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Abstract

Detection of Node Pore Sensing Signals

by

Maxwell Lin-He

Master of Science in Electrical Engineering and Computer Science in Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Michael Lustig, Chair

We present methods for detecting cell events in simulated node pore sensing signals. First,
we propose an inverse formulation for detection and methods for solving it. Using our
complex simulation model, we also show that a data-driven deep learning approach is able
to effectively learn to identify cell events and apply them on unseen examples, even with
noise and model mismatch.
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Chapter 1

Introduction

1.1 Node Pore Sensing

Microfluidic cytometry is a technique for measuring characteristics of cells, such as cell size
and cell count, by suspending them in fluid and passing them through a device. One method
of detecting cells passing through a cytometer is to measure the impedance effects of a cell as
it passes through a channel. One of the earliest such devices is the Coulter counter, in which
cells suspended in an electrolyte solution travel through a channel with an electric potential
applied across it [8]. While the cell is in the channel, the measured electrical impedance
is increased, thereby indicating the presence of a cell. The increase in impedance of a cell
can be calculated as a function of the cell and channel diameters. When detecting cells of
different sizes, channel width becomes a concern, as a channel that is too large leads to poor
signal-to-noise ratio (SNR) while a channel that is too small leads to clogging of the device.
One solution to this problem is Node Pore Sensing (NPS) [4], in which the channel has
narrow sections called pores and wider sections called nodes. The narrower pores are akin to
the channel in the Coulter counter, as impedance is increased while the cell passes through.
However, when the cell is in the wider nodes, impedance returns to near baseline. A single
cell produces a signal determined by the sequence of pores and nodes and their lengths.

NPS alleviates issues in detection of a heterogeneous sample in cell size, but challenges
in detecting coincidence events still remain, where multiple cells enter the device channel at
the same time. In coincidence events the total impedance measurement is a combination
of impedance effects from all cells, making it difficult to isolate the contributions of each
individual cell.

Previous work uses a channel geometry that modulates the device’s impedance response
to produce a Manchester encoded Barker binary-code sequence [15]. Barker sequences are
known for their favorable auto-correlation properties, with extremely low side lobes. This
makes a Barker-coded NPS signal well-suited for correlation-based cell detection methods. If
a cell’s velocity through the channel is known, then cross-correlation of the total impedance
signal with the same-length Barker sequence will effectively detect the cell’s impedance signal,
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Figure 1.1: Example ambiguity function for a single cell event unit scale and zero delay,
where the largest value is located

even in the presence of noise and interfering signals from other coincident cells. However,
since cells travel through the channel at different speeds, we must apply a filter bank of
the Barker sequence over a range of scales. The output of the filter bank is an ambiguity
function shown in Figure 1.1

Although the Barker code is designed to have low side lobes in its autocorrelation, corre-
lations between pairs of them stretched and compressed to different lengths is not insignif-
icant, and coincidence events still remain a challenge, particularly when dynamic range is
high. When a small cell and large cell travel through the channel at the same time, the peaks
from the contribution of the small cell become obscured by the side lobe patterns from the
large cell. Additionally, due to fluid dynamics, cells traveling off center in the channel will
deviate to the sides of the nodes, causing time delays that are hard to predict. Because cells
do not transit the channel at a constant velocity, the impedance signal becomes distorted in
time and leads to model mismatch with the Barker code signal.

Previous work in [10], uses a greedy successive interference cancellation method. This
method iteratively uses correlation filtering and selects the largest correlation as a match for a
cell. It then subtracts out the model Barker code signal for that cell from the measurement to
perform correlation again. When there is model mismatch, the subtracted Barker code does
not match perfectly with the true impedance signal, and the result contains large residual
spikes. These spikes result in large correlation effects in subsequent iterations. Especially
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when the signal has high dynamic range, the residual spikes can have correlations larger that
the actual cell response, and detection can fail.

1.2 Algorithms

Fully convolutional neural networks, deep neural networks containing only convolutional
layers and no fully connected layers, trained end-to-end have shown to be powerful in image
segmentation tasks [11]. Fully convolutional networks also offer the advantage of taking
in arbitrary size inputs and producing a correspondingly-sized output. A commonly used
deep neural network (DNN) architecture for this task is the UNet [16], which was originally
developed for biomedical image segmentation. We apply deep learning to the NPS detection
problem by first cross-correlating the impedance signal with a filter bank of signal templates
and then treating cell detection as an image semantic segmentation task, where we aim to
classify if a cell exists at a particular location in the filter bank output. We show that a UNet
is be able to detect peaks at true cell events within a noisy ambiguity function containing
many side lobes. By extending the normal interpretation of a binary output from a neural
network, the UNet is also able to recover cell size information.

Much recent work in biomedical image reconstruction and signal processing has centered
around unrolled iterative optimization algorithms with deep networks [13]. Unrolled deep
methods use learned networks to denoise or regularize images, while incorporating data con-
sistency steps to conform to an image model [1, 22, 14]. We also propose a signal recovery
model with natural connections to correlation filtering. Using a convex formulation, this
signal recovery problem can be efficiently solved with the alternating direction method of
multipliers (ADMM) [6]. We compare results to deep segmentation methods, and analyze
performance on coincidence events in the presence of high dynamic range and model mis-
match, as well as the effects of noise and interference in resolving coincidence events.
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Chapter 2

Methods

2.1 System Model

As a cell travels through the NPS channel, the impedance (magnitude) across the channel,
r(t), changes over time. Under ideal conditions for the physics model of the NPS device, a
cell traveling with a constant velocity will produce a signal with shape determined by the
physical sequence of nodes and pores. For a single cell passing the midpoint of the channel
at time t0, the ideal impedance signal is

r(t) = c · h
(
t

τ0
− t0

)
(2.1)

where h is a Manchester-Barker length-13 sequence, c is a function of cell size, and τ0 is a
scale parameter equal to the transit time of the cell. Impedance measurement of the NPS
device captures the size, timing, and velocity information of cells passing through it. We
can model cell transit events as x(t, τ), where a nonzero value of x represents the impedance
response amplitude of a cell passing the midpoint of the channel at time t with a transit
time of τ . Zero values represent no cell events.

Let r(m) be the impedance response of the m-th cell, q be baseline drift, and z be mea-
surement noise. We model the discrete measured signal b as

b[n] = r(nT ) + q(nT ) + z(nT ) (2.2)

r(t) =
N∑
m=1

r(m)(t) (2.3)

where n is the time index and T is the sampling period.
From here, we use subscripts as an index into scales. Let {hi}ki=1 be a collection of k

scales of the unit channel response, such that hi[n] = h(nT/si), where h(t) is the prototypical
channel response with some empirically-determined typical transit time (in seconds). The
scale parameters are chosen such that their logarithms are evenly spaced, so that the relative
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scales si/sj are mapped one-to-one to the difference in index i − j. Based on the duration
of the prototype signal h(t), we define the scale parameter as s = τ

duration of h
.

Let H be a discrete, linear forward model where r = H(x). We define

H(x) =
k∑
i=1

xi[n] ∗ hi[−n] (2.4)

as a sum of convolutions, where xi[n] = x(nT, si). In this model, x is a function over time
and scale, where xi[n] represents the amplitude of a cell’s impedance response for a cell
passing the midpoint of the channel at time nT with a transit time of τi. A value of zero
indicates no cell event. Note that x is always non-negative.

In our implementation, we fix the measured signal to be an odd positive integer d and
treat all signals as centered at time 0. Thus, processing signals of greater length requires
analyzing segments of length d at a time. Hence b[n] has support on n =

⌊
d
2

⌋
, . . . ,

⌊
d
2

⌋
.

Similarly, we consider a range of k feasible scales for hi’s and fix the number of delays to
length `. Then in in vector form, we have b ∈ Rd and H : Rk×` → Rd. For the filtering
operation we introduce next, it is convenient to choose ` = b2dc + 1 and window hi all to
length d.

In analysis of a signal b, we often find it convenient to first apply a filtering transformation
H>. The goal of the filtering operation is to aid in locating the impedance response, r, of
a cell passing through the channel from the measurement b. The filtering is defined as
x̂ = H>(b), where

x̂i[n] = b[n] ∗ hi[−n] for i = 1, . . . , k (2.5)

This definition of H> also coincides with the adjoint of H.
From x̂, we can detect the timing and velocity of a cell traveling through the channel, as

well as its size. Suppose a cell travels through the channel with velocity vi, and and passes
the midpoint of the channel at time m. If b only contains signal from this one cell, then x̂ has
a maximal peak at x̂i[m]. This follows from the design of the channel response and the fact
that we center all signals at time 0. Furthermore, the value of x̂i[m], is proportional to the
amplitude of b, and thus the size of the cell. Hence, we can recover the timing and size of the
cell simply by locating the peak of H>(b). Such a filtering scheme is motivated by wideband
cross ambiguity functions in sonar and radar processing [19], and x̂ is essentially a discrete
sampled ambiguity function. An alternative interpretation is that x̂ is a sampling of the
continuous wavelet transform of b(t) with mother wavelet h(t). The same collection {hi}ki=1

from the forward model can be used; however, when using H> as a matched filter as done
in Section 2.4, we instead use, h̄i =

√
sihi. This matches the formulation for wideband cross

ambiguity function and the continuous wavelet transform. Furthermore a bipolar encoding
of h can be used in order to reduce effects of DC offset from measurements after correlation.
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(a) (b)

(c)

(d)

Figure 2.1: Forward model. (a) plot of x with three cell events. Each cell is represented as an
impulse located at a certain scale and delay. The height of the impulse is the amplitude of the
cell’s impedance response, corresponding to the cell’s size. (b) dictionary of signals {hi}ki=1,
the system response over a range of scales. (c) the ideal impedance signal, r, resulting from
x and (d) measured signal b with noise.

2.2 Data Generation

We aim to analyze different algorithms for determining cell events in a NPS sensing signal.
In order to test algorithmic performance on a variety of signals, we require a large dataset of
signals, such as examples with different types of coincidence events. Furthermore, algorithms
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employing deep neural networks will require an even larger amount of training data. In order
to train neural networks on NPS data, we first construct a simulator that outputs signals
constructed with statistics from historical device data. Our simulator randomly generates a
parameters for a cell event for size, speed, and timing, which is reflected in the amplitude,
scale, and delay of the measured signal respectively. We model the number of cells with a
Poisson process and linearly combine the signals for each cell. Transit times and velocity
variations are randomized using the empirical covariance of transit times for each node and
pore in the device from previous experimental data. Cell diameters are drawn from a log-
normal distribution to estimate the size of epithelial cells. Baseline drift is modeled as
additive brown noise, and sensor noise is modeled with additive white Gaussian noise. The
impedance values for both cell events and noise are calculated using the physics model given
the device geometry.

Experiments done with simulated data allow us to easily and quickly vary parameters
and give access to true underlying statistics such as SNR. This allows us to analyze our
methods on both ideal signals as well as a multitude of noise models.

2.3 Inverse Problem Model

We can model recovering cell events from a measurement as

arg min
x

1

2
‖Hx− b‖22 + λg(x) (2.6)

where x ∈ Rk×` is the reconstructed signal of cell events, b ∈ Rd is the received impedance
measurement, H : Rk×` → Rd is the the forward model, and g : Rk×` → R is some regular-
ization function. The number of cells present in x is bounded statistically by the length of
the channel as well as the concentration of cells. Modeling cell arrivals as a Poisson process,
the number of cell events in a given signal obeys a Poisson distribution, whose tail proba-
bility decays exponentially [9, 18]. Hence, we can obtain a high probability bound on the
`0-“norm” on x, ‖x‖0 ≤ N . The mean number of cells in passing through the channel in a
second is much less than the sampling frequency, 1/T , so N � k`, and we expect x to have
extreme native sparsity.

ADMM

For our problem, solving the objective with traditional gradient based methods is problematic
due to the unique structure of our signal model. The Hessian of the data consistency term
in the objective function is ∂2

∂x2
1
2
‖Hx− b‖22 = H>H. This matrix is poorly conditioned and

gradient methods fail to converge or even provide a reasonable solution. When explicitly
constructing H as matrix of size matching our experiments, the condition number, κ, cannot
be computed numerically in a reasonable amount of time. Even a reduced size problem
where the number of scales and sampling rate is reduced by 90%, we still have κ > 1010,
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with a maximum eigenvalue greater than 103. With such a large maximum eigenvalue,
improvements in conditioning via regularization is limited unless an absurdly large penalty
weight is used. When the Hessian of a quadratic function has a large condition number, a
basic gradient descent algorithm with line search for step sizes has an iteration complexity
that scales approximately linearly with κ [7]. Other methods such as the conjugate gradient
algorithm still have an iteration complexity scaling with the square root of κ [17]. Therefore,
we cannot expect a gradient method to converge for our problem in practice. Due to the poor
performance of gradient methods, we turn to the alternating direction method of multipliers.
ADMM is a primal-dual method for solving convex optimization problems of the form

min
x,z

f(x) + g(z) (2.7)

such that Ax+Bz = c

For our problem, we let f represent the data consistency function and g be a regularization
function. We use the `1-norm ‖x‖1 =

∑k
i=1

∑`
j=1 |xij| as a convex relaxation of the `0

constraint to regularize for sparsity. We also add a non-negativity constraint as a cell event
cannot cause a negative channel response. Finally, when the forward model is a sum of 1-D
convolutions, we can use the splitting H = DM where D is a slice or cropping operator and
M is a 2-D convolution [3].

The optimization we wish to solve is

arg min
x,u,v,w

‖Dv − b‖22 + λ‖u‖1 + 1+(w) (2.8)

such that Mx = v

x = u

x = w

where

1+(x) =

{
0 if all elements of x are non-negative

+∞ otherwise

is a indicator function for non-negativity.
Then the ADMM updates, with µ1, µ2, µ3 as penalty parameters for the augmented La-
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grangian, are given by

uk+1 = Tλ/µ2(xk + ηk/µ2)

vk+1 =
(
D>D + µ1I

)−1
(ξk + µ1Mxk +D>b)

wk+1 = max(ρk/µ3 + xk, 0)

rk = µ3w
k+1 − ρk + µ2u

k+1 − ηk +M>(µ1v
k+1 − ξk)

xk+1 = (µ1M
>M + µ2I + µ3I)−1rk

ξk+1 = ξk + µ1(Mxk+1 − vk+1)

ηk+1 = ηk + µ2(x
k+1 − uk+1)

ρk+1 = ρk + µ3(x
k+1 − wk+1)

where Tα is the soft thresholding function with threshold value α, arising from the proximal
operator of the `1-norm [2, 20]. In the ADMM updates, u, v, w are auxiliary primal variables
and ξ, η, ρ are their corresponding dual variables.

We employ the penalty parameter tuning strategy in [6], where in each iteration, µi’s are
updated to balance the primal and dual residuals. For our problem, every update can be
computed efficiently. The operation M is a convolution, which can implemented using Fast
Fourier Transforms (FFTs). All other operations are have linear time complexity in the size
of the inputs.

2.4 Deep Neural Networks

The simulator allows us to generate an arbitrary number of example signals, along with
ground truth labels, to train deep neural networks. We use a standard UNet, with a fully
convolutional architecture. Instead of supplying the network directly with the measurement
b, it is useful to first perform the filtering operation H>, which imparts additional structure
of the known system system response on the data. The 2D “image” H>(b) contains peaks
at nonzero points in x, but also contains many non-negligible side-lobes resulting from high
correlations of h at different scales. As a result, side lobe patterns from multiple cells create
ambiguity for the location of the true peaks. While the side lobe patterns from H> cannot
be modeled as a 2D convolution with x as our signal model is not shift invariant in the scale
axis, the pattern does maintain the same shape for cells of different velocities, so we expect
a CNN to be able to detect them. Instead of training the model with impulse labels, we
instead apply a Gaussian blur to the impulse. The network is able learn to output peaks
more quickly under this scheme.

Figure 2.3 shows an example of a UNet finding the true peaks from the correlation filtering
of an impedance signal. The UNet is clearly able to detect the two most salient peaks on
the left in the ground truth label, even when the side lobe of the tallest peak covers the
smaller peak. We hypothesize that a convolutional neural network with a sufficiently large
receptive field [12], will be able learn the sidelobe patterns and suppress them, leaving only
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(a)

(b) (c) (d) (e)

Figure 2.2: Output of the alternating direction method of multipliers (ADMM) on a noisy
signal with 2 cell events. The input signal is given by (a). The true underlying x is shown in
(b). ADMM was run for 500 iterations with regularization penalty τ = 0.1, 1, 4, shown in (c),
(d), (e) respectively. As the regularization penalty is increased, the reconstructed solution
becomes more sparse, decreasing the effects of noise. However, as the penalty increases,
ADMM also becomes more sensitive to dynamic range and fails to detect smaller cells.

the true peaks. This problem can be framed as an image segmentation task on x̂, where we
would like to identify samples in x̂ that belong to the true peak. However, instead of using
the UNet as a binary classifier by applying a softmax operation to the last layer, we use
the UNet as a regression function. A rectified linear unit (ReLU) is applied to the output
to enforce non-negativity of x, and the network is trained using mean squared error loss to
retain amplitude information. Figure 2.3 shows an example of a UNet finding the true peaks
from the correlation filtering of an impedance signal.
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(a)

(b)

(c)

Figure 2.3: Input and output of fully convolutional network on an test example with three
cell events. The three peaks for each cell are circled in red. The result of filtering an
impedance measurement is shown in (a). The side lobe patterns mask where the true peaks
corresponding each cell are located. The ground truth label is shown in (b) and the output
of a neural network is shown in (c), where the true peaks are isolated from (a).
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Chapter 3

Results

3.1 Signal Analysis

For each method presented, we analyze the performance on cell detection in different regimes.
We compare performance of each model processing signals with and without velocity varia-
tions and noise. We study the robustness of our algorithms to coincidence events by analyzing
performance in cases of high dynamic range (large cell size variation) and high overlap (many
cells close to each other). Additionally, as our trained deep neural networks are designed to
locate true peaks in the presence of side lobes, we consider the signal-to-interference ratio
(SIR) and signal-to-noise ratio of the filtered signal H>(b).

From equation (2.2), we define the dynamic range of a signal as the ratio of the amplitude
of the largest and smallest r(m)’s. For SIR, we work in the correlation domain and compute
a ratio for each r(m) as the ratio between H>(r(m)) and

∑
m′ 6=mH

>(r(m′)) at the true peak
position of cell i. Similarly, we use the noise value in the correlation domain in calculating
SIR and SNR. This measure of SIR attempts to quantify the amount that a cell’s correlation
pattern is hidden by the side lobe patterns of all other cells.

Both the ADMM and UNet detection algorithms output a 2D array, xout, indicating cell
events at at specified scales and delays. In our simulations, we take the ground truth x, and
for each cell event in x, we map the closest peak from xout. Peaks are found by iteratively
finding the largest value in the array above a specified detection floor and removing a small
ball centered at that point. We declare successful detection if the coordinates for the peak
in xout are within a Manhattan distance of 10 from the true peak in x. We allow this small
margin of error, because noise and velocity variations in the measured signal can cause it to
have higher correlations with filters at nearby scales and delays. Successes are counted as
true positives. If a peak from x does not have a matching peak from xout, then we consider
the cell event as a false negative. Finally any remaining peak from xout is considered a false
positive.

For this problem there is no natural concept of a true negative (unless we consider an
infinite number of true negatives at every possible scale and delay). Therefore, in analyzing
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TP FN FP precision recall

ADMM
normal dataset 1031 1101 510 66.9% 43.4%

no velocity variation 1101 870 298 78.7% 55.9%
no cell size variation 1507 532 331 82.0% 73.9%

UNet (1)
normal dataset 1900 232 319 85.6% 89.1%

no velocity variation 1803 168 256 87.6% 91.5%
no cell size variation 2011 28 371 84.4% 98.6%

UNet (2)
normal dataset 1662 470 42 97.5% 78.0%

no velocity variation 1576 395 26 98.4% 80.0%
no cell size variation 2005 34 33 98.4% 98.3%

Table 3.1: Precision and recall on different datasets. In the peak finding algorithm used
to locate cell events, UNet (1) limits dynamic range of peaks to 20. ADMM and UNet (2)
limits dynamic range to 5.

the overall accuracy of our algorithms on a dataset, we consider the precision (positive
predictive value) and recall (true positive rate), which are defined as

precision =
number of true positives

number of true positives + number of false positives

recall =
number of true positives

number of true positives + number of false negatives

In our experiments, we simulate signals of length 683 ms, with a sampling rate of 1000
Hz. The collection of channel response templates {hi}201i=1 is composed of 201 scales with
transit times ranging from 83.3 ms to 333.3 ms. Cell sizes are simulated from a log-normal
distribution with a mean of 12 µm and a standard deviation of 3 µm. The number of cells
in each signal is drawn from a Poisson distribution with mean 2.

3.2 Detection Accuracy

We test our methods on datasets containing 1000 signals each. We create three different
datasets: The first dataset contains cell events with all the parameters described in Section
2.2. The second dataset removes velocity variation in the signals, modeling all cells as
traveling with a constant velocity. The third dataset models a homogeneous sample of cells,
with all cells simulated with a diameter of 12 µm. The second dataset gives us a baseline
for how the methods perform when there is no model mismatch and allows us to compare
how much performance degrades when compared to the first dataset when the measured
signals do not perfectly match our channel response templates hi. The third dataset instead
gives a baseline for model performance when dynamic range is constant, and how it affects
detection.
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Figure 3.1: Precision-Recall curves of UNet and ADMM. Plot shows precision and recall
values on the default dataset with the detection floor ranging from 1 to 1/50 during peak
finding.

ADMM is run on inputs for 500 iterations and the regularization parameter set to τ =
2. We run the peak finding algorithm with a floor of 1/5 of the maximum peak, which
empirically gives a reasonable balance between precision and recall.

We run a UNet on unseen examples from our test datasets on the same model. The
model used is trained on a simulated dataset containing 50000 examples. We run on all the
datasets twice with a different floor chosen for the peak finding algorithm. Since the UNet
has better dynamic range performance, we try two different peak detection floors. In run
1, we set the floor to 1/20 of the maximum peak, since a dynamic range of 20 falls in the
95-percentile of all signals with cell sizes chosen from the log-normal distribution. In run
2, we increase the floor to 1/5, increasing recall at the cost of precision. The results are
included in Table 3.1. Furthermore, we show the trade off in precision and recall caused by
the detection floor in Figure 3.1.

Figure 3.2 shows noise statistics from run 2 of each cell in our simulations with finite
SIR (i.e. part of a coincidence event). We see that most of the false negatives occur on cells
with poor signal to interference ratio as well as low signal to noise ratio. We see that cells
with low SIR can still be predicted, given that SNR is not too low. Especially when there
are coincidences, our UNet struggles to detect cases where SNR is very low.

Examining the precision and recall for the three datasets, when there is no velocity
variation and model mismatch, both precision and recall rise by a couple percentage points.
In run 2, when we fix cell size, precision rises dramatically. However, recall does not increase,
suggesting that false positives are less dependent on this input data. The UNet performance
drops off much less than ADMM when velocity variations are enabled in simulation. This
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(a)

(b)

(c)

Figure 3.2: Analysis of true positives and false negatives coincidence events. The signal-to-
interference ratio (SIR) and signal-to-noise ratio (SNR) of each cell event are plotted as a
scatter plot. (a) The dataset was simulated with default simulator settings. (b) The dataset
contains no velocity variations, modeling cells traveling all at a constant velocity. (c) The
dataset models a homogeneous cell size sample of 12 µm. All ideal impedance responses
have identical amplitude.

suggests that a learned approach from data can more effectively deal with model mismatch.
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Chapter 4

Discussion

Using traditional optimization algorithms to solve an inverse problem suffers greatly from
noise and model mismatch. In our simulations based on our device model, the baseline
drift and Gaussian noise are significant, measuring in the mega-ohms. To contrast, the
impedance contributions of individual cells are measured in kilo-ohms. As such the input
signals to ADMM have heavy distortion from noise, which is not explicitly modeled in our
inverse problem. Combined with the fact the measured signals do not perfectly conform our
ideal system response templates, even with sparsity regularization, the outputs have high
sparsity compared to the ground truth.

ADMM shows promise as it performs well when processing homogeneous cell size samples.
As seen in Figure 2.2, ADMM trades off the ability to identify signals with high dynamic
range when increasing the regularization parameter. Increasing the sparsity in order to
reduce false positives also causes smaller cells to disappear in the output. Even in the
simulations with full simulation model, it is still able to produce clusters that are easily
identified visually. However, without extra re-processing or more sophisticated clustering
algorithms and tuning of the regularization weight, it can be more difficult to localize the
peaks in the output algorithmically. These parameters must be tuned according to the cell
sizes and concentration of a sample in order to be effective.

Much recent work in biomedical and computational imaging has explored unrolled deep
networks, combining traditional optimization algorithms with deep networks. In MRI,
ADMM has been successfully combined with convolutional neural networks in [21]. Such
an approach could work for microfluidic cytometry as well.

Results from a single pass UNet on correlation filtered signals suggests that a convolu-
tional neural network is able to learn the point spread function for cells traveling at different
velocities. Our UNet shows good performance in resolving coincidence events. It mainly
struggles where SNR is very poor. But this is expected, because any algorithm will fail
when SNR is too low. Similar to ADMM, performance can be increased with more advanced
peak finding and clustering algorithms such that extremely small peaks and noise patterns
are not picked out. Consequently, we have an extra variable in post processing that trades
off precision and recall. We see the UNet struggles more with false positives, especially in
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the heterogeneous cell size case. One possible solution to reduce false positives is to train
the network with a masked loss, where false positive predictions, or pixels outside of ground
truth peaks are penalized with a larger weight. A point of failure for both methods is the
rare case that two cells travel at the same speed at close proximity, where it is exceedingly
difficult to separate their impedance effects.

One disadvantage of a UNet is that training on large arrays requires large amounts of
GPU memory. During training, we can only use a batch size of 5 on an Nvidia GeForce
GTX Titan XP with 12 GB of memory. If the UNet is actually able to learn the correlation
patterns, we could directly output coordinates instead of up sampling to the image domain
such as in [5].
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Chapter 5

Conclusion

We have presented two methods of finding cell events in node pore sensing signals. Formu-
lating an inverse problem, ADMM is able to efficiently solve the optimization, even with an
ill-conditioned forward model. ADMM does have several pitfalls, including being sensitive
to hyperparameters. We show that a convolutional neural network is effective in identifying
peaks from signals after matched filtering, and the UNet fails to detect cells only when SNR
is extremely low or in pathological coincidence events.
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