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Abstract

Automating Execution Verification in Distributed Enclave-Based Data Analysis
Applications

by

Karen Tu

Master’s in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Raluca Ada Popa, Chair

Outsourcing data computations to a cloud provider is a common way to process large
datasets. However, a user might not trust the cloud provider with sensitive data, and
enclaves are a promising way to ensure data confidentiality and integrity. In distributed
applications, we can place code that affects data flow but not the data content outside of
the enclave; we can then verify the correctness of the data flow execution. However, there
are no existing frameworks to perform this verification.

We propose an execution flow verification library. Our library contributes (i) a way to
securely log inputs and outputs of enclave functions, (ii) a verification strategy based on a
ruleset specification and (iii) automatic API integration and ruleset generation. This saves
developers from having to write their own custom application-specific verification code.

Our library provides data flow integrity, at the cost of a reasonable code footprint of about
500 lines and a latency overhead of roughly 3%.
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Chapter 1

Introduction

When running complicated data analysis over large datasets, it is common practice to
outsource the computation to a third party cloud computing provider. However, sometimes
for legal reasons, data cannot be read by third parties, such as for a hospital’s patient data.
Additionally, with increasing concern over data privacy and potentially malicious third party
cloud computing providers, there needs to be a way to outsource data analysis without
compromising data security. Hardware enclaves provide a trusted execution environment
that provides data confidentiality and integrity. Only security sensitive code is placed into
the enclave, greatly reducing the trusted computing base.

There are several tools that port entire existing applications into an enclave [5], but this is
not always a good idea because many applications are not hardened for side channel attacks.
In addition, placing an entire application within the enclave results in an unnecessarily
large trusted computing base. Only security sensitive code needs to be placed within the
enclave; all of the other code can be placed outside. Civet [47] and Glamdring [29] partition
applications into trusted and untrusted code in order to reduce the trusted computing base.
All code that accesses sensitive data or affects data flow is considered trusted code and placed
into the enclave.

Secure enclaves have a lot of potential to be used for outsourcing data analysis, which is
often distributed for large datasets or complicated analysis. However, the existing partition-
ing solutions are not targeted for distributed applications, and for distributed applications
they would not optimally partition the code. Scheduling and communication code affect
data flow, and thus Civet/Glamdring would place such code inside of an enclave. However,
it is possible to place scheduling and communication code outside of the enclave as long
as it can be verified that such code executed correctly, as done in VC3 [40] and Opaque
[52]. This is possible because in distributed data analysis applications, a job is broken
down into several tasks that are distributed across nodes. The piece of code that breaks
down the job into smaller tasks is placed in the enclave, while the code that distributes
the tasks and communicates encrypted data is placed outside. The problem is that existing
distributed enclave-based applications have custom verification mechanisms which require
significant manual effort to implement, and are not easily transferable to other distributed
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enclave-based applications.
In this report, we present a verification library that aims to help developers of distributed

enclave-based data analysis applications verify the proper execution of code outside of the
enclave. Given a partitioned codebase for a distributed data analysis application, our library
can be used to verify data flow integrity. Within each enclave function, the developer uses
our library to create an AuditLogEntry every time that function is called. During program
execution, based on the data flow rules specified by the developer, the audit logs are cross
checked with the rules to make sure that all data computation tasks were completed. Note
that if there is no data dependency between two enclave functions, then no rule will exist to
check whether the inputs and outputs between them corroborate. We also include several
optimization options in our library, such as automatically inserting the API calls into enclave
function definitions. We show in an example of integrating our library with a distributed
data analysis application that the API calls result in about 3% of latency overhead.

This report was partially written in collaboration with another Master’s student, Saharsh
Agrawal. The sections that I wrote completely independently are listed below.

• 2.3: Background, Code Annotations

• 3.4: Related Work, Code Analysis

• 6.4.2: System Design, Optimizations, Automatic Ruleset Generation

• 8.4: Evaluation, Optimizations

The following sections contain paragraphs with discussion about the automatic ruleset gen-
eration. Those specific paragraphs are my independent work, but the rest of the section is a
collaborative work.

• 7: Implementation

• 9: Limitation & Future work
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Chapter 2

Background

2.1 Secure Enclaves

In many modern cloud computing models and services, applications are often deployed in
untrusted environments such as public clouds which are controlled by third-party providers.
As the underlying infrastructure is unknown (i.e. OS and hypervisor) these environments
and their hosts are untrusted. Trusted Execution Environments can help mitigate these
threats as they support memory and execution isolation of code and data from the untrusted
environment.

2.1.1 Intel SGX

Intel’s Software Guard Extensions (SGX) [23] help to protect the confidentiality and
integrity of application code and data (running on hardware that supports SGX) even in
the presence of an attacker with control over all software (OS, hypervisor, and BIOS). SGX
provides a trusted execution environment called an enclave. Enclave code and data reside in
the enclave page cache (EPC) and are protected by an on-chip memory encryption engine
which encrypts and decrypts cache lines in the EPC that are written to and fetched from
memory. Only application code executing inside the enclave can access the EPC. While
non-enclave code cannot access the EPC, enclave code is free to access memory outside the
enclave.

Furthermore, the Intel SGX SDK provides a remote attestation feature which allows
the client to verify that their code has been set up properly in the enclave and that the
host has not tampered with the enclave in any way. This way, the host cannot modify or
otherwise modify the contents of enclaves without being detected by the client. Thus, Intel
SGX protects against the general class of attacks known as Iago attacks that occur when a
malicious OS exploits an application by subverting the assumptions of correct non-malicious
OS behavior.

It is up to the enclave developer to define the interface between the trusted code (that
goes in the enclave) and the untrusted code (outside the enclave). A call into the enclave is
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known as an enclave entry call (ECALL) whereas a call from within the enclave to transfer
execution control to outside the enclave is known as an outside call (OCALL). Both ECALLs
and OCALLs induce performance overhead as the processor needs to marshal and unmarshal
parameters and maintain SGX’s security guarantees.

2.2 Enclave Partitioning

While it is possible to execute entire applications inside enclaves by adding system support
in the form of a library OS, this is not entirely desirable. Placing all application code inside
the enclave creates a large trusted computing base (TCB) which violates the principle of
least privilege. To solve this issue, many enclave programs are delineated such that only
security sensitive functions and code are placed inside of the enclave. The degree to which
the enclave is partitioned is up to the discretion of the enclave developer.

However, partitioned enclave programs have a greater amount of untrusted code. This
leaves a larger attack surface for a malicious host to call the wrong ECALL, pass in incorrect
parameters, replay old ECALLs, drop messages, etc. This is the problem that we aim to
address - in partitioned enclave-based services, the enclave application needs some sort of
verification mechanism in the trusted code in order to ensure that the untrusted host does not
abuse the partitioning to tamper with or otherwise disrupt the application program’s enclave
execution. In other words, we want execution integrity that the application’s untrusted code
makes the correct ECALLs. We aim to provide a general framework that can provide a
verification mechanism for any such partitioned enclave program that requires minimal effort
from the application developer to integrate.

2.3 Code Annotations

Code annotations are used to specify metadata about the code; they typically do not
have an impact on the program execution, unless reflection is used during runtime to access
the annotations. Annotations are useful to signal something to the compiler; for example, a
@deprecated annotation on a function may prompt the compiler to print a warning when
that function is used.

Some programming languages such as Scala, Java, C#, Python, and Ruby support user-
defined annotations, which can be used for documentation or giving compilers custom direc-
tions. However, other languages such as C++ and C do not support custom code annota-
tions. A way to circumvent the lack of support for custom annotations is to use compiler and
static analysis tools. Many compiler and static analysis tools are used to debug, find security
and memory leaks, or to check code style. However, these tools can also be used in more
general ways to analyze application code, and can be extended to implement annotations.
For example, both Clang and VC++ are C/C++ compilers that use attributes (a feature in
both C/C++) to support custom annotations.
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Regardless of whether annotations are built into a programming language or not, the
most straightforward method to analyze code annotations in a piece of source code is to
leverage compilers. For Scala, this would mean using a compiler plugin. For C/C++, this
would mean using a compiler that has built-in support for custom annotations.
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Chapter 3

Related Work

3.1 Untrusted Cloud

CryptDB [38], MrCrypt [45], BlindSeer [36], Monomi [48], and Always Encrypted [2]
use cryptographic tools such as homomorphic encryption without any trusted hardware to
provide data confidentiality on an untrusted cloud. Encrypting data alone is not enough for
distributed data analysis applications, which require complex functionalities beyond simple
queries and thus need some way to ensure execution flow integrity for computations.

Virtual Ghost [14] uses compiler instrumentation and run-time checks to create a pro-
tected region of memory. Flicker [33] and MUSHI [51] use TPMs (Trusted Platform Mod-
ules). The drawback of TPMs compared to TEEs (trusted execution environments) such as
SGX is that TPMs provide many cryptographic tools, but do not allow developers to run
their own code within the TPM. SeCage [31], InkTag [20], and Sego [24] rely on virtual-
ization. Using virtualization techniques such as hypervisors typically result in large TCBs;
using TEEs reduces the TCB size greatly.

3.2 Enclave Frameworks

Haven [5], Graphene-SGX [46], and Occlum [43] provide libOS’s that run within enclaves,
thus making it possible to put entire applications inside of an enclave, and thus have effec-
tively no untrusted code (besides the code that creates the enclave and calls into it). The
main problem with this approach is the resulting large trusted computing base and conse-
quently large attack surface. Another major issue with porting legacy applications into SGX
is that SGX is vulnerable to side channel attacks ([50], [9], [41], [18]).

SCONE [4] and Ryoan [22] isolate containers and sandboxes, respectively, inside of an
enclave. Similar to libOS’s, this allows developers to run their unmodified applications within
an enclave. Although the TCBs are certainly smaller than those of the libOS’s, they are still
unnecessarily large. The purpose of an enclave is to execute only security-sensitive code; all
other code should be placed outside.
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Panoply [26] enforces a strong integrity property for the inter-enclave interactions, ensur-
ing that the execution of the application follows the legitimate control and data-flow even
if the OS misbehaves. While Panoply puts all security sensitive code inside the TCB of
the application, we aim to reduce the size of the TCB by bringing certain code outside the
enclave by augmenting the application with an additional verification mechanism.

Civet [47] and Glamdring [29] automatically partition enclave applications (Java and C
respectively) into trusted and untrusted components using annotations and code analysis.
The problem is that for distributed applications, these frameworks would put all data-flow
related code (such as a scheduler) into the enclave, which is not necessary.

3.3 Enclave Applications

EnclaveDB [39] is a database engine that places all sensitive data into enclaves. To
maintain data integrity, it keeps a database log. ObliDB [17] is also an enclave database,
but uses oblivious algorithms to hide access patterns, which incurs a large overhead. Visor
[37] is a video analytics platform using a TEE across CPUs and GPUs, using Graphene
[46] for certain video processing modules. There is limited partitioning in Visor; the GPU
resource manager is untrusted, but most of the code is inside the TEE. Similar to Visor, the
above applications are not focused on reducing the TCB, so much of the code base is inside
of the enclave.

3.3.1 Distributed Enclave Applications

Different distributed applications have common functionalities that affect data flow such
as schedulers and communication code, which can be placed outside of the enclave as long
as the data flow is logged so it can be verified as correct.

VC3 [40] runs on Hadoop within SGX enclaves. Verification is performed by workers
sending information about data inputs and outputs to a master node. Opaque [52] is a data
analytics platform built on Spark SQL. Spark SQL’s query plans are DAGs, where the edges
represent data flow and the nodes each represent a computation task. In Opaque’s design,
verifying the dataflow, even though the job scheduler is considered untrusted, is done during
runtime. Each worker node will only execute a task if it has received all required inputs.
This is an improvement over VC3’s design, which requires worker nodes to all communicate
with a master node. Both VC3 and Opaque are manually partitioned and have custom
verification logic. Currently, there is no simple way for developers of distributed enclave-
based applications to implement dataflow integrity.

PySpark-SGX [27] is PySpark built on top of Scone [4] so that it can run in an SGX
enclave. It is similar to Opaque as it uses core Spark components, but unlike Opaque, the
scheduler is placed inside of the enclave. Another problem is that building on top of Scone
includes Scone as part of the TCB.
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3.4 Code Analysis

Although there are problems with static code analysis, such as complications arising from
reflection capabilities [25], it is a straightforward tool to use to automatically construct the
relationships between ECALLs. Code annotations are useful for analyzing program code,
such as making static analysis easier [19] and for finding bugs [21]. For languages without
built in annotations, compilers can be extended to support custom annotations. For example,
in [15] C++ attributes are used as annotations and in [1] a Java compiler is extended.

Other code analysis techniques include taint tracking ([7], [16]) and data flow analysis
[30]. Taint tracking is not suited for enclave applications; anything outside of the enclave
is untrusted, so all data would be marked as tainted. Traditional data flow analysis tracks
how variable values change during program execution, which is not so useful for enclave
applications as the data is encrypted, and we want to track the data flow through the
untrusted code and the enclave. However, for verifying correct execution of ECALLs, some
way to construct the data flow is needed. The relationship between ECALLs depends on
how data is passed from one ECALL to another. This information can be encapsulated using
data annotations.
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Chapter 4

Threat Model

We describe the model of secure enclaves that we consider, the capabilities of the adver-
sary, and the attacks which are in/out-of-scope. We take inspiration from [44] in which the
authors present a formalization of idealized enclave platforms, including a formal model of
enclave programs and the adversary.

4.1 Abstract Enclave Model

We have designed our system using an abstract model of a hardware enclave that user
applications can enter and exit during program execution. Our abstract model of a hardware
enclave assumes the following enclave operations at minimum: launch, destroy, enter,

exit, attest. Given such an enclave, we are able to apply our proposed run-time veri-
fication system to detect adversary actions which attempt to compromise the integrity of
enclave application execution in the partitioned/ distributed setting.

In practice, hardware enclaves are susceptible to side channel attacks [50, 42, 11, 13] and
software-based attacks [18, 49, 28]. Protecting against these vulnerabilities is beyond the
scope of our threat model and are not considered as impacting our idealized abstract enclave
model. Solutions to these attacks are complementary and are partially addressed in [12, 8,
34, 32].

This abstract enclave model may still fail to provide any security guarantees in the case
of poorly-written enclave applications which lack confidentiality and may inadvertently leak
data via network and memory accesses. For such applications, the developer must first secure
any sources of inadvertent data leakage in order to utilize our verification system, as our
system will not make an existing non-secure application (application logic leaks information
about data) secure. The enclave application developer must implement data confidentiality
by encrypting the outputs of ECALLs and obscuring lengths of output results by providing
the appropriate padding for data.

The focus of our work is to provide integrity for partitioned enclave applications by
making it easier to write verification logic; we do not provide any additional mechanisms to
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make an existing non-secure application more confidential.

4.2 Adversary Actions

Formally, our scenario involves a client, an untrusted host (the adversary) that supports
SGX, and an application running on this untrusted host. In our real world scenario, this
untrusted host has the capability to both observe and tamper without being detected. We
define observation as the ability of the adversary to view any output as well as any memory
access patterns via side channel attacks. We define tampering as being able to pause the
enclave at any time to execute arbitrary instructions that modify the state of the enclave,
the enclave’s input, and launch or destroy enclaves. The problem we aim to solve is to
reduce this real world scenario to our ideal world scenario where the adversary only has the
ability to observe undetected - any attempts to tamper will be detected by our verification
mechanism.

We make the assumption that the developers will write applications that protect against
side channel attacks, as several hardware enclave platforms have known side channel attacks.
Denial of service attacks are also out of scope, as an untrusted service provider can easily
drop a client’s messages and requests.
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Chapter 5

System Overview

The overarching goal of this system is to reduce developer effort required for bringing
inter-enclave execution verification to their applications. To achieve this, we make the fol-
lowing contributions:

• We model the enclave application execution flow as a directed acyclic graph (DAG).

• We augment the enclave TCB by writing an in-enclave library of verification primitives
containing various data structures, cryptographic primitives, and communication code
needed for enabling audit logging and verification.

• We provide a JSON ruleset configuration template to the client for indicating the
expected execution flow. The ruleset configuration file can be generated automatically
using code annotations.

• For developers of applications with many enclave functions, we provide a script to
automatically insert the necessary verification library API calls.

5.1 Architecture

We present the overall application architecture in figure 5.1 for a distributed data analysis
enclave-based application that uses our verification library and has been deployed into the
cloud. In this section, we also describe all parties involved in a distributed application that
uses our verification library.



CHAPTER 5. SYSTEM OVERVIEW 12

Figure 5.1: Distributed data analysis enclave-based application architecture after integrating
our verification library and deployment.

5.1.1 Application Developer

The application developer is the one who either writes a distributed data analysis appli-
cation from scratch, or finds an existing one to modify and run in an enclave. The developer
is the party who will directly use our verification library. In figure 5.1, the driver, scheduler,
and workers are all written by the developer, while the verifier/ verification server is part of
our verification library. The driver is the component of the application that receives client
requests and splits up the request into data computation tasks that can be assigned to the
workers. The scheduler distributes the workload of data computation tasks to the workers.
A more detailed workflow for the developer is described in section 6.2.
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5.1.2 Client

The client directly uses the data analysis application created by the developer, and thus
indirectly uses our verification library. The client is a trusted party; they are the ones who
want to keep their data confidential.

5.1.3 Untrusted Cloud

The cloud is a third party service provider that the developer uses to run their distributed
data analysis application. The cloud provides a cluster of virtual machines that support
running Intel SGX enclaves. The untrusted host in figure 5.1 corresponds to a single VM in
the cloud, and each VM can have multiple enclaves.



14

Chapter 6

System Design

In this section, we explain the design details and decisions for our verification library.
We describe the API, the workflow for how to use it, and how the execution flow is verified.

6.1 API

i n i t a u d i t l o g ( . . . ) // I n i t i a l i z e s aud i t l o g entry ; invoked at s t a r t o f ECALL
l o g i npu t da t a ( . . . ) // Computes hashes f o r data prov ided as input to ECALL
l og output data ( . . . ) // Computes hashes f o r data ou tpu t t ed by ECALL
s end aud i t l o g ( . . . ) // Sends aud i t l o g to v e r i f i c a t i o n s e r v e r

Listing 6.1: The above API is made available to the developer.

The developer adds these API calls inside of the function definitions of the ECALLs that need
to be verified. The two API calls init_audit_log and log_input_data are called in the
beginning of an ECALL, while log_output_data and send_audit_log are called at the end.
For details about API return values and parameters, a fully commented code snippet of the
API can be found in the appendix A.1. A valid concern to have is that we are increasing the
trusted computing base, by making the API calls within the ECALL functions definitions.
The alternative solution is to modify the code function where the ECALL is called. However,
ECALLs are made in untrusted code, and the verification code must be running inside of
an enclave. Therefore, we either have to turn the API calls into additional ECALLs, or
have the API calls made within the ECALL itself. Because of the overhead of marshaling
inputs/outputs as well as context switching every time an ECALL is made, we decided to
have the API calls made within the ECALL function definitions.

6.2 Workflow

Below we describe the general expected workflow for a developer who wishes to use our
verification library. We assume that the developer handles data confidentiality, but needs
our library for execution flow integrity.
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1. The developer writes a distributed data analysis application with a scheduler and driver
as described in 5.1.1.

2. The developer partitions their application into trusted and untrusted code; only secu-
rity sensitive code is trusted code.

3. The developer integrates our verification library by:

a) Importing our verification library in the files with ECALL (enclave function)
definitions for the ECALLs that affect execution flow integrity.

b) Extending data structures that contain sensitive data and are the types of param-
eters passed into ECALLs that affect execution flow integrity with the Iterator-
Interface class. This allows our verification library to iterate through the chunk
of data elements passed into an ECALL, one element at a time.

c) Adding API calls to the ECALL function definitions; this can be done manually,
or with the script we provide.

d) Specifying a ruleset JSON file for which enclave functions correspond to specific
data operations that the client can submit and how the inputs and outputs enclave
functions related to each other.

4. Developer deploys application into the cloud to be used by clients.

6.3 Execution Flow Verification

We first discuss several design propositions for verifying correct execution flow to show
how we came to our current verification design. Then we present our runtime verification
process.

6.3.1 Design Tradeoffs

Keeping in mind our API as specified in 6.1, an audit log is created for every ECALL. In
order to verify execution flow, we only need to make sure that no data was dropped or added.
Enclaves are trusted, so we can be sure that the audit logs are trusted. The untrusted hosts
that the enclaves are running on could refuse to send the audit logs, but this equivalent to
a DOS attack which is outside of our threat model.

Design 1

The simple strawman solution is that for each ECALL, store all of the data that is
processed in the audit log. While this solution is simple and easy to understand, it is not
practical. Our verification library is targeting distributed data analysis applications, which
typically process large amounts of data. Therefore, logging the data itself is a huge waste of
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memory. In enclaves this is an even bigger problem as enclaves have limited memory; this
strategy would cause massive overheads from page swaps.

Design 2

A more memory efficient solution is to store some sort of identifier for the chunk of data
that the ECALL is processing. We can either require that the developer assigns an identifier
to every data element, or we can include a hash function in our library to create an identifier
for each data element.

The problem with this solution is that it makes the simplifying assumption that the
output of one ECALL will directly be used as the input of another ECALL; this is not a
safe assumption to make. In a collection of encrypted data elements, it is reasonable to
expect that data operations will be applied to the individual data elements. For example,
in a collection of encrypted row data (e.g. an encrypted data frame in Spark), encryption
occurs at the granularity of individual rows as opposed to on the entire data frame/ table.
Any transformations which modify the underlying plain-text data must take place inside of
an enclave and not in the untrusted code. However, there are modifications to the data in
untrusted code that are allowed such as combining and splitting up encrypted blocks. As
a concrete example, in Opaque [52], in the untrusted code, the function collect is used to
aggregate chunks of encrypted data.

One way we can verify execution flow despite modifications of data in the untrusted code,
is if we assume that each enclave knows which rows it will receive ahead of time. Considering
how a typical distributed application scheduler works and how a specific task is not meant to
be tied to a particular worker node, this is an unreasonable assumption. Therefore, we must
be able to perform integrity checking over the smallest unit of data present in the application
(e.g. rows, arbitrary bytes, etc). This means that the developer needs to provide some way
for our verification library to iterate over the smallest unit of data as each individual ECALL
call is expected to process multiple units of data.

Post-Verification vs. Runtime Verification

In early design discussions, we proposed a post-verification approach in which a list of
audit log entries from within each enclave would be serialized and sent to a verifier (which
could be the client’s computer, a worker enclave, or a dedicated verifier enclave) for post-
verification after the execution has finished for a client’s data computation. We ultimately
shifted away from a post-verification approach after identifying the following constraints:

• Limited Enclave Memory: Enclaves have limited memory and the initial post-verification
approach introduced an additional enclave context in which the audit logs are stored.

• Missing Early-Termination: With a post-verification approach, program execution
must finish before audit logs can be aggregated and checked for discrepancies. This
prevents early-termination and potentially results in wasted compute resources.
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We shifted to a runtime verification approach, knowing that it would likely result in ad-
ditional latency at the end of each round and communication overhead, but with better
memory and resource usage.

6.3.2 Runtime Verification

AuditLogEntry

The primary data structure that we use in our library is an AuditLogEntry. We use
hashing instead of having IDs because it is simpler than requiring developers to assign an ID
to each data element. If the developer’s application does not already contain code logic with
data IDs, it is not trivial to implement. If the developer’s application does contain data ID
code logic, different developers may have different data types for their data IDs, making it
difficult to implement a generalized verification library.

struct AuditLogEntry {
int ECALL id ;
u i n t 64 t ∗∗ i nput data hashe s ;
u i n t 64 t ∗∗ i nput supp data hashes ;
u i n t 64 t ∗∗ output data hashes ;
u i n t 64 t ∗∗ output supp data hashes ;

}

The AuditLogEntry struct specfied above contains a field for ECALL_id and several fields
containing the hashes of the various input and output data associated with the ECALL.
These hash fields are used by the verifier node during run-time verification to check whether
the inputs and outputs of different ECALLS match with the developer specified ruleset.

Ruleset

The ruleset is a developer specified JSON which contains the ECALL metadata, such as
ECALL to ECALL ID mappings, which parameters of each ECALL are data sources to be
verified, the type of data source, and the rules. The rules are specified for each operation; an
operation is a data computation that the client can make in the application. For example,
join and sort would be two different operations. For a complete example of a ruleset JSON
file, refer to the appendix B.1.

A rule consists of an equal sign (=) where on each side, the following format is used to
represent how the data from one ECALL in a specific round should be combined:

[single | union | each] ECALL_{ecall ID} [input | supp_input |

output | supp_output]_{parameter index} round_{round number}.

The first element (single, union, or each) represents how many times the ECALL is
made in that round. single means that the ECALL is made once. union means that the
ECALL is made multiple times in that round, and the data specified by the third element
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(input, supp input, etc.) should be unioned together. each means that the ECALL is made
multiple times, but across all ECALLs in that round, the data specified by the third element
is the same. The second element specifies the ECALL ID (the ecall function name to ID
mapping is also specified in the ruleset file). The third element specifies which data type is
being checked, as well as its index in the ECALL’s parameter list. The final element specifies
the round number that the ECALL is made.

The following list shows some example rules.

• single ECALL_0 supp_output_0 round_2 = single ECALL_3 input_4 round_3

• union ECALL_0 output_1 round_0 = single ECALL_1 input_4 round_1

• union ECALL_0 output_1 round_2 = each ECALL_3 input_4 round_5

• union ECALL_0 supp_output_1 round_2 = union ECALL_3 input_4 round_5

We define a round as a set of ECALLs within the execution flow for a particular data
operation which have no dependencies amongst each other. An example of an ECALL
execution flow split into rounds is shown in figure 6.1. Because of the way we define a
round, we cannot support programs with cyclical ECALL dependencies. We can support
any program with an ECALL execution flow that can be formulated as a DAG (this includes
MapReduce style programs). This is a reasonable constraint because well known distributed
data-analysis applications such as Hadoop and Spark have execution flows are DAGs.

Figure 6.1: Example of ECALL execution flow split into rounds.

Verification Process

One enclave is responsible for verifying the audit logs after each round. This enclave
runs a verification server to receive audit logs from all of the worker processes running in
other enclaves. The first thing that the verification enclave receives is the input rows into
round 0 from the trusted driver in the application. Upon receiving an AuditLogEntry, the
verification server stores it until all audit logs for the current round are received. The verifier
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knows that a round has completed when it has received the correct number of audit logs.
Besides round 0, where the input data elements are provided by the trusted driver, the
verifier can use the ruleset to calculate the number of audit logs to expect, and thus know
when a round ends to start verification. To perform verification at the end of a round, the
verifier enclave obtains the relevant rules for the ECALLs in the current round from the
developer specified ruleset and cross checks the relevant audit logs with the rules.

The runtime-verification serves as an implicit barrier in the code; in other words, the
verification server will not receive any audit logs from a subsequent round until it has finished
processing all audit logs from the current round and has notified the relevant enclaves that
the audit log has been verified. This is because if verification fails at any round, then the
verification server notifies all of the enclaves.

The verification server is stateful and can retain audit logs from prior rounds in order to
corroborate them with the current round’s logs. Prior round state is maintained depending
on the specification provided in the ruleset logic. For example, in figure 6.1 ecall 3 in round
2 needs the results of ecall 1 from round 0, so the verification node must keep the relevant
output of ecall 1 until the end of round 2.

6.4 Optimizations

6.4.1 Automatic API Integration

We provide a script to make it even easier to integrate our API; it can be tedious to
manually create the list of pointers to the data sources, and to manually specify the counts
of each type of data source. If each ECALL has the same parameters, then the same API
calls are made within each ECALL function definition. For example, in the application
Opaque [52], all of the ECALLs have arguments input_rows and output_rows as input and
output data sources, respectively. To use our verification library, the same code is copied
to the beginning and end of each ECALL, and the only difference between the ECALLs are
the supplementary data sources, which can be specified in the ruleset JSON file. The script
automatically adds in the API calls at the beginning and end of the ECALLs based on the
data source metadata provided in the ruleset JSON file.

6.4.2 Automatic Ruleset Generation

Another natural part of the workflow that is well suited to being automated is the step
where the developer must specify a ruleset JSON file. Manual specification is always prone to
human error, and when manually creating the ruleset file, it is quite easy to get the numbers
wrong for the ECALL ID mapping and the data source parameter indices. It is easier for the
developer to mark their code files directly with annotations rather than to copy over ECALL
metadata (function names, parameter indices, data source types, etc.) to a separate file.
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There are four parts of the ruleset JSON that each must be automatically generated. In
this section, we present how the developer should annotate their code files. Then, we explain
how the annotations are used to generate the corresponding section of the ruleset JSON file.

1. ECALL name to ECALL ID mapping
The developer needs to mark the ECALLs affecting data flow with @verify in the
EDL file. We automatically assign ECALL IDs in order that they appear in the EDL
file.

2. operation name to operation ID mapping
This is implemented the same way as the ECALL name to ECALL ID mapping; the
developer needs to mark the operations (which are defined in the untrusted code -
ECALLs are called within the operation code).

3. for each ECALL, metadata for parameters that are data sources
In the ECALL function declaration, annotate the parameters that are data sources with
their data source types: @input, @supplementary_input, @output, and @supplementary_-

output. The counts for each data source type is computed automatically; if two of the
parameters are tagged with @input, then the count of data sources of type input is set
at 2.

4. list of rules for each operation
Annotate variables that contain ECALL outputs with @single, @union or @each. This
signifies that the output of the ECALL will be the input to another ECALL. We use
static analysis to link which ECALL the output came from and for which ECALL
it becomes the input. Then, we use this information to build the dependency graphs
between the ECALLs. From there, we can split the ECALL execution flow into rounds.
One limitation is that we have to enforce the ECALLs to only have one output source;
there is no easy way to figure out what the relative ordering of the outputs are (we
cannot generate the index number for the output in the rule).

Annotation Examples

Shown below is an example of the annotations that would be added to an EDL file. The
added annotations are bolded. ecall_sample would be assigned with ID 0 and ecall_-

find_range_bounds would be assigned with ID 1.

public void e c a l l s amp l e (
[ u s e r check ] @input u i n t 8 t ∗ input rows , s i z e t input rows l ength ,
[ out ] u i n t 8 t @output ∗∗ output rows , [ out ] s i z e t ∗ output rows l ength ) ;

public void e c a l l f i n d r ang e bound s (
[ in , count=s o r t o r d e r l e n g t h ] u i n t 8 t ∗ s o r t o rd e r , s i z e t s o r t o r d e r l e n g th ,
u i n t 32 t num part i t ions ,
[ u s e r check ] @input u i n t 8 t ∗ input rows , s i z e t input rows l ength ,
[ out ] u i n t 8 t @output ∗∗ output rows , [ out ] s i z e t ∗ output rows l ength ) ;
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Shown below is an example of annotating a code snippet from EncryptedSortExec.scala,
and the interface function FindRangeBounds from SGXEnclave.scala in Opaque, in order to
specify a ruleset for the operation EncryptedSortExec.

// Co l l e c t a sample o f the input rows
@join va l sampled = applyLoggingLevel ( childRDD , ” enc lave . Sample” ) {

childRDD =>
Ut i l s . concatEncryptedBlocks ( childRDD .map { block =>

va l ( enc lave , e id ) = Ut i l s . i n i tEnc l ave ( )
va l sampledBlock = enc lave . Sample ( eid , b lock . bytes )
Block ( sampledBlock )

} . c o l l e c t )
}

// Find range boundar ies parce l ed out to a s i n g l e worker
@single va l boundar ies = applyLoggingLevel ( childRDD ,

” enc lave . FindRangeBounds” ) {
childRDD => childRDD . context

. p a r a l l e l i z e ( Array ( sampled . bytes ) , 1)

.map { sampledBytes =>
va l ( enc lave , e id ) = Ut i l s . i n i tEnc l ave ( )
enc lave . FindRangeBounds ( eid , orderSer , numPartit ions ,

@single sampledBytes )
}
. c o l l e c t
. head

}

@native de f FindRangeBounds (
e id : Long ,
order : Array [ Byte ] ,
numPartit ions : Int ,
@input input : Array [ Byte ]

) : Array [ Byte ]

The rule that would be constructed for operation EncryptedSortExec is:
join ECALL_0 output_0 round_0 = single ECALL_1 input_0 round_1
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Chapter 7

Implementation

Our verification system has minimal dependencies and is comprised of:

1. The core in-enclave verification library which is implemented in C++. We utilize
xxHash [10], a fast (non-cryptographic) hash algorithm in order to efficiently compute
unique identifiers for individual pieces of data passed to an ECALL to be processed by
our audit log generation code an inserted into the AuditLogEntry.

2. A verification server which accepts incoming audit logs from all enclaves that is also
implemented in C++ in order to run inside of an enclave. The developer specified
rulesets (which are used for performing run-time verification) are registered with the
verification server and are specified as JSON objects which contain information about
which ECALLs are associated with a particular operation and what logic to apply to
check whether an audit log is valid.

3. A Python script which utilizes the Python bindings for libclang (a library that simpli-
fies analyzing C/C++/ObjC code) in order to parse C++ code to output a transformed
EDL file and ECALL implementation file. This script implements the optional opti-
mizations; developers can either use this script or manually change the EDL file and
ECALL implementation file.

Communication between the executing enclaves and the verification server occurs at the
end of each round via an SSL connection which begins and terminates within enclaves.
This was achieved by modifying the attested_tls example [35] provided as part of the
OpenEnclave SDK. MbedTLS [3] is used for all cryptographic prerequisites needed for es-
tablishing the SSL connection. We use the boost::serialization library [6] to serialize
the AuditLogEntry data structure prior to sending it over the network.

The OpenEnclave SDK is also used for remote attestation, generating trusted-untrusted
enclave interface from EDL file via oeedger8r tool, and other tasks typically associated with
operating enclaves, but these should be handled separately by the developer writing the
enclave application. As a result, the entire SDK is within the TCB of the enclaves, but our
system does not directly utilize much of the provided SDK functionality.
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Our core verification library is under 500 lines of code. Adding support for SSL connec-
tions adds about 600 lines each for the worker enclave and the verification server enclave.
Our codebase is open source and available at: https://github.com/saharshagrawal/

verified-enclaves

https://github.com/saharshagrawal/verified-enclaves
https://github.com/saharshagrawal/verified-enclaves
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Chapter 8

Evaluation

For all evaluation we used SGX-enabled VMs on the Azure Confidential Computing cloud
with plan 18 04-lts-gen2 running Ubuntu 18.04 each with 2 vCPUs and 8 GiB of RAM. We
first evaluate the impact of our library on the TCB. Then we discuss the performance of
the verification and communication in our library. Finally, we evaluate several API calls
from our library on a single application, Opaque. We only tested our library on Opaque
because secure enclaves are yet to become widely adopted, so there are a limited number of
distributed data enclave-based applications.

8.1 Library Size

One primary goal of our verification library is to help developers reduce their TCB by
moving code sections such as the scheduler and communication outside of the enclave. The
table 8.1 contains the lines of code for different files in our library. We show that our
verification library adds very little to the TCB; there are about 500 total lines of code,
which is small enough to easily audit to make sure it is not malicious. The lines of code for
ecall_init_verifier are an estimate, because integrating this ECALL includes modifying
the interface code between the application and the enclave; the lines of code needed to do
this depend on the application implementation. The estimate is based on the lines of code
needed to modify Opaque.
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File/Function Name Description Lines of Code

Audit.cpp audit log API 180

Verifier.cpp code run by the verifier enclave 270

IteratorInterface.cpp class that data sources must inherit to be
compatible with our library

7

ecall init verifier send the number of data elements expected as
input for round 0 to the verifier

≈25

Total ≈ 482

Table 8.1: Lines of code across verification library files.

8.2 Communication

In order for worker enclaves to send audit log entries to the verification server enclave,
we must establish a secure communication channel. As mentioned in Chapter 7, an SSL
connection is established between each worker enclave and the verification server by adapting
the in-enclave client-server code provided in the attested_tls sample included as part of
the OpenEnclave SDK.

Currently, we launch a new SSL client every time an audit log needs to be sent from
a particular enclave and MbedTLS is used to configure the connection. A potential opti-
mization here may be to use the same SSL connection within an enclave to send multiple
audit logs rather than creating a new connection each time. We present timing data for the
communication overhead involved in a specific ECALL in Opaque in the subsequent section.

8.3 Opaque

We tested the init_audit_log, log_input_data, and log_output_data API calls of
our verification library on the latest released version of Opaque; this version of Opaque
does not have any execution flow integrity implemented. The following results were ob-
tained by adding audit log generation functionality to the non_oblivious_sort_merge_-

join ECALL and then running query 13 of the TPC-H benchmarking test suite which
tests left outer join (which is implemented using non_oblivious_sort_merge_join in
Opaque). The non_oblivious_sort_merge_join processes 165,000 total rows as input par-
titioned across 2 vCPUs/ enclaves where each enclave processes approximately half of the
total number of input rows.

Below are the modifications we make to Opaque to integrate our library:
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• We extended the data source data structure in Opaque, class RowReader with the
IteratorInterface class. The lines of code added are minimal; a mere five lines of code
were added to FlatbuffersReaders.h, where RowReader is defined.

• We defined a ruleset JSON file with 25 lines.

• We added the API calls to the ECALL definition in NonObliviousSortMergeJoin.cpp,
which only took 15 lines of code; the code sample can be found in A.2. Opaque is an
example of an application where the API calls have to be manually inserted. We could
not use our script as described in section 6.4.1 to automatically modify the ECALL
definition, because our script assumes that pointers to the data sources’ data structures
are passed in as parameters. However, in Opaque, the data source’ data structure is
initialized within the ECALL from two of the ECALL parameters.

The latency incurred by our API calls is shown in the following table (since our node has
2 vCPUs, the computation is distributed across 2 enclaves where each enclave processes ap-
proximately 80,000 table rows; we present only the max timings measured for each portion):

Overhead (ms)

Log Input Data 12

Log Output Data 27

Ruleset Processing 0.12

Log Transmission 450

Verification 424

Total 913.12

Table 8.2: Evaluation of our library’s performance using Query 13 from the TPC-H bench-
marking test suite in Opaque

The Log Transmission timing value in table 8.2 is computed by serializing and sending
a single audit log to the verification server running on the same physical node. This is a
reasonable communication pattern, as it is entirely feasible for the verification server enclave
to be running on the same physical node that worker enclaves are running on. Currently, we
do not measure the communication overhead of transmitting audit logs across physical nodes
since differing network conditions can result in high variability in timing measurements.
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The API call for initializing the audit log is not included because it has negligible over-
head. Without our verification library, this test suite takes about 29 seconds on average to
complete. Therefore, our library adds roughly 3% of overhead.

The overhead from ruleset processing is minimal, as it does not take much to initialize
variables and parsing through the JSON file. It is even faster because the non_oblivious_-

sort_merge_join ECALL does not have any explicit rules in the ruleset JSON file. Most of
Opaque’s operations that a client can use only have one round and one ECALL. Such oper-
ations only have the implicit rule that the initial data values sent by the trusted driver code
to the verifier matches the input data to that one ECALL. On the other hand, verification
has the biggest overhead; this makes sense, as it requires iterating over every data element.
The only step for verification of operation non_oblivious_sort_merge_join was to check
that the initial data values match the input data to the ECALL.

non_oblivious_sort_merge_join is an operation that has one round and one ECALL;
only the implicit rule (as described in the previous paragraph) needed to be checked. The
timing of checking this implicit rule is equivalent to checking any rule where one side of the
equality has a non-single data source. For example, checking that the rule (union of the
output of ECALL_1 in round 0 is equal to the union of the input of ECALL_2 in round 1)
would take the same amount of time as the implicit rule, assuming that for both rules n
data elements are iterated over to be cross checked.

8.4 Optimizations

We do not consider the optimization code as part of the library size evaluation, the
purpose of evaluating the library size is to measure the impact on the TCB within the
enclave. The optimization code is not run within the enclave; it is run by the developer
separately. Instead, we evaluate the optimizations based on how useful they are to the
developer.

8.4.1 Automatic API Integration

Using the script results in the developer only having to write 4 lines detailing ECALL
parameter metadata for each ECALL instead of 14 lines of API calls. Although this may seem
like a trivial improvement, for complicated applications with many ECALLs a significantly
larger amount of developer effort is saved.

8.4.2 Automatic Ruleset Generation

Manual specification of the ruleset JSON file becomes error prone as the number of
operations and ECALLs for an application increases; it is easy to put in the wrong ecall ID
or round number. Automatic ruleset generation streamlines the developer’s workflow; instead
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of having to transfer much of the information contained in the code where the ECALLs to
an external JSON file, the developer can annotate the code directly.

The overhead of running the ruleset generation code is amortized, as it is only run each
time the application is recompiled or updated. In addition, any overhead of running the
code would be offset by the time saved from having to manually specify the ruleset.

Ruleset File Length

One way of evaluating the effectiveness of the automatic ruleset generation optimization
is to consider the number of lines saved. The length of the ruleset JSON file depends on
the number of operations, the total number of rules, and the total number of ecalls. For o
operations, r total rules, e total ecalls, the ruleset JSON file is expected to be 4∗ o+ 6∗ e+ r
lines long. A typical data analysis application will have at least 20 possible operations, and
thus at least 20 ECALLs, which leads to a ruleset JSON file that is at least 200 lines long.

Annotations

• ECALL mapping and operation mapping: To annotate the ECALLs and operations
with @ecall, @operation respectively for e ECALLs and o operations takes e + o
annotations, which is easier than writing out e + o lines of mapping in a JSON file.

• ECALL parameter data source metadata - data source type, data source counts: We
annotate the parameters with data source type in the EDL and in the untrusted code
that interfaces with the enclave with the data source type @input, @supp_input,

@output, @supp_output. The counts for each data source type for an ECALL is
computed automatically. If we consider the average number of parameters per ECALL
that are data sources as p, for e ECALLs this results in 2 ∗ p ∗ e annotations. We can
reasonably expect p to be between 2 and 5 for most ECALLs. For this step the amount
of work done is comparable with the manual specification.

• Rules for each operation: Each rule corresponds to an input, output data source pair
for two different ECALLs. In the untrusted code where the ECALL is called, it is
annotated with @single, @each, @union. The number of rounds for an operation is
automatically calculated, which makes one less value per operation for the developer
to manually specify. Not having to manually specify the rules significantly reduces the
potential for human error. Although we tried to make the rule format simple, there are
still 10 fields for each rule that a user must specify. 6 of these fields are indices which
are especially prone to human error. The automatic rule generation greatly reduces
the chance of such errors.
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Chapter 9

Limitations & Future Work

9.1 Limitations

The current system design has additional latency in each round proportional to the
number of ECALLs executed during that round and the amount of data processed by each
ECALL in addition to any constant network overhead terms. This is partially due to the
implicit barrier induced by runtime verification which makes the code blocking until a round
has been verified. The verification itself also has latency overhead, because the verifier iterate
through all data elements passed as inputs and outputs to the ECALLs. This is especially
bad for large datasets, as the underlying data analysis application already iterates over all
of the data to perform computations.

Additionally, we can only support C/C++ applications, or applications such as Opaque
that import native C function definitions. This is a limitation of using Intel SGX enclaves;
it is not possible to run other languages in the enclaves, unless we use something similar to
a libOS.

9.2 Future Work

In an attempt to address the latency concerns, we can adjust the round verification fre-
quency so that instead of performing verification every round, verification is only performed
every k number of rounds. This would require informing both the worker enclaves and the
verification server about the modified frequency so that it knows to retain logs for all those
rounds. This may not be possible if there is limited memory on the verification server (since
it is also running inside an enclave). In the extreme case where granularity is adjusted to the
maximum number of rounds, this approach would begin to resemble a post-verification ap-
proach whose limitations were described in Section 6.3. Another way to address the latency
overhead is to target the problem of iterating through all of the elements during verification.
The overhead could be significantly reduced if we expose the logging for one element at a
time in an API call to avoid double iteration over the data elements.
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In our evaluation of Opaque, we run computation and verification on a single physical
node. Opaque supports distributing computation across many physical nodes as it is built
atop Spark SQL and Spark supports several cluster managers (e.g. Mesos, Kubernetes). Such
cluster managers typically provide some form of fault tolerance, but we must evaluate further
the usage of secure enclaves with such cluster managers and determine what modifications
may be needed to our verification system to support non-manual node management.

As mentioned in 6.3.2, our library currently supports a limited number of types of rules.
In the future, we aim to support rules that capture more complicated data relationships
between ECALLs.

The current implementation of automatic ruleset generation only works with Scala and
C/C++ code, but the part of the application outside of the enclave can be written in any
arbitrary programming language. The C/C++ code analysis can still be used, as the enclave
function definitions must be written in C/C++. However, the untrusted code can be written
in any arbitrary language, so in the future we hope to support more languages using the same
strategy of analyzing code annotations. Parsers and static analyzers exist for any reasonably
popular programming languages, so the strategy of using annotations is easily extensible
even to languages that don’t support annotations.

There is also potential for more automation, such as for partitioning the application into
trusted and untrusted code. Automatic partitioning solutions exist (Civet [47] and Glam-
dring [29]), but they are not targeted for distributed applications. An automatic partitioning
framework for distributed applications would be very useful if used together with our verifi-
cation library. The framework can identify code that affects data flow but not the actual data
content and categorize such code as untrusted, thus resulting in a smaller trusted computing
base than existing partitioning solutions can provide. Then our library can be used to verify
that the execution and data flow happened correctly. We can borrow strategies from Civet
and Glamdring, such as using annotations and static analysis to mark the sensitive data.

Another direction for future work is to integrate our library with more distributed data
analysis enclave-based applications beyond Opaque, to make sure the library generalizes well
to work with a wide variety of applications. Even while integrating our library with Opaque,
we realized that parts of our initial design were flawed. For example, we originally assumed
that the inputs to ECALLs are the data sources, but for Opaque this is not true - the data
sources are initialized inside of the ECALL based on the ECALL parameters.
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Chapter 10

Conclusion

Overall, we presented a library that saves the developer of a distributed data analysis
enclave-based application the effort of writing their own execution flow integrity code logic.
We even provide optimizations to automate parts of the workflow to further decrease the
developer effort required. We integrated our library into an existing application to show
that it not only has a reasonable code footprint but also a low latency overhead. Most
importantly, we showed that our library is practical to use.
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Appendix A

API

A.1 API Code Snippet

/∗∗
∗ I n i t i a l i z e a new AuditLogEntry .
∗
∗ @param e c a l l i d id number corresponding to the curren t e c a l l
∗ @return a po in t e r to the i n i t a l i z e d AuditLogEntry
∗/

AuditLogEntry∗ i n i t a u d i t l o g ( int e c a l l i d ) ;

/∗∗
∗ Logs the input data o f an e c a l l .
∗
∗
∗/

void l o g i npu t da t a ( AuditLogEntry∗ entry ,
u i n t 64 t ∗ i npu t da ta po in t e r s , int num input data ,
u i n t 64 t ∗ i nput supp data po in t e r s , int num supp input data ) ;

/∗∗
∗ Logs the output data o f an e c a l l .
∗
∗ @param entry
∗ @param ou t pu t d a t a po i n t e r s
∗ @param num output data
∗ @param ou t pu t s upp da t a po i n t e r s
∗/

void l og output data ( AuditLogEntry∗ entry ,
u i n t 64 t ∗ output data po in te r s , int num output data ,
u i n t 64 t ∗ output supp data po inte r s , int num supp output data ) ;

/∗∗
∗ Sends an aud i t l o g to the v e r i f i e r enc lave .
∗
∗ @param entry po in t e r to the AuditLogEntry
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∗/
void s end aud i t l o g ( AuditLogEntry∗ entry ) ;

A.2 Example API Usage

An example of how to add our verification library API calls into Opaque’s ecall_non_-
oblivious_sort_merge_join function.

Listing A.1: Modified ecall non oblivious sort merge join

void non ob l i v i o u s s o r t me r g e j o i n (
u i n t 8 t ∗ j o i n expr , s i z e t j o i n exp r l e ng th ,
u i n t 8 t ∗ input rows , s i z e t input rows l ength ,
u i n t 8 t ∗∗ output rows , s i z e t ∗ output rows l ength ) {

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
struct AuditLogEntry∗ l og = i n i t a u d i t l o g ( 1 ) ;
int num input data = 1 ;
RowReader r2 ( BufferRefView<tu ix : : EncryptedBlocks>(

input rows , i nput rows l eng th ) ) ;
u i n t 64 t i npu t da t a po i n t e r s [ num input data ] = {( u i n t 64 t )&r2 } ;
int num supp input data = 0 ;
u i n t 64 t ∗ i npu t supp da ta po in t e r s = 0 ;
l o g i npu t da t a ( log , i npu t da ta po in t e r s , num input data ,

i nput supp data po in t e r s , num supp input data ) ;
// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−

˜ EXISTING CODE ˜

// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−
RowReader r3 ( BufferRefView<tu ix : : EncryptedBlocks>(

∗output rows , ∗ output rows l ength ) ) ;
int num output data = 1 ;
u i n t 64 t ou tput da ta po in t e r s [ num output data ] = {( u i n t 64 t )&r3 } ;
int num supp output data = 0 ;
u i n t 64 t ∗ output supp data po in t e r s = 0 ;
l og output data ( log , output data po in te r s , num output data ,

output supp data po inte r s , num supp output data ) ;
s e nd aud i t l o g ( l og ) ;
f r e e a u d i t l o g ( log , num input data , num supp input data ,

num output data , num supp output data ) ;
// −−−−−−−−−−−−−−−−−− AUDIT LOG −−−−−−−−−−−−−−−−−−

}
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Appendix B

Ruleset

B.1 Ruleset JSON Example

{
” e c a l l i d ” : {

” e c a l l n o n o b l i v i o u s s o r t m e r g e j o i n ” : 0
} ,
” op e r a t o r i d ” : {

” nonObl iv iousSortMergeJoin ” : 0
} ,
” e c a l l d a t a s o u r c e c oun t s ” : [

{
” e c a l l i d ” : 0 ,
” input ” : 1 ,
” supp input ” : 0 ,
” output” : 1 ,
” supp output ” : 0

}
] ,
” r u l e s e t s ” : [

{
” ope r a t o r i d ” : 0 ,
” e c a l l i d s ” : [ 0 ] ,
”num rounds” : 1 ,
” r u l e s ” : [ ]

}
]

}
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