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Abstract

On Memorability and Style of Audio Features in Multimedia Evaluation

by

Tony Zhao

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Gerald Friedland, Chair

The absolute quantity of content on multimedia platforms such as social networks has grown
exponentially in the past few years. As such, algorithms for automatic evaluation for digital
content become increasingly important in enhancing the relevancy of retrieval, especially the
ability to capture abstractions of more abstract aspects such as beauty, artistry, interest-
ingness. Particularly, we see a need for models that can evaluate abstract notions of digital
content such as style and memorability.

While there has been development and achievement in using artificial neural networks for
predicting image memorability as well as for image style transfer, such success have not
completely been replicated in di↵erent media modalities such as video or audio. Given the
broad topic of multimedia, this report seeks to focus on the background and context of
audio features in a framework of multimedia evaluation. We also present our experiments
for establishing use of audio features in both predicting video memorability as well as in
audio style transfer. Furthermore, this work outlines both current challenges as well as the
path forward for systematic augmentation and optimization of multimedia attributes such
as memorability and style.
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Chapter 1

Introduction

Multimedia platforms have grown exponentially in the amount of data over the past decade,
arising from social networks or advertiser content. Therefore algorithms for enhancing the
relevancy of retrieval of digital content ever increasingly important.

Human cognition has a massive capacity for understanding and remembering media.
Despite the huge variance in the nature of digital content, humans tend to remember and
forget the same videos. Humans also can agree on a cohesive thematic style of a given
group of similar video content as well as make distinctions between di↵erent artistic styles.
These phenomena suggests that despite varying personal experiences and priors, people
share some innate characteristics in encoding, understanding, and discarding the same types
of information. A simple example is the fact that humans can easily identify and recognize
images and videos of people, salient activities, distinct events, or landmarks. However,
images and videos of scenes that lack distinctiveness such natural landscapes are far less
memorable. This indicates that memorable and forgettable images di↵er in their intrinsic
visual features that make retaining information more or less di�cult.

Among important metrics such as aesthetics or novelty, memorability is an important
aspect to consider when evaluating multimedia and subsequent retrieval. This is especially
relevant in the domain of advertising or educational content, highlighting the need for the
capability of predicting the memorability of a particular piece of video content.

We took inspiration in modeling media memorability through multi-modal ensemble
methods. That is, we used multiple features of di↵erent modalities such as image and text
embeddings to predict media memorability. Our novel contribution is the demonstration
that audio embeddings can be highly e↵ective as features for predicting video memorability.

Beyond predicting memorability with audio embeddings, we want to identify algorithms
that can optimize memorability without altering the underlying content. These algorithms
would directly involve the ability to separate the non-content aspects, or style, from digital
content. Such style embeddings can then be independently synthesized with other content,
also known as style transfer. Audio style transfer is still an open research area, and we
introduce our approach to evaluating the ability of style transfer algorithms to preserve
information for multimedia evaluation.
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Chapter 2

Background and Related Work

2.1 Measuring memorability: The Memory Game

Computational understanding of media memorability follows on from the task of image
memorability, established by the seminal work of Isola et al. [11]. The work defines an
image’s memorability as the probability that an observer will detect a repetition of the same
image a few minutes after the first exposure, when presented as a streaming sequence of
image. Such a method of measuring memorability is generally referred to as the ”Memory
Game”. This definition serves to simplify the measurement of memorability for data mining
purposes, laying the groundwork for training memorability predictors.

For participants in the Memory Game, they are presented with a sequence of digital
content elements, either images or videos, which are comprised of ”target” elements as well
as ”filler” elements, which are usually random sampling of mutually exclusive subsets of
a large reference dataset. The participants are not made aware of the distinction between
target elements and filler elements. The first role of filler elements is as spacing and content in
between the first appearance and second appearance of a target element. The other role filler
elements play are to be ”vigilance” tasks, where filler elements are repeated to continuously
check that a participant is attentive to the task at hand. Each target element is expected to
repeat only once, while filler elements are presented once unless it was a vigilance task filler
in which case it was repeated twice.

Generally, criteria are used to ensure consistency and performance of participants once
they entered the game. Generally these criteria are based on both vigilance tests as well as
setting the max amount of times a participant can enter the game.

Finally, after collection of data, each element is assigned a memorability score, which is
defined as the percentage of correct detections by participants. This memorability score m(i)

can also be interpreted as the average hit rate per element and the value that minimizes the
l2 error

X

j

||x(i)
j �m(i)||22 )

1

n(i)

X

j

x(i)
j
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Experimentally, we see that memorability follows a log-linear relationship with the time
delay between repetitions. However, work has shown that rank memorability stable over
time [11]. This indicates that a highly memorable element will remain more memorable than
a unmemorable element, even if memorability degrades over time in both cases. Practically,
this degree of stability indicates that we can model rank memorability as time-independent.

Khosla et al. [12] expands on memory degradation as a function of time, which allows for
data collection with highly variable time delays. We assume that the memorability of element
i is m(i)

T where the time interval between repeated displays is T . This allows memorability
of element i to be modeled as

m(i)
T = ↵ log(T ) + c(i)

where c(i) is the base memorability for the given element and ↵ is the decay factor of mem-
orability over time. We hypothesize that each participant in the memory game may have
slightly di↵erent decay factors based on di↵ering abilities of recognition, but the variance is
low enough to ignore individual di↵erences between participants.

Since this model of memorability is a function of time, we obtain the relationship

m(i)
t �m(i)

T = ↵ log(t)� ↵ log(T )

) m(i)
t = m(i)

T + ↵ log
✓
t(i)

T

◆

In the case of a memory game with n observations for element i, we have x(i)
j 2 {0, 1} equal

to 1 if the repeated element was correctly recognized after time t(i)j and 0 otherwise. Finally,
for N images, we can calculate the adjusted memorability score by optimizing the overall l2
error, E as

E(↵,m(i)
T ) =

NX

i=1

n(i)X

j=1

||x(i)
j �m(i)

tj ||
2
2

=
NX

i=1

n(i)X

j=1

����

����x
(i)
j �


m(i)

T + ↵ log
✓t(i)j

T

◆�����

���� (2.1)

2.2 Predicting memorability

We have seen models, notably MemNet [12], that have achieved near-human level of per-
formance for the task of predicting image memorability. These techniques apply the recent
success of convolutional neural networks (CNNs) in visual recognition tasks.

The metric of choice is Spearman’s rank correlation coe�cient when evaluating these
models. This metric assesses how well the relationship between two variables can be described
using a monotonic function. Spearman’s rank rs can be computed as the Pearson correlation
coe�cient of the rank variables. Thus for a sample of size n, the n raw values Xi, Yi are
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converted to ranks gXi , gYi , and rs is computed as

rs = ⇢gX ,gY =
cov(gX , gY )

�gX�gY

where cov(gX , gY ) is the covariance of the rank variables, �gX and �gY are the standard
deviations of the rank variables, and ⇢ denotes the Pearson correlation coe�cient.

While predicting image memorability has proven to work reliably, research on video
memorability is still in the early stage, as the nature of video content makes evaluating
memorability di�cult. Spearman’s rank correlation is still the metric of choice for video
memorability.

Borrowing from work in image memorability, image-based features extracted from pre-
trained convolutional neural networks have been demonstrated as useful in predicting the
memorability of videos.

Related work [23] has also highlighted the usefulness of other features such as semantic,
saliency, and colour features. Image captioning models have proved e↵ective for predicting
memorability scores [5]. Video-based features, such as C3D and I3D, have also recently been
considered in the study of video memorability [22]. Finally, the best performing models of
the 2019 iteration of the Predicting Media Memorability challenge utilized ensemble models
with the above-mentioned features [2].

2.3 Style transfer

The seminal work establishing neural algorithms of artistic style was introduced by Gatys
et al. with the use of convolutional neural networks [6]. This approach separates the style

from the content of two di↵erent images and recombines them to create a image in the target
style, see Figure 2.1. The feature responses in the layers of a convolutional network act as the
content representations of an image. Meanwhile the style representation is instead defined as
the correlation between the di↵erent feature responses. By including the feature correlations
of multiple layers, we can obtain a stationary, multi-scale representation of the input image,
which captures its texture and style information but not the global arrangement.

Work in audio style transfer is still ongoing, as replicating the success of image style
transfer is an open research area. The format of audio data presents the first challenge, as
it is 1-dimensional as opposed to the 2-dimensional nature of image data. Generally the
approach for neural algorithms for audio is to first transform the audio waveforms into 2-
dimensional spectrograms, commonly using Mel-frequency cepstral coe�cients. These can
then be fed into convolutional neural networks analogous to image neural algorithms. Un-
fortunately, style transfer algorithms for images do not immediately perform similarly for
audio as demonstrated [8].

One of the immediate challenges identified by Grinstein et al. is the lack of a clear and
formal definitions of style and content in audio. For images, style generally encompasses
the space-invariant intra-patch statistics such as texture, while content refers to the broad
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Figure 2.1: Neural style transfer as demonstrated by Gatys et al. [6]

semantic and geometric composition of the scene. In audio, style and content are even more
di�cult to define and can vary depending on the task at hand. [8] For speech, content
may refer to linguistic information such as phonemes and words while style may refer to the
particularities of the speaker such as emotion, accent, and intonation. For music, content
may be the underlying melody while style may be the timbre and musical genre.

In our style experiments, we focus primarily in speech style transfer, also known as voice
conversion, and the ability to preserve information after synthesis. This has been a developing
field as multiple approaches have been proposed with some successes in voice conversion.
Qian et al. [19] proposed AutoVC as an autoencoder-based approach to voice conversion
with a carefully-designed bottleneck. Lin et al. [15] instead introduces FragmentVC which
relies on attention mechanisms in their transformer encoder blocks to extract and fuse voice
fragments.

2.4 Applications of style transfer

Recently, use of techniques such as style transfer have indicated that that the field has
advanced from simply measuring image memorability to using memorability as an evaluation
metric. Siarohin et al. [24] introduced an algorithm that extracts style seeds from several



CHAPTER 2. BACKGROUND AND RELATED WORK 6

target images which are then applied as filters onto source images, before retrieving the styles
that maximize the predicted memorability of an image.

Automatic speech recognition (ASR) models have been proven to have performance dis-
parities between di↵erent accents [14]. A very promising solution has been to use audio style
transfer as accent modification to increase the accuracy of ASR models on non-native speak-
ers [20]. Such methods can help reduce the necessity to collect and train with non-native
accents during ASR model training, mitigating the obstacle of data scarcity.
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Chapter 3

Memorability

3.1 Setup

The dataset is composed of a subset of short videos selected from TRECVid 2019 Video-to-
Text dataset [1]. Each TRECVid video is accompanied by textual captions describing the
content of the video.

Each video also has an associated memorability score for both the short-term where
scores a measured a few minutes after the memorization process, and the long-term where
scores are measured 24-72 hours after the memorization process. Memorability score refer
to the probability of a video to be remembered after a time duration and is measured using
recognition tests.

In the memory game tests, participants are expected to watch 180 and 120 videos in
the short-term and long-term memorization steps respectively. In the first step of the eval-
uation, target videos are repeated after a few minutes to collect short-term memorability
labels. After 24 hours to 72 hours, the same participants are expected to attend the second
step for collecting long-term memorability labels. The participant is directed to press a
button indicating recognition of a previously seen video. Both the short-term and long-term
memorability scores are calculated as the percentage of correct recognition for each video by
the participants.

The training set comprises of 590 short videos (1-8 seconds long) with 2-5 human-
annotated captions each. Another development set of 410 additional videos was made
available later in the project, but was not used as we discovered the quality of annotated
memorability scores to be worse than that of the original training set.

Memorability score adjustment

The short-term and long-term memorability scores of each video were adjusted using methods
outlined in previous work (See Equation 2.1). This adjustment involves iteratively updating
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Figure 3.1: Selected frames from videos with high memorability scores
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Figure 3.2: Selected frames from videos with low memorability scores
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Figure 3.3: Original memorability scores and corresponding adjusted memorability scores

and calculating decay rate ↵ and memorability mT at duration T

↵ 
PN

i=1
1

n(i)

Pn(i)

j=1 log(
t
(i)
j

T )[x(i)
j �m(i)

T ]
PN

i=1
1

n(i)

Pn(i)

j=1[log(
t
(i)
j

T )]2

m(i)
T  

1

n(i)

n(i)X

j=1

[x(i)
j � ↵ log(

t(i)j

T
)]

where we have n(i) observations for video i given by x(i) 2 {0, 1} and t(i)j where xj = 1 implies
that the repeated video was correctly detected when shown after time tj. The average t was
74.96, so we adjusted the target memorability score for each video to bem75 after 10 iterations
with ↵ converging to -0.0264. Overall, we did not notice any significant di↵erence with or
without the memorability score adjustments (See Figure 3.3). We hypothesize that memory
score adjustment would be far more significant in cases where the time interval between
repetition of the same element has high variance.
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3.2 Approach

Models were trained on a 80-20 training-validation split on video id. Since concatenating
multiple multi-modal features resulted in extremely high-dimensional feature vectors which
were di�cult to train with, we trained support vector regressor (SVR), Bayesian Ridge
regressor, and linear models on each individual feature independently to obtain feature-
specific, and therefore modality-specific, models.

We also explored several prediction aggregation functions for when a video has multiple
embeddings of a specific feature, such as several di↵erent model predictions due to multiple
captions for a given video. While previous work generally defaulted to a simple average,
we discovered that taking the median value performed consistently better than either mean,
max, or min. We hypothesize this behavior is due to the high variance in the output of the
models. In the opposite scenario where a video has no feature such as a soundless video for
audio-based models, we defaulted to using the average of all predicted memorability scores.

We noticed high variance in the performance of the models, which we attributed to the
relatively small dataset. Therefore we ran the feature models over 5 random seeds and took
the best performing features of each modality (VGGish for audio, ResNet152 for image,
C3D for video, GloVe for text). The predictions of these models were then used to perform
grid-search over permutations of buckets of 5% to calculate a weighted average as our final
ensemble model.

Audio features

Since previous work on the topic of predicting video memorability has not included the use of
audio features, we present a novel contribution in the usage of pre-trained CNNs to extract
audio embeddings as features. This approach is largely inspired from similar architectural
patterns with extracting image embeddings. From each video, we first extracted the audio
content of the file. Using VGGish [10], a pre-trained CNN model (trained on AudioSet[7]),
we extracted 128-dimensional embeddings for each second of video audio. We hypothesized
that such embeddings would be a useful feature as most of the videos did not contain speech
but instead background noise of the activity at hand. We noticed that highest scoring videos
tend to have either music or loud explosive sound e↵ects.

Each video had on average had 5.6 embeddings extracted, with one soundless video having
none. Bayesian Ridge Regressor provided the best performance on these features. See Figure
3.4.

Image/Video Features

Local Binary Patterns (LBP), VGG [16], and Convolutional 3D (C3D) proved to have notable
performance among the provided features. We discovered that Support Vector Regressor [3]
models produced the best results with these features.
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Figure 3.4: Audio feature extraction and model

Figure 3.5: Image/Video feature extraction and models
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Figure 3.6: Text model

We also extracted 8 equally spaced frames from each video, which were used for our
own image-based feature extraction. The penultimate layer of a pre-trained ResNet-152 [9]
(trained on ImageNet) was used to extract a 2048-dimensional feature vector. Similarly, we
found that the best performance came from Support Vector Regressor models trained on the
extracted features. See Figure 3.5.

Following the methods outlined in [2], pre-trained facial-emotion models were used to
extract emotion-based features on the video frames. Ultimately, these features were not
used in any of the final models, as only approximately a third of the videos had detectable
faces as well as overall poor performance from all emotion-based models.
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Table 3.1: Spearman’s rank correlation coe�cient (SRCC) of features for short-term mem-
orability over 5 runs trained and evaluated on training set (80-20 train-validation split on
590 videos)

Modality Feature Model Mean Variance

video C3D SVR 0.152 0.081
image ResNet152 SVR 0.233 0.096
image VGG SVR 0.167 0.058
image LBP SVR 0.139 0.072
audio VGGish Bayesian Ridge 0.246 0.017
text GloVe GRU 0.200 0.029

Text Features

Provided with several human-annotated captions for each video, we explored several di↵erent
methods to extract semantic features. Past work suggested that simpler methods like bag-
of-words could outperform more sophisticated methods in terms of both e↵ectiveness and
e�ciency [21]. We vectorized the captions using bag-of-words before training with ordinary
least squares, ridge, and lasso regression models. Bag-of-words vectorization and linear
models performed the worst among our text-based approaches and were not used in the final
model. We hypothesize that given the unique nature of the videos, simpler models do not
capture the positional information in the captions that are helpful in predicting memorability.

We tokenized the captions before extracting 300-dimensional GloVe [18] word embeddings
(trained on Wikipedia 2014 and Gigaword 5) to vectorize the caption tokens. These vectors
were used as input to train a recurrent neural network with gated recurrent units (GRU)
[4]. Our final text-based model had 64 units in the initial GRU layer with a dropout of 0.8,
followed by 4 dense layers with a dropout of 0.25 and ReLU activation, trained for 150 epochs
with early stopping, a learning rate of 0.001, batch size of 64, and an Adam optimizer. See
Figure 3.6.

We also explored machine-generated captions [17] to augment our text-based approaches.
After generating captions for each video based on the first, middle, and last frames and
mixing the generated captions with the human-annotated captions, we discovered that the
performance improvement was insignificant. These automatic captions were not included in
our final models.

3.3 Results and Analysis

The notable features are seen in Table 3.1, with the bolded features being selected for our
final ensemble models, seen in Table 3.3 and Table 3.4. Given the small dataset, we observe
relatively high variance in performance.
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Table 3.2: Spearman’s rank correlation coe�cient (SRCC) of features for long-term memo-
rability over 5 runs trained and evaluated on training set (80-20 train-validation split on 590
videos)

Modality Feature Model Mean Variance

video C3D SVR 0.076 0.059
image ResNet152 SVR 0.133 0.066
image VGG SVR 0.144 0.092
image LBP SVR 0.024 0.067
audio VGGish Bayesian Ridge 0.059 0.026
text GloVe GRU 0.104 0.091

Table 3.3: Short-term memorability ensemble models, Validation SRCC on 20% of training
set, Test SRCC on testing set

Model C3D ResNet152 VGGish GloVe Validation Test

1 0.20 0.35 0.45 0.00 0.343 0.136
2 0.00 0.20 0.35 0.45 0.345 0.116
3 0.05 0.00 0.50 0.45 0.370 0.085
4 0.00 0.50 0.15 0.35 0.357 0.091
5 0.35 0.00 0.30 0.35 0.317 0.102

Table 3.4: Long-term memorability ensemble models, Validation SRCC on 20% of training
set, Test SRCC on testing set

Model C3D ResNet152 VGGish GloVe Validation Test

1 0.00 0.40 0.15 0.45 0.289 0.012
2 0.55 0.10 0.00 0.35 0.192 0.076
3 0.00 0.55 0.45 0.00 0.118 0.044
4 0.25 0.35 0.20 0.20 0.168 0.077
5 0.30 0.05 0.00 0.65 0.201 0.056
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Our audio features from VGGish had the best performance, smallest variance, and thus
presumably the best generalization for short-term memorability. However, the same audio
features tended to perform poorly for predicting long-term memorability despite maintain-
ing low variance. An explanation may be that visual memory may be more resilient to
degradation over the long-term than auditory memory in humans.

The di↵erence in validation and test Spearman’s rank correlation in our final ensemble
models are likely due in part to overfitting after performing grid-search over a relatively
small dataset. In addition, we noticed that the quality of annotations between datasets were
di↵erent, which may cause distribution di↵erences in memorability scores and consequently
poorer performance at test time.

3.4 Discussion

Our main contribution to the field of media memorability is the demonstration that audio-
based models perform well for predicting short-term memorability and can generalize much
more readily than other methods with the dataset. This may be in part due to the low
dimensionality of the extracted audio embeddings, which are only have 128 dimensions while
our ResNet152 image embeddings are 2048-dimensional. While we still believe that visual
memory is the least resilient to degradation over time, we reiterate that ensembling models of
di↵erent modalities still achieve the best performance as each model can represent a di↵erent
high-level abstraction of the data.

Qualitatively, we noticed that videos with high memorability (See Figure 3.1) scores
tended to be highly unusual and distinct from other videos in the dataset. On the other hand,
videos with low memorability scores (See Figure 3.2) tended to be clustered around visually
similar topics such as sporting events. These visually similar videos in the distribution may
be di�cult for human annotators to identify memorably distinct features, resulting in lower
memorability scores.

As for our audio model, some cursory exploration seems to indicate that it rates videos
with violent, explosive noises and videos with music very highly in predicted memorability.
Videos with low predicted memorability seemed to have a lot of background noise, such as
crowds in a sportscast video. We hypothesize that the audio model is in part rating how
surprising the audio from a video is. More systematic evaluation of the behavior of audio
features would necessitate adding auditory tags to the videos.
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Chapter 4

Style

4.1 Setup

For our work on evaluating style transfer models, we elected to used the Speech Accent
Archive [26] as well as the Voice Cloning Toolkit (VCTK) [27]. The Speech Accent Archive
is comprised of a diverse collection of recordings of various accents enunciating the same
passage. The files are relatively long at about 30 seconds in duration. On the other hand,
VCTK is a dataset that was designed for voice cloning in mind, and thus elects to have
much higher quality, but shorter utterances. Each speaker in VCTK have several hundred
utterances that are just a few seconds long. However, the diversity of the accents in VCTK
is comparably less extensive than Speech Accent Archive.

Thus, evaluating the performance on VCTK helps show how well the models can preserve
the information in high-quality, in-distribution examples. On the other hand, the Speech
Accent Archive presents more noisy and consequently more challenging audio data, helping
to illustrate how well these models can generalize and perform in the real world.

We assess the performance and accuracy of in terms of the average word error rate
(WER), a standard measure of discrepancy between human and machine transcriptions [13].
With N words in the ground truth transcription, WER is formally defined as

WER =
S +D + I

N
(4.1)

where S, D, and I are respectively the number of word substitutions, deletions, and insertions
between the ground truth and generated transcription. Thus a higher WER would indicated
a greater discrepancy between two transcription and consequently worse automatic speech
recognition (ASR) performance according to our evaluation.

We elected to use a state-of-the-art voice conversion algorithm as our style transfer model.
FragmentVC is an attention-based approach, extracting and synthesizing source and target
utterance attributes based on the attention mechanism of transformers [15].

For our ASR model, we used Silero, an enterprise-grade speech-to-text model [25]. Our
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evaluation approach would thus be comparing the ground truth transcription with the de-
coded output of Silero.

4.2 Approach

First, we confirmed the accent disparities found by Koenecke et al. [14] by grouping by either
the provided native language and accent for each speaker in the Speech Accent Archive and
VCTK respectively. We discarded any group with significantly low number of distinct speak-
ers to control the variability of our experiments, as exceptionally poor or great performance
of a given speaker would otherwise add significant bias to our evaluation. We then estab-
lished a baseline WER for the group by average the WER of all speakers contained in the
group by extracting transcription hypotheses. For example, the baseline WER for American
speakers would be the average WER between the ground truth and the Silero transcription
hypothesis of all speakers identified as American. We designated poor performing groups as
source groups while better performing groups are designated as our target groups.

We then randomly sampled uniformly from both the source groups and target groups
to create source-target speaker pairs. Using our style transfer models, we extracted the
style of the target speaker and combine with the content of the source speaker utterances.
Finally, with the synthesized utterances, we extracted transcription hypothesises using our
ASR model. The WER is calculated between the ground truth and the hypothesis and
finally compared to the WER of the original source utterance.

When evaluating our model on Speech Accent Archive, we realized that the data was
significantly distorted to the point where it was unrealistic to expect either human or speech-
to-text models to transcribe. This is likely due to the longer file format as well as the noisier
samples in the dataset. Therefore we could not obtain consistent results for audio style
transfer and elected to omit them in our report.

4.3 Results and Analysis

We confirmed that there is a large disparity between the performance of our ASR model
native English speakers and non-native English speakers in the Speech Accent Archive as
shown in Figure 4.1. Likewise, we identified that Indian accents performed poorly compared
to other accents in the VCTK Corpus. Irish and Scottish accents to lesser degree also
performed poorly as seen in Figure 4.2.

We noticed that the WER among utterances in Speech Accent Archive was higher than
those from VCTK, which we attributed to the respective formats of the two datasets. The
shorter duration and higher quality in the recordings of VCTK likely were easier for the ASR
model to transcribe than those from the Speech Accent Archive.

Generally, we see that style transfer almost invariably causes WER to increase. In a few
particular instances, we did observe a decrease in WER, but these were the exception. The
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Figure 4.1: Mean error rate per native language in the Speech Accent Archive

Table 4.1: Word error rate di↵erence after audio style transfer with FragmentVC

Source Speaker Target Speaker Original WER Stylized WER Relative Di↵erence

Indian American 0.28132 0.61938 120.16%
Indian English 0.36966 0.75491 104.21%

American American (Identical) 0.08511 0.25391 198.31%
American American 0.09483 0.28654 202.17%

Irish American 0.20263 0.47637 135.09%
Scottish American 0.22282 0.46183 107.27%
English English (Identical) 0.12750 0.33904 165.91%
English English 0.09405 0.32091 241.20%

relative WER ranking of the source speaker was overall preserved by style transfer.

4.4 Discussion

From the results in 4.1, we see that the word error rate significantly increases after style
transfer. On inspection of the outputs of style transfer, we qualitatively a�rm that the
algorithm could successfully synthesize reasonable waveforms with the content of the source
speaker and the style of the content speaker, albeit with some audible distortions. This
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Figure 4.2: Mean error rate per native language in VCTK Corpus

indicates that the artifacts introduced by the algorithms greatly a↵ected the accuracy the
ASR models, which are unlikely to have been trained with such noise.

We propose that the ability to preserve information measured by the mean word error
rate can be a valid evaluation method for how well style transfer models can disentangle
content and style. This evaluation approach would directly tie the definition of content to
the linguistic attributes of speech. Especially in the case where the source speaker and target
speaker are identical, better style transfer models should expect relative di↵erence in word
error rate to approach 0.

One finding that was of particular interest was that the relative increase for well-performing
speakers as both source and target is higher than that of a conversion of poor-performing
speakers to well-performing speakers. This indicates a baseline level of WER increase caused
by the distortions introduced during style transfer. Since the relative di↵erence for poor-
performing speakers to well-performing speakers is below this baseline, we hypothesize that
lowering WER via our method will become viable as style transfer models become better at
synthesizing speech.

Our results indicate that speech style transfer is not a completely solved problem, as even
synthesis with the source and target speaker being identical reflected similar performance
decreases. These results also indicate a lack of robustness and generalizablilty of ASR sys-
tems. Since our style transfer model achieved reasonable results with human interpreters,
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this indicates that ASR models are weak against the auditory distortions introduced by style
transfer. A potential application of such phenomena can be used in privacy, where users may
want to prevent their voice from being processed accurately by speech recognition systems.
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Chapter 5

Conclusion

In this report, we introduced audio embeddings as a valid feature for the task of predicting
video memorability. However, predicting video memorability remains a di�cult task due to
the high variance of the data and inherent obstacles in identifying salient features. While
image memorability prediction has developed well enough to be an evaluation metric, pre-
dicting video memorability as a task remains di�cult for models to generalize and perform
well on.

Future work would ideally iterate on our findings for much larger and more diverse
datasets, as the size of the dataset was notably smaller than similar datasets for the task
of predicting media memorability. Consideration should also be given to the variability in
dataset elements, as having multiple similar videos may make some videos in similar topics
more di�cult to recognize distinctly.

We have also highlighted challenges facing audio style transfer models when evaluating
them in an automatic speech recognition context. State-of-the-art voice cloning models
have achieved decent mean opinion scores, a subjective metric of the overall quality of the
output. However, such success does not translate well into preserving linguistic content as
measured by the word error rate in speech-to-text systems. Future work in privacy may
include extending this phenomena adversarial to create algorithms that preserve content for
human listeners but can exploit failure points in ASR models to cloak both the identity and
content of the speaker.

One area of inquiry opened by this discussion is the idea of dependent automatic speech
recognition and audio style transfer models. A promising direction for future work would
be exploring training both acoustic models and audio transfer models with shared content
embedding layers.

Finally, once work in memorability and style have matured significantly, we are optimistic
about the possibility of augmenting and optimizing digital multimedia content. Given accu-
rate models for predicting memorability as well as style transfer, future work could be able
to tweak digital content in a systematic and algorithmic way to maximize memorability and
potentially other abstract and artistic attributes.
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