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Robust Naive Bayes

Aditya Mishra *

Abstract

Robustness of deep learning methods remains
an open issue in a variety of NLP tasks due to
the inherent complexity of neural networks. In
this paper, we focus on a simple, yet effective
model for large-scale text classification: Multi-
nomial Naive Bayes (MNB). In this work, we
derive the robust counterpart to MNB, Robust
Naive Bayes (RNB), in different adversarial
settings that are relevant to text. We compare
the robustness of our model against SVM, lo-
gistic regression and neural networks in a vari-
ety of settings. Our results show that RNB is
comparable to other models under random per-
turbations but vastly outperforms them against
targeted attacks. We describe an algorithm for
training our model which is orders of magni-
tude faster than the training time of more com-
plex models.

1 Introduction

Deep neural networks and transformer models are
the current state-of-the-art for text classification
problems. However, a key concern surrounding
these models is the potential lack of robustness
in the presence of noise and ill-intentioned ad-
versaries affecting the data. For instance, lyyer
et al. (2018) show that syntactic transformations
can drastically reduce the accuracy of bidirectional
LSTMs, while Jin et al. (2020) are able to generate
semantically and syntactically similar examples to
training data that drastically reduce the test perfor-
mance of BERT.

Since robustness is difficult to analyze for highly
complex models, we turn our attention to a much
simpler model: the Multinomial Naive Bayes
(MNB) classifier, a model that has persisted in text
classification for its ease of implementation. We
pose the following question: Can a robustly trained

Please see Section D of the appendix for acknowledge-
ment of collaborators and their contributions.

MNB model outperform complex models when sub-
ject to random or adversarial attacks? For one
instance of a structured adversary, we give an affir-
mative answer. In this paper:

* We formulate a Robust Naive Bayes problem
that accounts for the worst-case noise under a
typo-based uncertainty model.

* We present a fast algorithm that scales linearly
(up to logarithmic factors) with the dimension-
ality of the data points.

* We show that our Robust Naive Bayes clas-
sifier not only trains faster, but significantly
outperforms other models when the data is
subject to adversarial perturbations.

1.1 Related Works

Robust classification is a well-studied topic for tra-
ditional machine learning models such as support
vector machines, logistic regression and decision
trees (Bertsimas et al., 2019), in which a min max
formulation is used (Ben-Tal et al., 2009). These
techniques offer the opportunity to consider un-
certainty under worst-case and/or probabilistic as-
sumptions, and improve the robustness of algo-
rithms against real-world data perturbations. In our
work we employ the robust optimization methodol-
ogy to MNB with an uncertainty set that is actually
meaningful in a text classification settings (as op-
posed to £,-norm ball uncertainties).

A comprehensive study of robust deep learning
for problems in natural language processing is ex-
plored in (Wang et al., 2019). This work provides
a characterization of different adversarial exam-
ples and the constraints they obey. They note a
variety of techniques including those based on fast-
gradient sign-method (FGSM), optimization-based
and importance-score based approaches. Attack
types are also varied, including character-, word-



and sentence-level attacks that undergo a mixture
of inserting, flipping, swapping (for character-level
attacks), replacing (for word-level attacks) and re-
moving features. In our work, we explore word-
level attacks for frequency-based encodings of sen-
tences (that is, count vectors) by considering typo-
based uncertainties (i.e. perturbations that insert,
replace or remove words from the original sen-
tence).

A complete survey on Naive Bayes and its ex-
tensions can be found in (Jiang et al., 2007). Of
particular interest are works that try to make Naive
Bayes models more robust. There have been var-
ious works making naive Bayes classifiers robust
to different types of noise. (Ramoni and Sabastini,
2001) formulated a naive Bayes model that takes
into account missing entries, both in the form of
data points not having a label, and labels not hav-
ing a corresponding data point. In our work, we
specifically consider a noise model where words
are added or removed from sentences.

2 Background on Naive Bayes

2.1 Notation

We are given a non-negative data-matrix of count
vectors X = [z ... 2(™]T € N**? and a vec-
tor y € {—1,1}" that encodes the class informa-
tion for the n data points of dimension d. Further-
more, let C denote the positive and negative class
respectively. Unless otherwise specified, functional
operations (such as max(x, y)) on vectors are per-
formed element-wise. We also define

Ty = {ily") = £1}, fr:=) a0

1€T4

Finally, ? = {6 | 6 € [0,1]¢, 176 = 1} denotes
the d-dimensional simplex. Throughout the paper,
we will use terms count vectors and sentences in-
terchageably.

2.2 Naive Bayes

Here, we wish to predict the class label
of a test point * € N¢ via g(z) =
argmax.c(y _} P(Ce|z). To calculate the poste-
rior probability, we use Bayes’ Rule and the “naive”
assumption that features are conditionally indepen-
dent, leading to the prediction rule

y(x) = arg max logP(C.) + logP(x;|C.
§(z) = arg_max logP(C,) ; gP(z;|Cc)

The above equation requires an explicit model for
P(z;|C.). Throughout this paper, we use the multi-
nomial distribution and determine the optimal pa-
rameters of the distribution via maximum likeli-
hood estimation.

2.3 Multinomial Naive Bayes

With integer-valued features, we parameterize the
conditional distribution P(z;|C¢) with two non-
negative d-dimensional vectors §* € P. The prob-
ability distribution P(z()|CL.) is

(i) s,
P(z|Cy) = = [ [ ;)™
H;lzlxj! J]‘:_Il J

and the maximum likelihood estimator 6 is

+ _ £\ T +
0% —argggg;g(f ) logt ¢))

The solution to (1) is 05} = lijﬂt’

following classification rule:

-
9(z) = sign (logiEng; + (logzj) x)

We refer the reader to Askari et al. (2020) for
further details on the derivation of the model.

and we get the

3 Robust Classification

Here we outline our main contribution; the robust
multinomial naive bayes (RNB) model under dif-
ferent types of noise. We also show how to train
other classifiers under the same uncertainty sets.

3.1 Constructing Robust classifiers

In the problem of robust classification, we seek to
find a classifier that operates well under a certain
distribution shift. In order to learn a robust classi-
fier, we solve the following optimization problem:

0* = in L(U,
argmax  min (U,y)

where £ : R™? x R® — R is a loss func-
tion that takes in a data matrix U and labels y;
U : R™*% — R™¥4 returns a set of noisy perturba-
tion around our nominal data matrix X, according
to our uncertainty set; and 6 are the parameters of
our classifier. This traditional approach to robust
classification utilises the inner problem to consider
the worst-case uncertainty in our data to learn a



classifier that is resistant to these adversarial set-
tings. Traditionally, the robust training problem is
a min max problem but since our original problem
is a maximization problem it is instead a max min.

We assume that the uncertainty affects each data
point independently. This leads to uncertainty sets
of the form

UX) = {[ul,...,un] eER™ .y, € V(xz)}

where a set V(x) C RY models the uncertainty on
a generic data point z € R?. We study on two dif-
ferent types of uncertainty sets; a shift uncertainty
for a real-valued vector 2 € RY

Vaniti(z) = {6 : 6 +z € N%, 6 € [—7,7]* N Z7},
(~y-shift)

and a typo uncertainty for an integer valued count
vector z € N¢

Vipo(z) ={0 : §+ 2 € N4, I0]L< K}
(k-typo)

Viypo () models the fact that count vectors can be
altered by adding or subtracting at most x counts
to . In Section 4, we parameterize x = t||z||;
where ¢ > 0 denotes the proportion of typos as a
percentage and ||z||; denotes the number of words
in the sentence x.

In the remainder of this section, we consider
the following robust optimization problem under
various uncertainty sets D:

ST (fe+ 60" (log be)

ee{+,—}

max min
0L€P 6+ €D

where D, denotes either the shift or typo uncer-
tainty for the positive and negative class accord-
ingly. Also note that the optimization problem is
separable in terms of the pairs of variables (6, d;)
and (60—, J_), so we focus on efficiently solving the
optimization problem:

max min(f + )" (log ) )

We first show an interesting connection between the
(7y-shift) uncertainty set and laplace smoothing for
MNB. The rest of the section is then focused on the
(k-typo) uncertainty set since this is the uncertainty
set we consider for our experiments in Section 4.

RNB with shift uncertainty. Under the shift un-
certainty set (y-shift), we can derive the represen-
tative RNB model.

Lemma 3.1. The robust counterpart of MNB un-
der the uncertainty set (y-shift) can be cast as the
following optimization problem:

(fe +|Celv1) " (log 6.

which has closed form solution

9:‘: _ fi + |Ci|’71
: Zzni1 fi,z’ + |Ci”7

where |C.| and |C_| are the number of data points
for the positive and negative classes respectively.

Proof. See section C.6 of the Appendix. O

If we consider |C4|= |C_| and v = ﬁ, then
the solution is of the same form as that when
Laplace smoothing with parameter ' is used in the
Multinomial Naive Bayes solution. Alternatively,
we could also considered two different parameter
Y = |g—;| for each class to find this solution. This
showcases the observed relationship between reg-
ularization and robustness explored in regression
methods when a prior is enforced (Bertsimas and
Copenhaver, 2017). In fact, Laplace smoothing is
equivalent to enforcing a Dirichlet prior on 6 (see
Section C.7 of the Appendix).

RNB with typo uncertainty set Under the typo
uncertainty (x-typo), we can derive the representa-
tive RNB model.

Lemma 3.2. The robust counterpart of MNB (2)
under the uncertainty set (k-typo) can be solved
via the scalar convex optimization problem

d

max
v>0

(filog max(f;,v) — max(f;,v))
i=1
— klogwv (3)

The optimal estimate 0, can be recovered via

max{ fi, vy }

0.; =
"’ k+1Tf

and the optimal adversary is given by

5*i: {K
7 0

Proof. See Section C.1 of the Appendix. O

if i = argmin; 0;

o.w



Algorithm 1 solves Eq 3 with complexity O(nd+
dlog d). The key idea is to split the domain of the
scalar variable v into n 4 1 intervals based off of
the f;’s and then find a closed form maximizer vy,
for each interval (see Section C.2 of the Appendix).

Algorithm 1: Solution to (3)

Input: A sorted vector f € R%; x € Rxg
Output: A scalar v* € Ry minimizing
Equation 3
Define pp, = x + >, fi, and
hi = Yi filog fi — fis
Initialize po = £ + 1" f, vo = max(fy, 22),
and hy = 0;
Set v* = vg;
fori=1...ndo
Set pr, = pr—1 — [k,
hi = hi—1 + frlog fi — fi;
Set v = min( fy, max(fr+1, 72%))
and Fy, = hg + pi logvg, — (n — k)vg;
If F(vg) > F(v*), setv* = vy
end
return v*;

3.2 Robust Logistic Regression and Support
Vector Machine

In the cases of using /5-regularized logistic regres-
sion (LR) and soft-margin ¢s-regularized support
vector machine (SVM) classifiers, we can consider
the following problem:s:

B,B0 6;€A;

+ A(IBII3+55)

n
min max Z log(l + e_yi(ﬁT(x¢+6i)+ﬁo)) (4)
i=1

min max

1 n
1in max ;Zmax{O,zi}—FAHwH% (5)
e i=1

s.it. z,=1— yl((I‘Z + 5Z)Tw — b)
where the uncertainty set is defined by
6 € Aj={0i 12 +0; >0, ,[|6:]1< ki) (6)

We consider both problems jointly due to the simi-
lar nature by which the inner maximization prob-
lem is solved. Additionally, we only consider the
the uncertainty set (k-typo) since it is more inter-
pretable for the experiments in Section 4.

Lemma 3.3. The robust counterpart under the un-
certainty set (k-typo) for {s-regularized logistic
regression can be cast as

min

n
o0 in_ > log(1+exp(—yi(8zi + fo)
) N 1:1

+ KillyiBB — Nilloot ] T5)
+ A(IBI5+58)-

For soft-margin lo-regularized SVM the robust
problem reads

min

1 — )
- E zi + Mwl|3
w,2z;>0,1;>0 n i—1

stz > 1 —yi(x) w—b)+
Rillyiw — Ailloo A, 2

both of which are convex. The optimal adversary
07 for both models is found using Algorithm 2.

Proof. See Sections C.3, C.4 of the Appendix. [J

We present a greedy method of solving for the
optimal adversary in in the inner optimization of
(4) and (5) in Algorithm 2 (see Section C.5 of the
Appendix), which has a runtime of O(dlog d). The
same algorithm is able to solve for both adversaries
due to the linear structure of the inner maximiza-
tion. Though the robust counterpart presented in
Lemma 3.3 are both convex programs, they are dif-
ficult to solve efficiently at scale. We consider this
beyond the scope of this work.

4 Experiments

We now study the robustness and training times of
different classifiers with the (x-typo) uncertainty
set. We show that subject to targeted attacks, our
RNB classifier outperforms other common NLP
classfication techniques, while having comparable
performance against random perturbations.

4.1 Experimental Set Up

The models we consider are RNB, RNB where
the noise parameter x is misspecified by 20%
(RNB=+20), the classical MNB, ¢5-regularized sup-
port vector machine (SVM), ¢»-regularized logistic
regression (LR), a multi-layer perceptron (MLP)
with 3 layers, and a pretrained BERT c4sg model
(Devlin et al., 2019). We consider five different
datasets: Amazon (Ni et al., 2019), SST2 (Socher
et al., 2013), MPQA (Deng and Wiebe, 2015), MR



Dataset Vocabulary Size  Dypain Neest  Avg Document Length
Amazon (Ni et al., 2019) 34816 7997 2000 35.8
SST2 (Socher et al., 2013) 16893 63723 15931 4.8
MPQA (Deng and Wiebe, 2015) 5952 5299 1325 1.8
MR (Pang and Lee, 2005) 19587 8529 2133 17.9
Spam (Almeida et al., 2011) 6958 4456 1115 7.9

Table 1: Details of dataset used, containing the size of the vocabulary (ie. number of unique words), the size of
the training set (ngain), the size of test set (n) and the average document length after pre-processing across both

train and test set (to 1 decimal places).

(Pang and Lee, 2005) and Spam (Almeida et al.,
2011). We preprocess each dataset and transform
the data into count vectors (see Appendix A). Only
basic preprocessing was done and as a result the
post processed data contains typos and mispellings.
The size of the datasets can be found in Table 1.

4.2 Comparing Robust Classifiers

We evaluate the robustness of the different mod-
els subject to (k-typo) uncertainty. We do this by
perturbing the datasets randomly, training our mod-
els on this perturbed data and then evaluating the
performance at test time either on randomly or ad-
versarially perturbed data. A random perturbation
means for each data point, we choose an index at
random, randomly decide if we are going to add
or subtract a count from it, and repeat this pro-
cess until the total number of changes made is «.
For each data point, the total number of words we
add/remove is proportional to the length of the sen-
tence (e.g. if the length of a sentence is 100 words,
a proportion of 0% means we do not alter the sen-
tence while 50% indicates we add/remove up to
50 words). An optimal perturbation means given
a model and proportion, we find the best perturba-
tion of the data point by solving an optimization
problem (see Section 3). Since computing the opti-
mal adversary is not possible in general for neural
networks, we compute a pseudo-adversary by sam-
pling ten random perturbations and taking the one
that maximizes the loss at test time.

In order to make the comparison between RNB
and the other models fair, we use {5-regularized
SVM and LR models (since regularized models
reduce over fitting and are known to exhibit robust-
ness properties) and we use data augmentation for
training the neural network models. Specifically,
for MLP and BERT, we take our training set, per-
turb it randomly two times as explained above, and
then use that augmented dataset in order to train
our neural networks.

In Figures 1 and 2, we plot the performance of
the models as we increase the strength of our per-
turbations at training and test time. For all models
and proportions, we randomly perturb the training
set 10 times and we perform 3-fold cross validation
each time for tuning hyperparameters. We only ran-
domly perturb the training set three and two times
for MLP and pretrained BERTcasg respectively,
and use fixed hyperparameters (see Section B for
more details).

Figure 1 shows that under an optimal adversary,
RNB significantly outperforms other models for
high noise levels. In particular, the accuracy of all
the other models steeply drops down for sufficiently
high proportions of typos while RNB declines grad-
ually. Figure 2 shows that RNB gives comparable
performance to other models (in particular the 3-
layer MLP and pretrained BERT models) when
subject to a random adversary. We emphasize that
the important takeaway from Figures 1 and 2 is
not the accuracy values themselves but rather the
trends of the different models. In particular, the
MLP and BERT models could have been trained to
attain higher overall accuracy, but our main focus
is the degradation in accuracy as the proportion
of typos increases. Even when the noise parame-
ter is mispecified by 20%, RNB still significantly
outperforms the other models.

The high variance of the MNB models in Fig-
ure 1 can be attributed to the interplay of two
factors; the MNB model itself and the sparsity
level/dimensionality of the datasets. As per Lemma
3.2, the optimal adversary for the MNB model puts
all its weight on the minimum entry of a discrete
probability distribution. From (1), we see that 8 is
directly proportional to f. For an extremely sparse
dataset, where some words may only appear once,
it is possible that the index corresponding to the
minimum entry of 6 is not unique. As a result,
when constructing our adversary we simply choose
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Figure 1: Test accuracy on the various datasets. An optimal adversary was used to perturb the dataset at test time
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Amazon MPQA SST2 MR Spam

MNB 0.67(0.11) 0.08(0.02) 5.22(5.38) 0.3409(0.01)  0.07(0.0007)
RNB 1.69(0.0831) 0.20(0.01) 6.59(3.42) 0.9531(0.02)  0.21(0.0022)
LR 22.06(1.68) 1.37(0.08) 58.47(2.91) 22.66 (0.33)  0.78(0.0032)
SVM 16.29(5.93) 4.46(0.51) 351.03(49.06) 8.479(0.18) 2.06(0.29)

3 Layer MLP 155.15(43.48) 82.30(40.82) 992.25(138.15) 116.10(27.97) 75.02(31.22)
Pretrained BERT  802.79(2.10) - - - -

Table 2: Mean training time (one standard deviation in parentheses) in seconds for each model.

Classifier Sentence Removed /Added
‘3d rocks this video is incredible in 3d it was a gift for a
relative and he absolutely loves it viewed on a 3d tv and 3d 000 x2
RNB bluray player it was just like going to a movie on the big screen’
‘noise pollution every time i hear that song one wish it
makes me want to throw up i hope he never makes another cd’
‘wonderful this is a wonderful story it left me thinking
instead of my usual forgetting about it 5 minutes later
the characters are intriging and the story is interesting 001 x2
making me not want to put it down i being only in
MNB high school would definitly suggest that you read it’
‘not safe and no fun once you get this toy in your hands
you can see the cheap constructionthe buttons dont work
smoothly and the eggtops are easy to pull off just the 000 x2
right size for my toddler to pop in his mouth i chucked
this one right in the garbage’
‘clean excellent copy and shipped fast this is one of
the books that i have been waiting to read clean book’

000

boring

LR . —— -
‘i couldnt get into it i just coulafter getting more than 50
through the book i had to stop i just couldnt get into it excellent
and didnt like the writting style’
‘great movie i thought it was a very entertaining movie
should have gotten more press when it came out great
SVM very good acting also’
‘this is high density module this is high density module it
works only with a fewmainboards it does not with the two great
i haveamazoncom please correct me if i am wrong’
‘clean excellent copy and shipped fast this is one of excellent
the books that i have been waiting to read clean book’ thanked
MLP - — -
fort apache the movie is old fashioned and not well acted supnlier
it was melodrmatic and artificialthe supplier of the dvd PP .
. , collecting
was prompt and professional
‘its nice i1 was replacing my old cook book i thought but
BERT this was the same one but it isnt but it is a nice cook book’ bucked
‘not kindle ready its hard to put together any nice words .
. e . .. this
about this transcription it is not kindle ready although it is textually freebie

complete should be a freebie’

Table 3: Sentences and their adversarial perturbation at 10% error strength for each classifier and class on the
Amazon dataset. Bold indicates an addition, italics indicate a removal, and unless otherwise stated these refer to a
single addition/removal respectively. (Top) Examples from positive class. (Bottom) Examples from negative class.



one at random which in turn results in the accuracy
greatly varying across different trials at test time.
Note that regularization (via Laplace smoothing)
does not solve this problem while other forms of
regularization may help.

4.2.1 Adversarial Examples

We present a handful of adversarial examples for
various classifiers in Table 3. We considered opti-
mal perturbations acting at 10% strength where the
predicted class label changed.

Note that for RNB and MNB, the optimal adver-
sary is the same for every test point in the same
class (positive or negative) since the adversary is
constructed solely based on the minimum index
of Gf (see Lemma 3.2). This is not the case for
logistic regression, SVM and neural networks (see
Sections C.3 and C.4 in the Appendix). This is
because for the RNB and MNB models, the opti-
mal adversary at test time is only a function of the
learned parameters and label and not the data point
itself, whereas in the other models the adversary is
additionally a function of the test point itself. This
is a result of the fact that RNB/MNB are trained
on the aggregate statistics of the data (f*) instead
of individual data points (x;) which results in this
observed robust behaviour. This is also seen in Ta-
ble 3 where the RNB model coincidentally chooses
the same adversarial perturbation (adding the word
000) for both classes. This also means that if any
other examples from the positive or negative class
were shown, the optimal perturbation for those ex-
amples would also be 000. On the other hand, the
other models have more interesting adversarial ex-
amples that are semantically more meaningful and
reflective of the drastic performance decrease that
the classifiers seen in Figure 1. In particular, Ta-
ble 3 shows how brittle the more complex models
are. For example, for the SVM classifier, simply by
removing the word great from the sentence, the
predicted label changes even if the sentiment of the
modified sentence is still clearly positive. Similarly
for the MLP, by replacing the word excellent
with thanked, the MLP also changes the label,
while it is clear the sentiment has not changed.

We also look at the case when the proportion of
typos is set to 200% and consequently our training
data is extremely noisy. Consider the following
example:

“boring my friend likes this movie so i
checked it out i didnt like it kind of bor-

ing couldnt get through the whole thing
fastforward solved the problem"”

At proportion 200%, LR adds the word
excellent 24 times and removes boring
twice, which results in a class change. BERT
also changes the label but changes the sentence
altogether:

“mundi dubbed ethnically likes web-
cam mackellan pointed cure seller drum-
spleaseit tommy lowry totally withtwelve
otheremail protector 70 mckellan coral
csection through the whole addict nora
solved she funnywe"

For RNB, the perturbation does not change the la-
bel; it adds 000 26 times, which unlike LR and
BERT, preserves the original semantics. As ex-
pected, even for extremely high proportions of ty-
pos, the RNB model only adds one unique word a
fixed number of times to a sentence. In this case,
000 is not semantically meaningful and RNB is
able to resist against extremely strong adversaries.

4.3 Training Speed

We compare the run time of the different models in
Table 2 . We see that the training time of the RNB
model is comparable to that of MNB while provid-
ing significantly improved accuracy as in Figure
1. The other classifiers take orders of magnitude
longer to train than RNB; in the extreme case we
see that on the SST?2 dataset, the MLP takes 100x
longer to train.

5 Conclusion

In this work, we make the case that under a typo un-
certainty set, robustly training a Multinomial Naive
Bayes model significantly outperforms other mod-
els when subject to an adversarial attack. We show
that our new classifier is extremely robust both qual-
itatively and quantitatively against adversaries as
compared to much more complex models. We also
show that the adversary is the same across all data
points in the class (which is not the case for other
more complex models), which results in much bet-
ter performance against adversarial perturbations,
while performing as well as other models when sub-
ject to a random perturbation. We also show that

' All our models were trained on a 72 CPU (2.30 GHz Intel
Xeon E5-2686 Processor) machine with 64 GB of RAM. The
deep learning models additionally were trained using a single
NVIDIA Titan V GPU.



the main complexity in training our model comes
from sorting a vector, and as a result trains orders
of magnitude faster than other models.
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A Dataset Preprocessing

We enumerate the preprocessing steps for each of
the datasets that have used.

* Amazon: The complete Amazon reviews data
set was collected from here; only a subset of
this data was used which can be found here.
This data set was randomly split into 80/20
train/test.

SST2: The Stanford Sentiment Treebank
dataset can be found here, and was pre-
processed using the code here.

MPQA: The MPQA opinion corpus can be
found here and was pre-processed using the
code found here. We balance the dataset by
generating a random 80-20 ratio between the
size of training and test data.

MR: The Movie review dataset can be found
here and was pre-processed using the same
code as the Amazon dataset.

Spam: SMS Spam Collection dataset can be
found here and was pre-processed using the
code found here.

B Model Details

B.1 Classical Models

For each of our classical models, we used Sklearn’s
implementation (Pedregosa et al., 2011). We list
out the hyperparameter tuning procedure for each
of the models below:

* RNB/MNB: We performed a grid search over
the Laplace smoothing parameter using values
ranging from « € [0.5,9.5] in increments of
0.5. The RNB model used the same « as the
tuned MNB model.

* SVM: We performed a grid search over the
regularization parameter using values ranging
from o € [0.5,9.5] in increments of 0.5.

* LR: We evaluated each model with the fol-
lowing values of regularization parameters:
{0.001,0.01,0.1,1, 10, 100}.

We use 3-fold cross validation to determine the
best set of hyperparameters for each model.

B.2 Deep Learning Models
B.2.1 3 Layer MLP

We trained a 3 layer fully connected network, with
512 and 128 as the dimensions of the first and sec-
ond hidden layers respectively. For training, we use
an Adam Optimizer with 10™* as the learning rate.
We employ batchnormalization and apply dropout
(p = 0.1) after the second hidden layer. We trained
the model for 10 epochs, keeping the model with
the best performing validation accuracy.

B.2.2 Pretrained BERT casg

We used a pretrained BERT model that had a
hidden layer with softmax activation from the
HuggingFace transformers repository (Wolf et al.,
2020). Per the authors’ recommendation, we
trained the model for 3 epochs, keeping the model
with the highest validation accuracy. Due to mem-
ory constraints, we trained the model with a batch
size of 16 and a maximum padding length of 256.
During training, we used a AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 5-107° and e = 1075.

C Proofs of Section 3

C.1 Proof of Lemma 3.2

Recall that P is the d-dimensional probability
simplex and that D is the typo uncertainty set
(k-typo). Note since the objective function is lin-
ear, we can perform the minimization over the con-
vex hull of the feasible region. Thus, we can set
D={6eR: f+5>0,[]l: <~}

We have that

* T . T
= log 0 5" log 6
p*(f,%) =max f log6 +mind ' log
T .
= log 6 log 0;
g S o8O+ e iy o
=max f' logl+rt : t1 <logh
0P

We form the dual problem:

= minn{ﬁxf—r logf + Kkt +7(1—1"6) : exp(t)1 <6
T k)

— min max f' logf + klogu +7(1—176)
T 6,u>0

where we make the substitution u = exp(t). Now,
consider the following problem, given fixed u, 7.

¢= max fllogh—71760 : ul <0
0€[0,1]%,u>0

If 7 < 0, the problem is unbounded. Oth-
erwise, we see that the optimal point is 8* =

cul <46
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max(f/7,ul). Plugging it back in to our expres-
sion for p*, we have that:

n

¢" = > (fimax(log f;, log(ru)) -

i=1
max(f;, Tu)) — (le) log T

Setting p = k + 1T f and plugging the expres-
sion for ¢* back, we simplify p*(f, x):

n

i 1 iyl
maxmax 1 [fi log max(f;,log(Tu))
1=
— max(f;, Tu)]
— (" f)logT + klogu + T
n
= max max [filog max(f;,logv)

i=1
— max(f;, v)]

+rlogv+ 7 —plogT

= max Z;[fi log max(f;, v)
— max(f;,v)] — klogv

Note that 7* = p. Going back to our original
problem, we know that p*(f, ) is
max f ' log + klogu+ 7*(1 —176)
0,u>0
We conclude that the optimal 6;(f,x) =
max(f;/7*,v*/7*).  Note that finding the

optimal adversary is equivalent to solving
arg mingep & ' log 0*.

C.2  Proof of Algorithm 1

We consider the following optimization problem.

max F'(v) = ;(fz‘ log max(f;, v)
— max(fi,v))
— klogwv

The key idea of the algorithm is to split the do-
main of v (which is all of R+ () into n 4 1 intervals
based off of the f;’s and find a closed form maxi-
mizer v, for each interval. We then output the vy,
that maximizes Equation 3.

Suppose without loss of generality that f; >
fao > > fn > 0. Let fy = oo and
fo+1 = 0. Let I, = [fx+1,fx], and denote
v = argmax, ez, F'(v).

To prove that the algorithm is correct, it suffices
to show the following:

* vo = max (f1, 2)
® Up = fn
Vg = min (fk,max <fk‘+1) ﬁ))

Verifying the stated expressions for Fy, F),, and
F}, is a matter of plugging in the relevant v into the
main expression.

We first prove the first statement. Since vy € Zy,
we can simplify F'(v) as follows:

n
F(v)=—nv+ (k+ Z fi)logw
i=1
Taking derivatives and setting it to O yields that
the optimal v* is % However, depending
on K, v* might not be in Zy. In the case that it isn’t,
it follows that:

n
/1+Zfi < nfy
i=1

We analyze the derivative F’(v) in the interval
Zy. We have that

n .
o) = o+ 2]
v

We conclude that F' is decreasing on Zj, and
so in the case where v* ¢ 7, we choose our new
optimal point as f7. To account for both these cases,
we conclude that vp = max ( fi, %’)

We proceed to prove the second statement. We
note that now v,, € Z,, = (0, f,,]. Like before, we
can use this information to simply F'(v) to:

n
F(v) = [filog fi — fi] + klogv
i=1
We see that F”(v) is strictly positive on the in-
terval Z,,, so the optimal v,, is therefore f;,.
Finally, we show the last statement. We note that
now vy, € I, = [fr+1, fx]. We rewrite F'(v) as

F(v) = hg + prlogv — (n — k)v



The optimal v* is £, Like before, depending
on K, v* may not be in 7. There are two cases
we need to consider: v* < fiiq1 and v* > f.
We analyze the derivative F”(v) in each of the two
regimes. In the first case, we see that

F/<v)—’;’“—(n—k)<w—(n—k>
§M—(n—k):0
Jra1

We conclude that F' is strictly decreasing, in
which case the optimal v* would be fj1.

Moving onto the second case, we see that v* >
fx implies that & > >, (fx — fi). We thus
have:

F'oy="%—(n—k)

- Z?:kﬂ(fl;— LR T
_=Bfe s

v

We conclude that F' is strictly increasing,
in which case the optimal v* would be fi
since v* needs to be in Z;. To account for
both these cases, we express the optimal v as

min (fk, max (fk+1, ﬁ))

C.3 Solving the Robust SVM Problem

Recall the robust counterpart to be the following:

1 n
i — “max{0,1 — yi((x; + 6;) 'w — b
min 3 max(0:1 = (a6 T =)

+ w3
where the uncertainty set is defined by:
6 € Aj={d; 12 +0; >0, [|0:][1< ki }

We proceed first by solving the outermost maxi-
mization by noting the order of maximization does
not matter:

n
min % ;max{o,gle% 1—yil(zi +6;)"Tw—b)}
+ Ml
We can first solve the following problem:
max 1 — y;((x; + 6;) 'w — b)

5i€Ai

=1 = yi(2] w—b) = min 5/ (yw)

Instead of solving the minimization problem
directly we can proceed via duality as we know
Slater’s condition holds and the problem is convex:

: 5T (vw) — N (2 + 6
e min i (yiw) — Ny (w5 + 6;)

=max min 5;(yiw —\i) — )\I:L‘i
Ai20|6; 11 <k;

- —rillriw — Nl o= AT 2
I)Sg% Kil|yiw illoo—A;

We can now write the original robust problem as
the following:

1o T
min z; max{0,1 — y;(z; w —b)+
1=
. T 2
i Killyiw = AillootA; 2i} + Alfwllz
Via an epigraph reformulation of the problem we
can equivalently write this as

S R 2
min ="z + Ajwl3
w,2;20,A;>0 N, =1

subject to
2 > 1—yi(z] w—0b) 4 Killysw — Nl oo+, x5 Vi

The above robust counterpart is a convex quadratic
program, which can be seen by rewriting the £,
norm in the constraint with 2d linear constraints.
Note that solving for the adversary ¢§; can be ac-
complished using Algorithm 2, which is detailed
in Section C.5 of the Appendix.

C.4 Solving the Robust Logistic Regression
Problem

n
min max
B,B0 6;€A; “

2
1=

+A(IB13+58)

where the uncertainty set is defined by

log(1 + exp(—yi (8" (i + &) + Bo)))
1

€ Ni={0:2;+6 >0, ,10;]1< ki }

Solving the inner maximization is the same as
the solving the following:

; (BT (. )
({Iélgl yl(ﬁ (w’L + 51) + ﬁO)

= yi(BTx; + Bo) + min y;876;
(SiEAi

Note that we can solve the minimization problem
via the same duality-based approach detailed for



robust SVM (see Section C.3 in the Appendix) as
well as the same algorithm to generate the optimal
adversary (see Section C.5):

min

n
5 min_ > “log(1 + exp(—yi(B " zi + Bo)
b bR il i:l

+ K| Ui B — NillootA] )
+ M(|I18l13+65)

C.5 Deriving Adversaries for SVM and
Logistic Regression

In this subsection, we detail Algorithm 2, which
solves the inner optimization for the robust vari-
ants of SVM and logisitic regression under typo
uncertainty.

Algorithm 2: Generate optimal adversary
0 for SVM and logistic regression

Input: Data point » € R?; Label y; Weight
vector w € R?; Proportion Error ¢
Output: Return optimal adversary 0;
Initialize § = O0gx1, k = 155 - ||z||1 (error
budget), ind, z = sortDescending(wy);
Seti = 0;
while £ > 0 do
instructions;
if |z;|= 0 then
‘ break;
else

if |z;|< O then

Oind; = K3

break;

else

a = max{—1-z;, —k};
Oind; = @3

k=k—oa;

end

end
141+ 1;

end

C.6 Proof of Lemma 3.1
Note that the lemma at hand can be proved by
solving a problem of the following form:

max min +8) " log 6
pEP 5€Vshiﬂ(f)(f ) &

which can be seen due to separability across 6+,
f+ and 01. Noting that the inner minimization

problem is a linear program over a non-convex set,
we can equivalently undergo the minimization over
the convex hull of the set:

Co(Vanite(f)) ={0: 6+ f =20, [[d]lcc <7}

This allows the inner minimization to be easily
solved, where we take advantage of the fact that
log(f) <0Oand f > 0:

3" log 8 = —|llog(6) 1= 71" log(6)

min
d€Co(Vinite (f))
This results in the following maximization prob-
lem:

ma.

1) logo
peg(f+7 ) log

Choosing different ~y for each uncertainty set
with respect to each class, ie v = ~|Cy| and

~v2 = 7|Ca|, gives the final form of the optimiza-
tion problem presented in Lemma 3.1.

C.7 Dirichlet Prior and Laplace Smoothing

Lemma C.1. MAP estimation of 0 for a multino-
mial distribution under a Dirichlet prior parameter
a = (N + 1)1 is equivalent to Laplace smoothing
with parameter .

Proof. This proof relies on the Dirichlet distribu-
tion being a conjugate prior to the multinomial dis-
tribution. Hence given a multinomial and Dirichlet
distribution parameterized by 6 € R% and o € R?
respectively, we can say the following about the
posterior distribution of 6 given an observation of
the multinomial distribution x:

P(6)z) o P(x|0)P(6)

d d
T a;—1
x H 0; H 0;
Jj=1

—

<

g~
J

e

J
x P(x 4+ a—1/)

Hence it can be seen that choosing v = (A + 1)1
will lead to Laplace smoothing with smoothing
parameter \. O
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