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Abstract

Accelerate, Then Imitate:
Learning From Task and Motion Planning

by

Michael James McDonald

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anca Dragan, Chair

The capabilities of both imitation and reinforcement learning for robotics have burgeoned
with the advent of deep learning, but these methods still struggle to extend to tasks with
long time horizons. Hierarchical policy learning and goal-conditioning in policies have offered
great promise in overcoming this limitation, but still cannot match the horizons or reliability
of classical planners. Task and motion planning remains the gold standard for high-precision,
multi-step tasks but suffers from computational burden and difficulties in planning directly
from sensor data - limitations that neural networks do not have. In this work, we propose an
asynchronous training method to integrate imitation learning into task and motion planning.
Our method trains goal-conditioned hierarchical policies to emulate the planner, and in turn
uses those policies to accelerate the planner and generation of training data. In robotic
manipulation tasks, the partially trained policies achieve a 2x reduction in the combined
time for motion plan refinement and simulated execution. For 7 DOF robotic pick-place
tasks, our method produces end-to-end policies capable of placing four objects with an 86%
success rate. And for 2d navigational pick-place tasks with high-dimension goals, our method
can place five objects with an 88% success rate when working from state observations or an
83% success rate for three objects when using camera images.



Accelerate, Then Imitate:
Learning From Task and Motion Planning

1 Main Work

1.1 Introduction

One of the success stories of the last 5 years has been the application of (deep) policy learning to
robotics. These approaches have demonstrated an impressive ability to solve robot control tasks
from perceptual input [1, 2, 3]. But that success has largely been limited to short-horizon tasks - e.g.
a policy to grasp particular types of objects from a location. Learning policies that can reason over
extended sequences of actions and adapt to novel tasks remains a challenge [4, 5].

When posed with long-horizon problems in robotics, a common solution is task and motion plan-
ning (TAMP). TAMP is a hierarchical approach to planning that integrates a search over abstract
actions with motion planning to determine feasible trajectories. TAMP solvers can solve problem
that require tens or hundreds of abstract actions, each consisting of complex geometric constraints
in high-dimension configuration spaces [6, 7]. And under mild assumptions, they can be guaranteed
to return a trajectory for any problem expressible in the structure of the search space [8]. But while
these approaches are quite general, they are often prohibitively slow to run and rely on an ability to
effectively track world state [9].

In this work, we propose a method that uses the output of TAMP solvers as the target for deep
imitation learning. Similar design patterns have been effectively applied to learn motor control
policies [10], visuomotor skills [1], and solve classical planning problems [11]. The hope is to
learn policies that emulate the planner’s capabilities without its computational overhead or need to
model the environment. To do so, we identify and address the following three roadblocks: 1) the
computational cost of generating supervision, 2) the challenge of learning the interplay between the
abstract actions and low-level controls, and 3) the training-to-test distribution shift.

The first roadblock is that TAMP solvers run substantially slower than the planners used for super-
vision in the above. To compensate, we leverage our learned policies to accelerate the planner. We
train a motion policy to imitate the output of a trajectory optimizer, and then initialize trajectory
optimization around the output of the policy. As the policy improves, the computational expense
of refining each motion plan decreases. To further amplify data generation, our algorithm decom-
poses across parallelized nodes. The distributed structure allows us to scale our system to utilize all
available hardware.

The second roadblock is that directly imitating task and motion planner output is hard. The mapping
from abstract goals to motor controls is complex and can require sharp transitions in control space
for relatively minor changes in observation. To address this challenge, we leverage the domain-
specific TAMP hierarchy in the architecture of the final policy. We train a task policy to output
which action to take (i.e., grasp or place) and the associated parameters (i.e., the target object or
location). The motion policy then executes conditioned on these outputs. Together the two policies
form a single policy that maps observations and goals to low-level controls.

The final roadblock is distribution shift. As the time horizons increase, the policies become more
likely to encounter observations not covered in their supervision. To account for this shift, we use
our policy structure to adopt an active learning (AL) procedure that can be viewed as a hierarchical
variant of Dataset Aggregation (DAgger) [12]. At the motion level, we sample rollouts of the motion
policy and then augment trajectory optimization with a penalty for deviating from those rollouts. The
penalty encourages the optimizer to provide controls similar to those from the policy, akin to DAgger
at the motion level. The task planner then samples states where the task policy violates pre- or post-



Figure 1: A system diagram of our core approach. In standard TAMP, the task planner and motion
planner directly communicate. In our approach, the motion planner generates supervision for a
motion policy πmotion. This policy can then be rolled out to initialize trajectory optimization and
accelerate TAMP. We leverage the fast planner this produces to generate sufficient supervision to
train a task policy πtask to imitate successful task plans. By combining πmotion and πtask we obtain
a unified policy that can be executed online to achieve goals over long horizons.

conditions. The choice of these states focuses demonstrations to regions where the task policy and
expert disagree, akin to DAgger in the abstract space.

The contributions of this work are as follows: 1) we provide a method to accelerate TAMP via
learning a motion policy to map parameterized actions to controls and using that policy to amortize
trajectory optimization; 2) we place this accelerated TAMP method inside a parallelized imitation
learning framework to simultaneously train the motion policy and a goal-conditioned task policy
that maps observations to a parameterized action; 3) we extend this framework to allow for active
learning via the structure of the TAMP problem; and 4) we evaluate this system in a suite of pick-
place domains and show that it is capable of learning to accomplish goals over (comparatively)
long horizons with both high-dimension sensor data and high-dimension action spaces (e.g. 7-DOF
joint control). Our approach uses established machine learning (and in particular, only feed-forward
neural networks) and builds on standard robotics tools. We believe it has the promise to bridge the
divide between classical planning and policy learning for robot control.

1.2 Preliminaries

We begin by briefly going over the components of our method.

1.2.1 Task and Motion Planning

Task and motion planning (TAMP) is a robot planning approach designed to account for complex
goals over long horizons. TAMP breaks the problem into two components: an abstract, symbolic
representation of actions (e.g., grasp, place) and a geometric representation of the world. Task
planning operates on a logical representation of the world. It identifies sequences of actions that
accomplish a goal, e.g., pick(obj1), place(obj1, targ1), etc. Each action encodes a motion prob-
lem that must be solved or refined to obtain a trajectory that satisfies constrains and, thus, can be
executed.

In this work, we will use a slight modification of the formalization introduced in [13]. A task and
motion planning problem is a tuple 〈X,F,G,U,A, f, x0〉:

X: the space of valid world configurations, x ∈ X .
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F : a set of fluents, binary functions of the world state that characterize the task space f : X →
{0, 1}. E.g., at(obj3, targ2) or holding(obj1).

G: a set of fluents {gi} whose conjuction defines the set of goal states.

U : the control space of the robot, u ∈ U .

A: the set of action schemas. Each action a has four components.

1. a.params: the parameters of the action (e.g., which object to grasp)
2. a.pre: a set of parameter-dependent fluents that defines the states when this action can

be taken
3. a.mid: a set of fluents that constrains the allowable controls for this action
4. a.post: a set of fluents that will be true after the action is executed

f : the world dynamics; f(xt, u) = xt+1

x0: the initial world configuration x0 ∈ X .

A solution to a TAMP problem is a pair of sequences: (~a, ~τ). ~a is a sequence {ai} of high-level
actions and ~τ is a sequence {τi} of motion trajectories. A plan is valid if 1) each action’s precondi-
tions ai.pre are satisfied in the state it is executed in; 2) each trajectory τi satisfies the corresponding
mid-conditions ai.mid; 3) each trajectory’s final state satisfies the corresponding post-conditions
ai.post; and 4) the final state satisfies the fluents that define the goal.

1.2.2 Imitation Learning

Imitation learning (IL) concerns observing demonstrations to acquire new skills. Methods for col-
lecting demonstrations can be either passive or active. Passive approaches assume access to static
data and are, as a result, simpler. Behavioral cloning (BC), the standard passive approach, trains a
policy π via supervised learning on a fixed dataset and ignores the influence of the policy on the
environment dynamics. For such an approach, Ross and Bagnell [14] showed that the expected cost
under the 0-1 loss may scale quadratically with the time horizon. In contrast, active approaches
interact with an expert that can respond to the learner’s queries. A prevalent example is Dataset
Aggregation (DAgger), as proposed by Ross et al. [12]. DAgger iteratively aggregates the target
dataset with the demonstrator’s behavior at states encountered by a mixed-policy, invoking the cur-
rent learned policy πi with probability β and querying the expert with probability 1−β. The resulting
demonstrations align with the state distribution encountered by the final policy. While pure DAgger
is computationally infeasible to couple with a TAMP solver, we adapt a similar approach to target
demonstrations.

1.2.3 Hierarchical Policy Learning

A common approach to training hierarchical policies is the options framework proposed by Sutton
et al. [15], which assumes a-priori the existence of a set of options O. An option in this context is a
tuple < πlo, β, I >, where πlo : S → A is a policy, β : S → [0, 1] is a termination condition, and
I ⊂ S is the set of valid states from which πlo may be invoked. Under such a formulation, a high-
level policy πhi is trained to select from available options. The policy executes the corresponding
option until termination, and then repeats the process.

The TAMP formalization lends itself naturally to such a framework, with intuitive correspondence
from O to A, mapping task planning to the selection of o ∈ O and motion planning to execution
of the respective πlo. We leverage this abstraction to decouple training of the high-level policy
πtask and low-level policy πmotion. Rather than train separate networks, the termination conditions
are implicitly captured in the training for πtask. To provide additional guidance for πmotion, we
augment πtask in a manner similar to that of Van et al. [16], where the authors train both a policy
to predict the next a ∈ A and a separate policy to predict a onehot-encoding of a.params. In this
work, we condense these into a single policy that predicts both the action a ∈ A and the encodings.

1.2.4 Learning for Long Horizon Planning and TAMP

Learning behaviors for planning has attracted significant interest [17, 18, 19, 20, 21]. In particular,
using hierarchical structures to separately learn policies for sub-goal prediction and goal-oriented
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control has shown promise in extending the horizons existing policy-learning methods can han-
dle [22, 23, 24]. Still, these approaches have yet to achieve the planning horizon and control com-
plexity of TAMP solvers.

Various works have proposed learning-based methods for improving efficiency in the different com-
ponents of TAMP. Most of these have focused on the high-level search. Kim et al. [25] used a score-
space representation to guide the search via transferring knowledge from previous plans. Wells et al.
[26] learned a classifier to assess motion feasibility and incorporated it as a heuristic into the search.
Kim et al. [27] used an actor-critic method trained form past experience for selecting continuous
parameters during the search to improve planning efficiency.

For improving the efficiency of motion planning, Ichnowski et al. [28] used neural networks to
predict an approximate trajectory to transition from a start frame to the goal, and showed using
these approximate solutions to warm-start trajectory optimization provided significant reductions in
overall planning time.

The above approaches provide ways to improve TAMP via learning, but do not attempt to acquire
pure policy-based systems.

To train policies that behave like a TAMP solver, Paxton et al. [29] combined Monte-Carlo Tree
Search (MCTS) in an abstract space with deep q-learning in a control space. They adopted a hierar-
chy similar to ours, with both a high-level policy to select options and a set of associated low-level
controllers. Their approach did not need an existing TAMP solver but did not cover parameterized
actions or tasks with multiple sub-goals.

Kase et al. [30] used static datasets to train hierarchical policies for performing TAMP from visual
inputs. Their approach trained a high-level model to infer symbolic states, and low-level controllers
to convert those symbolic states into executable actions. Since they did not attempt to train a model
for predicting abstract actions, the system required a symbolic planner to be invoked at the start of
each task.

For learning from TAMP solutions, Driess et al. [31] proposed a hierarchical policy structure similar
to ours. They trained their policy to predict discrete action parameterizations and the associated
continuous values, and then passed those to a learned controller. Unlike ours, their design explicitly
accounted for joint reasoning over full action sequences. From an initial observation, their policy
would predict a feasible sequence of discrete actions and continuous parameterizations. The action
sequence then remained fixed, and they would update only the continuous values at action transi-
tions. Their approach also differed from ours in that they did not incorporate policies into the data
generation process. They instead used model predictive control (MPC) to build transitions around a
set of pre-computed solutions, and incorporated the Hessian of the MPC cost into the training loss
of their network.

1.3 Method

1.3.1 Overview

Algorithm 1 Policy Optimization Node

Require: Shared dataset D
Require: Shared memory φ // Policy parameters
Require: Imitation procedure TRAIN()

1: while not terminated do
2: τ = (o0, u0, r0), . . . , (oT , uT , rT )← D

3: φ̂← TRAIN(τ, φ)

4: Publish φ̂ to φ

The output of our system is a modular TAMP
policy that emulates (and accelerates) the be-
havior of an existing TAMP system. To ac-
complish this, we decompose the system into
four types of nodes: (1) policy training, (2)
task planning, (3) motion planning, (4) struc-
tured policy rollouts. The core motivation for
our design is parallelization: each component
can operate separate from the others in its own
process or machine, and pass information via
shared data structures. Arbitrary copies of the last three types may execute simultaneously, provid-
ing for efficient online data generation. This modularity allows for optimal resource allocation per
component and provides flexibility to substitute alternate algorithms into our structure as needed
(even online).
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Figure 2: Policy Design. Left: πtask takes in the observations and the goal and produces one-hot
encodings of the action parameterization. Right: πmotion converts the discrete parameterization to
relevant continuous values, in this case the displacement from object 1 to target 2 (stage 1). The
continuous values then combine with other observations and the action type place selects which
control network to use (stage 2). In practice, stage 2 may alternatively contain a single control
network conditioned on the action.

1.3.2 Hierarchical Task and Motion Policies

The learned TAMP policy consists of two components. The first is a high-level task policy πtask to
select a parameterization for the next action a. The second is a low-level motion policy πmotion to
select the next continuous control u conditioned on the ouput of πtask. Each sub-policy is parame-
terized as a neural network, and trained in isolation within its respective node. No back-propagation
occurs between πtask and πmotion. For this work we found standard supervised learning suffi-
cient for good performance, however the modularity of the system permits the substitution of more
complex procedures into the node (e.g. generative adversarial imitation learning [32] or inverse re-
inforcement learning [33]). Specific network architectures and hyperparameters are included in the
appendix.

Task Policy

To emulate task planning, πtask maps from a continuous observation space into the discrete space
specified by 〈A,F,G〉. Per figure 2, the output of πtask consists of a sequence of vectors. The
first provides a one-hot encoding of the choice of action-type (e.g. place). Each subsequent vector
provides a one-hot encoding for the choice of action parameters (e.g. obj1). As detailed in algorithm
1, training data for this policy accumulates in a shared dataset Dtask.

Motion Policy

Algorithm 2 Task Planning Node

Require: Shared queues Qtask, Qmotion
Require: Problem distribution Pprob; pnew ∈ [0, 1]

1: while not terminated do
2: if flip(pnew) then
3: (x0,Φ,goal, τ) ∼ Pprob
4: else
5: (x0,Φ,goal, τ) ← pop(Qtask)
6: ~a ← task plan(Φ, g)
7: push(Qmotion, (x0, Φ, goal, ~a)

The motion policy πmotion consists of
two stages, as shown in figure 2. The
first is an attention module. It converts
the continuous observations and the out-
puts of πtask into a continuous representa-
tion. For example, the onehot-encoding of
place(obj1, targ2) would become the eu-
clidean displacement of obj1 from targ2.
If the policy has access to state informa-
tion, this can be defined explicitly with
an affine transformation. In more general
observation spaces, a separate regression
model is trained.

The encoded abstract action, the continuous parameterization, and the original continuous observa-
tion pass to the second stage, which predicts the next optimal control. This stage may consist of
either separate control networks, of which one is selected per the choice of action, or a unified net-
work that is conditioned on the action. In either case, the training data for this policy accumulates
in a shared dataset Dmotion as detailed in algorithm 1.
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1.3.3 Parallel Data Generation

Algorithm 3 Motion Planning Node

Require: Shared queues Qmotion, Qtask
Require: Expert datasets Dmotion, Dtask

Require: Motion policy πmotion
1: while not terminated do
2: (x, Φ, goal, ~a)← Qmotion
3: τ ← []
4: for ai ∈ ~a do
5: τ i ← rollout

(
x, goal, πmotion(∗|ai)

)
6: τ i, success← motion plan

(
x, ai, τ

i
)

7: if success then
8: x← τ iend; τ ← τ ∪ τ i
9: Dmotion ← Dmotion ∪ {(ai, τ i)}

10: else
11: ## compute missing geometric facts {ei}
12: push(Qtask, (x,Φ ∪ {ei}, goal))
13: break
14: ## successful task plan, send to task policy
15: Dtask ← Dtask ∪ {(τi, ai, goal})

The task planning and motion planning
nodes follow a formulation inspired by
that of Srivastava et al. [8], modified to
allow for guidance from the current poli-
cies. These nodes generate the supervision
data for the policy training, incorporating
the current policies to guide planning.

Task Planning

We outline our procedure for task plan-
ning in algorithm 2. The system main-
tains a shared priority queue Qtask of en-
countered problems (with random proba-
bility choosing a new problem from a pre-
defined distribution Pprob). The task node
runs a black-box task planner from a state
configuration x0 and a set of discovered
geometric facts Θ, and generates a valid
sequence ~a of action schemas such that
goal ⊂ ~a(Θ). Given the decentralization
of the planning, a valid ~τ is also tracked (with ~τend = x0), which transitions some originally sam-
pled (x̂0, Θ̂, ˆgoal, ∅) ∼ Pprob to the current problem (x0,Θ, goal, ~τ). Intuitively, ~τ represents a
reduction from an initial problem to a simpler one requiring a shorter plan.

Motion Planning

We outline our procedure for motion planning in algorithm 3. The proposed ~a passes to the motion
planning node via another priority queue. The node then refines the elements ai into valid trajectory
segments τ i and discovered geometric facts {ei}. The process terminates when either all ai have
successfully refined or the motion planner fails to return a trajectory.

Refinement occurs in two stages: (1) motion policy rollout and (2) fixing these rollouts via trajectory
optimization. For action ai, the motion policy πmotion(∗|ai) is rolled out from the current state
τ i−1
end to obtain τ̂ i. Trajectory optimization is then initialized around τ̂ i. As πmotion improves, the

optimizer requires less effort to find solutions.

To reduce distribution shift within the system, we augment with the optimization with an additional
cost term ||τ̂ i − τopt||2A. Here || ∗ ||A is the velocity norm outlined by Dragan [34]. This cost
encourages the optimizer to produce controls similar to those sampled from πmotion(∗|ai).

1.3.4 Structured Policy Supervision

The final component of our system, the structured rollout node, identifies states where the task policy
generates invalid actions. We adopt a procedure that enforces the structure of the action schemas A
onto the policy rollouts. Note this structure is enforced only in training and not during evaluation of
the policies.

At each timestep t, the task policy πtask proposes a parameterized action ât. We then check the
post-conditions of the last action at−1 and the pre-conditions of ât. If both are satisfied, this is a
valid high-level action sequence and we set at = ât. If the post-conditions of at−1 are not met (and
ât 6= at−1), we reject ât and leave at−1 unchanged. In this case, we generate a negative training
example for the task policy: we populate a dataset Dneg and train the network to minimize the
likelihood of those (invalid) high-level actions. We also generate negative examples when at−1’s
post-conditions are satisfied and ât = at−1. This discourages redundant actions that do not change
the high-level state.

If the pre-conditions of ât are not met, we need to select an alternative action for at. We do this by
sampling from a softmax distribution over the raw logits of the network with temperature parameter
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λ. We continue sampling until 1) either a valid action is found or 2) we hit a termination condition.
For each rejected candidate ât, we generate a negative training example.

Algorithm 4 Structured Rollout Node

Require: Datasets Dtask, Dneg

Require: Problem distribution Pprob
Require: Shared queue Qtask
Require: Motion policy πmotion; Task policy πtask
Require: Temperature λ; coefficient η
Require: Environment dynamics f : X × U → X

1: while not terminated do
2: x,Φ, goal ∼ Pprob
3: a← πtask(x, λ); xprev ← x; τ ← []; ~a← []
4: while not goal(x) and not timeout do
5: â← πtask(x, λ)
6: if â 6= a and a.post(x) then
7: xprev ← x
8: push(Qtask, (x,Φ, τ, goal))
9: while not â.pre(x) and not max iter do

10: Dneg ← Dneg ∪ {({x}, {â}, goal)}
11: λ← η · λ
12: â← πtask(x, λ)
13: a← â
14: else if â 6= a and not a.post(x) then
15: push(Qtask, (x

prev,Φ, τ, goal))
16: Dneg ← Dneg ∪ {({x}, {â}, goal)}
17: else if â = a and a.post(x) then
18: push(Qtask, (x,Φ, τ, goal))
19: Dneg ← Dneg ∪ {({x}, {a}, goal)}
20: u← πmotion(x|a)
21: x← f(x, u)
22: Φ← update(x,Φ)
23: ~a.append(a); τ.append(x)
24: if goal(x) then
25: Dtask ← Dtask ∪ {(τ,~a, goal})
26: else
27: push(Qtask, (x,Φ, τ, goal))

If we rejected any candidate ât at timestep
t or terminate without having reached the
goal, a new problem instance is added to
the shared queue Qtask. The problem in-
stance contains four values: a state vector
x, a symbolic description Φ of the world in
state x, the trajectory τ up to the timestep
of x, and the current goal goal. If ât was
rejected due to pre-condition violations,
we set x to the current state. If the roll-
out failed to reach the goal or ât was re-
jected due to post-condition violations, we
set x to the state of the most recent ac-
tion transition. The assumption in this case
is that πmotion has failed to execute prop-
erly, and the system should query from the
last timestep when both πtask and πmotion
were trusted. Our full approach is outlined
in algorithm 4.

The benefit of these structured rollouts is
two-fold. First, at each timestep t we can
guarantee the sequence of abstract actions
up to t forms a valid plan. This enables
the system to isolate specific points of fail-
ure: either the high-level has provided a
bad transition or the low-level has failed
to properly execute. Second, we isolate
configurations where the task policy must
disagree with the task planner, without the
cost of invoking the task planner. This en-
ables efficient feedback from the task pol-
icy into the training.

1.4 Evaluation

In this section we evaluate the components
of our system as well as the performance of our trained policies. These evaluations include: (1) the
acceleration of task and motion planning over the course of training in our system; (2) comparisons
of our approach to reinforcement learning and learning from offline data; (3) the performance gains
of our policy structure over a flat policy; (4) the performance gains of using the policies to guide
data generation; (5) the ability of our system to train from visual inputs; and (6) the ability of our
system to train on problems with four and five objects.

1.4.1 Setup

For our experiments, we used Fast-Forward [35] as our task planner and a variant of the trajectory
optimizer used by Hadfield-Menell et al. [36] as our motion planner. All experiments were run
for five random seeds, with plots showing 500-sample rolling averages and standard deviation. For
resource allocation, unless stated otherwise, evaluations of our method used 2 processes for task
planning, 18 processes for motion planning, and, when applicable, 10 processes for supervised
exploration. Observations in all domains, unless otherwise stated, contained a one-hot encoding of
the goal, displacement vectors from the robot gripper to the center of each object, and displacement
vectors from the center of each object to its respective goal location. Furthermore, each neural
network was trained inside its own process. Further details are in the appendix.

We provide experimental results from two simulated environments, shown in figure 3. The first is a
2D pick-place simulator implemented in DMControl [37]. The robot is modelled as a cylinder with
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Figure 3: Left: Our 2D pick-place domain; the goal is for the robot to move objects from the right
onto the corresponding targets on the left. Right: The Robosuite pick-place domain; the goal is for
the robot to grasp each object and move it to its corresponding bin

Figure 4: Average time in seconds for the default task and motion planner to generate a trajectory
and begin execution. By comparison, the policies we train can begin execution immediately.

an attached actuated gripper. The controls are the x, y, and rotational velocity of the robot plus the
gripper value (for 4 DOF). Objects are generated at random positions in the world, with a randomly
assigned (unique) target location chosen from a possible set of 8. A goal is considered achieved
when each object overlaps with its respective target (i.e. ||posobj−postarg||2 ≤ radiusobj). The task
domain contains three actions: moveto-and-grasp, transfer, and place-and-retreat. The observation
space is augmented with the robot’s current directional and rotational velocity, as well as LIDAR-
style sensor. The LIDAR sensor performs ray checking along 39 directions evenly spaced around
the body of the robot and each pointing away from the robot’s center of mass.

The second environment is the Pick-and-Place environment provided in Robosuite [38], using a
Sawyer robot. The controls are the joint velocities of the robot plus the gripper value (for 8 DOF).
In this environment, four objects of different shapes/sizes are initialized at random locations on the
left, and the goal is to place each object in the corresponding container on the right. The containers
for each object are the same in every run. The task domain contains four actions: moveto, grasp,
moveholding, and putdown. The observation space is augmented with the current joint angles of the
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Figure 5: Average duration (in seconds) for each motion node to generate one timestep of super-
vision over the course of training. Initializing trajectory optimization around πmotion yields ap-
proximately a 2x speed up in plan refinement, effectively doubling the rate at which supervision is
generated. We show results in the Robotsuite domain with only the cereal object (left) and the cereal
and milk objects (right).

robot as well as the translation and rotational (recorded in axis-angle format) displacements from
the gripper to each object.

The first domain has a relatively simple control space but a complex task space, with T !
(T−O)! possible

goal configurations. Here T denotes the number of potential target locations and O the number of
objects; in the five-object variant this yields 6720 unique possible goals. In contrast, the second
domain has a simple task space, as the goals are fixed, but a complicated control space.

1.4.2 Acceleration of Task and Motion Planning

The primary advantage of learned policies is the ability to instantaneously execute within an envi-
ronment. As shown in figure 4, task and motion planning requires over six minutes on average for
our hardest problems before it can generate the first action to take. Each neural network requires
negligible compute for each forward inference, hence no such delay exists when acquiring the first
action from the policy.

The first question we answer is if our learned policies actually accelerate the TAMP process. Motion
planning in the 2D pick-place domain incurs minimal overhead, hence we restricted our focus for
these experiments to the more challenging Robosuite domain. The system was evaluated with no
feedback, only task-planner feedback, only motion-planner feedback, and full feedback to compare
how the expense of plan refinement changes over the course of training. As seen in figure 5, our
system was able to reduce the expense to refine and execute a plan by almost a factor of two as com-
pared to those variants without feedback, doubling the rate at which supervision data is generated.

1.4.3 Comparisons to Other Training Methods

To illustrate the need for learning from TAMP on these domains, we compare against both flat
reinforcement learning (RL) and existing results in learning from human demonstrations.

For the 2D pick-place domain, we used the implementation of proximal policy optimization
(PPO) [39] included in the Stable Baselines package [40]. We ran with the default hyperpame-
ters and parallelized training over 60 vCPUs. As seen in figure 6, PPO rarely achieved the goal even
in the 1 object variant, and never in the 2 object variant. As shown by figure 7, it was only able
to move objects modestly towards their goals. The challenges to flat RL here include: (1) proper
placement involves deceleration and direction reversal that create sharp discontinuities in the control
space, (2) the objects require precise placement relative to the size of the work-space (and are easily
knocked off-target by small motions), and (3) the presence of multiple sub-goals inhibits reward
shaping. A particular difficulty is the use of the gripper: the policy learns how to push each object
towards its goal, but never discovers the ability to grasp objects and obtain more stable control.

For the Robosuite domain (with a single object), we refer to existing benchmarks that show state-of-
the-art RL has yet solve this domain. Fan et al. [41] were unable to scale PPO and deep deterministic
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Figure 6: Binary success rate at the end of training for the 2d pick-place domain with 1 or 2 objects.
Our approach can obtain hierarchical policies with > 99% success rates. Flat policies trained in the
same manner succeed only 1 out of 5 times for a single object and almost never for two objects.
Policies trained on the same problem via PPO almost never reach the goal.

Figure 7: Average remaining distance from each object to its goal at the end of a rollout from a
fully-trained policy for the 2d pick-place domain. Smaller distances indicate better performance.
Hierarchical policies place objects on average one-tenth the distance of flat policies trained in the
same manner. Standard RL makes progress towards the single object variant but lacks precision
in localizing the goal and does not make progress on the two object variant. Random denotes the
average distance when sampling a new random configuration.

policy gradients (DDPG) beyond moving a single object. For the one object variant, the official
benchmarks for Soft-Actor Critic (SAC) achieve a normalized return below 50 for 500 timesteps
whereas our average returns for the same time horizon ranged from 320 (with flat policies and no
feedback) to over 390 (with hierarchical policies and combined motion and task feedback) [38].

To show the difficulty of learning from offline demonstrations on the Robosuite task, we again refer
to existing results. In a single object variant of this task, Mandlekar et al. [42] were able to achieve
success rates on the order of 45% using offline human demonstrations from state data, whereas
several variants of our approach achieved success rates over 95% as shown in figure 9.

1.4.4 The Benefit of Hierarchy

The next question we answer is whether the hierarchical policy structure provides benefit. We com-
pared the performance of training with our proposed hierarchy against training with a flat policy that
mapped directly from the observation and goal to controls. Observation and control spaces, along
with any hyperparameters unrelated to policy structure, were kept fixed for all evaluations on a task.

For the Robosuite domain with a single object, as seen in figure 9, hierarchy provided no noticeable
benefit in the absence of feedback but provided significant benefit in the presence of either motion-
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Figure 8: Binary success rates over the course of training. Top: as a function of training time.
Bottom: as a function of planned trajectories used for supervision. Left: Evaluation in the Robosuite
domain with only the cereal object. Right: Evaluation in the Robosuite domain with the cereal and
the milk objects. Feedback from πmotion into the planner offered the greatest performance increase.
Feedback from πtask improved success rates over training without feedback, but offered no clear
benefit in the presence of motion feedback. The bottom row indicates differences in performance
cannot be attributed solely to the rate of data generation.

planner or task-planner feedback. By contrast, as seen in figure 10 the two object variant improved
considerably using the hierarchical policy as compared to the flat - even when the hierarchical policy
trained with no feedback and the flat policy did. A direct comparison on task-planner feedback was
infeasible due to the dependency of our structured approach on πtask. Instead, we ran a variant in
which random configurations from rollouts of the flat policy were passed back to the task planner.
These variants are marked in figure 9 as random task feedback.

In the 2D pick-place domain, hierarchy is critical. Figure 6 shows the fully-trained flat policy signif-
icantly under-performed its hierarchical counterpart when given a single object. With two objects,
the flat policy never achieved the goal. To shed additional light on these numbers, figure 7 shows
that the hierarchical policy was able to place the objects precisely on the goal. This represents dis-
tances approximately 10x closer than the flat policy. While this domain seems simpler than the
Robosuite domain, it contains several pitfalls uniquely challenging to the flat policy: (1) action tran-
sitions involve deceleration and direction reversals that create sharp discontinuities in the control
space, which the flat policy does not capture, (2) there are far more possible goals, which increases
dependence on the one-hot goal vector when choosing controls, and (3) the objects require precise
placement relative to the size of the work-space.

1.4.5 The Benefit of Feedback

The third question we answer is whether the two forms of feedback provided in the system (i.e.
initializing the motion planner at πmotion and using structured rollouts to generate task problems)
benefit training. For the Robosuite domain, we compare four variants: without feedback (essentially
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Figure 9: Full ablation study for Robosuite domain with only cereal object. Binary success rate over
the course of training as a function of training time. With feedback present, variants with hierarchy
outperformed those without. Without feedback, hierarchical and flat variants showed no difference.
Motion feedback improved performance in all cases. Task feedback improved performance in isola-
tion, but had no obvious impact in the presence of motion feedback.

Figure 10: Partial ablation study for Robosuite domain with both cereal and milk objects. Binary
success rate over the course of training as a function of training time. Hierarchical policy universally
outperformed flat policies. Motion feedback improved performance for the hierarchical policy but
not the flat. As in the one-object variant, task feedback improved performance for the hierarchical
policy in isolation but had no obvious impact in the presence of motion feedback.

behavioral cloning), with only feedback between the motion planner and policy, with only feedback
between the task node and the structured rollout node, and with full task and motion feedback.

Motion feedback had a sizable impact within the Robosuite domain. As shown in figure 8, the
feedback into the motion planner provided significant performance gains with both one and two
objects present. Notably, the TAMP acceleration alone does not explain this gap in performance. As
shown in figure 8, the variants with motion planner-policy feedback outperformed those without as
a function of the data generated for supervision.

The results in figures 9 and 10 show that task-planner feedback (via the structured rollout node)
offers benefit in isolation, but not in the presence of motion-planner feedback. To evaluate the
influence of our structured problem selection, we provide a baseline (without motion feedback)
where random states from the policy rollouts were fed back to the task planning node. These variants
are marked in figure 9 as random task feedback, and performed no better than the variants with
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Figure 11: Binary success rate over the course of training from vision for 2d pick-place domain
with increasing number of objects. The policies successfully placed each object on the correct target
over 99% of the time for a single object present, 97% of the time for two objects present, and 83%
of the time for three objects present.

Figure 12: Binary success rate over the course of training for 2d pick-place domain with five objects.
By the end of training, the policies are able to transfer all five objects to the correct targets over 88%
of the time

no feedback at all. This indicates the value of task feedback depends on informed problem selection,
and supports the use of the structured rollouts to guide selection.

For the 2d pick-place domain, we focus on a direct comparison of full feedback vs. no feedback.
As seen in figure 12, feedback offered only modest benefit to training in the hardest variant of this
domain. Taken together, these results suggest the benefit of feedback depends more on the dimension
of the control space than that of the task space.

1.4.6 Vision-Based Learning

Now we examine the ability of our system to train from camera inputs. For these experiments, stage
1 of the motion policy is a convolutional neural network that takes both an image and the onehot-
encoded action parameterization. Each image was 112x112x3 pixels in size, acquired from a fixed
camera centered over the scene. As seen in figure 11, the system suffered only modest decreases
in performance as the number of objects increased. With one and two objects present, the policies
placed all objects on the correct targets over 97% of the time. With three objects present, the policies
were still able to place all three objects on the correct targets over 83% of the time.
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Figure 13: Binary success rate over the course of training for Robosuite pick-place domain with all
four objects. By the end of training, the policies are able to successfully transfer all four objects to
their target containers over 86% of the time

1.4.7 Handling of Long Horizons

We finish with a demonstration of our method’s ability to scale to problems that require over a dozen
high-level actions to solve. We plot the results in figure 13. Our final policies successfully complete
the full Robosuite pick-place task with 4 objects 86% of the time. Similarly, our method trained
policies capable of completing five object pick-place problems over 88% of the time, as seen in 12.

1.5 Discussion and Future Work

In this work we propose a method for training goal-conditioned hierarchical policies via imitation
of task and motion planning, and demonstrate the ability of the resulting policies to solve complex
long-horizon tasks with sensory observations and with high dimensional control spaces. Our method
is able to create a symbiotic relation between learned policies and the TAMP solver, allowing the
policies to accelerate the plan refinement process and in turn accelerating the generation of training
supervision. The parallelized nature of our algorithms inherently allow them to scale with available
hardware, making the system particularly well-suited to industrial environments where many robots
operate simultaneously. And we provide ablation studies to validate both our policy structure and
our methods for handling distribution shift for the learned policies - results which can help guide
extensions and generalizations of this approach to new planners and environments.

There are several limitations that should be addressed in future work. First, our evaluation tasks
had a (relatively) simple structure in the high-level space. We would like to evaluate the system in
scenarios that require complex geometric reasoning, such as navigation around obstacles or the use
of tools. Second, our tasks do not impose large deviations between train and test time. We hope to
evaluate the system’s ability to generalize by training in environments with more variability. Finally,
we have not yet attempted to extend these results to physical robots. To do so, we hope to integrate
sim-to-real transfer into our training.
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2 Asynchronous Intervention in Learning from Demonstrations

2.1 Introduction

Advancements in robotics over the last ten years have rapidly pushed automated systems into wide
swathes of life, from hospitals [43, 44] to factories and warehouses [45, 46] to our homes and cars
[47, 48, 49, 50, 51]. The surfeit of scenarios and novel environments robots will encounter brings
rise to a need for systems that can learn and adapt to new tasks, but also make it wholly infeasible
for these systems to learn from scratch [52, 53, 54]. Learning from Demonstrations (LfD) [55] has
become the go-to approach for robots to quickly learn to perform new tasks, covering methods from
simple imitation learning [12] to inverse reinforcement learning [33].

Learning from Demonstrations contains a core challenge: it is difficult for humans to choose the
most informative demonstrations for the robot [56, 57]. Most prior work has assumed the exis-
tence of human demonstrators, and focused on expanding the expressiblity of the robot, from the
questions it asks [58, 59] to how it demonstrates failure [60]. But what if the demonstrators cannot
understand the robot? The use of classical control systems, such as task and motion planners, to
provide demonstrations to robots has gained increasing attention in recent years [31, 30]. These
systems are computationally expensive, struggle to operate from sensor data, and typically require
partial-to-full replanning when the environment shifts unexpectedly - hence the desire for robots to
learn reactive policies. Using them to demonstrate tasks makes it possible to scale LfD to scenarios
where humans demonstration would break-down, e.g. due to lack of physical access or when there
are many more learners than humans present. But while they are reliable and can be freely queried
for demonstrations, the same limitations that make them undesirable for practical tasks inhibit their
ability to be good demonstrators. As an added challenge, unlike humans they cannot easily answer
questions or form explanations of why a robot has failed. So what role should the human take to
intermediate between the demonstrators and the learners?

Our key insight is that human instincts to anticipatorily correct mistakes can be leveraged to direct
demonstration queries to regions where the robot will fail. We assume that the robot has access
to black box demonstrators (which in this case are task and motion planners) that are expensive to
query, and that a human can observe but not physically intervene in the training. The contributions
of this report are as follows: (1) a proposed algorithm for efficient asynchronous human guidance
of demonstrations from black-box demonstrators, (2) a straightforward user-interface for robustly
locating the states to query, and (3) experimental evaluation of this system with both trained and
untrained users.

2.2 Preliminaries

2.2.1 Active Learning

A primary challenge to learning from demonstrations is disagreement between those states encoun-
tered by the learner and those encountered by the demonstrator. The simplest form of imitation
learning, behavioral cloning, obtains a policy via supervised learning on a dataset of pre-collected
demonstrations. As shown by Ross and Bagnell [14], such an approach may have errors in the
learned policy under the 0-1 loss scale quadratically with the duration of execution. A common
remedy to this challenge is to adopt an iterative training procedure. Dataset Aggregation (DAgger)
is the archtypical such method. DAgger iteratively aggregates the target dataset with the demonstra-
tor’s behavior on states encountered by a mixed-policy, invoking the current learned policy πi with
probability β and querying the expert with probability 1 − β. Under such an approach, demonstra-
tions align with the distribution induced by π. Unfortunately, the expense of replanning at every
timesteps makes DAgger intractable when the demonstrator is something like a taks and motion
planner.

This gives rise to the need for active learning (AL), where the learner can make targeted queries
to the demonstrator[61]. The motivation of AL is to maximize the information conveyed via each
demonstration; queries range from simply choosing which states to ask for demonstrations [62]
to more complex questions[58] that provide greater context on the demonstrations. Unfortunately
most approaches still suffer from requiring large number of queries [62]. This motivates a desire for
queries a human can answer efficiently yet convey meaningful information.
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Figure 14: Overview of the proposed method. Starting from an initial problem distribution, the
expert demonstrator provides trajectories to the policies, which train via direct supervision. Simul-
taneously, the human observes past trajectories of the robot and identifies when the robot should
have queried for help, passing this to the problem distribution.

2.2.2 Humans Anticipate Mistakes

Contrary to other works that seek to maximize the expressibility of queries posed to the human
[60, 58], our approach seeks to maximize the number of queries answered by relying on innate
human abilities to anticipate mistakes.

When presented with adults who were about to retrieve an object from an incorrect location (but had
not yet done so), infants as young as 18- and 24- months old consistently indicated the true location
via pointing [63]. Such anticipatory corrective motion at a young age reflects an instinctive cognitive
model of forward action prediction geared specifically to help others avoid errors.

Leveraging a human’s instincts relies on an assumption that humans will attribute the same cognitive
model to a robot that they attribute to other humans. One important facet of this is the degree of
anthropomorphism humans attribute to the robot. While one may expect humanoid robots to fare
better in this regard than non-humanoid robots, prior work has shown that in fact non-humanoid
robots may attain a higher degree of anthropomorphism than their humanoid counterparts [64]. This
has the particular upside that humans may be more likely to extend their pre-existing cognitive
models to robots designed for functional purposes. Additional prior work has in fact shown that
humans are more willing to donate time to robots framed in functional terms (e.g. specifying height
and weight) than when framed with anthropomorphic terms (e.g. a name and backstory) [65]. Taken
together, this supports the notion that humans will extend their cognitive models for anticipatory
help to robots with goal-oriented tasks.

2.3 Methods

2.3.1 Problem Setup

For this work we model the environment as a Markov Decision Process (MDP), consisting of the
state space S, action space A, transition dynamics T : S × A × S → [0, 1] and reward function
r : S → R, which in this case is a binary signal that the task has been completed. During training,
we assume access to a pre-defined initial problem distribution P that samples configurations from S
and may be freely queried to reset the environment configuration. The expert demonstrator consists
of a parallelized version of the task and motion planning algorithm outlined by Srivastava et al. [8].
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2.3.2 Flow of Information

The system performs training in an asynchronous manner outlined in figure 14, where multiple
copies of each component may be run in parallel (e.g. when training many robots at once).

Algorithm 5 Problem Sampling

Require: Shared queues Qlabel, Qprob, Qroll
Require: Shared data Dclass

Require: Initial problem distribution P
Require: Classifier Cθ with shared memory θ

1: while not terminated do
2: if Qlabel not empty then
3: {x0}, t, label← pop(Qlabel)
4: append(Dclass, (x, t, label))
5: else
6: ## Samples P if Cθ is untrained
7: {xi}N0 ∼ Cφ(P,Qroll)
8: for x ∈ {xi} do
9: push(Qprob, x)

Algorithm 6 Planning

Require: Shared queue Qprob
Require: Shared dataset Dtrain

Require: Expert Demonstrator PLAN
1: while not terminated do
2: x0 ← pop(Qprob)
3: τ ← PLAN(x0)
4: append(Dtrain, τ )

Algorithm 7 Policy Training

Require: Shared dataset Dtrain

Require: Shared queue Qroll
Require: Imitation learning procedure

TRAIN()
1: Initialize policy πφ
2: while not terminated do
3: {τi}N0 ∼ Dtrain

4: TRAIN({τi}N0 , φ)
5: ## Collects rollouts
6: {τ̂i}M0 ← πφ
7: push(Qroll, {τ̂i}M0 )

Algorithm 8 Human Labelling

Require: Shared queues Qlabel, Qroll
1: while not terminated do
2: τ ← pop(Qroll)
3: {(xi, ti, labeli)}N0 ← LABEL(τ )
4: push(Qlabel, {(xi, ti, labeli)}N0 )

In the first component outlined in algorithm 5,
the problem distribution samples world config-
urations to pass to the demonstrator. At the
start these come from a pre-defined distribution
P over states; as training progresses the sys-
tem prioritizes pre-mistake configurations iden-
tified by the human. This component also
trains a classifier Cθ over the human state-label
pairs that assigns a probability p ∈ [0, 1] as to
whether or not a mistake will occur in the next
several timesteps. Concretely, a value of 1 is as-
signed in the training data to the step T labelled
by a human as anticipating a mistake. Suc-
ceeding timesteps are given a value of 0, while
preceding steps t < T are assigned a value of
et−T ; this is meant to reflect an exponential dis-
tribution. While training, the classifier is used
to label the N states of a policy rollouts with
the highest probability of mistakes occurring.
These states are then passed to the demonstra-
tor, with priority beneath those directly labelled
by the human but above those from the initial
sampler. The classifier is trained identically to
the policy, as per algorithm 7.

The next component shown in algorithm 6 sim-
ply takes these initial states, and plans and exe-
cutes trajectories to accomplish the goal. These
trajectories are then passed to the policies for
supervised training as per algorithm 7; while
the system makes no assumption on the imita-
tion learning procedure used, in this work direct
supervised learning was applied to the demon-
strations.

In the final component, the human observes
rollouts of the partially trained policies and
identifies states that happen near-to but before
a mistake occurs, as per 8. This creates a form
of asynchronous intervention - the human does
not directly step in when the robot should ask
for help, but instead identifies when the robot
should have asked for help. This places less
pressure on the human and allows greater flexi-
bility for the interface of interaction.

2.3.3 User Interface

The interface shown to the human is outlined in
figure 15. At run-time, the human views video
segments from trajectories sampled from the partially trained policy. There are five possible inputs,
which are entered as keyboard commands. The right arrow key→ tells the system to move the video
forward in time, showing later timesteps in the trajectory. The left arrow key← tells the system to
move the video backward in time, showing earlier timesteps in the trajectory. The space bar tells the
system the current video segment contains a mistake; i.e. the first timestep is before the mistake but
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Figure 16: The task used for evaluation. The policy outputs joint velocities to grasp the object and
then place it in the bin.

the final is after. The user may also press u, to indicate uncertainty for the current segment (at which
point a new trajectory is loaded) or q to exit the program.

Figure 15: Representation of user in-
terface. (1) No mistake has happened,
user should go forward. (2) still no mis-
take. (3) Mistake has already occurred,
go back. (4) Label mistake.

Upon labelling a mistake, the initial timestep t of the cur-
rent video is used to record a tuple (xt, during). In addi-
tion, T preceding timesteps {ti}T1 spaced evenly (for this
work, 6 timesteps apart) are also used to record tuples
(xti , after). All tuples then pass through to the problem
distribution. The intent of this approach is to model the
human label not as a hard filter on the timestep to sample,
but rather as a distribution over timesteps at which failure
may be anticipated. This allows for greater robustness to
mistakes in the labelling and provides denser supervision
to the system.

2.4 Evaluation

We evaluate our approach when the policy trains using
data labelled offline, with data labelled online with train-
ing, and when a classifier is additionally trained alongside
online labelling. For the offline variant we provide details
of a small user study where the system was provided to
untrained users; for the online variants trials were con-
ducted by the author.

All experiments were conducted using the Pick-And-
Place task from Robosuite [38] with the Sawyer robot and
only the cereal object; in this task the object is randomly
initialized on the table at left and the robot must trans-
fer it to the corresponding bin on right, as shown in fig-
ure 16. The robot observed state information about both
joints and object and target placement. The actions con-
sisted of velocities on the robot’s 7 joints plus a signal to
open or close the gripper. This task was chosen due its
difficulty, as it requires precise orientation of the gripper
to grasp the object without knocking it over and the robot design makes it impossible to grasp the
object once knocked over. The planning domain had four actions: move-to-grasp, grasp, move-to-
putdown, and putdown.

All plots reflect 500-point rolling averages, with error bands showing standard deviation. Data was
aggregated across multiple random seeds for each training condition when feasible.

2.4.1 Setup

Our expert demonstrators consist of an integrated task and motion planner using the FastForward
planner for task planning and a variant of the trajectory optimization procedure outlined by Hadfield-
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Figure 17: Training from offline data with three random seeds. Left: Comparison of results from
each participant using 400 labelled examples. Right: Comparison of results with increasing number
of labelled examples.

Menell et al. [36] for motion planning. All policies and the classifier consist of fully-connected
neural networks of two hidden layers with 64 units each. RELU activations are used on the hidden
layers, while linear activations are used on the outputs. Training was conducted using 18 processes
for planning and 12 processes for policy rollouts, along with a dedicated process for training each
neural network.

2.4.2 Offline Interaction

User Study Setup

For the first set of trials, where labelling happened offline from training, a small user study was
conducted to examine the ability of non-experienced end users to shape the problem distribution.
Three participants (1 Female and 2 Male) were recruited. Each participant was asked to download a
labelling script and a set of introductory videos. The participants first viewed seven examples of the
robot successfully completing the task, in order to familiarize themselves with the objective. They
were then asked to review sixteen examples of trajectories where the robot had made a mistake,
accompanied by the author’s explanation of what mistake had occurred. Finally, the participants
viewed sixteen example video segments that had been labelled (forward, backward, mistake) by the
author. The purpose of this setup was to familiarize the participants to the task, the nature of failures
that could occur, and the interface.

In these trials, a policy had been trained ahead of time without human intervention, and videos of
trajectories collected with the learned policy saved alongside the labelling script. The participants
ran the script on their local machines. They were shown videos segments containing 12 policy
steps, initially at the beginning of a randomly sampled trajectory. The participants could use the
arrows keys to shift the videos forward or back by 6 steps, and the space bar to indicate a mistake
occurred. Up to six states were sub-sampled per trajectory. A new video was shown to the user
upon pressing the space bar, shifting the time frame outside the trajectory, or pressing the u key to
indicate uncertainty. The script saved both the states and labels to a file that was then sent to the
authors. Training was then restarted, using these states to sample the initial demonstrations. For
these variants no classifier was trained.
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Figure 18: Comparison of five variants of the system; all variants except those run online were run
with five random seeds.

Analysis

To compare how training differed between participants, each set of labeled states was truncated to
400 examples. As seen in figure 17, the system varied slightly in its ability to train from different
participants, although not significantly so.

To compare how much data is needed to improve performance, training (for 3 random seeds) was
also run using 100, 200, and 400 randomly chosen labels across participants. There was a clear
improvement in performance as the number of available examples increased, as shown in figure 17.

For comparison against the other variants, training was conducted using a mixture of the partici-
pants’ labelled data. As seen in figure 18, the offline data allowed the system to outperform the
variants without human interaction but did not match the performance of those variants with online
interaction.

2.4.3 Online Interaction

For the next trial, a user ran the labelling interface while training occurred, but the system trained
no classifier from the data. For this evaluation, only the author performed labelling due to the time
consumption involved (requiring two hours). Only a single trial was run for the same reason.

As shown in figure 18, the use of online labelling outperformed both the baseline variants without
interaction and the offline variants. While promising, these results are confounded by the shift in
labellers and hence further trials are needed to disambiguate the influence of task familiariity from
online interaction.

2.4.4 Online with Trained Classifier

For the final trial, a user ran the labelling interface while training occurred, and the system trained
the classifier simultaneously. For this evaluation, only the author performed labelling due to the time
consumption involved (requiring two hours). Only a single trial was run for the same reason.

As shown in figure 18, the use of online labelling with the classifier outperformed all other variants.
While promising, these results again are confounded by the shift in labellers and hence further
trials are needed to disambiguate the influence of task familiarity from online interaction. They do
however support the claim that the classifier provides benefit beyond the human labels.

2.5 Discussion and Future Work

While promising, this work is only preliminary and leaves unexplored many questions about how
human mistake anticipation may shape learning. In particular, a greater user study for both offline
and online variants would help disambiguate potential confounds in the evaluation. Due to the
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COVID19 pandemic, users ran labelling on their local machines; given greater control over the
users’ environments, it would also be possible to measure and quantize the rate at which labelling
occurs and measure training as a function of that rate. It would also to be of interest to measure
the users’ perception of the robot in both anthropomorphic and functional aspects over the course of
training and identify any shifts that occur.

This work also took a simplest-first approach, in particular examining only imitation learning. Of
interest would be in extending this to more complex learning procedures such as inverse reinforce-
ment learning, and in using the trained classifiers to generalize to training in previously unseen tasks
without human interaction.
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C. de Castelbajac, L. Eicher, M. Früh, and H. Früh. Lio-a personal robot assistant for human-
robot interaction and care applications. IEEE Robotics and Automation Letters, 5(4):5339–
5346, 2020. doi:10.1109/LRA.2020.3007462.

[44] R. Shah and S. Nagaraja. Privacy with surgical robotics: Challenges in applying contextual
privacy theory, 2019.

[45] e. Ackerman. Full page reload, Jan 2020.

[46] F. Xue, H. Tang, Q. Su, and T. Li. Task allocation of intelligent warehouse picking system
based on multi-robot coalition. KSII Trans. Internet Inf. Syst., 13:3566–3582, 2019.

[47] A. Gupta, A. Murali, D. Gandhi, and L. Pinto. Robot learning in homes: Improving general-
ization and reducing dataset bias, 2018.

[48] G. Kazhoyan, S. Stelter, F. K. Kenfack, S. Koralewski, and M. Beetz. The robot household
marathon experiment, 2020.

[49] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous driving: Com-
mon practices and emerging technologies. IEEE Access, 8:58443–58469, 2020. ISSN 2169-
3536. doi:10.1109/access.2020.2983149.

[50] Y. Huang and Y. Chen. Autonomous driving with deep learning: A survey of state-of-art
technologies, 2020.

[51] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus,
R. Berriel, T. Paixão, F. Mutz, L. Veronese, T. Oliveira-Santos, and A. F. D. Souza. Self-
driving cars: A survey, 2019.

[52] G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learn-
ing, 2019.

[53] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, Nov 2017. ISSN
1053-5888. doi:10.1109/msp.2017.2743240.

[54] L. Choshen, L. Fox, Z. Aizenbud, and O. Abend. On the weaknesses of reinforcement learning
for neural machine translation, 2020.

24

http://dx.doi.org/10.1109/IROS.2016.7759740
http://dx.doi.org/10.1109/IROS.2016.7759740
https://doi.org/10.1109/IROS.2016.7759740
http://arxiv.org/abs/1707.06347
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1911.05321
http://dx.doi.org/10.1109/LRA.2020.3007462
http://dx.doi.org/10.1109/access.2020.2983149
http://dx.doi.org/10.1109/msp.2017.2743240


[55] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. ISSN 0921-8890.
doi:https://doi.org/10.1016/j.robot.2008.10.024.

[56] Y. Cui and S. Niekum. Active reward learning from critiques. 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 6907–6914, 2018.

[57] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete prob-
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Appendix A: Experiment Settings

Task Policy Details

In both domains, the task policy is a single neural network with RELU activations on the hidden
layers and a softmax activation on the final layer. The output consists of multiple heads, each of
which represent a one-hot encoded vector. The first head is always dedicated to the choice of action
(e.g. place) and the remaining heads specify the selected parameterization (e.g. obj1, targ2). Each
head is trained with a cross-entropy loss, and the overall loss is the sum of these individual losses.
The learning rate was set to 2× 10−4. All networks had L2 regularization.

For the 2d pick-place domain, the task policy produces a three-dimensional one-hot vector for the
choice of action schema (moveto-grasp, transfer, or place), a one-hot vector for choice of object
(same dimension as the number of objects), and an eight-dimensional one-hot vector for choice of
end target.

For the Robosuite domain, the task policy produces a four-dimensional one-hot vector for the choice
of action schema (moveto, grasp, moveholding, or putdown) and a one-hot vector for choice of
object (same dimension as the number of objects).

Experiment # conv layers filter size # filters # fc layers fc dim reg
Robosuite Pick-Place 1 Obj 0 n/a n/a 2 64 10−4

Robosuite Pick-Place 2 Obj 0 n/a n/a 2 64 10−4

Robosuite Pick-Place 4 Obj 0 n/a n/a 2 64 10−4

2d Pick-Place 1 Obj 0 n/a n/a 2 96 10−4

2d Pick-Place 2 Obj 0 n/a n/a 2 96 10−4

2d Pick-Place 5 Obj 0 n/a n/a 2 96 10−4

2d Pick-Place 1 Obj Vision 2 5 32 2 96 10−4

2d Pick-Place 2 Obj Vision 2 5 32 2 96 10−4

2d Pick-Place 3 Obj Vision 2 5 32 2 96 10−4

Motion Policy Details

In both domains, stage 2 of the motion policy involves a fully-connected neural network with RELU
activations on the hidden layers and no output activation. The network is trained via the standard L2
loss with learning rate was set to 2× 10−4. All networks had L2 regularization.

For the 2d pick-place domain, stage 2 of the motion policy is a single neural network that outputs
velocity controls for the robot’s x, y, and rotational position and the next gripper command.

For the Robosuite domain, stage 2 of the motion policy is a set of four neural networks (one for each
action) that outputs velocity controls for the robot’s 7 joints and the next gripper command.

In most experiments, stage 1 of the motion policy uses the output of the task policy to select relevant
indices of the state vector to pass through to stage 2. For the 2d pickplace vision experiments, stage
1 of the motion policy is a convolutional network with the same architecture as the task policy, but
the output is a single vector with linear activation and trained via L2 loss.

Experiment separate option networks # fc layers fc dim reg
Robosuite Pick-Place 1 Obj Yes 2 64 10−6

Robosuite Pick-Place 2 Obj Yes 2 64 10−6

Robosuite Pick-Place 4 Obj Yes 2 64 10−6

2d Pick-Place 1 Obj No 2 64 10−4

2d Pick-Place 2 Obj No 2 64 10−4

2d Pick-Place 5 Obj No 2 64 10−4

2d Pick-Place 1 Obj Vision No 2 64 10−4

2d Pick-Place 2 Obj Vision No 2 64 10−4

2d Pick-Place 3 Obj Vision No 2 64 10−4
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