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Abstract

Accelerating Deep Learning on Heterogenous Architectures

by

Avinash Kumar Nandakumar

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Sophia Shao, Chair

The growth of machine learning workloads, specifically deep neural networks (DNNs), in

both warehouse scale computing (WSC) and on-edge mobile computing has driven a huge

demand in di↵erent types of accelerators. This project focuses on exploring the di↵erent lev-

els of parallelism when running deep learning inferences on heterogeneous architectures and

characterization of coordinating unique accelerators with varying workloads. We have imple-

mented an accelerated depthwise convolution kernel on a vector accelerator and explored the

design space of executing MobileNetv2 in di↵erent configurations on an architecture consist-

ing of both a systolic and vector accelerator. This work examines shared resource contention

at the memory level with this given architecture and analyzes the e↵ects of model pipelining

and batch parallelism. Through layer by layer performance and cache analysis we examine

the best parameters and configurations to execute MobileNetv2 inference, observing a 1.4x

and 3.5x speedup over a naively accelerated baseline on single core and multi core SoCs.
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Chapter 1

Introduction

The recent growth of machine learning workloads, specifically deep neural networks (DNNs),

to perform tasks like object detection in autonomous vehicles or path finding in robotics or

even natural language processing on mobile computing devices has significantly influenced

the evolution of the computing hardware. With the end of Denard scaling and move towards

domain-specific architectures, mapping these complicated deep neural network (DNN) work-

loads on to specialized hardware while achieving minimal latency and high throughput has

not been trivial. There are many challenges to first designing accelerators that are both

performant and versatile enough for these new intricate and demanding workloads, in addi-

tion to then successfully exposing the architecture such that programmers are able to fully

utilize and take advantage of the hardware. This is often advertised as software-hardware

co-design, yet very rarely achieved because of the complexity of the computing stack and

trade o↵s between programmer usability and system performance.

One specific area of high growth, due to this phenomenon, is in the accelerator ar-

chitecture space. Modern day SoCs are starting to incorporate more and more domain

specific accelerators in their architecture that are used in a wide variety of ways from encod-

ing/decoding data to supporting high-end camera modules or even accelerated compression

of data. These accelerators all try to address a specific niche in software workload while

the overall CPU, GPU, and newly added neural engines try to meet the demands of generic

workloads. While there is much focus in both academia and industry in making faster and

more versatile novel accelerator architectures that meet the growing demands of ”Software



CHAPTER 1. INTRODUCTION 2

2.0”, there is relatively less work in understanding and investigating how current accelerators

work and scale together.

In contrast, moving from single-core to multi-core CPUs in the last few decades, much

work has gone into studying the performance and scaling of workloads as computation re-

sources increase [10]. In addition, significant studies exist on how to e↵ectively expose thread

level and application level parallelism to the programmer [8]. This body of work is a great

starting point when it comes to accelerators but calls for a deeper dive into studying how to

best broadly abstract, implement, and coordinate accelerators in modern SoCs.

This work focuses on starting the exploration into using multiple unique Berkeley-developed

accelerators together on a single SoC and examining the complexities and challenges that

arise. This work is motivated by accelerating a few di↵erent kernels of a specific DNN work-

load and analyzing its overall performance. Then this work will move into exploring how

running multiple accelerators in parallel can exploit workload level parallelism and improve

performance but attract resource contention problems while doing so. Finally, this work will

conclude by examining the performance and constraints in optimizing a single dependent

DNN workload on two unique accelerators through pipelined execution of the system while

being constrained by the workload.

1.1 Thesis Organization

Chapter 2 provides an overview of the motivating software workload, MobileNetV2, and

a deep dive into depthwise convolutions, in addition to defining the various levels of DNN

parallelism. Chapter 3 reviews our accelerator architecture configuration and baseline perfor-

mance of MobileNet. Chapter 4 describes the Hwacha programming model and accelerated

kernel performance and compared with the baseline CPU and Gemmini results. Chapter 5

examines resource contention within the context of multi accelerator usecases and proposes

potential solutions. Chapter 6 focuses on increasing utilization while maintaining synchro-

nization in a singular dependent workload.



CHAPTER 1. INTRODUCTION 3

1.2 Project History

This thesis leverages a lot of tools and preexisting work done through ADEPT Lab at

Berkeley. Tools like FireSim, Chipyard, Gemmini, and Rocket are heavily relied upon to

make this study possible and have had numerous contributors in their development. Most of

this study has been developed through individual contribution by myself but reference some

closely related projects and ideas. Specifically, the use of OnnxRuntime was made possible

through another project contributed to and lead by Pranav Prakash. In addition, references

to CALM and solutions for shared resource contention in Chapter 5 were developed in a

closely related project lead by Seah Kim and assisted by myself. Finally, ideas and findings

were assisted by Hasan Genc through close mentorship and guidance.
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Chapter 2

Motivating Workload

In order to justify the need for using heterogeneous accelerators for a singular DNN workload,

this work will first describe the motivating DNN that will be primarily used throughout this

work, MobileNetV2 [20]. This work will then characterize MobileNet’s architecture and

discuss the mapping of specific layers within such as normal convolution and depthwise

convolution. In addition, this work will broadly define and describe the levels of parallelism

within DNNs that this work will look to exploit further in this work.

2.1 MobileNetV2

MobileNets [11] in general are light weight DNNs used in mobile and embedded applications

for a wide variety of applications from image recognition to object detection to even geo-

localization. These DNNs are popular in these contexts because of their smaller memory

footprint in terms of its parameters and e�cient latencies even when executed with modest

compute, available on edge devices like smartphones. While there has been a general trend

of increasing complexity and size to reach high levels of accuracy when developing DNNs in

the past few decades, this opposite approach out of Google aimed to pair high accuracy with

small yet latency e�cient networks.

Choices in DNN architecture such as number of parameters, network depth, and pre-

cision type are critically important as they all significantly impact the performance of the

underlying hardware and should be considered when tuning for performance. More impor-



CHAPTER 2. MOTIVATING WORKLOAD 5

Figure 2.1: Graphical representation of a normal convolution [18]

tantly, however, is the choice of layers in the DNN architecture which dictate the latency and

throughput of any targeted accelerator. Depending on the layer, or kernel, attempting to

o✏oad computation to accelerators may sometimes even slowdown the overall execution of

the network due to accelerator overhead or data communication costs among many di↵erent

variables. This shows that programmers must think carefully about how to accelerate a spe-

cific workload given both the available configuration of hardware accelerators and software

workload.

2.2 Depthwise Separable Convolutions

The MobileNet network architecture is heavily based on a special type of kernel known as

the depthwise separable convolution. This type of convolution, which reduces complexity,

has steadily grown in popularity being found in many modern DNNs outside of MobileNets

most notably in the Xception DNN [4]. According to the researchers in the MobileNet paper,

depthwise separable convolutions can result in between 8 to 9 times less computation with
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only a small drop in accuracy. This almost magnitude of reduction in computation guarantees

less overall operations in the network but not necessarily an increase in performance, which

will be evident in Chapter 3.

What is a Depthwise Separable Convolution?

The depthwise separable convolution kernel can be broken down into two distinct parts

(1) a depthwise convolution and (2) a 1x1 pointwise convolution. The goal of this two-

part layer is to decrease the overall computation while still maintaining the richness of the

activations gained from a normal convolution layer. By having a depthwise convolution

followed by a pointwise convolution, the depthwise separable convolution splits the filtering

and accumulation of a single convolution into two separate operations. This is beneficial

in terms of reducing the number of operations to be executed but can lead to performance

degradation when mapped naively.

Mathematically the depthwise convolution is computed as follows:

Gk,l,m =
X

i,j

Ki,j,m ⇤ Fk+i�1,l+j�1,m

where K is the depthwise convolutional kernel of size DK x DK x M where mth filter in

K is applied to the mth channel in F to produce the mth cahnnel of the filted output feature

map G [12].

The separable part of the depthwise separable convolution is a 1x1 pointwise convolution

that comes after the depthwise convolution. This 1x1 pointwise convolution is needed to

generate the new features of this entire layer. However, this work moving forward will focus

only the depthwise convolution stage of the depthwise separable convolution.

Mapping to Hardware

The biggest di↵erence of concern between a normal convolution and a depthwise convolution

is properly handling the n number of channels present in both the input of the layer and

the filters of the layer. With a normal convolution, the underlying hardware has several

di↵erent methods to execute the kernel. The most intuitive approach is to implement a direct
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Figure 2.2: Graphical representation of depthwise convolution without tail end pointwise
convolution. [3]

convolution kernel which strides across the inputs and filters in a linear fashion multiplying

and accumulating as it strides. This kernel can start to be optimized for caches by studying

the memory access pattern of the kernel and for the processor by taking advantage of fused

multiply add instructions among many other optimizations.

Another approach to executing a normal convolution in hardware is to transform both

the inputs and weights into matrices that can then be multiplied in a straight forward

fashion. Even though this conversion process, known as im2col, adds overhead to executing

a convolution and increases data redundancy within filters, depending on the processing

elements available in a machine this method can result in the most e�cient performance.

This can be attributed to the fact that matrix-matrix multiply operation is heavily studied

in research literature and optimized in practice. There are many other di↵erent methods in

implementing a convolution kernel but these are the two most important to this work.
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When moving from mapping convolution to mapping depthwise convolution, both ap-

proaches mentioned previously still apply. However, the performance impacts of each are

magnified because of the structure of the depthwise convolution and its lack of a single fused

multiply add computation. This results in performance degradation when trying to follow

the direct convolution approach in mapping this kernel. With the im2col case, because of

the increase in filter channel dimension this method also su↵ers from significant performance

reduction because of the eventual size of the matrix multiplication, which will be analyzed

in Chapter 3.

2.3 DNN Parallelism

This work, in later chapters, will discuss the performance, obstacles, and potential solutions

for various levels of parallelism within DNNs. Specifically, Chapter 5 will focus on work-

load level parallelism and the resulting resource contention, while Chapter 6 will focus on

intra-layer and batch level parallelism within MobileNet. For the sake of clarity and future

reference this section will briefly describe and introduce the di↵erent layers of parallelism

that can be exploited in the context of DNN accelerators and motivation for pursuing each

type of parallelism including some related work.

Workload Level Parallelism

Workload level parallelism often describes when multiple unique workloads or multiple infer-

ences of the same workload are colocated onto hardware in order execute parallelly. This is

a key space in which previous and current research is focused to provide support for parallel

inferences in AR/VR applications where tasks such as segmentation and classification need

to be performed in parallel [16]. In addition, the autonomous vehicle space is exploding with

tons of novel DNNs and multi-inference environments in on-edge computing with NVIDIA’s

Drive platform and complete vehicle SoC, AGX Orin [22]. This level of parallelism will

drive the work in Chapter 5 where this work will examine how to improve multiple di↵erent

inferences of unique models that can be executed in parallel.
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Intra-Layer Parallelism

Intra-layer parallelism refers to di↵erent sequential or parallel layers within a singular work-

load being mapped to unique accelerators to speed up execution. In this level of parallelism,

there are two main factors to consider: (1) parallel independent layers and (2) priority assign-

ment of layers. For example, the first factor is highlighted in DNN workloads like GoogleNet

that have multiple independent layers that could be executed in parallel which could result in

huge performance gains. Given the right hardware configuration, it is possible to accelerate

the performance and reduce the latency of the entire inference by taking advantage of the

branching within the DNN architecture and executing these independent layers parallely.

With regards to the second factor, cleverly assigning priorities to have some specific layers

execute on targeted accelerators in a heterogeneous system could boost the performance as

well. For example, in the execution of MobileNet using a vector accelerator to execute

depthwise convolutions and a systolic accelerator to accelerate normal convolution layers

might yield better performance while trading o↵ data movement costs and blocking latency,

which will be explored in Chapter 6.

Inter-Layer Parallelism

Finally, inter-layer parallelism often refers to the lowest level of DNN parallelism where

each kernel or layer itself can be broken up into smaller tiles of work to be scheduled and

executed across multiple homogeneous or heterogeneous accelerators. This would show huge

performance benefits for compute bounded kernels and could potentially scale linearly with

the number of accelerator cores available in the system. However, data movement and

synchronization costs would also grow with the increase in tiling and scheduling, introducing

a critical tradeo↵. This is a very interesting space that will not be discussed further in this

work but will rather be a topic left for future work.

2.4 Summary

This motivating workload with MobileNetV2 and interesting kernel with the depthwise sep-

arable convolution sets up the rest of this work to explore the acceleration of this kernel and
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overall use of multiple hardware accelerators to parallelize and accelerate this workload.
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Chapter 3

Architecture and Framework

This section will provide an overview of the tools, frameworks, and architecture configu-

rations that are used and most significant to rest of the work. Most of these open source

tools developed through Berkeley ADEPT are available in the Chipyard framework and have

enabled countless studies like this to be possible.

3.1 Workflow

From initial stages of design exploration to workload generation to final FPGA based per-

formance simulation of custom system-on-chip (SoC) designs, Berkeley ADEPT’s Chipyard

[1] framework contain the tools for every step of a full-system design and evaluation. This

work’s baseline architecture starts with a RISC-V based Rocket [2] core as the CPU attached

to Gemmini, a systolic-array based DNN accelerator via RoCC interface. DNN workloads

are generated by using a combination of custom software stacks specific to each accelerator

along with ONNX Runtime [7] to produce our final linux binaries. In addition, Spike is

used for behavioral simulations for accuracy verification and FireSim [15], a cycle-accurate,

FPGA-accelerated RTL simulator is used for performance analysis. This work then use data

profiling scripts to perform memory cache analysis and workload kernel residency graphs.

This is the general workflow from SoC configuration and software generation to RTL simu-

lation and data analysis throughout each study in this work.
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Figure 3.1: Gemmini systolic accelerator system architecture attached to Rocket RISC-V
CPU Core [9]

3.2 Gemmini

The Gemmini [9] accelerator is a compile- and runtime configurable systolic array that is

made up of individual processesing elements that are connected in a grid like network. This

type of DNN accelerator architecture has been widely used in industry and academia to

accelerate matrix multiplication and convolution kernels. This work takes advantage of the

Gemmini generator, embedded within the Chipyard framework, to produce various instances

of this systolic accelerator that interface with our main Rocket RISCV CPU.

Microarchitecture and Memory Model

In addition to the configurable number of processing elements, Gemmini also contains its

own DMA engine, local translation lookaside bu↵er (TLB), and scratchpad. This microar-

chitecture is important to keep in mind when programming Gemmini because of its memory

and overall system implications to our workload. Gemmini’s DMA engine directly connects

to a shared L2 cache via TileLink [5] crossbar which then connects to the system’s main

DRAM. Chapter 5 of this work will discuss shared resource contention that occurs especially

when connecting multiple accelerators and their memories and propose modifications to this

memory model to alleviate this problem.
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Parameter Value

Systolic array dimension 16x16
Inner scratchpad size 64KiB
Inner accumulator size 32KiB
Shared L2 size 2MB
Shared L2 banks 4
DRAM bandwidth 16GB/s
Frequency 1GHz

Table 3.1: SoC configurations used in evaluations.

Programming Model

The main CPU and Gemmini accelerator communicate through custom instructions specific

to the accelerator. These instructions allow the CPU to o✏oad specific kernels and compu-

tations to the accelerator while allowing the CPU to proceed on other non-dependent tasks.

These instructions are communicated via Rocket Custom Coprocessor Interface (RoCC) to

the Gemmini accelerator for decoding and execution. These custom instructions are prede-

fined and give programmers the ability to move data in/out of Gemmini and compute data

at the lowest level. Through the work of the Gemmini project, custom libraries with matrix

multiplication and convolution kernels were developed exposing a higher level interface to

Gemmini and will be used in this work.

3.3 ONNX Runtime

In addition to the aforementioned tools, this work builds upon previous work [19] to build

and integrate ONNX Runtime into Gemmini’s software stack. ONNX itself is a DNN model

format that is used to describe the representation of a particular DNN regardless of frame-

work. ONNX Runtime on the other hand, at its core, is Microsoft’s machine learning runtime

engine that is able to consume and execute any ONNX model by assigning and scheduling

various hardware providers to software workloads based on graph optimizations. This frame-

work gives us the freedom to first explore any number of di↵erent providers executing any

type of DNN workloads; and second, create custom backends for each of our unique accelera-
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tors. Chapter 4 will go into more detail on our ONNX Runtime integration when discussing

our implementation of our accelerated depthwise convolution kernel.
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Chapter 4

Accelerating the Depthwise

Convolution

This section will discuss the results of the baseline performance of a MobileNet inference

and use it as motivation to accelerate the depthwise convolution kernel. Then this section

will describe our vector accelerator, Hwacha, its unique programming model and the e↵ects

of it on our accelerated kernel. Finally this section will conclude with the integration of the

accelerated kernel into the ONNX Runtime backend and our performance results when using

Hwacha compared with our baseline data.

4.1 MobileNet Baseline

As discussed in Chapter 3, the baseline architecture configuration consists of a singlecore

Rocket RISCV CPU attached to a single Gemmini systolic array accelerator. The existing

framework inside of the Gemmini software stack is able to run MobileNet in three di↵erent

configurations to see where the accelerator’s performance degrades the most.

1. CPU Baseline: All convolution kernels are run on the CPU making no use of Gemmini

2. Gemmini Matmul: Non depthwise convolution layers are accelerated using Gemmini

3. Gemmini Conv: All convolution layers are accelerated using Gemmini
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Cycle Breakdown CPU Baseline % Gemmini Matmul % Gemmini Conv %

Matmul Cycles 1.0⇥ 1010 c 68% 4.5⇥ 107 c 0% 4.3⇥ 107 c 13%

Im2Col Cycles 2.7⇥ 107 c 0% 2.7⇥ 107 c 0% 0 c 0%

Conv Cycles 0 c 0% 0 c 0% 5.1⇥ 106 c 1%

Depthwise Conv Cycles 4.6⇥ 109 c 30% 4.6⇥ 109 c 98% 2.6⇥ 108 c 83%

Total Cycles 1.5⇥ 1010 c 100% 4.6⇥ 109 c 100% 3.1⇥ 108 c 100%

Table 4.1: Baseline Gemmini data showing the three di↵erent configurations and its individ-
ual break down of cycles spent with di↵erent kernel operations.

As seen in Table 4.1 these three di↵erent approaches yield wildly di↵erent performances

in terms of cycles spent in each kernel. As expected the non-accelerated, CPU only con-

figuration performs the worst in terms of overall cycles and in each individual kernel. In

the second configuration, Gemmini Matmul, on an initial glance, the data shows a massive

speed up, around 225x, achieved by Gemmini when accelerating all the non depthwise con-

volutions. However, upon close observation, the total execution cycles has only decreased

by a factor of 3x. This is precisely due to the depthwise separable convolution layers within

MobileNet that dominate the CPU when not accelerated. Note that both the CPU Baseline

and Gemmini matmul implementations use im2col to do matrix multiplies which is seen in

the constant number of cycles spent in both configurations.

The final data point, Gemmini Conv, shows the performance when all convolution layers,

including the depthwise convolution layers, are accelerated using Gemmini. Impressively,

the data shows an overall speedup of around 48x; however, when looking at the breakdown

of where Gemmini spends the most cycles it is noted that the depthwise convolution still

dominates the performance whether run on CPU or an accelerator.

Not Good At Everything

Gemmini, a systolic based accelerator, is highly optimal for normal convolutions because of

its processing element structures and interconnects. In addition, the scratchpad and accu-
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Figure 4.1: Hwacha decoupled vector accelerator block diagram [17]

mulator units help Gemmini execute matrix multiplications with high e�ciency and speed.

However, when Gemmini is repurposed to execute depthwise convolutions it is suboptimal

because of the kernel itself and its mapping on to Gemmini. When depthwise convolutions

are run on Gemmini, each layer/channel of activations and filters is an independent opera-

tion since there is no accumulation across channels. Each input and output pixel is mapped

to a row in the scratchpad and accumulator which is highly ine�cient for memory. Gemmini

normally when executing standard layers improves in e�ciency as the compute workload is

increased when layers have higher channel sizes and more parameters. However, with depth-

wise convolution, with higher channel sizes, since Gemmini treats each individual channel as

an independent operation, the execution lowers utilization and is highly ine�cient.

4.2 Hwacha

Hwacha is a decoupled vector-fetch accelerator that attaches to the main Rocket RISC-V

based CPU via RoCC. Hwacha excels at accelerating data parallel workloads as it fea-

tures parallel vector lanes each with its own execution and memory unit. To optimize data

throughput, programmers are able to configure the length and partitioning of Hwacha’s vec-

tor register file. This allows the programmer to decide how to partition the vector data
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registers depending on how many di↵erent pieces of data will be used in a specific kernel and

the precision of the data itself.

Programming Model

Hwacha at its core is built like a traditional vector accelerator except for some unique di↵er-

ences in its programming model and interface. One popular way of programming accelerators

in general, is to embed custom accelerator instructions into a program’s overall set of in-

structions. When the program running on the CPU reaches a custom instruction it cannot

execute, it forwards it to the right accelerator to execute and return. Another, also popular,

programming model, SIMT, is to treat the parallel-data as multiple di↵erent threads such

that each thread executes a piece of the overall kernel. Finally, one last SIMD approach

to programming traditional vector accelerators is to use vector specific intrinsic instructions

that change based on the data type, vector length, and available hardware support.

Hwacha’s unique programming model tries to take the best of each of the previous men-

tioned methods in that it decouples work into a control thread and worker thread. When

programming a sample kernel, the non-vectorized code (e.g. stripmine for loops, calculating

addresses, moving pointers) can be decoupled from the actual meat of the kernel where the

computation lies. In this programming model, the control thread executes all of the non-

vectorized code and then launches a worker thread to Hwacha when it reaches a vector

fetch instruction. This critical control instruction is responsible for communicating from

the CPU to Hwacha where the vectorized portion of the code is and what to execute. When

called, Hwacha will fetch these instructions, decoupled from the control thread CPU and ex-

ecute them, allowing the control thread to runahead and process more non-vectorized code

that is independent of the executing computation.

4.3 Accelerated Kernel

This section describes the accelerated Hwacha depthwise convolution kernel in detail; how-

ever, the algorithm figures are summarized for brevity.
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Algorithm 1 Depthwise Convolution Worker Thread

1: setvcfg(0, 1, 4, 1)
2: count, consumed = 0, setvlen(channels)
3: for b in batch size do
4: for out y in output height do
5: for out x in output width do
6: consumed = setvlen(channels - count)
7: va0  output ptr + o↵set
8: for filter y in filter height do
9: for filter x in filter width do
10: va1  input ptr + o↵set
11: va2  filter ptr + o↵set
12: vector fetch mac
13: end for
14: end for
15:

16: va0  output ptr + o↵set
17: vs1  real multiplier
18: vector fetch scale
19: count += consumed
20: end for
21: end for
22: end for

Because depthwise convolution has data parallelism between the inputs and filters across

all of the channels for a given layer, this kernel’s implementation programs Hwacha to con-

figure its vector length to be the channel size of a given layer. This allows us to exploit

instruction and data level parallelism when striding through this kernel. As the kernel it-

erates through the batch, output height, and output width, for each filter height and filter

width the kernel will load an input vector and filter vector of length channel size into

Hwacha to multiply and accumulate.

In Algorithm 1, the first setvcfg control instruction configures Hwacha’s vector register

file to have 1 single-precision vector, 4 half-precision vectors and 1 predicate register. Then,

when calling the setvlen command with channel size as the argument, Hwacha will try to

configure and partition its vector register file such that each vector declared with the previous

setvcfg command will be of length channels. If Hwacha is unable to meet these constraints
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the setvlen call will return with the actual length of each of the vectors. This unique

Hwacha feature allows programmers to be able to easily tradeo↵ precision for throughput

within any kernel. In this particular instance, since executing a quantized int8 inference

of MobileNet, the vector register file can be optimized by using half-precision vectors for

activations and filter weights and a single-precision vector for outputs to guard against

multiplication overflow.

Algorithm 2 Depthwise Convolution Vector Fetch Blocks

1: .globl mac
2: mac:
3: vpset vp0
4: vlb vv1, va1 # input
5: vlb vv2, va2 # filter
6: vlh vv3, va0 # output
7: vmul vv1, vv1, vv2
8: vadd vv1, vv1, vv3
9: vsh vv1, va0
10: vstop

11:

12: .globl scale
13: scale:
14: vpset vp0
15: vlh vv0, va0 # output
16: vfcvt.s.w vv0, vv0
17: vfmul.s vv0, vv0, vs1
18: vfmin.s vv0, vv0, vs2
19: vfmax.s vv0, vv0, vs3
20: vfcvt.w.s vv0, vv0
21: vsb vv0, va1 #store to output
22: vstop

Once iterating through each batch, output height, and output width, the code can then

for each index of the filter, set up Hwacha to do a multiply and accumulate. To clarify, as

mentioned previously depthwise convolution does not accumulate across channels like normal

convolution, but instead accumulation here is referring to the filter accumulation across the

width and height of each filter. After setting up the Hwacha address registers pointing to

the input, filter, and output the vector fetch instruction is finally called to decouple our
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worker thread and let Hwacha fetch and execute the mac vector block, described in Algorithm

2. The last step in the loop iteration after accumulating across filter height and width is

to scale the activations such that they fall in the range of int8. The scale vector block

rescales the output vector by using Hwacha instructions for type conversion and stores the

final partial output from the accelerator into memory. The count and consumed variables

ensure that the kernel performs correctly even when the channel size is larger than the

actual configured vector length inside Hwacha.

Integration with ONNX Runtime

As a part of this work, the ONNX Runtime backend has been extended by providing Hwacha

support for this particular depthwise convolution kernel. Enabling Hwacha as a provider

in the ONNX Runtime framework allows us to take advantage of the overall framework

for testing and performance analysis of this kernel and Hwacha. With advanced profiling

and versatility to run parameter sweeps of di↵erent comparisons, ONNX Runtime wraps

and abstracts the software and hardware stack while still allowing for studies like this. In

addition to performance studies, because of this integration there is on going work trying to

bring up a taped out chip that has Hwacha using ONNX Runtime generated binaries to test.

Chapter 6 will discuss dual running and threading features enabled by ONNX Runtime for

this work.

4.4 Performance Results
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Figure 4.2: Performance comparison between depthwise convolution executed on Gemmini
versus Hwacha in a log scale. On average shows around
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Chapter 5

Shared Resource Contention

This section will build o↵ of the accelerated depthwise convolution kernel described in the

previous chapter and focus on the specific issue of shared resource contention when running

multiple accelerators parallelly. As mentioned in Chapter 2, this section will mainly focus

on workload level parallelism while Chapter 6, will focus on intra-layer and batch level

parallelism. This section will start with some related background work done to address

resource contention and move on to the setup, configuration, and results. Finally, this section

will conclude with a few di↵erent potential solutions and reference a closely developed work

that addresses this exact issue.

5.1 Background and Related Work

Previous works examining memory bottle necks of DNN accelerator level parallelism have

shown the wide gap in performance and have tried to address them in many di↵erent ways.

While some papers tend to study a specific pairing of use cases with one ML workload and

background host CPU tasks, it is important to properly explore all parts of the accelerator

parallelism space. [24] This usecase of one ML workload paired with host CPU tasks mimic

a homogeneous server in a warehouse scale computing environment where clients are contin-

uously requesting the execution of some ML workload. However, this is completely di↵erent

from the edge computing design point where the SoC has numerous wildly di↵erent accel-

erators available to use and the CPU acts more like a scheduler and synchronizer between
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Figure 5.1: Heterogenous system architecture with Hwacha vector accelerator and Gemmini
systolic accelerator attached to Rocket RISC-V CPU Core

the accelerators. Since this is a very wide design space, this work will focus on the resource

contention in the later context.

When it comes to solutions, one common approach is to do static resource partitioning

on the shared resources that accelerators tend to contend for. However, this method has

shown to create memory back-pressure in low priority tasks and is untested with more than

one high priority ML workload. Another approach is to use a runtime module that has a

complex scheduling algorithm that helps alleviate the memory requests by monitoring vital

memory statistics. [16] However, even these hardware and software solutions are tied closely

with the workload and system architecture making it limited to implement in other systems.
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5.2 Setup and Configuration

Architecture

In this work, a heterogenous architecture configuration consisting of both Gemmini and

Hwacha is used to study the performance impacts of executing DNN workloads on a multi-

accelerator system. Hwacha and Gemmini are both attached to the same RISC-V Rocket

CPU and have their own vector register files and scratchpads/accumulators (respectively) but

will still contend for L2 cache space in the memory subsystem. In this baseline configuration

there is a 2MB L2 cache with 4 bank ports that is later varied in the study to see cache size

impacts.

Workloads

To occupy the systolic array accelerator, Gemmini, this work primarily relies on a quan-

tized ResNet50 model, which is a deep and heavy DNN workload. It is expected that this

ResNet50 inference should occupy and highly utilize the Gemmini accelerator with its nu-

merous convolution layers, also while running quantize, batchnorm, and other unsupported

kernels on the Rocket core.

Meanwhile for Hwacha, because of it’s low throughput and performance for integer

GEMM operations, synthetic DNN workloads were created that consist of back to back

depthwise convolution kernels that would highly utilize Hwacha. This design choice was

made, following guidance from previous work, so that we could realistically simulate work-

load level parallelism environments. Both DNN workloads, ResNet50 and synthetic depth-

wise convolutions, are quantized inferences that use the int8 type.

5.3 Performance Results

With the discussion of the results of this study, it should be noted that the baseline case

in all the results was conducted with the same heterogeneous architecture configuration (1

Rocket attached to Gemmini + Hwacha) but without utilizing one of the accelerators, while

the multi case utilizes both accelerators. In addition, utilization in the following results
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(a)

(b)

Figure 5.2: In 5.2a Hwacha’s utilization degradation is shown in the baseline case versus the
multi use case when only Hwacha is executing versus both Gemmini and Hwacha are being
utilized (respectively). In 5.2b Gemmini’s utilization degradation is shown with the same
configurations as the previous figure.

are calculated as IdealCycles
ActualCycles where Ideal Cycles comes from the # of MAC operations in the workload

Max MACs per Cycle

where Gemmini’s and Hwacha’s max throughput for integer MACs is assumed to be 256 and

8, respectively.



CHAPTER 5. SHARED RESOURCE CONTENTION 27

Overall Utilization

To analyze performance and utilization at a very high level, two parameters in the synthetic

depthwise convolution workload assigned to Hwacha were chosen to be varied: kernel size and

channel size. This allows for the observation of how each accelerator responds to changing

workloads. Increasing channel size is expected to produce more data movement through the

entire system inducing more resource contention and the opposite for kernel size as less data

will be involved with larger kernel dimensions.

As Figure 5.2a shows, there is almost a 2x degradation in utilization of Hwacha when

Gemmini is executing its workload (Resnet50) in parallel. Another interesting observation

is the saturation of the performance when the channel size is increased to 512. The baseline

and multi utilization statistics look almost identical since it reaches a saturation point of

memory and compute for Hwacha for this particular workload.

Next, the same sort of performance impact is noticed when looking at Gemmini’s uti-

lization. As seen in Figure 5.2b, the baseline ResNet50 workload overall utilizes Gemmini

around 33%, but in the multi case when Hwacha is executing it’s own independent work-

load, Gemmini’s utilization significantly worsens as Hwacha’s workload gets larger, indicating

competition between the accelerators over cache lines in the shared L2.

Layer by Layer Utilization

Looking closer at a single data point shown above, specifically the case where channel size

is 128 and kernel size is 1, we can see detailed behavior of each accelerators layer by layer

performance in Figure 5.3a. Hwacha’s performance shows both baseline and multi utilization

numbers degrading as the accelerator gets deeper and deeper into the workload. To show

the extent of the degradation, when compared to the baseline Hwacha utilization, there is

only one layer out of 50 in the multi case where the utilization of Hwacha is slightly more

than worst case utilization in the baseline. In addition, some irregular changes were noticed

in utilization in the multi case versus the smooth regular change in the baseline, which can

be explained by Gemmini’s execution.

Looking at the layer by layer analysis of Gemmini’s ResNet50 execution in Figure 5.3b

a pattern of degradation of utilization at very regular intervals can be seen. The multi case
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(a)

(b)

Figure 5.3: In 5.3a Hwacha’s utilization degradation of executing back to back depthwise
convolution kernels with channel size 128 and kernel size 1 is shown in the baseline case
versus the multi use case when only Hwacha is executing versus both Gemmini and Hwacha
are being utilized (respectively). In 5.3b Patterned layer by layer utilization degradation
of Gemmini systolic accelerator when running ResNet50 with Hwacha being utilized by
depthwise convolution workload is shown.

follows the utilization of the baseline almost exactly except for very specific layers, indicative

of some memory contention. This could be caused by bank conflicts from competition over

the TileLink memory ports that serve both accelerators with data.
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Figure 5.4: Hwacha utilization of baseline and multi cases varied by L2 Cache Size

L2 Cache Variance

Another parameter of consideration is the size of the L2 cache to see its impact on perfor-

mance. As expected, lowering the L2 to a 512KB, 1 Bank configuration lowered the memory

throughput overall and bottle necked both accelerators. As shown in Figure 5.4, the base-

line with the smaller cache configuration has a lot lower utilization than even the multi case

with the large cache. Looking closely, there is less performance degradation due to resource

contention in the smaller cache configuration, since cache resources are already throttling

the accelerators and diminishing there performance.

5.4 Solution Space

This work proposes two solutions to alleviate resource contention of memory resources with

multi accelerator configurations: (1) Accelerator Aware Execution and (2) Priority Memory

Arbitrator. This section will describe both potential solutions and then describe a closely

related and developed work that implements a combination of ideas from the potential

solutions.
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Accelerator Aware Execution

This potential solution requires each or one of the accelerators in the configuration to be able

to stall memory requests when detecting other accelerators using the TileLink ports. This

solution has potential for deadlock and sequential execution in worst case scenarios; however,

has a tremendous upside in reducing bank conflicts between accelerators which contributes

to a significant amount of the utilization loss. The hardware implementation of accelerator

aware memory execution could also be as simple as a flag with the TileLink port and another

input into the accelerator. This however constrains the hardware design of each accelerator

added to the SoC and requires each to synchronize and coordinate execution in some way.

Priority Memory Arbitrator

Another potential solution is a priority memory arbitrator that sits in front of the TileLink

crossbar to facilitate memory requests between accelerators. In the current configuration,

Gemmini and Hwacha communicate with a 2MB, 4 bank L2 cache through the TileLink ports

and crossbars. Serious performance and utilization degradation discussed above is caused by

the round-robin handling of memory requests within the TileLink crossbar. As exemplified

in previous literature, assigning priorities per workloads could boost memory performance

and alleviate the pressure and dependency on the memory system for workload performance

as well.

Contention-Aware Accelerator Architecture for Multi-Tenacy

Execution (CALM)

This work implements a light-weight, contention-aware multi-tenancy architecture for DNN

accelerators that was tested specifically on a multi Gemmini configuration with a variety

of DNNs. This novel solution, CALM, dynamically manipulates memory access rates based

on latency targets such that co-located applications get the resources they demand without

significantly starving their co-runners. In implementation, CALM increases service-level

agreement satisfaction rate up to 8.6x (2.3x overall), while also increasing system throughput

by 1.11x, fairness by 1.38x, and performance variation by 8x.
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Figure 5.5: CALM-augmented DNN accelerators on an SoC to support dynamic contention-
aware execution

CALM consists of 1) a light-weight hardware monitoring and regulation engine to track

and control the amount of memory tra�c injected into the shared resources and 2) an

intelligent runtime system to dynamically manage the contentiousness of workloads based

on user-specified adaptation policies. In particular, CALM leverages the regularity of DNN

operators and hardware to manipulate the memory access rates using two adaptation policies:

balanced and guaranteed policy. These two policies determine the priorities of the co-located

DNN workloads. Using the the tra�c-monitor engine to track the realtime memory access

rate at which DMA issues load reques to shared caches and DRAM during the monitored time

window, and the bubble-insertion engine that inserts ”bubbles” that prevents the DMA from

sending any further memory requests, the CALM microarchitecture facilitates the shared use

of the memory subsystem preventing contention and starvation.
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Chapter 6

Pipelined Execution of MobileNet

Instead of running accelerators with di↵erent workloads in parallel like the previous chapter,

this section will focus on executing a singular, unified workload in MobileNet on multiple,

unique accelerators. This section will address the challenges, performance, and optimizations

needed when pipelining a DNN workload across a heterogenous architecture by taking ad-

vantage of model and batch level parallelism. Finally, this section will include performance

results of a multicore architecture running the same workload and discussion of synchroniza-

tion overhead.

6.1 Introduction and Related Work

When faced with the problem of mapping the execution of a DNN on some particular ar-

chitecture, many intertwined factors are at play and can lead to unexpected behavior in

performance. This widely popular problem in computing today has resulted in many dif-

ferent explorations in solutions. One common approach is to use a runtime module that

has a complex scheduling algorithm that helps partition and allocate pieces of workloads to

hardware processing units. They can help alleviate memory requests by monitoring vital

memory statistics and controlling the flow of workload tra�c, acting as a supervisor. An-

other solution, is to statically partition shared resources that accelerators tend to contend

for. This method, however, has shown to create memory back-pressure in low priority tasks

and is untested with more than one high priority ML workload. [16]
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In the context of inference, some works have explored hardware solutions such as mapping

di↵erent layers of the network on di↵erent FPGA’s all together to increase chip utilization;

however this proves to be costly in terms of power and communication. [21] Other works have

explored running deep learning inference on two di↵erent architectures, specifically GPUs

and NPUs, but are constrained by there software optimizations specific to the architecture

itself. [13]

In the context of training, much research has gone into the space of distributed training

across di↵erent homogeneous nodes, with intricate runtime or compiled schedulers to assign

layers to processing elements [23] [14]. These works are useful starting points for inspiration

on exploring the inference side however do not address the unique challenges of mapping

inference across heterogeneous accelerator architectures. In addition, many of these hardware

and software solutions are tied closely with the workload and system architecture making it

limited to implement in other systems.

This work focuses on exploring how accelerators can take advantage of model and batch

pipelining to yield performance improvements and have overlapped execution. In addition,

this work will examine synchronization costs when comparing inference execution on a mul-

ticore heterogenous architecture. These factors, we hope, will help build on and improve the

previous works mentioned.

6.2 Single Core Heterogenous Architecture

Batch Level Parallelism

Batch level parallelism refers to increasing performance and throughput of inference by batch-

ing images and inputs together into one larger input that can be passed through the entire

DNN at the same time. Traditionally, many previous works have leveraged this technique to

keep the utilization of accelerators and processing elements high. In addition, at a software

level, batch level parallelism has been used to highly parallelize DNN workloads by running

individual batches on single cores or nodes. This mostly straight forward approach can lead

to large performance gains because of increased hardware throughput and utilization and

lower overhead per kernel routine. However, when limited by a singular core and dependent
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Figure 6.1: Graphical representation of using model and batch pipelining to partition work-
loads across Gemmini systolic accelerator and Hwacha vector accelerator. The top diagram
shows no pipelining, while the bottom image shows pipelining with a batch size of 2 across
the two accelerators.

workload, this work looks to explore how to leverage batch sizes to gain the best overall

performance.

Model Level Parallelism

Model level parallelism is a combination of inter and intra layer parallelism as described in

Chapter 2. Many previous works have also explored this idea in inference and training to

increase parallelism across the entire DNN workload which in turn boosts performance. [6]

In previous works however, models are usually split across di↵erent homogenous cores and

machines instead of heterogenous architectures like in this work which adds an extra level of

complexity. When splitting across homogenous cores every kernel and piece of workload can

be treated independently and scheduled on any hardware. With heterogenous accelerators,
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Cycle Breakdown Batch = 4 % Batch = 2 % Batch = 1 %

Normal Conv 4.7⇥ 107 c 25% 4.0⇥ 107 c 21% 3.2⇥ 107 c 17%

Depthwise Conv 1.4⇥ 108 c 75% 1.2⇥ 108 c 79% 1.1⇥ 108 c 83%

Total Cycles 1.9⇥ 108 c 100% 1.6⇥ 108 c 100% 1.5⇥ 108 c 100%

Table 6.1: This table shows the breakdown of cycles spent on normal convolution vs depth-
wise convolution across di↵erent pipeline variations with batch size.

mapping a DNN execution flow becomes complicated because of the lack of flexibility in

scheduling and execution.

Performance Results

This study combines model and batch level parallelism to pipeline di↵erent layers of the

MobileNet workload into our unique accelerators. With the architecture configuration being

the same as in the previous studies, 1 Rocket Core + 1 Hwacha + 1 Gemmini, a pipelined

workload for both accelerators is built to trade o↵ utilization and throughput with the

granularity of pipelining. As shown in Figure 6.1, the objective of partitioning this workload

is to overlap the utilization of both accelerators when working on di↵erent pieces of data. The

pipelined workload is mainly constrained by the dependencies existing in the DNN structure

itself and the batch size parameter.

Accelerators can be more utilized when a DNN has more independent layers that each

type of accelerator can be a provider for. In our particular case, MobileNet has a singular

stream of layers, which makes our window for accelerator overlap very narrow. The batch size

parameter allows us to toggle the amount of work per layer per accelerator. By combining the

pipelining of batches and layers, performance boosts are expected from greater parallelism

even when executing a highly dependent workload.

As seen in Table 6.1, there is an expected trend of reducing the number of cycles as

batch size is decreased. In the first case of batch size being 4, there is no overlap between

the execution of Gemmini and Hwacha. This scenario is similar to the very first depiction
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in 6.1 where after executing a normal convolution layer, Gemmini writes all of the output

activations to memory and then Hwacha is called to launch its depthwise convolution kernel

and execute the layer. As the batch sizes decrease to 2 and 1, there is an introduction of

more overlap in execution with the two accelerators. For example, with the batch size of 2,

when the MobileNet architecture has a normal convolution back to back with a depthwise

convolution, Gemmini will first only compute the normal convolution for 2 images before

writing the activations to memory. Then, Hwacha will start executing the next layer, the

depthwise convolution kernel, on those 2 images previously outputted by Gemmini. Once

initiated, while Hwacha is computing on the first two images, Gemmini can run ahead to

the next 2 images to finish computing the previous convolution layer. Extrapolating even

further, with a batch size of 1, software pipelining is extended even further and introduces a

greater level of parallelism between accelerators. Throughout these configurations, pipelining

is not implemented when there is no switch between accelerators, i.e. when there are multiple

consecutive Gemmini/Hwacha computed layers.

It is important to also note that when decreasing batch sizes to increase pipelining

throughput and accelerator parallelism there is potential that the overall utilization of each

accelerator could actually be decreasing. For example, depending on the accelerators pro-

cessing element configuration, if batch size is decreased enough, the accelerator could be

potentially starved of and be underutilized. This tradeo↵ between accelerator parallelism

and utilization is an important design space to consider when tuning workloads and mapping

them to architectures.

Going back to the results in Table 6.1 there is a .13x and .27x gain in overall execution

cycles when moving from a non overlapped configuration to a fine-grained batch pipelined

configuration. Besides the cycles saved when accelerators are utilized in parallel, based on the

layer by layer performance data this work hypothesizes that there are increased cache benefits

when pipelining with a finer batch size. In Figure 6.2 a unique pattern can be observed when

graphing the cycles taken on all non depthwise convolution layers. In the layer directly after

a depthwise convolution, the cycles for the normal convolution actually increase even though

there is no di↵erence in software workload across batches; since batches are only pipelined

in depthwise convolution layers and normal convolution layers directly before a depthwise

convolution layer.
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Figure 6.2: Layer by layer performance of MobileNet execution versus batch size of 1,2, and
4 for only non depthwise convolution layers.

For example, looking at layers 5 and 6 in Figure 6.2 we observe that layer 5’s cycles

steadily increase even though no pipelining takes place since the next layer is a normal

convolution. In layer 6 there is a steady trend of decreasing cycles when decreasing batch

size due to the pipelining between normal and depthwise convolutions of these layers. In

order to understand and isolate this performance pattern, cache traces of these executions

were analyzed.

Cache Analysis

Using FireSim’s TracerV, we are able to profile our executing workload’s cache behavior and

compare the workloads average cache miss rate at di↵erent time intervals. TracerV samples

the hardware counters with a profile interval of 10000 cycles to generate Figure 6.3. In this

Figure, it is clear that the finer grained pipelining with the batch size of 1 has a lower average

cache miss rate throughout the execution of the workload compared to the batch size of 4,

solidifying our previous hypothesis. Compared to the baseline of batch size of 4, there is

101k and 175k less L2 misses in the batch size of 2 and 1 cases, respectively. Batch size of 2

is not included in this figure for clarity purposes but when added averages right in between
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Figure 6.3: L2 cache misses across MobileNet execution with two di↵erent batch sizes of 1
and 4.

batch size of 4 and 1 in terms of average L2 cache misses. This proves that the system

when having a finer level of pipelining results in better cache locality for both accelerators

resulting a less cache misses and better overall performance.

In addition, when combining the layer by layer performance analysis with the cache

trace it can be seen in Figure 6.4 how the memory requests correlate to the performance of

every layer. The green and red vertical lines correspond to the start and finish of depthwise

convolution layers on Hwacha. One overall expected and observed trend is that overall

duration of each depthwise convolution layers decrease deeper into the workload because

of the network architecture and parameters. Looking closely at the first few depthwise

convolutions, it is easily seen that the lower batch size of 1 progresses much more rapidly

and maintains a lower average cache miss rate. Interestingly, in between the depthwise

convolutions the reverse behavior can be observed where the normal convolutaions have a

higher miss rate with the batch size of because of the previous layer only outputting 1 batch

at a time. This seems to be the reasoning behind the performance degradation observed in

the performance analysis section.
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Figure 6.4: The top figure shows the L2 misses for batch size of 4 with green and red lines
indicating the start and finish of depthwise convolution layers, respectively. The bottom
figure represents L2 misses for batch size of 2 with the same performance lines for depthwise
convolutions only.

6.3 Multi Core Heterogenous Architecture

Control Overhead

One of the biggest costs in performance in the previous setup is the overhead in control

instructions running on the shared RISC CPU. When looking at a disassembly of the Mo-

bileNet inference the CPU is used for coordinating the calls to the normal convolutions via

Gemmini and depthwise convolutions via Hwacha. Even though both accelerators have direct

access to the L2 cache and can be thought to run ahead individually, it is highly dependent

on the kernel and programming model itself.

For example, as mentioned in Chapter 4, with Hwacha’s vector fetch programming model,

the CPU is still responsible for running the instructions associated with for loops, data

pointer manipulation, and setup of all vector registers until the final vector fetch call.

On the other hand with Gemmini, all of the setup to the covolution kernel call including
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automatic tiling calculations and bu↵er checks will also be competing for CPU cycles. This

can actually reduce the performance of the overlap between Gemmini and Hwacha because

the more CPU dependent the workload is the more stalls will happen because of the CPU

being a shared resource.

Configuration

In order to measure the potential for improvement and measure this constraint, a multi core

setup is used to run the same workload on. This configuration includes 2 Rocket RISCV

CPU cores each with their own Gemmini and Hwacha. Because of Chipyard and FireSim’s

limitations on producing truly heterogeneous cores with unique accelerators on each core,

the CPU is equipped with both Gemmini and Hwacha; however, the software designates one

unique core per accelerator and only utilize that accelerator to simulate our desired design.

Using linux pthreads di↵erent threads are pinned on to each core, there by selecting which

core runs the Hwacha dedicated depthwise convolutions and which core runs the Gemmini

normal convolution layers. Specifically, this is done by dynamically detecting which core id

the main control thread is first run on and then set a�nities of other threads to the opposite

core. When working with batch sizes, each pipelined batch is split into a thread of its own to

be created and scheduled on the appropriate core (e.g. Hwacha = Core 0, Gemmini = Core

1). This setup tries to see an increased amount of overlap between accelerators executing in

parallel which should reduce the overall execution cycles.

Performance Results

Looking at Figure 6.5 it can be seen that with every layer the multi core configuration

performs significantly better than the single core configuration for batch sizes of 1 and 2. As

expected the speed up in cycles can be attributed to the accelerators overlapping execution

and not having to fence and compete over a shared control CPU. In Table 6.2, breaking

down the cycles spent in each configuration between normal convolution and depthwise

convolution, it can be observed that the speed up of execution actually comes from only the

normal convolutions.
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Figure 6.5: Layer by layer performance cycles (log scale) of single core and multi core
configurations with batch sizes of 1 and 2.

Cycle Breakdown SC Batch = 2 MC Batch = 2 SC Batch = 1 MC Batch = 1

Normal Conv 4.0⇥ 107 c 1.6⇥ 107 c 3.2⇥ 107 c 1.3⇥ 107 c

Depthwise Conv 1.2⇥ 108 c 1.1⇥ 108 c 1.1⇥ 108 c 1.2⇥ 108 c

Total Cycles 1.6⇥ 108 c 1.3⇥ 108 c 1.5⇥ 108 c 1.4⇥ 108 c

Table 6.2: This table shows the breakdown of cycles spent on normal convolution vs depth-
wise convolution across the single core vs multi core case, denoted as SC for single core and
MC for multi core.

This is due to the fact that in the single core configuration, Hwacha seems to be the

blocking accelerator when executing its depthwise convolution. When it is executing on

single core, Gemmini is blocked from running ahead and computing the next batch of normal

convolutions until the very last few iterations of Hwacha’s depthwise convolution kernel,

because of the Hwacha kernel running instructions on the CPu, resulting in minimal overlap

of accelerator execution. In the multi core case, however, since the Hwacha depthwise kernel

is launched as a separate pthread for a di↵erent core to execute, the main executing core is free

to run ahead and process the next batch of normal convolutions on Gemmini. Interestingly,

the di↵erence in performance on the multi core configuration between batch sizes of 1 and

2 is negligible and batch size of 2 performs slightly better. This contradicts the single core
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configuration as batch size of 1 significantly outperformed the higher batch sizes. This is

yet another indication of how di↵erent hardware software mapping configurations can lead

to conflicting and not intuitive execution performance.

6.4 Conclusion

Future Work and Applications

Future work using di↵erent driving DNN workloads and even more heterogenous architec-

tures using several di↵erent accelerators could be very interesting. In order to quantify and

accurately compare these complex architecture designs, work into defining or adapting a

roofline-like model for accelerators could also be a potential project. This model could be

used to roughly project the advantages of using di↵erent accelerators together for specific

workloads.

Moving away from modeling, universal accelerator coordinating hardware or software

could be an interesting area to explore based on some of the work done in this research. This

work has a few potential solutions unique to systolic and vector accelerators, but developing

a generic hardware/software unit that dynamically adapts to di↵ering software workloads

would be a huge improvemen in accelerator coordinations and workload execution.

Summary

This work hopes to showcase the potential benefits and complexities that come with the

growing accelerator designs on SoCs. By focusing on a few di↵erent configurations of spe-

cific accelerators and one specific DNN workload, this work is able to achieve up to 3.5x and

2.4x speed up of the execution of MobileNetv2 when compared to some baseline accelerations

using just Gemmini. By optimizing and mapping depthwise convolutions to vector accelera-

tors like Hwacha, taking advantage of cache locality through batch and model pipelining, and

finally reducing control synchronization overhead this work is able to show various methods

of acceleration given a few accelerators. In addition to performance acceleration, this work

exposes the many complexities and variables that should be considered when working on
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software-hardware co-design and mapping. In conclusion, this work starts the exploration

in examining the coordination of di↵erent accelerators and system impacts and hopes to

provide foundation for future studies and analysis.
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