
Extremely Lightweight Vocoders for On-device

Speech Synthesis

Tianren Gao

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-69

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-69.html

May 13, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to sincerely thank Bichen Wu and Daniel Rothchild for their
continuous advice on the project. They enabled me to grow both in
research and non-technical areas. I would also like to thank Bohan Zhai
and Flora Xue for collaborating on this work to navigate through different
ideas and project stages. And I appreciate Prof. Kurt Keutzer and Prof.
Joseph Gonzalez for their continuous support and invaluable insights into
my project. I’ll be forever grateful for having the opportunity to work with all
of them.

Extremely Lightweight Vocoders for On-device Speech Synthesis
by Tianren Gao

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kurt Keutzer
Research Advisor

(Date)

* * * * * * *

Professor Joseph Gonzalez
Second Reader

(Date)

May 7, 2021

Extremely Lightweight Vocoders for On-device Speech Synthesis

by

Tianren Gao

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Kurt Keutzer, Chair

Spring 2021

Extremely Lightweight Vocoders for On-device Speech Synthesis

Copyright 2021
by

Tianren Gao

1

Abstract

Extremely Lightweight Vocoders for On-device Speech Synthesis

by

Tianren Gao

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Kurt Keutzer, Chair

As edge device applications begin to increasingly interact with users through speech, effi-
cient automatic speech synthesis is becoming increasingly important. Typical text-to-speech
pipelines include a vocoder, which translates intermediate audio representations into raw
audio waveforms. Most existing vocoders are difficult to parallelize since each generated
sample is conditioned on previous samples. Flow-based feed-forward models, for example
WaveGlow, is an alternative to these auto-regressive models [17]. However, while WaveGlow
can be easily parallelized, the model is too expensive for real-time speech synthesis on the
edge. This work presents SqueezeWave, an extremely lightweight vocoder that can generate
audio of similar quality to WaveGlow with 61x - 214x fewer MACs.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1
1.1 From the Cloud to the Edge . 1
1.2 Efficient Speech Synthesis . 2

2 Related Works 3

3 Preliminaries 4
3.1 Flow-based Generative Models . 4
3.2 Architecture of WaveGlow . 5

4 Methodology 8
4.1 Redesign Bijections in Flow . 8
4.2 Depthwise Separable Convolutions . 10
4.3 Other Improvements . 11

5 Experiments 12
5.1 Experimental Setup . 12
5.2 Audio Quality and Efficiency Analysis . 12

6 Conclusion 15

Bibliography 16

ii

List of Figures

3.1 Architecture of WaveGlow. 5
3.2 Architecture of WN in WaveGlow. 7

4.1 Architecture of the WN function in SqueezeWave. 9
4.2 Normal convolutions vs. depthwise separable convolutions. Depthwise separa-

ble convolutions can be seen as a decomposed convolution that first combines
information from the temporal dimension and then from the channel dimension. 10

5.1 Audio quality (MOS scores) and the efficiency (MACS) trade-off of SqueezeWave
family models. 14

iii

List of Tables

5.1 A comparison of SqueezeWave and WaveGlow. GT represents the ground truth
audio. SW-128L has a configuration of L=128, G=256, SW-128S has L=128,
G=128, SW-64L has L=64, G=256, and SW-64S has L=64, G=128. Mean opin-
ion scores (MOS) measures the generated audio quality. GMACs measures the
computing cost of synthesizing 1 second of 22kHz audio. The MAC reduction ra-
tio is reported in the column “Ratio”. We also report number of parameters and
actual inference speeds, number of samples generated per second, on a Mackbook
Pro and a Raspberry Pi. 13

iv

Acknowledgments

I would like to sincerely thank Bichen Wu and Daniel Rothchild for their continuous advice
on the project. They enabled me to grow both in research and non-technical areas. I would
also like to thank Bohan Zhai and Flora Xue for collaborating on this work to navigate
through different ideas and project stages. And I appreciate Prof. Kurt Keutzer and Prof.
Joseph Gonzalez for their continuous support and invaluable insights into my project. I’ll
be forever grateful for having the opportunity to work with all of them.

1

Chapter 1

Introduction

1.1 From the Cloud to the Edge

As the popularity of smart phones and demand of artificial intelligence in everyday life
increases, deep learning applications on edge devices are playing an increasingly important
role. Most of these applications rely on complex, deep neural networks that require significant
computing resources for both training and inferences. However, the computational resources
of edge devices are relatively limited for models of these size and are often inadequate to
directly run network models that require significant computing resources. As a result, a
widely used solution is to run models in the cloud in order to send results to the edge
devices.

However, this paradigm is being challenged by the following trends. First, data privacy
has been of increasing concern in the industry. When customers are required to send their
private data to the cloud, they face the risk of exposing sensitive information. For example,
intelligent home assistant systems have been accused of eavesdropping incessantly by sending
user’s private data to the cloud without their knowledge1. Efficient inference at the edge
could protect users’ sensitive data, because user data never leave the device. Second, the
computing power of edge devices has been continuously improving. Leveraging the compu-
tation resources on the edge devices could significantly reduce the need for cloud computing.
For example, moving the model inference from cloud to the edge. Third, edge applications
are invoving an increasing amount of interactions that require low-latency between the user
and the device. For exmaples, both home-assistant systems and map-direction applications
have involved increasing interactions with speech. These interactions require low latency
and even can function without internet connections.

A promising direction to explore is through efficient neural networks. They require signif-
icant lower computational resources with lower latency, and also avoid exposing user’s data
by performing inference at the edge. These efficient neural networks can aid in the areas

1https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-
whole-time

CHAPTER 1. INTRODUCTION 2

of computer vision, speech, and natural language understanding. In the past years, many
efficient neural networks have been proposed, such as [6, 18, 7, 21, 20, 4, 11, 8]. However,
these networks focus on computer vision and NLP tasks. As one of the most important parts
of edge applications, efficient speech synthesis models can be both desirable and necessary.

1.2 Efficient Speech Synthesis

Speech synthesis systems are designed for generating raw audio waveforms. Text to Speech(TTS)
is one of the most common tasks in this area and has been increasingly used in many edge ap-
plications. For example, map applications read out directions to drivers; real-time translation
applications speak text translated from one language to another; automatic food ordering
system in the drive-thru window interact with drivers through speech. Modern TTS systems
typically consist of two stages: 1) Given an input text, a synthesizer is able to generate
acoustic features (e.g., mel-spectrogram, phoneme, F0 frequencies). 2) From the generated
acoustic features, a vocoder model generates raw audio waveforms. In this work, we will
further explore the second stage: lightweight vocoder models.

High quality and real-time speech synthesis remain challenging on edge devices. Existing
vocoders, either suffer from slow inference speed due to their auto-regressive architectures,
or require expensive computing power beyond the mobile device processors can afford. We
will discuss the detail of these models in the related work section.

In this work, we propose SqueezeWave, an extremely lightweight flow-based vocoder for
on-device speech synthesis. SqueezeWave is able to synthesize human-like real-time audio
waveforms with 61-214x fewer MACS than the current state-of-the-art. This is achieved
by carefully designing a flow-based architecture, adopting depthwise separable convolutions,
and making other optimizations for edge devices. Our experiments showed that on an Intel
i7 CPU(2019 Macbook Pro), SqueezeWave generates raw audio waveforms at a speed of
123K - 303K samples per second, or 5.6x - 13.8x faster than real-time. Even on a Raspberry
Pi 3B+ with a Broadcom BCM2837 CPU, SqueezeWave is able to reach a near real-time
speed of 15.6K samples per second.

The code, trained models, and generated speech samples are publicly available at https:
//github.com/tianrengao/SqueezeWave. SqueezeWave has also been integrated into Nvidia
Nemo2,3, an open-source toolkit for developing state-of-the-art conversational AI models.

2https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/tts/intro.html
3https://github.com/NVIDIA/NeMo

3

Chapter 2

Related Works

A full Text to Speech pipeline includes a synthesizer and a vocoder. We mainly introduce
related works for vocoders, where most of this report’s contributions focus on.

WaveNet[14], proposed in 2016, is a deep generative model for raw audio. WaveNet pro-
posed to generate long sequence audio samples using dilated convolutions with increasing
receptive fields by orders of magnitude. WaveNet for TTS task is conditioned on linguistic
features and logarithmic fundamental frequency values, and achieves human-like synthesized
audio quality. However, WaveNet and its variant models WaveRNN[2] are auto-regressive
models, which means that the latter generated sample depends on previous generated sam-
ples. The inherently serial nature of this computation makes it difficult for performing
parallel hardware acceleration. A number of works have tired to solve the inference speed
problem by training a simple feed-forward network through distillation. Parallel WaveNet
and Clarinet [13, 15] proposed to use Probability Density Distillation, which uses a trained
WaveNet as the teacher model to train a student network with compound loss functions.
They both use Inverse Auto-regressive Flows to enable parallel inference. As discussed in
[17], these models are more complex to implement than auto-regressive models and can be
inefficient and difficult to reproduce.

The state-of-the-art vocoder, WaveGlow [17], shows that an auto-regressive flow is un-
necessary for speech synthesize vocoders. Instead, WaveGlow uses a flow-based architecture,
which was proposed in NICE and Glow [3, 12] for computer vision tasks. Flow-based ar-
chitectures have the advantages of the parallelizability of both training and synthesis, and
the tractability of the latent space distribution. With a flow-based achitecure, WaveGlow
makes parallel hardware acceleration possible, and successfully generates faster than real-
time speech. However, the computational cost of WaveGlow is high. To generate 1 second
of 22kHz speech, WaveGlow requires 229G MACs, which is far beyond the computing power
that mobile device processors can afford. Therefore, high quality and real-time speech syn-
thesis remain challenging due to the constrain of computation resources on edge devices.

4

Chapter 3

Preliminaries

3.1 Flow-based Generative Models

Flow-based model, proposed by [3, 12], is a category of generative models that capture com-
plex data distributions. A flow-based model pθ(x) with parameters θ models the unknown
true data distribution x ∼ p (x) by learning an invertible transformation fθ : x → z, where
z ∼ p (z) is a tractable distribution, such as a spherical multivariate Gaussian distribution.

During inference, a latent-variable z is first drawn from p(z). Then, samples are generated
by performing x = f−1

θ (z). During training, the optimization procedure maximizes the log
likelihood of the data under the tractable distribution in the latent space. Using the change
of variables formula, this log likelihood can be computed as:

log(p(x)) = log(p(z)) +
k∑
i=1

log

∣∣∣∣det

(
dz

dx

)∣∣∣∣
To make the computation of log determinant tractable and straightforward, the archi-

tecture of the model is designed to be a sequence of k invertible transformations fθ =
f1 ◦ f2 ◦ . . . ◦ fk, where each fi converts between hidden state hi−1 and the next hidden state
hi :

x
f1←−−→ h1

f2←−−→ h2
f3←−−→ . . .

fk−1←−−→ hk−1
fk←−−→ z

Therefore the log likelihood can be further written as:

log(p(x)) = log(p(z)) +
k∑
i=1

log

∣∣∣∣det

(
∂fi(hi−1)

hi−1

)∣∣∣∣
Where ∂fi(hi−1)/hi−1 is the Jacobian matrix of the ith flow fi. The fi are typically chosen

to have triangular Jacobian matrices in order to make the above computation tractable. The
input hi to each bijection is split in half channel-wise into hi,a and hi,b, while a non-invertible
coupling network is run on hi,b to obtain the affine transformation coefficients log s and t.

CHAPTER 3. PRELIMINARIES 5

Then :

log s, t = coupling(hi,b)

hi+1,a = s� hi,a + t

hi+1,b = hi,b

Then, hi+1, the output of this flow is a concatenation of hi,a and hi,b, followed by an invertible
1x1 convolution to mix channels. The bijection is invertible, though the couling layer itself
is not invertible. log s and t can be computed again by performing couling layer using
hi,b = h1+1,b, then hi,a can be reconstructed by undo the affine transformation of hi+1,a.

3.2 Architecture of WaveGlow

Figure 3.1: Architecture of WaveGlow.

CHAPTER 3. PRELIMINARIES 6

WaveGlow Architecture WaveGlow is a flow-based generative model, so it inherits the
architecture described in the above section, as described in Figure 3.1. It consists of a
sequence of bijections that progressively transform a waveform of shape T x 1 into a latent
space, where T is the temporal length of the wavefrom, and G is the number of groups.
WaveGlow first groups the input waveform’s samples intoG = 8 groups, each with T

G
samples.

Then the grouped waveform with shape T
G

x G is taken by a sequence of bijections and
is progressively transformed into a latent space. Each bijection fi takes hi as input and
produces hi+1 as output. In each bijection, after processing the input feature hi by an
invertible point-wise 1x1 convolution, the output is split into two halves along the channel
dimension, hi,a and hi,b, each with shape T

G
x G

2
. Then hi,a is passed into a WaveNet like

layer(WN) to compute affine coupling coefficients conditioned on the mel-spectrogram m of
shape Tm x Cm:

log si, ti = WN(hi,a,m)

hi+1,b = si � hi,b + ti

hi+1,a = hi,a

Then, hi+1,a and hi+1,b are concatenated along the channel dimension.

WN Architecture The WaveNet-like layer(WN), illustrated in Figure 3.2, possesses an
architecture similar to that of WaveNet and parallel WaveNet. The WN layer takes in the
previous hidden state hi,a containing waveform information, and performs affine coupling
transformations conditioned on the mel-spectrogram m. First, hi,a is processed by a point-
wise convolution named start to increase its channel size from G

2
= 4 to C = 256. Then,

the output is processed by a dilated 1D convolution with kernel size of 3 named in layer.
Meanwhile, the mel-spectrogram m is being upsampled from length Tm = 63 to match with
the waveform feature’s temporal length T = 2, 000. Then its output is processed by another
dilated 1D convolution named cond layer with kernel size of 3 to increase its channel size
from Cm = 4 to C = 256. So far, both the waveform feature and the mel-spectrogram feature
have the same shape of T x C = 2000 x 256. Next, these two features are combined through
the gate operation, which is similar to WaveNet [14]. Then the output is then processed
by a convolution named res skip layer to double its channel size. The output of this layer
has a shape of T x 2C = 2000 x 512. At last, the output is split along the channel size
into two halves, each of shape T x C = 2000 x 256. The two outputs are correspondingly
added back to the waveform feature through a residual connection, and to an accumulative
output feature through a skip connection. This structure is repeated 8 times, and the final
accumulative output feature is passed into a convolution layer labled end. This convolution
computes the transformation factors si and ti and decreases the channel size from C = 512
back to G = 8.

CHAPTER 3. PRELIMINARIES 7

Figure 3.2: Architecture of WN in WaveGlow.

Computational Complexity We calculated the computational cost of WaveGlow based
on its PyTorch implementation. WaveGlow requires 229G MACs to generate 1 second of
22kHZ waveform. WN block is responsible for the majority of the computation. The details
of the calculation can be found in our source code.

8

Chapter 4

Methodology

4.1 Redesign Bijections in Flow

Inspired by WaveGlow, we used a flow-based architecture that consists of a series of bijection
blocks. Each bijection contains an invertible 1x1 convolution and an affine coupling layer,
which is a WaveNet like architecture (WN) conditioned on mel-spectrograms. We designed
the bijections with the following techniques to optimize the model’s expressive power and
reduce the computing cost. The improved WN architecture is illustrated in Figure 4.1.

Information Bottlenecks Within each flow, the coupling networks have the most none-
linearity expressive power. However, because the bijections do not change the shape of hi+1

from hi so that the flow can remain invertible, there exist information bottlenecks between
flows, preventing the coupling networks in consecutive flows from freely communicating [1].
For example in WaveGlow, as in figure 3.2, the input hidden state hi+1 and the output hidden
state hi both have a channel size of G = 8, while the intermediate channel size in bijections
has a size of 256 or 512. Although the large intermediate channel size increases model
capacity, the significant change in channel size creates information bottlenecks, alleviating
the expressive power of WN blocks. To solve this problem, we designed a much larger G.

Reduction in Temporal Dimension WN is a wavenet like block that consists of
several 1D convolutional layers. The computational complexity of 1D convolutional layers
is linear in the temporal length L. In WaveGlow, the significant temporal length of the
grouped input waveform is L = T

G
= 2000, which is a large number and leads to high

computational complexity. We designed a much lesser L = 256 or L = 512 in temporal
dimension. Combining with the larger G in the above paragraph, we implemented two
settings: L = 64, G = 256 or L = 128, G = 128, among the same number of total samples
for the input waveform feature (64 x 256 = 128 x 128 = 16, 384 samples).

CHAPTER 4. METHODOLOGY 9

Figure 4.1: Architecture of the WN function in SqueezeWave.

Feature Projection Method We designed a simple but effective method to project
the mel-spectrogram feature into the latent space, while avoiding additional computations
that was in WaveGlow. Similar to WaveNet, we fused the waveform feature and the mel-
spectrogram feature by a gate operation, in order to condition on mel-spectrogram. The gate
operation requires the two input features to have the same shape. Compare to L = 2, 000, the
mel-spectrograms have a much coarser temporal resolution Lm = 64. Instead of upsamling
Lm to match L = 2, 000, which is used in WaveGlow, we simply reshaped the input grouped
waveform hi,a to have significantly lesser temporal length of L. As described in the above
paragraph, this also helps reducing the computational cost in 1D convolutions. In this way,
we can still condition waveform on mel-spectrograms by the gate operation while avoiding
the additional computations in cond layer caused by upsampling.

CHAPTER 4. METHODOLOGY 10

4.2 Depthwise Separable Convolutions

We replaced 1D convolutions in the in layer with depthwise separable convolutions to process
1D audio features. Depthwise separable convolutions are popularized by [6] and are widely
used in efficient computer vision models, including [18, 20].

Figure 4.2: Normal convolutions vs. depthwise separable convolutions. Depthwise separable
convolutions can be seen as a decomposed convolution that first combines information from
the temporal dimension and then from the channel dimension.

To illustrate the benefits of depthwise separable convolutions, consider a 1D convolutional
layer that transforms an input with shape Cin × Lin into an output with shape Cout × Lout,
where C and L are the number of channels and temporal length of the signal, respectively.
For a kernel size K, the kernel has shape K×Cin×Cout, so the convolution costs K×Cin×
Cout × Lout MACs. A normal 1D convolution combines information in the temporal and
channel dimensions in one convolution with the kernel. The depthwise separable convolution
decomposes this functionality into two separate steps: (1) a temporal combining layer and
(2) a channel-wise combining layer with a kernel of size 1. Step 1 is called a depthwise
convolution, and step 2 is called a pointwise convolution. The difference between a normal
1D convolution and a 1D depthwise separable convolution is illustrated in Figure 4.2.

CHAPTER 4. METHODOLOGY 11

After applying the depthwise separable convolution, the computational cost for step-1
becomes K×Cin×Lin MACs and for step-2, Cin×Cout×Lin. The reduction of computation
is therefore

Cin × Cout × Lin +K × Cin × Lin
K × Cin × Cout × Lin

=
1

Cout
+

1

K
.

In our setup, K = 3 and Cout = 512, so using this technique leads to around 3x MAC
reduction in the in layers.

4.3 Other Improvements

In addition to the above techniques, we also made several other improvements. First, since
the temporal length is now much lesser, there is a much reduced need for WN block to in-
crease the receptive fields using dilated convolutions. So we replaced all dilated convolutions
with regular convolutions, which are more hardware friendly. 2) Figure 3.2 shows that the
outputs of the res skip layers are split into two halves followed by two separate residual/skip
connections. We merged them into one branch with the hypothesis that such a split is not
necessary since the topologies of the two branches are almost identical. Removing one branch
leads to the reduction in the output channel size of the res skip layers, which reduced its
computation complexity by half.

12

Chapter 5

Experiments

In this report, we use WaveGlow as our baseline, and we compare SqueezeWave to Waveglow
in terms of audio quality and the efficiency.

5.1 Experimental Setup

We use a similar experimental setup to that of [17]. We use a single female english speaker
dataset LJSpeech [9]. The dataset consists of 13,100 short audio clips paired with corre-
sponding transcription, approximately 24 hours in total of length. The speech audio are
recorded on a MacBook Pro using its built-in microphone in a home environment, with a
sample rate of 22,050kHz. We process the audio data using librosa library to extract mel-
spectrograms. The parameters of this step are FFT size 1024, hop size 256, and window size
1024. The baseline model is reproduced by training from scratch using WaveGlow PyTorch
implementation on 8 Nvidia V100 GPUs with a batch size 24. And the SqueezeWave model
is trained on Nvidia Titan RTX GPUs with a batch size 96 for 600k iterations. We have
4 variants of SqueezeWave with different configuration of L and G. SW-128L has a config-
uration of L=128, G=256, SW-128S has L=128, G=128, SW-64L has L=64, G=256, and
SW-64S has L=64, G=128. The dataset train-test split, detailed model configuration and
the training recipe are available on our public GitHub repository.

5.2 Audio Quality and Efficiency Analysis

Audio Quality The metric we used to evaluate our model is Mean Opinion Score(MOS)
with scale from 1 to 5, as in [19, 14, 17, 16]. We crowd-sourced our MOS evaluation on
Amazon Mechanical Turk. We randomly selected 10 fixed sentences for each model, and
asked the listeners to rate the naturalness of the sentences. Each listener was only allowed
to rate the same sentence once(i.e. no more than 10 different sentences), in order to ensure the
diversity of listeners on the same system. But they were allowed to rate multiple sentences.
For each sentence, we collected 100 valid ratings. Invalid ratings were detected by a set of

CHAPTER 5. EXPERIMENTS 13

Models MOS GMACs Ratio Params Macbook Pro Raspberry Pi
GT 4.62 ± 0.04 – – – – –

WaveGlow 4.57 ± 0.04 228.9 1 87.7 M 4.2K Failed
SW-128L 4.07 ± 0.06 3.78 61 23.6 M 123K 5.2K
SW-128S 3.79 ± 0.05 1.07 214 7.1 M 303K 15.6K
SW-64L 3.77 ± 0.05 2.16 106 24.6 M 255K 9.0K
SW-64S 2.74 ± 0.04 0.69 332 8.8 M 533K 21K

Table 5.1: A comparison of SqueezeWave and WaveGlow. GT represents the ground truth
audio. SW-128L has a configuration of L=128, G=256, SW-128S has L=128, G=128, SW-
64L has L=64, G=256, and SW-64S has L=64, G=128. Mean opinion scores (MOS) mea-
sures the generated audio quality. GMACs measures the computing cost of synthesizing 1
second of 22kHz audio. The MAC reduction ratio is reported in the column “Ratio”. We
also report number of parameters and actual inference speeds, number of samples generated
per second, on a Mackbook Pro and a Raspberry Pi.

hidden quality assurance tests, for example, rating the ground truth a lower score than an
obviously unnatural noise waveform. We reported MOS scores with 95% confidence intervals.

Tabel 5.1 compares audio quality of SqueezeWave and WaveGLow. WaveGlow achieved
MOS scores comparable to those for ground-truth audio. Quantitatively, MOS scores of
the SqueezeWave models were lower than WaveGlow, but qualitatively, their sound qualities
were similar, except that audio generated by SqueezeWave contained some background noise.
Noise cancelling techniques could have been applied to improve the quality. Readers can find
synthesized audio of all the models from our source code.

Efficiency We compare WaveGlow and SqueezeWave in terms of three metrics: 1)
MACs of generating one second of 22kHz audio, 2) number of model parameters, and 3)
actual speech generation speed, in generated samples per second, on a Macbook Pro and a
Raspberry Pi 3b+. As shown in the Tabel 5.1, WaveGlow was extremely expensive, for it
required 228.9 GMACs. Compared to WaveGlow, SqueezeWave models were significantly
efficient. The largest model, SW-128L, with a configuration of L=128, G=256 required 61x
fewer MACs than WaveGlow. With reduced temporal length or channel size, SqueezeWave
requires significantly lower MACs: SW-64L required 2.16 GMACs, 106x fewer than WaveG-
low, and SW-128S required 1.07 GMACs, 214x fewer than WaveGlow. We also trained an
extremely lightweight model, SW-64S, with L=64, G=128. The model only required 0.69
GMACs, which is 332x fewer than WaveGlow.

To measure the actual speech generation speed on edge devices, we deploy WaveGlow
and SqueezeWave to a Macbook Pro with an Intel i7 CPU and a Raspberry Pi 3B+ with a
Broadcom BCM2837B0 CPU. In Tabel 5.1, We report the number of samples generated per
second by each model. On a Mackbook, SqueezeWave can reach a sample rate of 123K-303K,

CHAPTER 5. EXPERIMENTS 14

30-72x faster than WaveGlow, or 5.6-13.8x faster than real-time (22kHZ). On a Raspberry
Pi computer, WaveGlow failed to run, but SqueezeWave could still reach 5.2k-21K samples
per second. SW-128S in particular could reach near real-time speed while maintaining good
quality.

Figure 5.1: Audio quality (MOS scores) and the efficiency (MACS) trade-off of SqueezeWave
family models.

Quality and Efficiency Trade-off In Figure 5.1, we show the trade-off between audio
quality and the efficiency of SqueezeWave family models. As we can see, as the model
complexity decreases, the MOS scores decreases very slowly except for SW-64S. Among the
variants, SW-128L has the highest MACs but generates highest quality audios. SW-128S
requires 1.07 GMACs but still generate relative high quality audios. Our smallest model,
SW-64S only required 0.69 GMACs is able to generate acceptable audios.

15

Chapter 6

Conclusion

In this work, we discussed the motivation and benefit of moving computations from the cloud
to the edge. We focus on efficient vocoders that perform inference at the edge. We presented
SqueezeWave, a flow-based lightweight vocoder that can generate audio of similar quality to
WaveGlow with significantly fewer MACs. Our experiments show that SqueezeWave is able
to synthesize speech on edge devices. On a Raspberry Pi 3B+ with a Broadcom BCM2837
CPU, our smallest SqueezeWave variant is able to reach a near real-time speech generation.
On an Intel i7 CPU(2019 Macbook Pro), SqueezeWave generates raw audio waveforms at a
speed 5.6x - 13.8x faster than real-time.

In the future, it could be desirable to also move neural network training to the edge, in
order to further leverage the mobile computing resource. One of the main bottlenecks for
this goal is the memory constrain on edge devices. RevNet[5] and iRevNet[10] proposed that
reversible neural networks require constant memory consumption during training because
there is no need to cache activations while performing backpropagation. This makes it
possible to train deep neural networks with constant memory cost, which is an interesting
direction to explore for on-device training in the future.

16

Bibliography

[1] Jianfei Chen et al. VFlow: More Expressive Generative Flows with Variational Data
Augmentation. 2020. arXiv: 2002.09741 [stat.ML].

[2] Xiaoliang Dai et al. “ChamNet: Towards Efficient Network Design Through Platform-
Aware Model Adaptation”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2019.

[3] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent
Components Estimation. 2015. arXiv: 1410.8516 [cs.LG].

[4] Amir Gholami et al. “SqueezeNext: Hardware-Aware Neural Network Design”. In:
arXiv preprint arXiv:1803.10615 (2018).

[5] Aidan N. Gomez et al. “The Reversible Residual Network: Backpropagation With-
out Storing Activations”. In: CoRR abs/1707.04585 (2017). arXiv: 1707.04585. url:
http://arxiv.org/abs/1707.04585.

[6] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mo-
bile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[7] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and¡ 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

[8] Forrest N. Iandola et al. “SqueezeBERT: What can computer vision teach NLP about
efficient neural networks?” In: CoRR abs/2006.11316 (2020). arXiv: 2006.11316. url:
https://arxiv.org/abs/2006.11316.

[9] Keith Ito. The LJ Speech Dataset. https://keithito.com/LJ-Speech-Dataset/. 2017.

[10] Jörn-Henrik Jacobsen, Arnold W. M. Smeulders, and Edouard Oyallon. “i-RevNet:
Deep Invertible Networks”. In: CoRR abs/1802.07088 (2018). arXiv: 1802 . 07088.
url: http://arxiv.org/abs/1802.07088.

[11] Xiaoqi Jiao et al. “TinyBERT: Distilling BERT for Natural Language Understanding”.
In: CoRR abs/1909.10351 (2019). arXiv: 1909.10351. url: http://arxiv.org/abs/
1909.10351.

[12] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. 2018. arXiv: 1807.03039 [stat.ML].

BIBLIOGRAPHY 17

[13] Aäron van den Oord et al. “Parallel WaveNet: Fast High-Fidelity Speech Synthesis”.
In: CoRR abs/1711.10433 (2017). arXiv: 1711.10433. url: http://arxiv.org/abs/
1711.10433.

[14] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In: arXiv
preprint arXiv:1609.03499 (2016).

[15] Wei Ping, Kainan Peng, and Jitong Chen. “ClariNet: Parallel Wave Generation in
End-to-End Text-to-Speech”. In: CoRR abs/1807.07281 (2018). arXiv: 1807.07281.
url: http://arxiv.org/abs/1807.07281.

[16] Wei Ping et al. “Deep Voice 3: 2000-Speaker Neural Text-to-Speech”. In: International
Conference on Learning Representations. 2018. url: https : / / openreview . net /

forum?id=HJtEm4p6Z.

[17] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. “Waveglow: A flow-based generative
network for speech synthesis”. In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 3617–3621.

[18] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 4510–4520.

[19] J. Shen et al. “Natural TTS Synthesis by Conditioning Wavenet on MEL Spectrogram
Predictions”. In: 2018 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). Apr. 2018, pp. 4779–4783. doi: 10.1109/ICASSP.2018.
8461368.

[20] Bichen Wu et al. “Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search”. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2019, pp. 10734–10742.

[21] Bichen Wu et al. “Squeezedet: Unified, small, low power fully convolutional neural
networks for real-time object detection for autonomous driving”. In: arXiv preprint
arXiv:1612.01051 (2016).

	signature-page-Tianren_Master_Thesis_Keutzer (1)
	Master_Thesis

