sequential data to predict future chunks with the
InfoNCE loss, a variational lower bound on mutual informa-
tion between views of the data (Tian et al., 2019; Wu et al.,
2020) inspired by noise-constrastive estimation (Gutmann
& Hyvärinen, 2010). In instance discrimination tasks (Wu
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et al., 2018), views and not pieces of an entire image are
compared. SimCLR (Chen et al., 2020a) and Momentum
Contrast (He et al., 2019; Chen et al., 2020b) recently made
progress by using many negatives for dense loss signal. Be-
yond images, InfoNCE has been applied to NLP (Chuang
et al., 2020; Giorgi et al., 2020), but may require supervi-
sion (Fang & Xie, 2020).

Code representation learning Many works apply machine
learning to code (Allamanis et al., 2018). We address code
clone detection (White et al., 2016), variable type infer-
ence (Hellendoorn et al., 2018), and summarization (Alon
et al., 2019a). Others have also explored ML for summariza-
tion (Movshovitz-Attias & Cohen, 2013; Allamanis et al.,
2016; Iyer et al., 2016) and type inference (Pradel et al.,
2019; Pandi et al., 2020; Wei et al., 2020; Allamanis et al.,
2020; Bielik & Vechev, 2020) with various languages and
datasets. The tree or graph structure of code can be exploited
to encode invariances in the representation. Inst2vec (Ben-
Nun et al., 2018) locally embeds individual statements in
LLVM IR by processing a contextual flow graph with a
context prediction objective (Mikolov et al., 2013). Tree-
Based CNN embeds the Abstract Syntax Tree (AST) nodes
of high-level source code. Code2seq (Alon et al., 2019a)
embeds AST paths with an attention-based encoder and
LSTM decoder for supervised sequence-to-sequence tasks.
Kanade et al. (2020) and Feng et al. (2020) pre-train a Trans-
former (Vaswani et al., 2017) on code using variants of the
masked language modeling objective (Devlin et al., 2018),
an instance of the cloze task (Taylor, 1953) for reconstruct-
ing corrupted tokens. Recurrent networks have also been
pre-trained on code (Hussain et al., 2020) as language mod-
els (Peters et al., 2018; Karampatsis & Sutton, 2020).

3. Approach
Understanding global program functionality is important
for difficult semantic tasks. For these problems, learned
representations should be similar for functionally equivalent
programs and dissimilar for non-equivalent programs. The
principle of contrastive learning offers a simple approach for
learning such representations if data can be organized into
pairs of similar positives and dissimilar negatives (Arora
et al., 2019). We use these to shape representation space,
drawing positives together and pushing negatives apart. A
major question remains: given an unlabeled corpus of pro-

grams, how do we identify or generate similar programs for

positives? We address this question in §3.1 and §3.2, then
introduce our learning framework in §3.3.

3.1. Compilation as data augmentation

Modern programming languages afford great flexibility
to software developers, allowing them to implement the
same desired functionality in different ways. Crowdsourced

Code compression Identifier modification
3 Reformatting (R) 3 Variable renaming (VR)
3 Beautification (B) 3 Identifier mangling (IM)
3 Compression (C) Regularization
3 Dead-code elimination (DCE) 3 Dead-code insertion (DCI)
3 Type upconversion (T) 3 Subword regularization (SW)
3 Constant folding (CF) 7 Line subsampling (LS)

3 = semantics-preserving transformation 7 = lossy transformation

Table 1. We augment programs with 11 automated source-to-
source compiler transformations. 10 are correct-by-construction
and preserve operational semantics. More details are in Sec. A.

datasets mined from developers, such as GitHub reposito-
ries, have many near-duplicates in terms of textual similar-
ity (Allamanis, 2019), and are bound to contain even more
functional equivalences for common tasks. Satisfiability
solvers can identify these equivalent programs (Joshi et al.,
2002; Bansal & Aiken, 2006), but functional equivalence
is undecidable in general (Rice, 1953). Also, formal docu-
mentation of semantics is required. Programs can instead be
compared approximately using test-cases (Massalin, 1987),
but this is costly and requires executing untrusted code.

Instead of searching for equivalences, we propose correct
by construction data augmentation. Our insight is to ap-
ply source-to-source compiler transformations to unlabeled
code to generate many variants with the same functionality.
For example, dead-code elimination (DCE) is a common
compiler optimization that removes operations that leave
the output of a function unchanged. While DCE preserves
program functionality, Wang & Christodorescu (2019) find
that up to 12.7% of the predictions of current supervised al-
gorithm classification models change after DCE. Supervised
datasets were insufficient to acquire the domain knowledge
that DCE does not change the algorithm.

We unambiguously parse a particular source code se-
quence, e.g. W*x + b into a tree-structured representation
(+ (* W x) b) called an Abstract Syntax Tree (AST).
This tree is then transformed by automated traversal algo-
rithms. A rich body of prior programming language work
explores parsing then transforming ASTs to optimize a pro-
gram prior to machine code generation. If source code is
emitted by the compiler rather than machine code, this is
called source-to-source transformation. Source-to-source
transformations are common for optimization and obfusca-
tion purposes in dynamic languages like JavaScript. Further,
if each transformation preserves code functionality, then any
composition also preserves code functionality.

We leverage the Babel and Terser compiler infrastructure
tools for JavaScript (McKenzie et al., 2020; Santos et al.,
2020) to perform different transformations on method bod-
ies. Example transformations are shown in Figure 4. Table 1
and the supplement list all transformations, but we broadly
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function x(maxLine) {
  const section = {
    text: '',
    data
  };

  for (; i < maxLine; i += 1) {
    section.text += `${lines[i]}\n`;
  }

  if (section) {
    parsingCtx.sections.push(section);
  }
}

Original JavaScript method

function x(t) {
  const n = {
    'text': '',
    'data': data
  };
  for (;i < t; i += 1) {
    n.text += lines[i] + '\n';
  }
  n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style, 
explicit concatenation, inline conditional

function x(t){const 
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

Figure 4. A JavaScript method from our unlabeled training set with two automatically generated
semantically-equivalent programs. The method is from the StackEdit Markdown editor.

Figure 5. Histogram of the number
of unique transformed variants per
JavaScript method during pre-training.

group program transformations into three categories.

Code compression passes change the syntactic structure of
code and perform correct-by-construction transformations
such as pre-computing constant expressions at compile time.
Identifier modification transformations substitute method
and variable names with random or short tokens, masking
part of the human-readable information in a program but
leaving its functionality unchanged. Finally, transforma-
tions for Regularization improve model generalization by
reducing the number of trivial positive pairs with high text
overlap. The line subsampling pass in this group potentially
modifies program semantics.

3.2. Transformation dropout for view diversity

Computer vision datasets are often augmented with altered
images like crops. Back-translations have been used as data
augmentations for natural language (Sennrich et al., 2016).
Similarly, each compiler transformation is an augmentation
to a program. Each transformation is a function ⌧ : P ! P ,
where the space of programs P is composed of both the set
of valid ASTs and the set of programs in source form.

Stochastic augmentations like random crops generate many
views of an image, but most of our compiler-based transfor-
mations are deterministic. To produce a diverse set of trans-
formed programs, we randomly apply a subset of available
compiler passes in a pre-specified order, applying transform
⌧i with probability pi. Intermediate programs are converted
between AST and source form as needed for the compiler.
Algorithm 1 details our transformation dropout procedure.

Figure 5 measures the resulting diversity in programs. We
precompute up to 20 augmentations of 1.8M JavaScript
methods from GitHub. Algorithm 1 deduplicates method
variants before pre-training since some transforms will leave
the program unchanged. 89% of the methods have more
than one alternative after applying 20 random sequences of
transformations. The remaining methods without syntacti-
cally distinct alternatives include one-line functions that are
obfuscated. We apply subword regularization (Kudo, 2018)
as a final transformation to derive different tokenizations

every batch, so pairs derived from the same original method
will still differ. All transformations are fast; our compiler
transforms 300 functions per second on a single CPU core.

Algorithm 1 Transformation dropout: Stochastic pro-
gram augmentation with two encodings (AST or source).
1: Input: Program source x, transformation functions ⌧1, . . . ⌧k,

transform probabilities p1, . . . pk, count N
2: Returns: N variants of x
3: V  {x}, a set of augmented program variants
4: for SAMPLE i 1 . . . N � 1 do
5: x0  x
6: for transform t 1 . . . k do
7: Sample yt ⇠ Bernoulli(pt)
8: if yt = 1 then
9: if REQUIRESAST(⌧t(·)) and ¬ISAST(x0) then

x0  PARSETOAST(x0)
10: else if ¬REQUIRESAST(⌧t(·)) and ISAST(x0) then

x0  LOWERTOSOURCE(x0)
11: x0  ⌧t(x

0)
12: end if
13: end for
14: if ISAST(x0) then x0  LOWERTOSOURCE(x0)
15: V  V [ {x0}
16: end for
17: return V

3.3. Learning an encoder with contrastive pre-training

While BERT pre-trains a neural program encoder by recon-
structing tokens (a generative task), we apply constrative
learning to code by shaping the representation at the method
level. Contrastive learning is a natural framework to in-
duce invariances into a model by attracting positives while
repelling negatives. To adapt recent contrastive learning
objectives for images to code representation learning, we
leverage the augmentations discussed in Section 3.1-3.2 to
define the positive program pairs. Dissimilar negatives are
randomly sampled from other programs. We extend the
Momentum Contrast method (He et al., 2019) that was de-
signed for image representation learning. In our case, we
learn a program encoder fq that maps a sequence of pro-
gram tokens to a single, fixed dimensional embedding. This
embedding is projected with a small MLP before computing
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function (...) {
    for ...
}

function log() {
    var num = ...
}

function () {... }

Unlabeled
programs

ContraCode
compiler

function (...) {
    while ...
}

function x() {
    var a = ... 
}

function () {... }

Augmented
variants

Sample & tokenize
positives

fq
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Figure 6. ContraCode pre-trains a neural program encoder fq and transfers it to downstream tasks. A-B. Unlabeled programs are
transformed C. into augmented variants. D. We pre-train fq by maximizing similarity of projected embeddings of positive program
pairs–variants of the same program–and minimizing similarity with a queue of cached negatives. E. ContraCode supports any architecture
for fq that produces a global program embedding such as Transformers and LSTMs. fq is then fine-tuned on smaller labeled datasets.

the pre-training objective.

Pre-training objective The contrastive objective maxi-
mizes the similarity of positives without collapsing onto
a single representation. Like He et al. (2019), we use In-
foNCE (Oord et al., 2018), a tractable objective that frames
contrastive learning as a classification task: can the pos-
itives be identified among a batch of sampled negatives?
InfoNCE computes the probability of selecting the positive
(transformed program) by taking the softmax of projected
embedding similarities across a batch of negatives. Eq. (1)
shows the InfoNCE loss for instance discrimination, a func-
tion whose value is low when q is similar to the positive key
embedding k+ and dissimilar to negative key embeddings
k�. t is a temperature hyperparameter (Wu et al., 2018).

Lq,k+,k� = � log exp(q·k+/t)
exp(q·k+/t)+

P
k� exp(q·k�/t)

(1)
The query representation q = fq(xq) is computed by the
encoder network fq, and xq is a query program. Likewise,
k = fk(xk) using the EMA key encoder fk. Views xq, xk

depend on the specific domain and pretext task. In our case,
the views are tokenized representations of the augmented
programs, and the summation

P
k� in the normalizing de-

nominator is taken over the queue of pre-computed negatives
as well as other non-matching keys in the batch.

To reduce memory consumption, we enqueue past batches
to cache activations for negative samples. These cached
samples are valid negatives if the queue is smaller than the
dataset size. Following He et al. (2019), the query encoder
fq is trained via gradient descent while the key encoder fk is
trained slowly via an exponential moving average (EMA) of
the query encoder parameters. The EMA update stabilizes
the pre-computed key embeddings across training iterations.
Since keys are only embedded once per epoch, we use a very
large set of negatives, over 100K, with minimal additional
computational cost and no explicit hard negative mining.

ContraCode is agnostic to the architecture of the program
encoder fq. We evaluate contrastive pre-training of 6-
layer Transformer (Vaswani et al., 2017) and 2-layer BiL-
STM (Schuster & Paliwal, 1997; Huang et al., 2015) archi-
tectures, with specific details in Section 4.

Transfer learning After pre-training converges, the en-
coder fq is transferred to downstream tasks. For code clone
detection, we transfer the representation fq(x) in zero-shot,
without fine-tuning. For tasks where the output space differs
from the encoder, we add a task-specific MLP or Trans-
former decoder after fq , then fine-tune the resulting network
end-to-end on labeled task data.

4. Evaluation
We evaluate whether self-supervised pre-training with Con-
traCode improves JavaScript and TypeScript code analysis
through (1) code clone detection (Baker, 1992), (2) extreme
code summarization (Allamanis et al., 2016) and (3) type
inference (Hellendoorn et al., 2018) tasks.

Clone detection experiments show that contrastive and hy-
brid representations with our compiler-based augmentations
are predictive of program functionality in-the-wild, and that
contrastive representations are the most robust to adversarial
edits (§4.1). Contrastive pre-training outperforms baseline
supervised and self-supervised methods on all three tasks
(§4.1-4.3). Finally, ablations suggest it is better to aug-
ment unlabeled programs during pre-training rather than
augmenting smaller supervised datasets (§4.4).

Experimental setup Models are pre-trained on Code-
SearchNet, a large corpus of methods extracted from popular
GitHub repositories (Husain et al., 2019). CodeSearchNet
contains 1,843,099 JavaScript programs. Only 81,487 meth-
ods have both a documentation string and a method name.
The asymmetry between labeled and unlabeled programs
stems from JavaScript coding practices where anonymous
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Table 2. Zero-shot code clone detection with cosine similarity probe. Contrastive and hybrid representations improve clone detection
AUROC on unmodified (natural) HackerRank programs by +8% and +10% AUROC over a heuristic textual similarity probe, respectively,
suggesting they are predictive of functionality. Contrastive representations are also the most robust to adversarial code transformations.

Natural code Adversarial (N=4) Adversarial (N=16)
AUROC AP AUROC AP AUROC AP

Edit distance heuristic 69.55±0.81 73.75 31.63±0.82 42.85 12.11±0.54 32.46
Randomly initialized Transformer 72.31±0.79 75.82 22.72±0.20 37.73 3.09±0.28 30.95

+ RoBERTa MLM pre-train 74.04±0.77 77.65 25.83±0.21 39.46 4.51±0.33 31.17
+ ContraCode pre-train 75.73±0.75 78.02 64.97±0.24 66.23 58.32±0.88 59.66
+ ContraCode + RoBERTa MLM 79.39±0.70 81.47 37.81±0.24 51.42 10.09±0.50 32.52

functions are widespread. The pre-training dataset described
in Section 3.1 is the result of augmenting all 1.8M programs.

As our approach supports any encoder, we evaluate two ar-
chitectures: a 2-layer Bidirectional LSTM with 18M param-
eters, similar to the supervised model used by Hellendoorn
et al. (2018), and a 6-layer Transformer with 23M parame-
ters. For a baseline self-supervised approach, we pre-train
both architectures with the RoBERTa MLM objective, then
transfer it to downstream tasks.

4.1. Evaluating Functionality and Robustness:
Zero-shot Code Clone Detection

ContraCode learns to match variants of programs with sim-
ilar functionality. While transformations produce highly
diverse token sequences (quantified in the supplement), they
are artificial and do not change the underlying algorithm.
Human programmers can solve a problem with many data
structures, algorithms and programming models. Are pre-
trained representations consistent across programs written
by different people? We benchmark on code clone detection,
a binary classification task to detect whether two programs
solve the same problem or different ones. This is useful for
deduplicating, refactoring and retrieving code, as well as
checking approximate code correctness.

Datasets exist like BigCloneBench (Svajlenko et al., 2014),
but to the best of our knowledge, there is no benchmark
for the JavaScript programming language. We collected
274 in-the-wild JavaScript programs correctly solving 33
problems from the HackerRank interview preparation web-
site. There are 2065 pairs solving the same problem and
70K pairs solving different problems, which we randomly
subsample to 2065 to balance the classes. Since we probe
zero-shot performance based on pre-trained representations,
there is no training set. Instead, we threshold cosine sim-
ilarity of pooled representations of the programs u and v:
uT v/kukkvk. Many traditional code analysis methods for
clone detection measure textual similarity (Baker, 1992).
As a baseline heuristic, we threshold the dissimilarity score,
a scaled Levenshtein edit distance between normalized and
tokenized programs that excludes formatting changes.

Table 2 reports the area under the ROC curve (AUROC) and
average precision (AP, area under Precision-Recall). All
continuous representations improve clone detection over
the heuristic on natural code. Self-supervision through
RoBERTa MLM pre-training improves over a randomly
initialized network by +1.7% AUROC. Contrastive pre-
training achieves +3.4% AUROC over the same baseline.
A hybrid objective combining both the contrastive loss and
MLM has the best performance with +7.0% AUROC (+5.4%
over MLM alone). This indicates that ContraCode learns
a a more useful representation of functionality than MLM,
though both objectives are useful for natural code.

However, are these representations robust to code edits? We
adversarially edit one program in each pair by applying the
loss-maximizing code compression and identifier modifica-
tion transformation among N samples from Algorithm 1.
These transformations preserve program functionality, so
ground-truth labels are unchanged. With only 4 possible
edits, RoBERTa performs worse than the heuristic (-5.8%
AUROC) and worse than random guessing (50% AUROC),
indicating it is highly sensitive to these kinds of implemen-
tation details. ContraCode retains much of its performance
(+39% AUROC over RoBERTa) as it explicitly optimizes
for invariance to code edits. Surprisingly, the hybrid model
is less robust than ContraCode alone, perhaps indicating
that MLM learns non-robust features (Ilyas et al., 2019).

4.2. Fine-tuning for Type Inference

JavaScript is a dynamically typed language, where variable
types are determined at runtime based on the values they
represent. Manually annotating code with types helps tools
flag possible bugs before runtime by detecting incompati-
ble types. Annotations also help programmers document
code. However, annotations are tedious to maintain. Type
inference tools automatically predict types from context.

To learn to infer types, we use the same annotated dataset of
TypeScript programs from DeepTyper (Hellendoorn et al.,
2018), without GitHub repositories that were made pri-
vate or deleted since publication. The training set con-
tains 15,570 TypeScript files from 187 repositories with
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Table 3. Type inference accuracy on TypeScript programs in
the Hellendoorn et al. (2018) dataset. ContraCode (BiLSTM)
outperforms baseline top-1 accuracies by 2.28% to 13.16%. As
ContraCode does not modify model architecture, contrastive pre-
training can be combined with each baseline. Compared with
TypeScript’s built-in type inference, we improve accuracy by 8.9%.

Baseline Method Acc@1 Acc@5

Static
analysis

TypeScript CheckJS (Bierman et al., 2014) 45.11% —
Name only (Hellendoorn et al., 2018) 28.94% 70.07%

Transformer Transformer (supervised) 45.66% 80.08%
+ ContraCode pre-train 46.86% 81.85%

RoBERTa-6 Transformer (RoBERTa MLM pre-train) 40.85% 75.76%
+ ContraCode pre-train (hybrid) 47.16% 81.44%

DeepTyper
(BiLSTM)

DeepTyper (supervised) 51.73% 82.71%
+ RoBERTa MLM pre-train (10K steps) 50.24% 82.85%
+ ContraCode pre-train 52.65% 84.60%
+ ContraCode pre-train (+ SW reg ft) 54.01% 85.55%

6,902,642 total tokens. Validation and test sets are from
held-out repositories. For additional supervision, missing
types are inferred by static analysis to augment user-defined
types as targets. All types are removed from model input. A
2-layer MLP head predicts types from output token embed-
dings. We perform early stopping based on validation set
top-1 accuracy. For our remaining experiments, the baseline
RoBERTa models are pre-trained on the same augmented
dataset as ContraCode for fair comparison.

Benefiting from unlabeled JavaScript programs is challeng-
ing because TypeScript is a different dialect. TypeScript
supports a superset of JavaScript’s grammar, adding type
annotations and syntactic sugar that must be learned during
fine-tuning. Further, the pre-training dataset contains meth-
ods, while DeepTyper’s dataset includes entire modules.

Table 3 summarizes results. Contrastive pre-training out-
performs all baseline learned methods, showing meaningful
transfer. ContraCode can be applied in a drop-in fashion
to each of the baselines. Simply pre-training each baseline
with the contrastive objective and data augmentations yields
absolute accuracy improvements of +1.2%, +6.3%, +2.3%
top-1 and +1.8%, +5.7%, +2.8% top-5 over the Transformer,
RoBERTa, and DeepTyper, respectively.

The RoBERTa baseline may perform poorly since the MLM
objective focuses on token reconstruction that is overly sen-
sitive to local syntactic structure, or because sufficient fine-
tuning data is available, described as weight “ossification”
by Hernandez et al. (2021). To combine the approaches, we
minimized our loss in addition to MLM as a hybrid local-
global objective to pre-training a Transformer, improving
accuracy by +6.31% over the RoBERTa Transformer.

Learning outperforms static analysis by a large margin.
Overall, our best model has +8.9% higher top-1 accuracy
than the built-in TypeScript CheckJS type inference system,

Table 4. Results for different settings of the code summariza-
tion task: supervised training with 81K functions, masked lan-
guage model pre-training, training from scratch and contrastive
pre-training with fine-tuning.
Method Precision Recall F1
code2vec (Alon et al., 2019b) 10.78% 8.24% 9.34%
code2seq (Alon et al., 2019a) 12.17% 7.65% 9.39%
RoBERTa MLM (Liu et al., 2019) 15.13% 11.47% 12.45%
Transformer (Vaswani et al., 2017) 18.11% 15.78% 16.86%

showing the promise of learned code analysis. Surfacing
multiple candidate types can also be useful to users. While
CheckJS only produces a single prediction, one of our top-5
predictions is correct for 85.6% of labeled tokens.

4.3. Fine-tuning for Extreme Code Summarization

The extreme code summarization task asks a model to pre-
dict the name of a method given its body (Allamanis et al.,
2016). These names often summarize the method, such
as reverseString(...). Summarization models could
help programmers interpret poorly documented code. We
create a JavaScript summarization dataset using the 81,487
labeled methods in the CodeSearchNet dataset. The name is
masked in the method declaration. A sequence-to-sequence
model with an autoregressive decoder is trained to maxi-
mize log likelihood of the ground-truth name, a form of
abstractive summarization. All models overfit, so stop early
according to validation loss. As proposed by Allamanis et al.
(2016), we evaluate model predictions by precision, recall
and F1 scores over the set of method name tokens.

Table 4 shows code summarization results in four settings:
(1) supervised training using baseline tree-structured archi-
tectures that analyze the AST (code2vec, code2seq), (2)
pre-training on all 1.8M programs using MLM followed by
fine-tuning on the labeled programs (RoBERTa), (3) training
a supervised Transformer from scratch and (4) contrastive
pre-training followed by fine-tuning with augmentations.

Contrastive pre-training outperforms code2seq by +8.2%
test precision, +7.3% recall, and +7.9% F1 score. The tree-
based code2seq architecture is a way to encode code-specific
invariances into the model, while contrastive pre-training
learns invariances through data augmentation. ContraCode
outperforms self-supervised pre-training with RoBERTa by
+4.8% F1. ContraCode also achieves slightly higher per-
formance than the Transformer learned from scratch with
the same network architecture. While this improvement is
relatively smaller, code summarization is a difficult task.
Naming conventions are not consistent between program-
mers, and the metric measures exact token matches.
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Table 5. On two tasks, compiler data augmentations degrade per-
formance when training supervised models from scratch.

Method for code summarization F1
Transformer (Table 4) 16.86

+ LS,SW,VR,DCI augmentations 15.65

Method for type inference Acc@1
Transformer (Table 3) 45.66

+ SW regularization 43.96
+ LS,SW augmentations 44.14

DeepTyper (Table 3) 51.73
+ SW regularization 49.93
+ LS,SW augmentations 50.93
+ stronger LS,SW augmentations 50.33

4.4. Understanding the importance of augmentation

We analyze the effect of our proposed augmentations on
supervised learning from scratch. We then study the impor-
tance of individual augmentations during pre-training.

Supervised learning with data augmentation As a base-
line, we re-train models from scratch with compiler trans-
forms during supervised learning rather than pre-training.
Data augmentation artificially expands labeled training sets.
For sequence-to-sequence summarization, we apply a vari-
ety of augmentations; these all preserve the method name
label. For type inference, labels are aligned to input tokens,
so they must be realigned after transformation. We only
apply token-level transforms as we can track label locations.

Table 5 shows results. Compiler-based data augmentations
degrade supervised models, perhaps by creating a training
distribution not reflective of evaluation programs. However,
as shown in §4.1–4.3, augmenting during ContraCode pre-
training yields a more accurate model. Our contrastive
learning framework also allows learning over large numbers
of unlabeled programs that supervised learning alone cannot
leverage. The ablation indicates that augmentations do not
suffice, and contrastive learning is important.

Ablating pre-training augmentations Some data aug-
mentations could be more valuable than others. Empiri-
cally, pre-training converges faster with a smaller set of
augmentations at the same batch size since the positives
are syntactically more similar, but this hurts downstream
performance. Table 6 shows that type inference accuracy
degrades when different groups of augmentations are re-
moved. Semantics-preserving code compression passes that
require code analysis are the most important, improving
top-1 accuracy by 1.95% when included. Line subsampling
serves as a regularizer, but changes program semantics. LS
is relatively less important, but does help accuracy. Iden-
tifier modifications preserve semantics, but change useful
naming information. Removing these hurts the least.

Table 6. Ablating compiler transformations used during contrastive
pre-training. The DeepTyper BiLSTM is pre-trained with con-
strastive learning for 20K steps, then fine-tuned for type inference.
Augmentations are only used during pre-training. Each transfor-
mation contributes to accuracy.

Augmentations used for pre-training Acc@1 Acc@5
All augmentations (Table 3) 52.65% 84.60%

w/o identifier modification (-VR, -IM) 51.94% 84.43%
w/o line subsampling (-LS) 51.05% 81.63%
w/o code compression (-T,C,DCE,CF) 50.69% 81.95%

Additional results We perform additional ablations in the
supplement by transferring different parts of the network to
downstream tasks, computing the contrastive objective with
representations taken from different encoder layers, varying
architecture, and tuning the pre-training procedure. These
experiments suggest that as many parameters as possible
should be transferred to the downstream task. Details of the
pre-training strategy are also important. For an LSTM, com-
puting the contrastive objective using a global representation
q summarizing the whole input sequence xq outperforms a
more local representation based on pooling across tokens.
Further, a large batch size is helpful to stabilize pre-training.
The supplement also includes qualitative results.

5. Conclusion
Large-scale unannotated repositories of code like GitHub
are a powerful resource for learning machine-aided pro-
gramming tools. However, most current approaches to code
representation learning do not leverage unannotated data,
and popular self-supervised learning approaches like BERT
that learn to reconstruct the text of code are not robust. In-
stead of reconstructing the text of code, learning what it says,
we learn what programs do. We propose ContraCode, a con-
trastive self-supervised algorithm that learns representations
invariant to code transformations. Our method optimizes
for this invariance via novel compiler-based data augmenta-
tions for code. In experiments on JavaScript, ContraCode
learns effective representations of code functionality, and is
robust to adversarial code edits. We find that ContraCode
significantly improves performance on three downstream
JavaScript code understanding tasks.
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Appendices

A. Program transformation details
We use the Babel compiler infrastructure (McKenzie et al.,
2020) and the terser JavaScript library for AST-based
program transformations. We perform variable renaming
and dead code insertion (variable declaration insertion) us-
ing custom Babel transforms, subword regularization with
sentencepiece Python tokenization library, line subsam-
pling using JavaScript string manipulation primatives and
other transformations with terser. Terser has two high-
level transformation modes, mangling and compression,
each with finer grained controls such as formatting, com-
ment and log removal, and dead code elimination. We show
an example merge sort with variants in Figure 7.

Reformatting, beautification, compression (R, B, C):
Personal coding conventions do not affect the semantics
of code; auto-formatting normalizes according to a style
convention.

Dead-code elimination (DCE): In this pass, all unused
code with no side effects are removed. Various statements
can be inlined or removed as stale or unneeded functionality.

Type upconversion (T): In JavaScript, some types are poly-
morphic & can be converted between each other. As an
example, booleans can be represented as true or as 1.

Constant folding (CF): During constant folding, all ex-
pressions that can be pre-computed at compilation time can
be inlined. For example, the expression (2 + 3) * 4 is
replaced with 20.

Variable renaming, identifier mangling (VR, IM): Argu-
ments can be renamed with random word sequences and
identifiers can be replaced with short tokens to make the
model robust to naming choices. Program behavior is pre-
served despite obfuscation.

Dead-code insertion (DCI): Commonly used no-ops such
as comments and logging are inserted.

Subword regularization (SW): From Kudo (2018), text
is tokenized in several different ways, with a single word
(_function) or subtokens (_func tion).

Line subsampling (LS): We randomly sample (p = 0.9)
lines from a method body. While not semantics-preserving,
line subsampling serves as a regularizer.
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Original merge sort program

// Split the array into halves and merge
them recursively

function mergeSort (arr) {
if (arr.length === 1) {
// return once we hit an array with a

single item
return arr

}
const middle = Math.floor(arr.length /

2)
// get the middle item of the array

rounded down
const left = arr.slice(0, middle)
// items on the left side
const right = arr.slice(middle)
// items on the right side
return merge(
mergeSort(left),
mergeSort(right)

)
}

Variable renaming, comment removal, reformatting

function mergeSort(e) {
if (e.length === 1) {
return e;

}
const t = Math.floor(e.length / 2);
const l = e.slice(0, t);
const n = e.slice(t);
return merge(mergeSort(l),

mergeSort(n));
}

Combining variable declarations, inlining conditional

function mergeSort(e) {
if (1 === e.length) return e;
const t = Math.floor(e.length / 2), r

= e.slice(0, t), n = e.slice(t);
return merge(mergeSort(r),

mergeSort(n));
}

Figure 7. Given a JavaScript code snippet implementing the merge
sort algorithm, we apply semantics-preserving transformations
to produce functionally-equivalent yet textually distinct code se-
quences. Variable renaming and identifier mangling passes change
variable names. Compression passes eliminate unnecessary char-
acters such as redundant variable declarations and brackets.

B. How similar are transformed programs?
To understand the diversity created by program transfor-
mations, we compute the Levenshtein minimum edit dis-
tance between positive pairs in the precomputed pre-training
dataset, i.e. transformed variants of the same source method.

For comparison, we also compute the edit distance between
negative pairs: transformed variants of different programs.

The edit distance D(xq, xk) computes the minimum num-
ber of token insertions, deletions or substitutions needed
to transform the tokenized query progrm xq into the key
program xk. To normalize by sequence length | · |, let

dissimilarityD(xq, xk) =
D(xq, xk)

max(|xq|, |xk|) (2)

Dissimilarity ranges from 0% for programs with the same
sequence of tokens, to 100% for programs without any
shared tokens. Note that whitespace transformations do not
affect the metric because the tokenizer collapses repeated
whitespace. For the positives, we estimate dissimilarity by
sampling one pair per source program in the CodeSearchNet
dataset (1.6M source programs with at least one pair). We
sample the same number of negative pairs.

Figure 8 shows a histogram of token dissimilarity. Positive
pairs have 65% mean dissimilarity, while negatives have
86% mean dissimilarity. Negatives are more dissimilar on
average as source sequences could have different lengths,
idioms and functionality. Still, the transformations gener-
ated quite different positive sequences, with less than half
of their tokens shared. The 25th, median and 75th percentile
dissimilarity is 59%, 66% and 73% for positives, and 82%,
87% and 90% for negatives.

C. Experimental setup
Architectures The Transformer encoder has 6 layers
(23M parameters) in all experiments. For code summariza-
tion experiments, we add 4 decoder layers with causal mask-
ing to generate the natural language summary. We leverage
the default positional embedding function (sin, cos) as used
in the original Transformer architecture. The network orig-
inally proposed in DeepTyper (Hellendoorn et al., 2018)
had 11M parameters with a 300 dimensional hidden state.
We increase the hidden state size to 512 to increase model
capacity, so our BiLSTM for type prediction has 17.5M
parameters. During fine-tuning, across all experiments, we
optimize parameters using Adam with linear learning rate
warmup and decay. For the Transformer, the learning rate
is linearly increased for 5,000 steps from 0 to a maximum
of 10�4. For the bidirectional LSTM, the learning rate is
increased for between 2,500 and 10,000 steps to a maximum
of 10�3. Type inference hyperparameters are selected by
validation top-1 accuracy.

ContraCode pre-training The InfoNCE objective is min-
imized with temperature t = 0.07 following He et al. (2019).
Also following He et al. (2019), the key encoder’s param-
eters are computed with the momentum update equation
✓k  m✓k +(1�m)✓q , equivalent to an EMA of the query
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Figure 8. Histogram of pairwise token dissimilarity for contrastive positives (transformed variants of the same method) and negatives
(transformed variants of different methods). Code transformations produce positives with dissimilar token sequences.

Figure 9. Code clone detection example. These programs solve the same HackerRank coding challenge (reading and summing two
integers), but use different coding conventions. The neural code clone detector should classify this pair as a positive, i.e. a clone.

encoder parameters ✓q. To pretrain a Transformer using
the ContraCode objective, we first embed each token in the
program using the Transformer. However, the InfoNCE ob-
jective is defined in terms of a single embedding for the full
program. The ContraCode Transformer is pre-trained with
a batch size of 96. Our model averages the 512-dimensional
token embeddings across the sequence, then applies a two-
layer MLP with 512 hidden units and a ReLU activation to
extract a 128-dimensional program embedding for the loss.

The DeepTyper bidirectional LSTM architecture offers two
choices for extracting a global program representation. We
aggregate a 1024-dimensional global representation of the
program by concatenating its four terminal hidden states
(from two sequence processing directions and two stacked
LSTM layers), then apply the same MLP architecture as
before to extract a 128-dimensional program representation.
Alternatively, we can average the hidden state concatenated
from each direction across the tokens in the sequence be-
fore applying the MLP head. We refer to the hidden-state
configuration as a global representation and the sequence
averaging configuration as a local representation in Table 8.

We pre-train the BiLSTM with large batch size of 512 and
apply weight decay.

Code clone detection on HackerRank programs Fig-
ure 9 shows two programs sampled from the HackerRank
clone detection dataset. These programs successfully solve
the same problem, so they are clones. We report metrics
that treat code clone detection as a binary classification task
given a pair of programs. 2065 pairs of programs solv-
ing the same HackerRank problem and 2065 pairs of pro-
grams solving different problems are sampled to construct
an evaluation dataset. We use the area under the Receiver
Operating Characteristic (AUROC) metric and Average Pre-
cision (AP) metrics. The standard error of the AUROC is
reported according to the Wilcoxon statistic (Fogarty et al.,
2005). Average Precision is the area under the Precision-
Recall curve. AUROC and AP are both computed using the
scikit-learn library (Pedregosa et al., 2011).

A Transformer predicts contextual embeddings of each to-
ken in a program, but our thresholded cosine similiarity clas-
sifier requires fixed length embeddings of whole programs.
To determine if two programs that may differ in length are
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(a) Character length per code sample

(b) Character length per method name

Figure 10. CodeSearchNet code summarization dataset statistics:
(a) The majority of code sequences are under 2000 characters, but
there is long tail of programs that span up to 15000 characters
long, (b) JavaScript method names are relatively short compared
to languages like C] and Java.

clones, we pool the token representations across the se-
quence. We evaluated both mean pooling and max pooling
the representation. For the hybrid model pre-trained with
both RoBERTa (MLM) and contrastive objectives, mean
pooling achieved the best AUROC and AP. For other mod-
els, max pooling performed the best.

Type prediction Following DeepTyper (Hellendoorn
et al., 2018), our regenerated dataset for type prediction has
187 training projects with 15,570 TypeScript files, totaling
6,902,642 tokens. We tune hyperparameters on a validation
set of 23 distinct projects with 1,803 files and 490,335 to-
kens, and evaluate on a held-out test set of 24 projects with
2,206 files and 958,821. The training set is smaller than
originally used in DeepTyper as several projects were made
private or deleted from GitHub before May 2020 when we
downloaded the data, but we used the same commit hashes
for available projects so our splits are a subset of the origi-
nal. We have released the data with our open-source code to
facilitate further work on a stable benchmark as more repos-
itories are deleted over time. We perform early stopping to
select the number of training epochs. We train each model
for 100 epochs and select the checkpoint with the minimum
accuracy@1 metric (all types, including any) on the vali-
dation set. Except for the model learned from scratch, the
Transformer architectures are pre-trained for 240K steps.

Models with the DeepTyper architecture converge faster on
the pre-training tasks and are pre-trained for 20K iterations
(unless otherwise noted).

Extreme code summarization by method name predic-
tion We train method prediction models using the labeled
subset of CodeSearchNet. Neither method names nor doc-
strings are provided as input to the model: the docstring is
deleted, and the method name is replaced with the token
‘x’. Thus, the task is to predict the method name using the
method body and comments alone.

To decode method names from all models except the
code2vec and code2seq baselines which implement their
own decoding procedures, we use a beam search with a
beam of size 5 and a maximum target sequence length of
20 subword tokens. We detail the cumulative distribution
of program lengths in Figure 10. The ContraCode sum-
marization Transformer only needed to be pre-trained for
20K iterations, with substantially faster convergence than
RoBERTa (240K iterations). During fine-tuning, we apply
the LS,SW,VR,DCI augmentations to ContraCode.

D. Baselines
Baselines for code summarization and type prediction
trained their models on an inconsistent set of programming
languages and datasets. In order to normalize the effect of
datasets, we selected several diverse state-of-the-art base-
lines and reimplemented them on the JavaScript dataset.

AST-based models The authors of code2vec (Alon et al.,
2019b) and code2seq (Alon et al., 2019a), AST-based code
understanding models, made both data and code available,
but train their model on the Java programming language. In
order to extend the results in their paper to JavaScript for
comparison with our approach, we generated an AST path
dataset for the CodeSearchNet dataset. The sensitivity of
path-mining embeddings to different datasets is documented
in prior work, so published F1 scores are not directly com-
parable; F1 scores for code2vec (Alon et al., 2019b) vary
between 19 (Alon et al., 2019a) and 43 (Alon et al., 2019b)
depending on the dataset used. Therefore, we use the same
dataset generation code as the authors for fair comparison.
We first parse the source functions using the Babel com-
piler infrastructure. Using the original code on these ASTs,
up to 300 token-to-token (leaf-to-leaf) paths are extracted
from each function’s AST as a precomputed dataset. Then,
we generate a token and AST node vocabulary using the
same author-provided code, and train the models for 20
epochs, using early stopping for code2seq. We observed
that code2vec overfits after 20 epochs, and longer training
was not beneficial.

DeepTyper (Hellendoorn et al., 2018) DeepTyper uses
a two layer GRU with a projection over possible classes,
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Figure 11. Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves for non-adversarial classifiers on the code clone
detection task. Equal F1 score curves are shown on right.
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Figure 12. Adversarial AUROC and Average Precision for four
models on the code clone detection task: a randomly initial-
ized transformer, and transformers pre-trained on code with the
RoBERTa MLM objective, our contrastive objective, or both. Rep-
resentations learned by the contrastive model transfer robustly.

with an embedding size of 300 and hidden dimension of
650. However, we found improved performance by replac-
ing the GRU with a bidirectional LSTM (BiLSTM). We
normalize the LSTM parameter count to match our model,
and therefore use a hidden dimension size of 512. We also
use subword tokenization rather than space delimited tokens
according to Kudo (2018), as subwords are a key part of
state-of-the-art models for NLP (Sennrich et al., 2015).

RoBERTa We pre-trained an encoder using RoBERTa’s
masked language modeling loss on our augmented version
of CodeSearchNet, the same data used to pre-train Contra-
Code. This model is then fine-tuned on downstream datasets.
Unlike the original BERT paper which cuBERT (Kanade
et al., 2020) is based on, hyperparameters from RoBERTa
have been found to produce better results during pre-training.
RoBERTa pre-trains using a masked language modeling
(MLM) objective, where 15% of tokens in a sentence are
masked or replaced and are reconstructed by the model. We
did not use the BERT Next Sentence Prediction (NSP) loss
which RoBERTa finds to be unnecessary. We normalize
baseline parameter count by reducing the number of Trans-
former layers from 24 to 6 for a total of 23M parameters.

E. Additional results and ablations
Code clone detection ROC and PR curves Figure 11
plots true postive rate vs false positive rate and precision vs
recall for different zero-shot classifiers on the code clone
detection downstream tasks. These classifiers threshold a
similarity score given by token-level edit distance for the
heuristic approach or cosine similarity for the neural net-
work representations. The hybrid self-supervised model
combining ContraCode’s contrastive objective and masked
language modeling achieves better tradeoffs than the other
approaches. Figure 12 shows the AUROC and Average Pre-
cision of four Transformer models on the same task under
adversarial transformations of one input program. Untrained
models as well as models pre-trained with RoBERTa’s MLM
objective are not robust to these code transformations. How-
ever, the model pre-trained with ContraCode preserves much
of its performance as the adversarial attack is strengthened.

Which part of the model should be transferred? Sim-
CLR (Chen et al., 2020a) proposed using a small MLP head
to reduce the dimensionality of the representation used in the
InfoNCE loss during pre-training, and did not transfer the
MLP to the downstream image-classification task. In con-
trast, we find it beneficial to transfer part of the contrastive
MLP head to type inference, showing a 2% improvement in
top-5 accuracy over transferring the encoder only (Table 7).
We believe the improvement stems from fine-tuning both the
encoder and MLP which allows feature adaptation, while
SimCLR trained a linear model on top of frozen features.
We only transferred the MLP when contrasting the mean
of token embeddings during pre-training, not the terminal
hidden states, as the dimensionality of the MLP head differs.
These representations are compared next.

Should we pre-train global or local representa-
tions? We compare pre-training DeepTyper with two
variants of ContraCode. We either use the mean of token
hidden states across the program (averaging local features),
or the terminal hidden states as input to the MLP used to
extract the contrastive representation q = fq(x) (global fea-
tures). Token-level features might capture more syntactic
details, but averaging pooling ignores order. Table 8 shows
the accuracy of a BiLSTM pre-trained with each strategy.

Table 7. If local representations are learned, transferring part of
the Contrastive MLP head improves type inference. The encoder
is a 2-layer BiLSTM (d=512), with a 2-layer MLP head for both
pre-training purposes and type inference. The mean hidden state
representation is optimized for 10K iterations for the purposes of
this ablation.

Warm-started layers Acc@1 Acc@5
BiLSTM 49.32% 80.03%
BiLSTM, 1 layer of MLP 49.15% 82.58%
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Table 8. Contrasting global, sequence-level representations outperforms contrasting local representations. We compare using the terminal
(global) hidden states of the DeepTyper BiLSTM and the mean pooled token-level (local) hidden states.

Representation Optimization Acc@1 Acc@5

Global InfoNCE with terminal hidden state, 20K steps 52.65% 84.60%
InfoNCE with terminal hidden state, 10K steps 51.70% 83.03%

Local InfoNCE with mean token rep., 10K steps 49.32% 80.03%

Table 9. Training time and decoder depth ablation on the method name prediction task. Longer pre-training significantly improves
downstream performance when a shallow, 1 layer decoder is used.

Decoder Pre-training Supervision Precision Recall F1(1.8M programs) (81k programs)

Transformer, 1 layer MoCo, 10k steps Original set 11.91% 5.96% 7.49%
Transformer, 1 layer MoCo, 45k steps Original set 17.71% 12.57% 13.79%
Transformer, 4 layers MoCo, 45k steps Original set 18.21% 13.21% 14.56%

Top 5 accuracy

1x queue fill rate
12x queue fill rate

Figure 13. Pre-training quickly converges if negative programs in
the queue are frequently changed.

Using the global features for pre-training yields significantly
improved performance, +2.38% acc@1 after 10K iterations
of pre-training (not converged for the purposes of ablation).
The global pre-training strategy achieves our best results.

Do pre-trained encoders help more with shallow de-
coders? For the sequence-to-sequence code summa-
rization task, ContraCode only pre-trains the encoder of
the Transformer. In Table 9, we ablate the depth of the
decoder to understand how much shallow decoders benefit
from contrastive pre-training of the encoder. Similar experi-
ments were performed in a vision context by (Erhan et al.,
2010), where different numbers of layers of a classifier are
pre-trained. After 45k pre-training steps, the 4-layer de-
coder achieves 0.50% higher precision, 0.64% higher recall
and 0.77% higher F1 score than the 1-layer model, so ad-
ditional decoder depth is helpful for the downstream task.
The 1-layer decoder model also benefits significantly from
longer pre-training, with a 6.3% increase in F1 from 10k to
45k iterations. This large of an improvement indicates that
ContraCode could be more helpful for pre-training when
the number of randomly initialized parameters at the start

of fine-tuning is small. For larger decoders, more parame-
ters must be optimized during-finetuning, and the value of
pre-training is diminished.

Contrastive representation learning strategies In Fig-
ure 13, we compare two strategies of refreshing the MoCo
queue of key embeddings (the dictionary of negative pro-
gram representations assumed to be non-equivalent to the
batch of positives). In the first strategy, we add 8 items out
of the batch to the queue (1⇥), while in the second we add
96 items (12⇥). In addition, we use a larger queue (65k ver-
sus 125k keys) and a slightly larger batch size (64 versus 96).
We observe that for the baseline queue fill rate, the accu-
racy decreases for the first 8125 iterations as the queue fills.
This decrease in accuracy is expected as the task becomes
more difficult due to the increasing number of negatives
during queue warmup. However, it is surprising that accu-
racy grows so slowly once the queue is filled. We suspect
this is because the key encoder changes significantly over
thousands of iterations: with a momentum term m = 0.999,
the original key encoder parameters are decayed by a factor
of 2.9⇥10�4 by the moving average. If the queue is rapidly
refreshed, queue embeddings are predicted by recent key
encoders, not old parameters. This also indicates that a large
diversity of negative, non-equivalent programs are helpful
for rapid convergence of ContraCode pre-training.

F. Qualitative results

t-SNE visualization of representations We qualitatively
inspect the structure of the learned representation space by
visualizing self-supervised representations of variants of
28 programs using t-SNE (Maaten & Hinton, 2008) in Fig-
ure 15. Representations of transformed variants of the same
program are plotted with the same color. ContraCode (BiL-
STM) clusters variants closely together. Indeed, contrastive
learning learns representations that are invariant to a wide
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Figure 14. Our model, a variant of DeepTyper pretrained with ContraCode, generates type annotations for two programs in the held-out
set. The model consistently predicts the correct return type of functions, and even predicts project-specific types imported at the top of the
file. The model corresponds to the top row of Table 8, though is not our best performing model.

Figure 15. t-SNE (Maaten & Hinton, 2008) plot of mean pooled
program representations learned with masked language modeling
(RoBERTa), contrastive learning (ContraCode), and a hybrid loss
(RoBERTa + ContraCode). Transformed variants of the same
program share the same color. Note that colors may be similar
across different programs.

function x(url, callback,
error) {

var img = new Image();
img.src = url;
if(img.complete){
return callback(img);

}
img.onload = function(){
img.onload = null;
callback(img);

};
img.onerror = function(e){
img.onerror = null;
error(e);

};
}

Ground truth: loadImage
Prediction: loadImage

Other predictions:

1. getImageItem

2. createImage

3. loadImageForBreakpoint

4. getImageSrcCSS

Figure 16. A JavaScript program from the CodeSearchNet dataset
not seen during training and the predicted method names from a
Transformer pre-trained with ContraCode. ContraCode predicts
the correct method name as its most likely decoding.

class of automated compiler-based transformations. In com-
parison, the representations learned by masked language
modeling (RoBERTa) show more overlap between different
programs, and variants do not cleanly cluster. With a hybrid
loss combining masked language modeling and contrastive

learning, representations of variants of the same program
once again cluster.

Code summaries Figure 16 shows a qualitative exam-
ple of predictions for the code summarization task. The
JavaScript method is not seen during training. A Trans-
former pre-trained with ContraCode predicts the correct
method name through beam search. The next four pre-
dictions are reasonable, capturing that the method pro-
cesses an image. The 2nd and 3rd most likely decodings,
getImageItem and createImage, use get and create
as synonyms for load, though the final two unlikely decod-
ings include terms not in the method body.

Type inferences We can also visualize outputs of the type
inference model. Figure 14 shows two TypeScript pro-
grams from the held-out test set. User-provided type anno-
tations are removed from the programs, and the model is
provided with a tokenized form without access to dependen-
cies. We visualize predictions from a variant of DeepTyper
pre-trained with ContraCode. This corresponds to the best-
performing model in Table 8.

In the first program, our model consistently predicts the
correct return and parameter type. While a tool based on
static analysis could infer the void return types, the type of
the message argument is ambiguous without access to the
imported write method signature. Still, the model correctly
predicts with high confidence that the variable message
is a string. In the second program, ContraCode correctly
predicts 4 of 8 types including the ViewContainerRef
and ChangeDetectorRef types, each imported from the
AngularJS library. As this sample is held-out from the
training set, these predictions show generalization from
other repositories using AngularJS.


