
Approaching the Issue of Limited Annotation for

Instance Segmentation

Vishnu Doppalapudi

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-82

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-82.html

May 14, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 

 

Approaching the Issue of Limited Annotation for Instance 

Segmentation 

 
by Vishnu Doppalapudi 

 

 

Research Project 

 
Submitted to the Department of Electrical Engineering and Computer Sciences, 

University of California at Berkeley, in partial satisfaction of the requirements for the 

degree of Master of Science, Plan II. 

 

Approval for the Report and Comprehensive Examination: 

 

 

Committee: 

 

 
Professor Trevor Darrell 

Research Advisor 

 

 

(Date) 

 

 

* * * * * * * 

 

 
Professor Joseph Gonzalez 

Second Reader 

 



 

 

(Date) 



Approaching the Issue of Limited Annotation for Instance Segmentation

Copyright 2021
by

Vishnu Doppalapudi



1

Abstract

Approaching the Issue of Limited Annotation for Instance Segmentation

by

Vishnu Doppalapudi

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Instance segmentation is a challenging task. It requires a model to localize each object in
an image pixelwise, and unlike semantic segmentation requires the model to discern between
different instances of objects with the same class label. Recent advances in instance seg-
mentation, especially with deep learning models, are predicated on the availability of large
datasets with high quality annotations. Without large datasets, the state of the art models
with tens of millions of parameters face problems such as overfitting. However, constructing
large labeled datasets is very expensive, and for many real-world applications it is not feasi-
ble. There have been many approaches to tackle this issue. One of these is semi-supervised
instance segmentation, which is the use of abundant box annotations but limited mask anno-
tations to learn an instance segmentation model. Another is few shot instance segmentation,
the use of limited box and mask annotations to learn an instance segmentation model. This
thesis introduces learning techniques for both of these approaches.
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Chapter 1

Introduction

Instance segmentation is a task which requires a model to classify and localize each object
in an image pixelwise. It is used in many applications such as autonomous driving where a
localization more precise than the bounding box obtained from object detection is required.
However, the additional precision in instance localization makes this task even more chal-
lenging. Recent advances in instance segmentation, especially with deep learning models,
are predicated on the availability of large datasets with high quality annotation. Without
large datasets the state of the art models with millions of parameters face problems such
as overfitting. However, constructing large labeled datasets is very expensive and for many
real-world applications it is not feasible.

This thesis introduces learning techniques for instance segmentation which maximize
performance with significantly less annotation than is typically required. When discussing
reducing the amount of annotation for instance segmentation models, it is important to
first understand that there are two types of annotation for each object, a bounding box
and a pixelwise mask. There are two primary areas of research where we learn instance
segmentation models with significantly less data. The first is few shot instance segmentation,
where the model is given only a few (typically between 1 - 20) box and mask annotations
per class. Chapter 2 outlines my work in this field. The second is semi-supervised instance
segmentation, where the model is given 100% of the available box annotation and significantly
reduced (typically between 0% - 10%) of mask annotation. Chapter 3 will outline my work
in this field.
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Chapter 2

Few Shot Instance Segmentation

2.1 Introduction

The goal of few shot instance segmentation (FSIS) is to learn to predict instance-level seg-
mentation masks for a set of target classes given only a few box and mask annotations for the
target classes and abundant box and mask annotation for a larger set of unrelated classes.
This is an important problem because annotating the amount of data required to train a deep
learning model such as Mask R-CNN [4] to accurately predict instance-level segmentation
masks is very expensive. For many potential applications such as medical imaging, annotat-
ing the required amount of data is simply not feasible [9]. However, achieving the goal of
FSIS with deep learning models like Mask R-CNN is very challenging. Unlike humans, who
can generalize to unseen examples given only a few examples, deep learning models struggle
to learn generalizable features when trained with a few examples and overfit to the examples
they are trained with.

2.2 Related Work

That being said, FSIS models are largely based on Mask R-CNN. This model takes as input
the image to segment. It first uses a large backbone network such as ResNet-50 [3], along
with a Feature Pyramid Network (FPN) [5], to learn features from the input image. These
features are then inputted into a region proposal network (RPN) to determine the probability
that predefined anchor boxes contain an object. These anchor boxes and the predicted scores
are then used to predict final detections and segmentation masks.

Due to the complexity of instance segmentation, FSIS is a very under-explored problem.
The three prior works of note in this field are Siamese Mask R-CNN [7], Meta R-CNN [11],
and Fully Guided Networks [1]. These are all meta-learning based methods and all follow
the same fundamental approach. They have two inputs, one being the image to segment and
the other being cropped instances of objects of the class they want to segment. For example,
to segment cars the second input would be cropped instances of cars. As one can see, the
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function these models aim to approximate is very complex. The differences between each
individual approach are fairly simple: Siamese Mask R-CNN has a unique backbone for each
of the inputs and does not have a fine-tuning stage, Meta R-CNN uses the features from the
cropped instances to guide the model prediction only at the RPN stage, and Fully Guided
Networks uses the features from the cropped instances to guide the RPN, the detection
head, and the segmentation head of the network. I hypothesize that the lack of fine-tuning
in Siamese Mask R-CNN prevents its performance from scaling well with additional data.

Few shot object detection (FSOD) is a more widely explored problem where the model
only predicts a bounding box for each object rather than a pixelwise mask, as it does for
FSIS. Many methods of FSOD follow the same approach as the previous approaches for
FSIS. However, unlike these previous approaches, [10] propose an approach for FSOD that
is rooted in transfer learning instead of meta learning. This method uses the Faster R-CNN
architecture [8] and first trains a model, denoted the ”base model”, on the abundant data that
is available for the base classes. Then, it fine-tunes that model with the limited annotated
data available for the novel classes. This approach performs better than the previous meta
learning methods for FSOD, so we seek to adapt it to FSIS.

ShapeProp [13] is the state of the art model for semi-supervised instance segmentation, a
problem in which the model has abundant box and limited mask annotation. The model is
an extension of Mask R-CNN and uses the additional box annotation to learn a saliency map
where salient regions within a detection are activated. These regions are then propagated
with a message passing module to learn the shape activation, which is a prior for the final
mask prediction. Due to the success of this model in semi-supervised instance segmentation
we seek to adapt it to FSIS.

2.3 My Approach

Due to the success of the aforementioned transfer learning method over previous methods
of FSOD, I apply that transfer learning method to FSIS. I first train a base model with the
abundant data in the base classes, then I fine tune this base model on the limited data I have
for the novel classes. During the fine-tuning phase, I update the parameters of a variable
number of layers based on the number of examples available for each class. I use the Mask
R-CNN and ShapeProp models for my experiments, and as discussed below I make further
improvements to both models to adapt them to FSIS.

2.3.1 Unfreezing Layers

The more layers that are unfrozen during fine-tuning the more parameters in the model
are updated. Typically updating a large number of parameters is desirable, as much of
the success of deep learning methods is from the use of overparameterized models with
large datasets [12]. However, when the dataset is small, as is the case for the dataset of
novel examples (i.e. novel set) in FSIS, updating a large number of parameters is known
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to cause overfitting. As a result, when only a few number of examples (i.e. shots) are
available per class we only update the parameters of the last layer of the model. As the
number of shots increases, the number of layers for which we update the parameters can be
increased. For different numbers of shots, the number of layers to unfreeze can be treated as
a hyperparameter and the optimal number can be found by performing a basic grid search.

2.3.2 Proposal Sampling

Empirically, I found that fine-tuning without additional improvements performs well on some
novel classes and poorly on others. The poor performance on these other classes is due to
the inability of the model to detect instances of these classes. This is despite the RPN being
able to detect some of these instances and classify them as objects. This suggests that the
issue is that the classification head is unable to classify these instances correctly, and this
is likely caused by the significant class imbalance present in traditional R-CNN models. In
the original setup I train the classification head with all available foreground proposals, or
proposals that have been matched to a ground truth class, from the RPN (typically less than
20) and more than 450 background proposals, or proposals that have not been matched to
a ground truth class. This severe class imbalance makes it easy for the model to misclassify
instances from more difficult classes as background rather than foreground. To mitigate
this issue I randomly sample a reduced number of background proposals such that there
is less than 200 background proposals per image. This reduces the class imbalance issue
considerably and allows the model to correctly detect many more difficult classes. Although
this significantly reduces the number of false negatives, as shown in Figure 2.1, the number
of false positives increases slightly, as shown in Figure 2.2. There is a tradeoff between
the number of false positives and false negatives. For larger numbers of sampled negative
proposals the number of false negatives goes up and the number of false positives go down,
whereas for smaller values of sampled negative proposals the number of false negatives goes
down and the number of false positives goes up. The optimal number of negative proposals
can be found through a grid search.
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Figure 2.1: Examples of Mask RCNN with and without negative proposal sampling in the
20 shot FSIS setting

Figure 2.2: Examples showing the increase in false positives for ShapeProp with and without
negative proposal sampling

2.3.3 Proposal Relocation

For low shot models, the detections used for mask prediction often fail to localize the instance
properly, either being too big or too small. Although mask performance suffers in both cases,
it especially suffers in the latter case because the mask prediction is constrained to be within
the detection, and if the detection is too small the mask prediction will be forced to miss some
areas of the target object. To mitigate this issue, I propose to use the ShapeProp module
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Figure 2.3: Adjustments made to ShapeProp module for Proposal Relocation

to jointly optimize the box and mask predictions by relocating the box prediction. I achieve
this by first scaling the width and height of each box by a constant factor. Then, using a
predetermined threshold, I identified a sub-region within the shape activation that contains
the object. After this region is located, I use interpolation to recover a new detection and
shape activation. I call this Proposal Relocation, and it is illustrated in Figure 2.3. Because
proposal relocation does not require the addition of any new parameters, it does not require
training a new model. Rather, it can be used with a model checkpoint from the original
approach and be added during inference.

2.3.4 Class Agnostic Saliency

In the original ShapeProp model the predicted saliency was class specific and it assumed a
large amount of box annotation for supervision during training. However, in the few shot
setting there are not nearly as many box annotations for the novel classes, so I instead propose
to learn a class agnostic saliency. Suppose there are N novel classes and K examples per
novel class. With class-specific saliency there are K examples to learn the correct saliency
for that class. However, for the class agnostic case, all the base annotation and the N ∗K
boxes from the novel classes are available to learn the saliency. Although this approach may
prevent the saliency from capturing some of the fine features of each individual class, a class
agnostic saliency would better capture the coarse features of the target instance which could
then be iteratively refined by the shape activation and final mask prediction to capture the
fine features of target instances of novel classes.
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2.4 Experiments

For the experiments I used the MS COCO [6] and LVIS [2] datasets. Since the MS COCO
dataset is not itself a few shot dataset I manually selected 20 of its 80 categories, randomly
selected K examples for each of these classes (novel classes), and discarded the rest to create
a few shot dataset. This poses an additional yet realistic challenge because many instances
of the novel classes are left without annotation when training the model. This missing
annotation would further incline the model to classify these instances as background rather
than foreground. I use mean average precision (mAP) as the quantitative metric to assess
the performance of each method. I refer to FS + MRCNN as the fine tuning approach
applied to Mask RCNN and FS + SP as the fine tuning approach applied to ShapeProp.
Further, CAS refers to Class Agnostic Saliency, PR refers to Proposal Relocation, and NPS
refers to Negative Proposal Sampling.

2.4.1 1 shot

Method Novel Box AP Novel Segm AP
Meta R-CNN – –

Siamese Mask R-CNN 5.309 3.899
FS + MRCNN (mine) 2.397 2.767

FS + MRCNN + NPS (mine) 3.323 3.667
FS + SP (mine) 2.116 2.743

FS + SP + NPS (mine) 2.795 3.459
FS + SP + PR (mine) 3.019 3.273

FS + SP + PR + NPS (mine) 3.653 3.729
FS + SP + CAS (mine) 2.429 3.113

FS + SP + CAS + NPS (mine) 3.001 3.714
FS + SP + CAS + NPS + PR (mine) 3.706 3.933

Table 2.1: 1 shot FSIS results

Table 2.1 summarizes the results of the experiments in the 1 shot setting. Although Shape-
Prop on its own achieves a very similar segmentation AP as Mask R-CNN, the additions of
class agnostic saliency, proposal relocation, and negative proposal sampling improve perfor-
mance considerably and outperforms Mask R-CNN in both box and segmentation AP. Figure
2.4 shows qualitative examples of Mask R-CNN, ShapeProp, and ShapeProp w/ Proposal
Relocation and demonstrates how Proposal Relocation improves performance in the 1 shot
setting. However, despite the gains achieved with proposal relocation, my best-performing
method of ShapeProp with Class Agnostic Saliency, Proposal Relocation, and Negative Pro-
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Figure 2.4: Examples of Mask RCNN, ShapeProp, and ShapeProp w/ Proposal Relocation
in the 1 shot FSIS setting

posal Sampling does not achieve significantly higher segmentation AP than the baseline of
Siamese Mask-RCNN and achieves a lower box AP.

2.4.2 5 shot

Method Novel Box AP Novel Segm AP
Meta R-CNN 3.5 2.8

Siamese Mask R-CNN 5.436 4.06
FS + MRCNN (mine) 6.722 6.945

FS + MRCNN + NPS (mine) 7.25 7.489
FS + SP (mine) 5.985 6.867

FS + SP + CAS (mine) 5.806 6.527
FS + SP + PR (mine) 6.881 7.128

FS + SP + NPS (mine) 6.437 7.416
FS + SP + NPS + PR (mine) 7.701 7.879

Table 2.2: 5 shot FSIS results

Table 2.2 summarizes the results in the 5 shot setting. As in the 1 shot setting, FS + Shape-
Prop achieves a similar segmentation AP for the novel classes as FS + Mask R-CNN, both
with and without negative proposal sampling, and with the addition of Proposal Relocation
the box and segmentation AP achieved by ShapeProp exceeds that of Mask R-CNN. Class
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Figure 2.5: How the performance of the class specific vs class agnostic saliency varies from
the 1 shot to the 5 shot settings

agnostic saliency does not improve performance in this setting, which implies that 5 boxes
are enough supervision for the ShapeProp module to learn fine image features with a class
specific saliency which convey more information than the improved coarse features present
with a class agnostic saliency. This can be seen in Figure 2.5, as the quality of the class
specific saliency improves considerably from 1 to 5 shots. As in the 1 shot setting, negative
proposal sampling provides a significant boost in performance by reducing the number of
false negatives, and Figure 2.1 shows some examples of this from the MS COCO validation
set. It can also be seen that in the 5 shot setting my method significantly outperforms both
baselines of Siamese Mask R-CNN and Meta R-CNN.
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2.4.3 10shot

Method Novel Box AP Novel Segm AP
Meta R-CNN 5.6 4.4

Siamese Mask R-CNN 5.492 4.076
FS + MRCNN (mine) 8.37 8.318

FS + MRCNN + NPS (mine) 8.809 8.765
FS + SP (mine) 7.634 8.376

FS + SP + CAS (mine) 7.907 8.314
FS + SP + PR (mine) 8.432 8.582

FS + SP + NPS (mine) 8.313 9.175
FS + SP + PR + NPS (mine) 9.318 9.324

Table 2.3: 10 shot FSIS results

Table 2.3 summarizes the results in the 10 shot setting. The findings from these results are
the same as those of the 5 shot setting except that my best performing method of ShapeProp
with Proposal Relocation and Negative Proposal Sampling outperforms the baselines even
more.

2.4.4 20 shot

Method Novel Box AP Novel Segm AP
Meta R-CNN 6.2 6.4

Siamese Mask R-CNN 5.509 4.094
FS + MRCNN (mine) 9.669 9.437

FS + MRCNN + NPS (mine) 10.732 10.365
FS + SP (mine) 9.232 9.911

FS + SP + CAS (mine) 9.161 9.514
FS + SP + PR (mine) 10.0 10.123

FS + SP + NPS (mine) 9.95 10.827
FS + SP + NPS + PR (mine) 11.18 11.155

Table 2.4: 20 shot FSIS results

Table 2.4 summarizes the results in the 20 shot setting. The findings from these results
are the same as those of the 5 and 10 shot settings, except in this setting FS + ShapeProp
achieves a higher segmentation AP for the novel classes than FS + Mask R-CNN, which is
likely due to the improved quality of the shape activation resulting from increased annotation.
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2.4.5 LVIS

Method Novel Segm AP Novel Box AP
Mask R-CNN 19.917 20.181

ShapeProp 21.478 20.542
ShapeProp + PR (mine) 21.526 21.12

Table 2.5: Overall LVIS Results

Method Novel Segm APr Novel Segm APc Novel Segm APf
Mask R-CNN 7.814 18.218 27.134

ShapeProp 9.91 19.443 28.833
ShapeProp + PR (mine) 9.837 19.631 28.779

Table 2.6: LVIS segmentation results broken down by class frequency

Method Novel Box APr Novel Box APc Novel Box APf
Mask R-CNN 7.563 17.55 28.665

ShapeProp 9.227 17.964 28.391
ShapeProp + PR (mine) 9.591 18.98 28.575

Table 2.7: LVIS box results broken down by class frequency

In addition to the experiments on the few shot MS COCO dataset, I also evaluated this
method on LVIS, a dataset with a long-tail data distribution. The classes in this dataset
are divided into three subsets based on the number of images they appear in. Rare classes
appear in < 10 images, common classes appear in between 10 − 100 images, and frequent
classes appear in > 100 images. The AP of the model on rare classes is denoted APr,
AP on common classes is denoted APc, and AP on frequent classes is denoted APf. The
challenge this dataset poses is that it has many classes, and as a result of its long-tail
data distribution some classes occur with high frequency and others occur with very low
frequency. Another challenge in this dataset is that as a result of having many classes some
classes are very similar to others, and the model must discern between these very similar
classes (e.g. mandarin orange and clementine). To evaluate my method on this dataset I
train a ShapeProp model without proposal relocation as a baseline and then evaluate the
model with proposal relocation. Because there are many ground truth instances in every
image and thus many foreground proposals I do not include negative proposal sampling.
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As shown in Tables 2.5, 2.6, and 2.7, although proposal relocation does not hurt overall
performance, it does not provide a significant improvement either. I believe this is because
there are many instances in the LVIS dataset that are directly adjacent to each other, and
after resizing the shape activation the model struggles to localize the target instance due to
the presence of many adjacent instances. This can make the model prediction worse, and
some examples of this can be seen in Figure 2.7. However, given the low number of shots for
rare classes many instances have improved box and mask predictions as a result of proposal
relocation, and this can be seen in Figure 2.6.

Figure 2.6: Positive examples of Proposal Relocation in LVIS

Figure 2.7: Negative examples of Proposal Relocation in LVIS. Note that the target instance
in the second example is the smoothie inside the blender, not the blender itself.
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Figure 2.8: Examples from the COCO validation set of ShapeProp w/ NPS and PR as
number of shots increases

2.5 Conclusions

I discussed three approaches to improve model performance: Class Agnostic Saliency (Shape-
Prop Only), Negative Proposal Sampling, and Proposal Relocation (ShapeProp Only). Class
agnostic saliency was successful in improving segmentation AP in the one-shot setting but
as the number of shots increased it’s efficacy decreased. This is likely because the model
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does not require many boxes to encode important fine features in the saliency prediction for
each class. Negative Proposal Sampling was successful in improving segmentation AP for
all numbers of shots, as demonstrated by the quantitative results in Tables 2.1, 2.2, 2.3, and
2.4. Although it did increase the number of false positives, as one would expect when the
number of background proposals used to supervise the box head decreases, it also decreased
the number of false negatives, so much so that there was a substantial improvement in the
box and segmentation AP. These findings can be seen in the Figures 2.2 and 2.1. Proposal
Relocation with the ShapeProp module also led to substantial improvements in both the
box and segmentation AP for all numbers of shots without introducing any additional model
parameters. As I hypothesized, it allowed the model to re-adjust predictions from the box
head that were too small, as can be seen in the examples in Figure 2.4.

It can be concluded that my methods are able to utilize the additional data as the number
of shots increases much more effectively than the meta-learning baselines of Siamese Mask
R-CNN and Meta R-CNN. See Figure 2.8 for some examples from the MS COCO validation
set which show how the model prediction evolves as the number of shots increases. This
table shows that the number of shots necessary to obtain a good quality prediction is highly
dependent on the example. As I hypothesized, Siamese Mask R-CNN was not able to
effectively utilize the additional data available as the number of shots increased because
it did not supervise the model with the additional data from the novel classes. However,
despite its use of fine-tuning, Meta R-CNN performed significantly worse than my methods
in all settings. This suggests that the current meta learning based methods for FSIS are
limited in their representational capacity.
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Chapter 3

Semi-supervised Instance
Segmentation

3.1 Introduction

From the results in the previous setting I hypothesize that the limiting factor in performance
was the detector. Although some segmentation masks are low quality, particularly in the one-
shot setting, as the number of shots increases the model is able to learn very accurate masks
given an accurate detection. From this hypothesis a natural question arises: can accurate
segmentation masks be predicted given abundant box and limited mask annotation? This
is a question of importance for commercial applications, as box annotation is much cheaper
to obtain than mask annotation. To explore this question and see how the techniques
I introduced in the previous chapter can impact performance, I experimented with two
settings: the traditional semi-supervised setting, where mask annotations are available for
only a fraction of all box annotations for every class, and the zero shot transfer learning
setting, where abundant box and mask annotations are available for a subset of classes and
abundant box and 0 mask annotations are available for the other classes.

3.2 Related Work

The state-of-the-art method for semi-supervised instance segmentation is ShapeProp [13].
For the zero shot transfer learning setting it is able to achieve within 10% of the fully-
supervised oracle’s performance. For the traditional semi-supervised setting it is able to
consistently achieve a higher segmentation AP than the baseline of Mask R-CNN for several
possible fractions of mask annotation that have been made available to the model.
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3.3 My Approach

As abundant box annotation is available in this setting there is no longer a need for negative
proposal sampling, as its objective was to make the model more sensitive to instances of
difficult-to-detect classes where there were few region proposals matched to these objects.
Proposal relocation on the other hand may still be effective, so I introduce it exactly as
discussed in the previous section on FSIS to see how effective it is in this setting.

3.4 Experiments

3.4.1 Zero Shot Transfer Learning Setting

Method Non-VOC Box AP Non-VOC Segm AP VOC Box AP VOC Segm AP
ShapeProp 35.635 34.722 41.791 34.521

ShapeProp w/ PR 35.881 34.808 41.929 34.598

Table 3.1: Non VOC → VOC Results

Method VOC Box AP VOC Segm AP Non-VOC Box AP Non-VOC Segm AP
ShapeProp 43.419 39.577 35.308 31.258

ShapeProp w/ PR 43.85 39.713 35.488 31.268

Table 3.2: VOC → Non VOC Results

I ran experiments in two zero shot transfer learning settings with the COCO dataset. In
the first, there is abundant box and mask annotations for a subset of 60 classes known as
the non-voc classes and abundant box and zero mask annotation for the other 20 classes,
known as the voc classes. I denote this setting as non-voc → voc. In the second, there is
abundant box and mask annotations for the 20 voc classes and abundant box and zero mask
annotations for the 60 non-voc classes. I denote this setting as voc → non-voc. Table 3.1
shows the results for the non voc → voc setting, and Table 3.2 shows the results for the
voc → non voc setting. In both settings proposal relocation does not produce a significant
improvement in performance. This is likely the case for two reasons. The first is that when
there is abundant box annotation for all classes box predictions become very accurate and
thus additional relocation can only improve performance slightly. The second is that when
there is zero mask annotation the shape activation, which is used for proposal relocation,
becomes significantly less accurate. This reduces the efficacy of relocation, as relocation uses



CHAPTER 3. SEMI-SUPERVISED INSTANCE SEGMENTATION 17

Figure 3.1: On the left is the mask prediction without proposal relocation and on the right
is the prediction with proposal relocation.

the shape activation to relocate the detection. This is illustrated in Figure 3.1, where the
original box prediction covers the whole object but the shape activation is of poor quality
and thus proposal relocation is ineffective.

3.4.2 Traditional Semi-Supervised Instance Segmentation

Method Percent of Mask Annotations Box AP Segm AP
ShapeProp 1% 36.727 31.018

ShapeProp w/ PR 1% 36.691 31.044
ShapeProp 2% 35.998 31.414

ShapeProp w/ PR 2% 36.201 31.47
ShapeProp 10% 35.323 32.603

ShapeProp w/ PR 10% 35.607 32.705

Table 3.3: Results for traditional semi-supervised experiments

For the traditional semi-supervised setting, I ran experiments where 1%, 2%, and 10% of
box annotations had a corresponding mask annotation. The results for these experiments
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can be seen in Table 3.3. The improvement in performance in this setting is slightly more
pronounced than in the zero shot transfer learning setting, likely due to the presence of
mask annotation which made the shape activation accurate enough for effective relocation.
However because the detections were all very accurate due to the abundant box annotation,
proposal relocation still did not produce a significant improvement in performance in this
setting.

3.5 Conclusion

The results of these experiments confirm my hypothesis that the limiting factor for model
performance in FSIS is the detector. The significant improvement in performance in the
zero shot transfer learning setting when compared to FSIS shows that given abundant box
annotation, the model is able to detect instances of the zero shot classes and able to achieve
a significantly higher segmentation AP than the FSIS model despite having zero mask anno-
tations. Another conclusion that can be drawn from the experiments in both the traditional
semi-supervised and zero shot transfer learning settings is that when abundant box annota-
tion is available, proposal relocation does not significantly improve the box and segmentation
AP of the model. The main reason for this is that with abundant box annotation the quality
of the box prediction is very good and does not have much room for improvement. For
the zero shot transfer learning setting the poor quality of the shape activation for zero shot
classes is also a reason for why proposal relocation did not produce a significant improvement
in performance.
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