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Abstract

Parallel Architectures for Hyperdimensional Computing

by

Ryan Moughan

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Bruno Olshausen, Chair

Hyperdimensional computing represents a relatively di↵erent way to approach artificial intel-
ligence than what has become mainstream. It focuses on the use of connectionist paradigms
with a set of simple algebraic operations to form a powerful framework to represent ob-
jects. In this thesis, we show how these algebraic operations can be used to build parallel
algorithms for hyperdimensional language models. We first ask the question of why this is
useful from both an engineering and scientific point of view. Then we show how di↵erent
parallel algorithms can be built to answer each of these questions. One algorithm focuses on
distributing the data to di↵erent workers in order to minimize the runtime, while the other
algorithm focuses on distributing the di↵erent embedding techniques in order for parallel
learning to occur in a process inspired by the brain. Both algorithms are able to achieve
superior e�ciency, however the one that distributes the data over multiple workers is ul-
timately the most e�cient. We further compare these methods to the popular word2vec
models and show how they are able to outperform them on one of the original metrics used
to test word embeddings, the TOEFL test. Finally we describe our vision for future work,
in particular the use of algorithms for learning multimodal embeddings in parallel with joint
hyperdimensional models of language and vision.
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Chapter 1

Introduction

Traditional computation is based on rigid architectures where each bit plays a significant role.
This came about as a result of the natural development of the fields of electrical engineering
and computer science. The first computers had minuscule memories compared with today’s
machines, and as a result computer programs had to be written to maximize the e�ciency of
every bit. When the field of cybernetics and artificial intelligence rose to prominence in the
1950s, many of the models inherited the limitations of traditional computation [6]. These
models still used the small n-bit architectures that the traditional von-Neumann architecture
was based o↵. One such example of this was the first work in artificial intelligence, the Logic
Theorist, which ran on a 40-bit JOHNNIAC computer [11, 27]. This program attempted to
write proofs by representing mathematical expressions as lists that could then be solved using
tree search [11, 27]. In many ways, this type of architecture is in contrast with the entity
they were trying to replicate, the brain. While the exact number will vary by individual, the
brain has around 80 billion neurons with 150 trillion synapses [1]. This constitutes a very
di↵erent foundation to build an architecture from than the limited hardware in the 1950s.

In contrast with the framework of traditional computation, a new paradigm called con-
nectionism came from the field of psychology. Connectionism focused on using distributed
representations as the basis for knowledge [33]. Instead of the third bit of a 16-bit unsigned
integer encoding the 22 value, the representation may be scattered throughout an encoding
of 100 bits. In this design, each individual bit no longer has an understandable significance,
but collectively they form a robust and error-tolerant representation [33]. Computational
models such as Hopfield Networks arose from this idea as a way to store these distributed
representations, and they’ve been shown to be promising models for parts of the brain such
as the hippocampus [14, 29]. Perhaps the most famous connectionist design is the multi-
layer Perceptron, commonly referred to now as the deep neural network [32]. While these
models are encouraging, the capacity to learn and build robust distributed representations
isn’t enough by itself. This has been pointed by multiple works that challenge whether or
not these architectures can solve one of the original problems posed to artificial intelligence,
symbolic reasoning [9, 16].
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Rising to the challenge of expanding on connectionism to incorporate symbolic logic was
hyperdimensional computing, also known as Vector Symbolic Architectures (VSAs) [9]. Hy-
perdimensional computing represents quantities as vectors in extraordinarily high dimensions
of space, usually 1,000 - 10,000 [18]. The elements of these vectors can be composed in a
variety of ways, including binary, ternary, and complex values [18]. What is important is the
properties that arise from this type of representation. The first property is the robustness
of the representations. Lose a single bit in a 32-bit architecture and the entire system could
fail, lose a single bit in hyperdimensional computing and with a high probability, the system
will remain intact [19]. This is because of the redundant and distributed representation
across all the bits. A system organized in such a way is known as a holographic or holistic
representation, as it spreads information throughout the components of its system [19]. This
type of organizations seems to mirror that of the brain, which has relatively large circuits
composed of many neurons [20]. Another property is the randomness when building the rep-
resentations. While every computer may have the exact same representation of the number
128 or the logo for a popular company, it is highly unlikely our brains do [20]. Therefore
it is important to consider how architectures can be built that give rise to similar behavior
despite potentially di↵erent initial conditions. Hyperdimensional computing builds random-
ness as an assumption in its framework and leverages properties of it when constructing
representations [20].

Once the architecture is constructed, hyperdimensional computing defines a set of op-
erators over its space that is both highly e�cient and allows for complex data structures
to be built. The three operators that define the algebra over the space are multiplication,
addition, and permutation [8]. While simple in nature, when used in combination with the
holographic representation of the data, they allow for a powerful and robust form of sym-
bolic computation. For example, a seminal work in hyperdimensional computing showed how
these operations can build representations that are able to understand analogies in language,
such as answering the question, ”What is the dollar of Mexico?” [21]. These operations are
also able to be done with a high degree of e�ciency, with learning not needing to calculate
expensive gradients on the data. They also have the necessary properties that could allow
them to be applied in parallel architectures.

An important property of the nervous system is its ability to operate in parallel [13].
After all, if neurological processes didn’t happen in parallel, it would be incredibly hard for
organisms to survive. The very act of reading this sentence is dependent upon an innumer-
able amount of computational complexity to organize and coordinate visual perception and
symbolic reasoning, not to mention the many underlying actions needed to sustain a func-
tioning body. The brain can thus be thought of as a parallel machine that is able to integrate
simultaneous percepts into sequential actions [28, 35]. This ability to operate many di↵erent
processing tasks at once is known as multiple-instruction parallelism in computer science. It
is widely accepted that the brain operates with this types of parallelism, and we therefore
think it is an important goal of any model inspired by cognition to also demonstrate such
capabilities [13].
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In this thesis we will cover the basics of hyperdimensional computing with a particular
emphasis on their application to natural language processing. Then we will show how the
learning in hyperdimensional computing lends itself to a parallel computing framework,
specifically focusing on two models of language previously used in Kanerva et al. [34].
Here language represents a useful medium to model as a parallel process given the multiple
independent, parallel components that some believe are needed for comprehension [15, 16].
This parallel framework we introduce will include a detailed explanation of an architecture
we call high-performance hyperdimensional computing, as well as an architecture that allows
for learning multiple embeddings in parallel. Finally we will discuss how our results can be
applied to other subfields of hyperdimensional computing and the broader implications on
the discipline.
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Chapter 2

Background

We begin our background by giving a survey of the fundamentals of hyperdimensional com-
puting. We then discuss the specific applications that have used it in various tasks for natural
language processing. Lastly we discuss the basics of parallel computation as they apply to
this thesis.

2.1 Overview of Hyperdimensional Computing

Hyperdimensional computing is a framework in which the atomic unit of computation is a
vector with extremely high dimensionality, often 1,000 - 10,000 [18]. This type of vector is
referred to as a hypervector and the overall space is referred to as a hyperspace [20]. Each
hypervector generally represents a symbol, which can be anything from a word to a position
in an image. The hypervector can be composed of a variety of di↵erent elements, including
bipolar vectors that are randomly sampled from {-1, 1}, binary vectors that are randomly
sampled from {0, 1}, and k-sparse ternary vectors that are mostly zeros but randomly
sample k 1s and k -1s [20]. Each di↵erent way of defining the elements corresponds to a
slightly di↵erent framework with small di↵erences in how the operators we will discuss are
implemented. In this work we will use k-sparse ternary hypervectors.

When defining a new way to represent quantities, it is important to also define a way to
compare them. With hyperdimensional computing, this is traditionally done in one of two
ways. The first is to use the Hamming distance, which measures the number of elements or
bits in which two vectors di↵er:

dHamming(x,y) =
nX

i=1

{xi 6= yi}

The second way to compare vectors is using the cosine similarity, which represents the
normalized distance between the vectors in the inner product space:

dcos(x,y) =
x · y
|x||y|
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(a) Normalized Hamming Distance (b) Cosine Distance

Figure 2.1: Distribution of Cosine and Hamming Distances of Randomly Initialized Hyper-
vectors

In this work we will primarily use cosine distance as our metric for comparing hyper-
vectors. An important attribute of either metric is the dissimilarity of randomly-generated
hypervectors. Random initialization is usually how hypervectors are created, and as such, a
desirable property is that before learning any associations between entities, all hypervectors
are dissimilar. This is where the dimensionality plays a key role. As is shown in Figure 2.1,
increasing the dimensionality concentrates the randomly created hypervectors to be dissimi-
lar with an extremely high probability. Then, when learning associations between quantities,
it only takes a small movement away from the random initialization to have two hypervec-
tors be significantly correlated with each other. This allows for relatively fast and e�cient
learning, which will be done using the operators for hyperdimensional computing.

There are three primary operators used in hyperdimensional computing: multiplication,
addition, and permutation [8]. We will briefly introduce each operator, how it is computed,
and what the general use is below.

Multiplication

Multiplication is used to bind hypervectors together. It is generally used to rep-
resent (or capture) role-filler relationships, such as creating a single entity that
represents the currency of the United States of America by binding one hypervec-
tor that represents the broad notion of currency with another that represents the
dollar [21]. The multiplication operator takes in two hypervectors and computes
the element-wise XOR between them:
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m = x� y

The result of the multiplication operator is a hypervector that is dissimilar to
either of its operands. Note that for di↵erent frameworks of hyperdimensional
computing, multiplication can be defined in di↵erent ways. These include the
circular convolution and the element-wise product between hypervectors [8, 30].
Regardless of definition, the importance of the operator is its properties: that it
is both invertible and distributes over addition.

Addition

Addition is used to superimpose hypervectors together. It is generally used to
learn that two hypervectors are associated with each other. The addition operator
takes in two hypervectors and computes the element-wise sum between the two:

a = x+ y

The result of the addition operator is a hypervector that is similar to both of its
operands. Depending on the hyperdimensional computing framework, this sum
can either be thresholded or kept as is [8]. The addition operator can be thought
of as a way to form a set from the hypervectors that are being added, as well as
a form of learning associations between hypervectors [20].

Permutation

Permutation is used to encode order in hypervectors. It is generally used to help
build structural relationships between hypervectors. The permutation operator
takes in a single hypervector and shu✏es the dimensions, usually by shifting each
element up or down a given number of positions:

p = ⇢(x)

The result of the permutation operator is a hypervector that is dissimilar to
its operand. Note that the permutation operator can also be represented as a
multiplication operator where the permutation is computed by calculating the
matrix product of a vector with a shifted identity matrix. Following from this,
an important property of the permutation operator is that it distributes over
addition, such that ⇢(x+ y) = ⇢(x) + ⇢(y). In general it can be thought of as a
rotation of the hypervectors into another part of hyperspace that is approximately
orthogonal to the original one.
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While simple, these operators collectively define a powerful algebra over the hyperdimen-
sional space. They can be combined to form complex data structures seen in traditional
computing, such as trees and linked lists [6, 20]. They are also versatile in the data they
can represent, as they’ve been used for everything from image to text embeddings. In this
work, we will focus on the use of hyperdimensional computing for language, but the methods
discussed should apply to many other models used in the literature.

2.2 Hyperdimensional Language Models

One of the early uses of hyperdimensional computing came in the form of natural language
processing. Latent Semantic Analysis (LSA) is a form of natural language processing that
constructs embeddings for words based on how frequently they occur in similar contexts,
often times defined as the same paragraph [23]. Each context is given a unique identifier
that can be added to the word embedding. The hope is that words that occur in similar
contexts have similar meanings. One of the issues with this approach is the dimensionality.
The identifier for the context is generally a one-hot encoded vector, which means that to
keep track of d contexts, a d -dimensional vector is needed [22]. For a corpus with a vocab-
ulary of 80,000 words in 50,000 paragraphs, this approach requires a matrix of dimensions
80,000 x 50,000 to keep track of all the words and the contexts they could occur in. An
improvement to this can be found through an idea called random indexing. This is a dimen-
sionality reduction technique similar to hyperdimensional computing that also focuses on
using randomly initialized, nearly-orthogonal hypervectors. By implementing hypervectors
as the representation for contexts instead of one-hot encoded vectors, Kanerva et al. were
able to achieve comparable results to the original LSA work at a fraction of the memory cost
[22].

Building o↵ their work of using random indexing with latent semantic analysis, Kanerva
et al. developed more complex models of language using the algebra of hyperdimensional
computing [34]. This was done by constructing what they called context and order vectors.
Whereas LSA sought to define words that occurred in similar paragraphs, this new approach
aimed to define an embedding in two di↵erent ways. The first way was a more narrow
definition of the context that a word occurred in. Rather than just define the context as
the paragraph a word occurred in, they now defined the context as the small group of words
before and after a given word. In addition to this, they defined order vectors to consider the
relative position of the words around a given word.

To demonstrate how these embeddings are calculated, consider the sentence “A white
dog went for a walk.” First a vocabulary is constructed of each unique word in the corpus,
which in this case would be the six unique words in the sentence. Then label vectors are

defined as randomly initiated k-sparse ternary hypervectors, which we will notate as
��!
word.

We will define the focus word as the word we are generating an embedding for and the
focus window as the number of words to consider before or after the focus word. Then
when the focus word is “dog” and the focus window is two, the context vector would be:
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Figure 2.2: Hyperdimensional language embeddings

�!
A +

���!
white +

��!
went +

�!
for. We denote this summed context vector as [

�!
dog]. The order vector

makes use of the permutation operator to encode order relative to the focus word. Using
the same example sentence and focus word, this would be done by computing the sum:

⇢
�2(
�!
A) + ⇢

�1(
���!
white) + ⇢

1(
��!
went) + ⇢

2(
�!
for). This order embedding, denoted as h

�!
dogi, is then

combined with the context embedding [
�!
dog] to form the overall embedding,

���!
DOG.

There are many impressive aspects to this model. One in particular is its foreshadowing of
better-known models in the years to come, the word2vec embeddings produced by the Skip-
gram and Continuous Bag of Words (CBOW) models [25]. The similarity in ideas behind
both models is outlined in Figures 2.2 and 2.3. While both groups of models use di↵erent
learning methods, the goals of each type of model are similar. Both hyperdimensional context
vectors and CBOW embed a given word in a high-dimensional space by considering the
unordered set of words around the given word. Hyperdimensional order vectors and Skip-
gram share a similar relationship. They both learn an embedding of a given word that
now considers the order of words around it. Skip-gram uses softmax to determine the most
likely word at a given position, whereas hyperdimensional order vectors use the permutation
operator. Note that the permutation operators in Figure 2.2 appear to be the opposite
of how we described calculating order embeddings in the previous paragraph. This is not
a mistake. In order to recover a word at a given position from the embedding, the inverse
permutation operation must be applied. Using the example from the previous paragraph, we
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Figure 2.3: Traditional word2vec embeddings

could recover the word that occurred two positions before “dog” like: ⇢2h
�!
dogi = ⇢

2(⇢�2(
�!
A)+

⇢
�1(
���!
white) + ⇢

1(
��!
went) + ⇢

2(
�!
for)) ⇡ �!A + noise. Then the importance of the previously

established dissimilarity between randomly initialized hypervectors comes in handy, as this
quantity should be able to be used to recover

�!
A. This is also why the arrows point from

the embedding to the output. Learning the embedding requires using the surrounding words
shown as the output, however to emphasize the similarity to Skipgram we show how the most
common surrounding words can be recovered from the learned embedding in a comparable
way. While similar, one notable advantage that hyperdimensional models have over their
word2vec counterparts is their relative simplicity, as the addition and permutation operators
are the only computation required for learning the embeddings.

Many other works have used hyperdimensional computing as a model for various tasks
in natural language processing. Of particular note is one that used it to understand the
geometric structure of di↵erent languages [17]. In this work we will focus on the use of con-
text and order embeddings with parallel computation, but the algebra of hyperdimensional
computing should allow the same principles of parallelism to extend to most, if not all, other
models.
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2.3 Parallel Computation

In computer science, parallel computation refers to the ability to perform multiple calcula-
tions at the same time. It can generally exist at many di↵erent levels of abstraction in a
computer program, and one of the most common is at the data level. This is appropriately
named data-level parallelism [12]. A good example of of how data-level parallelism can be
used is with the following example. Define x as a large sequence of numbers and f as some
expensive function we wish to apply on x to find y:

x =
⇥
1 2 3 4 ... 1000

⇤
, y =

⇥
f(1) f(2) f(3) f(4) ... f(1000)

⇤

Observe that there is no need to go through x sequentially, as there is no inherent
dependence between elements in the list. So we can rewrite y as:

y =
⇥
f(1) f(2) f(3) ... f(500)

⇤ �� ⇥f(501) f(502) f(503) ... f(1000)
⇤

Note here that
�� denotes the concatenation of two vectors. While a single processor

could do all of this work, it can be done more e�ciently by dividing the data among two
processors. The first processor would determine

⇥
f(1) f(2) f(3) ... f(500)

⇤
and the

second processor would calculate
⇥
f(501) f(502) f(503) ... f(1000)

⇤
. Then the output

of these two processors can be combined in order to achieve the correct result in half the time.
More generally, this method allows for a roughly linear scaling of speed with the number of
parallel workers as long as the data is su�ciently large.

Another form of parallelism is control or task-level parallelism [12]. This type of paral-
lelism can be seen with the following example. Define once again x as a vector representing
some sequence of numbers. Now say that we wish to perform two di↵erent functions, f and
g, on this sequence:

f(x) =
X

i

xi, g(x) =
Y

i

xi

While a computer could do this sequentially, computing f first and g second, this is
unnecessarily slow. Since the sum and product are independent, we can compute both
functions in parallel on the single vector x. Hence in this example, the code to compute
the sum and product would be the two tasks operating in parallel for task-level parallelism.
Note however that unlike before with data-level parallelism, task-level parallelism scales with
the number of independent functions applied on the data. It is also generally slower than
data-level parallelism, as the speedup is determined by the maximum runtime of all the
independent functions running in parallel. If f and g take about the same amount of time,
this means that there would be a 2x speedup. If f takes 20x the time of g, however, the
speedup would be negligible. Because of this, task-level parallelism is often slower than
data-level parallelism. However we include it in this thesis because of the brain’s vast use of
it [13].
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Chapter 3

Methodology

We begin our methodology with an overview of the two parallel architectures developed in
this thesis. We proceed to give a thorough explanation of how the data was processed for
each architecture and conclude by giving a step-by-step walk-through of how the parallel
algorithms were implemented.

3.1 Overview of Architectures

We experimented with two main architectures for parallel computation in hyperdimensional
computing. The first architecture sought to maximize parallel performance for hyperdimen-
sional computing, whereas the second sought to explore the use of parallelism in hyperdi-
mensional computing from a framework more similar to the brain. All parallelism in this
work was implemented in Python using a library called Ray. Ray is an open-source software
project out of the RISE Lab at the University of California, Berkeley [26]. It has been noted
for its ease of use and its capabilities with shared-object memory when operating with large
amounts of data, which makes it an ideal library to use for natural language processing
models that have large datasets such as this one [4].

High-Performance Architecture

The first architecture we developed is what we call high-performance hyperdimensional com-
puting. The goal of this framework was to maximize the speed of the learning process in
a simple and e�cient way. To do so, this framework follows a similar structure to the
traditional map-reduce paradigm in parallel computation [5]. A depiction of the general
architecture is shown in Figure 3.1 below.

The key to this framework is that the learning process in hyperdimensional computing
can be formulated as a data-level parallelism problem. For a corpus of millions, or even
potentially billions, of words there are many di↵erent ways to potentially split the data
up into multiple streams for parallel processing. In the case of the learning algorithms
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Figure 3.1: Overview of High-Performance Architecture

for hyperdimensional language modeling, each individual iteration of the algorithm is fairly
inexpensive. Because of this, it isn’t ideal to simply map the learning algorithm over the
entire array of text. If programmed this way, the overhead of parallel computation dominates
the cost of running the algorithm. Instead, it is better to divide the corpus into contiguous
groups of text and run parallel processes on each of these, which is data-level parallelism.

Figure 3.1 demonstrates how a corpus is split into a series of contiguous texts that
each worker can process in parallel. These workers then output what we call the local
embeddings, which would be the context or order embedding for that local chunk of text.
This works because there are no long range dependencies in the embedding, a given word is
only dependent on the few words around it. For example, a word on page two of a book has
no relationship with a word on page twenty of a book, and as such, an embedding can be
computed on both at the same time. These local embeddings are then combined using the
addition operator to create the global embedding over the entire corpus. Note that the use of
the word “embedding” in the diagram refers to only one type of embedding. For example, it

can refer to either h
�!
dogi or [

�!
dog], but not both. So while each embedding processes the corpus

in parallel, h
�!
dogi and [

�!
dog] are learned sequentially and then combined into the overall word

embedding. While highly e�cient, this framework notably separates itself from one of the
objectives of hyperdimensional computing given that the brain cannot temporally segment
input data in this manner.
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Parallel Learning Architecture

One of the original goals of hyperdimensional computing was to come up with a framework
that more closely resembled processes in the brain [20]. Unfortunately, data-level parallelism
breaks this relationship. Presented with the previous page of text in this thesis, it is highly
unlikely that any human reader would have the innate ability to read di↵erent paragraphs
in parallel. The human brain is endowed with a very di↵erent and altogether more complex
form of parallelism, one that much more closely resembles task-level parallelism that can
run many di↵erent processes at the same time. With this in mind, we developed a second
architecture that focused on a task-level parallelism, as is shown in Figure 3.2.

This architecture takes advantage of the fact that that both types of embeddings for
hyperdimensional language modeling use text as an input. With this setup, task-level paral-
lelism is a natural framework that can be exploited. This is implemented by going through
the entirety of the corpus sequentially, but for each word computing both the context and
order embedding at the same time in parallel. This is notably di↵erent from the prior high-
performance architecture, which exploited parallelism at the data level to break the corpus
up into di↵erent segments and not process it sequentially. On the other hand, this architec-
ture exploits parallelism at the instruction level while still processing the data sequentially.
This more closely mimics the type of input the brain receives, which can generally be thought
of as sequential time-series data that undergoes many parallel operations to process it. Ul-

Figure 3.2: Overview of Parallel Learning Architecture
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timately since there are generally less embedding techniques (instructions) than there are
ways to break up the data, this architecture is generally slower than the high-performance
architecture.

While the scope of this thesis is to focus on data-level and task-level parallel computation
for hyperdimensional models on a single stream of input data, we hope that future works
can expand on this to incorporate the type of multimodal data that the brain has to process
in parallel. This is discussed further in the Conclusions.

3.2 Data Processing

Unfortunately the corpus used in the original work, the TASA corpus, is not publicly available
and we could not gain access to it [34]. Therefore we chose a di↵erent corpus that is publicly
available and has been used in many natural language processing studies, the British National
Corpus (BNC), as our primary text for this work. The BNC is a corpus that was constructed
from both written and spoken English in the late 20th century and is generally accepted to
be a high quality corpus [36].

All texts that we used underwent the same cleaning process. This cleaning was done in
Python with the help of the Natural Language Toolkit (NLTK) library [2]. The first step
for cleaning the data was to remove any extra spaces in the corpus. Next we removed any
punctuation from the corpus and kept only alphabetical words. This was done using the
built-in isalpha() method in Python. Then we removed stop words from the corpus. Stop
words are words that occur frequently in the English language but provide little semantic
meaning, such as “the” or “is”. While there are various ways to determine stop words, for
consistency we used the built-in list of stop words in the NLTK library [2]. We also tested
other techniques for generating stop words but ultimately found that they did not lead to
better performance. After removing stop words from the corpus, we converted every word
to lowercase using the built-in lower() method in Python. Following this, we converted the
corpus to a vector if it wasn’t already in that format. This was done using the built-in split()
method in Python. The final step was to lemmatize each word, which is a way to convert a
word to its base form. For example, the word “mice” would be changed to “mouse.” This
was done using the WordNet Lemmatizer in the NLTK library [2].

As an example of using this data cleaning process on some corpus, consider the sentence,
“This is an example sentence for a thesis I am writing.” The vector [“example”, “sentence”,
“thesis”, “writing”] would be the output after undergoing the data cleaning. After this,
the vocabulary is constructed from the cleaned data and label vectors are created for each
word in the vocabulary. This vector is what would then be used as an input to the learning
algorithms described in the following sections.
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3.3 Parallel Context Embedding

In this section we give a detailed description of how parallel context embeddings were gener-
ated for each word in the vocabulary of a corpus. The code for the embeddings can be seen
in Algorithm 1 below. This code has two notable simplifications from what was tested. The
first is that the focus window size is 1 to minimize the number of variables displayed, and
the second is that conditional expressions checking for edge cases were omitted for visual
clarity.

Before running the algorithm, the text array containing the vectorized version of the
entire corpus was put in the shared object memory with the label vectors. Since both the
text array and the label vectors only need to be read by each worker, they could be shared
among all of them in order to save memory. For the high-performance architecture, a copy
of the algorithm was then distributed to each worker with the corresponding start and end
indices for the portion of the corpus they were responsible for. For the parallel learning
architecture, a copy of the algorithm was distributed to a single worker to be run in parallel
with the order embedding algorithm.

When the algorithm was run on each individual worker, they first defined their own local
copy of the context embeddings. Since these values need to be written to, each worker needs
to track its own copy so they cannot be e�ciently shared in a parallel framework. Then
each worker iterated through its respective range of the corpus, computing the local context
embedding for each word as they go. After all the workers are complete, the global context
embedding was computed by summing up the local embeddings.

Algorithm 1 Parallelized Context Embedding

1: Put text array and label vectors in Shared Object Storage
2: procedure Parallel Context Embedding(start index, end index)
3: Initialize context embeddings
4: Define curr word and next word
5: Define prev vec, curr vec, next vec
6: context sum extra  prev vec + curr vec + next vec
7: for i from start index to end index do
8: if curr word in vocabulary then
9: context sum  context sum extra - curr vec
10: context embeddings[curr word] += context sum

11: context sum extra -= prev vec
12: Reassign curr word, next word
13: Reassign prev vec, curr vec, next vec
14: context sum extra += next vec

return context embeddings

15: Put procedure in remote workers
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The context embedding was computed as follows. Consider once again the sentence,“The
white dog went for a walk” and a focus window size of two. Then for the word “dog”, the

context embedding, [
�!
dog], can be written as:

[
�!
dog]extra =

��!
The +

���!
white +

�!
dog +

��!
went +

�!
for

[
�!
dog] = [

�!
dog]extra �

�!
dog

It may not be immediately apparent why it was useful to track this extra information

[
�!
dog]extra. To see why, consider computing the context embedding for the next word, [went,
which we can now write as:

[
��!
went]extra =

���!
white +

�!
dog +

��!
went +

�!
for +�!a

[
��!
went]extra = (

���!
white +

�!
dog +

��!
went +

�!
for) +�!a

[
��!
went]extra = ([

�!
dog]extra �

��!
The) +�!a

[
��!
went] = [

��!
went]extra �

��!
went

Writing the algorithm in this manner allowed for a fixed number of additions and sub-
tractions regardless of focus window size. While this doesn’t have a massive impact on the
runtime for the context embedding, there is a similar trick that can be used for the order
embedding that does have a significant e↵ect. This will be discussed in the next section.

Two more important improvements were made beyond the naive way to write this algo-
rithm. Depending on how the data was pre-processed, there are multiple ways to check if the
current word is in the vocabulary. The best way we found to do so was to keep a hashmap
of all words where the corresponding value represented whether or not the given word was in
the vocabulary. This small change has an important e↵ect, as the operation will be run for
every word in the corpus and this improves the check from a naive O(n) to O(1) time, where
n is size of the vocabulary. The other smaller change that was helpful was to cycle through
variable assignment rather than always index into the text array. By this we mean to take
advantage of the fact that for any subsequent iteration, most vectors, like prev vec, can get
their values from the corresponding next vector, like curr vec. The only vector that needs
to be found by indexing into the text array is the one that represents the farthest word in
front of the focus word and in the focus window. While this may seem trivial, it adds up
over millions of iterations and improved the speed by a nontrivial factor.

3.4 Parallel Order Embedding

The parallel order embedding algorithm followed many of the same design principles as the
parallel context algorithm and can be seen below in Algorithm 2. The main di↵erence is with
the slightly more complex extra information it keeps track of. Since the permute function
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Algorithm 2 Parallelized Order Embedding

1: Put text array and label vectors in Shared Object Storage
2: procedure Parallel Order Embedding(start index, end index)
3: Initialize order embeddings
4: Define curr word, next word
5: Define prev vec, curr vec, next vec
6: order sum extra  prev vec + curr vec + next vec
7: for i from start index to end index do
8: if curr word in vocabulary then
9: order sum  order sum extra - curr vec
10: order embeddings[curr word] += order sum

11: order sum extra -= prev vec
12: Reassign curr word, next word
13: Reassign prev vec, curr vec, next vec
14: order sum extra  permute(order sum extra)�1 + permute(next vec)1

return order embeddings

15: Put procedure in remote workers

is significantly more expensive than addition or subtraction, the algorithm is written to
minimize the number of permutations necessary.

For an example of this, consider again the sentence, “The white dog went for a walk.”
With a focus window size of two, the first word to use all words in the window will be “dog,”
so we choose that as our example. Then we can compute its order embedding as:

h
�!
dogiextra = ⇢

�2(
��!
The) + ⇢

�1(
���!
white) +

�!
dog + ⇢

1(
��!
went) + ⇢

2(
�!
for)

h
�!
dogi = h

�!
dogiextra �

�!
dog

While the use of this extra information may not be immediately apparent, consider the
next word we want to compute the order embedding for, “went.” We can now write it as:

h��!wentiextra = ⇢
�2(
���!
white) + ⇢

�1(
�!
dog) +

��!
went + ⇢

1(
�!
for) + ⇢

2(�!a )

Taking advantage of the distributivity of the permutation operator, this can be written
as:

h��!wentiextra = ⇢
�1(⇢�1(

���!
white) +

�!
dog + ⇢

1(
��!
went) + ⇢

2(
�!
for)) + ⇢

2(�!a )

Substituting in the previously-calculated order vector for dog, we can arrive at:

h��!wentiextra = ⇢
�1(h
�!
dogi � ⇢

�2(
��!
The)) + ⇢

2(�!a )

h��!wenti = h��!wentiextra �
��!
went
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With this formulation of the algorithm, each order embedding only takes two permu-
tation operators to calculate regardless of the focus window size. This can be seen with
the hwentiextra variable while noting that ⇢�2(The) has already been calculated and can be
reused. While this is a relatively small change, it has substantial e↵ects on the runtime that
will be discussed in the next chapter.
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Chapter 4

Results

We begin our results by first proving that our parallel architecture is able to achieve similar
accuracy to the models from the original work. We proceed to discuss how it is able to do
so in a fraction of the time by leveraging parallel computation and finally discuss the cost of
this framework in terms of memory.

4.1 Quality of Embeddings

To test the quality of the embeddings, we used the Test of English as a Foreign Language
(TOEFL). This data set consists of a set of 80 multiple-choice questions, although four
questions were omitted because the words were not in the corpus. The goal for each question
is to pick one of four words that is most similar to the query word in the question. An example
of five questions from the data set can be seen in Table 4.1, where the answer to each question
is in bold. This test was kindly made available to us by Pentti Kanerva.

Question Option A Option B Option C Option D

enormously appropriately uniquely tremendously decidedly
slowly rarely gradually e↵ectively continuously

tranquillity peacefulness harshness weariness happiness
feasible permitted possible equitable evident
bigger steadier closer larger better

Table 4.1: Example questions from the TOEFL test

We chose the TOEFL test as our accuracy metric in order to best compare our accuracy to
multiple works. It was the metric for the original paper that described the hyperdimensional
models we use, and thus we wanted to ensure the accuracy of our model by comparison
[34]. However this test has also been used in many other works, including the seminal work
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on Latent Semantic Analysis, among others [23]. Therefore we thought it was the most
appropriate way to measure and compare the quality of our word embeddings with other
works.

We present our results on the TOEFL test in Table 4.2. Since every question in the
test has four multiple choice options, basic probability suggests that random embeddings
should be correct 25% of the time, which we confirmed in our experiments. These random
embeddings acted as our control group for the test. We then tested three di↵erent hyperdi-
mensional language models. The first model was one of just context embeddings, the second
was a model of only order embeddings, and the third was a model that consisted of both
the context and the order embeddings. All three models performed substantially better
than the random embeddings, indicating their ability to learn embeddings that di↵erentiate
words. These results are also similar to those achieved in the original work, although exact
comparison is impossible due to the di↵erent corpora used [34].

Embedding Random Context Order Context + Order
Accuracy (%) 25.0 67.1 68.4 71.1

Table 4.2: Accuracies of Embedding Techniques

After the original work on hyperdimensional context and order embeddings was released,
word2vec models were discovered and popularized. These models, as we briefly discussed,
follow very similar ideas to those of the context and order embeddings. We therefore thought
it would be interesting to do a comparison between the two groups of models, given that we
are unaware of any other work that has done so. The results of this comparison are shown
in Table 4.3.

Embedding Best HD Skip-gram 1 CBOW 1 Skip-gram 2 CBOW 2 Mikolov
Accuracy (%) 71.1 26.3 22.4 40.8 35.5 86.7

Table 4.3: Comparing Hyperdimensional Language Embeddings with Word2Vec

To compare these two forms of embeddings, we trained both Skip-gram and Continuous
Bag of Words (CBOW) models using the GENSIM library on the same data that we used for
our hyperdimensional models [31]. Initially, we set the hyperparameters of both word2vec
models, which we call Skip-gram 1 and CBOW 1 in the table, to be as similar to the
hyperdimensional models as possible. However the results were abysmal, with the word2vec
models not being noticeable better than random embeddings. We therefore thought it would
be best to tune the hyperparameters for each word2vec model and then test the performance.
While this loses some of the ability to directly compare them with the hyperdimensional
models, it gains the benefit of considering each type of model at its best. These tuned
word2vec models are labeled as Skip-gram 2 and CBOW 2 in the table, and while they are
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a sizable improvement over the first word2vec models, they still come nowhere close to any
of the hyperdimensional models. Lastly, we tested the pre-trained word2vec model from
Mikolov et al [25]. Note that this model is trained on a di↵erent data set, the Google News
dataset. This corpus is approximately 100 billion words, or well over 1,000x the size of the
dataset we used. Unsurprisingly, it is able to perform better than the hyperdimensional
models given the amount of data it uses. However we find it promising how close the
hyperdimensional models can come to its accuracy, indicating their ability to learn more
e�ciently than word2vec models.

4.2 Analysis of Runtime

After verifying the accuracy of our models, we measured their runtimes to determine the e�-
cacy of the parallel architectures. In this section we primarily focus on the high-performance
architecture, as it is the faster of the two parallel architectures we created. The performance
of this architecture versus a traditional sequential architecture is shown in Figure 4.1. As
we hoped, the parallelism allows for the algorithms to scale at a roughly linear rate with
the number of workers assigned to the task. Note that it will not be perfectly linear, as
there are various overheads for setting up and running the parallel computation. From these
graphs, we can conclusively show how we are able to successfully implement parallelized ver-
sions of these algorithms. Impressively, they are able to compute at a rate of about 400,000
words/sec on a laptop with a four-core CPU, for a total of about 35 billion words per day.
Scaled to the size and number of cores of modern supercomputers, this represents a truly
tremendous amount of potential computational power, especially considering the e�ciency
at which the hyperdimensional algorithms seem to learn embeddings from the data relative
to other embedding techniques like word2vec.

(a) Parallel Context Embedding Performance (b) Parallel Order Embedding Performance

Figure 4.1: Runtime performance for parallel architectures
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For completeness, we also present the overall runtime for both architectures. Note that
the high-performance architecture requires two passes over the corpus (one for each type of
embedding algorithm), whereas the parallel learning architecture only requires one. Still,
since the high-performance architecture is better able to divide the tasks among workers, it
is the faster of the two architectures. This is to be expected, as this is generally the case with
many parallel architectures in high-performance computing. Note that the reason for the
relatively long runtime for the parallel learning architecture is the order embeddings. The
parallel learning architecture learns both the order and context embeddings at the same time,
but that means it won’t finish until both are complete. Therefore when there is a significant
di↵erence in runtimes between the two, as there is with the context and order embeddings,
the overall runtime is dominated by the slower embedding algorithm. Mathematically, the
overall runtime for the parallel learning architecture can be thought of as maximum runtime
of all the parallel algorithms it is running, and as such, the overall runtime was dragged
down by the significantly slower order embedding algorithm.

Architecture Total Runtime (min)

Sequential 54
Parallel Learning 47
High-Performance 14

Table 4.4: Overall Runtimes for Parallel Architectures

It’s worth noting that the order embeddings can be almost as fast as the context embed-
dings, albeit at a cost to the memory used. Since the reason for the relative slowness of order
embeddings is the permutation operator, all possible permutations of a given label vector
can be computed and stored in a hash map. Then when a permutation is needed, instead of
having to call a function, the hash map can be used to retrieve the appropriate permutation
in O(1) time. This e↵ectively reduces the operations needed for the order embeddings to be
the same as the context embeddings, resulting in approximately the same runtime. While
this may sound expensive, we will discuss memory optimizations that can be done in the
next section to make storing the label vectors negligible.

4.3 Analysis of Memory

Unfortunately the cost of a parallel architecture is generally the use of more memory. In
the case of hyperdimensional computing, this is not a trivial cost. Given the natural of
hyperdimensional computing, which by name is to use extremely high-dimensional vectors
to represent objects, the use of memory for sequential architectures is fairly large. For
parallel architectures, this large memory cost is exacerbated. Nevertheless, we did our best to
minimize the amount of memory used. For the data-level and task-level parallel architectures,
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both the text array containing the words in the corpus and the label vectors were in a shared
memory that could be accessed by all workers. Then the only increase in memory cost
for parallelism was for each worker to have their own copy of the embeddings. For the
data-level architecture, this meant that each worker needed its own copy of the embeddings
that corresponded to the learned embeddings on that portion of text. For the task-level
architecture, this meant that each worker had its own type of embedding (context or order)
that would be learned over the entire text. So while sequential architectures will pay a fixed
memory cost of O(corpus + labels + embeddings), parallel architectures pay a memory cost
of O(corpus + labels + w · embeddings), where w is the number of workers.

We also made a small but important change to the data representation itself. Since our
label vectors are static bipolar vectors, they are defined on the set {�1, 1}d. Given this, they
can be easily represented with small signed integer data types, or even Boolean values with
the proper adjustments made. This greatly reduces the memory overhead of the label vectors
and makes it so that the vast majority of shared memory is consumed by the actual text
array containing the corpus. We used a similar trick with reducing the amount of memory
used by the semantic embeddings. Since these are dynamic, they are not theoretically bound
on any set. However given the size of our corpus, we could determine a maximum possible
value for them, which was less than that of a 32-bit unsigned integer. As such, we were
able to use 32-bit integers to represent the embeddings, resulting in a 2x increase in memory
e�ciency. Collectively, these changes to the representation of the data drastically reduced
the amount of memory consumed and made it so that the dominating constant term for the
memory cost was the corpus size and the linear growth from the number of workers was
significantly reduced.
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Chapter 5

Conclusion

We begin our conclusion by summarizing our contributions in this thesis. We then conclude
by discussing two ways this work can be used for future research, one for each architecture
that was developed.

5.1 Summary

This work makes several key contributions. The most important contribution is to introduce
the notion of parallelism in hyperdimensional computing and demonstrate how it can be used
for modeling language. This was done in two di↵erent frameworks that sought to answer
two di↵erent questions. The first framework sought to answer the engineering question of
how to build the fastest hyperdimensional models and used data-level parallelism to do so.
This architecture was able to successfully reproduce the accuracy of the original models at
a fraction of runtime. The second framework used task-level parallelism to explain the more
scientific question of how these models can learn di↵erent structures in parallel like the brain.
While slower than data-level parallelism, this architecture demonstrated a key capability for
any model inspired by the brain: how instruction-level parallelism can be successfully and
e�ciently implemented. For both of these tasks, we chose language as our medium to model.
This was primarily because of the amount of work in hyperdimensional computing that has
done so, but also because of the need for many processes to run in parallel in order to
understand language [15, 16]. In doing all of this, we also established a new benchmark
on a publicly available data set for future research to be based o↵, including an analysis
that shows the promise of hyperdimensional embeddings relative to other techniques such as
word2vec.



CHAPTER 5. CONCLUSION 25

5.2 Future Work

Hyperdimensional computing is a small but growing discipline that encompasses everything
from natural language processing to computer vision and robotics [7, 10]. Models in all
of these areas can greatly benefit from the increased computational power demonstrated
with data-level parallelism in this work. As such, the first path we envision future work
exploring involves building o↵ of our introduction of data-level parallelism to increase the
computational capabilities of these hyperdimensional models. It is our hope that this will
then lead to a increase in performance across models in all of these fields.

The second path we envision future work taking involves building o↵ of the idea of
learning multiple di↵erent embeddings in parallel. We primarily imagine this as expanding
our task-level parallelism to include more than one stream of data. This seems natural since
a crucial function of the brain is the ability to process and combine multiple streams of data
in parallel. Language, after all, is not just about reading symbols on a page. Any high school
student trying to learn a foreign language can attest to this. It’s about being immersed in a
foreign world full of percepts and having to communicate that to another individual. Models
of language should consider this, and hyperdimensional computing presents a promising way
to do so. In this work we considered words symbolically as a combination of their order
and context, but it need not stop there. They could also include a pictorial representation
of the object they represent to build a joint embedding space of both language and images.
This has been done with large, complex neural networks, but has not yet be done with
hyperdimensional computing [3, 24]. Since learning is primarily done through association
in hyperdimensional computing, it presents a natural way to learn both words and images
together. Moreover, building on what we have presented in this thesis, both embeddings
could be learned at the same time, a process much more akin to how humans seemingly
learn. This would create a truly powerful, yet simple and e�cient multimodal model of
language and vision.
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