
Vertex: A Unified Edge Computing Environment

Michael Perry
Scott Shenker, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-71

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-71.html

May 13, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 
 

Vertex: A Unified Edge Computing Environment 
 

Michael Perry 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, University of 
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of 
Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Scott Shenker 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Aurojit Panda 
Second Reader 

 
 

(Date) 

Aurojit Panda
May 13, 2021

Scott Shenker
5/13/2021



Vertex: A Unified Edge Computing Environment

Michael Perry
UC Berkeley

Abstract
Edge computing, the notion of a machine or a cluster of ma-
chines that communicates with nearby clients in physically
closer proximity than datacenters, has seen a constant increase
in practical use in recent years. By expanding the computa-
tional power of the cloud while significantly reducing latency
and alleviating bandwidth loads off datacenters, edge comput-
ing led to a new programming paradigm allowing new types
of applications to emerge with clear benefits to end users. De-
spite these benefits, application development for the edge has
not been as widespread as initially expected. Current edge
offerings often fail to meet the requirements of the distributed,
dynamic environment applications need to leverage the edge,
as they neglect to address the high mobility and interactivity
of devices. In this paper, we describe the new landscape of
edge applications and their requirements, present core abstrac-
tions for ephemeral and long-living communication between
entities, and propose Vertex, a unified environment that will
profoundly accommodate edge applications while efficiently
utilizing the geo-distributed nature of the edge.

1 Introduction

Exponential advancements and new technological innovations
over the past several decades have changed the way we inter-
act with computers, smartphones, sensors, and other devices.
Cloud computing, since its emergence in 2005, was a neces-
sary paradigm shift from the old view of single tenant servers
to a new set of abstractions that allow decoupling resources
from physical machines. The cloud can now host thousands
of services with an almost unlimited compute power [6]. The
onset of cloud computing coupled with an increase in com-
putation power led to an exponential growth in the amount
of data produced and processed, and to a demand for fast,
high quality communication between systems. Autonomous
cars, for example, are expected to generate about 40 TB of
data in 8 hours of operation - 1.5 GB per second [36]. The
amount of data to be processed, however, is not the only factor

of essence. Though the cloud has been an efficient way for
data processing due to its vast resources, the bandwidth of
network and the propagation delay have become a bottleneck
for computation-expensive real-time applications.

Edge computing geographically broadens the compute do-
main from datacenters to the edge of the network. The term
edge signifies the network edge; any computing and network
resources along the path between data sources and cloud dat-
acenters [13], such as micro datacenters [32], IoT gateways
[40], or even a single server within a few miles from the user.
It is intended to make nearby compute resources available
to clients by offering a large pool of resources over local
machines with minimal latency, while reducing load from
datacenters and eliminating the bandwidth bottleneck. These
characteristics endorse diverse types of applications (which
we later define as edge applications in 2.1) to focus their
efforts on utilizing the edge beyond merely serving serving
web content, such as fog robotics [19], video streaming [23],
smart glasses [22], and web security [48].

Current offerings of edge providers focus on two main ap-
proaches. The first is providing developers with a low-level
interface, such as virtual machines or containers, similar to a
cloud environment [4]. While this provide ultimate flexibility
by granting maximum control over resources and primitives,
it could lead to high overheads as developers must handle low
level building blocks, such as choosing and implementing
their own primitives. This approach also limits edge providers
as they are limited to only support VM/container abstractions
and are limited in their fine-grained control over resources.
The second approach is to offer a high-level interface for edge
development, abstracting away operating concerns. Develop-
ment is effectively easier since the interface is predetermined
and eliminates the necessity for resource management, spe-
cialized security mechanisms, instances coordination, etc.
The underlying mechanisms are left for the edge providers
to manage, and thus as long as the interface is supported, the
low-level infrastructure can be modified to allow innovation,
optimizations, resource refinements and other technological
improvements. Though this approach is more common with

1



large edge providers, it is often incomplete and lacks general-
ity. Oftentimes, the interfaces are either application-specific
or provide only a narrow set of primitives.

In the today’s rapidly changing development environment,
edge applications require large computation power, low la-
tency for real-time coordination, and high throughput to ac-
commodate the large data generation by end-users. At the
same time, design and implementation complexities make
simplified abstractions much more compelling, as seen by
the vast adoption of serverless computing [46] for its alluring
elasticity and generality.

Serverless computing alone, however, is missing key prim-
itives for distributed computation and coordination. We iden-
tify the requirements for efficient distributed computation at
the edge as twofold: a generalized, unified framework, accom-
modating all edge applications, and high-level abstractions
for ephemeral communication and shared data, vastly allevi-
ating implementation complexities for application developers.
In this paper, we propose Vertex, a simple-to-use, high-level
unified edge framework that abstracts away both ephemeral
and long-living coordination using simple APIs for communi-
cation and data sharing, is generalized for all types of edge
applications, and is particularly designed for the edge to sat-
isfy performance requirements, fault tolerance and clients
mobility.

The remainder of this paper is structured as follows:

• In §2, we discuss the significance of edge computing (§2.2),
list the properties of the edge (§2.3) and the edge applica-
tions core requirements that the underlying system must
address (§2.4.1), and demonstrate how the current ecosys-
tem is lacking support to these concerns (§2.4.2).

• In §3, we present the high-level design of Vertex, and dive
into its programming model and fit to edge applications.

• We then introduce the shared data subsystem in §4 and the
communication component in §5, and discuss the require-
ments, implementation and interface of our newly proposed
unified primitives.

• In §6, we present an overall evaluation of Vertex by show-
ing performance measurements and latency benchmarks to
verify Vertex’s ability to change the current edge paradigm
and estimate its performance in real-life scenarios.

2 Motivation

To capture the necessity of a unified environment for edge
computing, we wish to demonstrate the essence of edge com-
puting, describe its properties in our changing technological
reality, and then discuss the limitations of current infrastruc-
tures as an evidence for Vertex’s importance and urgency.

2.1 Definitions
To eliminate ambiguities, we first lay out terminology for clar-
ity. Throughout this paper we will adhere to these definitions,
albeit seldomly articulated differently in literature.

Edge Applications are user-facing applications (either di-
rectly or indirectly) that possesses certain properties that
might not be attainable with cloud infrastructure alone,
such as high mobility, extremely low latency or real-time
aggregation.

Edge clients are end devices that utilize applications de-
ployed at the edge, such as mobile phones, autonomous
cars, sensors and the like.

Edge nodes are logical units of edge infrastructure over
which applications can be deployed, such as servers or a
cluster of machines at the edge of the network.

Backend nodes are servers in cloud datacenters. Edge appli-
cations may leverage the cloud as a backend, e.g. if an
edge node only provides a portion of the functionality, a
backend node can complete the remainder.

Edge providers are companies that sustain, manage and pro-
vide access to edge nodes for application developers.

2.2 The Significance of Edge Computing
Datacenters nowadays are abundant of computational re-
sources that give an illusion of nearly infinite amount of
processing power, subject only to the careful provisioning
by the provider. But computational resources alone, albeit
the existence of extremely efficient topology planning in dat-
acenters [3], carefully designed network-level protocols [5],
the use of RDMA to speed-up flows [12] and high bandwidth
links inside and outside datacenters, is not sufficient for many
real-time applications.

The main deficiency of cloud computing arises when
considering real-time, latency sensitive applications. Au-
tonomous cars, graphical mobile games, IoT applications and
similar real-time applications rely on accurate delivery of in-
formation within strict requirements. In some cases, failure
to meet these requirements could invalidate the use of the
application altogeher. Such strict service-level agreements
(SLA) between a provider to an application developer cannot
be guaranteed for ultra low latency due to the extremely large,
unexpected nature of network traffic within a datacenter. In a
similar comparison, when accounting for propagation delay,
the minimal user-datacenter latency would be much higher
than that of a user-edge latency due to the physical proxim-
ity of an edge node to the client. In practice, Edge network
latency can reach fractions of a datacenter latency [30].

In addition to strict latency concerns, datacenter bandwidth
capacity might fail to meet the requirements of computation

2



(a) Snapshot of edge topology (b) Edge topology after client migration

Figure 1: Edge nodes and edge clients exchange pre and post-processed data

heavy applications. Many datacenter networks are oversub-
scribed, sometimes as high as 40:1 in some Facebook date-
centers [9], causing intra-datacenter traffic to contend for core
bandwidth. As a result, datacenter bandwidth is unable to
level with surging traffic requirements. While bandwidth ca-
pacity is gradually increasing and datacenter deployments are
widening, the amount of data streamlined in for processing is
scaling up accordingly, leaving throughput concerns virtually
unattended at the datacenter level. Offloading network traffic
to the edges of the network will not only support agile data-
heavy computations, but will also alleviate pressure of cloud
providers and allow smooth core traffic processing for other
cloud uses.

Another use case for the edge is expensive, short-living
computations. These types of user-initiated requests require
processing power that extends beyond end devices (i.e. mo-
bile devices, personal computers, etc) but doesn’t logically
require any attention from the datacenter or the cloud. Such
applications traditionally lie in the intersection between ma-
chine learning and signal processing, commonly referred to
as Federated Learning (FL). In Federated Learning, end de-
vices use their local data to collaboratively train a ML model.
The end devices then send the model updates rather than raw
data to the server for aggregation [25]. FL has found recent
success in several application, such as Google’s Gboard’s
FedAvg algorithm [21], or in predictive models for diagnosis
in health AI [18].

2.3 Edge Properties for Vertex
Certain types of edge nodes are specialized and meant to
fulfill a single need or provide an application-specific sup-
port. Offerings such as AWS Outposts [33], for example,
could serve as native extensions to Amazon cloud services
running on the company’s on-premise infrastructure. In this
paper, we intend to focus on generalized purpose multitenant

edge nodes that are capable of supporting number of applica-
tions and can be shared among unrelated edge clients to serve
multiple edge applications at once. We speculate that the mul-
titenant model will shape the edge as a natural extension to the
cloud. Unleashing the advantages of the edge (2.2) requires
another base assumption regarding the physical proximity to
edge clients. Physical proximity affects end-to-end latency,
economically viable bandwidth, establishment of trust, and
survivability. It also proves efficient in masking cloud out-
ages by dishing a fallback service that can serve local clients
temporarily while cloud services are unresponsive [16]. Our
assumed core benefits of the edge could only be achieved if
edge nodes are assumed to be abundant and spatially sparse
at the edge of the networks (although limited in their scope
of service per instance), and within close proximity to the
edge clients. This premise is based upon existing evidence of
extensive edge infrastructure by several providers [7], [14].

As for edge clients, we target mobile devices that fre-
quently change physical locations, such as smartphones or
autonomous cars. By default, edge clients will be assigned
to the nearest edge, and could request to connect to another,
closer edge as they change their physical location. We claim
that ultimately, in the current landscape of application de-
velopment and the increasing computation capabilities of
personal devices, the purpose of edge nodes will mainly be
to serve many such clients and cater to their high mobility
with appropriate primitives. Such model, we believe, would
be indispensable to the future of mobile applications and to
the benefit of new technologies.

The edge infrastructure possesses an additional key trait
regarding its failure modes. As resources are naturally more
scarce at the edge, it would be relatively more prone to fail-
ures with less fault-tolerance mechanisms than the cloud,
and weaker reliability guarantees. Since we model our edge
ecosystem with a backend node within arms reach at all times,
those weaker guarantees could be masked by live communi-

3



cation and localized edge recovery systems.
Figure 1 demonstrates our edge model. The color of ar-

rows represent the type of edge application, and the direction
of the arrows represent the flow of computation. The blue
application could represent, for example, a CDN-based ap-
plication such as Apple Music, where edge nodes respond to
requests from the mobile phones and serve the client with
cached entries, improving response latency compared to di-
rect user-cloud communication. The orange application might
represent a video application, where the edge node receives
a visual feed from the IoT glasses and compresses the data
before sending it to the cloud for further processing, reducing
the amount of network traffic. The difference between 1a and
1b demonstrates our mobility assumptions. The autonomous
car moves physically closer from the rightmost edge node to
the middle edge node and can now communicates with the
middle edge node, as denoted by the dotted arrow.

2.4 The Expected vs. The Reality
To recognize the benefits of our proposed unified environment
for edge computing, we first explore the requirements of edge
applications and the limitations of current offerings by edge
or cloud providers. We further build upon these ubiquitous
demands to define key building blocks that our system de-
sign must support, and materialize our observations into one
simplified environment with flexible primitives.

2.4.1 Requirements For Edge Applications

In academia, there has been extensive research attempting to
identify the needs of edge applications and the ideal underly-
ing system to accommodate those demands [29]. Articulation
of these needs, however, remains somewhat obscure due to
the diversity of applications that stand to benefit from the
edge. Some applications emphasize the distributed nature of
the edge and require stringent latency needs and coordination
across distributed clients [17]. On the other hand, Feder-
ated Learning applications [25] leverage the edge as a mean
of computational offloading, and thus ignore the need for
inter-edge or inter-client coordination. We therefore identify
several key features for edge applications:

Migration: As stated in 2.3, edge clients are assumed to be
assigned to the closest edge node to maximize application
utility. Based on the assumption that existing mechanisms can
be employed for clients to learn about nearby edge nodes, as a
mean to efficiently handle clients’ mobility while preserving
state stored on the edge, applications should have the ability
to rapidly migrate state from one edge node to another. For
instance, smart cars [24] working together to form an inter-
active map of other cars on the road may desire to migrate to
the next edge node if they have traveled substantially far away

from the first edge node and are now in closer proximity to a
different edge node.

Location-agnostic communication: The dynamic edge en-
vironment is characterized by abundant edge clients and edge
nodes who do not know about the existence or location of
other entities. Since the application logic is potentially spread
out across edge clients, edge nodes and backend nodes, com-
munication between distributed components of an application
may be difficult. The underlying edge system must provide
primitives for distributed application components to commu-
nicate regardless of location.

Consistent shared data: Many applications require work-
ing on shared resources (such as datasets or collaborative
objects), which makes consistent access to data mandatory. A
single consistency guarantee might not suffice to the variety
of edge application, thus a range of consistency models must
be supplied to match application needs - strict consistency
levels provide guarantees for shared data access but incur
large overheads, while weak consistency levels compromise
on some data inconsistencies but provide reduced latency.
Strict consistency requirements may include online gaming
[17] as players expect their adversaries to constantly remain
up-to-date, while weaker consistency should be suffice for
Federated Learning [25] and other machine learning models.

Fault tolerance: As edge nodes are intended to store state
shared between edge clients and other edge and backend
nodes, they must provide guarantees about failures and re-
covery. As in any system with a distributed nature failures
will be imminent, and the underlying system must provide
well-defined behavior for mitigating failures [11].

Low latency and high bandwidth: Since one of the core
advantages of the edge is close proximity to the client and
reduced latency, the underlying system must be efficient in
terms of response latency. This leads to an emphasis in two
planes: the startup overhead of the serverless environment
should be extremely low, and the edge environment must en-
sure that rich functionality does not incur unnecessary latency
or delays. In addition, though not in the scope of our work,
the edge node must guarantee sufficient bandwidth, especially
for the benefit of applications that require frequent heavy data
transfer.

2.4.2 Limitations of Current Offerings

Given these set of core functionalities that edge systems must
provide, we claim that current edge offerings are insufficient
and lacking support that would allow applications to leverage
the edge. We distinguish research in academia to industry
providers: recent academic papers emphasize low-level inter-
faces and mainly focus on application-specific environments,

4



while industry offerings are incomplete, lack generalized fea-
tures to accommodate the diverse nature of edge applications,
and miss core primitives.

Academia: Academic research in edge computing over the
past few years have been diverse, addressing specific chal-
lenges of programming for the edge, and ranging from con-
sistency models for shared data abstractions [11], lightweight
function-as-a-service platforms for edge nodes for faster ex-
ecution [28], or communication mechanisms for a specific
use-case in autonomous cars [26]. Consistently, however,
the main discussion points fail to reflect all necessary primi-
tives for generalized support in edge applications, while some
still focus on low-level interfaces rather than development-
centered abstractions [27].

Industry: Different edge providers exhibit varied interfaces
to their programming environment, leading to an inconsistent
developer experience. Small number of providers lay out low-
level interfaces like VMs and containers (e.g. MobiledgeX
[44]). These interfaces provide no primitives, leaving develop-
ers to manually handle distributed communication. Some of
the most popular approaches consist of high-level interfaces
for function-as-a-service (e.g. AWS Lambda@Edge [34])
or core abstractions like shared data [38], but all share two
primary shortcomings with the offered primitives. First, these
primitives are often incomplete due to lack of support for ei-
ther ephemeral communication patterns (e.g. Microsoft Azure
for the edge [43]), or for the shared data abstraction. Second,
even for the primitives that are provided, the semantics vary
across edge providers: AWS s3 support strict read-after-write
consistency [31], while CloudFlare’s Key-Value Store have
eventual last-writer-wins consistency [38].

With industry endeavors to make edge computing more
widespread and support new features, the vendor-specific
underlying implementation intricacies lead to cross-provider
utilization constraints. As the rapid adoption of multi-cloud
solutions by corporations [10] and economic research [1] has
implied, vendor lock-in is undesirable for the clients of cloud
providers. Vendor lock-in also implies that clients may not be
able to use compute resources at the physically closest edge
node, which is necessary to unlock the benefits of using the
edge in the first place. Additionally, as empirical research
has found, while existing edge nodes generally provide better
latency than cloud communication, it still incurs fairly high
latency compared to the desired use cases of edge applications.
Lambda@Edge, for example, is above 150 ms latency on
average [30], though edge technologies could possibly incur
latency as low as 20 ms [45].

Given this ecosystem, we make the observation that edge
offerings lack a uniform and extensive approach that holis-
tically deals with migration, communication, and consistent
and fault-tolerant access to shared data. Without such ap-

proach, customers are constrained to use the services of a
particular edge provider either due to vendor lock-in or due to
inconsistent semantics across offerings, which would impose
a barrier for developers to efficiently migrate customers to
the nearest edge and, at the macro level, would make writing
edge applications unnecessarily difficult, potentially deterring
developers.

To combat these limitations, we present Vertex, a unified
edge environment that supports the serverless model, offers
high-level interface which reduces development complexities
and allows innovation at the underlying system level, and
is rich in primitives that abstracts away ephemeral and long-
living data sharing from developers. We envision that Vertex
can be adopted across all edge providers and help unlock the
potential of the edge for diverse applications.

3 Design

Vertex is an edge system that runs across edge clients, edge
nodes, and backed nodes. Figure 2 demonstrates the system
from an overview, which will be broken into components
in this section: in 3.1 we present the high-level abstractions
(3.1.1) used to devise the system and the core primitives we
chose to focus our efforts on (3.1.2), we then discuss the con-
tainer management structure in 3.2 before briefly mentioning
our fault-tolerance integration in 3.3.

3.1 Service Model
Adjusting to the edge programming paradigm and satisfying
the comprehensive needs of edge applications, Vertex is built
with edge application requirements in mind. Core operations
are meticulously designed to satisfy the ultra low latency
constraints, most taking less than a millisecond to perform.
We accommodated edge developers’ needs with high-level
abstractions, while catering to edge providers with a flexi-
ble underlying implementation that easily allows innovation.
Further, since mobile clients would be of major interest for
edge development purposes, we emphasized seamless mo-
bility between edge nodes for a continuous interaction with
edge clients despite decreasing physical proximity. Lastly,
we protected Vertex from failures by deploying a resilient
edge-computing recovery mechanism.

3.1.1 High-level Abstractions

Vertex’s central design decision is to abstract complexities
of managing a virtual machine away from application devel-
opers to divert their attention to application intricacies from
resource management. Though VMs offer many benefits to
developers and providers, such as flexible resource allocation
and priority management, we conjecture that implementing
edge services based on virtual machines comes at a large price

5



Figure 2: Vertex Design

which deems it insufficient for application development for
the edge.

From a programmer’s perspective, high-level abstractions
are desired over an OS-like model. Application developers
would prefer focusing their efforts on creating new features
and improving the app’s design and internal mechanisms over
managing resources at the edge level. The lack of assumed
primitives also require much more work at the systems level
to create low-level building blocks that support coordination
with various application instances over geo-distributed edge
nodes.

On the providers’ side, offering VMs taxes the physical
machines in a large amount of RAM and CPU cycles, since
each VM creates a virtual copy of all hardware that the op-
erating system needs to run. VMs are based on a hypervisor
that largely complicates introducing new technologies in the
underlying system level for controlling resources below the
operating system. Similarly, containers as the lowest-level
abstraction will undermine providers’ efforts to improve per-
formance, to all of which the serverless paradigm grants an
easy solution for. With less operating overhead and accurate
resource provisioning, providers can also offer a more precise
resource consumption based monetization.

3.1.2 Core Primitives

Identifying common needs for the diverse range of edge ap-
plications was the leading guideline for devising Vertex’s
subsystems. As mentioned in 2.4.1, the high-pace mobility
of clients and the importance of geo-distributed coordination
between entities resulted in identifying the core primitives for
the edge.

Execution Environment: The benefits of cloud-based server-
less computing, and especially the Function-as-a-service
(FaaS) model, can extend to the edge. Vertex leverages both
the performance benefits of FaaS, since invocations that spin

up a compute environment must be fast, and the efficient hard-
ware utilization through statistical multiplexing. Vertex uses
OpenFaas [46] as the underlying execution environment, but
implements a wrapper around it so that any serverless engine
can be used instead. Applications developers can register
their functions to Vertex and allow edge clients to trigger
these functions at edge nodes, respectively. Invoked functions
in the execution environment can communicate with other
functions or instances using the two other Vertex primitives,
communication and shared data, to share state among devices.

Communication: Instantaneous or short-living interactions
between edge clients and edge nodes require ephemeral co-
ordination between functions. The communication must be
location-agnostic to account for the distributed nature of ap-
plication instances and their frequent mobility, extremely
lightweight to prevent congesting client devices with state
updates, and must efficiently distribute state across relevant
edge nodes (but not all). State filtering across edge nodes and
clients occur based on topic, set by the application logic. Ver-
tex adopts a Pub-Sub communication model for client-edge
communication, reliable state migration between edge nodes,
and a reliable node-backend coordination to establish a con-
nection between all edge nodes for a specific topic, regardless
of physical location.

Shared Data: Interactions requiring long-living state would
utilize the shared data abstraction, an object-based library
for shared reads and shared writes exposed to the serverless
execution environment. Based on the scale of computation,
the shared data subsystem offers two sub-primitives: fine-
grained objects intended for short time-frame computations,
and coarse-grained objects, purposed for long time-frame
computations. As some applications have different priori-
ties in terms of consistency levels and due to the inherent
correlation between stricter consistency models and weaker
performance guarantees, the shared data abstraction offers

6



different consistency levels: fine-grained objects could utilize
linearizable and eventual consistencies, and coarse-grained
data could utilize the strict serializable consistency model.

3.2 Deployment
Being a comprehensive edge framework that applications can
be deployed over, Vertex runs across edge nodes and backend
nodes. Edge nodes are organized as Kubernetes [42] clusters,
and each node runs an instance of a serverless engine in a
designated OpenFaas pod. Each application lives in a des-
ignated container inside the serverless pod along with other
containerized micro-services and libraries that the application
needs for operation, as shown in figure 2. In order to mini-
mize latency and increase OpenFaas’ edge compatibility, we
modified OpenFaas’ basic gateway to remove its control plane
latency, which resulted in a significant reduction in runtime.

In addition to the OpenFaas pod, the communication and
shared data subsystems also implement a microservice-based
approach and are deployed on distinguished pods. The two
components run server processes that accept client traffic via
remote procedure calls (RPCs), though they directly interact
with the execution environment solely, which forwards client
requests accordingly. The RPC libraries are packed along
with function code so they can invoke the API and support a
set of interfaces implemented by client libraries. While the
client libraries are automatically included on the application’s
container, its extensible structure enables support for multiple
languages.

Kubernetes’ convenient resource management, flexible con-
trol plane and containerized structure would make Vertex ex-
tremely appealing and easily adoptable for providers, though
our mechanism is not tied to Kubernetes and could be replaced
with any framework that supports composable units.

3.3 Fault-tolerance
Preventing state loss upon edge failures has additional com-
plexities to the familiar client-server paradigm in which a
stateful server provides services to multiple clients. The edge
processor is logically located between the client and the server,
which complicates maintaining consistency in the case of an
edge failure due its scarce resources. Since the cloud does
not store the edge state, deploying another edge will lose it
state at the time of failure. To address these limitations, we
deploy CESSNA [20], a low-level edge framework that sup-
ports local recovery of temporary, unshared state in case of
failures.

4 Shared Data

Vertex’s significant contributions begin with its shared data
model, which revolves around varying consistency levels.
Vertex’s shared data model was initially designed to provide

strong consistency (both linearizability and serializability) in
a fault-tolerant manner since industrial offerings often omit
these from their features. However, we elected to extend the
consistency model to support eventual consistency to accom-
modate an additional range of robust use cases. The shared
data subsystem is composed of a granular object-based li-
brary exposed to functions, which differentiats fine-grained,
lightweight objects intended for short-timescale computation,
and large, coarse-grained objects intended for long-timescale
computation.

4.1 Requirements
The shared data subsystem accommodates applications’ data
sharing needs similarly to cloud computing, with one major
difference: extremely low latency. Access to shared objects
must be consistent as edge clients must reason about the valid-
ity of the information, and data must be replicated strategically
to avoid corruption of data upon failures. With that in mind,
as one of Vertex’s main ideals is generality, the shared data
component must be extensive enough so that applications can
pick their preferred scope of data they handle at once. Our
shared data abstraction is supported by two underlying ap-
proaches and can be leveraged when distributed edge nodes
are operating on the same dataset. The first is a fine-grained
approach which is designed for short, flexibly consistent op-
erations. The second is a coarse-grained approach designed
for long, strongly consistent, dynamic operations. Both of
these approaches provide a way to handle fault tolerance and
optimize performance, and both leverage a backend node to
enforce consistency.

4.2 Fine-Grained
The fine-grained abstraction is designed for short-lived consis-
tent operations on shared data. In simple words, fine-grained
consistency can be summarized as bringing compute to data
- Vertex checks whether the edge node or the backend node
possesses control over the data, and performs the computation
at the corresponding node. Given the short-lived nature of the
operations there is a need to limit the amount of overhead per
request. To reduce the raw overhead from concurrency man-
agement, we choose to support linearizability, which enables
arbitrary interleaving of operations. Additionally, we added
eventual consistency support for workloads that do not need
strong consistency and wish to minimize overhead.

To further reduce operation overhead, we allow dynamic
replication and placement of objects. Replication allows us to
exploit the read/write ratio of a given application to improve
performance while placement allows us to exploit locality.
Ideally, the replication and placement decisions made by our
shared data abstraction should be independent of the applica-
tion and require no changes from the developer.

7



4.2.1 Linearizability

To provide linearizability in the face of object-level replication
across edge nodes, Vertex leverages the MESI cache coher-
ence protocol [8] and coordinates individual object access
across edge nodes. Due to the low latency requirements of
the edge, we made extensive performance optimizations that
prevent excessive overhead of broadcasting shared objects
updates across edge nodes. Vertex uses a directory-based
write-invalidation protocol that invalidates replicas of that
shared object upon a write. To support location-agnostic
inter-edge coordination, this directory is maintained at two
granularities - first, the backend node maintains a global di-
rectory which tracks shared objects coherence states across
edge nodes, and second, each edge node maintains a local
directory that keeps track of the coherence states of objects at
that node.

To implement the MESI protocol, shared objects at a par-
ticular edge node can be in a modified, exclusive, shared, or
invalid state. When the object is initialized, only the backend
node has exclusive access to the shared object. Edge nodes
can only write to an object if that object is in a modified or
exclusive state at that node, but reads can be performed in
those two states as well as the shared state. An object in a
modified state implies that the edge node has not yet written
back the value to the backend node.

The computational flow starts with an edge client triggering
a function that makes one or more requests to read or write a
shared object through shared_read and shared_write. The
edge node first checks if it has access to the entire read and
write set for that function. If it does, the execution environ-
ment performs the function and returns the result. Otherwise,
the shared data pod communicates to the backend node, which
then checks if it has read access to the entire read set and write
access to the entire write set of shared objects in question.
If it does not, it checks the write set of the requesting edge
node and invalidates replicas at other edge nodes that have
exclusive access to those objects. At this point, the backend
node executes the function on behalf of the original requesting
edge node, gives this edge node upgraded coherence states
(exclusive for written objects and shared for read objects),
and communicates this information back to the original edge
node.

4.2.2 Eventual Consistency

The shared data fine-grained paradigm additionally supports
eventual consistency, which enables application developers to
write merge functions for shard objects along with a recency
parameter indicating how much time can elapse before data
can be assumed to be stale. Merge functions, such as last-
writer-wins, allow applications to reserve conflicted versions
of shared objects based on the application’s semantics, and
the recency parameter force timely synchronization of shared
objects. Eventual consistency is a weaker consistency model

than linearizability and provides weakened guarantees for the
benefit of a much simpler coordination mechanism and much
lower latency. Only certain type of functions (e.g. merge
functions), however, can benefit from its merit.

4.2.3 Fault Tolerance

The shared data mechanism must ensure fault tolerance to
withstand failures without losing essential information. To
deal with failed edge nodes or network partitions, Vertex
maintains a persistent copy of the objects at the backend
node, which is assumed to be fault tolerant by other conven-
tional methods. If the failed edge node had special access
permissions to an object, the backend node receives those
permissions to that object.

4.3 Coarse-Grained
Our coarse-grained abstraction, on the other hand, is designed
for long-lived consistent operations on shared data. The long-
lived nature of operations leaves a lower burden on reducing
overheads, which ultimately lead us to support serializability
as a strong consistency model. Compared to the fine-grained
lightweight model of compute to data, our coarse-grained ap-
proach can be described as bringing data to compute, allowing
functions to lock a set of objects and perform computations
locally at edge nodes when triggered by edge clients. When a
client invokes a function that makes a serializable operation
request to the edge’s shared data subsystem, the subsystem
will contact the backend to lock the read and write set. The
backend will give the edge subsystem access to the data,
whenever possible, using its local reader/writer locks. The
edge node then completes the operation and returns the result
of the request to the client. To protect against edge failures,
our coarse grained module uses leases instead of pure locks
and acts as a cache over cloud blob storage.

4.3.1 Serializability

Due to the longer persistence of shared objects and poten-
tially large amount of reads and writes, we found serializ-
ability to be a more fitting mechanism for enforcing strong
consistency. In particular, Vertex’s serializability mechanism
enforces snapshot isolation [2], which provides most of the
consistency guarantees of serializabilty while also improv-
ing performance. Vertex assigns globally unique logical start
times to functions invocations. Throughout its lifetime, a
function may read shared objects (i.e. using shared_read)
if no other function with a logically later start time has writ-
ten to those objects. Otherwise, the function aborts and is
restarted. If the function has to write shared objects (i.e. using
shared_write), Vertex buffers these writes, and these writes
only persist if the function is able to commit after it completes
its execution.

8



A function can commit if two conditions are met: the
function must be the only one writing to the object, and no
other function that has a later logical start time has read the
objects that the original function has written. To verify these
conditions, Vertex leverages per-object reader-writer locks so
that functions can ensure they have write access to objects. If
this lock cannot be acquired, Vertex will abort and restart this
function.

Vertex ensures that writes are atomic, i.e. either all or none
of a function’s writes become available to other functions,
to provide stronger consistency guarantees and eliminate the
risk of leaving data in an undesirable data upon aborting an
operation or failing to complete a write. Vertex also caches
objects at edge nodes to reduce overhead stemming from
interacting with the backend node or other edge nodes using
the shared object.

4.4 Interface and Implementation
For the application developer, making use of shared data
requires little change, as functions will merely import the
supplied shared data client library to make requests. Shared
functions are the unit of execution on shared data, performed
and made consistent by the shared data subsystem on behalf
of the edge application. To enable a function to be executed
as a shared_fn, the developer will annotate it with the object
read/write sets for the function as a function comment. Ver-
tex’s application parser reads these annotations and stores
the read/write sets for each function transparently from the
developer. Given that a shared_fn call may be migrated arbi-
trarily, the developer is responsible for writing the function
such that each shared_fn can be singly executed by invok-
ing the function using the operation name. This will require
reading and writing shared objects using shared_read and
shared_write which automatically serialize and deserialize
native language-specific objects.

Both fine-grained and coarse-grained abstractions run as
independent processes in the shared data pod (as depicted
in figure 2). Application containers in the execution envi-
ronment can access a designated shared data client to make
shared_fn requests, while invocations sent to the same con-
tainer utilize the same shared data client to reduce additional
instance overhead. To conform to universal shared communi-
cation conventions, each shared object, be it fine-grained or
coarse-grained, implements the following abstraction: Read,
Write, Lock, and Unlock. Upon shared function request, the
shared data client invokes the function, reads stored maps to
determine which objects need to be altered or read and the
specified consistency levels by the client. The shared data
client then locks the object, read or write data as necessary,
and then unlocks the object and returns the function result.

5 Communication

While shared data is intended to maintain persistent state, ap-
plications may also require ephemeral communication across
edge clients and edge nodes. The communication primitive
must be location-agnostic and account for edge client mobil-
ity, as edge clients that connect to another edge node due to
physical proximity must adjust quickly without losing prior
state or missing new incoming state updates. To achieve this,
Vertex includes a hefty wrapper for a pub-sub interface, ac-
companied by a primitive for migrating communication state.
Under the hood, edge nodes frequently communicate with
the backend node to publish messages to other edge nodes,
while all state updates are efficiently stored at the edge until
explicitly requested from edge clients. In this section we will
interchangeably use state updates and messages to convey the
rudimentary elements passed via this subsystem.

5.1 Requirements
The communication subsystem was carefully designed to obey
high performance standards due to its messages’ ephemeral
and agile nature of use. We emphasized 3 main characteris-
tics when designing the communication primitive: location-
independent coordination, low latency and minimal opera-
tional overhead, and support for mobile clients.

5.1.1 Location-Agnostic Patterns

All state updates passed through this module must contain
information relevant to a specific edge client and may, or may
not, additionally include details about their physical location
(e.g. in the case of autonomous cars or location-based mul-
tiplayer games, like Pokemon Go [15]). However, the edge
client’s physical location, or that of other instances demand-
ing state updates, should not be a factor in distributing state
updates. Messages should be delivered to all relevant clients
regardless of any actor’s physical location. The topic sub-
scription primitive of the Pub-Sub model 5.2.1 aligns with
this goal perfectly, as edge clients can receive messages based
on a shared topic regardless of location. Edge nodes lever-
age continuous connection to the backend node to distribute
messages to all other edge nodes and edge clients.

5.1.2 High Efficiency and Minimal Overhead

Intended for time-sensitive coordination, the communication
subsystem must be extremely efficient handling message de-
livery to other edge nodes or to edge clients, incurring mini-
mal overhead. We implemented communication in C++ and
built it around ZeroMQ sockets to leverage their low latency
and support for atomic multipart messages. Our design em-
phasized minimal busy-waiting and low input-dependent itera-
tions to reduce variability in duration of command executions.

9



(a) Edge clients subscribe to a topic (b) Edge client publishes a message.
Message is stored on edge and delivered
to backend node

(c) Backend node publishes message to all
subscribed edge nodes. Updates are stored on
the edge nodes

Figure 3: Communication Publish-Subscribe Model

5.1.3 Support Mobility

Based on our hypothesis conjecturing large number of mobile
edge clients, short-living coordination must support migra-
tion (2.4.1). After establishing close proximity to a new edge
node, from the communication component perspective, migra-
tion is defined as the act of transferring all app-related state
updates for a specific client from one edge node to another
with minimal latency, while avoiding the loss of messages
during the transfer period.

5.2 Communication Models
5.2.1 Publish-Subscribe Model

The communication subsystem’s main coordination model
is the Publish-Subscribe pattern, as shown in Figure 3. In
pub-sub, each endpoint, i.e. an edge client or an edge node,
first subscribe to a certain topic - a unique trait or title which
all related messages share - they wish to follow (3a). Subscrib-
ing to a specific topic allows entities to send state updates,
and to receive all state updates published anytime after sub-
scription. Senders publish messages to the edge node (3b),
which stores the messages locally. To deliver messages to
all subscribed edge clients including those connected to ge-
ographically remote nodes, the edge node reliably sends the
published message to the backend node. The backend node
acknowledges the received message, and then broadcasts the
message to all subscribed edge nodes for temporary local
storage (3c).

The pub-sub model provides an efficient solution to the
edge environment requirements. By leveraging the edge and
backend nodes as middlemen, we decouple sending messages
from receiving: every edge node store received messages and
a corresponding offset for each topic, while storing the last
offset queried by each client. Edge clients can therefore pub-
lish messages quickly due to the distributed responsibility for
message delivery, while receiving pending messages imme-
diately upon request. Unique topic titles permit applications
to use application-specific naming while integrating a simple
single-to-many delivery convention.

We observe that this mechanism achieves location-agnostic
communication in two granularities. From the edge client
perspective, they do not need to know the locations of other
edge clients a priori to sending or receiving messages. From
the edge node perspective, the set of edge nodes needed for an
application is also not known a priori since this set depends on
mobile edge clients dynamically attaching to local edge nodes.
Vertex leverages the backend node as a rendezvous point as
edge nodes can publish and subscribe to topics without any
prior knowledge as to where is the publishing client or node.
In our current prototype, the backend node does not store any
state. Depending on the desired lifetime span of messages,
vertex can store crossing messages on the backend node as
a recovery mechanism for the communication subsystem in
case of an edge failure.

5.2.2 Inter-Edge Data Transfer

Our assumptions of client mobility in 2.4.1 raises the ques-
tion of what happens to the communication state if a mobile
edge client reconnects to a closer edge node. More specif-
ically, if the client migrates edge nodes, the set of topics it
is subscribed to as well as its message offsets are stored at
its previous edge node. Prior to any edge node - edge node
interaction, we have no convenant that the new edge even
knows about the existence of these topics or contains mes-
sages that the mobile client has yet to pull. To address this,
Vertex supports client-driven mobility enabling clients to mi-
grate their communication state to the new, closer edge node.
Internally, upon a client’s migrate call from edge node A to
edge node B, edge node A will send the set of all topics and
unrequested messages for that client, to edge node B. Edge
node A will remove the migrated state only after receiving
a receipt acknowledgment from edge node B, ensuring reli-
ability and eliminating the risk of losing information. After
migration, node B can take over in servicing the client for
communication.

10



5.2.3 Reliable Delivery

As we concluded in 2, edge applications are often data-heavy,
agile and require efficient coordination between geographi-
cally remote devices. Since communicating without delivery
guarantees may yield failure to comply with some of the basic
needs of edge applications, we built Vertex to be a reliable
medium for state distribution with strict guarantees on suc-
cessful message delivery.

Edge node-client message delivery is guaranteed by design;
edge clients request messages only when they are ready to
receive them, and the edge node will not dispose of these
messages until the client has received all their pending mes-
sages atomically. The communication subsystem serializes
requests and responses using Google’s Protobuf [37] and em-
ploys gRPC [41] for client-node interaction, which alerts upon
unsuccessful delivery of requests or responses.

At the lowest-level, inter-edge and edge-backend commu-
nication is done using ZeroMQ’s reliable delivery [49]. In a
nutshell, ZeroMQ’s reliable sockets (request-reply pattern)
atomically send messages to the receiver, and then repeatedly
query them for an acknowledgement. The acknowledgement
message contains some part of the original message, to vali-
date the correctness of data received at the other end. If no
acknowledgement was received after a set period of attempts
(3) sent within a set time interval (1 second per attempt), the
sender can confirm the unsuccessful delivery of the message,
and react accordingly.

5.3 Implementation
In this section we will discuss the communication subsys-
tem’s implementation details and ration about decisions we
have made and technologies we elected to use to achieve our
ephemeral coordination goals.

5.3.1 Internal and External Coordination

Traditional communication methods involve two or more di-
rect players: one acts as the sender, with one or more re-
cipients. While this applies to the classic client-server or
peer-to-peer models, the edge introduces a new environment
that imposes intricacies embodied as indirect entities (i.e. the
edge node and the backend node; neither of whom produce
messages), which demand a significantly more comprehen-
sive set of internal and external interactions.

Edge Client - Edge Node: The edge client establishes con-
nection to the edge node by running a Python-based client
library, specifying the nodes IP address. Instantiating the
communication instance allows direct interaction with the
communication module using its core API (5.4). All end-
points are exposed using gRPC [41] on both entities, i.e. an
edge client publishing a state update will invoke a gRPC call
to the connected edge, which will change its internal state

accordingly, and an API call to get_messages, will deliver all
state for some topic to the client over Protocol Buffers do be
deserialized at the client’s process.

Edge Node - Edge Node: Edge nodes communicate with
each other per clients’ request for migration. The edge client
will specify the address of the new edge node they want to
connect to, and the two edge nodes will reliably transfer
topics and related state (5.2.3). Each edge node supporting
vertex has a set of two ZeroMQ [49] request-reply sockets
to carry out migration operations: a request socket initiates
migration from edge node A to edge node B by stacking
multipart messages containing user ID, list of topics, and a
message stream for each topic. The reply socket receives
the migrated state on edge node B, puts it in corresponding
message queues (5.3.2), and sends and acknowledgement
message if migration was successful. Edge node A, in turn,
unsubscribes the migrated edge client from all relevant topics,
and clears out irrelevant remaining state.

Edge Node - Backend Node: Lastly, to fully accomplish
location-agnostic coordination, edge nodes automatically sub-
scribe to the backend node to each topic that their connected
edge clients subscribe to. Again utilizing the request-reply
pattern, a request socket is initialized on every edge node
with one purpose: send every single message that its edge
client published, to the backend node. The backend node
initializes a reply socket, and acknowledges the successful
receipt of a published message. Following that, the backend
node uses a publish socket to broadcast the message to every
subscribed edge node in the topology. Edge nodes receive the
message using a subscribe socket and store the messages in
the appropriate message queue.

5.3.2 Message Queues

One of the main differentiators of our communication design
from other pub-sub models is where pending messages are
stored. Most common pub-sub designs avoid temporary state
storage on the local machine, and as we envisioned the edge
carrying the load of storing state before distributing to clients
upon request, we incorporated message queues to prevent the
native pub-sub design from directly offloading messages to
clients.

Our pub-sub model incorporates an in-house thread-safe
message queue that stores only one copy of any incoming state
update per topic regardless of the number of subscribers, and
a corresponding offset. The message queue keeps track of the
number of subscribers at all times, and optimizes the queue
(i.e. removes old messages and update offset numbering)
during operational downtimes.

11



5.4 Interface and Core API
When devising the communication interface, we set two basic
guidelines: generality and simplicity. Generality is required
to provide support to all various types of edge applications
deployed on the edge, and we emphasized a simple interface
identical to the standard pub-sub model, to ease user interac-
tion with the familiar interface and to enhance the usability
of the subsystem as a whole.

5.4.1 Subscribe

Subscribing is the act of requesting the edge node (or the
backend node, as depicted in 5.3.1) on their behalf (i.e. the
edge client or edge node, respectively) to store message up-
dates for a specific topic temporarily. A subscribed client is
guaranteed to receive all state updates from all other edge
clients and nodes (through the backend node) about a specific
topic. In contrast, unsubscribe is the act of delisting oneself
from receiving any further updates about a topic, de-facto
removing all interest in the topic. By design, unsubscribing
erases the edge client’s offset for that topic, invalidating future
requests to get_messages.

5.4.2 Publish

As depicted in 3, publishing a message for a specific topic
results in the edge node storing the message in its topic’s
corresponding message queue, dispatching the message to
the backend node, which then broadcasts the message to all
subscribed edge nodes.

5.4.3 Get Messages

To retrieve messages for a topic, clients can leverage
get_messages, which retrieves all messages for a particular
topic from the edge node that the client is attached to. To
ensure the edge node does not send duplicate messages to
the client upon multiple get_messages calls, that edge node
is responsible for keeping track of message offsets, i.e. how
many messages that client is yet to consume for a topic. The
edge node stores offsets for each edge client, and updates it
every time get_messages is called.

5.4.4 Migration

The migration API call is used when a mobile edge client
identifies they are physically closer to a different edge node,
to which they are not yet connected. We assume that mo-
bile clients can use existing techniques to identify the nearest
edge node, thus the client can populate the IP address field in
the migration request, and has total control over which edge
node they wish to be attached to next (or whether they wish
to stay attached to the current edge node). As we covered
in 5.2.2, migration request will serialize all state updates for

a client for every topic they are subscribed to, and leverage
ZeroMQ’s request socket to atomically send the state to a new
edge node. The new edge node subscribes to all topics on
behalf of the migrated client, instate all state updates in the
appropriate message queues, and assigns the client an offset
for their un-pulled messages for each topic. Upon successful
completion, the new node acknowledges the successful mi-
gration, and notifies the old edge node about their ability to
locally unsubscribe from all topics on behalf of the migrated
client.

6 Evaluation

6.1 Quantitative Evaluations
To test Vertex in a real-world environment, we used Amazon
Elastic Kubernetes Service (EKS). In our setup, we provi-
sioned two clusters in the same region (us-east-2), one for
a Vertex edge node and another for a Vertex backend node.
Both clusters were statically provisioned with m5.large in-
stances each, and the control plane for both clusters consisted
of OpenFaas and our shared data and communication pods
abstracted as services. We emulated edge clients by running
a Python script with our API imported, running at the edge
cluster.

6.1.1 Shared Data and Execution Environment

We first wanted to test the overhead of our serverless engine
and shared data subsystem. We initially tested the usage of
OpenFaas without alterations, though we expected the perfor-
mance overhead to be nontrivial. For measurement purposes,
we deployed a toy function on the edge node that leverages
Vertex’s fine-grained shared data abstraction, and uses its lin-
earizability consistency model to increment a shared object
(counter). We repeat execution of this function 100 times for
our measurement sample size. In our setup, the edge node
already has access to the shared object, thus it can execute
the function locally when the client triggers the function with-
out coordinating with other edge nodes or the backend node.
Despite local processing at the edge node, we noticed large
latency overheads from OpenFaas, shown in our boxplot (4b).
To supplement the plot with aggregate statistics, we measured
the median, mean, and standard deviation of the latency across
100 trials to be 424,28, 427.40, and 14.33 ms, respectively.
While the results across invocations were relatively stable,
the response latencies for edge applications were overall too
high. This prompted us to strip OpenFaas to its barebones
and remove any unessential functionalities from our execution
environment.

Comparatively, we also measured the network latency from
our edge node cluster to our backend node cluster, and the
round-trip-time averaged to be 13.1 ms across 100 trials. Bas-
ing our empirical findings on prior latency measurements by

12



(a) Vertex usability study
(b) Operational latency with unmodified Open-
Faas

(c) Shared Data latency

Figure 4: Shared Data and Execution Environment Evaluations

the equivalent Microsoft Azure’s service [35], we find that
13ms is reasonable, though on the high end of same-region
network latency. Both instances are not in our physical con-
trol, but we speculate that they simulate a real-life scenario.

Building off these two measurements, we stripped down
OpenFaas and dissected the service to modular pieces, evalu-
ating the necessity of each component to Vertex’s correct and
agile operation. We ran several modular micro-benchmarks
on OpenFaas’ components, and found that the largest source
for incurred latency was importing and interpreting libraries
and packages with each invocation of OpenFaas. Results are
shown in 5. We then decided that when running vertex on
the edge, all function libraries should be pre-imported and
warmed-up before execution, to remove the import overheads.
We further concluded that OpenFaas’ default gateway added
significant latency to functions’ basic operations, so we ex-
tracted the gateway away from the OpenFaas pod (previously
dicussed in 3.2).

Figure 5: OpenFaas’ latency distribution

To fully understand sources of latency within our shared
data logic, we performed a simplified evaluation that pre-
vents the underlying serverlesss framework from posing any
overhead. Instead of invoking OpenFaas on the clusters to
invoke our toy function, we directly invoked the function in
Python on the EC2 instances in our clusters. We conducted
the experiment first on the edge node, and the remotely on the
backend node. Both experiments focused on measuring the
shared data abstraction stripped of the execution environment,
thus OpenFaas was not used. We repeated the experiment
100 times, and the resulting boxplots are shown in figure
4c. The mean, median, and standard deviation were 65.84,

67,63, and 8.15 ms for the backend, and 60.98, 61.27, 3.66 ms
for the edge. We thus concluded that removing warm-up la-
tency from OpenFaas and directing traffic to avoid OpenFaas’
gateway should be adopted in our OpenFaas instance.

6.1.2 Communication

Our communication component has a rich set of functionali-
ties that are constructed to satisfy the edge model. We decided
to measure pure operation latency, stripped of network latency
and propagation delays. This way, we could reason about our
subsystem’s structure and design rather than on factors out
of our reach. Client-edge node interactions were made us-
ing gRPC to issue request from the client to the node and
responses from the node to the client. We used a commodity
AWS EC2 instance (us-east-2) for both the client and the edge
node (as separate processes) and opened separate ports for
the client, edge node and backend node.

The first measurement was a comprehensive micro-
benchmarks for each API supported operation. Each bench-
mark was repeated 10,000 times, for which we gathered the
average, minimum, maximum and 75 percentile times, in
microseconds. As witnessed in 6a, subscribe operation, from
the moment client requested subscription until the edge node
sent them acknowledgement of subscription, took 310.97 mi-
croseconds on average, with 278.95, 2246 and 314.71 mi-
croseconds as the minimum, maximum and 75 percentile,
respectively. Unsubscribe operation, from client’s request
to receiving acknowledgement, took 303.03 us on average,
and 279.9, 465, and 305.89 as the minimum, maximum and
75 percentile, respectively. Publish refers to time between
client’s request to publish a message and the edge node’s
acknowledgement after queuing the message in the message
queue. Our benchmarks time an average of 532.66 us, with
448.94, 1509 and 563.62 microseconds as the minimum. max-
imum and 75 percentile latency, respectively. Get_message
benchmark measured the time between an edge client request
to get 100 messages, and receiving the deserialized message
stream. All messages were checked for order and correctness.
Our measurements revealed 374.68 us on average, and 352.38,

13



(a) Communication micro-benchmarks (b) Migration latency (c) End-to-End comparison

Figure 6: Communication Evaluation

459, and 378.13 as minimum, maximum and 75 percentiles.
Our next benchmark was the migration operation in fig-

ure 6b. We created a number of edge clients, populated topic
queues with a varying number of messages, and then migrated
a client from one edge to another. We repeated this 1,000
times. As a reminder, these measurements do not include net-
work delays, so they concern to the message aggregation per
migrating client, serialization, delivery, deserialization, and
placement of all messages in the corresponding topic queue
on the new edge node. We conducted this measurement with
queues containing 10, 100, 500, 1000, 10000 messages. Our
average results were 1.02ms, 1.38ms, 2.02ms, 3.08ms and
22.2ms respectively, which is satisfying our edge require-
ments. We believe that message queues will not contain much
larger number of messages due to the ephemeral nature of the
communication component.

Our last evaluation for the communication subsystem intro-
duced an end-to-end comparison with some existing industry
technologies, shown in figure 6c. We define end-to-end as
the overall time it takes between an edge client connected to
edge node A publishes a single message, and a different edge
client connected to edge node B to get the message and read
it. Vertex took 844.97 us on average, over a sample size of
10,000 iterations. Next, we measured Kafka’s end-to-end la-
tency, on a local machine running Linux, by creating a single
topic, publishing a message, and reading the message with
a python client. For 100 iteration, Kafka took 6979 us on
average. Next we measured Amazon’s pub-sub on the same
EC2 instance as Vertex. Every 5 seconds, our client logs the
publish time, publishes "PING", and a python client on the
other end gets the message and logs the receive time. Over
100 runs, we found Amazon’s pub-sub end-to-end latency to
be significantly higher, at 51000 us (51 ms).

We conclude our communication component evaluation
as a major success; while it is yet to prove similar efficien-
cies for large volumes (Amazon’s pub-sub is said to perform
comparatively better for large volume of messages), it shows
Vertex’s capability of dealing with short-living state updates
with high efficiency and ultra low latency.

6.2 Qualitative Evaluations
In addition to our quantitative evaluations, we also evaluated
the feasibility of writing edge applications over Vertex, and
our results are demonstrated in 4a. We first wrote an object
detection application as a Vertex function that uses the YOLO
object detection system [39]. The function performs object
detection on behalf of an edge client using the YOLOv4-tiny
model, and took 90 lines of code to build. We also built a
federated learning application on Vertex, where an edge node
uses PyTorch [47] in collaborating with other edge nodes to
train a model and also allowing clients to make inference
requests to this model. This application took us 116 lines
to build. While the semantics of Vertex’s API are still being
refined, we see these results as a positive preliminary indicator
of the feasibility of building edge applications over Vertex.

7 Conclusion

In this paper we endeavored to identify the future of edge
computing given the changing landscape of technologies and
the increasing demands of edge applications in terms of loca-
tion, computational resources and latency. We enumerated the
core requirements of edge applications in the near future, and
found that no current offering provides a sufficiently general-
ized, simple and comprehensive development environment for
edge application developers, naturally leading to diminished
utilization of the edge despite its virtues. We then proposed
Vertex, a unified edge computing environment catered for
edge applications, independent of underlying systems used by
edge providers and usable for all, preventing vendor lock-in
and the limits it imposes on the edge environment. Vertex of-
fers location-agnostic communication, migration, shared data,
and agile execution environment as core primitives for edge
applications, with straightforward APIs providing maximal
flexibility and minimal overheads. We hope to induce interest
from cloud and edge providers, ultimately leading to a vast
adoption of the unified model and simple primitives, or, at the
very least, to a paradigm shift in edge computing that puts
edge applications and its requirements at the heart of edge
discourse, above other interests and considerations.

14



References

[1] W. B. Arthur, “Competing technologies, increasing
returns, and lock-in by historical events,” The economic
journal, vol. 99, no. 394, pp. 116–131, 1989.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E.
O’Neil, and P. O’Neil, “A critique of ansi sql isolation
levels,” in ACM SIGMOD International Conference on
Management of Data, 1995.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” ACM
SIGCOMM computer communication review, vol. 38,
no. 4, pp. 63–74, 2008.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,
“The case for vm-based cloudlets in mobile computing,”
vol. 8, IEEE Pervasive Computing, 2009, pp. 14–23.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data center tcp (dctcp),” in Proceedings of the ACM
SIGCOMM 2010 Conference, 2010, pp. 63–74.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.
Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “A view of cloud computing,”
Communications of the ACM, vol. 53, pp. 50–58, 2010.

[7] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai
network: A platform for high-performance internet ap-
plications,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 3, pp. 2–19, 2010.

[8] D. A. Wood, M. Hill, D. Sorin, and V. Nagarajan, A
Primer on Memory Consistency and Cache Coherence.
Morgan and Claypool Publishers, 2011.

[9] N. Farrington and A. Andreyev, “Facebook’s data cen-
ter network architecture,” in 2013 Optical Intercon-
nects Conference, Citeseer, 2013, pp. 49–50.

[10] D. Petcu, “Multi-cloud: Expectations and current ap-
proaches,” in Proceedings of the 2013 international
workshop on Multi-cloud applications and federated
clouds, 2013, pp. 1–6.

[11] C. Meiklejohn and P. V. Roy, “Lasp: A language for
distributed, coordination-free programming,” in 17th
International Symposium on Principles and Practice of
Declarative Programming (PPDP ’15), 2015, pp. 184–
195.

[12] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and M.
Zhang, “Congestion control for large-scale rdma de-
ployments,” ACM SIGCOMM Computer Communica-
tion Review, vol. 45, no. 4, pp. 523–536, 2015.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet Of
Things, vol. 3, pp. 637–646, 2016.

[14] L. Baresi, D. F. Mendonça, and M. Garriga, “Em-
powering low-latency applications through a serverless
edge computing architecture,” in European Conference
on Service-Oriented and Cloud Computing, Springer,
2017, pp. 196–210.

[15] A. Colley, J. Thebault-Spieker, A. Y. Lin, D. Degraen,
B. Fischman, J. Häkkilä, K. Kuehl, V. Nisi, N. J. Nunes,
N. Wenig, et al., “The geography of pokémon go: Ben-
eficial and problematic effects on places and move-
ment,” in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, 2017, pp. 1179–
1192.

[16] M. Satyanarayanan, “The emergence of edge comput-
ing,” Computer, vol. 50, no. 1, pp. 30–39, 2017. DOI:
10.1109/MC.2017.9.

[17] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri,
“Towards efficient edge cloud augmentation for virtual
reality MMOGs,” in ACM/IEEE Symposium on Edge
Computing (SEC), 2017.

[18] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C.
Paschalidis, and W. Shi, “Federated learning of predic-
tive models from federated electronic health records,”
International journal of medical informatics, vol. 112,
pp. 59–67, 2018.

[19] S. L. K. C. Gudi, S. Ojha, B. Johnston, J. Clark, and
M.-A. Williams, “Fog robotics for efficient, fluent and
robust human-robot interaction,” in 2018 IEEE 17th
International Symposium on Network Computing and
Applications (NCA), IEEE, 2018, pp. 1–5.

[20] Y. Harchol, A. Mushtaq, J. McCauley, A. Panda, and
S. Shenker, “Cessna: Resilient edge-computing,” in
Proceedings of the 2018 Workshop on Mobile Edge
Communications, 2018, pp. 1–6.

[21] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Bea-
ufays, S. Augenstein, H. Eichner, C. Kiddon, and D.
Ramage, “Federated learning for mobile keyboard pre-
diction,” arXiv preprint arXiv:1811.03604, 2018.

[22] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon,
“IONN: Incremental offloading of neural network com-
putations from mobile devices to edge servers,” in
ACM Symposium on Cloud Computing (SOCC), 2018,
pp. 401–411.

[23] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F.
Bronzino, “Scalability and performance evaluation of
edge cloud systems for latency constrained applica-
tions,” in ACM/IEEE Symposium on Edge Computing
(SEC), 2018, pp. 286–299.

15

https://doi.org/10.1109/MC.2017.9


[24] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu,
“F-cooper: Feature based cooperative perception for
autonomous vehicle edge computing system using 3d
point clouds,” in 4th ACM/IEEE Symposium on Edge
Computing (SEC 2019), 2019, pp. 88–100.

[25] W. Y. Lim, N. C. Luong, D. Hoang, Y. Jiao, Y.-C.
Liang, Q. Yang, D. Niyato, and C. Miao, “Federated
learning in mobile edge networks: A comprehensive
survey,” IEEE Communications Surveys & Tutorials,
vol. 22, pp. 2031–2063, 2020.

[26] L. Liu, B. Wu, and W. Shi, “A comparison of com-
munication mechanisms in vehicular edge computing,”
in 3rd {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 20), 2020.

[27] M. Park, K. Bhardwaj, and A. Gavrilovska, “Toward
lighter containers for the edge,” in 3rd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge
20), 2020.

[28] T. Pfandzelter and D. Bermbach, “Tinyfaas: A
lightweight faas platform for edge environments,” in
2020 IEEE International Conference on Fog Com-
puting (ICFC), 2020, pp. 17–24. DOI: 10.1109/
ICFC49376.2020.00011.

[29] A. Trivedi, L. Wang, H. Bal, and A. Iosup, “Sharing
and caring of data at the edge,” in 3rd USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge 20),
USENIX Association, Jun. 2020. [Online]. Avail-
able: https://www.usenix.org/conference/
hotedge20/presentation/trivedi.

[30] J. Koch and W. Hao, “An empirical study in edge
computing using aws,” in 2021 IEEE 11th Annual
Computing and Communication Workshop and Confer-
ence (CCWC), 2021, pp. 0542–0549. DOI: 10.1109/
CCWC51732.2021.9376039.

[31] Amazon, Amazon s3, https://aws.amazon.com/
blogs/aws/amazon- s3- update- strong- read-
after-write-consistency/, Accessed 05-5-2021.

[32] ——, AWS local zones, https : / / aws . amazon .
com / about - aws / global - infrastructure /
localzones/, Accessed 05-5-2021.

[33] ——, AWS outposts, https://aws.amazon.com/
outposts/, Accessed 12-5-2020.

[34] ——, Lambda@edge, https://aws.amazon.com/
lambda/edge/, Accessed 05-5-2021.

[35] M. Azure, Microsoft azure, https : / / docs .
microsoft . com / en - us / azure / networking /
azure-network-latency, Accessed 05-10-2021.

[36] S. Barua, Flood of data will get generated in au-
tonomous cars, https://autotechreview.com/
features / flood - of - data - will - get -
generated-in-autonomous-cars/, Accessed 05-
4-2021.

[37] P. Buffers, Protocol buffers, https://developers.
google.com/protocol- buffers, Accessed 5-10-
2021.

[38] Cloudflare, Cloudfare workers kv, https : / / www .
cloudflare . com / products / workers - kv/, Ac-
cessed 12-5-2020.

[39] Y. R.-T. O. Detection, https : / / pjreddie . com /
darknet/yolo/, Accessed 05-10-2021.

[40] Google, Google nest, https://store.google.com/
us/category/connected_home?, Accessed 05-5-
2021.

[41] gRPC, Grpc, https://grpc.io/, Accessed 5-10-
2021.

[42] Kubernetes, Kubernetes, https://kubernetes.io/,
Accessed 12-5-2020.

[43] Microsoft, Azure iot edge, https : / / azure .
microsoft.com/en- us/services/iot- edge/,
Accessed 05-5-2021.

[44] MobiledgeX, Mobiledgex edge-cloud, https : / /
mobiledgex.com/product, Accessed 12-5-2020.

[45] Mutable, Mutable, https://mutable.io/cloud,
Accessed 05-4-2021.

[46] OpenFaaS, Openfaas, https : / / www . openfaas .
com/, Accessed 12-5-2020.

[47] PyTorch, https://pytorch.org/, Accessed 05-10-
2021.

[48] K. Varda, Introducing cloudflare workers: Run
javascript service workers at the edge, https://blog.
cloudflare . com / introducing - cloudflare -
workers/, Accessed 12-5-2020.

[49] ZeroMQ, Zeromq, https://zeromq.org/, Accessed
05-5-2021.

16

https://doi.org/10.1109/ICFC49376.2020.00011
https://doi.org/10.1109/ICFC49376.2020.00011
https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://doi.org/10.1109/CCWC51732.2021.9376039
https://doi.org/10.1109/CCWC51732.2021.9376039
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
%20https://aws.amazon.com/outposts/
%20https://aws.amazon.com/outposts/
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
%20https://autotechreview.com/features/flood-of-data-will-get-generated-in-autonomous-cars/
%20https://autotechreview.com/features/flood-of-data-will-get-generated-in-autonomous-cars/
%20https://autotechreview.com/features/flood-of-data-will-get-generated-in-autonomous-cars/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.cloudflare.com/products/workers-kv/
https://www.cloudflare.com/products/workers-kv/
%20https://pjreddie.com/darknet/yolo/
%20https://pjreddie.com/darknet/yolo/
https://store.google.com/us/category/connected_home?
https://store.google.com/us/category/connected_home?
https://grpc.io/
%20https://kubernetes.io/
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://mobiledgex.com/product
https://mobiledgex.com/product
%20https://mutable.io/cloud
https://www.openfaas.com/
https://www.openfaas.com/
%20https://pytorch.org/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://zeromq.org/

	Sig_Page.pdf
	Vertex.pdf
	Introduction
	Motivation
	Definitions
	The Significance of Edge Computing
	Edge Properties for Vertex
	The Expected vs. The Reality
	Requirements For Edge Applications
	Limitations of Current Offerings


	Design
	Service Model
	High-level Abstractions
	Core Primitives

	Deployment
	Fault-tolerance

	Shared Data
	Requirements
	Fine-Grained
	Linearizability
	Eventual Consistency
	Fault Tolerance

	Coarse-Grained
	Serializability

	Interface and Implementation

	Communication
	Requirements
	Location-Agnostic Patterns
	High Efficiency and Minimal Overhead
	Support Mobility

	Communication Models
	Publish-Subscribe Model
	Inter-Edge Data Transfer
	Reliable Delivery

	Implementation
	Internal and External Coordination
	Message Queues

	Interface and Core API
	Subscribe
	Publish
	Get Messages
	Migration


	Evaluation
	Quantitative Evaluations
	Shared Data and Execution Environment
	Communication

	Qualitative Evaluations

	Conclusion


