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Abstract

Fast Secure and Robust Aggregation Learning Frameworks on Distributed and Federated
Setups

by

Beom Jin Lee

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

The plethora of data and increasing computational complexity of deep neural networks have
led to deep learning schemes that require the use of multiple nodes in a cluster setup. Yet,
distributing a computation over multiple machines has two main flaws: (1) it induces a higher
risk of failures and (2) it induces heavy communication costs, which can sometimes outweigh
the computational gains from using distributed learning. We study methods to tackle both
problems by borrowing ideas from sketching and byzantine-worker literature. We show that
our algorithm, SketchedRobustAgg, achieves similar runtime (measured by number of
iterations) as without using sketching, even though the algorithm sends s-dimensional (where
s� d) vectors between worker and parameter server.

At the same time, the plethora of data induces another challenge in privacy. Motivated by
recent work around attacking federated learning schemes that demonstrate keeping training
data on clients’ devices do not provide sufficient privacy, we introduce FastSecAgg. We
show that FastSecAgg, a secure aggregation protocol, is efficient in computation and
communication, and also robust to client dropouts. FastSecAgg achieves significantly
smaller computation cost, while achieving same communication cost asymptotically. We
finally show that FastSecAgg performs well against benchmark federated learning datasets,
even with aggressive quantization and sketching, and furthermore show empirically that it
is possible to control tradeoff between computation/communication complexities and test
accuracies.
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Chapter 1

Introduction

1.1 Background

The plethora of data and increasing computational complexity of deep neural networks have
led to deep learning schemes that require the use of multiple nodes in a cluster setup, and
much of industry-standard deep learning training setups use cluster setups, for example, [32,
47, 48]. A classic way of using distributed learning is to use a parameter-server framework
[35], where k worker nodes run stochastic gradient descent on their mini-batch and send
the gradients to the parameter server, where it then aggregates the gradients (oftentimes by
taking the average). Because we distribute work across multiple workers, this method allows
us to converge to an optimum in fewer iterations.

However, distributing computation over multiple machines has two main flaws: (1) it induces
a higher risk of failures and (2) it incurs high communication costs, which can sometimes
outweigh the computational gains from using distributed learning. In particular, failures can
come from multiple sources including stalled processes, crashed and computational errors,
but worse yet, byzantine attackers trying to compromise the entire system. Indeed, the most
robust system is one that can tolerate even Byzantine failures, which are completely arbitrary
behaviors of some processes. Likewise, heavy communication costs are often incurred from
sending model parameters back and forth between the server and worker nodes.

A recent line of work [57, 19] studied the first problem of risk of failures, and tackles the
problem from two main points of views. The first point of view coming from using l2 distance
between generated gradients [9], and the second using coding theory to ensure robustness
during distributed learning [19, 43]. A number of works also study the second problem,
approaching the problem from quantization [3], sparsity and compression methods [8].

Along with the increasing computational complexity, another issue that arises from the
plethora of data is privacy considerations. In this work, in addition to distributed learning
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setups to improve runtime complexities, we also study the problem of Federated Learning, a
distributed learning paradigm that enables a large number of clients to coordinate with a
central server to learn a shared model while keeping all the training data on clients’ devices.
Federated Learning setups ensure that every client keeps their local data on their own device,
and sends only model updates that are functions of their dataset.

Federated Learning suffers from two similar problems: (1) model parameters can leak
information about clients’ sensitive data and (2) existing aggregation protocols incur high
computation/communication costs. Indeed, recent attacks on Federated Learning demonstrate
that keeping the training data on clients’ devices does not provide sufficient privacy, as the
model parameters shared by clients can leak information about their training data. In fact,
certain neural networks (e.g., generative text models) trained on sensitive data (e.g., private
text messages) can memorize the training data [18]. This makes it possible for an adversary
can launch various types of inversion and inference attacks on the model parameters [23, 45,
24].

A recent line of work around secure aggregation protocols can be used to provide strong privacy
guarantees in FL. At a high level, secure aggregation is a secure multi-party computation
(MPC) protocol that enables the server to compute the sum of clients’ model updates without
learning any information about any client’s individual update [11]. Secure aggregation can be
efficiently composed with differential privacy to further enhance privacy guarantees [11, 26,
55]. Indeed, secure aggregation problem for securely computing the summation has received
significant research attention in the past few years [26].

Sketching, or data dimensionality reduction, is a common technique to quickly reduce the size
of a large-scale optimization problem while preserving the solution space. Sketching has been
widely used in numerical linear algebra and machine learning, and it has led to near-optimal
algorithms for a number of fundamental problems in this area. Typically, one is given a large
data matrix X, and we choose Π, such that ΠX can compress the original matrix X, and
one can perform the same optimization on the smaller matrix ΠX

1.2 Related Works

Byzantine Robustness in Distributed Learning

Byzantine robustness is often guaranteed by using gradient aggregation rules. A classical
method for improving fault tolerance are based on robust statistics, for example, [53] uses
geometric median as the aggregation rule, and [59] establishes statistical error rates for
marginal trimmed mean as the aggregation rule. Another line of work does not use robust
statistics. For example, Krum [9] was proposed as a method of selecting candidates with
minimal local sum of lp distances, and DRACO [19], DETOX uses coding theory to ensure
Byzantine robustness. However, all these works suffer from communication complexity issues
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arising from sending the full model vector between the parameter and worker servers. In this
paper, our proposed algorithm works under the same Byzantine settings, and we use Krum
aggregation rule [9] to ensure Byzantine robustness.

A number of works also improve communication efficiency. A dominant line of work in reducing
communication cost in synchronous distributed stochastic gradient descent either quantize
or sparsify gradients. For example, SignSGD [8] achieve a reduction in communication
cost per iteration by quantizing the gradients to their mantissa, and QSGD [3] achieves a
reduction in communication cost at the expense of a increase in the number of iterations
(with no asymptotic improvement). Another line of work is in sketching the gradients
to lower dimensions. In particular, Ivkin, et al. [28] introduces Sketched-SGD that
sends O(log d)-length gradients where d is the number of model parameters. While [8, 3]
are great improvements, they only reduce communication by a constant factor, where as
Sketched-SGD reduces communication complexity to a log factor.

However, to our knowledge, no work has focused on building algorithms to tackle both the
issue of Byzantine robustness and communication complexity. In our work, we take inspiration
from both literature and use them as black-boxes to build SketchedRobustAgg.

Secure Aggregation in Federated Learning

Bonawitz et al. [11] presented the first secure aggregation protocol SecAgg for FL, wherein
clients use a key exchange protocol to agree on pairwise additive masks to achieve privacy.
SecAgg, in the honest-but-curious setting, can achieve T = αN for any α ∈ (0, 1) and
D = N − T − 1, and provides worst-case dropout resilience against any D users dropping
out. However, SecAgg incurs significant computation cost of O (LN2) at the server. This
limits its scalability to several hundred clients as observed in [12].

Truex et al. [55] uses threshold homomorphic encryption and Xu et al. [58] uses functional
encryption to perform secure aggregation. However, these schemes assume a trusted third
party for key distribution, which typically does not hold in the FL setup.

The scheme by So et al. [50], which we call TurboAgg, uses additive secret sharing for
security combined with erasure codes for dropout tolerance. TurboAgg allows T = D = αN
for any α ∈ (0, 1/2). However, it has two main drawbacks. First, it divides N clients into
N/ logN groups, and each client in a group needs to communicate to every client in the next
group. This results in per client communication cost of O (L logN). Moreover, processing in
groups requires at least logN rounds. Second, it can tolerate only non-adaptive adversaries,
i.e., client corruptions happen before the clients are partitioned into groups. On the other
hand, FastSecAgg results in O (L) communication per client, runs in 3 rounds, and is
robust against an adaptive adversary which can corrupt clients during the protocol execution.
On the other hand, [11] provide strong privacy guarantees, but incur significant computation
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costs. In particular, [11] provides the first secure aggregation protocol for federated learning.
It is a four round interactive protocol, which ensures the privacy by using pairwise random
masks for every pair of clients. However, in the final round while recovering the sum, the
server needs to recover and remove the random mask corresponding to each dropped out
which blows up the computation cost at server.

Recently, Bell et al. [5] proposed an improved version of SecAgg, which we call SecAgg+.
Their key idea is to replace the complete communication graph of SecAgg by a sparse random
graph to reduce the computation and communication costs. FastSecAgg achieves smaller
computation cost than SecAgg+ at the server and the same (orderwise) communication
cost per client as SecAgg+ when L = Ω(N). Moreover, FastSecAgg is robust against
adaptive adversaries, whereas SecAgg+ can mitigate only non-adaptive adversaries where
client corruptions happen before the protocol execution starts. On the other hand, SecAgg+
achieves smaller communication cost in absolute numbers than FastSecAgg.

There are several recent works [40, 27, 49] which consider secure aggregation when a fraction
of clients are Byzantine. Our focus, on the other hand, is on honest-but-curious setting, and
we leave the case of Byzantine clients as a future work.

Sketching

Sketches Πf(X) of some dataset X with respect to some function f is a compression of X
that allow us to compute (or approximately compute) f(X) given only Π(X). In our work,
we compress our gradient vector denoted g into a sketch Π(g) ∈ Rs using Count-Sketch
[15], Subsampled Randomized Hadamard Transform and random uniform projections.

We focus our attention specifically on using popular sketching methods to project our gradients
to a lower dimension. This is a novel approach in that sketching is typically used to project
the data matrix to a lower dimension, but we instead use it on the gradients themselves, and
then recover them at the server/parameter node. We use the well-known Count-Sketch,
Subsampling and Subsampled Randomized Hadamard Transform [56].

Count-Sketch In sketching, our primary interest is in finding the large coordinates (or
”heavy hitter”) of a gradient vector g ∈ Rd. Let us suppose that we want to sketch a
d-dimensional vector x to a s-dimensional vector x′. Then, Count-Sketch is specified
a 2-wise independent hash function h : [d] → [s] and 2-wise independent sign function
g : [d] → {−1,+1}. When we apply it to x, the value at coordinate i of the output, such
that i = 1, . . . , d′ is

∑
j,h(j)=i g(j)xj. Then, Count-Sketch matrix can be represented as

a s× d matrix where j-th column contains a single non-zero entry g(j) in the h(j)-th row.
Importantly, Count-Sketch provides a guarantee that the point query returns an estimate
equal to xi±‖x‖2 /

√
k, and it has been widely adopted in distributed systems due to linearity
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of Count-Sketch (i.e., let Π(g1) and Π(g2) be two sketched gradients, then we can merge
them as Π(g) = Π(g1 + g2) = Π(g1) + Π(g2)).

Random Uniform Projections Subsampling is a subspace embedding where one uni-
formly randomly samples from a data matrix X.

Subsampled Randomized Hadamard Transform (SRHT) SRHT [56] is a fast Johnson-
Lindenstrauss transform, and is a subspace embedding Π ∈ Rm×n such that,

∀x ∈ E, (1− ε) ‖x‖2
2 ≤ ‖Πx‖

2
2 ≤ (1 + ε) ‖x‖2

2

and

Π =
1√
m
SHD

where S uniformly samples rows of HD, H is a Hadamard matrix defined recursively,

Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
and D is a diagonal with uniformly i.i.d. ±1 on the diagonal. We note that HD is an
orthogonal matrix that essentially rotates v, and denote it as R = HD. SRHT is often
viewed as a standard reference point for comparing sketching algorithms. Moreover, for many
applications, random projections with i.i.d. entries perform worse compared to orthogonal
projection. More recently, this observation has also found some theoretical support in limited
contexts. Other works also showed the guaranteed improved performance in accuracy and/or
speed. Consequently, along with computational considerations, these results favor the SRHT
over Gaussian projections.

1.3 Contributions

In this work, we largely consider Sketching to enable Fast and Robust Aggregation schemes
in distributed and federated learning setups. Our contributions are twofold.

1. Distributed Learning: We propose SketchedRobustAgg in this section of the
work. We use ideas from sketching and byzantine-worker literature to address both the
issue of byzantine workers and communication efficiency, by using sketching methods
to decrease the amount of communication required between the server and worker
nodes. We show that our algorithm achieves similar runtime (measured by number of
iterations) as without using sketching, even though the algorithm sends s-dimensional
(where s� d) vectors between worker and parameter server.
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2. Federated Learning: We propose a secure aggregation protocol, FastSecAgg,
that is efficient in terms of computation and communication, and robust to client
dropouts. The main building block of FastSecAgg is a novel multi-secret sharing
scheme, FastShare, based on the Fast Fourier Transform (FFT), which may be of
independent interest. Like SketchedRobustAgg, we add ideas from Sketching to
reduce communication and computation costs at the server. This part of the thesis
pertaining to FastShare and cryptographic analysis of FastSecAgg is largely a
reorganization of [31], and additional discussion around Sketching and additional results
and Federated Learning optimizations are new contributions.
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Chapter 2

Fast Robust Aggregation for
Distributed Learning

2.1 Preliminaries

Problem Setup

In this work, we let ‖·‖ represent the l2 norm of a vector and the operator norm of a matrix,
unless otherwise specified. We denote input data vectors using bolded x, label vectors as
y and vector of all weights and model parameters as w. We also include a table of all the
common notations in Table 2.1.

Common Notation Meaning

x Training data
y Training labels
w Model parameters
n Number of training data samples
d Dimension of the original model parameters
s Sketched dimension of the model parameters
m Dimension of one training point
P Number of servers
k Number of Byzantine servers

Table 2.1: Common Notations Used
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Distributed Learning

Distributed Training The process of training a neural network from data X is often cast
as empirical risk minimization (ERM) problem, where our objective is:

min
w

1

n

n∑
i=1

`(w; xi)

where xi ∈ Rm represents the ith data point, n is the number of data points, w ∈ Rd

represents the model parameters and `(·; ·) is the loss function.

One way to approximately solve ERM optimization problem is by using stochastic gradient
descent, where we initialize the model at w0 and update according to:

wt+1 ← wt − α∇`(wt; xik)

where α > 0 is the learning rate, and ik ∈ [n] is a random data-point index. To take advantage
of the additional computational power, we often use mini-batch gradient descent, where at
each iteration, we select some subset Sk ∈ Rs×m of size s of the data, and update our model
according to:

wt+1 ← wt −
α

m

∑
i∈Sk

∇`(wt; xi)

In the distributed setting, every worker gets access to a unique mini-batch, updates the model
accordingly and send the model parameters to the parameter servers. At the parameter
server, the server often does model averaging, where it takes a global step with:

wGlobal ←
1

P

P∑
i=1

wi

where wi represents the model parameters coming from the ith worker and P represents the
total number of workers.

Byzantine Worker Node We consider the setting where some subset of size k of P worker
nodes are byzantine and act adversarially against the training process. We consider a worker
node to be Byzantine if it does not return the correct gradient updates given its allocated
samples. In fact, it has been shown that mini-batch SGD can fail to converge even with the
presence of a single adversarial node.

More specifically, suppose that in iteration i, we sample correct vectors {vij : j ∈ [P ]} are i.i.d.
samples drawn from random variable G = ∇f(x, ε) where E[G] = g is an unbiased estimator
of the gradient. Then, with Byzantine workers, the vectors received by the parameter server
are as follows,

ṽij =

{
vij if the ith worker is not Byzantine

arbitrary if the ith worker is Byzantine
(2.1)
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We note further that the indices of the Byzantine workers can change (though for simplicity
of proofs, we often omit this assumption), and further, that serve nodes do not know which
workers are Byzantine. Moreover, we assume that these Byzantine workers have full knowledge
of the system, including the aggregation rule and gradients proposed by the workers.

Krum Krum is a popular robust aggregation method using the lp norm between generated
gradients. At any time step t, updates (gt1, . . . , g

t
n) are received at the server. For each gti ,

the n− k − 2 closest updates are chosen to form a set Ci, and their distances are added up
to give S(gti) =

∑
g∈Ci
‖gti − g‖, and Krum chooses the gKrum with lowest score to add to

gt+1
Global = gtGlobal + gKrum.

2.2 Fast Robust Aggregation

In traditional distributed learning paradigms, the main parameter server (main) collects
gradients gi from every worker i then aggregates them using their average. In other words,

gmain =
1

n

n∑
i=1

gi

However, this aggregation rule is not Byzantine-tolerant, and one can show that a single
Byzantine worker can make this rule always select an arbitrary vector U by proposing
gn = 1

n
· U −∑n−1

i=1 gi.

Below, we propose a method using robust aggregation scheme Krum and sketching methods
Sketch.

Algorithm 1 One Update Step

{bi}ni=1 ← Random Batches of Data
Initialize Buffer

for i← 0 n do gi ← One-Machine-Train(bi)
Buffer← Buffer + Sketch(gi)
k ← Krum(Buffer)
gmain ← Unsketch(k)

For simplicity of proof, we consider using SRHT as our primary sketching and unsketching
algorithms in analysis of time complexity below. We assume, also, that s = O(log d), such
that s� d. We note that similar analyses can be carried out for other sketches.

Lemma 2.2.1. The time complexity of Krum(g1, . . . , gn), where g1, . . . , gn ∈ Rd is O(n2(d+
log n))
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Proof. We only provide a sketch of the proof, and defer a more detailed discussion to [9]. For
each gi, the parameter server computes the n squared distances ‖gi − gj‖2 in O(nd) time.
Then the parameter server sorts these distances in O(n log n) time and sums the first n−k−1
values in O(nd) time. Last, we take O(n) time to find the minimum score. Thus, computing
the score of all the gi’s takes O(n2(d+ log n)) time.

Lemma 2.2.2. Time complexity for sketching and unsketching operations with SRHT takes
O(nd log n) time

Corollary 2.2.2.1. Time complexity of the algorithm at the server is O(n log n(n+d)) using
SRHT sketch.

Proof. We assume for simplicity that s = O(log n). We use Lemmas 2.2.1 and 2.2.2 and
concatenate them, since they occur in separate steps.

Notice that our runtime complexity at the server using Sketched-Robust-Aggregation
also outperforms runtime complexity using Krum as runtime complexity of Krum dominates
the construction and sketching operations with SRHT. We remark further that time complexity
can be further improved using Sketched-SGD, as opposed to unsketching and running
normal SGD.

That said, our biggest gain is in communication complexity, where we send only O(s)-length
gradient vectors as opposed to O(d)-length gradient vectors. In fact, we show, experimentally
in section ??, that we can handle even a 50-times reduction without compromising heavily
on the number of iterations to convergence using SRHT and Count-Sketch.

2.3 Byzantine Robustness

In this section, we show that our algorithm above is indeed Byzantine-Robust, by using proof
techniques analogous to [9]. Intuitively, our aggregation rule should output a vector gSRA

that is not far from the real gradient g.

Definition 2.3.1 ((α, f)-Byzantine Resilience). Let α be any angular value in [0, π/2) and f
be an integer in [0, n]. Likewise, let V1, . . . , Vn be some independent and identically distributed
random vectors in Rd such that Vi ∼ G and E[G] = g. Furthermore, let B1, . . . , Bf be
any random vectors in Rd, possibly dependent on the Vi’s. A function F is said to be
(α, f)-Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, the vector

F = F (V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn)

satisfies (i) 〈EF, g〉 ≥ (1− sinα) · ‖g‖2 > 0 and (ii) for r = 2, 3, 4, E ‖F‖r is bounded above
by a linear combination of terms E ‖G‖r1 . . .E ‖G‖rn−1 with r1 + · · ·+ rn−1 = r.
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Definition 2.3.2 (Embedding). An embedding for a set S ∈ Rn with distortion ε is an m×n
matrix Π such that

∀x ∈ S, (1− ε) ‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε) ‖x‖2

Definition 2.3.3 (Subspace Embedding). A subspace embedding is an embedding for a set
S where S is a d-dimensional linear subspace.

Theorem 2.3.1. Let g1, . . . , gn be any independent and identically distributed random d-
dimensional vectors s.t gi ∼ G, with EG = g and E ‖G− g‖2 = dσ2. If 2k + 2 < n, and

η(n, k) =
def

√
2

(
n− k +

k · (n− k − 2) + k2 · (n− k − 1)

n− 2k − 2

)
=

{
O(n) if k = O(n)
O(
√
n) if k = O(1)

then Sketched-Robust-Aggregation is (α, f)-Byzantine resilient where 0 ≤ α < π/2 is
defined by

sinα =
η(n, f) ·

√
d · σ

‖g‖ .

The condition on the norm of the gradient, η(n, f) ·
√
d · σ < ‖g‖, can be satisfied, to

a certain extent, by having the (correct) workers computing their gradient estimates on
mini-batches [13]. Indeed, averaging the gradient estimates over a mini-batch divides the
deviation σ by the squared root of the size of the mini-batch.

Proof. We largely notice that this theorem is the same as that in [9], where Byzantine
robustness of Krum function is proven. Because of our algorithm’s dependence on Krum,
we only have to prove that executing Krum on sketched gradients will result in Byzantine
robustness. Importantly, we notice that proof of Krum, depends on the condition that EG = g
and E ‖G− g‖2 = dσ2. For all the sketches we have chosen, we know that EG = g and
Count-Sketch and SRHT are subspace embeddings of G and satisfy the second constraint.
While random uniform projections do not satisfy the second constraint, in practice, we notice
a good rate of convergence despite adversarial workers.

2.4 Experiments for SketchedRobustAgg

Experiment Setup

Bit-flipping Attacks We show Byzantine-robustness by following recent literature like
[57] and consider bit-flipping and label-flipping attacks. The bits that control the sign of
the floating numbers are flipped, e.g., due to some hardware failure. A faulty worker pushes
the negative gradient instead of the true gradient to the servers. To make the failure even
worse, one of the faulty gradients is copied to and overwrites the other faulty gradients, which
means that all the faulty gradients have the same value.
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Label-flipping Attacks When such failures happen, the workers compute the gradients
based on the training data with ”flipped” labels, i.e., any label ∈ {0, . . . , 9} is replaced by 9
label. Such failures/attacks can be caused by data poisoning or software failures.

Datasets Used We conduct experiments on benchmark MNIST and CIFAR-10 image
classification dataset. MNIST and CIFAR-10 consists of 50,000 images for training and 10,000
images for testing. We use the cross-entropy loss function on the training set and accuracy
on the testing set as our main evaluation metrics.

Neural Network Used We use convolutional neural networks (CNN) architectures. Specif-
ically, we use a modified LeNet [34] (431,080 parameters) for the MNIST benchmark and
Resnet-18 for CIFAR-10 benchmark. In each experiment, we launch 10 worker processes with
{0, 1, 2} Byzantine nodes, and repeat each experiment 10 times and take the average. In all
the experiments, we take the learning rate γ = 0.1 and a batch size of 128.

Convergence Rates

Since our goal is to ensure that our algorithm converges at a similar rate as without using
sketching, we compare our methods against the oracle, where we do not use sketching
(converges to normal Krum). We first demonstrate the results and convergence rates for
various sketches and using no sketching. We see that using no sketching produces the best
results, as expected. However, SRHT and Count-Sketch also produces very decent results,
even though it does not converge as quickly. In the graphs below, our sketch size d′ = 10000
(for Count-Sketch, we use a table of 20× 500).

(a) Iteration and Accuracy for No Attacks (b) Iteration and Loss for No Attacks

Figure 2.1: Test Accuracy and Loss Against Number of Iterations for Using No Attacks
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We can expand this further until we see a convergence in the accuracy, and run longer
iterations. When we consider no workers, we find the following number of iterations until
convergence.

Sketching Method Number of Iterations to Convergence Accuracy After 100 Iterations

No Sketching 81 0.94
SRHT 113 0.867

Count-Sketch 118 0.825
Subsampling 176 0.700

Table 2.2: Sketching Methods and Number of Iterations to Convergence using LeNet on
MNIST Dataset

We also consider the same setup using Resnet-18 on CIFAR-10 dataset. When our sketch
size is 50% of the original number of parameters, we find that to achieve a loss of 2.25, we
have the setup as in Table 2.3.

Sketching Method Number of Iterations to Convergence

No Sketching 15
SRHT 74

Count-Sketch 62
Subsampling 234

Table 2.3: Sketching Methods and Number of Iterations to Convergence using Resnet-18 on
CIFAR-10 Dataset

Changing the Size of the Sketch

We consider changing the size of the sketch to see how the size of the sketch affects
the convergence rates under different mechanisms. Specifically, we consider using d′ =
{1000, 10000, 50000}. As expected, increasing the size of the sketches allow for quicker
convergence, but beyond 10000, the number of iterations to convergence changes minimally,
and the savings in cost of running Krum on a lower-dimensional vector will likely compensate.
We include No Sketch as a reference point.
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(a) Iteration and Accuracy Under Different
Sketching Dimensions

(b) Summary of Iteration and Accuracy Under
Different Sketching Dimensions

Figure 2.2: Effect of Changing Sketching Dimensions on Test Accuracy using SketchedRo-
bustAgg
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Chapter 3

Fast Secure Aggregation for
Federated Learning

3.1 Preliminaries

Problem Setup

In Federated Learning, we consider the setup in which we have a fixed set of M clients,
each with their own local dataset. Importantly, these local datasets come from non-i.i.d.
distributions, and the i-th client’s data is sampled from a distribution Di. These workers
then coordinate with the server to jointly train a model.

Then, the federated learning problem can be formalized as minimizing a sum of stochastic
functions defined as

arg min
w∈Rd

{
`(w) =

1

M

M∑
i=1

`i(w)

}
, (3.1)

where `i(w) = Eζ∼Di
[`i(w; ζ)] is the expected loss of the prediction on the i-th client’s data

made with model parameters w.

We assume that each client can compute gi(w) = ∇fi(w; ζ), which is an unbiased stochastic
gradient of fi with variance bounded by σ2.

Federated Averaging

Federated Averaging (FedAvg) is a synchronous update scheme that proceeds in rounds of
communication [37]. At the beginning of each round (also referred to as the iteration), the
server selects a subset C of N clients (for some N ≤M).
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Each of these clients i ∈ C copies the current model parameters wt
i,0 = wt, and performs T

steps of (mini-batch) stochastic gradient descent steps to obtain its local model wt
i,T . Indeed,

each local step k is,
wt
i,k ← wt

i,k−1 − ηlgti,k−1

where gti,k−1 is an unbiased stochastic gradient of `i at wt
i,k−1, and ηl is the local step-size. In

practice, clients can make multiple training passes (called epochs) over its local dataset with
a given step size. Further, typically client datasets are of different size, and the server takes a
weighted average with weight of a client proportional to the size of the dataset [37]. Then,
each client i ∈ C sends their update as

∆wt
i = wt

i,L −wt

At the server, the clients’ updates ∆wt
i are aggregated to form the new server model as

wt+1 = wt +
1

|C|
∑
i∈C

∆wt
i

Our focus is on one iteration of FedAvg and we omit the explicit dependence on the iteration
t hereafter. We assume that each client potentially compresses and suitably quantizes its
model update ∆wt

i ∈ Rd to obtain ui ∈ ZLR, where L ≤ d. In our work, our goal is to design
a protocol that enables the server to securely compute

∑
i∈C ui.

Threat Model

Federated learning can be considered as a multi-party computation consisting of N clients,
each having their own private dataset, and an aggregator (or the server), with the goal of
learning a model using all of the local private datasets. However, there are numerous threat
models that we must consider. In the larger picture, we aim to ensure the privacy of model
updates during the training process under the following threat models. Our objective, then,
is to design a protocol to securely aggregate clients’ model updates such that the joint view
of the server and any set of up to T clients must not leak any information about the other
clients’ model updates, besides what can be inferred from the output of the summation. In
addition, even if a random set of up to D clients drop out during an iteration, the server
with high probability should be able to compute the sum of model updates (of the surviving
clients) while maintaining the privacy.

Honest-but-curious Model The parties honestly follow the protocol, but attempt to
learn about the model updates from other parties by using the messages exchanged during
the execution of the protocol. The honest-but-curious (semi-honest) adversarial model
is commonly used in the field of secure MPC, including prior works on secure federated
learning [11, 55, 50].
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Colluding parties In every iteration of federated averaging, the server first samples a set
C of clients. The server may collude with any set of up to T clients from C. We let T be the
privacy threshold. The server can view the internal state and all the messages received/sent
by the clients with whom it colludes. We refer to the internal state along with the messages
received/sent by colluding parties (including the server) as their joint view. (see Sec. 3.4 for
details)

Dropouts A random subset of up to D clients may drop out at any point of time during
the execution of secure aggregation. We let D be the dropout tolerance.

Cryptographic Primitives

Key Agreement

A key agreement protocol consists of three algorithms (KA.param, KA.gen, KA.agree).
Given a security parameter λ, the parameter generation algorithm pp ← KA.param(λ)
generates some public parameters, over which the protocol will be parameterized. The
key generation algorithm allows a client i to generate a private-public key pair (pki, ski)←
KA.gen(pp). The key agreement procedure allows clients i and j to obtain a private shared
key ki,j ← KA.agree(ski, pkj). Correctness requires that, for any key pairs generated
by clients i and j (using KA.gen with the same parameters pp), KA.agree(ski, pkj) =
KA.agree(skj, pki). Security requires that there exists a simulator SimKA, which takes as
input an output key sampled uniformly at random and the public key of the other client,
and simulates the messages of the key agreement execution such that the simulated messages
are computationally indistinguishable from the protocol transcript.

Authenticated Encryption

An authenticated encryption allows two parties to communicate with data confidentially
and data integrity. It consists of an encryption algorithm AE.enc that takes as input a
key and a message and outputs a ciphertext, and a decryption algorithm AE.dec that
takes as input a ciphertext and a key and outputs the original plaintext, or a special error
symbol ⊥. For correctness, we require that for all keys ki ∈ {0, 1}λ and all messages m,
AE.dec ((ki,AE.enc(ki,m)) = m. For security, we require semantic security under a chosen
plaintext attack (IND-CPA) and ciphertext integrity (IND-CTXT) [6].

3.2 FastShare: FFT Based Secret Sharing

We present a novel, computationally efficient multi-secret sharing scheme FastShare which
forms the core of our proposed secure aggregation protocol FastSecAgg.
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A multi-secret sharing scheme splits a set of secrets into shares (with one share per client)
such that coalitions of clients up to certain size have no information on the secrets, and
a random1 set of clients of large enough size can jointly reconstruct the secrets from their
shares. In particular, we consider information-theoretic (perfect) security. A secret sharing
scheme is said to be linear if any linear combination of valid share-vectors result in a valid
share-vector of the linear combination applied to the respective secret-vectors. In particular,
the scheme consists of two algorithms, one to generate shares and the other to recover the
secrets, described further in Definition 3.2.1.

Definition 3.2.1 (Multi-secret Sharing). Let Fq be a finite field, and let S, T , D and
N be positive integers such that S + T + D < N ≤ q. A linear multi-secret sharing
scheme over Fq consists of two algorithms Share and Recon. The sharing algorithm
{(i, [s]i)}i∈C ← Share(s, C) is a probabilistic algorithm that takes as input a set of secrets
s ∈ FSq and a set C of N clients (client-IDs), and produces a set of N shares, each in Fq,
where share [s]i is assigned to client i in C. For a set D ⊆ C, the reconstruction algorithm
{s,⊥} ← Recon

(
{(i, [s]i)}i∈C\D

)
takes as input the shares corresponding to C \ D, and

outputs either a set of S field elements s or a special symbol ⊥. The scheme should satisfy
the following requirements.

1. T -Privacy: For all s, s′ ∈ FSq and every P ⊂ C of size at most T , the shares of s and s′

restricted to P are identically distributed.

2. D-Dropout-Resilience: For every s ∈ FSq and any random set D ⊂ C of size at most D,

Recon
(
{(i, [s]i)}i∈C\D

)
= s with probability at least 1− poly(N).

3. Linearity: If {(i, [s1]i)}i∈C and {(i, [s2]i)}i∈C are sharings of s1 and s2, then {(i, a [s1]i +
b [s2]i)}i∈C is a sharing of as1 + bs2 for any a, b ∈ Fq.

Next, we describe FastShare which can achieve a trade-off between S, T , and D for a given
N . We begin with setting up the necessary notation. FastShare leverages the finite-field
Fourier transform and Chinese Remainder Theorem. Towards this end, let {n0, n1} be
co-prime positive integers of the same order, such that n0n1 divides (q − 1). Without loss of
generality, assume that n0 < n1. As a running example, we use n0 = 10, n1 = 13, and q = 131.
We consider N of the form N = n0n1, and choose the field size q as a power of a prime such
that N divides q − 1. By the co-primeness of n0 and n1, applying the Chinese Remainder
Theorem, any number j ∈ {0, · · · , n − 1} can be uniquely represented in a 2-dimensional
(2D) grid as a tuple (a, b) where a = j mod n0 and b = j mod n1.

1Secret sharing [4] and multi-secret sharing [22, 10] schemes conventionally consider worst-case dropouts.
We consider random dropouts to exploit the FL setup.
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zero padding
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Figure 3.1: FastShare to generate shares, and FastRecon to recover the secrets from a
subset of shares.
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1

0



mod 𝑛1

Figure 3.2: Indices assigned to a grid using the Chinese remainder theorem, and sets Z0, Z1,
S, and T . Here, we define n′i = (1− δi)ni for i ∈ {0, 1}. Set S is used for secrets, and sets
Z0 and Z1 are used for zeros, and the remaining locations are used for random masks. Set T
is used in our privacy proof.

FastShare to Generate Shares

The sharing algorithm {(i, [s]i)}i∈C ← FastShare(s, C) is a probabilistic algorithm that
takes as input a set of secrets s ∈ FSq , and a set C of N clients (in the form of client ID), and
produces a set of N shares, each in Fq, where share [s]i is assigned to client i.

At a high level, FastShare consists of two stages. First, it constructs a length-N signal
consisting of the secrets and random masks with zeros placed at carefully chosen locations.
Second, it takes the fast Fourier transform of the signal to generate the shares (see Fig. 3.1).
The shares can be considered as the spectrum of the signal constructed in the first stage.

In particular, the signal is constructed as follows. Given fractions δ0, δ1, α ∈ (0, 1) and
β ∈ (0, 1/2), we define the sets of tuples Z0, Z1, S, and T using the grid representation as
depicted in Fig. 3.2. We round all real numbers to the largest integer no larger than the
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𝑥0 𝑥6 𝑥12 𝑥18 𝑥24

𝑥25 𝑥1 𝑥7 𝑥13 𝑥19

𝑥20 𝑥26 𝑥2 𝑥8 𝑥14

𝑥15 𝑥21 𝑥27 𝑥3 𝑥9

𝑥10 𝑥16 𝑥22 𝑥28 𝑥4

𝑥5 𝑥11 𝑥17 𝑥23 𝑥29

mod 5

𝑋0 𝑋6 𝑋12 𝑋18 𝑋24

𝑋25 𝑋1 𝑋7 𝑋13 𝑋19

𝑋20 𝑋26 𝑋2 𝑋8 𝑋14

𝑋15 𝑋21 𝑋27 𝑋3 𝑋9

𝑋10 𝑋16 𝑋22 𝑋28 𝑋4

𝑋5 𝑋11 𝑋17 𝑋23 𝑋29

mod 5

mod 6 mod 6

Figure 3.3: Example with ` = 4 secrets, and co-prime integers n0 = 5, n1 = 6, yielding
N = n0n1 = 30. Zeros are placed at gray locations, and the secrets at blue locations.
Careful zero padding induces parity checks on the shares in each row and column due to
aliasing, i.e., [X0 + X5 + · · · + X25;X1 + · · · + X26; · · · ;X4 + · · · + X29] = [0, · · · , 0] and
[X0 +X6 + · · ·+X24; · · · ;X5 + · · ·+X29] = [0, · · · , 0]. Any one missing share in a row or
column can be recovered using the parity-check structure. E.g., dropped out red shares can
be recovered by iteratively decoding the missing shares in rows and columns.

number itself. In other words, for some real number x ∈ R, we round x to bxc, and omit the
floor sign for the sake of brevity.

Z0 = {(a, b) : 0 ≤ a ≤ δ0n0 − 1} , (3.2)

Z1 = {(a, b) : 0 ≤ b ≤ δ1n1 − 1} , (3.3)

S = {(a, b) : δ0n0 + α(1− δ0)n0 ≤ a ≤ n0 − 1,

δ1n1 + β(1− δ1)n1 ≤ b ≤ δ1n1 + (1− β)(1− δ1)n1} , (3.4)

T = {(a, b) : δ0n0 ≤ a ≤ δ0n0 + α(1− δ0)n0 − 1,

δ1n1 + (1− β)(1− δ1)n1 ≤ b ≤ n1 − 1} . (3.5)

We place zeros at indices in Z0 and Z1, and secrets at indices S. Each of the remaining
indices is assigned a uniform random mask from Fq (independent of other masks and the
secrets). We use T in our privacy proof. Let x denote the resulting length-N vector, which
we refer to as the signal. (See Fig. 3.3 for a toy example.)

Let ω be a primitive N -th root of unity in Fq. FastShare computes the finite field Fourier
transform X of the signal x generated by ω. We have included Appendix A for a brief
overview of the finite field Fourier transform. The coefficients of X represent shares of s, i.e.,
[s]i = Xi. The details are given in Algorithm 2.
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FastRecon to Reconstruct the Secrets

Let D ⊆ C denote a random subset of size at most D. The reconstruction algorithm
{s,⊥} ← FastRecon

(
{(i, [s]i)}i∈C\D

)
takes as input the shares corresponding to C \D, and

outputs either a set of S field elements s or a special symbol ⊥. At a high level, FastRecon
consists of two stages. First, it iteratively recovers all the missing shares by leveraging a
linear-relationship between the shares (as described next). Second, it takes the inverse Fourier
transform of the shares (i.e., the “spectrum”) to obtain the signal, which contains the secrets
at appropriate locations (see Fig. 3.1).

In particular, if we suppose there is a way to recover the missing shares to obtain X, then,
we can take the inverse Fourier transform of X to obtain x, and read off the secrets from the
indices in S. Indeed, the key ingredient of FastRecon is a computationally efficient iterative
algorithm, rooted in the field of coding theory, to recover the missing shares. Towards this
end, we show that the shares satisfy certain parity-check constraints, which are induced by
the careful placement of zeros in x. (See figure 3.3 for a toy example.)

Lemma 3.2.1. Let {Xj}N−1
j=0 denote the shares produced by the FastShare scheme for

an arbitrary secret s. Then, for each i ∈ {0, 1}, for every c ∈ {0, 1, . . . , N
ni
} and v ∈

{0, 1, . . . , δini − 1}, it holds that

ni−1∑
u=0

ω
−uv N

niXu N
ni

+c = 0. (3.6)

Proof. For i ∈ {0, 1}, for v ∈ {0, 1, . . . , δini − 1}, let us denote x(v)(↓ni) as x circularly

shifted (in advance) by v and then subsampled by ni. That is, x
(v)(↓ni)
j = x(jni+v) mod ni

for

j = 0, 1, . . . , N/ni − 1. Let X(v)(↓ni) denote the DFT of x(v)(↓ni) generated by ωni . Now, from
the aliasing property (A.3), it holds that

X(v)(↓ni)
c =

1

ni

N−1∑
j=0

j mod (N/ni)=c

X
(v)
j , (3.7)

for v = 0, 1, . . . , δini − 1 and c = 0, 1, . . . , N/ni − 1. However, from the circular shift

property (A.4), we have X
(v)
j = ω−vjXj for j = 0, 1, . . . , N − 1. Thus, we have

X(v)(↓ni)
c =

1

ni

N−1∑
j=0

j mod (N/ni)=c

ω−vjXj, (3.8)

for v = 0, 1, . . . , δini − 1, and c = 0, 1, . . . , N/ni − 1. Note that, by construction, x(v)(↓ni) is a
length-(N/ni) zero vector for v = 0, 1, . . . , δini − 1 for each i ∈ {0, 1}. Therefore, X(v)(↓ni)
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is also a length-(N/ni) zero vector for v = 0, 1, . . . , δini − 1 for each i ∈ {0, 1}. Hence,
from (3.8), we get

N−1∑
j=0

j mod (N/ni)=c

ω−vjXj =

ni−1∑
u=0

ω
−v
(
u N

ni
+c
)
Xu N

ni
+c = 0, (3.9)

for v = 0, 1, . . . , δini − 1, and c = 0, 1, . . . , N/ni − 1.

Simplifying the above, we get

ni−1∑
u=0

(
ω
−uv N

ni

)
Xu N

ni
+c = 0 (3.10)

for u = 0, 1, . . . , ni − 1, v = 0, 1, . . . , δini − 1, and c = 0, 1, , . . . , N/ni − 1

When translated in coding theory parlance, the above lemma essentially states that the shares
form a codeword of a product code with Reed-Solomon component codes [36]. In particular,
when the shares are represented on a 2D-grid using the Chinese remainder theorem, each row
(resp. column) forms a codeword of a Reed-Solomon code with block-length n0 (resp. n1) and

dimension (1− δ0)n0 (resp. (1− δ1)n1). In other words, X̄c =
[
Xc X N

ni
+c · · · X(ni−1) N

ni
+c

]
is a codeword of an (ni, (1− δi)ni) Reed-Solomon code for every c = 0, 1, . . . , N/ni − 1. To
see this, observe that when the constraints in (3.6), for a fixed c, are written in a matrix
form, the resulting matrix is a Vandermonde matrix, and it is straightforward to show that
X̄c corresponds to the evaluations of a polynomial of degree (1 − δi)ni − 1 at ω−uN/ni for
u = 0, 1, . . . , ni − 1.

These parity-check constraints on the shares make it possible to iteratively recover missing
shares from each row and column until all the missing shares can be recovered. We present a
toy example for this in Fig. 3.3. It is worth noting that this way of recovering the missing
symbols of a codeword is known in coding theory as an iterative (bounded distance) decoder [44,
30].

In particular, codewords of a Reed-Solomon code with block-length ni and dimension (1−δi)ni
are evaluations of a polynomial of degree at most (1− δi)ni − 1. Therefore, any δi fraction of
erasures can be recovered via polynomial interepolation. Therefore, if a row (resp. column)
has less than δ0n0 (resp. δ1n1) missing shares, then they can be recovered. This process is
repeated for a fixed number if iterations, or until all the missing shares are recovered.

Putting things together, FastRecon first uses an iterative decoder to obtain the missing
shares. If the peeling decoder fails, it outputs ⊥, and declares failure. Otherwise, it takes the
inverse (fast) Fourier transform of X (generated by ω) to obtain x. Finally, it output the
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coordinates of x indexed by S (in the 2D-grid representation) as the secret. The details are
given in Algorithm 2.

Analysis of FastShare

First, we analyze the security and correctness of FastShare in the honest-but-curious
setting. We defer the proofs to B.

Theorem 3.2.2. Given fractions δ0, δ1, α ∈ (0, 1) and β ∈ (0, 1/2), FastShare generates
N shares from S = (1− α)(1− 2β)(1− δ0)(1− δ1)N secrets such that it satisfies

1. T -privacy for T = αβ(1− δ0)(1− δ1)N ,

2. D-dropout resilience for D = (1− (1− δ0)(1− δ1))N
2

, and

3. linearity.

For example, choosing α = 1/2, β = 1/4, δ0 = δ1 = 1/10, yields S = 0.2N , T = 0.1N , and
D = 0.095N .

Lemma 3.2.3. FastShare runs in O (N logN) time

Proof. Constructing the signal takesO (N) time and the Fourier transform can be computed in
O (N logN) time using a Fast Fourier Transform (FFT). FastRecon also runs in O(N logN)
time, when computations are parallelized. Specifically, recovering the missing shares in a
row or column of shares (when arranged in the 2D-grid) can be done in O (n2

i ) = O (N)
complexity by leveraging that rows and columns are Reed-Solomon codewords, which are
evaluations of a degree-(ni− δini− 1) polynomial. Since all rows and columns can be decoded
in parallel, and decoding is carried out for a constant number of iterations, the iterative
decoder runs in O (N) time. The second step is the inverse Fourier transform, which can be
computed in O (N logN) time using an FFT.

Note that in practical federated learning setups, the number of clients typically scales up to
ten thousand [12]. Therefore, in order to gain full parallelism, one needs to have

√
N ≈ 100

processors/cores. In the next section, we present a variant of FastShare that removes the
requirement of parallelism for sufficiently large N . Moreover, this variant also allows us to
achieve a more favorable trade-off between the number of shares, privacy threshold, and
dropout tolerance.
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Figure 3.4: Indices assigned to a grid, and sets Z, S, and T . Here, we define n′0 = (1− δ0)n0.
Set S is used for secrets, Z0 is used for zeros, and the remaining locations are used for random
masks. Set T is used in our privacy proof.

Improving the Performance for Large Number of Clients

FastShare ensures that when the shares are arranged in a 2D-grid using the Chinese
remainder theorem, each row and column satisfies certain parity-check constraints. As we
show next, when N is sufficiently large, it suffices to ensure that only rows (or columns)
satisfy the parity-check constraints. In this case, the FastShare algorithm remains the
same as before except for the placement of secrets, zeros, and random masks changes slightly.

Let q be a power of a prime, and let N be a positive integer such that N divides q − 1.
Let c ≥ 1 be a constant. We consider N of the form N = n0n1 such that n0 = c logN .
Given fractions δ0, α, β ∈ (0, 1), we define the sets of tuples Z0, S, and T using the grid
representation determined by the Chinese remainder theorem, as depicted in Fig. 3.4. We
give the formal definitions below. Note that we round any rational number x to bxc, and
omit the floor sign for the sake of brevity.

Z0 = {(a, b) : 0 ≤ a ≤ δ0n0 − 1} , (3.11)

S = {(a, b) : δ0n0 + α(1− δ0)n0 ≤ a ≤ n0 − 1,

0 ≤ b ≤ (1− β)n1} , (3.12)

T = {(a, b) : δ0n0 ≤ a ≤ δ0n0 + α(1− δ0)n0 − 1,

(1− β)n1 ≤ b ≤ n1 − 1} . (3.13)

We construct the signal by placing zeros at indices in Z0, and secrets at indices in S. Each
of the remaining indices is assigned a uniform random mask from Fq (independent of other
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masks and the secrets). We then take the Fourier transform (generated by a primitive N -th
root of unity in Fq) of the signal to obtain the shares.

Using the same arguments as in the proof of Lemma 3.2.1, it is straightforward to show that,
for every c ∈ {0, . . . , n1 − 1} and v ∈ {0, 1, . . . , δ0n0 − 1}, it holds that

n0−1∑
u=0

ω−uvn1Xun1+c = 0. (3.14)

When translated in coding theory parlance, the above condition states that when the shares
are represented in a 2D-grid using the Chinese remainder theorem, then each row forms a
codeword of a Reed-Solomon code with block-length n0 and dimension (1− δ0)n0.2

FastRecon first recovers the missing shares by decoding each row. If every row has less
than δ0 fraction of erasures, then it recovers all the missing shares. Otherwise, it outputs
⊥, and declares failure. Next, it takes the inverse (fast) Fourier transform of the shares to
obtain the signal. The coordinates of the signal indexed by S (in the 2D-grid representation)
gives the secrets.

Security and Correctness Given fractions δ0, α, β ∈ (0, 1), this variant of FastShare
generates N shares from

S = (1− α)(1− β)(1− δ0)N (3.15)

secrets such that it satisfies T -privacy for

T = αβ(1− δ0)N, (3.16)

D-dropout-resilience for
D = δ0N (3.17)

and linearity. (The proof is similar to Theorem 3.2.2, and is omitted.)

Observe that this variant achieves a better trade-off between S, T , and D. For instance,
choosing δ0 = 1/10, α = 1/2, and β = 1/2, yields S = 0.225N , T = 0.225, and D = 0.1.

Computation Cost In this case, FastShare also has O (N logN) computational cost,
since constructing the signal takes O (N) time and the Fourier transform can be computed in
O (N logN) time using an FFT. FastRecon has O (N logN) computational cost without
requiring any parallelism. In particular, recovering the missing shares in a row (when arranged
in the 2D-grid) can be done in O (n2

0) = O
(
log2N

)
complexity by leveraging that the rows

are Reed-Solomon codewords, which are evaluations of a degree-(n0 − δ0n0 − 1) polynomial.
Since there are O (N/ logN) rows, the decoder to recover the missing shares has O (N logN)
complexity. The second step is the inverse FFT, which also has O (N logN) complexity.

2We note that this variant of FastShare is related to a class of erasure codes called Locally Recoverable
Codes (LRCs) (see [25, 42, 54], and references therein).
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3.3 FastSecAgg Based on FastShare

We present FastSecAgg, a procedure that allows the server to securely compute the
summation of clients’ model updates. We begin with a high-level overview of FastSecAgg
(see Fig. 3.5). Each client generates shares for its length-L input (by breaking it into a
sequence of dL/Se vectors, each of length at most S, and treating each vector as S secrets)
using FastShare, and distributes the shares to N clients. Since all the communication in
FL is mediated by the server, clients encrypt their shares before sending it to the server to
prevent the server from reconstructing the secrets. Each client then decrypts and sums the
shares it receives from other clients (via the server). The linearity property of FastShare
ensures that the sum of shares is a share of the sum of secret vectors (i.e., client inputs).
Each client then sends the sum-share to the server (as a plaintext). The server can then
recover the sum of secrets (i.e., client inputs) with high probability as long as it receives
the shares from a random set of clients of sufficient size. We note that FastSecAgg uses
secret sharing as a primitive in a standard manner, similar to several secure aggregation
protocols [7, 14, 26].

FastSecAgg is a three round interactive protocol. See Fig. 3.5 for a high-level overview,
and Algorithm 3 for the detailed protocol. Recall that the model update for client i ∈ C is
assumed to be ui ∈ ZLR, for some R ≤ q. In practice, this can be achieved by appropriately
quantizing the updates.

Round 0 consists of generating and advertising encryption keys. Specifically, each client i uses
the key agreement protocol to generate a public-private key pair (pki, ski)← KA.gen(pp),
and sends their public key pki to the server. The server waits for at least N − D clients
(denoted as C0 ⊆ C), and forwards the received public keys to clients in C0.

Round 1 consists of generating secret shares for the updates. Each client i partitions their
update ui into dL/Se vectors, u1

i , u2
i , . . ., u

dL/Se
i , such that the last vector has length at most

S and all others have length S. Treating each u`i as S secrets, the client computes N shares
as {(j,

[
u`i
]
j
)}j∈C ← FastShare(u`i , C) for 1 ≤ ` ≤ dL/Se. For simplicity, we denote client

i’s share for client j as shi→j = ([u1
i ]j || [u2

i ]j || · · · || [u
dL/Se
i ]j).

In addition, every client receives the list of public keys from the server. Client i generates
a shared key ki,j ← KA.agree(ski, pkj) for each j ∈ C0 \ {i}, and encrypts shi→j using the
shared key ki,j as ci→j ← AE.enc (ki,j, shi→j). The client then sends all the encrypted shares
{ci→j}j∈C0\{i} to the server.

The server waits for at least N − D clients to respond (denoted as C1 ⊆ C0).
3 Then, the

3For simplicity, we assume that a client does not drop out after initiating communication with the server,
i.e., while sending or receiving messages from the server. The same assumption is also made in [11, 50, 5].
This is not a critical assumption, and the protocol and the analysis can be easily adapted if it does not hold.



CHAPTER 3. FAST SECURE AGGREGATION FOR FEDERATED LEARNING 27

Client Server

Send public keys kpki

Round 0

Round 1

Round 2

Advertise
Keys

Generate
Shares

Reconstruct
the sum

sum shares
Generate

key pair
Generate encryption

〈kpki , kski 〉

Wait for enough clients C0 ⊆ C
Send the list of received

public keys to clients in C0

Send encrypted shares ci→j

Wait for enough clients C1 ⊆ C0
Forward received encrypted

shares to clients in C1

Decrypt the received shares

Compute the sum of shares

Send the sum share shi

Wait for enough clients C2 ⊆ C1
Reconstruct the sum of secrets

Compute shares of ui

using FastShare

Compute encrypted shares ci→j

using the shared key

using FastRecon

Figure 3.5: High-level overview of FastSecAgg protocol.

server sends to each client i ∈ C1, all ciphertexts encrypted for it: {cj→i}j∈C1\{i}.

Round 2 consists of generating sum-shares and reconstructing the approximate sum. Every
surviving client receives the list of encrypted shares from the server. Each client i then
decrypts the ciphertexts cj→i using the shared key kj,i to obtain the shares shj→i, i.e.,
shj→i ← AE.dec(kj,i, cj→i) where kj,i ← KA.agree(skj, pki). Then, each client i computes
the sum (over Fq) of all the shares including its own share as: shi =

∑
j∈C1 shj→i. Each client

i sends the sum-share shi to the server (as a plaintext).

The server waits for at least N − D clients to respond (denoted as C2 ⊆ C1). Let sh`i
denote the `-th coefficient of shi for 1 ≤ ` ≤ dL/Se. The server computes {z`,⊥} ←
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FastRecon
(
{(i, sh`i)}i∈C2

)
, for 1 ≤ ` ≤ dL/Se. If the reconstruction fails (i.e., outputs

⊥) for any `, then the server aborts the current FL iteration and moves to the next one.
Otherwise, it outputs z = [z1 z2 · · · zdL/Se].

3.4 Analysis

Correctness and Security

First we state the correctness of FastSecAgg, which essentially follows from the linearity
and D-dropout tolerance of FastShare.

Theorem 3.4.1 (Correctness). Let {ui}i∈C denote the client inputs for FastSecAgg. If
a random set of at most D clients drop out during the execution of FastSecAgg, i.e.,
|C2| ≥ N −D, then the server does not abort and obtains z =

∑
i∈C1 ui with probability at

least 1− 1/poly N , where the probability is over the randomness in dropouts.

Next, we show that FastSecAgg is secure against the server colluding with up to T clients
in the honest-but-curious setting, irrespective of how and when clients drop out. Specifically,
we prove that the joint view of the server and any set of clients of bounded size does not
reveal any information about the updates of the honest clients, besides what can be inferred
from the output of the summation.

We will consider executions of FastSecAgg where FastShare has privacy threshold T ,
and the underlying cryptographic primitives are instantiated with security parameter λ. We
denote the server (i.e., the aggregator) as A, and the set of of N clients as C. Clients may
drop out (or, abort) at any point during the execution, and we denote with Ci the subset
of the clients that correctly sent their message to the server in round i. Therefore, we have
C ⊇ C0 ⊇ C1 ⊇ C2. For example, the set C0 \ C1 are the clients that abort before sending the
message to the server in Round 1, but after sending the message in Round 0. Let ui ∈ ZLR
denote the model update of client i (i.e., ui the i-th client’s input to the secure aggregation
protocol), and for any subset C ′ ⊆ C, let uC′ = {ui}i∈C′ .

In such a protocol execution, the view of a participant consists of their internal state (including
their update, encryption keys, and randomness) and all messages they received from other
parties. Note that the messages sent by the participant are not included in the view, as they
can be determined using the other elements of their view. If a client drops out (or, aborts),
it stops receiving messages and the view is not extended past the last message received.

Given any subset M ⊂ C, let REALC,T,λM (uC, C0, C1, C2) be a random variable representing
the combined views of all parties in M∪ {A} in an execution of FastSecAgg, where the
randomness is over the internal randomness of all parties, and the randomness in the setup
phase. We show that for any such set M of honest-but-curious clients of size up to T , the
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joint view of M∪ {A} can be simulated given the inputs of the clients in M, and only the
sum of the values of the remaining clients.

Theorem 3.4.2 (Security). There exists a probabilistic polynomial time (PPT) simulator
SIM such that for all C, uC, C0, C1, C2, andM such that M ⊂ C, |M| ≤ T , C ⊇ C0 ⊇ C1 ⊇ C2,
the output of SIM is computationally indistiguishable from the joint view REALC,T,λM of the
server and the corrupted clients M, i.e.,

REALC,T,λM (uC, C0, C1, C2) ≈ SIMC,T,λM (uM, z, C0, C1, C2), (3.18)

where

z =

{∑
i∈C1\M ui if |C1| ≥ N −D,

⊥ otherwise.
(3.19)

The security and correctness of FastSecAgg critically relies on the guarantees provided by
FastShare proved in Theorem 3.2.2. We defer proof of the above theorem to [31].

Computation and Communication Costs

We assume that the addition and multiplication operations in Fq are O (1) each.

Computation Cost at a Client O (max{L,N} logN). Each client’s computation cost
can be broken as (1) computing shares using FastShare which is

O (dL/SeN logN) = O (max{L,N} logN)

(2) encrypting and decrypting shares, which is

O (dL/SeN)

(3) adding the received shares, which is

O (dL/SeN) = O (max{L,N})

Communication Cost at a Client O (max{L,N}). Each client sends and receives N −1
shares (each having dL/Se elements in Fq), resulting in O (dL/SeN) = O (max{L,N})
communication. In addition, each client sends the sum-share consisting of dL/Se elements in
Fq.

Computation Cost at the Server O (max{L,N} logN). The server first recovers
missing sum-shares using FastRecon, each has dL/Se elements in Fq. This results in
O (dL/SeN logN) complexity. The second step is the inverse FFT on N shares, each has of
dL/Se elements in Fq, resulting in O (dL/SeN logN) complexity.
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Communication Cost at the Server O (N max{L,N}). The server communicates N
times of what each client communicates.

1. Computation cost at server is O(N logN) which is the cost of reconstructing the
sum-share (Chapter 3.2.2).

2. Communication cost at server is O (N2) to broadcast each client’s shares to N
other clients.

3. Computation cost at client is O (N logN) which is the cost of generating the shares
(Chapter 3.2.2).

4. Communication cost at client is O (N) to transmit shares and sum-shares.

3.5 FastSecAgg Meets Federated Learning

Using FastSecAgg in the federated learning setup requires extra setup. With FastSecAgg,
after computing the gradient update ∆wt

i ∈ Rd, we clip the coordinates of the gradient, and
restrict it to [−t, t] for some parameter t, and quantize each coordinate to {0, . . . , q− 1} since
we work in Fq. For more practical purposes, we also scale our gradient updates by s (scale
parameter) since most gradient update values are very small, and are not reflected when we
quantize the coordinates to the nearest integer.

However, similarly to our work on Distributed Learning presented in Chapter 2, this setup
still suffers from poor communication efficiency. We note that sketching techniques have
been used to significantly reduce communication costs in Federated Learning setup [2, 16, 51,
29]. Indeed, in practical machine learning problems, accuracy decreases only slightly even if
the model updates are computed approximately. Compressing model updates via sketching
enable us to effectively share the sketched updates. In particular, we have chosen to use
Subsampled Randomized Hadamard Transform, because using SRHT concentrates values
around 0 (see figure 3.6) as a Gaussian, and SRHT helps us with restricting our values to
[−t, t]. Then, the SRHT sketching algorithm computes s = SHDw for some gradient w,
where we let ` = O(poly log d). Since we can choose other sketching algorithms, we let this
operation be Sketch.

We estimate (or unsketch) the sketched vector at the server node by obtaining a d-dimensional
vector from s by substituting zeros at locations not sampled by S, then multiplying it by
(HD)−1 to obtain an estimate of v. We let this operation be Estimate moving forward.

We also note that beyond theoretical guarantees from Johnson-Lindenstrauss Lemma, the
result of unsketching the vectors produce good estimates (see figure 3.7).
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Figure 3.6: Effect of Applying Randomized Hadamard Transform on a Set of Uniform Vectors

Figure 3.7: Effect of Estimating Vector Coordinates After Applying SRHT (80% Sketching).
Left-hand side contains coordinates prior to SRHT, and right-hand side is the result of
applying Estimate on the Sketched vectors

We note that it is indeed possible to use other sketching techniques such as Count-Sketch,
but concentration around zero after Randomized Hadamard Transform ”uniformizes” the
energy of each update makes SRHT a good starting point for applying Sketching techniques
on FastShare.

In addition to Sketching, we also clip gradients and quantize the gradients to the nearest
integer in {0, . . . , q − 1}. The second step is a requirement to run FastShare effectively
on the sketched gradients, since FastShare takes as inputs secrets in Fq. We take the first
step of clipping the gradients to [−t, t] to avoid modular wraparounds. Since we operate in
Fq, when the sum of shares become larger than q, then we will have modulo wraparounds,
where some individual coordinates of the gradients will be incorrectly shared. Works around
parameter pruning [52] suggests that there are only a few parameters in a neural network
that contribute greatly to learning, and these parameters are often the parameters with the
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largest coordinates. When we combine this with that the coordinates most greatly affected
by modulo wraparounds will be the parameters with the largest coordinates, it suggests a
need to clip the gradients to avoid modulo wraparounds. That said, t is a hyperparameter in
our model, because we gain greater precision when t is large, at the cost of wrapping some
coordinates around. We tune t to achieve the best performances possible.

We can then update our high-level overview of FastSecAgg protocol in 3.5 to include
Sketching in 3.8. In the figure we note that sketching has been added in Round 1, where we
generate the shares, and then the unsketching (or estimation) protocol has been added in the
final step after reconstructing the shares.

Figure 3.8: High Level Overview of FastSecAgg Protocol with Sketching.
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3.6 Experiments for FastSecAgg

Datasets Used

In our work, we have used MNIST dataset (sampled non-i.i.d.) and LEAF datasets [17].
In constructing non-i.i.d. partition of the MNIST dataset, we sort the data by digit label
and divided it into 2000 shards of size 30, and assigned each clients 2 shards of the dataset.
LEAF Datasets a suite of open-source benchmark federated datasets for testing machine
learning problems in a practical federated environment. Of the LEAF datasets, we have used
EMNIST and Shakespeare Dataset. EMNIST [20] extends MNIST Dataset to handwritten
letters, and the EMNIST Dataset from LEAF splits the dataset into non-i.i.d. partitions
based on the writer of the digit/character (mean of 226.83 data points per writer). The
Shakespeare Dataset is built from The Complete Works of William Shakespeare, and each
speaking role in each play is considered a separate client. In the Shakespeare Dataset, we
perform next character prediction, and with MNIST and EMNIST datasets, we perform
image classification.

Experimental Setup for FastSecAgg

To train the MNIST dataset, we used a modified LeNet [33]. To train the EMNIST dataset,
we used FLNet [38] using a CNN with two 5 × 5 convolutional layers (each followed by
MaxPool layer), a fully connected layer with 512 units and ReLU activation, and a final
softmax output layer. In training for the Shakespeare Dataset, we used the same LSTM
model used in [17] to replicate their results (two layers with 256 units each, and emits an
output embedding that is scored against all items of the vocabulary via dot product, followed
by a final softmax output layer). We use a sequence length of 80 for the LSTM model.

In the first experiment using EMNIST dataset, we simulated, again N = 2244 clients with
non-i.i.d. partition of the training data across devices, as provided by the LEAF dataset
partition. We selected 50% of the clients per round of communication, and were able to
tolerate up to 10% dropout. To compute a client model update, we used a batch size of 128
training examples for 3 epochs through the client’s data with a learning rate of 0.01, and
momentum parameter 0.9. Each client computed the model update, then we sketched the
number of parameters by a factor of 50%, before quantizing each coordinate to [0, 4] after
scaling it by 1000.

In the second experiment using Shakespeare dataset, we simulated N = 1129 clients with
non-i.i.d. partition of the training data across devices, as provided by the LEAF dataset
partition. We selected 10% of the clients per round of communication, and were able to
tolerate up to 10% dropout. To compute a client model update, we used a batch size of 128
training examples for 3 epochs through the client’s data with a learning rate of 0.01, and
momentum parameter 0.9. Each client computed the model update, then we sketched the
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number of parameters by a factor of 50%, before quantizing each coordinate to [0, 4] after
scaling it by 1000.

In our proof-of-concept experiment with MNIST dataset, we simulated N = 224 clients for
federated learning with a non-i.i.d. partition of the training data across devices. In particular,
we selected 50% of the clients per round of communication, and were able to tolerate up to
10% dropout. To compute a client model update, we used a batch size of 10 training examples
for 3 epochs through the client’s data with a learning rate of 0.01, and momentum parameter
0.9. Each client first computes the model update, then sketched number of parameters (either
50% or no sketching). We furthermore used q = 1001947, clipped to [0, 20] and scaled by
2000.

In all experiments, all clients use the same S and D matrices provided by the server (via
a random seed). This aggressive quantization is chosen to avoid overflows since we chose
FastSecAgg to work over F1123, and computes the addition modulo 1123. We assume a
10% dropout rate with each client dropping out independently. If FastRecon fails, the
server simply moves to the next iteration with the same global model.

3.7 Results

Running FastSecAgg on MNIST, EMNIST and Shakespeare
Datasets Against Oracle

We plot test accuracy of classifying EMNIST against the number of communication rounds
in and predicting the next character using Shakespeare Dataset in Fig. 3.9.

Observe that, even though FastSecAgg uses aggressive subsampling and quantization, and
computes the sum modulo 1123, the drop in accuracy is controllable. We note that the
accuracy achieved by SecAgg is similar, since it also computes the sum over a finite field
requiring aggressive quantization. On the other hand, the computation cost of SecAgg at
the server for 1122 users is larger by several orders of magnitude, making every iteration
significantly slower.

Effect of Changing Sketch Sizes (Proof-of-Concept Using MNIST)

In the plots above, we noticed that there is a divergence between the oracle (not using
FastSecAgg), and using FastSecAgg. We attributed the error to three causes: (1)
Sketching and (2) Quantization and (3) Modulo Wraparounds. To investigate further, we
lowered our aggresive subsampling and quantization thresholds to more reasonable levels,
and tested the effect of sketching.

Below, we have three plots: (1) Oracle - which does not use FastSecAgg, (2) 100% - which
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(a) Plot of Communication Rounds and Test
Accuracy for EMNIST Dataset using

FastSecAgg and Oracle for 2244 clients with
50% selection

(b) Plot of Communication Rounds and Test
Accuracy for Shakespeare Dataset using

FastSecAgg and Oracle for 1129 clients with
10% selection

Figure 3.9: Plot of Communication Rounds and Test Accuracy for EMNIST and Shakespeare
Dataset

uses FastSecAgg without Sketching and (3) 50% - which uses FastSecAgg with 50%
Sketching

Figure 3.10: Plot of Communication Rounds and Test Accuracy for MNIST Dataset using
FastSecAgg and Oracle on different sized sketches
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In figure 3.10, notice that while there still exists a gap between FastSecAgg and the
oracle, even without sketching, we believe the difference can be attributed to quantization
and stochasticity in training. This result shows that we can achieve good tradeoffs between
computation and communication cost, and accuracy.
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Algorithm 2 FastShare Secret Sharing

procedure FastShare(s, C)
parameters: finite field Fq of size q, a primitive root of unity ω in Fq, privacy threshold

T , dropout resilience D
inputs: secret s ∈ FLq , set of N clients C (client-IDs)
initialize: sets Z0, Z1, S as per (3.2), (3.2), (3.4), respectively; an arbitrary bijection

σ : S → {0, 1, . . . , S − 1}
for j = 0 to n− 1 do

if j ∈ Z0 ∪ Z1 then
xj ← 0

else if j ∈ S then
xj ← sσ(j) . si is the i-th coordinate of s

else
xj

$← Fq
end if

end for
X ← FFTω(x)
Output: {(i, [s]i)}i∈C ← {(i,Xi)}N−1

i=0

end procedure

procedure FastRecon({(i, [s]i)}i∈R)
parameters: finite field Fq of size q, a primitive root of unity ω in Fq, privacy threshold

T , dropout resilience D, number of iterations J , bijection σ and set S used in FastShare
input: subset of shares with client-IDs {(i, [s]i)}i∈R
for iterations j = 1 to J do

for rows r = 0 to n1 − 1 in parallel do
if r has fewer than δ0n0 missing shares then

Decode the missing share values by polynomial interpolation
end if

end for
for columns c = 0 to n0 − 1 in parallel do

if c has fewer than δ1n1 missing shares then
Decode the missing share values by polynomial interpolation

end if
end for

end for
if any missing share then

Output: ⊥
else

x← IFFTω(X)
Output: s← X(σ(S))

end if
end procedure=0
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Algorithm 3 FastSecAgg Protocol

• Parties: Clients 1, 2, . . . , N and the server

• Public Parameters: Update length L, input domain ZR, key agreement parameter pp ← KA.param(λ), finite field
Fq for FastShare secret sharing with primitive N -th root of unity ω

• Input: ui ∈ ZL
R (for each client i)

• Output: z ∈ ZL
R (for the server)

• Round 0 (Advertise Keys)
Client i:

– Generate key pairs (pki, ski)← KA.gen(pp)

– Send pki to the server and move to the next round

Server:

– Wait for at least N −D clients to respond (denote this set as C0 ⊆ C); otherwise, abort

– Send to all clients in C0 the list {(i, pki)}i∈C0 , and move to the next round

• Round 1 (Generate shares)
Client i:

– Receive the list {(j, pkj)}j∈C0 from the server; Assert that |C0| ≥ N −D, otherwise abort

– Partition the input ui ∈ ZL
R into dL/Se vectors, u1

i , u2
i , . . ., u

dL/Se
i , such that u

dL/Se
i has length at most S and

all others have length S

– Compute N shares by treating each u`
i as S secrets as {(j,

[
u`
i

]
j
)}j∈C ← FastShare(u`

i , C) for 1 ≤ ` ≤ dL/Se
(by using independent private randomness for each `); Denote client i’s share for client j as shi→j =

( [
u1
i

]
j
||[

u2
i

]
j
|| · · · || [udL/Se

i ]
j

)
– For each client j ∈ C0 \ {i}, compute encrypted share: ci→j ← AE.enc(ki,j , i || j || shi→j), where ki,j =

KA.agree(ski, pkj)

– Send all the ciphertexts {ci→j}j∈C0\{i} to the server by adding the addressing information i, j as metadata

– Store all the messages received and values generated in this round and move to the next round

Server:

– Wait for at least N −D clients to respond (denote this set as C1 ⊆ C0)

– Send to each client i ∈ C1, all ciphertexts encrypted for it: {cj→i}j∈C1\{i}, and move to the next round

• Round 2 (Recover the aggregate update)
Client i:

– Receive from the server the list of ciphertexts {cj→i}j∈C1\{i}
– Decrypt the ciphertext (i′ || j′ || shj→i) ← Dec(ski, cj→i) for each client j ∈ C1 \ {i}, and assert that (i =
i′) ∧ (j = j′)

– Compute the sum of shares over Fq as shi =
∑

j∈C1 shj→i

– Send the share shi to the server

Server:

– Wait for at least N −D clients to respond (denote this set as C2 ⊆ C1)

– Run the reconstruction algorithm to obtain
{
z`,⊥

}
← FastRecon(

{
(i, sh`i)

}
i∈C2

) for 1 ≤ ` ≤ dL/Se, where sh`i

is the `-th coefficient of shi; Denote z = [z1 z2 · · · zdL/Se]

– If the reconstruction algorithm returns ⊥ for any `, then abort

– Output the aggregate result z
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Chapter 4

Conclusion

Our work spans lands of distributed and federated learning, both of which are critical devel-
opments. In these realms, there has been work around security and robustness considerations,
but there is an inevitable tradeoff between runtime and security/robustness. In this work, we
propose SketchedRobustAgg and FastSecAgg as solutions to these problems.

First, we introduce SketchedRobustAgg, a novel algorithm that tackles both the issues of
Byzantine workers and heavy communication complexity. We show that, as long as conditions
in [9] are satisfied, we can achieve Byzantine robustness, while improving our communication
complexity from O(nd) to O(ns) where s� d, and also improving our time complexity at
the server side. On top of these gains, we show empirically that we can compress to less
than 50% of original model parameters while preserving convergence rates to without using
sketching.

Second, we introduce FastSecAgg with additional optimization for sketching. We showed
that FastSecAgg can achieve lower communication and computation costs, compared to
current state-of-the-art secure aggregation schemes, against an adaptive adversary and client
dropouts. FastSecAgg uses FastShare, a novel multi-secret sharing scheme based on
Fast Fourier Transform, which is information-theoretically secure and achieves a trade-off
between the number of secrets, privacy threshold, and dropout tolerance. We additionally
use Sketching to further reduce communication and computation costs, at a small accuracy
tradeoff. Finally, we show that our algorithm performs well against benchmark Federated
Learning datasets, and show empirically that we can compress to 50% of the original model
parameters, while preserving convergence rates. We furthermore show that, if we increase q
and scale our values higher, we can achieve higher accuracies.

As future work, we notice a large connection between the second line of work and differential
privacy [21]. In particular, gradient clipping mechanism we propose has also been used to
construct Differentially-Private Stochastic Gradient Descent (DP-SGD) [1], and by jittering
our gradients with Gaussian noise, we will be able to achieve (ε, δ)-differential privacy.
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Appendix A

Finite Field Fourier Transform

Let q be a power of a prime, and consider a finite field Fq of order q. Let N be a positive
integer such that N divides (q − 1) and ω be a primitive N -th root of unity in Fq.

The discrete Fourier transform (DFT) of length N generated by ω is a mapping from FNq
to FNq . Let x = [x0 x1 . . . xN−1] be a vector over Fq. Then, the DFT of x generated by ω,
denoted as DFTω(x), is the vector over Fq, X = [X0 X1 . . . XN−1], given by

Xj =
N−1∑
i=0

ωijxi, j = 0, 1, . . . , N − 1. (A.1)

The inverse DFT (IDFT), denoted as IDFTω(X), is given by

xi =
1

N

N−1∑
j=0

ω−ijXj, i = 0, 1, . . . , N − 1, (A.2)

where 1
N

denotes the reciprocal of the sum of N ones in the field Fq. We refer to x as the
“time-domain signal” and index i as time, and X as the “frequency-domain signal” or the
“spectrum” and j as frequency.

If a signal is subsampled in the time-domain, its frequency components mix together, i.e.,
alias, in a pattern that depends on the sampling procedure. In particular, let n be a positive
integer that divides N . Let x(↓n) denote the subsampled version of x with period n, i.e.,
x(↓n) = {xni : 0 ≤ i ≤ N/n− 1}. Then, (N/n)-length DFT of x(↓n), X(↓n), (generated by ωn)
is related to the N -length DFT of x, X, (generated by ω) as

X
(↓n)
j =

1

n

N−1∑
i=0

i mod (N/n)=j

Xi, j = 0, 1, . . . ,
N

n
− 1, (A.3)
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where 1/n is the reciprocal of the sum of n ones in Fq.

A circular shift in the time-domain results in a phase shift in the frequency-domain. Given a
signal x, consider its circularly shifted version x(1) defined as x

(1)
i = x(i+1) mod N . Then, the

DFTs of x(1) and x (both generated by ω) are related as X
(1)
j = ω−jXj . In general, a circular

shift of t results in
X

(t)
j = ω−tjXj, j = 0, 1, . . . , N − 1. (A.4)

For more details, we invite the readers to reference [41].
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Appendix B

Analysis of FastShare

We first focus on the correctness, i.e., dropout tolerance. To prove that FastShare has a
dropout tolerance of D, we need to show that FastRecon can recover the secrets from a
random subset of N − D shares. This is equivalent to showing that the iterative peeling
decoder of FastRecon can recover all the shares from a random subset of N −D shares.
Note that the shares generated by FastShare form a codeword of a product code. From
the density evolution analysis of the iterative peeling decoder of product codes in [30, 39], it
follows that, when D ≤ (1− (1− δ0)(1− δ1))N

2
, the decoder recovers all the shares from a

random subset of N −D shares with probability at least 1− polyN . Therefore, FastShare
has the dropout tolerance of D = (1− (1− δ0)(1− δ1))N

2
.

To prove the privacy threshold of T , we consider the information-theoretic equivalent of the
security definition [10]. In particular, we need to show the following: for any P ⊂ C such
that |P| ≤ T , it holds that H (s | {[s]i}i∈P) = H (s), where H denotes the Shannon entropy.
For simplicity, let us denote [s]i = Xi for all i. In the remainder of the proof, we denote
random variables by boldface letters.

First, we show that the information-theoretic security condition is equivalent to a specific
linear algebraic condition. To this end, we first observe that the vector of N shares can be
written as,

X = G

[
s
m

]
, (B.1)

where s ∈ F`q is the vector of secrets, m ∈ FK−`q is a vector with each element chosen
independently and uniformly from Fq, and G is a particular submatrix of the DFT matrix
whose formal definition we defer later on. We then show that information theoretic security
is equivalent to a particular linear algebraic condition on submatrices of G. To prove this
condition we leverage the fact that G is derived from a DFT matrix and consider an alternate
representation based on the Chinese Remainder theorem (CRT). We furnish more details
while formally discussing the lemmas.
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Recall that n0 and n1 are co-prime. By the CRT, we may conclude that any number
j ∈ {0, · · · , N − 1} can be uniquely represented in a 2D-grid as a tuple (a, b) where a = j
mod n0 and b = j mod n1.

First, define the set of indices

S = {(p0, p1) :

δ0n0 + α(1− δ0)n0 ≤ p0 ≤ n0 − 1,

δ1n1 + β(1− δ1)n1 + 1 ≤ p1 ≤ n1 − βn1(1− δ1)}. (B.2)

Similarly, define

Z0 = {(p0, p1) : 0 ≤ p0 ≤ δ0n0 − 1, 0 ≤ p1 ≤ n1 − 1}, (B.3)

Z1 = {(p0, p1) : 0 ≤ p0 ≤ n0 − 1, 0 ≤ p1 ≤ δ1n1 − 1}. (B.4)

For a pictorial representation of these indices, refer to Fig. 3.2. These sets correspond to
points in the grid, and by the CRT map back to integers in the range {0, · · · , N − 1}.

In Chapter 3.2.2, the number of secrets `, is chosen to be equal to (1−α)(1− 2β)(1− δ0)(1−
δ1)n0n1. By design this coincides with the size of S.

With these definition, we next describe the construction of the matrix G is obtained by
starting with the N ×N DFT matrix, removing the columns corresponding to Z0 ∪ Z1, and
permuting the remaining columns so that the columns corresponding to S are ordered as the
first ` columns in S (in arbitrary sequence).

Having defined the matrix G, in the following lemma we show that information theoretic
security can be guaranteed by a particular rank condition satisfied by submatrices of G. In
particular, In addition, define K = N − |Z0 ∪ Z1|.

The proof is similar to Lemma 6 in [46], and thus omitted.

Lemma B.0.1. Let s ∈ F`q, m ∈ Fk−`q , and X = G[s m]T be random variables representing
the secrets, random masks, and shares, respectively. Let XP be an arbitrary set of shares
corresponding to the indices in P ⊂ {1, 2, . . . , N}. Let GP denote the sub-matrix of G
corresponding to the rows indexed by P. Let GP = [G1 G2], where G1 consists of the first `
columns of GP and G2 consists of the last K − ` columns of GP . If m is uniform over FK−`q ,
then it holds that

H (s)−H (s | XP) ≤ rank(GP)− rank(G2). (B.5)

Now, to prove the information-theoretic security, it suffices to prove that for any P of size
at most T = αβ(1 − δ0)(1 − δ1)N , rank(G2) = rank(GP). We prove this by showing that,
for any D with |P| ≤ T , the columns of G1 lie in the span of the columns of G2. Note that
columns of G1 are the columns of the DFT matrix indexed by S.
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Proof of rank(GP) = rank(G2): Assume that {ω∂ : ∂ ∈ P} are the set of primitive elements
generating the rows of GP . For the rest of the proof we are guided by the grid representation
of fig:2D-secrets - the Chinese remainder theorem (CRT) furnishes a representation of
the columns of GP , indexed by {0, · · · , n − 1} as points on a 2D-grid, {(p0, p1) : p0 ∈
{0, · · · , n0 − 1}, p1 ∈ {0, · · · , n1 − 1}}.

Notation: In the grid representation, consider the set of points T in fig:2D-secrets. Formally,

T = {(p0, p1) : δ0n0 ≤ p0 ≤ δ0n0 + α(1− δ0)n0 − 1,

n1 − β(1− δ1)n1 ≤ p1 ≤ n1 − 1}. (B.6)

Define G2(T ) as the matrix G2 only populated by the columns whose indices belong to T .
Henceforth, we use the terminology “points” to refer to a column of GP in its representation
as a tuple in the 2D-grid. Moreover we use the terminology “span” and “rank” of the
points to indicate the span and rank of the corresponding columns. Consider a column
index p ∈ {0, · · · , n − 1} and ∆ ∈ {0, · · · , n − 1} where p 7→ (p0, p1) and ∆ 7→ (∆0,∆1)
under the CRT bijection. Then, the notation (p0, p1) + (∆0,∆1) returns the point ((p0 + ∆0)
mod n0, (p1 + ∆1) mod n1).

Since GP is derived from a DFT matrix, this in fact corresponds to multiplying the column
corresponding to p by the matrix diag((ω∆

∂ : ∂ ∈ P)). The notations (i) p+∆, (ii) p+(∆0,∆1)
are defined analogously. We also use the terminology “shift p horizontally by ∆0” and “shift
p vertically by ∆1” to respectively denote p+ (∆0, 0) and p+ (0,∆1). Given a set of points
P , we overload notation and use P + ∆ as the set of points {p+ ∆ : p ∈ P}.

Observe that P + ∆ corresponds to multiplying the columns indexed by P by a full-rank
matrix. Then, using the structure of GP inherited from the DFT (Vandermonde) matrix
structure, we get the following result immediately.

Lemma B.0.2. If p ∈ span(P) for some set of points P, then for any ∆ ∈ {0, · · · , n− 1},
p+ ∆ ∈ span(P + ∆).

Proof. If p ∈ span(P) this implies that there exists weights {αq : q ∈ P} such that for each
∂ ∈ P , ωp∂ =

∑
q∈P αqω

q
∂. Fixing any ∂ ∈ P , and multiplying both sides by ω∆

∂ ,

ωp+∆
∂ =

∑
q∈P

αqω
q+∆
∂ =

∑
q∈P+∆

α′qω
q
∂. (B.7)

Since this is true for each ∂ ∈ P the proof follows immediately.

By construction of the set, observe that the number of points in T equals αβ(1−δ0)(1−δ1)n0n1.
Moreover, recalling the choice of the privacy threshold T in Chapter 3.2.2, observe that
|T | = T . By this fact, we have that rank(GP) ≤ T . This implies two possibilities:
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Figure B.1: Enumerating the columns in the bottom-right sequence until the first column
(yellow) is reached which lies in the span of the previous columns

Case I. If rank(G2(T )) = rank(GP), then the remaining columns in G1 must lie in the span
of G2(T ), and the proof concludes.

Case II. If not, then the columns of G2(T ) must have at least one column dependent on
the others.

We can identify one such column by the following procedure: starting at the top left corner of
T in the grid, sequentially collect the points in T in a top-to-bottom, left-to-right sequence.
Stop at the first point y = (y0, y1) which lies in the span of the previously collected points
(by assumption, such a point must exist as we are in Case II). Chapter B.1 illustrates this
procedure where we collect the black points sequentially until the yellow point is reached
which is the first point that lies in the span of the previously collected points. Let B be
defined as the set of black points which are enumerated until y is found. By definition, this
implies that there exist (not necessarily unique) weights {αb}b∈B such that,

ωy =
∑

b∈B
αbω

b (B.8)

This implies that y − (0, 1) ∈ span(B − (0, 1)). Define Y as the set of points,

Y = {(y0, θ) : y1 − n1(1− δ1)(1− β) + 1 ≤ θ ≤ y1}. (B.9)

Note that the set of points Y implicitly depends on the location of point y. Next, we define
L and C to be the set of points,

L = ∪n0−y0−1
k=0 (Y + (k, 0)) (B.10)

C ={(p0, p1) :

n0δ0 ≤ p0 ≤ y0, n1δ1 ≤ p1 ≤ n1 − 1}
∖
Y . (B.11)
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In addition, we define Q to be the set of points,

Q ={(p0, p1) :

n0δ0 ≤ p0 ≤ n0 − 1, n1δ1 ≤ p1 ≤ n1 − 1}
∖
L. (B.12)

Pictorially these points are represented in Figs B.2 and B.3. Y ⊆ span(C).

Proof. We prove this result by induction sequentially iterating over all the points from top
to bottom in Y . Clearly B ⊆ C, therefore the induction holds for the first point in Y , which
is y = (y0, y1).

Suppose for some k ≥ 1 that for each t ≤ k − 1 the point y − (0, t) lies in span(C). Then we
show that y − (0, k) ∈ span(C) as long as k ≥ y1 − n1(1 − δ1)(1 − β) + 1. Indeed, observe
first that,

y − (0, k) ∈ span(B − (0, k)). (B.13)

The key observation is that B − (0, k) is always ⊆ C ∪ {y − (0, t) : 0 ≤ t ≤ k − 1} (unless
k > y1 − n1(1 − δ1)(1 − β) + 1, in which case B − (0, k) shifts far enough down that it
includes points in Z1 - this has null intersection with C and Y so the assertion is clearly false).
For a pictorial presentation of this fact, refer to Fig. B.4. By the induction hypothesis, for
each t ≤ k − 1, y − (0, t) ∈ span(C). Therefore, span(B − (0, k)) ⊆ span(C). Plugging into
eq:1203102 completes the proof of the claim.

L ⊆ span(Q).

Proof. Recall that L = ∪n0−y0−1
k=0 (Y + (k, 0)). We follow a similar proof by induction strategy

as Chapter B to result in the assertion. In particular, for k = 0 the statement follows directly
from the fact that C ⊆ Q and using Chapter B to claim that Y ⊆ span(C). Assuming
the induction hypothesis that for all 0 ≤ t ≤ k − 1, Y + (t, 0) ⊆ span(Q) we show that
Y + (k, 0) ⊆ span(Q) as long as k ≤ n0 − y0 − 1. In particular, observe that from Chapter B,

Y + (0, k) ⊆ span(C + (0, k)). (B.14)

Next observe that unless k > n0 − y0 − 1,

C + (k, 0) ⊆ Q ∪ {Y + (t, 0) : 0 ≤ t ≤ k − 1} (B.15)

if k > n0 − y0 − 1, then C + (k, 0) shifts far enough that it wraps around and include points
in Z0 - this has null intersection with Q and Y + (t, 0) for any t ≤ n0 − y0 − 1 and the
assertion becomes false. A pictorial representation of this fact is provided in Fig. B.5. By the
induction hypothesis for each 0 ≤ t ≤ k − 1, Y + (t, 0) ⊆ span(Q). Combining this fact with
eq:12312111,eq:10211 implies that Y + (0, k) ⊆ span(Q) and completes the induction step for
k.
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Recall from def:L that L is defined as the set of points, ∪n0−y0−1
k=0 (Y + (k, 0)). More explicitly,

noting that the set of points Y is defined as {(y0, θ) : y1 − n1(1− δ1)(1− β) + 1 ≤ θ ≤ y1},

L = {(p0, p1) : y0 ≤ p0 ≤ n0 − 1,

y1 − n1(1− δ1)(1− β) + 1 ≤ p1 ≤ y1}. (B.16)

The set of points S ⊆ L irrespective of the location of the point y = (y0, y1) (note that the
set of points L is a function of y0 and y1).

Proof. Before furnishing the details of the proof, note that a pictorial representation of this
statement is provided in Fig. B.5. First recall that y = (y0, y1) is a point in the set T .
Therefore, δ0n0 ≤ y0 ≤ δ0n0 + α(1 − δ0)n0 − 1 and n1 − β(1 − δ1)n1 ≤ y1 ≤ n1 − 1. In
particular, this means that for any y,

(p0, p1) :

δ0n0 + α(1− δ0)n0 − 1 ≤ p0 ≤ n0 − 1,

y1 − n1(1− δ1)(1− β) + 1 ≤ p1 ≤ y1

 ⊆ L (B.17)

Furthermore, we see that (i) y1 ≥ n1 − β(1 − δ1)n1, and (ii) y1 − n1(1 − δ1)(1 − β) + 1 ≤
n1 − n1(1− δ1)(1− β) = n1δ1 + β(1− δ1)n1. Therefore, we have that,

(p0, p1) :

δ0n0 + α(1− δ0)n0 − 1 ≤ p0 ≤ n0 − 1,

n1δ1 + β(1− δ1)n1 ≤ p1 ≤ n1 − β(1− δ1)n1

 ⊆ L (B.18)

The LHS is exactly the definition of S in def:S.

From Claims B and B and the definition of L in def:L, we see that S ⊆ span(Q). In
particular this implies that the each column indexed by points in S can be expressed as a
linear combination of some set of remaining columns that do not belong to Z0 or Z1. This
implies that for any choice of P (note that we do not specify a particular choice of P in the
proof as long as it has size ≤ T ) that rank(G2) = rank(GP).

Moreover, we do not specify the particular choice of P in the proof, so it holds for all sets of
size ≤ T .
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Figure B.2: Definition of B,Y and C

      

Figure B.3: Definition of Q and L
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Figure B.4: Showing that B − (0, k) is a subset of the intersection of C and {y − (0, t) : 0 ≤
t ≤ k − 1}.

   

Figure B.5: Showing that C + (k, 0) is a subset of the intersection of Q and
⋃k−1
t=0 (Y + (t, 0)).
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Figure B.6: The S is indeed a subset of L. For the particular choice of y this figure shows
that the inclusion is true. More generally we in construct S as the intersection of L over all
the possible locations of y ∈ T .
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Appendix C

Correctness of FastSecAgg

Correctness essentially follows from the correctness of key agreement and authenticated
encryption protocols together with the linearity and D-dropout tolerance of FastShare.

Specifically, using the correctness of key agreement and authenticated encryption, it is
straightforward to show that, in Round 2, each client i ∈ C1 computes and sends to the server
the sum of shares it receives in Round 1 as follows

shi =

(∑
j∈C1

[u1
j ]i || · · · ||

∑
j∈C1

[u
dL/Se
j ]i

)
. (C.1)

The linearity property of FastShare ensures that the sum of shares is a share of the sum of
secret vectors (i.e., client inputs). In other words, by linearity of FastShare, it holds that

shi =

[∑
j∈C1

u1
j

]
i

|| · · · ||
[∑
j∈C1

u
dL/Se
j

]
i

 . (C.2)

Recall that sh`i denotes the `-th coefficient of shi. Therefore, from (C.2), it holds, for
1 ≤ ` ≤ dL/Se, that

sh`i =

[∑
j∈C1

u`j

]
i

. (C.3)

Let C2 be a random subset of at least N −D clients that survive in Round 2, i.e., clients
in C2 send their sum-shares to the server. Now, from (C.3) and the D-dropout tolerance of
FastShare, it holds that FastRecon

(
{(i, sh`i)}i∈C2

)
=
∑

j∈C1 u`j with probability at least
1− 1/poly N for all 1 ≤ ` ≤ dL/Se. Note that we do not need to use a union bound here
because if FastRecon succeeds (i.e., does not output ⊥) for ` = 1, then it succeeds for
each 1 ≤ ` ≤ dL/Se, since the locations of missing indices (among N) of shares for every
1 ≤ ` ≤ dL/Se are the same.
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Hence, we get

[z1 z2 · · · ZdL/Se] =

[∑
j∈C1

u1
j

∑
j∈C1

u2
j · · ·

∑
j∈C1

u
dL/Se
j

]
with probability at least 1− 1/polyN . In other words, z =

∑
i∈C1 ui with probability at least

1− 1/polyN .
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Appendix D

Security of FastSecAgg

In FastSecAgg, each client i first partitions their input ui to dL/Se vectors u1
i , u2

i , . . .,

u
dL/Se
i , each of length at most S, and computes shares for each u`i , 1 ≤ ` ≤ dL/Se. In other

words, we have {(
j,
[
u`i
]
j

)}
j∈C
← FastShare(u`i , C), (D.1)

where independent private randomness is used for each 1 ≤ ` ≤ dL/Se. Let us denote the set
of shares that client i generates for client j as [ui]j, i.e., we have

[ui]j =
{[

u1
i

]
j
,
[
u2
i

]
j
, . . . , [u

dL/Se
i ]j

}
. (D.2)

It is straightforward to show that for any set of up to T clients P ⊂ C, the shares {[ui]j}j∈P
reveal no information about ui.

Lemma D.0.1. For every ui,vi ∈ FLq , for any P ⊂ C such that |P| ≤ T , the distribution of
{[ui]j}j∈P is identical to that of {[vi]j}j∈P .

Proof. Here we treat ui to be a random variable (with arbitrary distribution), and {[ui]j}j∈P
to be a conditional random variable given a realization of ui. By slightly abusing the notation
for simplicity, denote ui as a set ui = {u1

i ,u
2
i , . . . ,u

dL/Se
i } (instead of a vector). Further, for

simplicity, define[
u`i
]
P = {[ui]j}j∈P ;

[
u`i
]
P =

{[
u`i
]
j

}
j∈P

, 1 ≤ ` ≤ dL/Se.

Now, observe that, given u`i , the distribution of
[
u`i
]
P is conditionally independent of ui \{u`i}

and [ui]P \
{[

u`i
]
P

}
. This is because, for the `-th instantiation, 1 ≤ ` ≤ dL/Se, FastShare

takes only u`i as its input and uses independent private randomness. Therefore, the distribution
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of [ui]P factors into the product of the distributions of
[
u`i
]
P . The proof then follows by

applying the T -privacy property for each instantiation of FastShare.

We prove Theorem 3.4.2 by a standard hybrid argument. We will present a sequence of
hybrids starting that start from the real execution and transition to the simulated execution
where each two consecutive hybrids are computationally indistinguishable.

Hybrid0 : This random variable is REALC,T,λM (uC, C0, C1, C2), the joint view of the parites M
in the real execution of the protocol.

Hybrid1 : In this hybrid, we change the behavior of honest clients in C1 \M so that instead
of using KA.agree(ski, pkj) to encrypt and decrypt messages, we run the key agreement
simulator SimKA(si,j, pkj), where si,j is chosen uniformly at random. The security of the key
agreement protocol guarantees that this hybrid is indistinguishable from the previous one.

Hybrid2 : In this hybrid, for every client i ∈ C1 \M, we replace the shares of ui sent to other
honest clients in Round 1 with zeros, which the adversary observes encrypted as ci→j. Since
only the contents of the ciphertexts are changed, the IND-CPA security of the encryption
scheme guarantees that this hybrid is indistinguishable from the previous one.

Hybrid3 : In this hybrid, for every client i ∈ C1 \M, we replace the shares of ui sent to the
corrupt clients in M in Round 1 with shares of vi, which are chosen as follows depending
on z. If z =⊥, then {vi}i∈C1\M are chosen uniformly at random. Otherwise, {vi}i∈C1\M are

chosen uniformly at random subject to
∑

i∈C1\M vi = z
(

=
∑

i∈C1\M ui

)
. The joint view of

corrupt parties contains only |M| ≤ T shares of each vi. From Lemma D.0.1, it follows that
this hybrid is identically distributed to the previous one.

If z =⊥, then we do not need to consider the further hybrids, and let SIM is defined to sample
from Hybrid3. This distribution can be computed from the inputs z, C0, and C1. In the
following hybrids, we assume z 6=⊥.

Hybrid4 : Partition z into dL/Se vectors, z1, z2, . . ., zdL/Se, each of length at most S. In
this hybrid, for every client i ∈ C2 \M and each 1 ≤ ` ≤ dL/Se, we replace the share sh`i
with the i-th share of z` +

∑
j∈M u`j , i.e.,

[
z` +

∑
j∈M u`j

]
i
. Since z =

∑
i∈C1\M ui, from (C.2)

and (C.3), it follows that the distribution of
{[

z +
∑

j∈M uj

]
i

}
i∈C2

is identical to that of

{shi}i∈C2 . Therefore, this hybrid is identically distributed to the previous one.

We define a PPT simulator SIM to sample from the distribution described in the last hybrid.
This distribution can be computed from the inputs z, uM, C0, C1, and C2. The argument
above proves that the output of the simulator is computationally indistinguishable from the
output of REAL, which concludes the proof.


