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Abstract

Decentralized Ledgers: Design and Applications

by

Yuncong Hu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Raluca Popa, Co-chair

Associate Professor Alessandro Chiesa, Co-chair

A vast majority of online services nowadays are built atop centralized systems, in which data is
stored and managed by a trusted party. However, centralization brings significant drawbacks, such
as a central point of attack, poor transparency, and poor auditability. Recent success in the field
of blockchain has led to great interest in secure decentralized ledgers because they enable a set
of heterogeneous parties to reach a consensus on the validity of data on ledgers without relying
on centralized service providers. In addition, decentralized ledgers often promise a foundation of
decentralized trust and auditability for applications. Unfortunately, the benefits of decentralized
ledgers often come at the expense of privacy and efficiency.

In this dissertation, I will present my work on secure and efficient decentralized ledgers. I will show
how to improve the efficiency and privacy of decentralized ledgers, which involves the design of
new cryptographic tools such as zero-knowledge proofs and authenticated data structures. I will
also show how to leverage decentralized ledgers to build practical and secure systems for real-world
applications such as the Internet of Things and file sharing services.
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Chapter 1

Introduction

A vast majority of online services nowadays are built atop centralized systems, in which data is
stored and managed by a trusted party. However, centralization brings significant drawbacks, such
as a central point of attack, poor transparency, and poor auditability. In particular, systems with a
central point of attack allow the attacker to compromise a central point to break the whole system;
thus, there are massive data breaches on centralized systems each year.
Recent success in the field of blockchain has led to great interest in secure decentralized ledgers

because they enable a set of heterogeneous parties to reach a consensus on the validity of data on
ledgers without relying on centralized service providers. In addition, decentralized ledgers often
promise a foundation of decentralized trust and auditability for applications. For example, certificate
transparency [LLK13b] provides a trustworthy web certificates infrastructure through auditing
a centralized service provider in a decentralized way; decentralized finance [WPGKHK21] is a
blockchain-based form of finance that does not rely on central financial intermediaries. Unfortunately,
the benefits of decentralized ledgers often come at the expense of privacy and efficiency. For
example, Bitcoin supports only five transactions per second [Nak08] (orders of magnitude slower
than centralized ledgers) and suffers from privacy problems due to public transactions [Ben+14];
prior transparency logs support only a few users due to the expensive auditing.
My research focuses on secure and efficient decentralized ledgers. In particular, in my graduate

work, I have both designed new cryptographic tools to improve the privacy and efficiency of
decentralized ledgers and built practical systems with decentralized trust from decentralized ledgers.
Within the category of improving the privacy and efficiency of decentralized ledgers,Merkle2

[HHKYP21] solves the efficiency problem by constructing a new authenticated data structure and
building a more efficient decentralized ledger. As a result, Merkle2 is able to support faster updates
and 100x more users than prior state-of-the-art systems. To protect privacy, I design and build
new zero-knowledge proof systems that support various applications in decentralized ledgers. In
particular,Marlin [CHMMVW20] provides better usability and efficiency than prior proof systems;
thus, it has been widely used in blockchain companies such as Aleo [Ale] to build decentralized
applications. In addition, Gemini [BCHO22] is able to prove much larger instances than existing
proof systems since computations on decentralized ledgers become much more complex.
Within building systems with decentralized trust from decentralized ledgers, Ghostor [HKP20]
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is a practical data-sharing system with strong security guarantees based on decentralized trust.
Existing practical data-sharing systems either cannot provide strong security guarantees as Ghostor
or rely on centralized trust. JEDI [KHAPC19] provides a secure decentralized messaging system
for IoT devices and has been used in UC Berkeley campus [And+19] running for more than two
years, with more than 800 IoT devices. Finally, NIDAR [BHMS21] is an efficient non-interactive
anonymous routing system without centralized assumptions.

1.1 Merkle2: An efficient transparency log system
Transparency logs are proposed to avoid the high overhead of blockchain-based decentralized
ledgers and are widely used in building trustworthy certificates [LLK13b] or public key infrastruc-
tures [MBBFF15]. Unfortunately, prior transparency log systems suffer from high update latency
due to the expensive monitoring algorithm. For example, in key transparency [cite], users may need
to wait for an hour to be able to start using the service or revoke compromised keys.
My project Merkle2 [HHKYP21] described in Chapter 1 is a low-latency transparency log

system. To achieve that, Merkle2 first constructs a new multi-dimensional, authenticated data
structure that nests two types of Merkle trees. Based on this data structure, Merkle2 then builds a
transparency log system with efficient monitoring protocols that enables low-latency updates. In
particular, all the operations in Merkle2 are independent of update latency and are (poly)logarithmic
to the number of entries in the log. Merkle2 not only has excellent asymptotics when compared to
prior work but is also efficient in practice. Our evaluation shows that Merkle2 propagates updates
in as little as 1 second and can support 100× more users than state-of-the-art transparency logs.
Merkle2 is open-source [HHKYP] and can be used as a source of decentralized trust for various
applications. For example, Merkle2 can be used in my projects Ghostor and JEDI as an efficient
decentralized ledger.

1.2 Marlin: A more efficient zero-knowledge proof system
Zero-knowledge proofs enable the proof of computation without revealing users’ secrets; thus,
they are widely used in decentralized ledgers to protect privacy [Ben+14]. However, most prior
zero-knowledge proofs may suffer from deployability and usability problems since they require
different setups for different applications. For example, in blockchains, whenever people construct
a new smart contract, they have to run an expensive setup for it. Recent research also proposed
zero-knowledge proofs without a setup; unfortunately, they often result in non-succinct proof size or
verification, which are critical in decentralized ledgers since the resources are constrained.
My project Marlin [CHMMVW20] described in Chapter 2 is a universal zero-knowledge proof

system in which a single setup suffices to prove various computations. Furthermore, Marlin supports
succinct proof size and verification so that it consumes fewer resources of decentralized ledgers.
Marlin first proposes a novel protocol enabling fast verification. Then Marlin achieves succinct
proof size by leveraging polynomial commitments, which requires only a single setup for multiple
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applications. Finally, Marlin formalizes the above methodology and constructs a cryptographic
compiler, which has been used as a standard tool for building new zero-knowledge proofs in the
following works.
Marlin’s implementation is open-source [CHMMVW] and has been widely used in blockchain

companies, such as Aleo [Ale], for building decentralized applications. In particular, Marlin can be
used in my other project Ghostor to achieve a stronger privacy guarantee for data-sharing. Marlin’s
library is further integrated into Arkworks [ark], a rust ecosystem for implementing and developing
future zero-knowledge proofs.

1.3 Gemini: An efficient zero-knowledge proof system for large
instances

Zero-knowledge proofs can also be used to improve the scalability and efficiency of decentralized
ledgers since they enable verifiable computations with succinct proofs and verification. As more
and more data are stored on decentralized ledgers, the prover has to prove much larger instances
with more complicated computations. However, prior proof systems, including Marlin, suffer from
high proving time and memory costs.
To solve this problem, in Chapter 3 we proposed a new type of proof system called Gem-

ini [BCHO22]. When the instance size is small, Gemini achieves a faster prover than Marlin;
for a large instance, Gemini provides a “slim” prover that consumes only (poly)logarithmic size
of memory and thus supports much larger instances and more complicated computations. At its
core is an elastic protocol that can be run in diverse environments. As a result, Gemini can prove
several orders of magnitude more complex computations than prior proving systems using the same
computation resources. We implement Gemini based on Arkworks libraries and integrate it into the
Arkworks ecosystem to support future zero-knowledge proofs design.

1.4 Ghostor: A secure and practical decentralized data-sharing
system

Data-sharing systems are used to store and share sensitive data and have seen widespread adoption
over the past decade. As a result, both academia and industry have proposed numerous solutions to
protect user privacy and data integrity from a compromised server. Decentralized ledgers have been
proposed as a possible solution as they eliminate the need of centralized trust. Unfortunately, naively
applying decentralized ledgers can introduce extremely high overheads and result in an impractical
system. For example, a strawman solution publishing every single operation on ledgers may incur
high latency and expensive costs.
My project Ghostor [HKP20] described in Chapter 4 is a practical secure data-sharing system

based on decentralized trust. Ghostor leverages a decentralized ledger rarely, publishing only a
single hash to the ledger for the entire system once every epoch. Ghostor achieves two strong security
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guarantees, anonymity and verifiable linearizability, to protect sensitive data on an untrusted server.
At a high level, anonymity means that the protocol does not reveal directly to the server any user
identity with any operation, and verifiable linearizability means users can verify that each write
is reflected in later reads, except for benign reordering of concurrent operations as formalized by
linearizability. Many prior systems with such strong privacy and integrity guarantees either are too
slow to be practical or rely on centralized assumptions, such as trusted hardware [CD16]. In contrast,
Ghostor is a practical system, which provides strong privacy and integrity guarantees and uses only
decentralized trust. Overall, Ghostor completes a single operation in 30ms, whereas the strawman
solution may require one hour for blockchains to confirm the transaction. When compared with a
simplistic and completely insecure baseline, Ghostor brings a 4-5x throughput overhead. Although
significant, Ghostor’s overhead may be worth it for security- and privacy-sensitive applications.

1.5 JEDI: A secure and efficient decentralized messaging
system for IoT

Developing secure communication for IoT devices is of paramount importance because these devices
collect private information about users. Unfortunately, traditional systems rely on centralized
services, which suffer from a central point of attack and are not scalable for IoT-scale systems.
To solve this problem, my project JEDI [KHAPC19] described in Chapter 5 provides a secure

decentralized messaging system for IoT devices. The core of JEDI is a new cryptographic encryption
protocol supporting many-to-many communication and decentralized key delegations. In JEDI, the
namespace administrator can grant other users access by generating the corresponding secret keys.
However, JEDI supports decentralized delegations so that a user can further derive and delegate
sub-keys to achieve fine-grained access control without help from the administrator. Decentralized
delegations are critical for large-scale IoT systems, which may involve thousands of devices.
Moreover, JEDI’s protocol is lightweight and practical for ultra low-power devices. Finally, JEDI’s
implementation is open source [KHAPC], and it has been used in UC Berkeley campus [And+19]
running for more than two years, with more than 800 IoT devices.

1.6 NIDAR: An efficient anonymous routing based on
decentralized trust

Most existing anonymous routing systems rely on centralized assumptions, meaning that at least one
trusted service provider exists. One recent work [SW21a] first proposed an anonymous routing with
fully untrusted servers. However, this system suffers from quadratic computation cost, which is not
scalable for decentralized applications.
My project NIDAR [BHMS21] described in Chapter 6 solves this problem with sub-quadratic

computation cost. To achieve that, NIDAR proposes a non-interactive differential private permutation
algorithm and combines it with multi-client functional encryption. As a result, NIDAR can be run
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on a single fully untrusted server and provide network-level protection for various decentralized
systems and applications. In particular, my project Ghostor can leverage NIDAR instead of Tor to
achieve better network-level anonymity.
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Chapter 2

Merkle2: A Low-Latency Transparency Log
System

Transparency logs are designed to help users audit untrusted servers. For example, Certificate
Transparency (CT) enables users to detect when a compromised Certificate Authority (CA) has
issued a fake certificate. Practical state-of-the-art transparency log systems, however, suffer from
high monitoring costs when used for low-latency applications. To reduce monitoring costs, such
systems often require users to wait an hour or more for their updates to take effect, inhibiting
low-latency applications. We propose Merkle2, a transparency log system that supports both efficient
monitoring and low-latency updates. To achieve this goal, we construct a new multi-dimensional,
authenticated data structure that nests two types of Merkle trees, hence the name of our system,
Merkle2. Using this data structure, we then design a transparency log system with efficient
monitoring and lookup protocols that enables low-latency updates. In particular, all the operations
in Merkle2 are independent of update intervals and are (poly)logarithmic to the number of entries
in the log. Merkle2 not only has excellent asymptotics when compared to prior work, but is also
efficient in practice. Our evaluation shows that Merkle2 propagates updates in as little as 1 second
and can support 100× more users than state-of-the-art transparency logs.
This work was previously published in [HHKYP21].
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2.1 Introduction
Interest in transparency logs [MBBFF15; And+19; Lau14; CSPLM15; HB17; LK12; Bon16;
Rya14; TBPPTD19; YCR16; CDGM19] has increased in recent years because they promise
a trustworthy PKI [Per99; AL99; Mau96] or certificate infrastructure [Lau14; LKL13]. For
example, certificate transparency (CT) [Lau14; LKL13] enables building accountable PKIs for web
applications and is widely deployed. As of March 2021, CT has publicly logged over 12 billion
certificates [Gooa]; Google Chrome requires web certificates issued after April 30, 2018 to appear
in a CT log [Chr]. Besides CT, there have been significant efforts into key transparency [MBBFF15;
Bon16; TBPPTD19; Goob; Gooc] for managing the public keys of end-users and software
transparency [AM18; FDPFSS14; HC17; Nik+17; Syt+16; TD17] for securing software updates.
Transparency logs provide a consistent, immutable, and append-only log: anybody reading the

log entries will see the same entries in the same order, nobody can modify the data already in the log,
and parties can only append new data. One of their distinctive features is that they combine aspects
of blockchains/ledgers [Bita; Eth; Zcaa; Nak19; Woo14; CL99; YMRGA19; PS18] with aspects of
traditional centralized hosting. Like blockchains and ledgers, transparency logs rely on decentralized
verification, enabling anyone to verify their integrity. At the same time, they are hosted traditionally
by a central service provider, such as Google [Lau14; HB17]. Due to guarantees provided by the
log and decentralized verification by third parties, the service provider cannot modify or fork the
log without detection. Additionally, centralized hosting enables these logs to be significantly more
efficient than Bitcoin-like blockchains; they provide higher throughput and lower latency while
avoiding expensive proof of work or the expensive replication of the ledger state at many users.
Common transparency logs are append-only logs that provide an efficient dictionary for key-value

pairs stored in the log. State-of-the-art transparency logs like CONIKS [MBBFF15] provide the
following crucial properties for applications: efficient membership and non-membership proof,
and monitoring proof. In particular, when users look up key-value pairs, the server can provide
a succinct proof of membership or non-membership to convince users that it returns the correct
lookup result. For example, in CT [Lau14], the browser only downloads logarithmic-sized data to
check whether a particular website’s certificate is in the log. However, unlike CONIKS, CT cannot
provide succinct non-membership proofs, so CT cannot support efficient revocation for certificates.
A major impediment to the wider adoption of transparency logs is their high update latency,

precluding their use in many low-latency applications. To understand what impacts update latency,
one must first understand monitoring, a key component of transparency logs. Monitoring allows
other parties to monitor the state of an untrusted server and the results it returns to users. The server
periodically – every epoch – publishes a digest summarizing the state of the system. Transparency
logs rely on auditors [MBBFF15; And+19; HB17; TBPPTD19] (third-parties or individual users)
to keep track of digests published by the server and gossip with each other to prevent server
equivocation. Data owners and users who look up data from the log retrieve the digest from the
auditors. Given the digest, data owners can check the integrity of their data, and users can check the
correctness of the lookup results from the server.
A key challenge in existing, state-of-the-art, practical transparency logs likeCONIKS [MBBFF15]

or Key Transparency (KT) [HB17] is that every data owner must monitor their data for every
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published digest. For example, Google’s KT proposal [Gooc; Good] cites 1 second as a desirable
epoch interval (enabling a variety of applications). For those transparency logs supporting a desired
target of 1 billion users, handling each user monitoring every second is too large of a cost for the
server both in bandwidth and computation power. For example, if CONIKS runs with a desirable
epoch interval of 1 second [Gooc; Good], every year every user has to download about 65 GB of
data to check their data. For 1 billion users, the server has to provide about 65 exabytes of data.
This dependence of the server’s cost proportional to the product of users and epochs is what

drives existing proposals to set infrequent epochs, e.g., of hours or days. In turn, long epoch intervals
affect responsiveness and user experience in applications requiring low-latency updates [Goob].
We consider PKI as an example. Prior transparency logs [MBBFF15] have users wait an hour
to be able to start using the service, as it takes an epoch for new public keys to appear on the log
enabling other users to look them up. However, a study [Nah04] shows that the tolerable waiting
time for web users is only two seconds. For example, users may not want to wait an hour before
being able to register and set up IoT devices that generate SK-PK pairs [And+19; SRSB15; Net+16;
KHAPC19]. Also, key owners may not want to wait an hour to revoke compromised keys as the
attacker may use the compromised key to steal data or information. Applications like intrusion
detection systems [RWV13; Lee+01; SM12] aim to stop incidents and revoke malicious accounts
immediately.
To reduce the monitoring cost, researchers proposed transparency logs based on heavy cryp-

tographic primitives such as recursive SNARKs [BSCTV17; BCCT13; COS20a] or bilinear
accumulators [TBPPTD19]. However, these works result in high append latency and memory usage.
Other work [And+19; Rya14; YCR16; CDGM19] has auditors check every operation on behalf of
users, which results in a high overhead on auditors. We elaborate in Sections 2.8 and 2.9.
Hence, this paper asks the question: Is it possible to build a transparency log system that

supports both efficient monitoring and low-latency updates? We propose Merkle2, a low-latency
transparency log system, to answer this question. At the core of Merkle2 is a new data structure
designed to support efficient append, monitoring, and lookup protocols. As a result, the server can
publish digests frequently, and data owners do not need to check each digest published by the server.
Moreover, data owners only download polylogarithmic-sized data for monitoring throughout the
system life.
We implemented Merkle2 and evaluated it on Amazon EC2. Merkle2 can sustain an epoch size

of 1 second, enabling low-latency applications. For such an epoch size, Merkle2 can support up to
8× 106 users per server machine (Amazon EC2 r5.2xlarge instance), which is 100x greater than
CONIKS. For this significant increase in monitoring efficiency, the cost of append and lookup
in Merkle2 increases only slightly; as a result, for large epoch size, when the monitoring cost of
CONIKS is acceptable, CONIKS may perform slightly better than Merkle2. For example, when the
epoch size is 1 hour, CONIKS can support 2x more users than Merkle2. However, such a large
epoch size is difficult to accommodate in various low-latency applications. In Section 2.7, we apply
Merkle2 to certificate and key transparency applications and show the benefits it brings in these
settings compared to existing transparency logs. We compare Merkle2’s asymptotic complexity
with prior systems in Table 2.1.
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Works Storage
Cost

Append
Cost

Monitoring Cost Lookup
CostAuditor Owner

AAD [TBPPTD19] λn λ log3(n) log(n) − log2(n)
ECT [Rya14] n log(n) P log(n) − log(n)
CONIKS [MBBFF15] E · n log(n) − E log(n) log(n)
CONIKS∗ n log(n) log(n) − E log(n) log(n)
Merkle2 n log(n) log2(n) log(n) log2(n) log2(n)

Table 2.1: Asymptotic costs of the server in Merkle2 against other systems. n refers to the number of
entries in the log, λ is the security parameter for AAD, E is the number of epochs, and P is the number
of appends between epochs. Red indicates the worst performance in the category. For the storage cost,
we measure the number of nodes in data structures throughout the system life. For the monitoring cost,
the auditor column refers to the size of proof provided to each auditor per epoch; the owner column
refers to the size of proof provided to each data owner for each log entry throughout the system life.
We do not consider “collective verification" for ECT since it relies on a different threat model. The
original CONIKS design copies and reconstructs the whole data structure in each epoch to enable the
data owners, who go offline, to verify their data in epochs they missed. With CONIKS∗, we optimize
CONIKS by leveraging persistent data structures [DSST86], which we discuss in Section 2.8.

2.1.1 Overview of our techniques

Background. Merkle2 is built upon Merkle trees [Mer79]. Two types of Merkle trees are
common in transparency logs: prefix trees (whose leaves are ordered in lexicographic order) as in
CONIKS [MBBFF15] and chronological trees (whose leaves are ordered by time of append) as in
CT [Lau14]. We elaborate in Section 2.10.3. In prior transparency logs, the server stores data in
Merkle trees and publishes the root hash as the digest in every epoch. When users access the data,
the server provides an authentication path of the corresponding leaf as proof.
Our data structure. The advantages and limitations of chronological trees and prefix trees are
complementary: CT, which is based on chronological trees, does not require users to monitor each
digest but cannot provide efficient lookup or revocation; CONIKS can support efficient lookup, but
not efficient monitoring. Therefore, a natural question arises: is there a way to combine them to
obtain both benefits?
We solve this problem by leveraging ideas from “multi-dimensional" data structures [IKVR88].

Merkle2’s data structure (Section 2.4) consists of nested Merkle trees, with chronological trees in
the outer layer. Each internal node of the chronological layer corresponds to a prefix tree, hence the
name for our system, Merkle2. The hash of each data block is stored in a leaf node of a chronological
tree, and, for each node from that leaf to the root of the chronological tree, in its corresponding
prefix tree. We provide a “pre-build” technique (Section 2.4.2) to avoid high append time in the
worst case.
We show that Merkle2’s data structure has many convenient properties that enable us to design

efficient monitoring and lookup protocols. For example, each data block is stored in only O(log(n))
prefix trees, where n is the number of leaves in the chronological layer. Those prefix trees allow us
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to look up data blocks based on indices like CONIKS. Also, the structure of the chronological layer
allows us to design a monitoring protocol like CT so that data owners do not have to check every
digest, but can simply only check the latest digest.
Transparency log system design. By leveraging Merkle2’s data structure, we design the monitoring
(Section 2.5) and lookup (Section 2.6) protocols of our transparency log system.
The first problem we want to avoid is data owners having to monitor their data in every digest.

To address this problem, we adapt the consistency proof in CT to provide an extension proof for
Merkle2’s nested trees. The consistency proof in CT allows auditors to ensure no certificate is
removed or modified when the server publishes a new digest. Using it, domain owners do not need
to check every digest in CT. We observe that the consistency proof preserves not only the integrity
of leaves, but also the integrity of internal nodes. Because each internal node contains a prefix tree,
it is paramount that no leaf node values or internal node contents are changed. Thus, we design an
extension proof that allows auditors to ensure the integrity of all existing nodes in future system
states. We further show that our extension proof allows data owners to verify only the latest digest
instead of every digest in history, and be assured that they will see earlier modifications to their data.
So far, this proof only ensures that the prefix tree root hash in the internal node remains unmodified,
but it does not check the actual content in the prefix tree. Therefore, Merkle2 has each data owner
check contents of O(n) prefix trees.
To further reduce the monitoring cost of each data owner, we require that data owners check only

O(log(n)) prefix trees to ensure the membership of their data. Moreover, because of the extension
proof guarantee, the data owner needs to check each of these prefix trees only once throughout the
life of the system. However, by requiring the data owner to check only O(log(n)) prefix trees, we
do not prevent attackers from adding corrupted data blocks for an index that does not belong to
them. To solve this problem, we co-design signature chains, which enable users to verify data block
ownership in lookup results. The security of the signature chain relies on the chronological order
maintained by chronological trees.
Finally, we design a lookup protocol for users to verify lookup results efficiently. The protocol

involves (non-)membership proofs from only O(log(n)) prefix trees that cover all data blocks in the
entire system. Moreover, we design an optimized protocol for looking up only the latest append.
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2.2 System overview
In this section, we describe the architecture and API of Merkle2. Merkle2 is a transparency log
system consisting of key-value pairs. We refer to these as ID-value pairs to avoid confusion with
cryptographic keys. As in CONIKS [MBBFF15] and Google Key Transparency [HB17], Merkle2

indexes data blocks on the ledger based on their ID to support efficient ID lookup.

2.2.1 System architecture
Merkle2’s system setup (in Fig. 2.1) is similar to that of prior transparency logs. Recall that in
transparency log systems, time is split into epochs. The system consists of a logical server, auditors,
and clients, whose roles are described below.

Verification Daemon

Client
Library

Client

Application

StorageServer SideUser Side

Merkle2
Data 

Structure

Server
Library

Auditor Library

Auditor SideDigests Digests

Merkle2 API

Server
alarm

Figure 2.1: System overview of Merkle2. Shaded areas indicate components introduced by Merkle2.

Server. The (logical) server stores users’ ID-value pairs and is responsible for maintainingMerkle2’s
data structure and servicing client requests. The server produces proofs for clients and auditors
to monitor the system. At the end of each epoch, the server publishes a digest to the auditors
summarizing the state of Merkle2. Every response provided by the server will be signed.
Auditors. Auditors are responsible for verifying that the server provides to clients and other auditors
a consistent view of the state. At the end of every epoch, each auditor requests a server-signed
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digest of the overall state from the server along with a short proof. By verifying the proof, the
auditor confirms that the state transition from the previous epoch is valid. It is critical that auditors
gossip with each other about the digests to make sure they share a consistent view of the system. If
two auditors discover different digests for the same epoch, they can prove server’s misbehavior by
presenting the signature. Anyone can volunteer to serve as an auditor. We present the monitoring
protocol for auditors in Section 2.5. Clients fetch digests from multiple auditors and cross check
them.
Clients. Users run the client software, including a client library and a verification daemon. Users’
applications interact with the client library to append and look up ID-value pairs through the API
shown in Section 2.2.2. Each user is responsible for monitoring their own ID-value pairs on the
server. We define the owner of an ID as the person who appends the first value for that ID in the
system. Only the ID owner is allowed to append new values for that ID. A user can become the
owner of multiple IDs. The verification daemon runs as a separate process that regularly monitors
the ID-value pairs of the ID owner. After the first append, the daemon will periodically come online
and send monitoring requests to the server.

2.2.2 Merkle2’s API
Wenow explain the API thatMerkle2 provides to application developers wanting to use a transparency
log.
3 append(⟨ID, val⟩): Appends a new value val for ID to the log. If there does not exist a value
for ID before the append, the user will be identified as the owner of ID. Otherwise, only the owner
of ID is allowed to append a new value. We describe in Section 2.5.3 how Merkle2 enforces this
condition. The server adds ⟨ID, val⟩ to both persistent storage and Merkle2’s data structure. We
discuss how to maintain Merkle2’s data structure in Section 2.4.2. The append will not take effect
until the server publishes a new digest in the next epoch. For each append, the verification daemon
will periodically come online and monitor ⟨ID, val⟩ on behalf of the ID owner to ensure its integrity.
Section 2.5 explains the monitoring protocol in detail.
3 lookup(ID): Looks up all values for ID. The server should return all values for ID appended
by the ID owner so far, sorted in chronological order by append time. The lookup result does not
contain values appended after the current epoch; but, in this case, the server can notify the user to
send another lookup request in the next epoch. We also introduce an extended API that supports
lookup_latest, which allows users to look up the latest value for ID, because for many applications
the most recent value is the only one of interest. This value is the latest append for ID in epochs
before the lookup operation. To verify a lookup result, clients must fetch the latest digest from
auditors and the lookup proof from the server. We discuss the lookup protocol in Section 2.6.
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2.3 Threat model and security guarantee
Now, we describe Merkle2’s threat model and guarantees intuitively and then formalize them
in Guarantee 1. Merkle2 protects the system against a malicious attacker who has compromised the
server. A hypothetical attacker can modify data or control the protocol running at the server. In
particular, it can fork the views of different users [LKMS04] or return old data. Merkle2 guarantees
that honest users and auditors will detect these kinds of active attacks.
As in most transparency logs [Lau14; And+19; MBBFF15], we assume that at least some of the

auditors are trusted, which means they will verify the digest and proof published at the end of each
epoch and detect forks. Intuitively, the requirement is that any user should be able to reach at least
one connected and trusted auditor. Each ID owner is responsible for monitoring its own ID-value
pairs. Unlike systems that rely on strong ID owners [MBBFF15], ID owners in Merkle2 do not need
to monitor every epoch. They can choose a monitoring frequency, like once per day or once per
week, and monitor updates in between monitoring periods by checking only the latest epoch. If an
ID owner monitors the digest in epoch p without detecting a violation, honest users performing a
lookup for ID before epoch p (inclusive) are guaranteed to receive the correct values or to detect a
violation.
To define Merkle2’s guarantee, we introduce the following conventions. If the owner appends

an ID-value pair in epoch E, other users can look it up starting with epoch E + 1. The server
assigns a position number to each ID-value pair to indicate its global order in the system. When
users append or lookup, they also receive the position number from the server.
We further define the notion of a correct lookup result, as follows. We denote by SID

E the ordered
list of ID-value pairs and corresponding position numbers that the ID owner appended for ID before
epoch E, and S ′ID

E the ordered list that the user received as the lookup result for ID in epoch E. A
correct lookup result for ID in epoch E means that the two lists SID

E and S ′ID
E are identical.

Merkle2 provides the following guarantee, for which we provide a proof sketch in Section 2.10.

Guarantee 1. Assume that the hash function used by Merkle2 is a collision-resistant hash func-
tion [Gol07] and that the signature scheme is existentially unforgeable [Gol07].

For any set of users U , for any set of honest auditors A, for any set of append, lookup and
monitoring operations by users in U , for any set of honest users C ∈ U , for any ID whose owner is
in C, let E1 be the first epoch in which ID’s owner appends the first value for ID, and let E2 > E1,
for each lookup operation for ID performed by a user u in C during epochs E1 + 1 . . . E2, if

Connectivity conditions:

1. users in C can reach the server and at least one of the auditors in A;

2. auditors in A can reach the server and all other auditors in A;

3. in every epoch e ≥ 1, the server outputs the digest of epoch e− 1 to all the auditors in A.

Honesty conditions:
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4. the auditors in A follow the monitoring protocol in Section 2.5 to gossip with each other and
check digests in epochs 1 . . . E2;

5. the owner of ID follows the monitoring protocol in Section 2.5 to check its ID-value pairs in
epoch E2.

6. whenever a user in C looks up ID, it follows the lookup protocol in Section 2.6 for ID;

then, if user u did not receive the correct lookup result for ID during E1 + 1 . . . E2, then at least one
of the following parties has detected a server violation: users in C (including the ID owner), or
auditors in A.
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2.4 Merkle2’s data structure
In this section, we explain Merkle2’s data structure.

2.4.1 Data structure layout

Hash(H[0:1]
||H[2:3]||Root[0:3])

Hash(H[0:0]
||H[1:1]||Root[0:1])

Hash(Alice||
0||Val0)

Hash(Bob||
1||Val1)

Hash(H[2:2]
||H[3:3]||Root[2:3])

Hash(Carlo||
2||Val2)

Hash(Alice||
3||Val3)

Hash(H0
||H1)

Hash(H00
||H01)

Hash
(Empty)

Hash(Alice
||0||Val0)

Hash(H10
||H11)

Hash
(Empty)

Hash(Bob||
1||Val1)

Index(Alice)=01
Index(Bob)=11

0 1

0 1 0 1

Hash(H0
||H1)

Hash(H00
||H01)

Hash(Carlo
||2||Val2)

Hash(Alice
||3||Val3
||0||Val0)

Hash(H10
||H11)

Hash
(Empty)

Hash(Bob
||1||Val1)

Index(Alice)=01
Index(Bob)=11
Index(Carlo)=00

0 1

0 1 0 1

In chronologic order

Prefix tree Prefix tree 
Root[0:3]Root[0:1]

H[0:3]

H[0:1] H[2:3]

H[0:0] H[1:1] H[2:2] H[3:3]

Chronological tree

H0 H1

H00 H01 H10 H11

H0 H1

H00 H01 H10 H11

Figure 2.2: The center tree is the chronological tree in which internal nodes store root hashes of prefix
trees. We denote H the hash value of the node, and Root the root hash of the Merkle prefix tree. Each
leaf in the chronological tree has a position number (from 0 to 3). We denote by [X:Y] the node that
covers leaves with position number from X to Y. The other two trees are prefix trees with the Merkle
root Root[0,1] and Root[0,3] respectively. We denote by Index the index of leaves in prefix trees.

Fig. 2.2 depicts Merkle2’s data structure. For clarity, we use usernames as IDs, so users append
values associated with their usernames in the form of ID-value pairs. Merkle2’s data structure
consists of several top-level trees called chronological trees (sorted by time), and for every internal
node in this tree, there exists a prefix tree (sorted by IDs). We now elaborate on each type of tree
and on how they are nested.
TheChronological Tree stores users’ ID-value pairs at its leaves from left to right in chronological

order. For example, if Alice adds an ID-value pair into the system before Bob, her pair will appear
on the left side of Bob’s pair. Each ID-value pair is given a position number, which indicates the
position of the leaf in the tree. For example, in Fig. 2.2, Alice has two values Val0 and Val3, which
are assigned to leaves with position numbers 0 and 3, respectively. The ID-value pair can later be
referenced by its position number as a leaf node. Each internal node of the chronological tree has a
corresponding prefix tree, as shown in Fig. 2.2. The hash of each internal node in the chronological
tree is the hash of the following triple:
• the hashes of its two children in the chronological tree, and
• the root hash of the prefix tree corresponding to this node.
This allows the root hash of a chronological tree to summarize the states of all the prefix trees within
that chronological tree.
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[0:1]
[0:0] [1:1][0:0] [2:2]

[0:3]
[0:1]

[0:0] [1:1]
[2:3]

[2:2] [3:3]

|
|
|
|
|
|

|
|
|
|
|
|

Epoch1 Epoch2 Epoch3

Figure 2.3: A forest transition starting from one leaf to four leaves. The red nodes indicate the Merkle
roots in the digest. Leaves in bold indicate ID-value pairs added in each epoch.

The Prefix Tree stores users’ ID-value pairs, arranged in lexicographic order by ID. The prefix
tree associated with an internal node stores all ID-value pairs that appear inside the subtree rooted at
that node. For example, in Fig. 2.2, the prefix tree corresponding to node [0:1] of the chronological
tree stores all children in the subtree of [0:1]. Thus, the prefix tree of [0:1] (depicted on the left of
Fig. 2.2) stores ID-value pairs Alice||Val0 and Bob||Val1. Meanwhile, the prefix tree on the right in
Fig. 2.2 stores all of the ID-value pairs, because it is associated with the root node [0:3]. If a user
appends multiple values, they will all be stored under the same leaf node in the prefix tree because
they share the same ID. Since Alice appends two values (Val0 and Val3), both are stored in the same
leaf node of the prefix tree. The hash of the internal node in a prefix tree is computed as in a typical
Merkle tree, where the parent node hash is the hash of left and right child hashes concatenated
together (H(leftChildHash||rightChildHash)).
The reason why we chose the chronological tree as the outer layer is that auditors can check a

succinct proof for all the appends between epochs. We elaborate in Section 2.5.1. In contrast, if we
use the prefix tree as the outer layer, the size of the proof, which auditors need to check, might be
linear to the number of appends between epochs. That is also the reason why CT [Lau14] chooses
the chronological tree. Other systems such as CONIKS [MBBFF15] avoid this overhead by asking
each ID owner to monitor every epoch.
The forest of chronological trees. Merkle2’s data structure consists of a forest of chronological
trees. Each such tree is full; that is, no leaf is missing. This property is maintained so that as
ID-value pairs get appended in epochi+1, we preserve the structure of the chronological trees from
epochi. We ensure that in epochi+1, we only add parents to the existing trees of epochi or add
separate trees altogether. This helps greatly with our extension proof in Section 2.5.1. Thus, leaves
are added by extending Merkle2’s data structure to the right; as more leaves are added, new internal
nodes (and therefore new roots) are created whenever we can construct a larger, full binary tree (as
discussed in Section 2.4.2).
Fig. 2.3 illustrates the transition of Merkle2’s data structure after a set of appends. The internal

node [0:1] is automatically created because leaves [0:0] and [1:1] can be stored under a full binary
tree. Note that each internal node ([0:1], [2:3], [0:3]) contains the root hash of a prefix tree as shown
in Fig. 2.2. This forest design ensures that the roots of an old forest remain as internal nodes in any
later version of the forest, and their hashes will still be the same. For example, the hashes of [0:1]
and [2:2] will not change between epoch2 and epoch3.
This construction enables us to design a succinct global extension proof and, as shown later,
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enables users to check only the latest version. Since the latest version is an extension of all of the
versions before it, no others need to be checked. The digest of Merkle2’s data structure contains: (1)
the root hashes of the chronological trees in the forest; (2) the total number of leaves. The digest
stores O(log(n)) root hashes because n leaves can be stored under O(log(n)) full binary trees, and
there are O(log(n)) chronological trees in the forest.
Storage complexity analysis. At first glance, the fact that each internal node of the chronological
tree is associated with a prefix tree implies O(n2 log(n)) storage as there are O(n) internal nodes in
the chronological tree and each prefix tree may require O(n log(n)) nodes. However, we observe
that the size of most prefix trees is much smaller than O(n log(n)) since each prefix tree only stores
a small portion of ID-value pairs. Moreover, each prefix tree can be compressed to require only
O(p) nodes where p is the number of ID-value pairs in the prefix tree. We describe the compression
algorithm in Section 2.11.2. Now, we consider the storage costs for all prefix trees at each height
of the chronological forest. The number of ID-value pairs of all the prefix trees in the same height is
O(n); thus, there are O(n) prefix tree nodes at each height of the chronological forest. And there
are O(log(n)) levels in total. Therefore, Merkle2’s data structure with n ID-value pairs requires
only O(n log(n)) storage.

2.4.2 Appending ID-value pairs
To append a new ID-value pair, Merkle2’s data structure first extends the forest by creating a new
leaf node containing the ID-value pair. As mentioned above, the ID-value pair is assigned a position
number according to the leaf position. Then, Merkle2’s data structure recursively merges the
rightmost two chronological trees into one big chronological tree if they have the same size. This
process repeats until it is no longer possible to merge the last two trees. For each root node created
in the merging process, a corresponding prefix tree must be built by inserting all the ID-value pairs
that occur under that root node.
For example, in epoch3 of Fig. 2.3, the leaf [3:3] is added and the ID-value pair is assigned a

position number 3. Nodes [2:3] and [0:3] are created to merge equally-sized chronological trees.
The prefix tree of [2:3] is created by adding the ID-value pairs of [2:2] and [3:3]. And, the prefix
tree of [0:3] is created by adding all ID-value pairs appended so far.
We now analyze the complexity of appending an ID-value pair. A single append results in the

creation of only O(log(n)) internal nodes, but Merkle2’s data structure has to build a new prefix tree
for each new internal node. The bottleneck is building new prefix trees, since some prefix trees may
have O(n) leaves. However, every leaf node has at most O(log(n)) ancestor nodes, which means
each ID-value pair is inserted into O(log(n)) prefix trees. The cost of inserting an ID-value pair into
a prefix tree is O(log(n)). Thus, the amortized cost of appending a new ID-value pair is O(log2(n)).
However, this solution is still impractical for a low-latency system. Suppose there are 220-1

ID-value pairs in the system; the next append combines all roots into a singular chronological tree,
under node [0:220-1]. Building the corresponding prefix tree, which contains at most 220 leaves,
incurs a O(n) cost. Thus, although the amortized cost is O(log2(n)), some appends results in
linear-time operations in the worst case.
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To solve this problem, we introduce the pre-build strategy. We first fix the maximum number
of ID-value pairs supported by Merkle2’s data structure. This number can be sufficiently large,
such as 232. To append an ID-value pair, Merkle2’s data structure inserts it into all possible prefix
trees, including those that do not exist yet but are supposed to be built in the future. In other words,
we pre-build prefix trees that may be used in the future. For example, if Merkle2’s data structure
supports at most 232 ID-value pairs, we will add an ID-value pair to 32 prefix trees, which correspond
to all the existing and future ancestor nodes of the leaf. The cost of each append is still O(log2(n)),
where n now is the maximum number of ID-value pairs, but we avoid the high latency of the worst
case operations. We provide more details in Section 2.11.1.
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2.5 Monitoring protocol in Merkle2

In this section, we show how Merkle2 performs monitoring efficiently. ID owners are responsible
for monitoring their own ID-value pairs, while auditors keep track of digests published by the server
in each epoch. The goal of our monitoring protocol is to:

• avoid the need to monitor in every single epoch;
• enable efficient monitoring in any given epoch.

Intuition. To address the former problem, we design an efficient extension proof that allows auditors
to prove that every epoch is an extension of the previous one. This way, when an ID owner verifies a
monitoring proof for epoch t, the ID owner is implicitly also verifying epochs t− 1, ..., 1. Thus, the
ID owner need not monitor each digest, only the latest one.
For the latter property, we carefully design a monitoring proof and co-design signature chains

that enable an ID owner to verify that their values have not been tampered with.

2.5.1 Extension proofs
In prior transparency log [MBBFF15], each ID owner must monitor their ID-value pairs in every
epoch as there is no guaranteed relationship between the server’s state in different epochs. For
example, at epocht, the server could switch to a corrupted state s

′ (having some corrupted value for
some ID) for this epoch alone and then switch back to the correct state s in epocht+1. Thus, the
server is able to equivocate, and ID owners will never detect it if they do not audit the equivocated
epocht.
As a first step in solving this problem, Merkle2 maintains the invariant that a system state in

epocht is an extension of the state in epocht−1. In other words, every epoch is an extension of those
before it, with the existing ID-value pairs in the same chronological order as before with all the new
ID-value pairs occurring after the existing ones. Our extension proof, thus, is designed to be used by
auditors to verify these requirements between system states in different epochs.
Each state of the system sx can be summarized by the root hashes of the trees in its chronological

forest. For example, in Fig. 2.3, the state of the system in epoch2 can be represented by the hashes
of nodes [0:1] and [2:2]. To prove that a state sy is an extension of a state sx, we must prove that
all chronological roots of sx are contained within those of sy. By providing the minimum set of
hashes necessary, it is possible to compute the root hashes of sy from those of sx, thereby proving
the extension relationship between the two states.
For example, in Fig. 2.3, the extension proof between epoch2 and epoch3 contains the following

hashes: the chronological tree node hash, H[3:3] and the prefix tree root hashes, Root[2:3],Root[0:3].
Given the hashes H[0:1],H[2:2] from the old epoch’s digest, the auditor can check if the hash H[0:3] in
the new digest is computed correctly as follows:
1. compute H[2:3] using H[2:2],H[3:3],Root[2:3];
2. compute H[0:3] using H[0:1],H[2:3],Root[0:3];
3. check if H[0:3] matches the root hash in the new digest.
At the end of each epoch, auditors receive the new digest and the extension proof from the

server. After verifying the extension proof, auditors gossip with each other to ensure that they share
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a consistent view of the new digest. To reduce server load, auditors can also share extension proofs
amongst themselves, since they are checking the same extension proofs.
Extension proofs prevent attackers from removing or modifying existing nodes in Merkle2’s

data structure. Once an internal node is created, it will be a part of all future epochs, as they are
extensions of the current state. Moreover, because each internal node contains a corresponding prefix
tree, all prefix trees that exist in an earlier epoch will remain the same for all future epochs. Thus,
once an ID owner monitors epocht and goes offline form epochs, the ID owner only has to monitor
the latest epoch (epocht+m), and implicitly verifies the system states in epocht+m, ..., epocht+1. In
contrast, CONIKS requires owners to monitor system states in all epochs.
The Merkle2 extension proof is similar to the consistency proof in CT [Lau14]; thus, the

extension proof provides a similar property. There are a few key differences though. A difference is
that the extension proof contains root hashes of prefix trees in the path due to the nested Merkle tree
design. Another difference is that the consistency proof ensures that leaves are append-only and thus
guarantees CT’s security. Still, the extension proof alone does not suffice for Merkle2’s security
goal because the attacker might compromise newly added prefix trees. Thus, we need monitoring
proofs for ID owners to check prefix trees as explained in Section 2.5.2.
Complexity analysis. The size of the extension proof from a state sx into a state sy is dependent
on the number of hashes required to construct the root hashes of sy from those of sx. Because the
depth of any chronological root is O(log(n)), there are O(log(n)) ancestor node hashes required to
prove the inclusion of the roots of sx in those of sy. Thus, the extension proof between two epochs
contains O(log(n)) hashes.

2.5.2 Monitoring proofs
Monitoring proofs enable ID owners to check contents of prefix trees in Merkle2’s data structure. For
concreteness of exposition, consider that Bob wants to monitor his ID, denoted IDBob. A strawman
design for the monitoring proof has Bob check every prefix tree for ID-value pairs matching IDBob.
This way, for each prefix tree, the server provides a (non-)membership proof for IDBob, which can
convince Bob that there are no unwanted changes. Unfortunately, the cost of this strawman is
quasilinear in the number of ID-value pairs.
Instead, Merkle2 requires ID owners to check only the prefix trees that are supposed to store

their ID-value pairs. ID owners keep track of position numbers assigned to their ID-value pair; thus,
they can infer which prefix trees to check. Given an ID-value pair ⟨ID, val⟩, we denote by v the
leaf node that stores it in the chronological tree. The only prefix trees that will contain ⟨ID, val⟩
are those that correspond to the ancestors of v in the chronological tree. Thus, for each of these
prefix trees, the server generates a membership proof for ID to ensure it exists within the prefix
tree. Once checked, each membership proof will generate the prefix root hash it belongs to. Note
that this mechanism by itself does not prevent a compromised server from adding ID-value pairs
(the attacker can add values to the prefix trees that ID owners do not check); our signature chain
co-design (Section 2.5.3) addresses this aspect.
The ID owner is not done yet, however, because she must still verify that the generated prefix

root hashes are correct. The digest provided by the server only contains the root hashes of the



2.5. MONITORING PROTOCOL IN Merkle2 21

chronological forest. Thus, we must provide the minimum set of hashes so that the ID owner can
reproduce the chronological root hash and compare it with the digest. Notice that the generated
prefix tree root hashes each correspond to an ancestor of v in the chronological tree. If we provide
the authentication path for v, the ID owner will have enough information to reproduce a digest root
hash. Therefore, the monitoring proof for ⟨ID, val⟩ corresponding to leaf node v in the chronological
tree consists of the following:
• membership proofs for prefix trees in ancestor nodes of v;
• the authentication path in the chronological tree for v.
The verification process works as follows. Given ⟨ID, val⟩, its monitoring proof, and the digest,

the ID owner begins by computing the root hashes of the prefix trees using the membership proofs.
In conjunction with the authentication path, the verifier can reconstruct the hashes of every ancestor
of node v until eventually reaching the root of the chronological tree. Then, the verifier can compare
the computed root hash with the corresponding root hash in the digest. For example, in Fig. 2.2,
Bob wants to monitor the ID-value pair Bob||Val1. First, Bob computes the prefix root hashes
Root[0:1],Root[0:3] using the membership proofs for the prefix trees corresponding to nodes [0:1],
[0:3]. Then, together with the authentication path (H[0:0],H[2:3]), Bob can reconstruct and verify the
chronological tree root hash H[0:3] with the corresponding hash in the digest.
The protocol described thus far allows ID owners to efficiently monitor Merkle2 in a particular

epoch. Because of the extension proofs in Section 2.5.1, the server cannot modify existing content
of Merkle2 in future epochs. Therefore, if a prefix tree has already been verified by an ID owner, it
does not need to be verified again. When ID owners come online and request a monitoring proof,
they can specify the latest epoch they have already monitored and only download membership proofs
from prefix trees added since that should contain that ID-value pair. This way, a single prefix tree is
only checked once by the same ID owner.
Complexity analysis. We now analyze the size of monitoring proofs. For each ID-value pair, we
observe that the ID owner only needs to check O(log(n)) prefix trees, because each leaf node in
the chronological tree has at most O(log(n)) ancestor nodes. For each of those prefix trees, the
membership proof is of size O(log(n)). Note that the ID owner can skip and cache prefix trees if
they have been checked before. Overall, for each ID-value pair, the ID owner downloads monitoring
proofs of total size O(log2(n)) throughout the system’s life.

2.5.3 Signature chains design
The monitoring proof discussed in Section 2.5.2 only guarantees that the attacker cannot remove
ID-value pairs from Merkle2’s data structure. It does not prevent the compromised server from
adding ID-value pairs (e.g. to prefix trees the ID owners never check). For example, in Fig. 2.4,
Alice cannot detect that the attacker inserted Alice||Val′ at position 25, because Alice does not have
a value inside the chronological tree rooted at node [24:27], so the monitoring proof will not include
a membership proof for the prefix tree at node [24:27].
To prevent attackers from adding corrupted ID-value pairs, Merkle2 co-designs signature chains

as follows. The ID owner attaches a verifying key to each ID-value pair in Merkle2. And, on append,
each new ID-value pair, its position, and the new verifying key are signed by the verifying key
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[16:23] [24:27] [28:29]

Alice||29||Val1
||VK1

[0:15]

Alice||21||Val0
||VK0

Alice||25||Val’

Sk0

Figure 2.4: Alice’s values are Val0 and Val1. The attacker may add values for the ID “Alice" in the
chronological trees [24:27]. The signature chain prevents such attacks.

attached to the previous ID-value pair for the owner. Users can then verify the signature on an
ID-value pair with the same verifying key. By verifying the signature chain, users can confirm that
all the ID-value pairs are indeed appended by the ID owner. In the example of Fig. 2.4, although
the attacker can still add Alice||Val′ without being caught by Alice, other users will not accept the
corrupted pair because the attacker cannot produce a valid signature. Notice that the attacker may
try to hide the end of the chain during lookup. The monitoring proof ensures that the attacker cannot
hide the owner’s values without detection.
The protocol described thus far is still insecure because the first value is not signed. An attacker

may insert a corrupt ID-value pair and try to convince users that it is the first value for that ID; thus,
the attacker could circumvent the signature chain. We observe, however, that if the honest ID owner
already has inserted values for that ID in Merkle2, the attacker cannot convince other users that the
falsified value is the first for that ID. This holds true because the monitoring proof ensures that the
attacker cannot remove existing values without being detected. For example, in Fig. 2.4, the attacker
cannot hide Alice||21||Val0 and claim Alice||25||Val′ as the first pair for “Alice"; as shown in our
lookup protocol in Section 2.6, other users looking up Alice’s values will verify the non-membership
proof for the prefix tree in [16:23]. Meanwhile, Alice will also check the membership proof for
[16:23] by verifying the monitoring proof. The server cannot provide both a membership and
non-membership proof for a leaf node associated with the ID “Alice" for the same prefix tree.
First-value checking. The ID owner must ensure that it indeed appends the first ID-value pair for
that ID in Merkle2, otherwise others may have obtained ownership for that ID already. It is not
feasible to check all the leaves appended before it. Instead, we can leverage non-membership proofs
from prefix trees to prove that no value exists for that particular ID. For example, if the ID-value
pair is added at position x, there exists a minimum set of chronological trees Ct1, . . . ,Ctn that cover
the previous x− 1 leaves (there are only O(log(x)) chronological trees in this covering set). For the
prefix tree corresponding to every chronological root of Cti, we can generate a non-membership
proof for the ID. The non-membership proofs allow the ID owner to compute the root hashes of
the prefix trees; in order to compute the root hashes of the chronological roots, Ct1, . . . ,Ctn, the
first-value proof also contains the minimum set of node hashes needed to do so. This way, the ID
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[16:17]

Alice||17||Val’

[16:19]

[18:19]

[0:15]

[20:20]

[20:21]

Alice||21||Val…
… …

[16:23]

[20:23]

…

Figure 2.5: Alice appends the first value Val for her ID at position 21. Someone (either another honest
user or the attacker) has appended Val′ for ID “Alice" at position 17 already. Alice will verify the
first-value proof, which contains non-membership proofs for ID “Alice" in the prefix trees at the green
nodes.

owner can compute the hashes of the chronological roots and compare them against the digest.
For example, in Fig. 2.5, Alice verifies the non-membership proofs of the prefix trees for

nodes [0:15], [16:19], and [20:20] to ensure that they do not contain values for “Alice." If the
non-membership proofs are not valid and there exists a value for “Alice," Alice will know that she
does not have ownership of that ID. If another honest user appends Alice||17||Val′ before Alice
appends Alice||21||val, then the attacker cannot hide Alice||17||Val′ from Alice because when the
honest user performs the monitoring protocol, it verifies the membership proof of the prefix tree
of node [16:19]. Since the server cannot provide both a membership and non-membership proof
for the same leaf node in the same prefix tree, the misbehavior will be detected. In addition to the
non-membership proofs, the server must also provide the hashes necessary for Alice to compute the
root hashes of the digest. For example, Alice can compute prefix root hash of node [16:19] using
the non-membership proof provided, but she still needs H[16:17],H[18:19] to compute H[16:19]. With
the other hashes, Alice can finally compute the chronological root hash, H[16:23], to see if it matches
the digest.
It is possible for a malicious server to add Alice||17||Val′ to the chronological tree but remove it

from the prefix tree at node [16:19]. However, once Alice appends the first value and successfully
verifies the first-value proof, the attacker can no longer add Val′ back to any prefix trees associated
with its ancestor nodes without detection. New ancestor nodes added in the future will also be
ancestors of Alice||21|val, so they will be checked in monitoring proofs by Alice. Thus, the attacker
may be the owner of ID “Alice" before Alice joins the system; but, after Alice appends her first
value, any value appended previously by the attacker will not be accepted by honest users, and the
attacker no longer has the ability to append values for “Alice" without a valid signature.
Complexity analysis. If there are O(n) ID-value pairs in the system, the covering set contains
O(log(n)) trees. Thus, there are O(log(n)) total non-membership proofs to verify, each with a size
of O(log(n)), so the total cost of the first-value proof is O(log2(n)). ID owners only need to check
the first-value proof once due to extension proofs.
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2.6 Lookup protocol in Merkle2

In this section, we present the construction of lookup proofs in Merkle2. We denote by Ct1, . . . ,Ctn

the chronological trees in the forest of Merkle2’s data structure, and Pt1, . . . ,Ptn the prefix trees at
their roots, which we also refer to as root prefix trees. The lookup proof must be able to convince
users that the lookup result contains all the values for a given ID. By providing (non-)membership
proofs for all the root prefix trees, the server can prove the (non-)membership of ID-value pairs for
the given ID in all of Merkle2. Further, the signature chain helps users verify the authenticity of the
lookup result.
Based on these ideas, the lookup protocol for an ID works as follows. For each ID-value pair

except the first one, the lookup proof contains a signature signed by the ID owner. For each prefix
tree Pti, we generate a proof, πi; if there exists a value for ID in Pti, πi is a membership proof.
Otherwise, πi is a non-membership proof. The lookup proof also contains the hashes LHi,RHi of
the left and right children of root node Cti, which allows users to compute the root hashes and
compare them to those in the digest. Finally, the lookup proof contains the signature chain and
the following tuples: (⟨π1, LH1,RH1⟩, . . . , ⟨πn, LHn,RHn⟩). Intuitively, the lookup proof captures
which chronological roots contain values for ID and which do not.
In the example of Fig. 2.4, the lookup proof for Alice’s values contains the signature chain

and (non-)membership proofs for prefix trees [0:15], [16:23], [24:27], and [28:29]. The proofs for
[16:23] and [28:29] are membership proofs of the leaf values associated with Alice. The proofs for
[0:15] and [24:27] are used to prove non-membership of Alice’s ID. Finally, the lookup proof also
contains any hashes which are necessary to compute the root hashes; for example, H[0:7] and H[8:15]
are used to compute the root hash H[0:15].
During lookup proof verification, the user possesses the following: 1) the lookup result, which

contains all ID-value pairs for the target ID; 2) the latest digest from auditors that contains the root
hashes of each chronological tree in the forest; 3) the lookup proof corresponding to the lookup
result.
The user proceeds as follows:

1. verifies the signature chain using the verifying keys provided in each ID-value pair;
2. for each ID-value pair, finds which chronological tree Cti and corresponding prefix tree Pti it
belongs to;

3. computes the root hash Rooti for each Pti using πi and the ID-value pairs in Pti based on the
results from step 2;

4. computes the root hash for Cti using Rooti and ⟨LHi,RHi⟩
If the signature chain is valid and the computed root hashes match those in the digest, the user can
accept the lookup result.
Complexity analysis. The signature chain is of length O(ℓ) where ℓ is the number of values.
The lookup proof contains (non-)membership proofs from O(log(n)) prefix trees, and each (non-
)membership proof is of sizeO(log(n)). Therefore, the overall lookup proof is of sizeO(ℓ+log2(n)).
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[32:47] [48:55] [56:59]

Alice||53||Val1

[0:31]

Alice||35
||MVK

MSK

[60:61]

Alice||57||Val2
MSK

Figure 2.6: Alice appends the master verifying key as the first value. Following values are signed by the
master signing key.

2.6.1 Lookup for the latest ID-value pair
We provide an optimized protocol to look up the latest (i.e., most recent) value for an ID. In many
applications, users may want the latest value instead of all values. We make use of master keys,
shown in Fig. 2.6, to replace signature chains since the size of the chain is linear to the number of
values. ID owners generate a pair of master keys and append the master verifying key as their first
ID-value pair in the log. ID owners must also ensure the master verifying key is the first value by
verifying the first-value proof. All future pairs appended by the ID owner will be signed using the
master signing key.
Instead of downloading all the ID-value pairs and signature chain for a given ID, users can

download only the latest value and the master verifying key to verify the signature. Users also need
(non-)membership proofs from prefix trees to ensure that the master verifying key is in fact the first
value for the given ID and that the lookup result is in fact the latest one.
For example, in Fig. 2.6, users can verify that Alice’s master verifying keyMVK is the first value

for “Alice" by verifying the non-membership proof for the prefix tree [0:31] and the membership
proof for the prefix tree [32:47]. Similarly, users can also verify that Alice||57||Val2 is the latest
value by verifying the membership proof for the prefix tree [56:59] and the non-membership proof
for the prefix tree [60:61].
We assume ID owners will not change their master keys in the system. If required, Merkle2 can

permit ID owners to change their master keys as follows. ID owners can revoke master keys by
appending and signing the new master key using the old master key. However, allowing changes
to master keys will increase the lookup cost because the other users now also need to check the
signature chain of the master keys. Instead, users can use existing techniques for backing up master
keys on multiple devices securely just as they would do for their secret keys for end-to-end encrypted
services, for example by using secret sharing [Sec; Sha79; WMZV16]. The cost of this modified
lookup protocol is O(log2(n)) since there is no longer a signature chain cost. Users can also cache
master keys to further reduce the cost of a lookup.
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2.7 Applications of Merkle2

In this section, we discuss two applications of Merkle2: a ledger for web certificates and for a public
key infrastructure.

2.7.1 Transparency log for web certificates
The security issues, where CAs have been compromised and issued certificates incorrectly [Lau; Adk;
Wha; Man; NB13], prompted the design of web certificate management systems using transparency
logs, where the owner of a certificate can verify the integrity of their own certificate and hold CAs
accountable for corrupted certificates [LKL13; Chr; Rya14; Lau14; CSPLM15].
We now describe how to use Merkle2 for certificate management in place of existing sys-

tems [LKL13; Lau14]. The log server runs Merkle2’s server to manage certificates for each domain
name. The ID is the domain name and the values are the web certificates for that domain. There
may be more than one certificate for the same domain. Instead of storing certificates as different
domain-certificate pairs, we bundle multiple certificates together as a single value, and each append
will be the hash of all the certificates for the domain name. Merkle2 also supports revocation
efficiently by allowing the domain owner to append the hash of all the unrevoked certificates for the
same domain name. If a certificate is not in the latest append for this domain name, it is not valid
(e.g., it was revoked). In the end, web browsers can simply retrieve the latest value for the domain to
check whether a certificate is valid.
Benefits of our system. We compare Merkle2 to existing proposals. Deployed CT systems [LKL13;
Lau14] do not support revocation. Enhanced certificate transparency (ECT) [Rya14] aims to solve
this problem. ECT also uses prefix trees (they use a similar design called lexicographic trees) and
chronological trees, but ECT keeps these trees separate; thus, ECT requires auditors to verify the
relation between these two trees by scanning linearly through all entries in the log. Hence, auditors
require O(n) time and space to perform their monitoring. In contrast, Merkle2 provides a way to
nest the two trees to reap their benefits simultaneously through our “multi-dimensional” design,
which reduces the cost of auditors to only O(log(n)). We give a concrete performance comparison
in Section 2.8.

2.7.2 Transparency log for public keys
Merkle2 can be used for a public-key infrastructure as an alternative to CONIKS [MBBFF15] or
KT [HB17]. We use end-to-end encrypted email systems [ema] as a real-world example. In this
application, an ID in Merkle2 corresponds to a user’s email, e.g. alice@org.com, and the value
corresponds to the public key of the user, e.g., PKAlice. To join the system, Alice appends the
first public key for her email address alice@org.com. To revoke a public key, Alice appends a new
public key for her email address. If Bob wants to send an encrypted email to Alice, he looks up
the latest public key for alice@org.com and uses it to encrypt and send the email. For company
communications, the organization can monitor all the email-PK pairs. For a personal account, the
client running on the user’s devices can monitor the transparency log regularly.
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Benefits of our system. We compare Merkle2 to CONIKS [MBBFF15], a state-of-the-art key
transparency system. Monitoring in CONIKS is inefficient as key owners must check each digest
published by the server. In contrast, each key owner in Merkle2 only monitors O(log2(n)) data
throughout the system’s life, where n is the number of keys in the log. As we will show in
Section 2.8, Merkle2 can support short enough epoch periods (such as 1 second) to be considered
low-latency [Gooc; Good].
Privacy concerns. CONIKS [MBBFF15] shows that verifiable random functions (VRFs) [MRV99]
can reduce the leakage of IDs to malicious users. The same technique can be applied to Merkle2.
Instead of using an ID directly, users compute indices using the output of VRFs on the ID; the server
also includes the information needed to verify the VRF result in the reply.
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2.8 Implementation and evaluation
We implement a prototype of Merkle2 in Go. It consists of four parts, as in Fig. 2.1: the server
(≈ 800 LoC), auditor (≈ 200 LoC), client library (≈ 450 LoC), and verification daemon (≈ 600
LoC), which all depend on a set of core Merkle2 data structure libraries (≈ 2400 LoC). The Merkle2
library is available at https://github.com/ucbrise/MerkleSquare.
Our server implementation backs up ID-value pairs in persistent storage in case the server fails

using LevelDB [GD], which has been used in previous transparency log systems [MBBFF15; HB17].
To provide a 128-bit security level, we used SHA-3 [Dwo15] as the hash function and Ed25519
signatures [BDLSY12] (this is the only public key operation in the system). We did not implement
VRFs [MRV99] since privacy is not the focus of this paper. We limit the chronological tree height
in Merkle2 to 31 to support the pre-build strategy, which means it can store up to 231 ID-value pairs
and each append will be added to 31 prefix trees.
Concurrency control. Merkle2’s server can serve requests in parallel, relying on concurrency
control of Merkle2’s data structure and LevelDB. Merkle2’s data structure prohibits concurrent
appends since two appends may affect the same prefix tree. For each append, the server sends a
position number to the user, and the user should reply with the signature. If the user withholds or
does not reply with the signature within a short time bound, the server rejects the append. Lookups
and monitoring can be concurrent with appends because required hashes have been computed in the
past epochs.

2.8.1 Setup
Experiment setups. We ran our experiments on Amazon EC2 instances; the microbenchmarks
and system server were run on a r5.2xlarge instance. The auditor and client services were run on a
r5a.xlarge and c4.8xlarge instance, respectively.
Baselines. We chose three state-of-the-art transparency logs to compare with: CONIKS [MBBFF15],
AAD [TBPPTD19], and ECT [Rya14]. We compare Merkle2’s complexity with these baselines in
Table 2.1.
We compare Merkle2 with CONIKS via both microbenchmarks and end-to-end system perfor-

mance. The original CONIKS implementation [Con] is quite incomplete; for example, it does not
support monitoring or persistent storage. Moreover, since CONIKS is not designed for short epochs,
it copies and reconstructs the entire Merkle tree in each epoch; this incurs a large time and space
cost, which would unfairly disadvantage CONIKS in comparison to Merkle2. To produce a fair
comparison, we enhanced the CONIKS design to use persistent data structures [DSST86], avoiding
the overhead of copying the entire tree. We also implemented the monitoring functionality from its
paper, and wrapped the CONIKS data structure into a server system. We disabled VRFs [MRV99] in
the CONIKS implementation since we do not focus on privacy. Similarly to Merkle2, the modified
CONIKS implementation can process lookups and monitoring during appends, but does not allow
concurrent appends.
AAD is an asymptotically efficient transparency log built on top of bilinear accumulators [Ngu05],

but its constants are large. We compare with AAD’s microbenchmarks results from their paper and
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repository [TBPPTD19; Aad] because our setup cannot support running experiments for AAD. For
example, it takes more than 20 hours to generate the public parameters necessary, and as shown in
[TBPPTD19], the experiments were run on a r4.16xlarge instance, which is much more powerful
than our machines.
We also compare Merkle2 with ECT, for the use case of transparent web certificates. Since there

is no ECT implementation available, we use the numbers provided in their paper and other online
statistics for the comparison.

2.8.2 Microbenchmarks

Figure 2.7: Append time. Figure 2.8: Lookup proof size and verification time.

Figure 2.9: Monitoring cost
for auditors
in AAD and Merkle2.

Figure 2.10: Monitoring cost
for ID owners in CONIKS.

Figure 2.11: Monitoring cost
for ID owners in Merkle2.

We compare Merkle2’s core protocol to AAD [TBPPTD19] and CONIKS [MBBFF15] via
microbenchmarks for individual operations.
Append time. The append time comparison (depicted in Fig. 2.7) measures the total time taken
for the last 100 appends for a given number of ID-value pairs. AAD only provides benchmarks up
to 213 = 8192 ID-value pairs because of how long larger scale appends would take [TBPPTD19].
AAD supports a batching mechanism to speed up append operations; in our graph, we include only
the result for the 32 ID-value pair batch as the time for a single append is too high. In spite of
the batching, AAD is still significantly slower than Merkle2 and CONIKS because it uses bilinear
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accumulators. CONIKS, on the other hand, is faster than Merkle2; a single append in CONIKS
inserts only an ID-value pair into a single prefix tree. In Merkle2, we measured the append cost with
the pre-build strategy. Because we set the maximum chronological tree height to 31, each append is
added to 31 prefix trees. If there are 220 ID-value pairs in the system, it takes 3 ms for the last 100
appends in CONIKS, while in Merkle2 it takes 151 ms.
Monitoring cost. In Fig. 2.9, we contrast the monitoring costs of auditors in AAD and in Merkle2.
We compare proof size and verification time for extension proofs between system states containing
10i and 10i+1 ID-value pairs. Clearly, the monitoring costs of auditors in AAD is higher than those
of auditors in Merkle2 for both proof size and verification time. Because system states in different
epochs in CONIKS share no defined relationship, CONIKS does not have extension proofs, so it
was excluded from this experiment.
Now, we compare the monitoring costs of ID owners in CONIKS with those of ID owners in

Merkle2. In Fig. 2.10, we add 220 ID-value pairs into a CONIKS system. Then, we vary the number
of epochs the ID owner must monitor because CONIKS requires each ID owner to monitor every
epoch. The monitoring costs of CONIKS grow linearly with the number of epochs. In contrast,
Merkle2’s monitoring proof depends only on the number of existing ID-value pairs; it is independent
of the number of epochs since ID owners can simply monitor the latest epoch. In Merkle2, an ID
owner must check the first-value proof when they join the system and then regularly monitor their
ID-value pairs; the costs are depicted in Fig. 2.11. As discussed in Section 2.5.2, ID owners can
cache monitoring proofs and need to verify the first-value proof only once; thus, the monitoring cost
of ID owners in Merkle2 is significantly lower than those of ID owners in CONIKS.
Lookup cost. In Fig. 2.8, we compare the average lookup proof size and verification time for all
three systems. The lookup cost in Merkle2 and AAD may increase when there are more values for
the target ID, so we measure the results for both single ID-value pairs and batches of 32. Lookup
costs fluctuate as performance depends on the underlying structure of the system. In Merkle2, for
example, 212 − 1 ID-value pairs result in more root prefix trees than 104 ID-value pairs. What first
appears to be a discrepancy is actually an odd feature of the system. The batched lookup proof,
however, is not affected because the cost is dominated by the signature chain.
In Merkle2, the master key and latest value lookups are more efficient than the batched lookup

because they do not require signature chains. Note that the master key lookup cost of Merkle2 is
close to that of CONIKS. This occurs due to the forest design in Merkle2, where the root prefix trees
at the beginning of the forest span more ID-values than the others. Because master keys require
non-membership proofs beginning from the left of the forest, there are fewer (non-)membership
proofs in the master key proof than in the latest value proof. In most cases, the master key is covered
by the largest chronological tree. Thus it contains only a single membership proof and has a cost
close to that of CONIKS.
Memory usage. Fig. 2.12 compares the memory cost of Merkle2 and CONIKS. We fix the number
of appends per epoch to be 256. We also limit the chronological tree height in Merkle2 to 31 to
support the pre-build strategy.
For 220 ID-value pairs, Merkle2 consumed about 22 GiB of RAM, and CONIKS consumed

about 6.3 GiB of RAM. We obtain the memory usage of AAD from its paper [TBPPTD19], and it
consumed 263 GiB of RAM. AAD additionally required 64 GiB of RAM for public parameters.
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Operation Merkle2 CONIKS
Append 4.39 3.02

Lookup Master key 1.62 1.28Latest value 2.31

Owner
Monitor

1 epoch

2.33

1.29
10 epochs 2.32
100 epochs 10.62
1000 epochs 88.03

Auditor Monitor 0.25 0.22

Table 2.2: Latency (in ms).

Operation Merkle2 CONIKS
Append 42B 42B

Lookup Master key 3.8KB 1.6KBLatest value 9.8KB

Owner
Monitor

1 epoch

22.9KB

2.1KB
10 epochs 21KB
100 epochs 209.6KB
1000 epochs 2.1MB

Auditor Monitor 654B 370B

Table 2.3: Message size of server’s responses.

The original CONIKS implementation copies the prefix tree for each epoch and results in
O(E · n) nodes where E is the number of epochs, which is prohibitively large for shorter epochs.
Instead, we improve CONIKS by leveraging persistent data structures [DSST86] to avoid copying
prefix trees in each epoch. Each insertion in the persistent prefix tree creates O(log(n)) nodes; thus,
CONIKS has to store O(n log(n)) nodes in total. Merkle2’s asymptotic storage cost is the same as
CONIKS, but the memory usage is higher due to the larger constants. We discuss how to optimize
Merkle2’s storage in Section 2.8.5.

2.8.3 End-to-end system evaluation
In this section, we evaluate Merkle2’s system-level performance with that of CONIKS. Note that we
do not use VRFs [MRV99] in either Merkle2 or CONIKS as we are interested in the main system
cost. We also limit the chronological tree height in Merkle2 to 31. In the experiment, we insert 106

ID-value pairs into each system before running the benchmarks.
End-to-end performance. We analyze the end-to-end performance from the client’s perspective,
which includes the proof verification and communication with the server and auditor. Table 2.2
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Figure 2.12: Memory cost.
Figure 2.13: Server throughput. Figure 2.14: Users supported

by one server.

shows the average latency and Table 2.3 shows the message size of server responses for 103 operations.
For Merkle2, we measure only the latest-value lookup protocol as it is more efficient and useful in
real-world applications. And, we separate the cost of looking up the master verifying key and latest
ID-value pair, since users can store and reuse master keys as discussion in Section 2.6.1. The result
shows that appends and lookups in Merkle2 are more expensive. The cost for the master key lookup
is cheaper than that of the latest-value lookup; this occurs because the proof for the latter is smaller
due to the forest design in Merkle2.
To measure the cost for ID owners to monitor, we vary the number of epochs the user is offline

since last monitoring. As mentioned, ID owners in CONIKS must check every digest published,
which makes the cost grow significantly when a user is offline for some time. In contrast, Merkle2

does not see the same increase because ID owners can check only the latest digest. Based on results
in Table 2.2 and Table 2.3 for CONIKS, we can estimate the cost of an ID owner who wishes
to verify all digests in a given month. Suppose the epoch is 1 second, as is desired by Google
KT [Gooc]; in a month, there will be 30 · 24 · 60 · 60 = 2592000 epochs. Then, the ID owner needs
to download 2592000

1000 · 2.1MB ≈ 5.4GB of data and spend 2592000
1000 · 88ms ≈ 3.8mins to verify it. This

cost is problematic for the server who has to incur this cost for every data owner. In contrast, ID
owners in Merkle2 only download 22.9KB of data, which is independent of the number of epochs.
We measure the cost for auditors to check the new digest. Auditors in Merkle2 check the

extension proof, whereas auditors in CONIKS fetch only the digest from the server. The result
shows that if there are 28 appends between epochs, auditors in Merkle2 are as lightweight as those
in CONIKS. Note that auditors in Merkle2 can gossip the extension proof with each other to further
reduce the bandwidth of the server.
Throughput. Next, we measure the throughput of frequent operations in Merkle2 and CONIKS,
depicted in Fig. 2.13. In the experiments, we randomly choose an ID-value pair for lookup and
monitoring. CONIKS can support more append and lookup operations because its append and
lookup are more efficient than those of Merkle2. The throughput of the master key lookup is much
higher than that of the latest-value lookup because the master key lookup proof is smaller than the
latest value lookup proof, as shown in Table 2.3.
For the monitoring throughput benchmark, we fix every ID owner’s monitoring frequency; for
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CONIKS, there is a fixed number of digests the ID owners must monitor. The results clearly show
that the server’s performance decreases significantly when ID owners monitor larger numbers of
epochs. In Merkle2, the monitoring cost is independent of the number of epochs, and ID owners
can cache and skip membership proofs of prefix trees that are checked in the past. To illustrate the
saving provided by this caching mechanism, let i be the height of the highest node associated with
the prefix tree that is in ID owners’ cache. ID owners do not need to download membership proofs
for prefix trees at nodes below height i. In Fig. 2.13, we vary the height i to show the throughput.
“Height 0" shows the worst case result, as it means ID owners need to check all the prefix trees. The
results show that the throughput increases when ID owners cache more monitoring proofs.

2.8.4 Performance in applications
In this section, we compare Merkle2’s performance in the applications described in Section 2.7.
Web certificate management. To compare with ECT, we estimate the cost of ECT based on
numbers in their paper and with the help of online statistics. Recent certificate statistics [Li+19]
show that about 5, 002, 599 certificates are appended every day since June 2018. Additionally,
auditors in ECT require 2 KB of data for each append [Rya14]. Thus, ECT auditors have to download
5002599 ∗ 2KB ≈ 9.5GB of data per day for monitoring. In contrast, Merkle2 auditors require only
log(109) ∗ 32B ∗ 2 ≈ 1.9KB of data for monitoring.
Public keys management. As shown in previous sections, Merkle2 supports efficient monitoring
but sacrifices some performance for append and lookup operations. To understand the benefits of
Merkle2, we must run our benchmarks under workloads matching the target application. Thus, we
compare Merkle2 and CONIKS in the following scenario.
We consider the real-world application of encrypted emails using available statistics; in particular,

there are 200 appends per second for 1 billion users [Gooc; Good], and each user sends 42 emails
per day [Rad]. Users may also cache public keys for emails sent within a short period of time, such
as 1 hour. Using the Enron email dataset [Coh], we find that users need to perform a key lookup for
about 62% of emails. In summary, each user may send 42 · 62% = 26 lookup requests per day. We
control the number of monitoring requests by adjusting the average monitoring frequency. Based on
these results, we generate the workload for different numbers of users under different epoch intervals
and monitoring frequencies. To keep the experiment time reasonable, we add only 106 ID-value
pairs into the system before running them.
Fig. 2.14 depicts the number of supported users by a single server machine for both systems. The

result shows that the epoch interval does not affect the performance of Merkle2. When users monitor
the server more frequently, Merkle2’s performance decreases because the server has to serve more
requests. CONIKS’s performance is significantly worse than Merkle2 when the epoch interval is
short because of its expensive monitoring protocol. Users may increase their monitoring frequency
to avoid larger computations as a result of being offline for many epochs. However, this increases
the number of monitoring requests that the server must handle, which may decrease its performance.
On the other hand, when the epoch interval becomes 1 hour, CONIKS starts to outperform Merkle2

because its appends and lookups are more efficient. We find that the monitoring caching mechanism
does not improve the performance of Merkle2 when the monitoring interval is long (more than
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1 hour) because lookups dominate the workload in this application. The caching mechanism is
more helpful in applications with more frequent monitoring. In conclusion, Merkle2 significantly
outperforms CONIKS when the epoch interval is small (for example, one second), which is desirable
for a low-latency key transparency system.

2.8.5 Limitations and future work
These experiments suggest Merkle2 cannot outperform CONIKS when the epoch interval is long
because appends and lookups become the bottleneck. Merkle2 leaves as future work improving its
append and lookup efficiency. For example, we can use one server to pre-build large prefix trees that
are supposed to be used in the future; thus, another server can cache smaller prefix trees and serve
users’ requests more efficiently. Also, we can batch lookup proofs for different users and leverage
proxies to save the bandwidth of the server.
Given that data is replicated in Merkle2’s data structure, memory usage is also a concern. We

notice that prefix trees associated with the right children in chronological trees are not needed; thus,
the server can save half of the space by skipping these prefix trees. We leave these optimizations to
future work.
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2.9 Related works
Transparency logs. We have already compared extensively with CT [LKL13; Lau14], ECT [Rya14],
CONIKS [MBBFF15], and AAD [TBPPTD19].
Recently, there has been extensive research into improving the performance of transparency logs.

One school of thought [And+19; Rya14; YCR16], attempts to use prefix trees and chronological
trees in parallel for efficient lookup and state monitoring, respectively. Unfortunately, as in ECT,
auditors and owners must still verify all operations in the chronological tree to verify that the prefix
tree is built correctly. WAVE [And+19] relies on strong auditors to monitor on behalf of users, which
incurs a large burden on the auditors. SEEMless [CDGM19] is the first for proposing persistent data
structures to optimize CONIKS. However, it relies on strong auditors to monitor the append-only
property of the Persistent Patricia Trie, which still incurs a super-linear cost on the auditors. ECT and
DTKI [YCR16] also rely on users to collectively verify server states; collective verification, however,
assumes enough honest users in the system, which limits its use in real-world applications. Google
KT [Gooc] recently proposed a new design that requires users performing a lookup on a value to only
perform verification of the same digest as the value owner. To ensure that the value owner and user
both verify the same digest, KT uses a meet-in-the-middle algorithm. As a result, the monitoring
cost of the owner becomes O(log(E) log(n)), where E is the number of epochs. However, the cost
of a lookup also increases to O(log(E) log(n)). We do not perform any comparison to KT in our
evaluations as it is still in its early stages, and there is no protocol detail or implementation available
for benchmarking. AKI [KHPJG13] has the server maintain prefix trees, as in CONIKS; it distributes
the monitoring workload to auditors, ID owners, users, and other third parties. Unfortunately, AKI
operates on the assumption that no parties collude. ARPKI [BCKPSS14] and PoliCert [SMP14]
extend the security of AKI by protecting against attackers controlling n-1 out of n parties.
Another approach is to use recursive SNARKs [BSCTV17; BCCT13; COS20a; CHMMVW20]

or cryptographic accumulators [Ngu05; BBF19]. However, these solutions are too expensive to be
practical.
Several gossip protocols [Syt+16; CSPLM15; DPVHJK19; TD17] are designed to ensure a

consistent view of digests among users and auditors. Merkle2 can use these to share digests and
extension proofs. Software transparency logs [AM18; FDPFSS14; HC17; Nik+17; Syt+16; TD17]
are designed for securing software updates. Merkle2 can be used to improve the performance of
these systems.
Previous works also formalize the security guarantees of CT [CM16; DGHS16] and those of

general transparency logs [CM16; TBPPTD19]. The security guarantees of Merkle2 can be analyzed
under the same model; we leave this for future work.
Authenticated data structures. Authenticated data structures [Mer87; TBPPTD19] are at the core
of transparency logs. Some works [DPP16; KKKP] focus on improving the performance of Merkle
tree implementations, which can also be applied to Merkle2. Cryptographic accumulators [Ngu05;
BBF19; BBF19] can also be used for building authenticated data structures; however, these
cryptographic primitives have a large overhead.
Blockchains and consensus protocols. Decentralized ledgers can be built on top of blockchains
using consensus protocols [Nak19; Woo14; CL99; YMRGA19; PS18; Lok+19], which have seen
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widespread adoption in cryptocurrencies [Bita; Eth; Zcaa; Lok+19]. Merkle2 is more efficient
and lightweight than blockchain-based systems because it is hosted centrally; this way, there is no
need for expensive consensus protocols or data replication. At the same time, Merkle2 loses the
availability guarantee of blockchain systems, since a malicious server can deny service.
Another approach is to use blockchains to provide efficient auditing mechanisms for transparency

logs [Bon16; TD17; ANSF16; MR17; WLCWZJ20]. However, the performance of this approach
is limited by the underlying blockchain protocol. Some works [MHWK16; ZEEJVR17; Che+19]
leverage trusted hardware to improve the performance of blockchain systems. However, existing
hardware, like Intel SGX, are susceptible to side-channel attacks [VB+18].
File sharing with an untrusted server. Many systems [LKMS04; KFPC16; HKP20; SCCKMS10]
allow users to share files on untrusted storage. The focus of these works is to provide a file sharing
functionality instead of an immutable append-only log. SUNDR [LKMS04] andVenus [SCCKMS10]
achieve weaker consistency guarantee thanMerkle2. Verena [KFPC16] relies on two “non-colluding"
servers. Ghostor [HKP20] relies on either a blockchain or transparency log, so Merkle2 can be used
as a foundation for Ghostor.
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2.10 Security of Merkle2

Before we can prove the security of Merkle2, we must first consider the properties of the data
structure. Our first step is thus to define the security properties of the prefix trees and chronological
trees that make up Merkle2’s data structure in Section 2.10.1 and Section 2.10.2 . Armed with these
properties, we prove Guarantee 1 in Section 2.10.3 .

2.10.1 Prefix trees
In this section, we briefly introduce prefix trees [MBBFF15] used in Merkle2. The prefix tree is a
binary trie [DLB59] built over a set of ID-value pairs S. Each node in the prefix tree is labeled with
an index that is defined recursively: the root node is labeled with an empty index string; given a
node with index p, its left and right children are labeled with indices p+′ 0′ and p+′ 1′, respectively.
The leaf node with prefix p stores the hash of all the ID-value pairs ⟨ID, val⟩ in S for which ID is
equal to the index p. The internal node hash will be the hash of its left and right children hashes.
We use the term empty node to denote any node with an index that is not a prefix of any ID in S.
The empty node has a special hash to avoid a collision in the same location [MBBFF15]. We define
the authentication path in prefix trees below.

Definition 2.10.1 (Authentication paths in prefix trees). Given a prefix tree T and a node v with
index I, the authentication path of v contains node hashes that are on the co-path of v.

The server proves membership by presenting the authentication path for the leaf node with index
matching ID. If the user successfully recomputes the root hash, it ensures that the server returns
all the values for ID in S. The server can prove that there is no value for ID in S by presenting the
authentication path for an empty node, whose index is the prefix of ID.
Given a prefix tree root hash Root, an ID, the node hash H (H can be the hash of the

empty node with index that is the prefix of ID), and an authentication path Path, we denote by
PrefixTree.Check(Root, ID,H,Path) the process to check the authentication path.

PrefixTree.Check(Root, ID,H,Path) = 1 means that users successfully recompute the root hash
Root. We define (non-)membership security of prefix trees below.

Guarantee 2.10.2 ((Non-)Membership security of prefix trees). Assume that the hash function used
in the prefix tree is a collision-resistant hash function [Gol07]. For all polynomial-time adversaries
A there exists a negligible function ν(·) such that:

Pr



(Root, ID,H1,Path1,H2,Path2)← A(1λ) :
H1 ̸= H2
∧

PrefixTree.Check(Root, ID,H1,Path1) = 1
∧

PrefixTree.Check(Root, ID,H2,Path2) = 1


= ν(λ) .

This is a standard security property of Merkle prefix trees [MBBFF15]; thus, we do not prove it
here due to space constraints.
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2.10.2 Chronological trees
In this section, we introduce chronological trees in Merkle2. Our chronological trees are different
from those in CT [Lau14] since the internal nodes contain root hashes of prefix trees. A chronological
tree is a full binary tree, whose leaves are created chronologically. A chronological forest is a set of
chronological trees as discussed in Section 2.4.1. We define the index for a node v as a tuple [L:R],
where the subtree rooted at v includes all leaves with position numbers L to R. If v is a leaf, L and R
will be the position number of v. The node index enables us to specify the location of node in the
chronological forest. We define the authentication path below.

Definition 2.10.3 (Authentication path in chronological trees). Given a chronological forest F ,
a chronological tree T in F , and a node v with index [L : R] in T , the authentication path of v
consists of the following hashes:
• prefix tree root hashes in all the ancestor nodes of v in T ;
• the node hashes that are on the co-path of v in T .

The server uses the authentication path to prove the membership of both leaf and internal
nodes. That is, given a prefix tree root hash, the server can prove that it is stored in a node in
the chronological forest. For example, the server first proves a node v has the node hash Hv by
presenting the authentication path of v. Then, the server can provide the node hashes HLeft,HRight of
left and right children of v, and the user checks by recomputing Hv using the prefix tree root hash.
Given a digest D of a chronological forest (which contains hashes of all the root nodes in the

forest and the forest size), a node index I, the node hash H, and an authentication path Path, we
denote by ChronForest.Check(D, I,H,Path) the process to check the authentication path. The user
first finds the chronological tree root hash Root in D based on the forest size and the index I. If
ChronForest.Check(D, I,H,Path) = 1, then the user successfully recomputed the root hash Root
and ensured that the node with index I has node hash H. If the node with index I is the root node,
then Path is empty, and the user will compare H with Root directly. We define membership security
of chronological trees below.

Guarantee 2.10.4 (Membership security of chronological trees). Assume that the hash function
used in chronological trees is a collision-resistant hash function [Gol07]. For all polynomial-time
adversaries A there exists a negligible function ν(·) such that:

Pr



(D, I,H1,Path1,H2,Path2)← A(1λ) :
H1 ̸= H2
∧

ChronForest.Check(D, I,H1,Path1) = 1
∧

ChronForest.Check(D, I,H2,Path2) = 1


= ν(λ) .

One can prove the above security guarantee via a straightforward extension to the membership
security proof in CT [Lau14]. We do not include it here due to space constraints.
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The chronological tree in Merkle2 can also provide the extension proof for updates. At the end
of each epoch, the server provides the extension proof to auditors to show that the update does not
modify existing node hashes. Given two digests D1,D2 and an extension proof π, we denote by
Extension.Check(D1,D2, π) the process to check the extension proof. Auditors first check the forest
size in D2 is greater than the size in D1, and then try to recompute root hashes in D2 using D1 and π.
If Extension.Check(D1,D2, π) = 1, then auditors will accept the update to the chronological forest.
We define the append-only property of chronological trees below.

Guarantee 2.10.5 (Append-only security of chronological trees). Assume that the hash function
used in chronological trees is a collision-resistant hash function [Gol07]. For all polynomial-time
adversaries A there exists a polynomial-time extractor E and a negligible function ν(·) such that:

Pr



(D1,D2, π, I,H,Path1)← A(1λ);
Path2 ← E(1λ,D1,D2, π, I,H,Path1) :

Extension.Check(D1,D2, π) = 1
∧

ChronForest.Check(D1, I,H,Path1) = 1
⇓

ChronForest.Check(D2, I,H,Path2) = 1


= 1− ν(λ) .

Proof. We show how to construct the authentication path Path2 by using Path1 and π. Root1 and
Root2 each denotes the root hash of the tree, from D1 and D2 respectively, that contains the node v
with index I. There are two cases:
Case 1. Root1 = Root2. We can use Path1 as the authentication path between the node v and the
root hash Root2.
Case 2. Root1 ̸= Root2. The extension proof π between D1 and D2 must contain necessary hashes
that enable us to compute Root2 from D1; thus, we can construct an authentication path Path′

between Root1 and Root2 by obtaining hashes from D1 and π. Finally, we can construct Path2 by
merging Path1 and Path′ since Path1 enables us to compute Root1 from H, and Path′ enables us to
compute Root2 from Root1.

We prove a lemma that is useful in Merkle2. Although auditors only check the extension proof
between neighboring epochs, there exist a extension proof between any two epochs.

Lemma 2.10.6. Assume that the hash function used in chronological trees is a collision-resistant
hash function [Gol07]. For all polynomial-time adversaries A there exists a polynomial-time
extractor E and a negligible function ν(·) such that:

Pr



(D1,D2,D3, π12, π23)← A(1λ);
π13 ← E(1λ,D1,D2,D3, π12, π23) :
Extension.Check(D1,D2, π12) = 1

∧
Extension.Check(D2,D3, π23) = 1

⇓
Extension.Check(D1,D3, π13) = 1


= 1− ν(λ) .
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Proof. The proof is similar to the proof of Guarantee 2.10.5. We can construct the extension proof
π13 by obtaining necessary hashes from π12 and π23.

2.10.3 Security proof of Guarantee 1
We will perform a reduction to show that if there exists an adversary B that can compromise
lookup results without being detected, then there exists an adversary A that can violate the security
properties of prefix trees or chronological trees, the collision-resistance of the hash function, or the
existential unforgeability of the signature scheme.
Since B is not detected, B can violate the property in Guarantee 1 for a user u in C who looks

up ID in epoch e, where E1 < e ≤ E2, while remaining undetected by the owner r of ID, the user u,
and auditors in A. We denote by Se the ordered list of ID-value pairs and their position numbers
that are appended by r before epoch e, and S ′

e the ordered list received by u as the lookup result in
epoch e. Because Se ̸= S ′

e, B’s attack must fall into one of three cases.
1. The first element in Se and S ′

e are identical, but there exist an element that is in S ′
e but NOT in Se.

2. The first element in Se and S ′
e are identical, but there exist an element that is NOT in S ′

e but in Se.
3. The first element in Se and S ′

e are NOT identical.
We will show that no matter which of the above three cases describes B’s attack, A can either

break the security of Merkle trees, find a hash collision, or forge the signature. We denote by p the
position number of the first element elem in Se, and p′ the position number of the first element elem′

in S ′
e.

Case 1. In this case, the first ID-value pair in the lookup result is correct (p = p′ and elem = elem′),
but there exist other ID-value pairs that are not appended by the ID owner r. Due to the signature
chain design, each ID-value pair is associated with a verifying key.
The fact that the first elements of Se and S ′

e are identical does not imply that the user can retrieve
the correct verifying key associated with the first element in the Merkle2’s design; thus, we begin
by proving that the verifying key that the user u received for the first ID-value pair is the one
appended by the owner, r. The lookup protocol has the user u check the prefix tree of a node in the
chronological forest with the index [L:R] in epoch e, where L ≤ p ≤ R and [L:R] is the root node in
epoch e (if L = R, the user u will check the node hash directly). The monitoring protocol also has
the owner r check the prefix tree of the node [L:R] in epoch E2.
We denote by H[L:R] the hash of the node in the chronological forest with index [L:R]. If e = E2,

the hash H[L:R] is the root hash in the digest DE2(De). By our assumptions in Guarantee 1, both
the owner r and the user u retrieve the same digest of epoch E2 (which is equal to e) from honest
auditors in A; thus, they will see the same hash for [L:R]. If e < E2, because auditors in A check
digests in epochs e . . . E2, by Guarantee 2.10.5 and Lemma 2.10.6, there exists an authentication
path for the node [L:R] and digest DE2 . By Guarantee 2.10.4, the owner r and the user u will see the
same node hash H[L:R].
If the user u and the owner r see different verifying keys, they will obtain different prefix tree

root hashes for [L:R]; otherwise, Guarantee 2.10.2 will be violated. Recall that they also obtain the
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same node hash H[L:R]. Therefore, if B cheated without being detected by the user u and the owner
r, we will successfully find a collision for H[L:R].
Now, we conclude that the user u received the correct verifying key associated with the first

ID-value pair. We denote by elem′′ the first element in S ′
e but not in Se. The user u will check the

signature chain when receiving the lookup result; thus, elem′′ must be associated with a signature
that can be verified using the verifying key associated with the previous element. Because elem′′ is
the first compromised element in S ′

e, the attacker must provide a valid signature without knowing
the signing key associated with the previous element. This violates the existential unforgeability of
the signature scheme.
Case 2. In this case, the first ID-value pair in the lookup result is correct, but there exists an ID-value
pair that the user u did not receive but was appended by the owner, r. We denote by p the position
number of the ID-value pair ⟨ID, val⟩ that is in Se but not in S ′

e. Similar to the previous case, both
the user u and the owner r are supposed to check the prefix tree associated with the node [L:R]
where L ≤ p ≤ R and [L:R] is the root node in epoch e. Using the same argument, the owner r and
the user u will see the same node hash H[L:R]. However, because the user u did not receive ⟨ID, val⟩,
u must check the non-membership proof of the prefix tree [L:R] as specified in the lookup protocol.
u and r will obtain different prefix tree root hashes for [L:R] due to Guarantee 2.10.2. Therefore, we
can find a collision for H[L:R].
Case 3. In this case, the attacker B circumvents the signature chain by forging the first ID-value pair
in S ′

e (elem ̸= elem′). If p ≤ p′, the server must hide elem, otherwise the user u will notice elem for
the same ID before elem′. Then, we can use a similar argument as in case 1 to find a collision for the
hash H[L:R], where L ≤ p ≤ R and [L:R] is the root in epoch e.
We denote by [L′:R′] the node index where L′ ≤ p′ ≤ R′ and [L′:R′] is the root in epoch e. We

now consider the case where p′ < p ≤ R′. The monitoring protocol has the owner check the prefix
tree of [L′:R′], which is supposed to contain elem. However, elem in not S ′

e; thus, we can apply the
same argument as in case 1 to find a collision for H[L′:R′].
What about p′ ≤ R′ < p? The owner r will check the prefix tree associated with [L′:R′] in the

first-value proof. For simplicity, we assume the owner r checks the first-value proof in epoch E1 + 1.
The owner will choose a minimum set of chronological trees Ct1, . . . ,Ctn to cover leaf nodes from
0 to p− 1. Because [L′:R′] is the root node in epoch e and R′ < p, there must exist a chronological
tree Cti whose root node is [L′:R′]. Through the first-value proof, the owner r will check the prefix
tree associated with the root node of Cti; it is supposed not to contain elem′. However, the user u
can find elem′ in the prefix tree of [L′:R′]. By Guarantee 2.10.2 and Guarantee 2.10.5, the user u
and the owner r cannot obtain the same prefix tree root hash. But, the user u and the owner r obtain
the same node hash H[L′:R′]. Therefore, we find a collision for H[L′:R′].
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2.11 Optimizations

2.11.1 Pre-build strategy
In this section, we describe the pre-build strategy in Merkle2. The pre-build strategy amortizes
the construction of prefix trees so that they are incrementally built as ID-value pairs are appended
to Merkle2. In other words, before a chronological tree internal node Ni is even created, Merkle2

maintains its prefix tree Pi; as ID-value pairs are appended to Merkle2, they are appended to Pi if
they will be in the subtree rooted at Ni. In the process, the cost of building any prefix tree Pi is
amortized across all appends to Merkle2. Thus, when creating Ni, there is no additional overhead
for building Pi.
For every internal node Ni––even those not yet created––in the ancestor chain of the ID-value

pair, we must append the ID-value pair to the corresponding prefix tree Pi. Because we have not
set a limit on the maximum height of Merkle2, each ID-value pair would have infinite ancestor
nodes; thus, we choose a maximum heightH so that the root to leaf path in Merkle2 may not exceed
H . Now, each ID-value pair will be a part of at most H prefix trees; so, we perform H appends
to pre-built prefix trees in the ancestor chain, resulting in O(H log n) operations on each append.
Because H = O(log(n)), the cost of each append is still O(log2(n)).
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Figure 2.15: The progression of Merkle2 through 4 appends. The maximum height is set to H = 2. The
green nodes represent the most recent appends to Merkle2. Red indicates the internal nodes whose
prefix trees the ID-value pair was appended to.

Fig. 2.15 illustrates the progression of Merkle2 through 4 appends. The first ID-value pair is
appended to the green node [0:0]. To maintain the pre-build strategy, the ID-value pair is also
appended to the prefix trees of nodes [0:1] and [0:3]. Note that the internal nodes at [0:1] and [0:3]
have yet to be created but that the pre-build strategy requires that we maintain their corresponding
prefix trees. The next ID-value pair is appended to the node [1:1]. It is also added to the prefix trees
of internal nodes [0:1] and [0:3] since they are in its ancestor chain. After the second append, the
subtree rooted at [0:1] will no longer change because no future ID-value pairs will be added to [0:1].
The third append will be added to the node [2:2] and also to the prefix trees of nodes [2:3] and [0:3].
Finally, the last ID-value pair is appended to the node [3:3] and the prefix trees of nodes [2:3] and
[0:3], completing this instance of Merkle2 with height 2.
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2.11.2 Compression algorithm
In this section, we explain the compression algorithm for prefix trees. We show that a prefix tree
with O(n) ID-value pairs can be compressed so that it requires only O(n) nodes.
We have already introduced prefix trees in Section 2.10.1 . We observe that many of the internal

nodes in the prefix tree only have one child, and a chain of such nodes can be represented by a single
compressed node instead; thus, in a compressed prefix tree, each node will either have 2 children or
0 children (leaf nodes). Each node will also store a partial prefix representing the compressed path.
The internal node hash additionally includes the partial prefix. For example, in Fig. 2.16, nodes on
the path from the root node to the leaf node associated with Alice’s value only have one child; thus,
they can be compressed as a single node in the compressed prefix tree. The partial prefix “001"
represents the compressed path.

Hash(HLeft
||HRight)

Hash(001
||Alice||0||Val0)

Uncompressed Prefix Tree Compressed Prefix Tree

Hash(HLeft
||HRight)

Hash(HLeft
||HRight)

Hash(HLeft
||Hright)

Hash
(Empty)

Hash(Alice||
0||Val0)

Hash
(Empty)

Index(Alice)=001

······
0 1

0

0 1

1

······
001 1

Figure 2.16: Blue nodes in the left tree will be compressed into one node in the right tree because they
are all nodes (internal or leaf) with at most one child.

Now we explain how to add a new ID-value pair to the compressed prefix tree. If there exists
no value for the ID in the prefix tree, we will find a compressed node v whose index only partially
matches the ID. We denote by p the shared prefix between the index of v and the ID. Then, we split
the node v and add three new compressed nodes: (1) a new node v′ that replaces the old node v with
the index p; (2) a child node u0 of v′ with the index matching that of v; (3) a child node u1 of v′ with
the index matching the ID. The partial prefix of new nodes can be computed accordingly. The node
u1 will store the hash of the new ID-value pair.
In Fig. 2.17, if a new ID-value pair with index “0110" is added, we will find the node X with

index “010". Because “010" is not the prefix of “0110", we must decompress the node X into three
nodes (node A, B, C). The index of node A is “01", which is the prefix of “0110", and node B
inherits the index and children of node X. We also add node C as the child of node A to store the
new ID-value pair.
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Figure 2.17: Node X will be split into three nodes (A, B, C). The new ID-value pair will be stored in
node C.

Next, we analyze the storage cost of a compressed prefix tree. When adding a new ID-value pair,
we only add a constant number (three) of new nodes to the prefix tree; thus, a compressed prefix
tree with O(n) appends only requires O(n) nodes. Note that although adding a new ID-value pair
creates only three new nodes, it still costs O(log(n)) time per append because we must update the
hash of O(log(n)) ancestor nodes.
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Chapter 3

Marlin: Preprocessing zkSNARKs with
Universal and Updatable SRS

We present a methodology to construct preprocessing zkSNARKs where the structured reference
string (SRS) is universal and updatable. This exploits a novel use of holography [Babai et al.,
STOC 1991], where fast verification is achieved provided the statement being checked is given in
encoded form.
We use our methodology to obtain a preprocessing zkSNARK where the SRS has linear size and

arguments have constant size. Our construction improves on Sonic [Maller et al., CCS 2019], the
prior state of the art in this setting, in all efficiency parameters: proving is an order of magnitude faster
and verification is thrice as fast, even with smaller SRS size and argument size. Our construction
is most efficient when instantiated in the algebraic group model (also used by Sonic), but we also
demonstrate how to realize it under concrete knowledge assumptions. We implement and evaluate
our construction.
The core of our preprocessing zkSNARK is an efficient algebraic holographic proof (AHP)

for rank-1 constraint satisfiability (R1CS) that achieves linear proof length and constant query
complexity.
This work was previously published in [CHMMVW20].
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3.1 Introduction
Succinct non-interactive arguments (SNARGs) are efficient certificates of membership in non-
deterministic languages. Recent years have seen a surge of interest in zero-knowledge SNARGs
of knowledge (zkSNARKs), with researchers studying constructions under different cryptographic
assumptions, improvements in asymptotic efficiency, concrete performance of implementations, and
numerous applications. The focus of this paper is SNARGs in the preprocessing setting, a notion
that we motivate next.
When is fast verification possible?. The size of a SNARG must be, as a minimum condition,
sublinear in the size of the non-deterministic witness, and often is required to be even smaller
(e.g., logarithmic in the size of the non-deterministic computation). The time to verify a SNARG
would be, ideally, as fast as reading the SNARG. This is in general too much to hope for, however.
The verification procedure must also read the description of the computation, in order know what
statement is being verified. While there are natural computations that have succinct descriptions
(e.g., machine computations), in general the description of a computation could be as large as
the computation itself, which means that the time to verify the SNARG could be asymptotically
comparable to the size of the computation. This is unfortunate because there is a very useful class
of computations for which we cannot expect fast verification: general circuit computations.
The preprocessing setting. An approach to avoid the above limitation is to design a verification
procedure that has two phases: an offline phase that produces a short summary for a given circuit;
and an online phase that uses this short summary to verify SNARGs that attest to the satisfiability
of the circuit with different partial assignments to its input wires. Crucially, now the online phase
could in principle be as fast as reading the SNARG (and the partial assignment), and thus sublinear
in the circuit size. This goal was captured by preprocessing SNARGs [Gro10; Lip12; GGPR13;
BCIOP13], which have been studied in an influential line of works that has led to highly-efficient
constructions that fulfill this goal (e.g., [Gro16]) and large-scale deployments in the real world that
benefit from the online fast verification (e.g., [Zcab]).
The problem: circuit-specific SRS. The offline phase in efficient constructions of preprocessing
SNARGS consists of sampling a structured reference string (SRS) that depends on the circuit
that is being preprocessed. This implies that producing/validating proofs with respect to different
circuits requires different SRSs. In many applications of interest, there is no single party that can be
entrusted with sampling the SRS, and so real-world deployments have had to rely on cryptographic
“ceremonies” [ZcashMPC] that use secure multi-party sampling protocols [BCGTV15; BGG17;
BGM17; ABLSZ19]. However, any modification in the circuit used in an application requires
another cryptographic ceremony, which is unsustainable for many applications.
A solution: universal SRS. The above motivates preprocessing SNARGs where the SRS is universal,
which means that the SRS supports any circuit up to a given size bound by enabling anyone, in
an offline phase after the SRS is sampled, to publicly derive a circuit-specific SRS.1 Known
techniques to obtain a universal SRS from circuit-specific SRS introduce expensive overheads due

1Even better than a universal SRS would be a URS (uniform reference string). However, achieving preprocessing
SNARGs in the URS model with small argument size remains an open problem; see Section 3.1.2.
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to universal simulation [BCTV14a; BCTV14b]. Also, these techniques lead to universal SRSs that
are not updatable, a property introduced in [GKMMM18] that significantly simplifies cryptographic
ceremonies. The recent work of Maller et al. [MBKM19] overcomes these shortcomings, obtaining
the first efficient construction of a preprocessing SNARG with universal (and updatable) SRS. Even
so, the construction in [MBKM19] is considerably more expensive than the state of the art for
circuit-specific SRS [Gro16]. In this paper we ask: can the efficiency gap between universal SRS
and circuit-specific SRS be closed, or at least significantly reduced?
Concurrent work. A concurrent work [GWC19] studies the same question as this paper. See
Section 3.1.2 for a brief discussion that compares the two works.

construction argument size over BN-256 (bytes) argument size over BLS12-381 (bytes)

Sonic [MBKM19] 1152 1472
Marlin [this work] 704 880
Groth16 [Gro16] 128 192

zkSNARK
construction

sizes time complexity

|ipk| |ivk| |π| generator indexer prover verifier

Sonic
[MBKM19]

G1 8m — 20 8 f-MSM(M) 4 v-MSM(3m) 273 v-MSM(m) 7 pairingsG2 8m 3 — 8 f-MSM(M) — —
Fq — — 16 — O(m log m) O(m log m) O(|x|+ log m)

Marlin
[this work]

G1 4m 2 13 1 f-MSM(3M) 12 v-MSM(m) 22 v-MSM(m) 2 pairingsG2 — 2 — — — —
Fq — — 8 — O(m log m) O(m log m) O(|x|+ log m)

Groth16
[Gro16]

G1 4n O(|x|) 2 4 f-MSM(n)
N/A

4 v-MSM(n) 1 v-MSM(|x|)
G2 n O(1) 1 1 f-MSM(n) 1 v-MSM(n) 3 pairings
Fq — — — O(m + n log n) O(m + n log n) —

n: number of multiplication gates in the circuit
m: total number of (addition or multiplication) gates in the circuit
M : maximum supported circuit size (maximum number of addition and multiplication gates)

Figure 3.1: Comparison of two preprocessing zkSNARKs with universal (and updatable) SRS: the
prior state of the art and our construction. We include the current state of the art for circuit-specific
SRS (in gray), for reference. Here G1/G2/Fq denote the number of elements or operations over the
respective group/field; also, f-MSM(m) and v-MSM(m) denote fixed-base and variable-base multi-
scalar multiplications (MSM) each of sizem, respectively. The number of pairings that we report for
Sonic’s verifier is lower than that reported in [MBKM19] because we account for standard batching
techniques for pairing equations.
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Figure 3.2: Measured performance of Marlin and [Gro16] over the BLS12-381 curve. We could not include
measurements for [MBKM19, Sonic] because at the time of writing there is no working implementation of its
unhelped variant.

3.1.1 Our results
In this paper we presentMarlin, a new preprocessing zkSNARK with universal (and updatable)
SRS that improves on the prior state of the art [MBKM19, Sonic] in essentially all relevant efficiency
parameters.2 In addition to reducing argument size by several group and field elements and reducing
time complexity of the verifier by over 3×, our construction overcomes the main efficiency drawback
of [MBKM19, Sonic]: the cost of producing proofs. Indeed, our construction improves time
complexity of the prover by over 10×, achieving prover efficiency comparable to the case of
preprocessing zkSNARKs with circuit-specific SRS. In Fig. 3.1 we provide a comparison of our
construction and [MBKM19, Sonic], including argument sizes for two popular elliptic curves; the
table also includes the state of the art for circuit-specific SRS. We have implementedMarlin in a
Rust library,3 and report evaluation results in Fig. 3.2.

Our zkSNARK is the result of several contributions that we deem of independent interest, summarized
below.
(1) A new methodology. We present a general methodology to construct preprocessing SNARGs
(and also zkSNARKs) where the SRS is universal (and updatable). The methodology in fact produces
succinct interactive arguments that can be made non-interactive via the Fiat–Shamir transformation
[FS86]. Hence below we focus on preprocessing arguments with universal and updatable SRS (see
Section 3.7 for the definition).
Our key observation is that the ability to preprocess a circuit in an offline phase is closely related

to constructing “holographic proofs” [BFLS91], which means that the verifier does not receive
the circuit description as an input but, rather, makes a small number of queries to an encoding
of it. These queries are in addition to queries that the verifier makes to proofs sent by the prover.

2Maller et al. [MBKM19] discuss two variants of their protocol, a cheaper one for the “helped setting” and a costlier
one for the “unhelped setting”. The variant that is relevant to this paper is the latter one, because it is a preprocessing
zkSNARK. (The former variant does not achieve succinct verification, and instead achieves a weaker guarantee that
applies to proof batches.)

3
https://github.com/scipr-lab/marlin
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Moreover, in this paper we focus on the setting where the encoding of the circuit description consists
of low-degree polynomials and also where proofs are themselves low-degree polynomials — this
can be viewed as a requirement that honest and malicious provers are “algebraic”. We call these
algebraic holographic proofs (AHPs); see Section 3.4 for definitions.
We present a transformation that “compiles” any public-coin AHP into a corresponding prepro-

cessing argument with universal (and updatable) SRS by using suitable polynomial commitments.

Theorem 1 (informal version of Theorem 3.8.1). There is an efficient transformation that combines
any public-coin AHP for a relationR and an extractable polynomial commitment scheme to obtain
a public-coin preprocessing argument with universal SRS for the relationR. The transformation
preserves zero knowledge and proof of knowledge of the underlying AHP. The SRS is updatable
provided the SRS of the polynomial commitment scheme is.

The above transformation provides us with amethodology to construct preprocessing zkSNARKs
with universal SRS (see Fig. 3.3). Namely, to improve the efficiency of preprocessing zkSNARKs
with universal SRS it suffices to improve the efficiency of simpler building blocks: AHPs (an
information-theoretic primitive) and polynomial commitments (a cryptographic primitive).4
The improvements achieved by our preprocessing zkSNARK (see Fig. 3.1) were obtained by

following this methodology: we designed efficient constructions for each of these two building
blocks (which we discuss shortly), combined them via Theorem 1, and then applied the Fiat–Shamir
transformation [FS86].
Methodologies that combine information-theoretic probabilistic proofs and cryptographic tools

have played a fundamental role in the construction of efficient argument systems. In the particular
setting of preprocessing SNARGs, for example, the compiler introduced in [BCIOP13] for circuit-
specific SRS has paved the way towards current state-of-the-art constructions [Gro16], and also
led to constructions that are plausibly post-quantum [BISW17; BISW18]. We believe that our
methodology for universal SRS will also be useful in future work, and may lead to further efficiency
improvements.

public-coin
AHP

extractable
polynomial commitments

Theorem 1
(our compiler)

public-coin
preprocessing argument
with universal SRS

Fiat–Shamir
transformation

preprocessing SNARK
with universal SRS

Figure 3.3: Diagram of our methodology to construct preprocessing SNARGs with universal SRS.

(2) An efficient AHP for R1CS. We design an algebraic holographic proof (AHP) that achieves
linear proof length and constant query complexity, among other useful efficiency features. The

4The methodology also captures as a special case various folklore approaches used in prior works to construct
non-preprocessing zkSNARKs via polynomial commitment schemes (see Section 3.1.2), thereby providing the first
formal statement that clarifies what properties of algebraic proofs and polynomial commitment schemes are essential for
these folklore approaches.
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protocol is for rank-1 constraint satisfiability (R1CS), a well-known generalization of arithmetic
circuits where the “circuit description” is given by coefficient matrices (see definition below). Note
that the relations that we consider consist of triples rather than pairs, because we need to split the
verifier’s input into a part for the offline phase and a part for the online phase. The offline input is
called the index, and it consists of the coefficient matrices; the online input is called the instance, and
it consists of a partial assignment to the variables. The algorithm that encodes the index (coefficient
matrices) in the offline phase is called the indexer.

Definition 1 (informal). The indexed relationRR1CS is the set of triples

(i,x,w) =
(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n× n matrices over F, each containing at most m non-zero
entries, and z := (x,w) is a vector in Fn such thatAz ◦Bz = Cz. (Here “◦” denotes the entry-wise
product.)

Theorem 2 (informal). There exists a constant-round AHP for the indexed relation RR1CS with
linear proof length and constant query complexity. The soundness error is O(m/|F|), and the
construction is a zero knowledge proof of knowledge. The arithmetic complexity of the indexer is
O(m logm), of the prover is O(m logm), and of the verifier is O(|x|+ logm).

The literature on probabilistic proofs contains algebraic protocols that are holographic (e.g.,
[BFLS91] and [GKR15]) but none achieve constant query complexity, and so applying our
methodology (Theorem 1) to these would lead to large argument sizes (many tens of kilobytes).
These prior algebraic protocols rely on the multivariate sumcheck protocol applied to certain
multivariate polynomials, which means that they incur sizable communication costs due to (a) the
many rounds of the sumcheck protocol, and (b) the fact that applying the methodology would
involve using multivariate polynomial commitment schemes that (for known constructions) lead to
communication costs that are linear in the number of variables.
In contrast, our algebraic protocol relies on univariate polynomials and achieves constant query

complexity, incurring small communication costs. Our algebraic protocol can be viewed as a
“holographic variant” of the algebraic protocol for R1CS used in Aurora [BCRSVW19], because
it achieves an exponential improvement in verification time when the verifier is given a suitable
encoding of the coefficient matrices; see Table 3.1.

construction holographic? indexer prover verifier messages proof length queries

[BCRSVW19] NO N/A O(m + n log n) O(|x| + n) 3 O(n) O(1)
this work YES O(m log m) O(m log m) O(|x| + log m) 7 O(m) O(1)

Table 3.1: Comparison of the non-holographic protocol for R1CS in [BCRSVW19], and the AHP
for R1CS that we construct. Here n denotes the number of variables and m the number of non-zero
coefficients in the matrices.
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(3) Extractable polynomial commitments. Polynomial commitment schemes, introduced in
[KZG10], are commitment schemes specialized to work with univariate polynomials. The security
properties in [KZG10], while sufficient for the applications therein, do not appear sufficient for
standalone use, or even just for the transformation in Theorem 1. We propose a definition for
polynomial commitment schemes that incorporates the functionality and security that we believe to
suffice for standalone use (and in particular suffices for Theorem 1). Moreover, we show how to
extend the construction of [KZG10] to fulfill this definition in the plain model under non-falsifiable
knowledge assumptions, or via a more efficient construction in the algebraic group model [FKL18]
under falsifiable assumptions. These constructions are of independent interest, and when combined
with our transformation, lead to the first efficient preprocessing arguments with universal SRS under
concrete knowledge assumptions, and also to the efficiency reported in Fig. 3.1.
We have implemented in a Rust library5 the polynomial commitment schemes, and our

implementation ofMarlin relies on this library. We deem this library of independent interest for
other projects.

3.1.2 Related work
In this paper we study the goal of constructing preprocessing SNARGs with universal SRS, which
achieve succinct verification regardless of the structure of the non-deterministic computation being
checked. The most relevant prior work is Sonic [MBKM19], on which we improve as already
discussed (see Fig. 3.1). The notion of updatable SRS was defined and achieved in [GKMMM18],
but with a less efficient construction.
Concurrent work. A concurrent work [GWC19] studies the same question as this paper, and also
obtains efficiency improvements over Sonic [MBKM19]. Below is a brief comparison.

• Similarly to our work, [GWC19] extends the polynomial commitment in [KZG10] to support
batching, and proves the extension secure in the algebraic group model. We additionally show
how to prove security in the plain model under non-falsifiable knowledge assumptions, and
consider the problem of enforcing different degrees for different polynomials (a feature that is
not needed in [GWC19]).

• We show how to compile any algebraic holographic proof into a preprocessing argument with
universal SRS, while [GWC19] focus on compiling a more restricted notion that they call
“polynomial protocols”.

• Our protocol natively supports R1CS, and can be viewed as a holographic variant of the
algebraic protocol in [BCRSVW19]. The protocol in [GWC19] natively supports a different
constraint system, and involves a protocol that, similar to [Gro10], uses a permutation argument
to attest that all variables in the same cycle of a permutation are equal (e.g., (1)(2, 3)(4) would
require that the second and third entries are equal).

5
https://github.com/scipr-lab/poly-commit
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Preprocessing SNARGs with a URS. Setty [Set19] studies preprocessing SNARGs with a URS
(uniform reference string), and describes a protocol that for n-gate arithmetic circuits and a
chosen constant c ≥ 2 achieves proving time Oλ(n), argument size Oλ(n1/c), and verification time
Oλ(n1−1/c). The protocol in [Set19] offers a tradeoff compared to our work: preprocessing with a
URS instead of a SRS, at the cost of asymptotically larger argument size and verification time. The
question of achieving processing with a URS while also achieving asymptotically small argument
size and verification time remains open.
The protocol in [Set19] is obtained by combining the multivariate polynomial commitments of

[WTSTW18] and a modern rendition of the PCP in [BFLS91] (which itself can be viewed as the
“bare bones” protocol of [GKR15] for circuits of depth 1). [Set19] lacks an analysis of concrete
costs, and also does not discuss how to achieve zero knowledge beyond stating that techniques in
other papers [ZGKPP17a; WTSTW18; XZZPS19] can be applied. Nevertheless, argument sizes
would at best be similar to these other papers (tens of kilobytes), which is much larger than our
argument sizes (in the SRS model).
We conclude by noting that the informal security proof in [Set19] appears insufficient to show

soundness of the argument system, because the polynomial commitment scheme is only assumed
to be binding but not also extractable (there is no explanation of where the witness encoded in
the committed polynomial comes from). Our definitions and security proofs, if ported over to the
multivariate setting, would fill this gap.

Remark 3.1.1. Setty [Set19] also suggests using multivariate polynomial commitments with an
SRS [PST13], which could lead to asymptotically smaller argument size and faster verification time.
Perhaps because this is not the focus of Spartan (which advocates the benefits of a URS) there are no
analyses of security or concrete efficiency for this case. By analogy to arguments with an SRS that
use such commitments [XZZPS19], one may guess that Setty’s suggestion would lead to arguments
with faster prover time and larger argument sizes (tens of kilobytes) in comparison to our work.
Working out the details of this suggestion is left to future work.

Non-preprocessing SNARGs for arbitrary computations. Checking arbitrary circuits without
preprocessing them requires the verifier to read the circuit, so the main goal is to obtain small
argument size. In this setting of non-preprocessing SNARGs for arbitrary circuits, constructions
with a URS (uniform reference string) are based on discrete logarithms [BCCGP16; BBBPWM18]
or hash functions [AHIV17; BCRSVW19], while constructions with a universal SRS (structured
reference string) combine polynomial commitments and non-holographic algebraic proofs [Gab19];
all use random oracles to obtain non-interactive arguments.6
We find it interesting to remark that our methodology from Theorem 1 generalizes protocols

such as [Gab19] in two ways. First, it formalizes the folklore approach of combining polynomial
commitments and algebraic proofs to obtain arguments, identifying the security properties required

6The linear verification time in most of the cited constructions can typically be partially mitigated via techniques
that enable an untrusted party to help the verifier to check a batch of proofs for the same circuit faster than checking each
proof individually (the linear cost in the circuit is paid only once per batch rather than once for each proof in the batch).
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to make this approach work. Second, it demonstrates how for algebraic holographic proofs the
resulting argument enables preprocessing.
Non-preprocessing SNARGs for structured computations. Several works study SNARGs for
structured computations. This structure enables fast verification without preprocessing. A line of
works [Ben+17; BBHR19; BCGGRS19] combines hash functions and various interactive oracle
proofs. Another line of works [ZGKPP17b; ZGKPP18; ZGKPP17a; WTSTW18; XZZPS19]
combines multivariate polynomial commitments [PST13] and doubly-efficient interactive proofs
[GKR15].
While in this paper we study a different setting (preprocessing SNARGs for arbitrary computa-

tions), there are similarities, and notable differences, in the polynomial commitments used in our
work and prior works. We begin by noting that the notion of “multivariate polynomial commitments”
varies considerably across prior works, despite the fact that most of those commitments are based
on the protocol introduced in [PST13].

• The commitments used in [ZGKPP17b; ZGKPP18] are required to satisfy extractability (a
stronger notion than binding) because the security proof of the argument system involves
extracting a polynomial encoding a witness. The commitment is a modification of [PST13]
that uses knowledge commitments, a standard ingredient to achieve extractability under
non-falsifiable assumptions in the plain model. Neither of these works consider hiding
commitments as zero knowledge is not a goal for them.

• The commitments used in [ZGKPP17a; WTSTW18] must be compatible with the Cramer–
Damgård transform [CD98] used in constructing the argument system. They consider a
modified setting where the sender does not reveal the value of the commitment polynomial at
a desired point but, instead, reveals a commitment to this value, along with a proof attesting
that the committed value is correct. For this modified setting, they consider commitments that
satisfy natural notions of extractability and hiding (achieving zero knowledge arguments is a
goal in both papers). The commitments constructed in the two papers offer different tradeoffs.
The commitment in [ZGKPP17a] is based on [PST13]: it relies on a SRS (structured reference
string); it uses pairings; and for ℓ-variate polynomials achieves Oλ(ℓ)-size arguments that
can be checked in Oλ(ℓ) time. The commitment in [WTSTW18] is inspired from [BG12]
and [BBBPWM18]: it relies on a URS (uniform reference string); it does not use pairings;
and for ℓ-variate multilinear polynomials and a given constant c ≥ 2 achieves Oλ(2ℓ/c)-size
arguments that can be checked in Oλ(2ℓ−ℓ/c) time.

• The commitments used in [XZZPS19] are intended for the regular (unmodified) setting of
commitment schemes where the sender reveals the value of the polynomial, because zero
knowledge is later achieved by building on the algebraic techniques described in [CFS17].
The commitment definition in [XZZPS19] considers binding and hiding, but not extractability.
However, the given security analysis for the argument system does not seem to go through
for this definition (there is no explanation of where the witness encoded in the committed
polynomial comes from). Also, no commitment construction is provided in [XZZPS19], and
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instead the reader is referred to [ZGKPP17a], which considers the modified setting described
above.

In sum there are multiple notions of commitment and one must be precise about the functionality and
security needed to construct an argument system. We now compare prior notions of commitments
to the one that we use.
First, since in this paper we do not use the Cramer–Damgård transform for zero knowledge,

commitments in the modified setting are not relevant. Instead, we achieve zero knowledge via
bounded independence [BCGV16], and in particular we consider the familiar setting where the
sender reveals evaluations to the committed polynomial. Second, prior works consider protocols
where the sender commits to a polynomial in a single round, while we consider protocols where
the sender commits to multiple polynomials of different degrees in each of several rounds. This
multi-polynomial multi-round setting requires suitable extensions in terms of functionality (to enable
batching techniques to save on argument size) and security (extractability and hiding need to be
strengthened), which means that prior definitions do not suffice for us.
The above discrepancies have led us to formulate new definitions of functionality and security

for polynomial commitments (as summarized in Section 3.2.2). We conclude by noting that, since
in this paper we construct arguments that use univariate polynomials, our definitions are specialized
to commitments for univariate polynomials. Corresponding definitions for multivariate polynomials
can be obtained with straightforward modifications, and would strengthen definitions appearing
in some prior works. Similarly, we fulfill the required definitions via natural adaptations of the
univariate scheme of [KZG10], and analogous adaptations of the multivariate scheme of [PST13]
would fulfill the multivariate analogues of these definitions.



3.2. TECHNIQUES 55

3.2 Techniques
We discuss the main ideas behind our results. First we describe the two building blocks used in
Theorem 1: AHPs and polynomial commitment schemes (described in Sections 3.2.1 and 3.2.2
respectively). We describe how to combine these to obtain preprocessing arguments with universal
SRS in Section 3.2.3. Next, we discuss constructions for these building blocks: in Section 3.2.4 we
describe our AHP (underlying Theorem 2), and in Section 3.2.5 we describe our construction of
polynomial commitments.
Throughout, instead of considering the usual notion of relations that consist of instance-witness

pairs, we consider indexed relations, which consist of triples (i,x,w) where i is the index, x is
the instance, and w is the witness. This is because i represents the part of the verifier input that
is preprocessed in the offline phase (e.g., the circuit description) and x represents the part of the
verifier input that comes in the online phase (e.g., a partial assignment to the circuit’s input wires).
The indexed language corresponding to an indexed relation R, denoted L(R), is the set of pairs
(i,x) for which there exists a witness w such that (i,x,w) ∈ R.

3.2.1 Building block: algebraic holographic proofs
Interactive oracle proofs (IOPs) [BCS16; RRR16] are multi-round protocols where in each round
the verifier sends a challenge and the prover sends an oracle (which the verifier can query). IOPs
combine features of interactive proofs [Bab85; GMR89]and probabilistically checkable proofs
[BFLS91; AS98; ALMSS98]. Algebraic holographic proofs (AHPs) modify the notion of an IOP in
two ways.

• Holographic: the verifier does not receive its input explicitly but, rather, has oracle access to a
prescribed encoding of it. This potentially enables the verifier to run in time that is much faster
than the time to read its input in full. (Our constructions will achieve this fast verification.)

• Algebraic: the honest prover must produce oracles that are low-degree polynomials (this
restricts the completeness property), and all malicious provers must produce oracles that
are low-degree polynomials (this relaxes the soundness property). The encoded input to the
verifier must also be a low-degree polynomial.

Since in this paper we only work with univariate polynomials, our definitions focus on this case, but
they can be modified in a straightforward way to be more general.
Informally, a (public-coin) AHP over a field F for an indexed relationR is specified by an indexer

I, prover P, and verifierV that work as follows.

• Offline phase. The indexer I receives as input the index i to be preprocessed, and outputs one
or more univariate polynomials over F encoding i.

• Online phase. For some instance x and witness w, the prover P receives (i,x,w) and the
verifierV receives x; P andV interact over some (in this paper, constant) number of rounds,
where in each round V sends a challenge and P sends one or more polynomials; after the
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interaction, V(x) probabilistically queries the polynomials output by the indexer and the
polynomials output by the prover, and then accepts or rejects. Crucially,V does not receive
i as input, but instead queries the polynomials output by I that encode i. This enables the
construction of verifiersV that run in time that is sublinear in |i|.

The completeness property states that for every (i,x,w) ∈ R the probability that P(i,x,w)
convincesVI(i)(x) to accept is 1. The soundness property states that for every (i,x) /∈ L(R) and
admissible prover P̃ the probability that P̃ convincesVI(i)(x) to accept is at most a given soundness
error ϵ. A prover is “admissible” if the degrees of the polynomials it outputs fit within prescribed
degree bounds of the protocol. See Section 3.4 for details on AHPs, including definitions of proof
of knowledge and zero knowledge.

Remark 3.2.1 (prior holographic proofs). Various definitions of “holographic proofs” have been
studied in the literature on probabilistic proofs, starting with the seminal work of Babai, Fortnow,
Levin, and Szegedy [BFLS91]. Recent examples include the IPs in [GKR15], whose verifier runs in
sublinear time when given (multivariate low-degree) encodings of the circuit’s wiring predicates
and of the circuit’s input; and also the IOPs in [RRR16], where encoded provers and encoded inputs
play a role in amortizing interactive proofs.

3.2.2 Building block: polynomial commitments
Informally, a polynomial commitment scheme [KZG10] allows a prover to produce a commitment
c to a univariate polynomial p ∈ F[X], and later “open” p(X) at any point z ∈ F, producing an
evaluation proof π showing that the opened value is consistent with the polynomial “inside” c at z.
Turning this informal goal into a useful definition requires some care, however, as we explain below.
In this paper we propose a set of definitions for polynomial commitment schemes that we believe
are useful for standalone use, and in particular suffice as a building block for our compiler described
in Sections 3.2.3 and 3.8.
First, we consider constructions with strong efficiency requirements: the commitment c is much

smaller than the polynomial p (e.g., c consists of a constant number of group elements), and the
proof π can be validated very fast (e.g., in a constant number of cryptographic operations). These
requirements not only rule out natural constructions, 7but also imply that the usual binding property,
which states that an efficient adversary cannot open the same commitment to two different values,
does not capture the desired security. Indeed, even if the adversary were to be bound to opening
values of some function f : F→ F, it may be that the function f is consistent with a polynomial

7A natural construction would be to use a standard commitment scheme to commit to each coefficient of p, and
then open to a value by revealing the committed coefficients. However, this construction is inefficient, because the
commitment c and evaluation proof π are “long” (linear in the degree of p). An alternative construction would be to use
a Merkle tree on the coefficients of p. While c now becomes short, the evaluation proof π remains long because the
receiver would need to see all coefficients to validate a claimed evaluation. Crucially, both constructions enable the
receiver to check the degree of the committed polynomial.



3.2. TECHNIQUES 57

whose degree is higher than what was claimed. This means that a security definition needs to
incorporate guarantees about the degree of the committed function.8
Second, in many applications of polynomial commitments, an adversary produces multiple

commitments to polynomials within a round of interaction and across rounds of interaction. After
this interaction, the adversary reveals values of all of these polynomials at one or more locations.
This setting motivates a number of considerations. First, it is desirable to rely on a single set of
public parameters for committing to multiple polynomials, even if the polynomials differ in degree.
A construction such as that of [KZG10] can be modified in a natural way to achieve this is by
committing both to the polynomial and its shift to the maximum degree, similarly to techniques
used to bundle multiple low-degree tests into a single one [BCRSVW19]. This modification needs
to be addressed in any proof of security. Second, it would be desirable to batch evaluation proofs
across different polynomials for the same location. Again the construction in [KZG10] can support
this, but one must argue that security still holds in this more general case.
The preceeding considerations require an extension of previous definitions and motivate our

re-formulation of the primitive. Informally, a polynomial commitment scheme PC is a tuple
of algorithms PC = (Setup,Trim,Commit,Open,Check). The setup algorithm PC.Setup takes
as input a security parameter and maximum supported degree bound D, and outputs public
parameters pp that contain the description of a finite field F. The “trimming” algorithm PC.Trim
then deterministically specializes these parameters for a given set of degree bounds and outputs
a committer key ck and a receiver key rk. The sender can then invoke PC.Commit with input ck
and a list of polynomials p with respective degree bounds d to generate a set of commitments c.
Subsequently, the sender can use PC.Open to produce a proof π that convinces the receiver that the
polynomials “inside” c respect the degree bounds d and, moreover, evaluate to the claimed set of
values v at a given query set Q that specifies any number of evaluation points for each polynomial.
The receiver can invoke PC.Check to check this proof.
The scheme PC is required to satisfy extractability and efficiency properties, and also, optionally,

a hiding property. We outline these properties below (see Section 3.6.1 for the details).
Extractability. Consider an efficient sender adversary A that can produce a commitment c and
degree bound d ≤ D such that, when asked for an evaluation at some point z ∈ F, can produce a
supposed evaluation v and proof π such that PC.Check accepts. Then PC is extractable if for every
maximum degree bound D and every sender adversary A who can produce such commitments,
there exists a corresponding efficient extractor EA that outputs a polynomial p of degree at most d
that “explains” c so that p(z) = v. While for simplicity we have described the most basic case here,
our definition considers adversaries and extractors who interact over multiple rounds, wherein the
adversary may produce multiple commitments in each round and the extractor is required to output
corresponding polynomials on a per-round basis (before seeing the query set, proof, or supposed
evaluations).

8This consideration motivates the strong correctness property in [KZG10], which states that if the adversary knows
a polynomial that leads to the claimed commitment c then this polynomial has bounded degree. This notion, while
sufficient for the application in [KZG10], does not seem to suffice for standalone use because there is no a priori
guarantee that an adversary that can open values to a commitment knows a polynomial inside the commitment. In some
sense, a knowledge assumption is hidden in this hypothesis.
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In this work we rely on extractability to prove the security of our compiler (see Section 3.2.3);
we do not know if weaker security notions studied in prior works, such as evaluation binding, suffice.
More generally, we believe that extractability is a useful property that may be required across a
range of other applications.
Efficiency. We require two notions of efficiency for PC. First, the time required to commit to a
polynomial p and then to create an evaluation proof must be proportional to the degree of p, and not
to the maximum degree D. (This ensures that the argument prover runs in time proportional to the
size of the index.)
On the receiver’s side, the commitment size, proof size, and time to verify an opening must be

independent of the claimed degrees for the polynomials. (This ensures that the argument produced
by our compiler is succinct.)
Hiding. The hiding property of PC states that commitments and proofs of evaluation reveal
no information about the committed polynomial beyond the publicly stated degree bound and
the evaluation itself. Namely, PC is hiding if there exists an efficient simulator that outputs
simulated commitments and simulated evaluation proofs that cannot be distinguished from their real
counterparts by any malicious distinguisher that only knows the degree bound and the evaluation.
Analogously to the case of extractability, we actually consider a more general definition that

considers commitments to multiple polynomials within and across multiple rounds; moreover, the
definition considers the case where some polynomials are designated as not hidden (and thus given
to the simulator) because in our application we sometimes prefer to commit to a polynomial in a
non-hiding way (for efficiency reasons).

3.2.3 Compiler: from AHPs to preprocessing arguments with universal SRS
We describe the main ideas behind Theorem 1, which uses polynomial commitment schemes to
compile any (public-coin) AHP into a corresponding (public-coin) preprocessing argument with
universal SRS. In a subsequent step, the argument can be made non-interactive via the Fiat–Shamir
transformation, and thereby obtain a preprocessing SNARG with universal SRS.
The basic intuition of the compiler follows the well-known framework of “commit to oracles and

then open query answers” pioneered by Kilian [Kil92]. However, the commitment scheme used in
our compiler leverages and enforces the algebraic structure of these oracles. While several works in
the literature already take advantage of algebraic commitment schemes applied to algebraic oracles,
our contribution is to observe that if we apply this framework to a holographic proof then we obtain
a preprocessing argument.
Informally, first the argument indexer invokes the AHP indexer to generate polynomials, and

then deterministically commits to these using the polynomial commitment scheme. Subsequently,
the argument prover and argument verifier interact, each respectively simulating the AHP prover and
AHP verifier. In each round, the argument prover sends succinct commitments to the polynomials
output by the AHP prover in that round. After the interaction, the argument verifier declares its
queries to the polynomials (of the prover and of the indexer). The argument prover replies with
the desired evaluations along with an evaluation proof attesting to their correctness relative to the
commitments.
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This approach, while intuitive, must be proven secure. In particular, in the proof of soundness,
we need to show that if the argument prover convinces the argument verifier with a certain probability,
then we can find an AHP prover that convinces the AHP verifier with similar probability. This
step is non-trivial: the AHP prover outputs polynomials, while the argument prover merely outputs
succinct commitments and a few evaluations, which is much less information. In order to deduce
the former from the latter requires extraction. This motivates considering polynomial commitment
schemes that are extractable, in the sense described in Section 3.2.2. We do not know whether
weaker security properties, such as the evaluation binding property studied in some prior works,
suffice for proving the compiler secure.
The compiler outlined above is compatible with the properties of argument of knowledge and

zero knowledge. Specifically, we prove that if the AHP is a proof of knowledge, then the compiler
produces an argument of knowledge; also, if the AHP is (bounded-query) zero knowledge and the
polynomial commitment scheme is hiding, then the compiler produces a zero knowledge argument.
See Section 3.8 for more details on the compiler.

3.2.4 Construction: an AHP for constraint systems
In prior sections we have described how we can use polynomial commitment schemes to compile
AHPs into corresponding preprocessing SNARGs. In this section we discuss the main ideas behind
Theorem 2, which provides an efficient AHP for the indexed relation corresponding to R1CS (see
Definition 1). The preprocessing zkSNARK that we achieve in this paper (see Fig. 3.1) is based on
this AHP.
Our protocol can be viewed as a “holographic variant” of the non-holographic algebraic proof for

R1CS constructed in [BCRSVW19]. Achieving holography involves designing a new sub-protocol
that enables the verifier to evaluate low-degree extensions of the coefficient matrices at a random
location. While in [BCRSVW19] the verifier performed this computation in time poly(|i|) on its
own, in our protocol the verifier performs it exponentially faster, in time O(log |i|), by receiving
help from the prover and having oracle access to the polynomials produced by the indexer. We
introduce notation and then discuss the protocol.
Some notation. Consider an index i = (F, n,m,A,B,C) specifying coefficient matrices, an
instance x = x ∈ F∗ specifying a partial assignment to the variables, and a witness w = w ∈ F∗

specifying an assignment to the other variables such that the R1CS equation holds. The R1CS
equation holds if and only if Az ◦ Bz = Cz for z := (x,w) ∈ Fn. Below, we let H and K be
prescribed subsets of F of sizes n andm respectively; we also let vH(X) and vK(X) be the vanishing
polynomials of these two sets. (The vanishing polynomial of a set S is the monic polynomial of
degree |S| that vanishes on S, i.e., ∏

γ∈S(X − γ).) We assume that both H and K are smooth
multiplicative subgroups. This allows interpolation/evaluation over H in O(n log n) operations and
also makes vH(X) computable in O(log n) operations (and similarly forK). Given an n× n matrix
M with rows/columns indexed by elements of H , we denote by M̂(X, Y ) the low-degree extension
ofM , i.e., the polynomial of individual degree less than n such that M̂(κ, ι) is the (κ, ι)-th entry of
M for every κ, ι ∈ H .
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A non-holographic starting point. We sketch a non-holographic protocol for R1CS with linear
proof length and constant query complexity, inspired from [BCRSVW19], that forms the starting
point of our work. In this case the prover receives as input (i,x,w) and the verifier receives as input
(i,x). (The verifier reads the non-encoded index i because we are describing a non-holographic
protocol.)
In the first message the prover P sends the univariate polynomial ẑ(X) of degree less than

n that agrees with the variable assignment z on H , and also sends the univariate polynomials
ẑA(X), ẑB(X), ẑC(X) of degree less than n that agree with the linear combinations zA := Az,
zB := Bz, and zC := Cz on H . The prover is left to convince the verifier that the following two
conditions hold:

(1) Entry-wise product: ∀κ ∈ H , ẑA(κ)ẑB(κ)− ẑC(κ) = 0 .

(2) Linear relation: ∀M ∈ {A,B,C} , ∀κ ∈ H , ẑM(κ) =
∑
ι∈H

M [κ, ι]ẑ(ι) .

(The prover also needs to convince the verifier that ẑ(X) encodes a full assignment z that is consistent
with the partial assignment x, but we for simplicity we ignore this in this informal discussion.)
In order to convince the verifier of the first (entry-wise product) condition, the prover sends the

polynomial h0(X) such that ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X). This polynomial equation is
equivalent to the first condition (the left-hand side equals zero everywhere on H if and only if it is
a multiple of H’s vanishing polynomial). The verifier will check the equation at a random point
β ∈ F: it queries ẑA(X), ẑB(X), ẑC(X), h0(X) at β, evaluates vH(X) at β on its own, and checks
that ẑA(β)ẑB(β) − ẑC(β) = h0(β)vH(β). The soundness error is the maximum degree over the
field size, which is at most 2n/|F|.
In order to convince the verifier of the second (linear relation) condition, the prover expects

a random challenge α ∈ F from the verifier, and then replies in a second message. For each
M ∈ {A,B,C}, the prover sends polynomials hM(X) and gM(X) such that

r(α,X)ẑM(X)− rM(α,X)ẑ(X) = hM(X)vH(X) +XgM(X)
for

rM(Z,X) :=
∑
κ∈H

r(Z, κ)M̂(κ,X)

where r(Z,X) is a prescribed polynomial of individual degree less than n such that (r(Z, κ))κ∈H

are n linearly independent polynomials. Prior work [BCRSVW19] on checking linear relations
via univariate sumchecks shows that this polynomial equation is equivalent, up to a soundness
error of n/|F| over α, to the second condition.9 The verifier will check this polynomial equation at
the random point β ∈ F: it queries ẑ(X), ẑA(X), ẑB(X), ẑC(X), hM(X), gM(X) at β, evaluates
vH(X) at β on its own, evaluates r(Z,X) and rM(Z,X) at (α, β) on its own, and checks that

9In particular, we are using the fact from [BCRSVW19] that, given a multiplicative subgroup S of F, a polynomial
f(X) sums to σ over S if and only if f(X) can be written as h(X)vS(X) + Xg(X) + σ/|S| for some h(X) and g(X)
with deg(g) < |S| − 1.
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r(α, β)ẑM(β) − rM(α, β)ẑ(β) = hM(β)vH(β) + βgM(β). The additional soundness error is
2n/|F|.
The above is a simple 3-message protocol for R1CSwith soundness errormax{2n/|F|, 3n/|F|} =

3n/|F| in the setting where the honest prover and malicious provers send polynomials of prescribed
degrees, which the verifier can query at any location. The proof length (sum of all degrees) is linear
in n and the query complexity is constant.
Barrier to holography. The verifier in the above protocol runs in time that is Ω(|i|) = Ω(n+m).
While this is inherent in the non-holographic setting (because the verifier must read i), we now
discuss how exactly the verifier’s computation depends on i. We shall later use this understanding to
achieve an exponential improvement in the verifier’s time when given a suitable encoding of i.
The verifier’s check for the entry-wise product is ẑA(β)ẑB(β)− ẑC(β) = h0(β)vH(β), and can

be carried out in O(log n) operations regardless of the coefficient matrices contained in the index i.
In other words, this check is efficient even in the non-holographic setting. However, the verifier’s
check for the linear relation is r(α, β)ẑM(β) − rM(α, β)ẑ(β) = hM(β)vH(β) + βgM(β), which
has a linear cost. Concretely, evaluating the polynomial rM(Z,X) at (α, β) requires Ω(n + m)
operations.
In the holographic setting, a natural idea to reduce this cost would be to grant the verifier oracle

access to the low-degree extension M̂ forM ∈ {A,B,C}. This idea has two problems: the verifier
still needs Ω(n) operations to evaluate rM(Z,X) at (α, β) and, moreover, the size of M̂ is quadratic
in n, which means that the encoding of the index i is Ω(n2). We cannot afford such an expensive
encoding in the offline preprocessing phase. We now describe how we overcome both of these
problems, and obtain a holographic protocol.
Achieving holography. To overcome the above problems and obtain a holographic protocol, we rely
yet again on the univariate sumcheck protocol. We introduce two additional rounds of interaction,
and in each round the verifier learns that their verification equation holds provided the sumcheck
from the next round holds. The last sumcheck will rely on polynomials output by the indexer, which
the verifier knows are correct.
We address the first problem by letting the prover and verifier interact in an additional round,

where we rely on an additional univariate sumcheck to reduce the problem of evaluating rM(Z,X)
at (α, β) to the problem of evaluating M̂ at (β2, β) for a random β2 ∈ F. Namely, the verifier sends
β to the prover, who computes

σ2 := rM(α, β) =
∑
κ∈H

r(α, κ)M̂(κ, β).

Then the prover replies with σ2 and the polynomials h2(X) and g2(X) such that

r(α,X)M̂(X, β) = h2(X)vH(X) +Xg2(X) + σ2/n .

Prior techniques on univariate sumcheck [BCRSVW19] tell us that this equation is equivalent to the
polynomial r(α,X)M̂(X, β) summing to σ2 onH . Thus the verifier needs to check this equation at
a random β2 ∈ F: r(α, β2)M̂(β2, β) = h2(β2)vH(β2) + β2g2(β2) + σ2/n. The only expensive part
of this equation for the verifier is computing the value M̂(β2, β), which is problematic. Indeed, we
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have already noted that we cannot afford to simply let the verifier have oracle access to M̂ , because
this polynomial has quadratic size (it contains a quadratic number of terms).
We address this second problem as follows. Let uH(X, Y ) := vH(X)−vH(Y )

X−Y
be the formal

derivative of the vanishing poynomial vH(X), and note that uH(X, Y ) vanishes on the square
H ×H except for on the diagonal, where it takes on the (non-zero) values (uH(a, a))a∈H . Moreover,
uH(X, Y ) can be evaluated at any point in F× F in O(log n) operations. Using this polynomial, we
can write M̂ as a sum ofm = |K| terms instead of n2 = |H|2 terms:

M̂(X, Y ) :=
∑
κ∈K

uH(X, ˆrowM(κ)) · uH(Y, ĉolM(κ)) · v̂alM(κ) ,

where ˆrowM , ĉolM , v̂alM are the low-degree extensions of the row, column, and value of the non-zero
entries inM according to some canonical order over K.10
This method of representing the low-degree extension ofM suggests an idea: let the verifier

have oracle access to the polynomials ˆrowM , ĉolM , v̂alM and do yet another univariate sumcheck,
but this time over the set K. The verifier sends β2 to the prover, who computes

σ3 := M̂(β2, β) =
∑
κ∈K

uH(β2, ˆrowM(κ)) · uH(β, ĉolM(κ)) · v̂alM(κ) .

Then the prover replies with σ3 and the polynomials h3(X) and g3(X) such that

uH(β2, ˆrowM(X))uH(β, ĉolM(X))v̂alM(X) = h3(X)vK(X) +Xg3(X) + σ3/m .

The verifier can then check this equation at a random β3 ∈ F, which only requires O(logm)
operations.
The above idea almost works; the one remaining problem is that h3(X) has degree Ω(nm)

(because the left-hand size of the equation has quadratic degree), which is too expensive for our
target of a quasilinear-time prover. We overcome this problem by letting the prover run the univariate
sumcheck protocol on the unique low-degree extension f̂(X) of the function f : K → F defined
as f(κ) := uH(β2, ˆrowM(κ))uH(β, ĉolM(κ))v̂alM(κ). Observe that f̂(X) has degree less than m.
The verifier checks that f̂(X) and uH(β2, ˆrowM(X))uH(β, ĉolM(X))v̂alM(X) agree on K.
From sketch to protocol. In the above discussion we have ignored a number of technical aspects,
such as proof of knowledge and zero knowledge (which are ultimately needed in the compiler if we
want to construct a preprocessing zkSNARK). We have also not discussed time complexities of
many algebraic steps, and we omitted discussion of how to batch multiple sumchecks into fewer
ones, which brings important savings in argument size. For details, see our detailed construction in
Section 3.5.

3.2.5 Construction: extractable polynomial commitments
We now sketch how to construct a polynomial commitment scheme that achieves the strong
functionality and security requirements of our definition in Section 3.2.2. Our starting point is

10Technicality: v̂al(κ) actually equals the value divided by uH( ˆrowM (κ), ˆrowM (κ))uH(ĉolM (κ), ĉolM (κ)).
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the PolyCommitDL construction of Kate et al. [KZG10], and then describe a sequence of natural
and generic transformations that extend this construction to enable extractability, commitments
to multiple polynomials, and the enforcement of per-polynomial degree bounds. In fact, once we
arrive at a scheme that supports extractability for committed polynomials at a single point (the full
version[CHMMVW20]), our transformations build on this construction in a black box way to first
support per-polynomial degree bounds (the full version[CHMMVW20]), and then query sets that
may request multiple evaluation points per polynomial (the full version[CHMMVW20]). Indeed, it is
sufficient to produce a polynomial commitment scheme that satisfies the much more simple interface
and definitions in the full version[CHMMVW20], and apply these black box transformations to
obtain a polynomial commitment scheme that satisfies the interface of and provides the properties
described in Section 3.6.1 ultimately needed by our compiler.
Starting point: PolyCommitDL. The setup phase samples a cryptographically secure bilinear group
(G1,G2,GT , q, G,H, e) and then samples a committer key ck and receiver key rk for a given degree
boundD. The committer key consists of group elements encoding powers of a random field element
β, namely, ck := {G, βG, . . . , βDG} ∈ GD+1

1 . The receiver key consists of the group elements
rk := (G,H, βH) ∈ G1×G2

2. Note that the SRS, which consists of the keys ck and rk, is updatable
because the coefficients of group elements in the SRS are all monomials (see Remark 3.7.1).
To commit to a polynomial p ∈ Fq[X], the sender computes c := p(β)G. To subsequently prove

that the committed polynomial evaluates to v at a point z, the sender computes a witness polynomial
w(X) := (p(X)− p(z))/(X − z), and provides as proof a commitment to w: π := w(β)G. The
idea is that the witness function w is a polynomial if and only if p(z) = v; otherwise, it is a rational
function, and cannot be committed to using ck.
Finally, to verify a proof of evaluation, the receiver checks that the commitment and proof of

evaluation are consistent. That is, it checks that the proof commits to a polynomial of the form
(p(X)− p(z))/(X − z) by checking the equality e(c− vG,H) = e(π, βH − zH).
Achieving extractability. While the foregoing construction guarantees correctness of evaluations,
it does not by itself guarantee that a commitment actually “contains” a suitable polynomial of degree
at most D. We study two methods to address this issue, and thereby achieve extractability. One
method is to modify the construction to use knowledge commitments [Gro10], and rely on a concrete
knowledge assumption. The main disadvantage of this approach is that each commitment doubles in
size. The other method is to move away from the plain model, and instead conduct the security
analysis in the algebraic group model (AGM) [FKL18]. This latter method is more efficient because
each commitment remains a single group element.
Committing to multiple polynomials at once. We enable the sender to simultaneously open
multiple polynomials [pi]ni=1 at the same point z as follows. Before generating a proof of evaluation
for [pi]ni=1, the sender requests from the receiver a random field element ξ, which he uses to take a
random linear combination of the polynomials: p := ∑n

i=1 ξ
ipi, and generates a proof of evaluation

π for this polynomial p.
The receiver verifies π by using the fact that the commitments are additively homomorphic.

The receiver takes a linear combination of the commitments and claimed evaluations, obtaining the
combined commitment c = ∑n

i=1 ξ
ici and evaluation v = ∑n

i=1 ξ
ivi. Finally, it checks the pairing

equations for c, π, and v.
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Completeness of this check is straightforward, while soundness follows from the fact that if
any polynomial does not match its evaluation, then the combined polynomial will not match its
evaluation with high probability.
Enforcing multiple degree bounds. The construction so far enforces a single bound D on the
degrees of all the polynomials pi. To enforce a different degree bound di for each pi, we require the
sender to commit not only to each pi, but also to “shifted polynomials” p′

i(X) := XD−dipi(X). The
proof of evaluation proves that, if pi evaluates to vi at z, then p′

i evaluates to zD−divi.
The receiver checks that the commitment for each p′

i corresponds to an evaluation zD−divi so
that, if z is sampled from a super-polynomial subset of Fq, the probability that deg(pi) ̸= di is
negligible. This trick is similar to the one used in [BS08; BCRSVW19] to derive low-degree tests
for specific degree bounds.
However, while sound, this approach is inefficient in our setting: the witness polynomial for p′

i

has Ω(D) non-zero coefficients (instead of O(di)), and so constructing an evaluation proof for it
requires Ω(D) scalar multiplications (instead of O(di)). To work around this, we instead produce
a proof that the related polynomial p⋆

i (X) := p′
i(X) − pi(z)XD−di evaluates to 0 at z. As we

show in the full version[CHMMVW20], the witness polynomial for this claim has O(di) non-zero
coefficients, and so constructing the evaluation proof can be done in O(di) scalar multiplications.
Completeness is preserved because the receiver can check the correct evaluation of p⋆

i by subtracting
pi(z)(βD−diG) from the commitment to the shifted polynomial p′

i, thereby obtaining a commitment
to p⋆

i , while security is preserved because p′
i(z) = zD−divi ⇐⇒ p⋆

i (z) = 0.
Evaluating at a query set instead of a single point. To support the case where the polynomials
[pi]ni=1 are evaluated at a set of pointsQ, the sender proceeds as follows. Say that there are k different
points [zi]ki=1 in Q. The sender partitions the polynomials [pi]ni=1 into different groups such that
every polynomial in a group is to be evaluated at the same point zi. The sender runs PC.Open on
each group, and outputs the resulting list of evaluation proofs.
Achieving hiding. To additionally achieve hiding, we follow the above blueprint, replacing
PolyCommitDL with the hiding scheme PolyCommitPed described in [KZG10].
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3.3 Preliminaries
We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]ni=1 as a short-hand for the tuple
(a1, . . . , an), and [ai]ni=1 = [[ai,j]mj=1]ni=1 as a short-hand for the tuple

(a1,1, . . . , a1,m, . . . , an,1, . . . , an,m);

|a| denotes the number of entries in a. If x is a binary string then |x| denotes its bit length. IfM is
a matrix then ∥M∥ denotes the number of nonzero entries inM . If S is a finite set then |S| denotes
its cardinality and x← S denotes that x is an element sampled at random from S. We denote by F a
finite field, and whenever F is an input to an algorithm we implicitly assume that F is represented in
a way that allows efficient field arithmetic. Given a finite set S, we denote by FS the set of vectors
indexed by elements in S. We denote by F[X] the ring of univariate polynomials over F in X , and
by F<d[X] the set of polynomials in F[X] with degree less than d.
We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable n,

we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function that is
negligible in λ (namely, a function that vanishes faster than the inverse of any polynomial in λ).
When a function can be expressed in the form 1 − negl(λ), we say that it is overwhelming in λ.
When we say that A is an efficient adversary we mean that A is a family {Aλ}λ∈N of non-uniform
polynomial-size circuits. If the adversary consists of multiple circuit families A1,A2, . . . then we
write A = (A1,A2, . . . ).
Given two interactive algorithms A and B, we denote by ⟨A(x), B(y)⟩(z) the output of B(y, z)

when interacting with A(x, z). Note that this output could be a random variable. If we use this
notation when A or B is a circuit, we mean that we are considering a circuit that implements a
suitable next-message function to interact with the other party of the interaction.

3.3.1 Indexed relations
An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance, andw is the
witness; the corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a
witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits
consists of triples where i is the description of a boolean circuit, x is a partial assignment to its
input wires, and w is an assignment to the remaining wires that makes the circuit to output 0. Given
a size bound N ∈ N, we denote byRN the restriction ofR to triples (i,x,w) with |i| ≤ N.
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3.4 Algebraic holographic proofs
We define algebraic holographic proofs (AHPs), the notion of proofs that we use. For simplicity,
the formal definition below is tailored to univariate polynomials, because our AHP construction is
in this setting. The definition can be modified in a straightforward way to consider the general case
of multivariate polynomials.
We represent polynomials through the coefficients that define them, as opposed to through their

evaluation over a sufficiently large domain (as is typically the case in probabilistic proofs). This
definitional choice is due to the fact that we will consider verifiers that may query the polynomials
at any location in the field of definition. Moreover, the field of definition itself can be chosen from a
given field family, and so we make the field an additional input to all algorithms; this degree of
freedom is necessary when combining this component with polynomial commitment schemes (see
Section 3.8). Finally, we consider the setting of indexed relations (see Section 3.3.1), where the
verifier’s input has two parts, the index and the instance; in the definition below, the verifier receives
the index encoded and the instance explicitly.
Formally, an algebraic holographic proof (AHP) over a field family F for an indexed relation

R is specified by a tuple
AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three
algorithms known as the indexer, prover, and verifier. The parameter k specifies the number of
interaction rounds, s specifies the number of polynomials in each round, and d specifies degree
bounds on these polynomials.
In the offline phase (“0-th round”), the indexer I receives as input a fieldF ∈ F and an index i forR,

and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0))
respectively. Note that the offline phase does not depend on any particular instance or witness, and
merely considers the task of encoding the given index i.
In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P

receives (F, i,x,w) and the verifierV receives (F,x) and oracle access to the polynomials output
by I(F, i). The prover P and the verifierV interact over k = k(|i|) rounds.
For i ∈ [k], in the i-th round of interaction, the verifierV sends a message ρi ∈ F∗ to the prover

P; then the prover P replies with s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. The verifier may
query any of the polynomials it has received any number of times. A query consists of a location
z ∈ F for an oracle pi,j , and its corresponding answer is pi,j(z) ∈ F. After the interaction, the
verifier accepts or rejects.
The function d determines which provers to consider for the completeness and soundness

properties of the proof system. In more detail, we say that a (possibly malicious) prover P̃ is
admissible for AHP if, on every interaction with the verifierV, it holds that for every round i ∈ [k]
and oracle index j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be
admissible under this definition.
We say that AHP has perfect completeness and soundness error ϵ if the following holds.
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• Completeness. For every field F ∈ F and index-instance-witness tuple (i,x,w) ∈ R,
the probability that P(F, i,x,w) convinces VI(F,i)(F,x) to accept in the interactive oracle
protocol is 1.

• Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and admissible prover
P̃, the probability that P̃ convincesVI(F,i)(F,x) to accept in the interactive oracle protocol is
at most ϵ.

The proof length l is the sum of all degree bounds in the offline and online phases, l(|i|) :=∑k(|i|)
i=0

∑s(i)
j=1 d(|i|, i, j). The intuition for this definition is that in a probabilistic proof each oracle

would consist of the evaluation of a polynomial over a domain whose size (in field elements) is
linearly related to its degree bound, so that the resulting proof length would be linearly related to the
sum of all degree bounds.
The query complexity q is the total number of queries made by the verifier to the polynomials.

This includes queries to the polynomials output by the indexer and those sent by the prover.
All AHPs that we construct achieve the stronger property of knowledge soundness (against

admissible provers), and optionally also zero knowledge. We define both of these properties below.
Knowledge soundness. We say that AHP has knowledge error ϵ if there exists a probabilistic
polynomial-time extractor E for which the following holds. For every field F ∈ F , index i, instance
x, and admissible prover P̃, the probability thatEP̃(F, i,x, 1l(|i|)) outputsw such that (i,x,w) ∈ R
is at least the probability that P̃ convinces VI(F,i)(F,x) to accept minus ϵ. Here the notation EP̃

means that the extractor E has black-box access to each of the next-message functions that define
the interactive algorithm P̃. (In particular, the extractor E can “rewind” the prover P̃.) Note that
since E receives the proof length l(|i|) in unary, E has enough time to receive, and perform efficient
computations on, polynomials output by P̃.
Zero knowledge. We say that AHP has (perfect) zero knowledge with query bound b and query
checker C if there exists a probabilistic polynomial-time simulator S such that for every field
F ∈ F , index-instance-witness tuple (i,x,w) ∈ R, and (b,C)-query algorithm Ṽ the random
variables View(P(F, i,x,w), Ṽ) and SṼ(F, i,x), defined below, are identical. Here, we say that
an algorithm is (b,C)-query if it makes at most b queries to oracles it has access to, and each query
individually leads the checker C to output “ok”.

• View(P(F, i,x,w), Ṽ) is the view of Ṽ, namely, is the random variable (r, a1, . . . , aq) where
r is Ṽ’s randomness and a1, . . . , aq are the responses to Ṽ’s queries determined by the oracles
sent by P(F, i,x,w).

• SṼ(F, i,x) is the output of S(F, i,x) when given straightline access to Ṽ (S may interact
with Ṽ, without rewinding, by exchanging messages with Ṽ and answering any oracle queries
along the way), prepended with Ṽ’s randomness r. Note that r could be of super-polynomial
size, so S cannot sample r on Ṽ’s behalf and then output it; instead, as in prior work, we
restrict S to not see r, and prepend r to S’s output.

A special case of interest. We only consider AHPs that satisfy the following properties.
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– Public coins: AHP is public-coin if each verifier message to the prover is a uniformly random
string of some prescribed length (or an empty string). Hence the verifier’s randomness is
its messages ρ1, . . . , ρk ∈ F∗ and possibly additional randomness ρk+1 ∈ F∗ used after the
interaction. All verifier queries can be postponed, without loss of generality, to a query phase
that occurs after the interactive phase with the prover.

– Non-adaptive queries: AHP is non-adaptive if all of the verifier’s query locations are solely
determined by the verifier’s randomness and inputs (the field F and the instance x).

Given these properties, we can view the verifier as two subroutines that execute in the query phase:
a query algorithm QV that produces query locations based on the verifier’s randomness, and a
decision algorithmDV that accepts or rejects based on the answers to the queries (and the verifier’s
randomness). In more detail, QV receives as input the field F, the instance x, and randomness
ρ1, . . . , ρk, ρk+1, and outputs a query set Q consisting of tuples ((i, j), z) to be interpreted as “query
pi,j at z ∈ F”; andDV receives as input the field F, the instance x, answers (v((i,j),z))((i,j),z)∈Q, and
randomness ρ1, . . . , ρk, ρk+1, and outputs the decision bit.
While the above properties are not strictly necessary for the compiler that we describe in

Section 3.8, all “natural” protocols that we are aware of (including those that we construct in this
paper) satisfy these properties, and so we restrict our attention to public-coin non-adaptive protocols
for simplicity.
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3.5 AHP for constraint systems
We construct an AHP for rank-1 constraint satisfiability (R1CS) that has linear proof length and
constant query complexity. Below we define the indexed relation that represents this problem, and
then state our result.

Definition 3.5.1 (R1CS indexed relation). The indexed relationRR1CS is the set of all triples

(i,x,w) =
(
(F, H,K,A,B,C), x, w

)
where F is a finite field, H and K are subsets of F, A,B,C are H × H matrices over F with
|K| ≥ max{∥A∥, ∥B∥, ∥C∥}, and z := (x,w) is a vector in FH such that Az ◦Bz = Cz.

Theorem 3.5.2. There exists an AHP for the indexed relationRR1CS that is a zero knowledge proof
of knowledge with the following features. The indexer uses O(|K| log |K|) field operations and
outputs O(|K|) field elements. The prover and verifier exchange 7 messages. To achieve zero
knowledge against b queries (with a query checker C that rejects queries in H), the prover uses
O((|K|+ b) log(|K|+ b)) field operations and outputs a total of O(|H|+ b) field elements. The
verifier makes O(1) queries to the encoded index and to the prover’s messages, has soundness error
O((|K|+ b)/|F|), and uses O(|x|+ log |K|) field operations.

Remark 3.5.3 (restrictions on domains). Our protocol uses the univariate sumcheck of [BCRSVW19]
as a subroutine, and in particular inherits the requirement that the domainsH andK must be additive
or multiplicative subgroups of the field F. For simplicity, in our descriptions we use multiplicative
subgroups because we use this case in our implementation; the case of additive subgroups involves
only minor modifications. Moreover, the arithmetic complexities for the indexer and prover stated in
Theorem 3.5.2 assume that the domains H and K are “FFT-friendly” (e.g., they have smooth sizes);
this is not a requirement, since in general the arithmetic complexities will be that of an FFT over
the domains H and K. Note that we can assume without loss of generality that |H| = O(|K|), for
otherwise (if |K| < |H|/3) then are empty rows or columns across the matrices that we can drop
and reduce their size. Finally, we assume that |H| ≤ |F|/2.

This section is organized as follows: in Section 3.5.1 we introduce algebraic notations and facts
used in this section; in Section 3.5.2 we describe an AHP for checking linear relations; and in
Section 3.5.3 we build on this latter to obtain an AHP for R1CS.
Throughout we assume that H and K come equipped with bijections ϕ

H
: H → [|H|] and

ϕ
K

: K → [|K|] that are computable in linear time. Moreover, we define the two sets H[≤ k] :=
{κ ∈ H : 1 ≤ ϕ

H
(κ) ≤ k} and H[> k] := {κ ∈ H : ϕ

H
(κ) > k} to denote the first k elements in

H and the remaining elements, respectively. We can then write that x ∈ FH[≤|x|] and w ∈ FH[>|x|].

3.5.1 Algebraic preliminaries
Polynomial encodings. For a finite field F, subset S ⊆ F, and function f : S → F we denote by f̂
the (unique) univariate polynomial over F with degree less than |S| such that f̂(a) = f(a) for every
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a ∈ S. We sometimes abuse notation and write f̂ to denote some polynomial that agrees with f on
S, which need not equal the (unique) such polynomial of smallest degree.
Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote by vS the unique
non-zero monic polynomial of degree at most |S| that is zero everywhere on S; vS is called
the vanishing polynomial of S. If S is an additive or multiplicative coset in F then vS can be
evaluated in polylog(|S|) field operations. For example, if S is a multiplicative subgroup of F
then vS(X) = X |S| − 1 and, more generally, if S is a ξ-coset of a multiplicative subgroup S0
(namely, S = ξS0) then vS(X) = ξ|S|vS0(X/ξ) = X |S|− ξ|S|; in either case, vS can be evaluated in
O(log |S|) field operations.
Derivative of vanishing polynomials. We rely on various properties of a bivariate polynomial uS

introduced in [BCGGRS19]. For a finite field F and subset S ⊆ F, we define

uS(X, Y ) := vS(X)− vS(Y )
X − Y

,

which is a polynomial of individual degree |S| − 1 because X − Y divides X i − Y i for any
positive integer i. Note that uS(X,X) is the formal derivative of the vanishing polynomial vS(X).
The bivariate polynomial uS(X, Y ) satisfies two useful algebraic properties. First, the univariate
polynomials (uS(X, a))a∈S are linearly independent, and uS(X, Y ) is their (unique) low-degree
extension. Second, uS(X, Y ) vanishes on the square S × S except for on the diagonal, where it
takes on the (non-zero) values (uS(a, a))a∈S .
If S is an additive or multiplicative coset in F, uS(X, Y ) can be evaluated at any (α, β) ∈ F2

in polylog(|S|) field operations because in this case both vS (and its derivative) can be evaluated
in polylog(|S|) field operations. For example, if S is a multiplicative subgroup then uS(X, Y ) =
(X |S| − Y |S|)/(X − Y ) and uS(X,X) = |S|X |S|−1, so both can be evaluated in O(log |S|) field
operations.
Univariate sumcheck for subgroups. Prior work [BCRSVW19] shows that, given a multiplicative
subgroup S of F, a polynomial f(X) sums to σ over S if and only if f(X) can be written as
h(X)vS(X) + Xg(X) + σ/|S| for some h(X) and g(X) with deg(g) < |S| − 1. This can be
viewed as a univariate sumcheck protocol, and we shall rely on it throughout this section.

3.5.2 AHP for the lincheck problem
The lincheck problem for univariate polynomials considers the task of deciding whether two
polynomials encode vectors that are linearly related in a prescribed way. In more detail, the
problem is parametrized by a field F, two subsets H and K of F, and a matrixM ∈ FH×H with
|K| ≥ ∥M∥ > 0. Given oracle access to two low-degree polynomials f1, f2 ∈ F<d[X], the problem
asks to decide whether for every a ∈ H it holds that f1(a) = ∑

b∈H Ma,b · f2(b), by asking a small
number of queries to f1 and f2. The matrixM thus prescribes the linear relations that relate the
values of f1 and f2 on H .
Ben-Sasson et al. [BCRSVW19] solve this problem by reducing the lincheck problem to a

sumcheck problem, and then reducing the sumcheck problem to low-degree testing (of univariate
polynomials). In particular, this prior work achieves a 2-message algebraic non-holographic protocol
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that solves the lincheck problem with linear proof length and constant query complexity. In this
section we show how to achieve a 6-message algebraic holographic protocol, again with linear proof
length and constant query complexity. In Section 3.5.2.1 we describe the indexer algorithm, in
Section 3.5.2.2 we describe the prover and verifier algorithms, and in Section 3.5.2.3 we analyze the
protocol. Fig. 3.4 summarizes the protocol.

3.5.2.1 Offline phase: encoding the linear relation

The indexer I for the lincheck problem receives as input a field F, two subsets H and K of F, and
a matrixM ∈ FH×H with |K| ≥ ∥M∥. The non-zero entries ofM are assumed to be presented
in some canonical order (e.g., row-wise or column-wise). The output of I is three univariate
polynomials ˆrow, ĉol, v̂al over F of degree less than |K| such that the following polynomial is a
low-degree extension ofM :

M̂(X, Y ) :=
∑
κ∈K

uH(X, ˆrow(κ))uH(Y, ĉol(κ))v̂al(κ) . (3.1)

The three three aforementioned polynomials are the (unique) low-degree extensions of the three
functions row, col, val : K → F that respectively represent the row index, column index, and value
of the non-zero entries of the matrixM . In more detail, for every κ ∈ K with 1 ≤ ϕ

K
(κ) ≤ ∥M∥:

• row(κ) := ϕ−1
H

(tκ) where tκ is the row index of the ϕK
(κ)-th nonzero entry inM ;

• col(κ) := ϕ−1
H

(tκ) where tκ is the column index of the ϕK
(κ)-th nonzero entry inM ;

• val(κ) is the value of the ϕ
K

(κ)-th nonzero entry inM , divided by
uH(row(κ), row(κ))uH(col(κ), col(κ)).

Also, val(κ) returns the element 0 for every κ ∈ K with ϕ
K

(κ) > ∥M∥, while row(κ) and col(κ)
return an arbitrary element in H for such κ. The evaluation tables of these functions can be
found in O(|K| log |H|) operations, from which interpolation yields the desired polynomials in
O(|K| log |K|) operations.
Recall from Section 3.5.1 that the bivariate polynomial uH(X, Y ) vanishes on the squareH ×H

except for on the diagonal, where it takes on the (non-zero) values (uH(a, a))a∈H . By construction
of the polynomials ˆrow, ĉol, v̂al, the polynomial M̂(X, Y ) agrees with the matrixM everywhere on
the domain H ×H . The individual degree of M̂(X, Y ) is less than |H|. Thus, M̂ is the unique
low-degree extension ofM .
We rewrite the polynomial M̂(X, Y ) in a form that will be useful later:

Claim 3.5.4.
M̂(X, Y ) =

∑
κ∈K

vH(X)
(X − ˆrow(κ)) ·

vH(Y )
(Y − ĉol(κ))

· v̂al(κ) . (3.2)
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Proof. Note that vH( ˆrow(κ)) = vH(ĉol(κ)) = 0 for every κ ∈ K because ˆrow(X) and ĉol(X) map
K to H and vH vanishes on H . Therefore:

M̂(X, Y ) =
∑
κ∈K

uH(X, ˆrow(κ)) · uH(Y, ĉol(κ)) · v̂al(κ)

=
∑
κ∈K

vH(X)− vH( ˆrow(κ))
X − ˆrow(κ) · vH(Y )− vH(ĉol(κ))

Y − ĉol(κ)
· v̂al(κ)

=
∑
κ∈K

vH(X)
(X − ˆrow(κ)) ·

vH(Y )
(Y − ĉol(κ))

· v̂al(κ) .

3.5.2.2 Online phase: proving and verifying the linear relation

The prover P for the lincheck problem receives as input a field F, two subsets H and K of F, a
matrixM ∈ FH×H with |K| ≥ ∥M∥, and two polynomials f1, f2 ∈ F<d[X]. The verifierV for the
lincheck problem receives as input the field F and two subsets H and K of F; V also has oracle
access to the polynomials ˆrow, ĉol, v̂al output by the indexer I invoked on appropriate inputs.
The protocol begins with a reduction from a lincheck problem to a sumcheck problem: V

samples a random element α ∈ F and sends it to P. Indeed, letting r(X, Y ) denote the polynomial
uH(X, Y ), P is left to convinceV that the following univariate polynomial sums to 0 on H:

q1(X) := r(α,X)f1(X)− rM(α,X)f2(X) where rM(X, Y ) :=
∑
κ∈H

r(X, κ)M̂(κ, Y ) .

(3.3)
We rely on the univariate sumcheck protocol for this step: P sends toV the polynomials g1(X)

and h1(X) such that q1(X) = h1(X)vH(X) +Xg1(X). In order to check this polynomial identity,
V samples a random element β1 ∈ F with the intention of checking the identity at X := β1. For
the right-hand side, V queries g1 and h1 at β1, and then evaluates h1(β1)vH(β1) + β1g1(β1) in
O(log |H|) operations. For the left-hand side, V queries f1 and f2 at β1 and then needs to ask
help from P to evaluate r(α, β1)f1(β1) − rM(α, β1)f2(β1). The reason is that while r(α, β1) is
easy to evaluate (it requires O(log |H|) operations), rM(α, β1) = ∑

κ∈H r(α, κ)M̂(κ, β1) in general
requires Ω(|H||K|) operations.
We thus rely on the univariate sumcheck protocol again. We define

q2(X) := r(α,X)M̂(X, β1) (3.4)

V sends β1 toP, and thenP replies with the sum σ2 := ∑
κ∈H r(α, κ)M̂(κ, β1) and the polynomials

g2(X) and h2(X) such that q2(X) = h2(X)vH(X) + Xg2(X) + σ2/|H|. In order to check this
polynomial identity, V samples a random element β2 ∈ F with the intention of checking the
identity at X := β2. For the right-hand side, V queries g2 and h2 at β2, and then evaluates
h2(β2)vH(β2) + β2g2(β2) + σ2/|H| in O(log |H|) operations. To evaluate the left-hand side,



3.5. AHP FOR CONSTRAINT SYSTEMS 73

however, V needs to ask help from P. The reason is that while r(α, β2) is easy to evaluate (it
requires O(log |H|) operations), M̂(β2, β1) in general requires Ω(|K|) operations.
We thus rely on the univariate sumcheck protocol (yet) again: V sends β2 to P, and then P

replies with the value σ3 := M̂(β2, β1), which the verifier must check. Note though that we cannot
use the sumcheck protocol directly to compute the sum obtained from Eq. (3.1):

M̂(β2, β1) =
∑
κ∈K

uH(β2, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

The reason is because the degree of the above addend, if we replace κ with an indeterminate,
is Ω(|H||K|), which means that the degree of the polynomial h3 sent as part of a sumcheck
protocol also has degree Ω(|H||K|), which is not within our budget of an AHP with proof length
O(|H| + |K|). Instead, we make the minor modification that in the earlier rounds β1 and β2 are
sampled from F\H instead of F, and we will leverage the sumcheck protocol to verify the equivalent
(well defined) expression from Eq. (3.2):

M̂(β2, β1) =
∑
κ∈K

vH(β2)vH(β1)v̂al(κ)
(β2 − ˆrow(κ))(β1 − ĉol(κ))

.

This may appear to be an odd choice, because if we replace κwith an indeterminate in the sum above,
we obtain a rational function that is (in general) not a polynomial, and so does not immediately fit
the sumcheck protocol. Nevertheless, we are still able to use the sumcheck protocol with it, as we
now explain.
Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) = vH(β2)vH(β1)v̂al(κ)
(β2 − ˆrow(κ))(β1 − ĉol(κ))

. (3.5)

The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| ,
vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))f3(X) = h3(X)vK(X) .

The first equation demonstrates that f3 sums to σ3 overK, and the second equation demonstrates
that f3 agrees with the correct addends over K. These two equations can be combined in a single
equation that involves only g3(X) and h3(X):

vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|) = h3(X)vK(X) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order to check this
polynomial identity,V samples a random element β3 ∈ F with the intention of checking the identity
at X := β3. ThenV queries g3, h3, ˆrow, ĉol, v̂al at β3, and then evaluates vH(β2)vH(β1)v̂al(β3)−
(β2 − ˆrow(β3))(β1 − ĉol(β3))(β3g3(β3) + σ3/|K|) = h3(β3)vK(β3) in O(log |K|) operations.
If this third test passes thenV can use the value σ3 in place of M̂(β2, β1) to finish the second

test. If this latter passes,V can in turn use the value σ2 in place of rM(α, β1) to finish the first test.
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3.5.2.3 Analysis

Soundness. We argue that the soundness error is at most

|H|+ 3|K|
|F|

+ d+ 3|H|
|F \H|

.

There are four ways in which the verifier could still accept if the lincheck statement is false: if the
randomized reduction to the first sumcheck produces a polynomial that sums to zero; or if any one
of the three sumchecks accepts despite the claimed sum being incorrect. The probability that the
randomized reduction to sumcheck fails is at most the individual degree in X of r(X, Y ) divided
by |F|, which is less than |H|/|F|. The probability that any one of the sumchecks fail to detect an
incorrectly declared sum is at most the maximum degree of the polynomial equation tested in the
respective sumcheck divided by the size from which the test element is sampled. The innermost
sumcheck has maximum degree less than 3|K|, the intermediate sumcheck has maximum degree
less than 2|H|, and the outermost sumcheck has maximum degree less than |H|+ d. These errors
add up to the soundness error claimed above.
Efficiency. The protocol consists of 6 messages, with the verifier moving first. The verifier makes
a constant number of queries, evaluates vH and vK at a constant number of locations, and then
performs a constant number of field operations. In particular, the arithmetic complexity of the
verifier is O(log |H|+ log |K|). The prover sends a constant number of polynomials with degrees
linearly related to d (the bound on the degrees of f1 and f2), |H|, and |K|. We now argue that prover
time is O((|H|+ d) log(|H|+ d) + |K| log |K|). In the first round, the prover sends the coefficients
of the polynomials g1(X) and h1(X), which can be found in time O(|K|+ (|H|+ d) log(|H|+ d)),
as we argue in Lemma 3.5.5. In the second round, the prover sends the field element σ2 and the
polynomials g2(X) and h2(X), which can be found in time O(|K|+ |H| log |H|), as we argue in
Lemma 3.5.6. In the third round, the prover sends the field element σ3 and the polynomials g3(X)
and h3(X), which can be found in time O(|K| log |K|), as we argue in Lemma 3.5.7.

Lemma 3.5.5 (first round). The coefficients of the polynomials g1(X) and h1(X) can be found in
O(|K|+ (|H|+ d) log(|H|+ d)) field operations, when given coefficients of the polynomials f1(X)
and f2(X), the subsets H and K, and the matrix M (in sparse form).

Proof. It suffices to find the coefficients of the polynomial q1(X) from Eq. (3.3), which has degree
at most |H|+ d− 2, because the polynomials g1(X) and h1(X) can be found via polynomial long
division of q1(X) by vH in time O((|H| + d) log |H|). In turn, q1(X) can be computed from the
coefficients of f1(X), f2(X), r(α,X), and rM(α,X) in time O((|H| + d) log(|H| + d)) via fast
polynomial multiplication and polynomial addition. The first two are given to us in coefficient form;
to find the coefficients of the latter two polynomials, we can evaluate each of them over H and then
interpolate.
The values of r(α,X) onH can be obtained inO(|H| log |H|) operations via direct computation

of formulas described in Section 3.5.1. The problem is now reduced to finding the values of
rM(α,X) on H — this is the “hard part” that motivates the present proof.
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Observe that, by definition of rM (see Eq. (3.3)) and M̂ (see Eq. (3.1)), the following holds:

rM(α,X) =
∑

κ1∈H

r(α, κ1)
∑

κ2∈K

uH(κ1, ˆrow(κ2))uH(X, ĉol(κ2))v̂al(κ2)

=
∑

κ2∈K

uH(X, ĉol(κ2))v̂al(κ2)
∑

κ1∈H

r(α, κ1)uH(κ1, ˆrow(κ2))

=
∑

κ2∈K

uH(X, ĉol(κ2))v̂al(κ2)r(α, ˆrow(κ2))uH( ˆrow(κ2), ˆrow(κ2)) .

The last equality uses the fact that, for every κ2 ∈ K, the summation∑
κ1∈H

r(α, κ1)uH(κ1, ˆrow(κ2))

collapses to a single term corresponding to κ1 = ˆrow(κ2); the other terms, which correspond to
κ1 ̸= ˆrow(κ2), are zero due to the fact that the polynomial uH vanishes on the squareH ×H except
for on its diagonal.
Next, again using the fact that uH vanishes on the square H ×H except for on its diagonal, we

note that for every κ1 ∈ H

rM(α, κ1) =
∑

κ2∈K s.t. ĉol(κ2)=κ1

uH(κ1, ĉol(κ2))v̂al(κ2) · r(α, ˆrow(κ2))uH( ˆrow(κ2), ˆrow(κ2)) .

In other words, as κ1 ranges over H , each element of the sum in rM(α, κ1) contributes a nonzero
value precisely when κ1 equals a particular element of H , namely, when κ1 = ĉol(κ2). Also, since
κ2 ranges only in K, ˆrow(κ2) = row(κ2), ĉol(κ2) = col(κ2), and v̂al(κ2) = val(κ2) are just the row
index, column index, and value of the κ2-th entry ofM (or zero).
This immediately leads to the following strategy to finding the values of rM(α,X) onH . Initialize

for each κ1 ∈ H a variable for rM(α, κ1) that is initially set to 0. Then, for each κ2 ∈ K, compute
the term uH(col(κ2), col(κ2))val(κ2)r(α, row(κ2))uH(row(κ2), row(κ2)) and add it to the variable
for rM(α, col(κ2)). Since the values (uH(κ1, κ1))κ1∈H and (r(α, κ1))κ1∈H can be precomputed
in O(|H| log |H|) operations, the foregoing strategy can be carried out in O(|K| + |H| log |H|)
operations.

Lemma 3.5.6 (second round). The field element σ2 and the coefficients of the polynomials g2(X)
and h2(X) can be found in O(|K|+ |H| log |H|) field operations, when given the subsets H and K
and the matrix M (in sparse form).

Proof. It suffices to find the coefficients of the polynomial q2(X) from Eq. (3.4), which has degree
at most 2|H| − 2, because the polynomials g2(X) and h2(X) can be found via polynomial long
division of q2(X) by vH in time O(|H| log |H|), and the sum σ2 can be found by evaluating q2(X)
over H in time O(|H| log |H|) and summing in time O(|H|). In turn, q2(X) can be computed
from the coefficients of r(α,X) and of M̂(X, β1) in time O(|H| log |H|) using fast polynomial
multiplication. To find the coefficients of these two polynomials, we can evaluate each of them over
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H and then interpolate. The values of r(α,X) on H can be obtained in O(|H| log |H|) operations.
We now need to find the values of M̂(X, β1) on H .
Recall that

M̂(X, β1) =
∑
κ∈K

uH(X, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

Using the fact that uH vanishes on the square H ×H except for the diagonal, we note that for
every κ1 ∈ H

M̂(κ1, β1) =
∑

κ2∈K s.t. ˆrow(κ2)=κ1

uH(κ1, ˆrow(κ2))uH(β1, ĉol(κ2))v̂al(κ2) .

Thus, to find the values of of M̂(X, β1) on H , we initialize for each κ1 ∈ H a vari-
able for M̂(κ1, β1) that is initially set to 0. Then, for each κ2 ∈ K, we compute the term
uH( ˆrow(κ2), ˆrow(κ2))uH(β1, ĉol(κ2))v̂al(κ2) and add it to the variable for M̂( ˆrow(κ2), β1). Since
the values (uH(κ, κ))κ∈H and (uH(β1, κ))κ∈H can be precomputed in O(|H| log |H|) operations,
the foregoing strategy can be carried out in O(|K|+ |H| log |H|) operations.

Lemma 3.5.7 (third round). The field element σ3 and the coefficients of the polynomials g3(X) and
h3(X) can be found in O(|K| log |K|) field operations, when given the subsets H and K and the
matrix M (in sparse form).

Proof. First, we find the coefficients of the polynomial f3(X) from Eq. (3.5), which has degree at
most |K|−1. We traverse the matrixM to find the values of ˆrow(κ) = row(κ), ĉol(κ) = col(κ), and
v̂al(κ) = val(κ), for every κ ∈ K. Then, for each κ ∈ K, we calculate f3(κ) = vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ)) ,
and interpolate those |K| values, in time O(|K| log |K|). Those values can also be summed, in
time O(|K|), to obtain σ3. Then g3(X) can be found easily, by subtracting σ3/|K| from f3(X) and
dividing by X .
Next, the prover interpolates the values from M to find the three polynomials ˆrow, ĉol, and

v̂al. Using fast polynomial multiplication, the prover calculates vH(β2)vH(β1)v̂al(X) − (β2 −
ˆrow(X))(β1 − ĉol(X))f3(X), and divides this polynomial by vK(X) to find h3(X). This too can
be done in time O(|K| log |K|).

3.5.3 AHP for R1CS
We prove Theorem 3.5.2. In Section 3.5.3.1 we describe the indexer algorithm, in Section 3.5.3.2 we
describe the prover and verifier algorithms, and in Section 3.5.3.3 we analyze the protocol. Fig. 3.5
summarizes the protocol.
The AHP for R1CS directly builds on the AHP for the lincheck problem, analogously to how

in [BCRSVW19] the non-holographic protocol for R1CS builds on the non-holographic lincheck
protocol. The three lincheck problems associated to the three matrices in the index are bundled
together via random coefficients, while the entry-wise product is checked with a polynomial identity.
Zero knowledge is achieved via bounded independence and random masks [BCGV16; BCRSVW19].
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Consistency with the instance is achieved by having the verifier combine a low-degree extension of
the instance and the low-degree extension of the (alleged) witness sent by the prover, in order to
create a low-degree extension of the full assignment.

3.5.3.1 Offline phase: encoding the constraint system

The indexer I for R1CS receives as input a field F, two subsets H andK of F, and three matrices
A,B,C ∈ FH×H with |K| ≥ max{∥A∥, ∥B∥, ∥C∥}. The non-zero entries of A,B,C are assumed
to be presented in some common canonical order. The output of I consists of the output of
the lincheck indexer separately invoked on A,B,C. This produces nine univariate polynomials
{ ˆrowM , ĉolM , v̂alM}M∈{A,B,C} over F of degree less than |K| that can be used to compute the
low-degree extensions of A,B,C.

3.5.3.2 Online phase: proving and verifying satisfiability

The prover P for R1CS receives as input a field F, two subsets H and K of F, three matrices
A,B,C ∈ FH×H with |K| ≥ max{∥A∥, ∥B∥, ∥C∥}, input x ∈ FH[≤|x|], and witness w ∈ FH[>|x|].
The verifier V for R1CS receives as input the field F, two subsets H and K of F, and input
x ∈ FH[≤|x|];V also has oracle access to the polynomials { ˆrowM , ĉolM , v̂alM}M∈{A,B,C} output by
the indexer I invoked on appropriate inputs.
The protocol begins with the prover sending randomized encodings for (a certain shift of) the

assignment and its linear combinations. Define x̂(X) to be the polynomial of degree less than |x|
that agrees with the instance x in H[≤ |x|]. Define the shifted witness w̄ : H[> |x|]→ F according
to the equation

∀ γ , w̄(γ) := w(γ)− x̂(γ)
vH[≤|x|](γ) .

The prover P sends to V a random ŵ(X) ∈ F<|w|+b[X] that agrees with w̄ on H[> |x|]; P also
sets z := (x,w) ∈ FH to be the full assignment, computes the three linear combinations zA := Az,
zB := Bz, and zC := Cz, and sends toV random ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b[X] that agree
with zA, zB, zC onH . Note that the values of up to b locations in each of ŵ(X), ẑA(X), ẑB(X), ẑC(X)
reveal no information about the witness w, provided the locations are in F \ H . Note also
that ẑ(X) := ŵ(X)vH[≤|x|](X) + x̂(X) agrees with z on H; moreover, V can evaluate ẑ(X)
at any location γ with O(|x|) operations by querying ŵ at γ and computing the expression
ŵ(γ)vH[≤|x|](γ) + x̂(γ) by using x.
The rest of the protocol is for P to convince V that zA ◦ zB = zC and also that zA, zB, zC are

obtained as linear combinations from z.
In the same message as above,P also sends toV the polynomial h0(X) such that ẑA(X)ẑB(X)−

ẑC(X) = h0(X)vH(X). In addition, P sends to V a (fully) random s(X) ∈ F<2|H|+b−1[X] and
its sum σ1 := ∑

κ∈H s(κ) over H . This random polynomial will be used as a “mask” to make the
univariate sumcheck zero knowledge.
Next, V samples random elements α, ηA, ηB, ηC ∈ F and sends them to P. The element α is

used to reduce lincheck problems to sumcheck, while the elements ηA, ηB, ηC are used to bundle the
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three sumcheck problems into one. Indeed, P is left to convince V that the following univariate
polynomial sums to σ1 on H:

q1(X) := s(X) + r(α,X)
 ∑

M∈{A,B,C}
ηM ẑM(X)

−
 ∑

M∈{A,B,C}
ηMrM(α,X)

 ẑ(X) (3.6)

where rM(X, Y ) := ∑
κ∈H r(X, κ)M̂(κ, Y ).

We now rely on the univariate sumcheck protocol: P sends to V the polynomials g1(X) and
h1(X) such that q1(X) = h1(X)vH(X) +Xg1(X). In order to check this polynomial identity,V
samples a random element β1 ∈ F\H with the intention of checking the identity atX := β1. For the
right-hand side,V queries g1 and h1 at β1 and then evaluates h1(β1)vH(β1)+β1g1(β1) inO(log |H|)
operations. For the left-hand side,V queries s, ẑA, ẑB, ẑC , ŵ at β1 and then needs to ask help from
P to evaluate q1(β1). The reason is that the term ηArA(α, β1) + ηBrB(α, β1) + ηCrC(α, β1) in
general requires Ω(|H||K|) operations to compute.
Observe that

ηArA(α, β1) + ηBrB(α, β1) + ηCrC(α, β1)
= ηA

∑
κ∈H

r(α, κ)Â(κ, β1) + ηB

∑
κ∈H

r(α, κ)B̂(κ, β1) + ηC

∑
κ∈H

r(α, κ)Ĉ(κ, β1)

=
∑
κ∈H

r(α, κ)(ηAÂ(κ, β1) + ηBB̂(κ, β1) + ηCĈ(κ, β1)) .

We define the polynomial

q2(X) := r(α,X)(ηAÂ(X, β1) + ηBB̂(X, β1) + ηCĈ(X, β1)) (3.7)

and rely on the univariate sumcheck protocol again: V sends β1 to P, and then P replies
with the sum σ2 := ∑

κ∈H q2(κ) and the polynomials g2(X) and h2(X) such that q2(X) =
h2(X)vH(X) +Xg2(X) + σ2/|H|. In order to check this polynomial identity,V samples a random
element β2 ∈ F \H with the intention of checking the identity atX := β2. (ExcludingH is needed
later in the protocol, as discussed below.) For the right-hand side,V queries g2 and h2 at β2, and then
evaluates h2(β2)vH(β2) + β2g2(β2) + σ2/|H| in O(log |H|) operations. To evaluate the left-hand
side, however,V needs to ask help from P. The reason is that while r(α, β2) is easy to evaluate (it
requires O(log |H|) operations), each term M̂(β2, β1) in general requires Ω(|K|) operations.
We thus rely on the univariate sumcheck protocol (yet) again: V sends β2 to P, and then P

replies with the value σ3 := ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1), which the verifier much
check. Observe that

ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1) =
∑
κ∈K

∑
M∈{A,B,C}

ηM

vH(β2)vH(β1)v̂alM(κ)
(β2 − ˆrowM(κ))(β1 − ĉolM(κ))

.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) =
∑

M∈{A,B,C}
ηM

vH(β2)vH(β1)v̂alM(κ)
(β2 − ˆrowM(κ))(β1 − ĉolM(κ))

. (3.8)
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The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| and a(X)− b(X)f3(X) = h3(X)vK(X)

where

a(X) :=
∑

M∈{A,B,C}
ηMvH(β2)vH(β1)v̂alM(X)

∏
N∈{A,B,C}\{M}

(β2 − ˆrowN(X))(β1 − ĉolN(X)) ,

b(X) :=
∏

M∈{A,B,C}
(β2 − ˆrowM(X))(β1 − ĉolM(X)) .

The first equation demonstrates that f3 sums to σ3 overK, and the second equation demonstrates
that f3 agrees with the correct addends over K. These two equations can be combined in a single
equation that involves only g3(X) and h3(X):

a(X)− b(X)(Xg3(X) + σ3/|K|) = h3(X)vK(X) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order to check this polynomial
identity,V samples a random element β3 ∈ F with the intention of checking the identity atX := β3.
ThenV queries g3, h3, { ˆrowM , ĉolM , v̂alM}M∈{A,B,C} at β3, and checks the identity in O(log |H|)
operations.
If this third test passes then V can use the value σ3 in place of

∑
M∈{A,B,C} ηMM̂(β2, β1)

to finish the second test. If this latter passes, V can in turn use the value σ2 in place of∑
M∈{A,B,C} ηMrM(α, β1) to finish the first test.

3.5.3.3 Analysis

Soundness. We argue that the soundness error is at most

max
{

2|H|+ 2b
|F|

,
3|K|+ |H|+ 1

|F|
+ 4|H|+ b
|F \H|

}
.

Suppose that for the given index i = (F, H,K,A,B,C) and instance x = x there is no witness
w = w such that Az ◦Bz = Cz for z := (x,w) is a vector in FH . In particular, this holds for the
witness w that is encoded in the polynomial ŵ(X) sent by the prover. Let zA, zB, zC be the vectors
encoded in the polynomials ẑA(X), ẑB(X), ẑC(X) sent by the prover, respectively. We know that
either zA ◦ zB ̸= zC or one of zA, zB, zC is not the correct linear combination of z. In the first case,
the polynomial identity ẑAẑB − ẑC = h0vH does not hold, so the probability that the verifier still
accepts is at most (2|H| + 2b)/|F|. In the second case, we rely on the randomized reduction to
sumcheck, which fails with probability at most (|H| + 1)/|F|. Next we have to account for the
soundness errors of the three sequential sumchecks, which are bounded by the maximum degree in
the respective polynomial equation divided by the size of the set from which the test point is chosen.
Thus, the innermost sumcheck has soundness error at most 3|K|/|F|; the intermediate sumcheck
has soundness error at most 2|H|/(|F \H|); the outermost sumcheck has soundness error at most
(2|H|+ b)/(|F \H|).
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Proof of knowledge. If the verifier accepts with probability greater than the soundness error argued
above, then the prover’s polynomial ŵ must encode a valid witness w.
Zero knowledge. We only sketch the intuition because a full proof (which includes constructing a
simulator) is similar to the non-holographic setting described in [BCRSVW19]. The first message
of the prover includes an encoding of the witness and encodings of its linear combinations. These
encodings are protected against up to b queries outside of H because the encodings are b-wise
independent over F \H . The first message also includes the polynomial h0(X), which in fact is
b-wise independent everywhere on F. Subsequent messages from the prover do not reveal any
further information because they are produced for a sumcheck instance that is shifted by a random
polynomial (the polynomial s(X)). This leads to (perfect) zero knowledge with query bound b and
a query checker C that rejects any query to any of ŵ(X), ẑA(X), ẑB(X), ẑC(X) that lies in H .
Efficiency. The indexer computes and outputs a constant number of polynomials of degree less than
|K|, using time O(|K| log |K|). The subsequent protocol between the prover and verifier consists
of 7 messages, with the prover moving first. The verifier makes a constant number of queries,
evaluates x̂, vH , vK at a constant number of locations, and then performs a constant number of
field operations. Thus, verifier time is O(|x| + log |H| + log |K|). The prover sends a constant
number of polynomials whose degree is linearly related to |H|+ b or |K|. In the first round, the
prover computes the linear combinations Az,Bz, Cz and interpolates them, which can be done in
time O(|K|+ (|H|+ b) log(|H|+ b)); in the second round, the prover finds the coefficients of the
polynomials g1(X) and h1(X) in time O(|K|+ (|H|+ b) log(|H|+ b)), similarly to the proof of
Lemma 3.5.5; in the third round, the prover finds the sum σ2 and the coefficients of g2(X) and h2(X)
in time O(|K| + |H| log |H|), similarly to the proof of Lemma 3.5.6; and in the final round, the
prover finds the sum σ3 and the coefficients of g3(X) and h3(X) in time O(|K| log |K|), similarly
to the proof of Lemma 3.5.7. Thus, prover time is O((|H|+ b) log(|H|+ b) + |K| log |K|), which
is O((|K|+ b) log(|K|+ b)) since |H| = O(|K|) (see Remark 3.5.3).
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P(F, H,K,M, f1, f2) Vf1,f2, ˆrow,ĉol,v̂al(F, H,K)

α← Fα ∈ F

sumcheck for r(α,X)f1(X)− rM(α,X)f2(X) over H
to evaluate

∑
κ∈H

r(α, κ)f1(κ)− rM(α, κ)f2(κ)
find g1(X) and h1(X) such that
r(α,X)f1(X)− rM(α,X)f2(X)
= h1(X)vH(X) +Xg1(X)

g1 ∈ F<|H|−1[X], h1 ∈ F<d−1[X]
β1 ← F \Hβ1 ∈ F

sumcheck for r(α,X)M̂(X, β1) over H
to evaluate rM(α, β1) = ∑

κ∈H
r(α, κ)M̂(κ, β1)

compute sum σ2 := ∑
κ∈H r(α, κ)M̂(κ, β1)

and find g2(X) and h2(X) such that
r(α,X)M̂(X, β1)
= h2(X)vH(X) +Xg2(X) + σ2/|H|

σ2 ∈ F, g2, h2 ∈ F<|H|−1[X]
β2 ← F \Hβ2 ∈ F

sumcheck for vH(β2)vH(β1)v̂al(X)
(β2− ˆrow(X))(β1−ĉol(X)) over K

to evaluate M̂(β2, β1) = ∑
κ∈K

vH(β2)vH(β1)v̂al(κ)
(β2− ˆrow(κ))(β1−ĉol(κ))

compute sum σ3 := ∑
κ∈K

vH(β2)vH(β1)v̂al(κ)
(β2− ˆrow(κ))(β1−ĉol(κ))

and find g3(X) and h3(X) such that
vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|)
= h3(X)vK(X)

σ3 ∈ F, g3 ∈ F<|K|−1[X], h3 ∈ F<2|K|−2[X]

β3 ← F
vH(β2)vH(β1)v̂al(β3)− (β2 − ˆrow(β3))(β1 − ĉol(β3))(β3g3(β3) + σ3/|K|)

?= h3(β3)vK(β3)

r(α, β2)σ3
?= h2(β2)vH(β2) + β2g2(β2) + σ2/|H|

r(α, β1)f1(β1)− σ2f2(β1)
?= h1(β1)vH(β1) + β1g1(β1)

Figure 3.4: AHP for the lincheck problem.
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P(F, H,K,A,B,C, x, w) V ˆrow{A,B,C},ĉol{A,B,C},v̂al{A,B,C}(F, H,K, x)

z := (x,w) zA := Az zB := Bz zC := Cz
sample ŵ(X) ∈ F<|w|+b[X] and ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b[X]
find h0(X) s.t. ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X)
sample s(X) ∈ F<2|H|+b−1[X] and compute sum σ1 := ∑

κ∈H s(κ)
σ1 ∈ F,ŵ ∈ F<|w|+b[X], ẑA, ẑB, ẑC ∈ F<|H|+b[X],

h0 ∈ F<|H|+2b−1[X], s ∈ F<2|H|+b−1[X] α, ηA, ηB, ηC ← F
α, ηA, ηB, ηC ∈ F

sumcheck for s(X) + r(α,X)(∑
M ηM ẑM(X))− (∑

M ηMrM(α,X))ẑ(X) over H
find g1(X) and h1(X) such that
s(X) + r(α,X)(∑

M ηM ẑM(X))− (∑
M ηMrM(α,X))ẑ(X)

= h1(X)vH(X) +Xg1(X) + σ1/|H|
g1 ∈ F<|H|−1[X], h1 ∈ F<|H|+b−1[X]

β1 ← F \H
β1 ∈ F

sumcheck for r(α,X)(ηAÂ(X, β1) + ηBB̂(X, β1) + ηCĈ(X, β1)) over H
σ2 := ∑

κ∈H r(α, κ) ∑
M∈{A,B,C} ηMM̂(κ, β1)

and find g2(X) and h2(X) such that
r(α,X) ∑

M∈{A,B,C} ηMM̂(X, β1)
= h2(X)vH(X) +Xg2(X) + σ2/|H|

σ2 ∈ F, g2, h2 ∈ F<|H|−1[X] β2 ← F \H
β2 ∈ F

sumcheck for ∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (X)

(β2− ˆrowM (X))(β1−ĉolM (X)) over K

to evaluate ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1)

σ3 := ∑
κ∈K

∑
M∈{A,B,C} ηM

vH(β2)vH(β1)v̂alM (κ)
(β2− ˆrowM (κ))(β1−ĉolM (κ))

and find g3(X) and h3(X) such that
h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)

σ3 ∈ F, g3 ∈ F<|K|−1[X], h3 ∈ F<6|K|−6[X] β3 ← F
h3(β3)vK(β3)

?= a(β3)− b(β3)(β3g3(β3) + σ3/|K|)
The polynomials a(X), b(X) are defined as follows:
a(X) :=

∑
M∈{A,B,C} ηM vH(β2)vH(β1)v̂alM (X)

∏
N∈{A,B,C}\{M}(β2 − ˆrowN (X))(β1 − ĉolN (X))

b(X) :=
∏

M∈{A,B,C}(β2 − ˆrowM (X))(β1 − ĉolM (X))

r(α, β2)σ3
?= h2(β2)vH(β2) + β2g2(β2) + σ2/|H|

s(β1) + r(α, β1)(
∑

M ηM ẑM(β1))− σ2ẑ(β1)
?= h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

ẑA(β1)ẑB(β1)− ẑC(β1)
?= h0(β1)vH(β1)

Figure 3.5: AHP for R1CS.
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3.6 Polynomial commitment schemes with extractability
We use polynomial commitment schemes, a class of commitment schemes specialized to work with
univariate polynomials. This notion was introduced by Kate, Zaverucha, and Goldberg [KZG10],
who gave an elegant construction using bilinear groups. The security properties in [KZG10],
however, do not appear sufficient for standalone use (nor for use in this paper). This limitation was
recently noted in [MBKM19], which relies on a different construction for which certain properties
are proved in the algebraic group model [FKL18]. However, [MBKM19] stops short of formulating
a cryptographic primitive that captures the features of the construction.
In this section we propose definitions for polynomial commitment schemes that incorporate the

functionality and security that we believe to be a bare minimum for standalone use. (In particular, in
Section 3.8 we generically rely on these definitions to build preprocessing arguments with universal
SRS.) We also describe a “knowledge” variant of the construction in [KZG10], which we prove
secure under knowledge of exponent assumptions. To learn more about the insights motivating our
definitions, we refer the reader back to Section 3.2.2.
The rest of this section is organized as follows. In Section 3.6.1 we present the definitions that

we propose. In Section 3.6.2 we provide a theorem statement for constructions that realize the
definitions, and then sketch these constructions. We formal descriptions of the constructions are in
the full version[CHMMVW20].

3.6.1 Definition
A polynomial commitment scheme over a field family F is a tuple of algorithms PC = (Setup,
Trim,Commit,Open,Check) with the following syntax.

• PC.Setup(1λ, D) → pp. On input a security parameter λ (in unary), and a maximum
degree bound D ∈ N, PC.Setup samples public parameters pp. The parameters contain the
description of a finite field F ∈ F .

• PC.Trimpp(1λ,d) → (ck, rk). Given oracle access to public parameters pp, and on input a
security parameter λ (in unary), and degree bounds d, PC.Trim deterministically computes a
key pair (ck, rk) that is specialized to d.

• PC.Commit(ck,p,d; ω)→ c. On input ck, univariate polynomials p = [pi]ni=1 over the field
F, and degree bounds d = [di]ni=1 with deg(pi) ≤ di ≤ D, PC.Commit outputs commitments
c = [ci]ni=1 to the polynomials p = [pi]ni=1. The randomness ω = [ωi]ni=1 is used if the
commitments c = [ci]ni=1 are hiding.

• PC.Open(ck,p,d, Q, ξ; ω) → π. On input ck, univariate polynomials p = [pi]ni=1, degree
bounds d = [di]ni=1, a query set Q consisting of tuples (i, z) ∈ [n]× F, and opening challenge
ξ, PC.Open outputs an evaluation proof π. The randomness ω must equal the one previously
used in PC.Commit.
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• PC.Check(rk, c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c = [ci]ni=1, degree
bounds d = [di]ni=1, query set Q consisting of tuples (i, z) ∈ [n] × F, alleged evaluations
v = (v(i,z))(i,z)∈Q, evaluation proof π, and opening challenge ξ, PC.Check outputs 1 if π
attests that, for every (i, z) ∈ Q, the polynomial pi committed in ci has degree at most di and
evaluates to v(i,z) at z.

A polynomial commitment scheme PC must satisfy the completeness and extractability properties
defined below. We also consider two additional properties, efficiency and hiding, also defined below.
To simplify notation, we denote by deg(p) the degrees [deg(pi)]ni=1 of polynomials p = [pi]ni=1,
and denote by p(Q) the evaluations (pi(z))(i,z)∈Q of the polynomials p = [pi]ni=1 at a query set
Q ⊆ [n]× F.

Definition 3.6.1 (Completeness). For every maximum degree bound D ∈ N and efficient adversary
A,

Pr


deg(p) ≤ d ≤ D

⇓
PC.Check(rk, c,d, Q,v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
(p,d, Q, ξ,ω)← A(pp)

(ck, rk)← PC.Trimpp(1λ,d)
c← PC.Commit(ck,p,d; ω)

v ← p(Q)
π ← PC.Open(ck,p,d, Q, ξ; ω)


= 1 .

Definition 3.6.2 (Extractability). For every maximum degree boundD ∈ N and efficient adversary
A there exists an efficient extractor E such that for every round bound r ∈ N, efficient public-coin
challenger C (each of its messages is a uniformly random string of prescribed length, or an empty
string), efficient query sampler Q, and efficient adversary B = (B1,B2) the probability below is
negligibly close to 1 (as a function of λ):

Pr



PC.Check(rk, c, d, Q, v, π, ξ) = 1

⇓

deg(p) ≤ d ≤ D and v = p(Q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)

For i = 1, . . . , r:
ρi ← C(pp, i)

(ci, di)← A(pp, [ρj ]ij=1)
pi ← E(pp, [ρj ]ij=1)

Q← Q(pp, [ρj ]rj=1)
(v, st)← B1(pp, [ρj ]rj=1, Q)
Sample opening challenge ξ

π ← B2(st, ξ)
Set [ci]

n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, [di]

n
i=1 := [di]

r
i=1

(ck, rk)← PC.Trimpp(1λ, [di]
n
i=1)

Define the set of queried polynomials T := {i ∈ [n] | (i, z) ∈ Q}
Set c := [ci]i∈T , p := [pi]i∈T , d := [di]i∈T



.

(The above definition captures the case where A,Q,B share the same random string to win the
game.)
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Definition 3.6.3 (Efficiency). We say that a polynomial commitment scheme PC is:
• degree-efficient if the time to run PC.Commit and PC.Open is proportional to the maximum

degree max(d) (as opposed to the maximum supported degree D). In particular this implies
that |ck| = Oλ(max(d)).

• succinct if the size of commitments, the size of evaluation proofs, and the time to check
an opening are all independent of the degree of the committed polynomials. That is,
|c| = n ·poly(λ), |π| = |Q| · poly(λ), |rk| = Oλ(n), and time(Check) = (n+ |Q|) ·poly(λ).

Definition 3.6.4 (Hiding). There exists a polynomial-time simulator S = (Setup,Commit,Open)
such that, for every maximum degree bound D ∈ N, and efficient adversary A = (A1,A2,A3), the
probability that b = 1 in the following two experiments is identical:

Real(1λ, D,A):
1. pp← PC.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

a) (pi, di, hi)← A1(pp, c0, c1, . . . , ci−1).
b) (cki, rki)← PC.Trimpp(1λ, di).
c) If hi = 0: sample commitment randomness

ωi.
d) If hi = 1: set randomness ωi to ⊥.
e) ci ← PC.Commit(cki, pi, di; ωi).

3. c := [ci]
r
i=1, p := [pi]

r
i=1, d := [di]

r
i=1, ω :=

[ωi]
r
i=1.

4. (ck, rk)← PC.Trimpp(1λ, d).
5. ([Qj ]τj=1, [ξj ]τj=1, st)← A2(pp, c).
6. For j ∈ [τ ]:

πj ← PC.Open(ck, p, d, Qj , ξj ; ω).
7. b← A3(st, [π]τj=1).

Ideal(1λ, D,A):
1. (pp, trap)← S.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

a) (pi, di, hi)← A1(pp, c0, c1, . . . , ci−1).
b) (cki, rki)← PC.Trimpp(1λ, di).
c) If hi = 0: sample randomness ωi

and compute simulated commitments
ci ← S.Commit(trap, di; ωi).

d) If hi = 1: set ωi := ⊥ and
compute (real) commitments ci ←
PC.Commit(cki, pi, di; ωi).

3. c := [ci]
r
i=1, p := [pi]

r
i=1, d := [di]

r
i=1, ω := [ωi]

r
i=1.

4. (ck, rk)← PC.Trimpp(1λ, d).
5. ([Qj ]τj=1, [ξj ]τj=1, st)← A2(pp, c).
6. Zero out hidden polynomials: p′ :=

[hipi]
r
i=1.

7. For j ∈ [τ ]:
πj ←

S.Open(trap, p′, p(Qj), d, Qj , ξj ; ω).
8. b← A3(st, [π]τj=1).

(We implicitly assume thatA1 outputs poly(λ) polynomials overall and thatA2 outputs poly(λ) query
sets each consisting of poly(λ) points, ensuring that PCs.Commit,PCs.Open,S.Commit,S.Open
are efficient.)

3.6.2 Construction
The theorem below states the properties of our constructions. For simplicity, our construction are
restricted to work with respect to “admissible” query samplers.

Definition 3.6.5. A query samplerQ is admissible if it outputs query sets such that each polynomial
to be evaluated is evaluated at a point sampled uniformly at random from a super-polynomially
large subset of the field, and possibly also at other points that can be arbitrarily chosen.
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Theorem 3.6.6. There exist succinct polynomial commitment schemes that: (a) achieve extractability
against admissible query samplers under knowledge assumptions, or in the algebraic group model;
(b) achieve hiding; and (c) have an updatable SRS. See Table 3.2 for the efficiency of these schemes
under these assumptions.

We note that the restriction to admissible query samplers is minor because one can transform an
arbitrary query samplerQ into an admissible query samplerQ′ as follows: Q′ invokesQ to obtain a
query set Q, and then outputs Q′ := Q ∪ {(i, t)}i∈[n], where t ∈ F is a random field element and
n is the number of polynomials. This transformation yields evaluation proofs that are twice as a
large, a minor cost. That said, this transformation is often not even needed because “natural” query
samplers are often already admissible, as is the case for those that we consider in this paper.

assumption hiding communication complexity time complexity

|ck| |rk| |[ci]ni=1| |π| Setup Commit Open Check

PKE no 2d G1 2 G2 4n G1 1 G1 2 f-MSM(D) 4n v-MSM(d) 1 v-MSM(d)
2
v-MSM(2n)
+ 4 pairings

dPKE yes 4d G1 2 G2 4n G1
1G1 +
1 Fq

4 f-MSM(D) 8n v-MSM(d) 2 v-MSM(d)
2
v-MSM(2n)
+ 4 pairings

AGM no d G1 1 G2 2n G1 1 G1 1 f-MSM(D) 2n v-MSM(d) 1 v-MSM(d)
1
v-MSM(2n)
+ 2 pairings

AGM yes 2d G1 1 G2 2n G1
1G1 +
1 Fq

2 f-MSM(D) 4n v-MSM(d) 2 v-MSM(d)
1
v-MSM(2n)
+ 2 pairings

Table 3.2: Efficiency of our polynomial commitment schemes. Here f-MSM(m) and v-MSM(m)
denote fixed-base and variable-base multi-scalar multiplications (MSM) each of sizem, respectively.
All MSMs are carried out over G1. For simplicity we assume above that the query set evaluates each
polynomial at the same point. If there are multiple points in the set, then proof size and time for checking
proofs scales linearly with the number of points. Furthermore, we assume above that the n committed
polynomials all have degree d.

single-bound single-query
polynomial commitment

(the full version[CHMMVW20])

multiple-bound single-query
polynomial commitment

(the full version[CHMMVW20])

multiple-bound multiple-query
polynomial commitment

(the full version[CHMMVW20])

Figure 3.6: Our approach to construct polynomial commitment schemes.

The constructions behind Theorem 3.6.6 are achieved in three steps, as summarized in Fig. 3.6.
The rest of this section is organized in three parts sketching these three steps respectively: (1) opening
multiple polynomials with the same degree bound at a single point; (2) opening multiple polynomials
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with multiple degree bounds at a single point; (3) opening multiple polynomials with multiple
degree bounds at multiple points. Detailed descriptions, along with security proofs, are provided in
the corresponding appendices.

3.6.2.1 Single-bound single-query (see the full version[CHMMVW20] for details)

We begin by discussing the case of opening multiple polynomials with the same degree bound at a
single point. We describe a non-hiding construction based on PolyCommitDL from [KZG10] (see
Section 3.2.5) and a hiding construction based on PolyCommitPed from [KZG10], using “knowledge
commitments” [Gro10] or the algebraic group model [FKL18] to achieve extractability for a single
degree bound D chosen at setup.
Extractability with knowledge commitments. While PolyCommitDL guarantees correctness of
evaluations, it does not ensure extractability: there is no guarantee that a commitment actually
“contains” a polynomial. To achieve extraction, we modify the construction in such a way that the
PKE assumption [Gro10] forces the sender to demonstrate knowledge of the committed polynomial.
In more detail, we extend ck to encode of powers of β with respect to a different generator αG:
ck := {(G, βG, . . . , βDG), (G,αβG, . . . , αβDG)} ∈ G2(D+1)

1 . (Note that this modification does
not affect the updatability of the SRS.) To commit to a polynomial p of degree at mostD, the sender
now provides a “knowledge commitment”: c := (U, V ) := (p(β)G,αp(β)G). Proving correctness
of evaluations proceeds unchanged, while verification additionally requires checking extractability
of the commitment by checking the pairing equation e(U, αH) = e(V,H).
Extractability in the AGM. Knowledge commitments require, unfortunately, two group elements
instead of one. Alternatively, we could keep each commitment as one group element, by relying
on the algebraic group model (AGM) [FKL18]. Informally, whenever an adversary in the AGM
outputs a group element Gn, it is required to additionally output scalar coefficients a1, . . . , an−1
which “explain” Gn as a linear combination of any group elements G1, . . . , Gn−1 that it has seen
previously. In our setting, this means that whenever the adversarial sender outputs a group element
c representing a commitment, it must additionally output scalar coefficients that explain c in terms
of the group elements in ck. An extractor can use these coefficients to reconstruct the underlying
polynomial, thus achieving extractability.
Efficiently opening multiple polynomials at the same point. To enable the sender to simultaneously
commit to multiple polynomials [pi]ni=1 of degree at most D and then open these at the same point
z, we rely on the fact that the commitments for both variants above are additively homomorphic.
That is, if commitments [ci]ni=1 commit to [pi]ni=1, then

∑n
i=1 ci commits to

∑n
i=1 pi (where c1 + c2 is

defined as (U1 + U2, V1 + V2)).
We take advantage of this by simultaneously verifying the evaluations of each polynomial

pi ∈ [pi]ni=1 as follows. Before generating a proof of evaluation for [pi]ni=1, the sender requests from
the receiver a random field element ξ. The sender then uses this to take a random linear combination
of the polynomials: p := ∑n

i=1 ξ
ipi, and generates a single evaluation proof π for this derived

polynomial p.
To verify π, the receiver uses the additive homomorphism of the input commitments to derive

the linear combination c = ∑n
i=1 ξ

ici induced by ξ. It does the same with the claimed evaluations,
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thus deriving the evaluation v = ∑n
i=1 ξ

ivi. Finally, it checks that the pairing equations are satisfied
for c, π, and v.
This works because if the sender is honest, then c is a commitment to p := ∑n

i=1 ξ
ipi, and π is a

proof of evaluation of p at z. On the other hand, if the sender is dishonest, then with high probability
over the choice of ξ, c is not a commitment to p, and the pairing equations would fail.
Hiding. To additionally achieve hiding, we follow the above blueprint, replacing PolyCommitDL
with the hiding scheme PolyCommitPed. Extraction now follows from an assumption related to
PKE called dPKE (see the full version[CHMMVW20] for details). Our constructions in the full
version[CHMMVW20] in fact use both variants to provide optional hiding on a per-polynomial
basis. Further, the near-identical form of the commitment variants makes it possible to open a
combination of hiding and non-hiding polynomials at the same point.

3.6.2.2 Multiple-bound single-query (see the full version[CHMMVW20] for details)

Thus far, we have focused on commitment schemes for polynomials of degree D where the cost
of committing and providing evaluation proofs grows as Ω(D). However, when working with
polynomials of degree d < D, we would like to pay a cost that instead grows as O(d). Furthermore,
the foregoing schemes only guarantee that committed polynomials have degree at most D, whereas
in many cases it is desirable to enforce more specific degree bounds. Below we show how to adapt
the foregoing construction to achieve these desirable properties.
To achieve extractability with respect to a different degree bound di for each polynomial pi,

we require the sender to commit not only to each pi, but also to “shifted polynomials” p′
i(X) :=

XD−dipi(X). During PC.Open, one could then produce an evaluation proofs that attests that if pi

evaluates to vi at z then p′
i evaluates to zD−divi at z.

The receiver checks that the commitment for each p′
i corresponds to an evaluation zD−divi so

that, if z is sampled from a super-polynomial subset of Fq, the probability that deg(pi) ̸= di is
negligible. This trick is similar to the one used in [BS08; BCRSVW19] to enforce derive low-degree
tests for specific degree bounds.
However, while sound, this approach is inefficient in our setting: the witness polynomial for p′

i

has Ω(D) non-zero coefficients (instead of O(di)), and so constructing an evaluation proof for it
requires Ω(D) scalar multiplications (instead of O(di)). To work around this, we instead produce
a proof that the related polynomial p⋆

i (X) := p′
i(X) − pi(z)XD−di evaluates to 0 at z. As we

show in the full version[CHMMVW20], the witness polynomial for this claim has O(di) non-zero
coefficients, and so constructing the evaluation proof can be done in O(di) scalar multiplications.
Completeness is preserved because the receiver can check the correct evaluation of p⋆

i by subtracting
pi(z)(βD−diG) from the commitment to the shifted polynomial p′

i, thereby obtaining a commitment
to p⋆

i , while security is preserved because p′
i(z) = zD−divi ⇐⇒ p⋆

i (z) = 0.
Note that to commit to the shifted polynomial p′

i, the committer must obtain {βD−diG, . . . , βDG}
from ck, while to adjust the shifted commitment, the receiver must obtain βD−diG from rk. Thus
PC.Trim must produce (ck, rk) containing these group elements.
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3.6.2.3 Multiple-bound multiple-query (see the full version[CHMMVW20] for details)

Assume that we have any construction that achieves extractability with respect to individual degree
bounds, and evaluation of multiple polynomials p = [pi]ni=1 at the same point z.
We extend this construction to support query sets Q consisting of multiple evaluation points

(as required in Section 3.6.1). If there are k distinct points [zi]ki=1 in the query set Q, the sender
partitions the polynomials p into different (possibly overlapping) groups [pi]ki=1 such that every
polynomial in pi is to be evaluated at the same point zi. It then runs PC.Open on each pi, and
outputs the resulting list of k evaluation proofs.
We note that [KZG10] describe how one can enable the sender to produce a single evaluation

proof attesting to the correct evaluation of the same polynomial at multiple points. While we could
use this to enable batch evaluation of p at multiple points, we avoid doing so for efficiency reasons
in our setting.
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3.7 Preprocessing arguments with universal SRS
An argument system [BCC88] is an interactive proof where the soundness property is only required
to hold against all efficient adversaries, as opposed to all (possibly computationally unbounded)
adversaries. In this paper we consider argument systems for indexed relations (see Section 3.3.1)
that have the following features.

• Security is proved, under cryptographic assumptions, in a model where all parties have access
to a “long” structured reference string (SRS) that is universal. (In fact, the SRS in our
constructions will also be updatable [GKMMM18] but for simplicity we do not formally
discuss this property; see Remark 3.7.1.)

• Anyone can publicly preprocess a given index (e.g., a circuit) in an offline phase, in order to
avoid incurring costs related to the index in (any number of) subsequent online phases that
check different instances.

We refer to argument systems with the above properties as preprocessing arguments with universal
SRS. All interactive constructions in this paper are public-coin zero-knowledge succinct arguments
of knowledge so that, via the Fiat–Shamir transformation [FS86], we obtain their non-interactive
analogues: preprocessing zkSNARKs with universal SRS. See Section 3.9 for an efficient
construction of such a zkSNARK.
A preprocessing argument with universal SRS is a tuple of four algorithms ARG = (G, I,P ,V).

The probabilistic polynomial-time generator G, given a size bound N ∈ N, samples an SRS srs that
supports indices of size up to N. The indexer I is a deterministic polynomial-time algorithm that,
given oracle access to srs and an index i of size at most N, outputs an index proving key ipk used by
the prover P in place of i and an index verification key ivk used by the verifier V in place of i; the
verifier V will be able to use ivk for significant efficiency gains compared to just using i directly.
The prover P and verifier V are probabilistic polynomial-time interactive algorithms.
Formally, ARG = (G, I,P ,V) is a preprocessing argument with universal SRS for an indexed

relationR if the following properties hold.

• Completeness. For all size bounds N ∈ N and efficient A,

Pr

 (i,x,w) ̸∈ RN
∨

⟨P(ipk,x,w),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x,w)← A(srs)
(ipk, ivk)← Isrs(i)

 = 1 .

• Soundness. For all size bounds N ∈ N and efficient P̃ = (P̃1, P̃2),

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

 = negl(λ) .
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Our definition of completeness allows (i,x,w) to depend on srs, while our formulation of soundness
allows (i,x) to depend on srs.
All constructions in this paper achieve the stronger property of knowledge soundness, and

optionally also the property of (perfect) zero knowledge. We define these properties below.
Knowledge soundness. We say that ARG = (G, I,P ,V) has knowledge soundness if for every size
bound N ∈ N and efficient adversary P̃ = (P̃1, P̃2) there exists an efficient extractor E such that

Pr


(i,x,w) ̸∈ RN

∧
⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
w← E(srs)

(ipk, ivk)← Isrs(i)

 = negl(λ) .

Zero knowledge. We say that ARG = (G, I,P ,V) has (perfect) zero knowledge if there exists an
efficient simulator S = (Setup,Prove) such that for every efficient adversary Ṽ = (Ṽ1, Ṽ2) it holds
that

Pr

 (i,x,w) ∈ RN
∧

⟨P(ipk,x,w), Ṽ2(st)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x,w, st)← Ṽ1(srs)
(ipk, ivk)← Isrs(i)



= Pr

 (i,x,w) ∈ RN
∧

⟨S.Prove(trap, i,x), Ṽ2(st)⟩ = 1

∣∣∣∣∣∣∣
(srs, trap)← S.Setup(1λ,N)

(i,x,w, st)← Ṽ1(srs)

 .

Efficiency. We say that ARG = (G, I,P ,V) is:
• index efficient if the running time of the prover P(ipk,x,w) is polyλ(|i|), i.e., it does not
depend on the size of the universal structured reference string srs;

• proof succinct if the size of the communication transcript between the prover P(ipk,x,w)
and verifier V(ivk,x) is poly(λ), i.e., the size is bounded by a universal polynomial in the
security parameter λ;

• verifier succinct if the running time of V(ivk,x) is poly(λ+ |x|), i.e., the time is bounded by
a universal polynomial in the security parameter λ and the size of the instance x and does not
depend on the size of the index i that led to ivk.

Index efficiency implies that ipk output by I is of size polyλ(|i|), while verifier succinctness implies
that ivk output by I is of size poly(λ). All constructions in this paper are index efficient, proof
succinct, and verifier succinct.
Public coins. We say that ARG = (G, I,P ,V) is public-coin if every message output by the
verifier V is a uniform random string of some prescribed length. All constructions in this paper are
public-coin, and have a (small) constant number of rounds; in particular, they can be “squashed” to
non-interactive arguments that are publicly verifiable by additionally using random oracles via the
Fiat–Shamir transformation [FS86]. Hence, due to their succinctness, our constructions directly
lead to preprocessing zkSNARKs with universal SRS.
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Remark 3.7.1 (updatable SRS). An SRS is updatable [GKMMM18] if there exists an update
algorithm that can be run at any time by anyone to update the SRS, with the guarantee that security
holds as long as there is at least one honest updater since the beginning of time. This property
significantly simplifies cryptographic ceremonies to sample the SRS. All preprocessing arguments
that we construct in this paper have updatable SRS because they only contain “monomial terms”,
and thus fall within the framework of [GKMMM18].

Remark 3.7.2 (auxiliary inputs). The definition of knowledge soundness above does not consider
auxiliary inputs, for simplicity. One could consider a stronger definition, where the adversary and
extractor additionally receive an auxiliary input z sampled from a fixed distribution Z(1λ), or even
sampled from any distribution Z(1λ) that belongs to a given class. Such stronger definitions are
useful when using argument systems as subroutines within other protocols. When relying on auxiliary
inputs, however, one must be careful to ensure that they come from “benign” distributions, or else
extraction is impossible, as discussed in [BP15; BCPR16]. We stress that all of our constructions
of argument systems directly extend to hold with respect to an auxiliary-input distribution Z(1λ)
under the assumption that the relevant underlying knowledge assumptions are extended to hold with
respect to the auxiliary-input distribution Z(1λ) concatenated with some randomness. (In other
words, our security reduction adds to the auxiliary input some random strings.)
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3.8 From AHPs to preprocessing arguments with universal SRS
The following theorems capture key properties of our compiler.

Theorem 3.8.1. Let F be a field family and letR be an indexed relation. Consider the following
components:

– AHP = (k, s, d, I,P,V) is an AHP over F for R with negligible soundness error (see
Section 3.4);

– PC = (Setup,Trim,Commit,Open,Check) is a polynomial commitment scheme over F (see
Section 3.6).

Then ARG = (G, I,P ,V) described in Section 3.8.1 is a preprocessing argument with universal
SRS forR (see Section 3.7). Moreover, if q is the query complexity of AHP, ARG has the following
efficiency:

• round complexity is k + 2;
• communication complexity is Oλ(q) bits if PC is additionally succinct (see Definition 3.6.3);
• indexer time is the sum of the indexer time in AHP and the time to commit to s(0) polynomials

in PC;
• prover time is the sum of the prover time in AHP, the time to commit to

∑k
i=1 s(i) polynomials

in PC, the time to produce evaluations that answer the q queries along with a batch evaluation
proof for them in PC;

• verifier time is the sum of the verifier time in AHP and the time to batch verify q evaluations
in PC.

Remark 3.8.2 (updatable SRS). If the SRS for PC is updatable then so is the SRS for ARG. All
constructions of polynomial commitments in this paper satisfy this property, including the one used
in Section 3.9.

The construction underlying the above theorem preserves knowledge soundness and, if the
polynomial commitment scheme is also hiding, preserves zero knowledge.

Theorem 3.8.3. In Theorem 3.8.1, if AHP has a negligible knowledge soundness error, then ARG
has knowledge soundness.

Theorem 3.8.4. In Theorem 3.8.1, if PC is hiding and if AHP is zero knowledge with query bound q
(the query complexity of AHP) and some polynomial-time query checker C, then ARG is (perfect)
zero knowledge.

Remark 3.8.5 (the multivariate case). In this paper we give definitions for algebraic holographic
proofs and polynomial commitment schemes that are restricted to the case of univariate polynomials,
because the constructions that we consider are univariate. Theorems 3.8.1, 3.8.3 and 3.8.4, however,
directly extend to the multivariate case when considering an AHP in the general case of multivariate
polynomials and a polynomial commitment scheme for multivariate polynomials. This provides
a proof of security for several prior works that considered constructions that are special cases of
this paradigm but did not prove security (because the polynomial commitment schemes were only
assumed to satisfy evaluation binding as discussed in Section 3.1.2).
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3.8.1 Construction
We describe the construction behind Theorem 3.8.1, and then discuss its efficiency features.
Generator G. The generator G, on input a security parameter λ ∈ N and size bound N ∈ N, uses N
to compute a maximum degree bound D ∈ N, samples public parameters pp← PC.Setup(1λ, D)
for the polynomial commitment scheme PC, and then outputs srs := pp. The integer D is computed
to be the maximum degree bound in AHP for indices of size N. In other words,

D := max
{

d(N, i, j)
∣∣∣∣ i ∈ {0, 1, . . . , k(N)} , j ∈ {1, . . . , s(i)}

}
. (3.9)

Indexer I. The indexer I upon input i and given oracle access to srs, deduces the field F ∈ F
contained in srs = pp, runs the AHP indexer I on (F, i) to obtain s(0) polynomials p0,1, . . . , p0,s(0) ∈
F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)), computes the degree bounds for the index
and prover polynomials, invokes PC.Trim on these bounds to compute (ck, rk) that are specialized
for these degree bounds, and computes commitments to all of the index polynomials.
Namely, I calculates the bounds d := {d(|i|, i, s(i))}k(|i|)

i=0 , invokes (ck, rk) := PC.Trimsrs(d),
and then computes [c0,j]s(0)

j=1 := PC.Commit(ck, [p0,j]s(0)
j=1, [d(|i|, 0, j)]s(0)

j=1; [ω0,j]s(0)
j=1) for “empty ran-

domness” [ω0,j]s(0)
j=1 := ⊥. The indexer I outputs ipk := (ck, i, [p0,j]s(0)

j=1, [c0,j]s(0)
j=1) and ivk :=

(rk, [c0,j]s(0)
j=1). (Note that [c0,j]s(0)

j=1 are commitments to non-secret information so no randomness
is used in producing them. In particular, I is a deterministic polynomial-time algorithm, as
required. Also see Remark 3.8.6 below for additional considerations.)
Prover P and verifier V . The prover P receives (ipk,x,w) and the verifier V receives (ivk,x),
where (ipk, ivk) is the index key pair output by Isrs(i), and (i,x,w) is in the indexed relationR. By
construction of I , ipk contains a trimmed committer key ck and ivk contains a trimmed receiver key
rk for the polynomial commitment scheme PC. Let F ∈ F be the field described by (ck, rk) (each
of ck and rk individually contain a description of F), and let k := k(|i|) be the number of rounds
in AHP. For i ∈ {1, . . . , k}, P and V simulate the i-th round of the interaction between the AHP
prover P(F, i,x,w) and the AHP verifierV(F,x).

1. V receives ρi ∈ F∗ fromV, and forwards it to P .
2. P forwards ρi to P, which replies with polynomials pi,1, . . . , pi,s(i) ∈ F[X] with deg(pi,j) ≤

d(|i|, i, j).
3. P samples commitment randomness [ωi,j]s(i)j=1 and sends to V the polynomial commitments
below

[ci,j]s(i)j=1 := PC.Commit(ck, [pi,j]s(i)j=1, [d(|i|, i, j)]s(i)j=1; [ωi,j]s(i)j=1) .

4. V notifiesV that the i-th round has finished.

The prover P and verifier V are done simulating the interactive phase of AHP, and in the remaining
two rounds simulate the (non-adaptive) query phase of AHP. Below we use c to denote the
commitments [[ci,j]s(i)j=1]ki=0, p to denote the polynomials [[pi,j]s(i)j=1]ki=0, d to denote the degree bounds
[[d(|i|, i, j)]s(i)j=1]ki=0, and ω to denote the randomness [[ωi,j]s(i)j=1]ki=0 with [ω0,j]s(0)

j=1 := ⊥. Note that
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these three vectors include the commitments, polynomials, degrees, and randomness of the “0-th
round”.

• V sends a message ρk+1 ∈ F∗ that represents randomness for the query phase ofV(F,x) to P .
• P uses the query algorithm ofV to compute the query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1).
• P replies with answers v := p(Q).
• V samples and sends an opening challenge ξ ∈ F to P .
• P replies with an evaluation proof to demonstrate correctness of all claimed evaluations:

π := PC.Open(ck,p,d, Q, ξ; ω) .

• V accepts if and only if the following conditions hold:
– the decision algorithm ofV accepts the answers, i.e.,DV(F,x,v; ρ1, . . . , ρk, ρk+1) = 1;
– the alleged answers pass the test, i.e., PC.Check(rk, c,d, Q,v, π, ξ) = 1.

Completeness of the preprocessing argument ARG follows in a straightforward way from
completeness of the AHP AHP and completeness of the polynomial commitment scheme PC.
We now discuss the efficiency features of the construction above.

• Round complexity. The first k rounds simulate the interactive phase of AHP, with polynomials
sent as commitments; one round is to answer the desired queries; and one round is to certify
the queries’ answers.

• Communication complexity. The argument prover P sends∑k
i=1 s(i) commitments, q field

elements representing query answers, and an evaluation proof that certifies the q answers. The
argument verifier V sends |ρ1|+ · · ·+ |ρk|+ |ρk+1|+ 1 field elements. In Theorem 3.8.1 we
state that the communication complexity isOλ(q) because typically it holds that∑k

i=0 s(i) ≤ q
(each polynomial is queried at least once) and |ρ1|+ · · ·+ |ρk|+ |ρk+1| is a small constant
(each verifier message is a few field elements).

• Indexer time. The time complexity of I equals the time complexity of the AHP indexer I plus
the time to trim the PC public parameters pp, and then to commit to the s(0) polynomials
output by I.

• Prover time. The time complexity of P equals the time complexity of the AHP prover P plus
the time to commit to the

∑k
i=1 s(i) polynomials output by P, evaluate∑k

i=0 s(i) polynomials
at the query set Q, and produce an evaluation proof that certifies the correctness of these
evaluations.

• Verifier time. The time complexity of V equals the time complexity of the AHP verifier V
plus the time to verify the batch evaluation proof for the q evaluations that provide answers to
the query set Q.

Remark 3.8.6 (commitments to index polynomials). The construction described above uses the
same polynomial commitment scheme PC for committing to polynomials output by the AHP indexer
and to polynomials output by the AHP prover. This simplifies exposition, and allows for a single
evaluation proof to certify all query answers. For security, however, it would suffice (even for
Theorem 3.8.4) to commit to index polynomials via a commitment scheme that merely satisfies
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“evaluation binding” (the full version[CHMMVW20]), which is strictly weaker than the notion of
extractability that we use for the other commitments. This is because the commitments in the index
verification key are honestly produced in the preprocessing phase. Moreover, for Theorem 3.8.3 to
hold we do not need the commitments to index polynomials to be hiding.

3.8.2 Proof of Theorem 3.8.1
Suppose that P̃ = (P̃1, P̃2) is an efficient adversarial prover for ARG that wins with probability at
least ϵ, that is,

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

 ≥ ϵ(λ) .

We assume without loss of generality that st output by P̃1 contains the public parameters srs = pp.
Also note that P̃2 can be represented via its k + 2 next-message functions:

P̃2(st; ρ1) , P̃2(st; ρ1, ρ2) , . . . , P̃2(st; ρ1, . . . , ρk) , P̃2(st; ρ1, . . . , ρk, Q) , P̃2(st; ρ1, . . . , ρk, Q, ξ) .

We describe how to construct a prover P̃, which is admissible for AHP, and an efficient adversary
APC against the extractability of PC such that

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃(st),VI(F,i)(F,x)⟩ = 1

∣∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)
(i,x, st)← P̃1(pp)

+Pr
[

APC wins the
extractability game

]
≥ ϵ(λ) ,

Above, D is computed according to Eq. (3.9) and F is the field described in pp. This concludes
the proof because if ϵ(λ) were to be non-negligible then either: (i) by averaging there would
exist a choice of public parameters pp that yields a state st, field F ∈ F , and (i,x) ̸∈ L(R)
for which Pr[⟨P̃(st),VI(F,i)(F,x)⟩ = 1] is non-negligible, contradicting our hypothesis AHP has
negligible soundness error; or (ii) there would exist an efficient adversary APC that, for any given
efficient extractor, succeeds in the extractability game for PC (Definition 3.6.2) with non-negligible
probability, contradicting our hypothesis PC is extractable.
Constructing APC. The adversary APC is built from the argument prover P̃ (and the argument
indexer I and degree bounds d) as follows. For round i ∈ {0, . . . , k} and verifier messages
ρ0, . . . , ρi:

APC(ck, rk, ρ0, ρ1, . . . , ρi):
1. Set srs := pp and compute (i,x, st)← P̃1(srs).
2. If i = 0, ignore ρ0, compute index keys (ipk, ivk) ← Isrs(i), and parse ivk as
polynomial commitments [c0,j]s(0)

j=1. If i > 0, compute polynomial commitments
[ci,j]s(i)j=1 ← P̃2(st; ρ1, . . . , ρi).

3. For each j ∈ {1, . . . , s(i)}, compute the degree di,j := d(|i|, i, j).
4. Output ([ci,j]s(i)j=1, [di,j]s(i)j=1).
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Since P̃ , I, d are all efficient, so is APC. Let EPC be the extractor for APC. Note that in the “0-th
round”, APC outputs the commitments generated by the indexer I. To capture that that these “0-th
round” commitments need only satisfy evaluation binding (unlike the commitments in all other
rounds), we consider an extractor E ′

PC that works as follows. For round i ∈ {0, . . . , k} and verifier
messages ρ0, . . . , ρi:

E ′
PC(pp, ρ0, ρ1, . . . , ρi):
1. Set srs := pp and compute (i,x, st)← P̃1(srs).
Obtain the field description F← field(pp).

2. If i = 0, output polynomials [p0,j]s(0)
j=1 ← I(F, i).

If i > 0, output polynomials [pi,j]s(i)j=1 ← EPC(st; ρ1, . . . , ρi).

Observe that the probability that E ′
PC succeeds for APC is at least the probability that EPC succeeds

for APC.
Constructing P̃. We define P̃ via its k next-message functions, by relying on the polynomial
commitment extractor E ′

PC defined above. For round number i ∈ {1, . . . , k} and verifier messages
ρ1, . . . , ρi:

P̃(st; ρ1, . . . , ρi):
1. Set ρ0 := ⊥ and run E ′

PC(pp, ρ0, ρ1, . . . , ρi) to obtain polynomials pi,1, pi,2, . . . , pi,s(i) ∈
F[X].

2. Check that for every j ∈ [s(i)] it holds that deg(pi,j) ≤ d(|i|, i, j). (If not, output ⊥.)
3. Output the polynomials pi,1, pi,2, . . . , pi,s(i).

Observe that, by construction, P̃ is an admissible prover for AHP.
Analyzing P̃ and APC. Define ϵPC(λ) := Pr [APC wins the extractability game]. We want to argue
that

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)



≤Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃(st),VI(F,i)(F,x)⟩ = 1

∣∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)
(i,x, st)← P̃1(pp)

 + ϵPC(λ) .

First recall that by construction it holds that G(1λ,N) = PC.Setup(1λ, D). It follows that the
distributions of srs/pp, i,x, st, as well as the underlying field F, are identical in the two probability
expressions above.
Next recall that we have constructed P̃ in such a way that, in round i ∈ {1, . . . , k}, P̃ outputs

polynomials that (provided E ′
PC has succeeded) correspond to the commitments output in round i

by P̃2. At the same time, we have constructed V in such a way that in the first k rounds V behaves
exactly as V, and in the remaining two rounds V uses the polynomial commitment scheme to
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validate, against commitments received from the prover and contained in ivk, the answers claimed
by P̃2 in response toV’s query set Q, and then checks thatV accepts these answers.
Hence, as long as P̃ provides correct evaluations for polynomials committed to in ivk, and as

long as P̃ outputs polynomials that correspond to the commitments output by P̃2, it holds thatV
accepts whenever V accepts. Since P̃ relies on the extractor E ′

PC for the polynomial commitment
to find such polynomials (if they exist) and to correctly answer queries to polynomials in ivk, P̃
“works” whenever E ′

PC and P̃ do.
We now argue that, whenever V accepts, E ′

PC has succeeded, up to the error ϵPC(λ). This is
because the interaction between P̃2 and V can be re-cast as an extractability game for PC, as we now
explain. Define a public-coin challenger C to output randomness ρ0 := ⊥ in the 0-th round, and to
equal the interactive phase ofV(F,x) in the remaining rounds. This means that in the i-th round (for
i ∈ {1, . . . , k}) the challenger C will output the randomness ρi output byV(F,x) in round i. Also,
define a query sampler Q to equal the query phase ofV(F,x): given all challenger outputs [ρj]kj=1
so far and auxiliary input ρk+1, compute the query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1). Finally, let
B = (B1,B2) be the adversary defined below.

B1(pp, [ρj]kj=0, Q):
1. Set srs := pp.
2. Compute (i,x, st)← P̃1(srs).
3. Compute v ← P̃2(st; ρ1, . . . , ρk, Q).
4. Set stPC := (st, ρ1, . . . , ρk, Q).
5. Output (v, stPC).

B2(stPC, ξ):
1. Parse stPC as (st, ρ1, . . . , ρk, Q)
2. Compute π ←
P̃2(st; ρ1, . . . , ρk, Q, ξ).

3. Output π.

Using the above definitions of C,Q,B, and E ′
PC we obtain the following inequality:

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)



≤ Pr



(i,x) ̸∈ L(RN)
∧

PC.Check(rk, c, d, Q, v, π, ξ) = 1
∧

deg(p) ≤ d ≤ D and v = p(Q)
∧

⟨P̃(st), VI(F,i)(F,x; ρ1, . . . , ρk, ρk+1)⟩ = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(rk)

(i,x, st)← P̃1(pp)

For i = 0, . . . , k:
ρi ← C(pp, i)

([ci,j ]s(i)j=1, [di,j ]s(i)j=1)← APC(pp, [ρj ]ij=0)
[pi,j ]s(i)j=1 ← E

′
PC(pp, [ρj ]ij=0)

Q← Q(pp, [ρj ]kj=0; ρk+1)
(v, st)← B1(pp, [ρj ]kj=0, Q)
Sample opening challenge ξ

π ← B2(st, ξ)
Set c := [[ci,j ]s(i)j=1]ki=0 , d := [[di,j ]s(i)j=1]ki=0

(ck, rk)← PC.Trimpp(1λ, d)



+ ϵPC(λ) .
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As argued above, whenever E ′
PC and P̃ succeed, P̃ does. The first term after the inequality captures

the case where the AHP verifierV is convinced to accept a pair (i,x) not in the indexed language
L(RN). If APC succeeds, then there is still some chance that P̃ succeeds assuming it holds that
deg(p) ≤ d ≤ D for the polynomials output by E ′

PC (otherwise P̃ outputs ⊥). This joint success
probability is upper bounded by the probability that just APC succeeds, which is in turn upper
bounded by ϵPC(λ). Hence the ϵPC(λ) term above and the inequality rather than equality above.
Since the above inequality implies our claim, we have concluded the proof.

3.8.3 Proof of Theorem 3.8.3
Let E be the extractor for AHP, which by hypothesis has a negligible knowledge soundness error
ϵAHP(λ). Suppose that P̃ = (P̃1, P̃2) is an efficient adversary for ARG. We use P̃ to construct an
admissible prover P̃ for AHP, exactly as in the proof of soundness (see Section 3.8.2). Then we
define the extractor E for P̃ to be as follows.
E(srs):
1. Compute (i,x, st)← P̃1(srs).
2. Compute F← field(srs).
3. Compute w← EP̃(st)(F, i,x, 1l(|i|)).
4. Output w.

Observe that by construction we have the equality:

Pr


(i,x,w) ̸∈ RN

∧
⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

w← E(srs)



= Pr


(i,x,w) ̸∈ RN

∧
⟨P̃2(st),V(rk, ivk,x)⟩ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(pp)

(i,x, st)← P̃1(pp)
(ipk, ivk)← Ipp(i)

w← EP̃(st)(F, i,x, 1l(|i|))

 .



3.8. FROM AHPS TO PREPROCESSING ARGUMENTS WITH UNIVERSAL SRS 100

Similarly to the proof of soundness (see Section 3.8.2), we can argue the following inequality:

Pr


(i,x,w) ̸∈ RN

∧
⟨P̃2(st),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(pp)

(i,x, st)← P̃1(pp)
(ipk, ivk)← Ipp(i)

w← EP̃(st)(F, i,x, 1l(|i|))



≤Pr


(i,x,w) ̸∈ RN

∧
⟨P̃(st),VI(F,i)(F,x)⟩ = 1

∣∣∣∣∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)
(i,x, st)← P̃1(pp)

w← EP̃(st)(F, i,x, 1l(|i|))

 + ϵPC(λ) .

The knowledge soundness of AHP implies that the probability above is at most ϵAHP(λ). Since
ϵAHP(λ) + ϵPC(λ) is negligible, we have established that the extractor E for P̃ works.

3.8.4 Proof of Theorem 3.8.4
Let S be the zero knowledge simulator for AHP (see definition in Section 3.4), and let SPC be the
simulator for PC (see definition in Section 3.6). We describe how to construct a (perfect) zero
knowledge simulator S = (Setup,Prove) for ARG (see definition in Section 3.7). Let Ṽ = (Ṽ1, Ṽ2)
be any malicious verifier.
The simulated setup algorithm S.Setup receives a security parameter λ ∈ N and size bound

N ∈ N as input, and then proceeds as follows. First, S.Setup uses N to compute the same maximum
degree boundD ∈ N computed by the generator G (see Eq. (3.9)). Second, it runs SPC.Setup(1λ, D)
to sample simulated public parameters pp for the polynomial commitment and their trapdoor trap,
and outputs (srs, trap) := (pp, trap). Let F ∈ F be the field described in the public parameters pp.
The zero knowledge game states that first Ṽ1 receives srs, and then outputs an index-instance-

witness tuple (i,x,w) and a state st to pass onto Ṽ2. The proving subroutine of the simulator,
S.Prove, receives (trap, i,x) as input, and interacts with Ṽ2(st) over k + 2 rounds. We construct
S.Prove as follows.

1. For i ∈ {1, . . . , k}, simulate the polynomial commitments for round i as follows:
a) Receive a message ρi ∈ F∗ from Ṽ2, and forward it to the AHP simulator S(F, i,x).
b) Sample commitment randomness [ωi,j]s(i)j=1, and then send to Ṽ2 the simulated commit-
ments below

[ci,j]s(i)j=1 ← SPC.Commit(trap, [d(|i|, i, j)]s(i)j=1; [ωi,j]s(i)j=1) .

2. Simulate the evaluations in round k + 1 as follows:
a) Receive a message ρk+1 ∈ F∗ from Ṽ2.
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b) Use the (honest) query algorithm of AHP to compute the query set

Q := QV(F,x; ρ1, . . . , ρk, ρk+1)

, and abort if any query does not satisfy the query checker C. (The honest prover would
also abort.)

c) We need to assemble a list of evaluations v, containing actual evaluations of index
polynomials and simulated evaluations of prover polynomials. In more detail, first
run the AHP indexer I(F, i) to obtain polynomials [p0,j]s(0)

j=1, and evaluate these on (the
relevant queries in) the query set Q. Next, forward the query set Q to the AHP simulator
S(F, i,x) in order to obtain a simulated view, which in particular contains simulated
answers for queries to the AHP prover’s polynomials.

3. Simulate the evaluation proof in round k + 2 as follows:
a) Receive a challenge ξ from Ṽ2.
b) Compute π ← SPC.Open(trap, [[pi,j]s(i)j=1]ki=0,v, [[d(|i|, i, j)]s(i)j=1]ki=0, Q, ξ; [[ωi,j]s(i)j=1]ki=0)
where all polynomials [pi,j]s(i)j=1 with i > 0 are defined to be zero and the randomness
[ω0,j]s(0)

j=1 is set to ⊥.
c) Send π to Ṽ2.

Lemma 3.8.7. The view of the malicious verifier Ṽ = (Ṽ1, Ṽ2) while interacting with the honest
prover is identically distributed as its view while interacting with the simulator S = (S1,S2)
described above.

Proof. The zero knowledge property of AHP states that interaction with the honest prover
P(F, i,x,w) can be replaced with interaction with the simulator S(F, i,x), which adaptively
answers oracle queries of the malicious verifier to prover oracles, provided the number of oracle
queries is below the zero knowledge query bound and each query satisfies the query checker. In
our setting, the number of oracle queries is bounded by the query complexity q of the honest AHP
verifier, because the query set Q is derived via the honest query algorithm run on the messages
sent by the malicious argument verifier. Moreover, the honest prover and simulator ensure that
each query in Q satisfies the query checker. This explains why the zero knowledge query bound in
Theorem 3.8.4 is q, and why we consider any polynomial-time query checker in Theorem 3.8.4.
Next, given that S(F, i,x) provides oracle responses that are identically distributed to those of

polynomials output by P(F, i,x,w), we are left to discuss the other information received by the
malicious verifier: the commitments (in the first k rounds) and the evaluation proof (in round k + 2).
The hiding property of the polynomial commitment scheme ensures that the simulator SPC, by using
the trapdoor trap, can perfectly simulate these commitments and this evaluation proof.
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3.9 Marlin: an efficient preprocessing zkSNARK with
universal SRS

We describe how to obtain a preprocessing zkSNARK with universal and updatable SRS that
achieves the efficiency reported in Fig. 3.1.
The first step is to apply our compiler (Section 3.8) to two ingredients: the AHP described

in Section 3.5, and the AGM-based polynomial commitment scheme described in Section 3.6.2
and the full version[CHMMVW20]. The second step is to apply the Fiat–Shamir transformation
to the resulting public-coin preprocessing argument. These “generic” steps immediately yield a
preprocessing zkSNARK with universal and updatable SRS that has the same asymptotics as Sonic
[MBKM19].11 Moreover, in terms of concrete efficiency, this zkSNARK achieves argument size
comparable to Sonic [MBKM19], and also achieves proving and verification times that are close to
the state of the art for circuit-specific zkSNARKs [Gro16].
Below in Sections 3.9.1 and 3.9.2 we describe optimizations that further reduce argument

size, and as a positive side effect also reduce prover and verifier costs. Fig. 3.1 includes these
optimizations.
Before we discuss optimizations, we summarize the argument size that we obtain directly from

the compilation mentioned above. Recall that in the offline phase, the AHP indexer, given an index
i = (F, H,K,A,B,C), outputs for each matrixM ∈ {A,B,C} three polynomials that together
define the low-degree extension ofM . Then, during the interactive online phase, the prover outputs
twelve proof oracles. The verifier queries each of the nine indexer polynomials and the twelve prover
polynomials at exactly one location, which amounts to 21 queries.
After compilation, the argument indexer outputs 9 polynomial commitments, and the argument

prover outputs 12 commitments, 21 evaluations, and 3 evaluation proofs. In more detail, the
argument indexer outputs commitments to ˆrowM , ĉolM , v̂alM for each M ∈ {A,B,C}; and the
argument prover outputs commitments to the following twelve polynomials: ŵ, ẑA, ẑB, ẑC , h0, s,
h1, g1, h2, g2, h3, g3. The polynomials ŵ, ẑA, ẑB, ẑC , h0, s, h1, g1 are all evaluated at the same
point β1; h2 and g2 are evaluated at the same point β2; and h3, g3, and ˆrowM , ĉolM , v̂alM for each
M ∈ {A,B,C} are all evaluated at the same point β3. Overall our argument consists of 27 G1
elements and 24 Fq elements.

3.9.1 Optimizations for the AHP
Eliminating h0 and ẑC . The AHP prover P sends a polynomial h0(X) in the first round, and
the AHP verifier V checks the polynomial equation ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X) at a
random point. This is a standard technique from the probabilistic proof literature to ensure that
ẑA(X)ẑB(X) and ẑC(X) agree on H . An alternative (used, e.g., in [BCGRS17]) is to replace each

11The SRS of the zkSNARK is updatable because the SRS of the polynomial commitment scheme is updatable (see
Remark 3.8.2 and Section 3.6.2). Note also that the query algorithm in the AHP fulfills the admissibility requirement
imposed by the polynomial commitment scheme (see Section 3.6.2), as each query location is sampled at random from
a set of superpolynomial size.
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occurrence of ẑC(X) in the protocol with the product ẑA(X)ẑB(X), which “forces” the desired
property without any checks. This increases the degree of certain expressions by deg(ẑC) = |H|−1,
but this cost in our setting is negligible because it leads to a negligible increase in the soundness
error. This eliminates the need to commit to h0(X) and ẑC(X) and later reveal their evaluations,
which reduces argument size by two polynomial commitments and two field elements.
Minimal zero knowledge query bound. The query algorithm of the AHP verifierV queries each
prover polynomial at exactly one location, regardless of the randomness used to generate the queries.
In particular, ŵ(X), ẑA(X), ẑB(X), ẑC(X) are queried at exactly one location. So it suffices to set
the parameter b := 1.
Eliminating σ1. We can sample the random polynomial s(X) conditioned on it summing to zero on
H . The prover can thus omit σ1, because it will always be zero, without affecting zero knowledge.
Single low-degree extension for each matrix (unimplemented). The AHP indexer I constructs
the low-degree extensions of the nine functions {rowM , colM , valM}M∈{A,B,C}, which define the
low-degree extensions of A,B,C. The AHP verifierV queries each of these at a single location.
This means that, after compilation, the argument prover must provide nine field elements (the
evaluations) as part of the proof.
We can reduce this to only three field elements as follows. We modify the AHP indexer I to

construct, for eachM ∈ {A,B,C}, a single low-degree extension of the functions rowM , colM , valM .
Namely, let s1, s2 ∈ F be “shifts” such thatK,K + s1, andK + s2 are pairwise disjoint, and define
the set K̄ := K ∪ (K + s1) ∪ (K + s2). Define the function mM : K̄ → F where

mM(κ) :=


rowM(κ) κ ∈ K
colM(κ− s1) κ ∈ K + s1

valM(κ− s2) κ ∈ K + s2

.

Then Eq. (3.1) can be rewritten as

M̂(X, Y ) :=
∑
κ∈K

uH(X, m̂M(κ))uH(Y, m̂M(κ+ s1))m̂M(κ+ s2) . (3.10)

The modified AHP indexer I constructs the three polynomials m̂A, m̂B, m̂C , and the modified AHP
verifier V will query each of these at a single location. Thus, after compilation, the argument
prover will only need to provide three field elements, instead of nine, as part of the proof. Note
that this optimization triples the degree of the polynomials output by the AHP indexer I, which
after compilation increases the SRS size. Even given this tradeoff our SRS is still shorter than prior
work, and furthermore it represents a one-time offline cost (in contrast to argument size, which is a
recurring online cost).
A more efficient holographic lincheck. Based on an earlier draft of this work, Chiesa, Ojha,
and Spooner [COS20b] devised a more efficient holographic lincheck, which saves one round of
interaction, in a different model of proof system. In the full version[CHMMVW20] we show how to
incorporate their ideas into our 7-message AHP for R1CS (see Fig. 3.5) to obtain a 5-message AHP
for R1CS (see the full version[CHMMVW20]). This optimization has no downsides.
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3.9.2 Optimizations for the polynomial commitment scheme
Reducing the cost of hiding commitments. The hiding property that we adopt for polynomial
commitments (Definition 3.6.4) ensures that no information is revealed about the committed
polynomial regardless of how many evaluations are revealed. Achieving this strong notion has a cost:
in our constructions we randomize a commitment c to a polynomial p by additionally committing
to a random polynomial p̄ of degree deg(p). Compared to the non-hiding variant, this requires
deg(p) additional elements in the SRS, and also requires PC.Commit and PC.Open to perform an
additional variable-base MSM of size deg(p).
In our compiler, however, the only evaluations the argument verifier sees are those sent by the

argument prover, and these are determined by the query sets produced by the query algorithm. This,
together with the fact in our AHP each polynomial is queried at exactly one location, implies that we
can relax our construction to provide hiding only for a single evaluation per polynomial. Concretely,
we can set p̄ to have degree 1. (Note that p̄ cannot be a constant because it is used to hide both
the commitment to p and to hide the commitment to the witness polynomial w.) This allows us to
eliminate (most of) the additional generators from the SRS, and the additional variable-base MSM
for PC.Commit and PC.Open.
Reducing the number of hiding commitments. Each hiding commitment, even taking into account
the above optimizations, requires an evaluation proof that is one field element larger than a proof
in the non-hiding case. We reduce this overhead by using the fact that only certain polynomials
reveal information about the witness and necessitate hiding. In particular, only the polynomials
ŵ, ẑA, ẑB, ẑC , s, h1, and g1 need hiding commitments. All other polynomials can rely on non-hiding
commitments because they can be derived in polynomial-time from the index i. This observation
removes a further 1 field element from the proof.
Eliminating unnecessary degree checks. The notion of polynomial commitment scheme that we
consider enables each commitment to guarantee a chosen degree bound that is up to the maximum
degree bound chosen for the SRS. This flexibility has a cost: ensuring a degree bound strictly less
than the maximum degree bound requires two group elements per commitment, corresponding to
unshifted and shifted polynomials respectively. When compiling our AHP, we need this feature
only when committing to g1, g2, g3 (the exact degree bound matters for soundness) but for all other
polynomials it suffices to rely on the maximum degree bound and so for them we omit the shifted
polynomials altogether. This increases the soundness error by a negligible amount (which is fine),
and lets us reduce argument size by 9 group elements.
Batching pairing equations. We can reduce the cost of the argument verifier by batching pairing
equations. Recall that, to verify an evaluation proof with evaluation v and point z, PC.Check needs
to check the pairing equation e(U − vG− γv̄G,H) = e(w, βH − zH). In our compiled zkSNARK,
PC.Check is invoked three times, each with different values of U , w, z, and v. This results in 3
pairing equations. To reduce the number of pairing equations needed down to just one, we use the
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following reduction that ensures that the G2 argument to every pairing is constant:

e(U − vG− γv̄G,H) = e(w, βH − zH)
= e(w, βH) · e(w,−zH)
= e(w, βH) · e(−zw, H) .

Hence, we have that

e(U − vG− γv̄G+ zw, H) = e(w, βH) .

Because we have three proofs to check, the verifier has to check three of the above equations. These
equations can be batch verified together as follows. The verifier samples a random field element r,
and then uses the identity

∏
i e(Gi, H)r

i

= e(∑
i r

iGi, H) to check the following equation:

e(∑
i r

i(C0,i − viG− γv̄iG+ ziwi), H) = e(∑
i r

iwi, βH) .

By properties of random linear combinations, the above equation holds only if each of the individual
equations also hold (up to a negligible soundness error). In sum, the verifier only needs to evaluate
two pairings.
Opening linear combinations of polynomials. The decision procedure of the AHP verifier checks
polynomial equations such as

p1(X) + p2(X)p3(X) = p4(X) . (3.11)

It does so by querying the polynomials p1, . . . , p4 at a random point z ∈ F, and then checking
that the above equation holds with respect to the resulting evaluations p1(z), . . . , p4(z). To enable
the compiled SNARK verifier to invoke the AHP decision procedure, the SNARK proof must
also contain these evaluations. However, if we instead enable the AHP verifier to query linear
combinations of polynomial oracles, then one can avoid providing all these evaluations. For example,
we can rewrite the check in Equation (3.11) as follows:

p2(z) = v2 and p5(X) := p1(X) + v2p3(X)− p4(X) = 0 .

Then the AHP decision procedure only needs the evaluation p2(z), which means that the cor-
responding SNARK proof will contain only 1 field element, instead of 4. For this, we need
that the polynomial commitment scheme allows checking evaluations of linear combinations of
committed polynomials. The schemes constructed in the full version[CHMMVW20] have linearly
homomorphic commitments, and so support this feature.
Applying this optimization to the equations in ourAHP reduces the proof size of the corresponding

compiled SNARK by 10 field elements.
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Chapter 4

Gemini: Elastic SNARKs for Diverse
Environments

We introduce and study elastic SNARKs, a class of succinct arguments where the prover has multiple
configurations with different time and memory tradeoffs, which can be selected depending on the
execution environment and the proved statement. The output proof is independent of the chosen
configuration.
We construct an elastic SNARK for rank-1 constraint satisfiability (R1CS). In a time-efficient

configuration, the prover uses a linear number of cryptographic operations and a linear amount of
memory. In a space-efficient configuration, the prover uses a quasilinear number of cryptographic
operations and a logarithmic amount of memory. A key component of our construction is an elastic
probabilistic proof. Along the way, we also formulate a streaming framework for R1CS that we
deem of independent interest.
We additionally contribute Gemini, a Rust implementation of our protocol. Our benchmarks

show that Gemini, on a single machine, supports R1CS instances with tens of billions of constraints.
This work was previously published in [BCHO22].



4.1. INTRODUCTION 107

4.1 Introduction
Succinct non-interactive arguments of knowledge (SNARKs) allow for efficient verification of NP
statements. Recent years have seen a surge of interest in SNARKs, catalyzed by several real-world
applications. While reducing argument size and verification time were an initial focus, the cost
of running the prover algorithm has now emerged as a critical bottleneck. This is particularly
important as the size of proved computations increases, and recent applications demand proving
large computations.
For example, popular scaling solutions for blockchains (roll-up architectures) require regularly

producing SNARKs attesting to the validity of large batches of transactions, which translates to
proving the correctness of billions of gates. As another example, the Filecoin network generates
proofs for about 930 billion constraints every day.1 In both cases, efficiently producing SNARKs
attesting to the correctness of large computations is critical, yet many SNARK implementations
today do not scale to large computations because of the prohibitive memory requirements of the
proving algorithm. Indeed, research that focuses on the time complexity of the prover algorithm has
achieved notable theoretical and practical improvements [BCGGHJ17; BCGJM18; XZZPS19; Set20;
BCG20; Lee20; KMP20; Zha+21; BCL22; GLSTW21; RR22], but with linear space complexity.
These constructions rely on, among other things, a component that achieves linear-time proving
via dynamic programming techniques [Tha13], which demands storing in memory the proved
computation.
The notion of complexity-preserving SNARKs introduced in [BC12] aims to simultaneously

optimize time and space: it requires that the prover’s time and space complexity are at most
polylogarithmic factors away from those of the proved computation. Complexity-preserving
SNARKs were subsequently studied (and improved) in a line of works [BCCT13; HR18; BHRRS20;
BHRRS21]. The holy grail would be to preserve time and space complexity up to constant factors,
but known constructions are far from this goal, and achieve improved space complexity at the
expense of time complexity.
In sum, a line of works achieves excellent time complexity at the expense of space complexity,

and a different line of works achieves excellent space complexity at the expense of time complexity.
It remains a challenging open question to construct SNARKs that simultaneously do well in both
parameters. In this paper we do not answer this question, but instead introduce and achieve a notion
that meaningfully relaxes this goal: a single SNARK that can be configured to optimize for time
complexity or optimize for space complexity.

4.1.1 Our results
(1) Elastic SNARKs. We advocate the study of SNARKs whose prover admits two different
realizations:

• a time-efficient prover that receives as input instance and witness;
• a space-efficient prover with streaming access to these same inputs.
1
https://research.protocol.ai/sites/snarks/
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These elastic provers can choose which realization to use, and allocate resources depending on the
execution environment and the instance size. In addition, the two algorithms are compatible in such
a way that during the execution of the protocol the space-efficient prover can pause and transcribe a
prover state, and then the protocol can continue with the time-efficient prover (thereafter enjoying
the benefits of the faster prover).
We build on the notion of streams in [BHRRS20] to study the above goal. We study stream

composition, and propose a definitional framework for streaming instances of Rank-1 Constraint
Satisfiability (R1CS). Within this framework we contribute an elastic SNARK for R1CS that we
describe next.
(2) An elastic SNARK for R1CS. We realize the above notion by constructing an elastic (prepro-
cessing) SNARK for R1CS, that we name Gemini. In time-efficient mode the prover uses a linear
number of cryptographic operations and linear space, and in space-efficient mode the prover uses
a quasilinear number of cryptographic operations and logarithmic space. When referring to time
efficiency, we use the asymptotic notation Oλ to denote cryptographic operations, so to distinguish
them from (less expensive) field operations for which we use the asymptotic notation O. Our main
result is the (informally stated) theorem below.

Definition 2. The R1CS problem asks: given a finite field F, coefficient matrices A,B,C ∈ FN×N

each containing at most M = Ω(N) non-zero entries,2 and an instance vector x over F, is there a
witness vector w such thatAz◦Bz = Cz for z := (x,w) ∈ FN? (Here, “◦” denotes the entry-wise
product.)

Theorem 3 (informal). There exists an elastic SNARK for RR1CS whose prover admits two
realizations:

• a time-efficient prover that runs in Oλ(M) time and O(M) space;
• a space-efficient prover that runs in Oλ(M log2 M) time and O(logM) space.

Verification time is Oλ(|x|+ logM) time and proof size is O(logM).

The above SNARK is obtained via a popular paradigm that combines a polynomial IOP and
a polynomial commitment scheme in order to obtain an interactive argument, and then relies on
the Fiat–Shamir paradigm to make the protocol non-interactive. The (omitted) cryptographic
assumptions in the informal statement are inherited from those for the underlying polynomial
commitment scheme, which in our case is [KZG10].
Briefly, after observing that the polynomial commitment scheme in [KZG10] can be realized

elastically, our main contribution is achieving an elastic polynomial IOP. A key component of this
latter is an elastic scalar product protocol, which runs in linear-time and linear-space or quasilinear-
time and log-space. Our scalar product argument is based on the sumcheck protocol, which, thanks
to its recursive nature, facilitates migrating from a space-efficient instance to a time-efficient one.

2Note thatM = Ω(N) without loss of generality because ifM < N/3 then there are variables of z that do not
participate in any constraint, which can be dropped. Thus the main size measure for R1CS is the sparsity parameterM .
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(3) Implementation. We implement the construction of Theorem 3 in Rust using the arkworks
ecosystem [ark], replicating the modularity of the IOP construction. In particular, we develop
new streaming-friendly primitives that we believe could be of independent interest for future
projects realizing space-efficient cryptographic proofs. Our implementation additionally includes a
simpler SNARK that is not preprocessing (the verification procedure reads R1CS instances without
providing succinct verification). In Section 4.2.7, we summarize our design choices and algorithmic
optimizations for the implementation.
(4) Evaluation. Most benchmarks for time-efficient SNARKs in the literature do not consider large
circuits, due to prohibitive memory usage. Our benchmarks, discussed further in Section 4.2.8,
show the following.

• Gemini is able to prove instances of arbitrary size. On a single machine with a memory budget
of around 1 GB, we ran the prover of the preprocessing SNARK for instances of size 232 and
the prover of the non-preprocessing SNARK (where the verifier reads the R1CS instance in
full) for instances of size 235. We “stopped” at these sizes only due to time constraints.
In contrast, the largest instance size reported in the literature is in DIZK [WZCPS18], where a
distributed realization of the preprocessing SNARK (with circuit-specific setup) of [Gro16] is
run for an R1CS instance of size 231 over a cluster of 20 machines with 256 executors.

• Gemini is concretely and economically efficient. The preprocessing SNARK can prove
instances of size 231 in two days and costs about 82% (about 400 USD) less than DIZK on
Amazon EC2.

• Gemini provides succinct proofs and verification. For instances of size 235, the proof size is
about 27 KB and the verification time is below 30 ms.
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4.2 Techniques
We summarize the main ideas behind our results. In Section 4.2.1 we outline the streaming model
that we use to express space-efficient algorithms. In Section 4.2.2 we describe how to construct
elastic SNARKs from elastic polynomial commitment schemes and elastic probabilistic proofs.
We describe an example of an elastic polynomial commitment scheme in Section 4.2.3. Then, in
Sections 4.2.4 to 4.2.6 we sketch our elastic probabilistic proof. We conclude in Section 4.2.7 and
Section 4.2.8 by discussing our implementation and evaluation.

4.2.1 Elasticity and a streaming model
The notion of elasticity refers to having multiple realizations of the same algorithm (more precisely,
function) for use in different situations. Specifically in this work:

Elasticity means that we aim for two realizations: a time-efficient realization for a
setting where time complexity is most important, possibly at the expense of space
complexity; and a space-efficient realization for a setting where space complexity (i.e.,
memory consumption) is most important, possibly at the expense of time complexity.

This means that in theorem statements, and in their proofs, we will consider two realizations with
different complexities for the same function (e.g., the SNARK prover).
Time-efficient algorithms are a familiar concept. Space-efficient algorithms in this paper are

streaming algorithms: algorithms that receive their inputs in streams (small pieces at a time) so that
they can use less memory than the size of their inputs. Below we elaborate on: (i) streams; and
(ii) streaming algorithms.
Streams and streaming oracles. A stream is a sequenceK ∈ ΣI , where Σ is an alphabet and I is
a well-ordered countable set. Streams are accessed via oracles: ifK is a sequence, the streaming
oracle S(K) of K takes two input commands, start and next; the oracle responds to the i-th next
command with the i-th element of K; in case earlier elements of the stream need to be read again,
the start command resets the oracle to the first element in the sequence. The oracle does not allow
random access to elements of K.
Streaming algorithms. A streaming algorithm is an algorithm that has access to its inputs via
streaming oracles and produces a stream as its output, by outputting the next element upon receiving
the next command. The complexity of a streaming algorithm is measured in terms of its time
complexity, space complexity, and the number of passes that it makes over each input stream (via
the start command).
Any binary operation over an alphabet can be viewed as a streaming algorithm which takes as

input two sequences K and K ′ over the same alphabet Σ that are indexed by the same set I . The
binary operation acts on successive pairs of elements ofK andK ′, to produce a new stream on the
fly. For instance, let f ,g be two vectors over a finite field F, and S(f), S(g) their canonical streams.
(The canonical stream of a vector is the sequence of its entries, from last to first.) For a scalar ρ ∈ F,
the stream S(f + ρg) can be evaluated as a new stream using S(f) and S(g), by responding to each
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next query in the following way: first query S(f) to obtain the i-th entry fi of f ; then query S(g) to
obtain the i-th entry gi of g; and finally respond with fi + ρgi.
Since a streaming algorithm produces a stream as output, multiple streaming algorithms can

be composed so that the output stream produced by one algorithm is the input stream for the next
algorithm. The time and space complexity and number of input passes of streaming algorithms
behave predictably under composition. IfA is a streaming algorithm with time complexity tA, space
complexity sA, and kA input passes, and B is a streaming algorithm with time complexity tB, space
complexity sB, and kB input passes, thenA composed with B has time complexity tA + kAtB, space
complexity sA + sB, and kAkB input passes.

4.2.2 A modular construction of elastic SNARKs
Many succinct arguments are built in two steps. First, construct an information-theoretic probabilistic
proof in a model where the verifier has a certain type of query access to the prover’s messages.
Second, compile the probabilistic proof into an interactive succinct argument, via a cryptographic
commitment scheme that “supports” this query access.3 Finally, if non-interactivity is desired, apply
the Fiat–Shamir transformation [FS86]. This modular approach has enabled researchers to study
the efficiency and security of simpler components, which has facilitated much progress in succinct
arguments.
We observe that the approach used in [CHMMVW20; BFS20] to construct SNARKs preserves

elasticity: if the ingredients to the approach are elastic then the resulting SNARK is elastic. There
are two ingredients.

• Polynomial IOPs. A probabilistic proof in which the prover sends polynomial oracles to
the verifier, who accesses them via polynomial evaluation queries. This is an interactive
oracle proof [BCS16; RRR16] where query access to prover messages is changed from “point
queries” to “polynomial evaluation queries”.

• Polynomial commitments. A cryptographic primitive that enables a sender to commit to a
polynomial f ∈ F[X] of bounded degree, and later prove that f(z) = v for given z, v ∈ F.

If the polynomial IOP is additionally holographic then the resulting succinct argument is a
preprocessing argument, which means that it is possible, in an offline phase, to perform a public
computation that enables sub-linear verification in a later online phase. The lemma below summarizes
how elasticity is preserved. The formal statement (and its proof) are relative to the formalism for
streaming algorithms outlined in Section 4.2.1.

Theorem 4 (informal). Suppose that we are given the following ingredients.
3The argument prover and argument verifier emulate the underlying probabilistic proof, with the argument prover

sending commitments to proof messages and sending answers to queries together with commitment openings to
authenticate those answers.
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• A public-coin polynomial IOP for a relation R with: (i) time-efficient prover time tP;
(ii) space-efficient prover space sP with kP passes; (iii) O oracles; (iv) query complexity q;
(v) verifier complexity tV .

• A polynomial commitment scheme with: (i) time-efficient commit (and open) time tPC.Com;
(ii) space-efficient commit (and open) space sPC.Com with kPC.Com passes; (iii) checking time
tPC.Check.

Then there exists an interactive argument system for the relationR with: (i) time-efficient prover time
tP +O · tPC.Com + q · tPC.Com; (ii) space-efficient prover space sP +O · sPC.Com with q · kP · kPC.Com
passes; (iii) verifier complexity tV + q · tPC.Check. Moreover, the argument system is preprocessing if
the given polynomial IOP is holographic (with time and space properties similarly preserved by the
transformation).

Informally, the argument prover commits to each polynomial oracle via the polynomial commit-
ment scheme, and answers polynomial evaluation queries by sending the requested evaluation along
with a proof that it is consistent with the corresponding polynomial commitment. The security
and most efficiency measures are studied in [CHMMVW20; BFS20]. Less obvious is how space
complexity is affected.
A streaming implementation of the PIOP prover does not necessarily produce all of its output

polynomial streams one by one, and therefore the space complexity of the resulting argument
prover is not, e.g., just the sum sP + sPC.Com of the PIOP prover space and the PC commitment
algorithm space. When two (or more) of the PIOP prover’s message polynomials all depend on the
same input stream, the prover may avoid extra passes over the input stream by producing both of
them at the same time which would require space sP + 2sPC.Com.4 Furthermore, the commitment
algorithm requires several passes over a single input polynomial, so that the argument prover must
run the PIOP prover several times in order to complete the commitment to each polynomial, keeping
partially computed commitments to each polynomial in memory. Such considerations lead to the
space-efficient argument prover having space complexity sP + O · sPC.Com with q · kP · kPC.Com
passes. Fortunately, the PIOP constructions in this paper actually satisfy the strong property that
each polynomial can be produced independently without rerunning the entire prover algorithm,
which reduces the space complexity to sP + sPC.Com.

Remark 4.2.1 (types of polynomials). The above discussion is deliberately ambiguous about certain
aspects: are the polynomials univariate or multivariate? are the polynomials represented as vectors
of coefficients or as vectors of evaluations (or vectors in some other basis)? These details do not
matter for Theorem 4 as long as the two ingredients “match up”: if the PIOP outputs polynomials
represented in a way that is compatible with how the PC scheme expects inputs. Nevertheless, in
this paper we focus on the case of univariate polynomials represented as vectors of coefficients,
because our construction and implementation are in this setting.

4For example, if one polynomial consists of all of the even coefficients of another, one can produce streams of the
coefficients of both polynomials simultaneously, in half the number of passes required to compute streams of each
polynomial one at a time.
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Remark 4.2.2 (multilinear vs. univariate). The fact that the approach in [CHMMVW20; BFS20]
preserves space efficiency in the case of multilinear polynomials represented over the boolean
hypercube was used in [BHRRS20; BHRRS21]. Theorem 4 is a straightforward observation
about [CHMMVW20; BFS20] that additionally preserves elasticity. In particular, we believe that
the constructions in [BHRRS20; BHRRS21] could be shown to have elastic realizations, by showing
that the underlying multilinear PIOP and multilinear PC schemes have elastic realizations. We
choose to work with univariate polynomials, instead of multilinear polynomials, because they have
received more interest by practitioners, and thus focus our investigation on the concrete efficiency
of elastic SNARKs based on univariate polynomials. We leave the study of concrete efficiency of
elastic SNARKs based on multilinear polynomials to future work.

Remark 4.2.3 (elastic setup and indexer). For any succinct argument, elasticity is a desirable
property as the size of the statement to be proven increases. In this paper we focus on elasticity
of the prover, which is the main bottleneck for proving large instances. We briefly comment on
elasticity for other algorithms.

• Setup. The setup algorithm samples the public parameters of the argument system. While
the complexity of the setup algorithm can be linear (or more!) in the statement size, we
do not discuss setup algorithms in this paper for two reasons: (i) known setup algorithms
have straightforward realizations that are simultaneously efficient in time and space (there
is less of a tension between optimizing for time or for space as there is for the prover);
(ii) public parameters are typically sampled via “cryptographic ceremonies” that realize the
setup functionality via secure multi-party protocols [BGM17], and so it is more relevant to
discuss the time and space efficiency of the protocols that realize these ceremonies.

• Indexer. In the case of preprocessing arguments, an indexer algorithm produces the proving
key and verification key. The indexer in our construction and implementation is elastic, but
we do not discuss it since all ideas relevant for the indexer can be straightforwardly inferred
from those relevant for the prover.

4.2.3 An elastic realization of the KZG polynomial commitment scheme
We use a univariate polynomial commitment scheme from [KZG10] to construct our SNARK (see
Section 4.2.2). Below we review this scheme and explain how to realize it elastically.
Review: a polynomial commitment from [KZG10]. The setup algorithm samples and outputs
public parameters for the scheme to support polynomials of degree atmostD ∈ N: the description of a
bilinear group (G1,G2,GT , q, G,H, e);5 the commitment key ck := (G, τG, . . . , τDG) ∈ GD+1

1 for
a random field element τ ∈ Fq; and the receiver key rk := (G,H, τH) ∈ G1×G2

2. The commitment
to a polynomial p ∈ Fq[X] of degree d ≤ D is computed as C := ⟨p, ck⟩ = p(τ)G ∈ G1.
Subsequently, to prove that the committed polynomial p evaluates to v at z ∈ Fq, the committer
computes the witness polynomial w(X) := (p(X)− p(z))/(X − z), and outputs the evaluation

5Here |G1| = |G2| = |GT | = q, G generates G1, H generates G2, and e : G1 × G2 → GT is a non-degenerate
bilinear map.
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proof π := ⟨w, ck⟩ = w(τ)G ∈ G1. Finally, to verify the evaluation proof, the receiver checks that
e(C − vG,H) = e(π, τH − zH).
Elastic realization. An elastic realization of the above scheme requires a time-efficient realization
and a space-efficient realization for each relevant algorithm of the scheme. Here we do not discuss
the setup algorithm, as it has a natural time-and-space-efficient realization (see Remark 4.2.3). We
do not discuss the verification algorithm either, because it only involves a constant number of scalar
multiplications and pairings. Our focus is thus on the commitment and opening algorithm.

• Commitment algorithm. For d ≤ D, we are given streams of the commitment key elements
(G, τG, . . . , τ dG) and of the coefficients (pi)d

i=0 of the polynomial p(X) = ∑d
i=0 piX

i to be
committed. We compute the commitment C = ∑d

i=0 piτ
iG by multiplying each coefficient-

key pair (pi, τ
iG) together and adding them to a running total. Each scalar-multiplication of

pi · τ iG is performed in linear time and constant space.

• Opening algorithm. We are given the same streams as above, and an opening location z. By
rearranging the expression for the witness polynomial w(X) = (p(X) − p(z))/(X − z),
we stream the coefficients (wi)d−1

i=0 of w(X) via Ruffini’s rule: wi := pi+1 + wi+1z. The
evaluation proof π = ∑d−1

i=0 wiτ
iG is computed in the same way as the commitment algorithm.

We discuss optimizations on the above streaming approach in Section 4.2.7.2.
Note that the recurrence relation in the opening algorithm useswj+1 to computewj , which means

that w(X) is computed from its highest-degree coefficient to its lowest-degree coefficient. In turn,
this means that the commitment key ck and the polynomial p(X) are streamed from highest-degree
to lowest-degree coefficient. The setup and commitment algorithms are agnostic to the streaming
order.
The above discussion implies the following (informal) lemma.

Lemma 4.2.4 (informal). The polynomial commitment scheme of [KZG10] has an elastic realization.

4.2.4 An elastic scalar-product protocol
A scalar-product protocol enables the prover to convince the verifier that the scalar product of two
committed vectors equals a certain target value. Many constructions of succinct arguments for
NP crucially rely on scalar-product protocols [BCCGP16; PLS19; BCG20]. The PIOP for R1CS
that we construct in Sections 4.2.5 and 4.2.6 relies on a PIOP for scalar products where the prover
has two realizations: (i) one that runs in linear-time and linear-space; and (ii) one that runs in
quasilinear-time and logarithmic-space.

Definition 3. A PIOP for scalar products is a PIOP where the verifier receives as input (F, N, u)
and has (polynomial evaluation) query access to f ,g ∈ FN , and checks with the help of the prover
that ⟨f ,g⟩ = u.

Theorem 4.2.5 (informal). For every finite field F, there is a PIOP for scalar products over F with
the following parameters:
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• soundness error O(N/|F|);
• round complexity O(logN);
• proof length O(N) and query complexity O(logN);
• a time-efficient prover that runs in time O(N) and space O(N);
• a space-efficient prover that runs in time O(N logN) and space O(logN) (with O(logN)

input passes);
• a verifier that runs in time O(logN) and space O(logN).

Below we outline the scalar-product protocol, deferring to Section 4.6 security proofs and a more
in-depth discussion of the protocol. We also note that our PIOP uses two slightly different protocols:
one for twisted scalar-products ⟨f◦y,g⟩ = u for a vectory of the form (1, ρ0)⊗(1, ρ1)⊗· · ·⊗(1, ρn−1)
where n := logN (by log we denote the ceiling of the logarithm base 2); and one for Hadamard
products f ◦ g = h. These follow from simple modifications to the scalar-product protocol.
We proceed in three steps. In Section 4.2.4.1 we describe how to reduce checking a scalar

product to checking tensor products of univariate polynomials. In Section 4.2.4.2 we describe a
tensor product protocol. In Section 4.2.4.3 we describe how to realize this latter protocol in an
elastic way.

4.2.4.1 Verifying scalar products using the sumcheck protocol

Consider two vectors f , g ∈ FN with ⟨f ,g⟩ = u as in Definition 3. The verifier has polynomial
evaluation query access to f and g (the verifier can obtain any evaluations of the polynomials
f(X) = ∑N−1

i=0 fiX
i and g(X) = ∑N−1

i=0 giX
i). The product polynomial h(X) := f(X) · g(X−1)

has ⟨f ,g⟩ = ∑N−1
i=0 figi as the coefficient of X0, because for every i, j ∈ [N ] the powers of X

associated with fi and gj multiply together to give X0 if and only if i = j. Therefore, to check the
scalar-product ⟨f ,g⟩ = u, it suffices to check that the coefficient of X0 in the product polynomial
h(X) equals u.
However, this check must somehow be performed without the prover actually computing h(X).

This is because the fastest algorithm for computing h(X) requires O(N logN) time and O(N)
space (via FFTs), which is neither time-efficient nor space-efficient. On the other hand, the scalar
product ⟨f ,g⟩ = u can be checked (directly) in time O(N) and space O(1), which leaves open the
possibility of a scalar-product protocol where the prover does better than computing h(X) explicitly
(and then running some protocol).
This issue is addressed in prior work, if the verifier can query the multilinear polynomials f̂(X)

and ĝ(X) associated to the vectors f ,g ∈ FN : we index the entries of f using binary vectors, and
fi = fb0,...,bn−1 is the coefficient of X

b0
0 · · ·X

bn−1
n−1 , where (b0, . . . , bn−1) is the binary decomposition

of i. Prior work [Tha13; XZZPS19; BCG20] yields the following lemma.

Lemma 4.2.6. LetF be a finite field andN be a positive integer; set n := logN . Let f̂(X0, . . . , Xn−1)
and ĝ(X0, . . . , Xn−1) be multilinear polynomials. The sumcheck protocol (as a reduction to claims
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about polynomial evaluations) for the claim

1
2n

∑
ω∈{−1,1}n

(f̂ · ĝ)(ω) = u

has the following properties: soundness error is O(logN/|F|); round complexity is O(logN);
prover time O(N); and verifier time O(logN).

One can use the (multivariate) sumcheck protocol of [LFKN92] to reduce ⟨f ,g⟩ = u to two
evaluation queries f̂(ρ) and ĝ(ρ), whereρ := (ρ0, . . . , ρn−1) ∈ Fn are the random verifier challenges
used in the sumcheck protocol. Crucially, the prover algorithm in the sumcheck protocol applied
to the product of two multilinear polynomials also has a space-efficient realization which runs in
time O(N logN) and space O(logN) [CMT12], which would provide an elastic solution in this
multilinear regime.
In our setting the verifier can only query the univariate polynomials f(X) and g(X) associated

with the vectors f ,g ∈ FN . Nevertheless, we follow a similar approach, by running the sumcheck
protocol on the multivariate polynomials f̂(X) and ĝ(X), producing two claimed evaluations
f̂(ρ) = u and ĝ(ρ) = u′. We check that these claimed evaluations are consistent with f and g using
evaluations of the univariate polynomials f(X) and g(X) in the tensor product protocol of the
following section.

Remark 4.2.7 (unstructured fields). Many probabilistic proofs using univariate polynomials (e.g.,
the low-degree test in [BBHR18]) require the size (of the multiplicative group) of the field F to be
smooth, so that the field contains high-degree roots of unity. In contrast, the scalar-product protocol
in this paper (indeed, all the PIOPs in this paper) work with univariate polynomials over any field F
that is sufficiently large.

4.2.4.2 A tensor-product protocol

We seek a protocol for checking the multilinear evaluation f̂(ρ) = v while having access to f(X)
(and possibly other polynomials sent by the prover) via univariate polynomial evaluations. Observe
that f̂(X) and f(X) have the same coefficients, and moreover the polynomial f̂(ρ0, X1, . . . , Xlog N−1)
(partially evaluating f̂(X) by setting X0 equal to ρ0) has the same coefficients as the polynomial
f ′(X) := fe(X) + ρ0 · fo(X). Here, fe(X) and fo(X) are the odd and even parts defined by
f(X) = fe(X2) +Xfo(X2).
This suggests a protocol where the prover sends f ′(X) to the verifier. If the verifier can check

that f ′(X) was correctly computed from f(X), then checking consistency between f(X) and
an evaluation of f̂(X0, . . . , Xlog N−1) is reduced to checking consistency between f ′(X) and an
evaluation of f̂(ρ0, X1, . . . , Xlog N−1). Repeating this reduction with every value ρj , the prover and
verifier arrive at a claim about constant-degree polynomials, which the prover can send to the verifier
and the verifier directly checks.
To check that f ′(X) is consistent with f(X), the verifier samples a random challenge point

β ∈ F× (where F× denotes the multiplicative group of F), and makes polynomial evaluation queries
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in order to check the following equations:

f ′(β2) = fe(β) + ρ0 · fo(β) = f(β) + f(−β)
2 + ρ0 ·

f(β)− f(−β)
2β . (4.1)

This is reminiscent of a reduction in [BBHR18] used to construct a low-degree test for univariate
polynomials. By the Schwartz–Zippel lemma, the check passes with small probability unless f ′(X)
was computed correctly. Noting that f̂(ρ) = ⟨f ,⊗n−1

j=0 (1, ρj)⟩, this procedure gives a (univariate)
polynomial IOP for this relation.

Definition 4. The tensor-product relationRTC is the set of tuples

(i,x,w) = (⊥, (F, N, ρ0, . . . , ρn−1, u), f)

where n = logN , f ∈ FN , u ∈ F, and ⟨f ,⊗j(1, ρj)⟩ = u.

We provide details of the tensor-product protocol in Section 4.5. In fact, the tensor check will
be useful not only as part of our scalar-product protocol, but also more generally as part of simple
checks that take place as part of our R1CS protocols (as described in Sections 4.2.5 and 4.2.6).

4.2.4.3 Elastic realization of the prover algorithm

Most complexity measures claimed in Theorem 4.2.5 follow straightforwardly from the sumcheck
protocol described in Lemma 4.2.6. We are left to describe an elastic realization of the prover
algorithm for the tensor-product protocol.
The prover’s task is to compute the polynomials f (j) for each round j ∈ [n]. Given f (j−1),

which has degree O(N/2j), the prover can compute f (j) in O(N/2j) operations via Equation (4.1).
Summing up the prover costs for j ∈ [n] gives O(N) operations. Hence a linear-time prover
realization for the tensor-product protocol is straightforward. Next, we give a space-efficient prover
realization that uses logarithmic space.
Logarithmic space. We want the prover to run in logarithmic space, given streaming access to
f and g. This is different from the time-efficient case, as the prover cannot store f (j−1) to help it
compute f (j), as this requires linear space (for small j). Instead, the prover computes each f (j) from
scratch using streams of f .
First we explain how the prover can produce a stream of f (j) efficiently, given streaming access to

f , in a similar way to streaming evaluations of multivariate polynomials and low-degree extensions
[CMT12; BHRRS20; BHRRS21]. Our contribution is to show that f (j) can be evaluated in O(N)
time and O(logN) space, saving a logarithmic factor over prior work. Then, we explain how to
perform the consistency checks.

• Streaming f (j). Let f = ∑N−1
i=0 fiX

i. We can compute f ′ = ∑N/2−1
i=0 (f2i + ρf2i+1)X i from a

stream of coefficients of f by reading each pair of coefficients f2i, f2i+1 from the stream, and
computing the next coefficient as f ′

i := f2i + ρf2i+1 of f ′. This uses a constant amount of
space: store f2i and f2i+1, and delete them right after computing f ′

i . Each coefficient of f ′

costs two arithmetic operations to compute.
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Figure 4.1: A streaming algorithm for computing the coefficients of f (j) from f (0) := f . Nodes in blue
denote the coefficients that are stored in memory at any moment.

The prover can produce the stream S(f (j)) for f (j) by applying the same idea recursively
as follows. Initialize a stack Stack consisting of pairs (j, x) ∈ [logN ] × F, and a list of
challenges ρ0, . . . , ρj . To generate S(f (j)), the prover proceeds as follows.

– If the top element in the stack is of the form (j, y) for some y ∈ F, pop it and return y.
– If the top two elements in the stack are of the form (k′, x′) and (k, x) with k = k′ (and
k < j), then pop them and push (k+1, x + ρk x

′), where x + ρk x
′ is equal to f (j)

k+1
(recall that the values are streamed from last to first index);

– Otherwise, query the stream S(f) for the next element x ∈ F and add (0, x) to the stack.

The stack Stack must be initialized with some zero-entries if N ̸= 2n (for instance, where
N is odd) for correctness, but we avoid discussing this case here for simplicity. A visual
representation of this process is displayed in Figure 4.1. This procedure produces a stream of
f (j) from a stream of f in O(N) and using logN memory space (since the stack Stack holds
at most logN elements at any time).

• Space-efficient tensor check. The verifier must perform consistency checks to make sure
that each polynomial f (j) was correctly computed from f (j−1), and similarly for g(j). This
check requires the computation of f (0), . . . , f (n−1). We compute them in parallel with a minor
modification to the algorithm illustrated in Figure 4.1. Instead of returning only when the
top of the stack has a particular index, we always output the top element in the stack. We
thus construct a streaming algorithm S(f (0), . . . , f (n−1)) that returns elements of the form
(j, x) ∈ [n]× F where x is the next coefficient of the polynomial f (j). With the above stream,
it is possible to produce all streams S(f (j)) and evaluations f (j)(β2), f (j)(+β), f (j)(−β), for
each j ∈ [n] with a single pass over S(f). In particular computing each evaluation requires
storing a single F-element; therefore, the total consistency check uses n = logN memory
and N time. This allows to check Equation (4.1), substituting f ′ = f (j), f = f (j−1) for j ∈ [n].

Based on the costs of maintaining the stacks for f and g, and computing the coefficients of q(j)

incrementally, it follows that each round takes time O(N) and space O(logN). Therefore, summing
over the O(logN) rounds, the protocol requires time O(N logN) and space O(logN).
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Remark 4.2.8. Based on the tensor product protocol in Section 4.2.4.2, one can construct a
linear-time univariate sumcheck protocol with proof length O(N) and query complexity O(logN),
which we believe could be of independent interest for future research. There are other univariate
sumcheck protocols in the literature, however these protocols cannot be used in our setting.

− The univariate sumcheck protocol in [BCRSVW19] is a 1-message PIOP with proof length
O(N) and query complexity O(1). That protocol does not seem useful here, because the
prover requires O(N logN) time and O(N) space due to the use of FFTs. In contrast, our
protocol achieves elasticity, at the cost of logarithmic round complexity and logarithmic query
complexity.

− Drake [Dra20] sketches a Hadamard product protocol based on univariate polynomials
that does not use FFTs. That protocol, also inspired by the low-degree test in [BBHR18],
may conceivably lead to a univariate sumcheck protocol that is elastic. No details (or
implementations) of the protocol are available.

4.2.5 Warm-up: an elastic non-holographic PIOP for R1CS
We describe an elastic PIOP for R1CS (Definition 2) based on the elastic scalar-product protocol in
Section 4.2.4. While not sublinear here, the verifier can be made elastic via similar techniques to
the elastic prover. We build on this construction later in Section 4.2.6, and construct a holographic
PIOP with logarithmic verifier time.

Theorem 4.2.9 (informal). For every finite field F, there is a PIOP for RR1CS over F with the
following parameters:

• soundness error O(N/|F|);
• round complexity O(logN);
• proof length O(N) and query complexity O(logN);
• a time-efficient prover that runs in time O(M) and space O(M);
• a space-efficient prover that runs in time O(M log2 N) and space O(logN) (with O(logN)

input passes);
• a time-efficient verifier that runs in time O(M) and space O(M); and
• a space-efficient verifier that runs in time O(M logN) and space O(logN) (with O(logN)

input passes).
Above, N is dimension of R1CS matrices and M the number of non-zero entries in the R1CS
matrices.

The theorem holds for any finite field F, and in particular does not require any smoothness properties
for F.
In order for the space-efficient realization of the prover to be well-defined, we must adopt a

streaming model for R1CS instances. Below we describe a choice that: (i) suffices for the theorem;
(ii) is realistic (as we elaborate shortly). After that we outline the PIOP for R1CS (and postpone
details to Section 4.7).
Streaming R1CS. The R1CS problem is captured using the following indexed relation:
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Definition 4.2.10. The indexed relationRR1CS is the set of all triples (i,x,w) =
(
(F, N,M,A,B,

C),x,w
)

where F is a finite field, A,B,C are matrices in FN×N each having at most M non-zero
entries, and z := (x,w) is a vector in FN such that Az ◦Bz = Cz.

We define streams for each of i,x,w, with A,B,C in sparse representation.

Definition 4.2.11. The stream of U is a pair
(
Srmaj(U),Scmaj(U)

)
, where Srmaj(U) denotes the

sequence of elements in the support (row, column, value) ordered in in row major (that is,
lexicographic order with row), and Scmaj(U) denotes the ordering of the ordering of the same
sequence in column major.

In our definition of streams for R1CS, we allow the computation trace (Az, Bz, Cz) of an R1CS
instance to be streamed as part of the witness.

Definition 4.2.12 (streaming R1CS). The streams associated with ((F, N,M,A,B,C),x,w) consist
of:

• index streams: streams of the R1CS matrices, in row-major and column-major: (Srmaj(A),Scmaj(A)),
(Srmaj(B),Scmaj(B)), (Srmaj(C),Scmaj(C));

• instance stream: stream of the instance vector S(x);
• witness streams: stream of the witness S(w) and of the computation trace vectors
S(Az),S(Bz),S(Cz).

The field description F, instance size N , and maximum number M of non-zero entries are explicit
inputs.

Including steams for the computation trace (Az, Bz, Cz) makes the PIOP for R1CS space
efficient even when matrix multiplication by A,B,C requires a large amount of memory and the
computation trace cannot be computed element by element on the fly given streaming access to x
and w. On the other hand, for R1CS instances defined by many natural computations, such as a
machine computation which repeatedly applies a transition function to a small state, the matrices
A,B,C are such that their non-zero entries all lie in a thin, central diagonal band (that is, they
are banded). In this case, one can generate a stream of S(Az) using the streams S(x), S(w), and
Scmaj(A). (And similarly for B and C.)
The PIOP construction. We outline the PIOP construction underlying Theorem 4.2.9. The protocol
adopts standard ideas from [BCRSVW19] and an optimization from [Gab20] for concrete efficiency.
In the time-efficient realization, the prover receives (i,x,w) as input and the verifier receives
(i,x) as input. In the space-efficient realization, these inputs are provided as streams according to
Definition 4.4.9.
In the first step of the protocol, the prover sends z to the verifier. To check that Az ◦Bz = Cz,

the verifier replies by sending a random challenge υ ∈ F× to the prover, which the prover expands
into a vector yC := (1, υ, υ2, . . . , υN−1). Multiplying each side of the equation Az ◦Bz = Cz on
the left by y⊺

C , the prover is left to convince the verifier that

⟨Az ◦ yC , Bz⟩ = ⟨Cz,yC⟩ . (4.2)
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The prover sends the value uC := ⟨Cz,yC⟩ ∈ F to the verifier. The prover will convince the verifier
that Equation (4.2) holds by reducing the two claims ⟨Az ◦ yC , Bz⟩ = uC and ⟨Cz,yC⟩ = uC to
tensor consistency checks on z, for which we can apply the tensor-product protocol in Section 4.2.4.
As a subprotocol for the first claim, the prover and verifier run a twisted scalar product protocol,

as described in Section 4.2.4. This generates two new claims, one about each of Az and Bz, leaving
us with a total of three claims:

⟨Az,yB ◦ yC⟩ = uA ,

⟨Bz,yB⟩ = uB ,

⟨Cz,yC⟩ = uC .

(4.3)

Here, yB := ⊗j(1, ρj), where ρ0, ρ1, . . . , ρn−1 ∈ F× are the random challenges sent by the
verifier during the scalar-product protocol. Setting yA := yB ◦yC , and moving the matricesA,B,C
into the right input argument of the scalar-product relation, we have

⟨z, a∗⟩ = uA where a∗ := y⊺
AA ,

⟨z,b∗⟩ = uB where b∗ := y⊺
BB ,

⟨z, c∗⟩ = uC where c∗ := y⊺
CC .

(4.4)

Although yB,yC ,yA all have a tensor structure, a∗,b∗, c∗ will not generally have the same structure,
which means that Equation (4.4) cannot be checked directly using the tensor-product protocol. Thus,
the verifier sends another random challenge η ∈ F× to the prover. Taking linear combinations of the
three claims in Equation (4.4) using powers of η yields a single scalar-product claim

⟨z, a∗ + η · b∗ + η2 · c∗⟩ = uA + η · uB + η2 · uC . (4.5)

The prover and verifier run a second twisted scalar-product protocol for Equation (4.5). This
produces two new claims

⟨z,y⟩ = uD , (4.6)
⟨a∗ + η · b∗ + η2 · c∗,y⟩ = uE , (4.7)

where y is a vector with the same tensor structure as described in Section 4.2.4, generated using
random challenges produced by the verifier.
Finally, the prover and the verifier engage in a tensor-product protocol to check Equation (4.6).

The verifier can check Equation (4.7) directly, since a∗,b∗, c∗ can be computed directly from the
R1CS matrices A,B,C, along with the random challenges used throughout the R1CS protocol.
Time-efficient prover. The prover runs in linear time if the prover algorithms for the underlying
scalar-product and tensor-product subprotocols are realized in linear time. Note that the cost of
computing a∗,b∗, c∗ is linear in the number of non-zero entries in A,B,C. As a result, the verifier
also runs in linear time.
Space-efficient prover. The scalar-product and tensor-product subprotocols used in the construction
have a space-efficient prover that runs in time O(N logN) and space O(logN), given O(logN)
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passes over streams of the subprotocol inputs. Therefore, to give a space-efficient protocol for the
entire R1CS protocol, it suffices to explain how to produce a stream for each subprotocol input.
The first twisted scalar-product protocol for ⟨Az ◦ yC , Bz⟩ = uC requires streaming access to

Az, Bz,yC . The prover has streaming access to Az and Bz as part of the streams of the R1CS
instance, so we explain how to generate a stream for the vector yC = ⊗j(1, υ2j

) ∈ FN . This stream
can be generated in O(N) field operations. Let υj := υ2j

for j ∈ [0, . . . , n − 1]. The i-th entry
of yC is

∏
j υ

bj

j , where (b0, . . . , bn−1) is the binary representation of i. Consider how the binary
representation of i changes when we subtract 1 from i. If b0 = 1 then it simply changes to 0. If i
ends with binary digits (b0, . . . , bk−1, bk) = (0, . . . , 0, 1) then these digits change to (1, . . . , 1, 0).
This means that we can get from the i-th entry of yC to the (i− 1)-th by multiplying by either υ−1

0

or υ−1
k υk−1 · · · υ0 for some k ∈ [n]. To generate the stream of yC , the prover computes υj := υ2j

for j ∈ [0, . . . , n− 1] via repeated squaring, which uses O(logN) operations and O(logN) space.
Then, the prover can generate each element of yC in O(N) operations by multiplying by the correct
quotient.
The second scalar product protocol for Equation (4.5) requires streaming access to z, a∗ = y⊺

AA,
b∗ = y⊺

BB and c∗ = y⊺
CC. The prover has access to S(z) by concatenating the witness stream S(w)

to the instance stream S(x). To generate the stream of a∗ := y⊺
AA, the prover computes the i-th

element of a∗ by multiplying each element of yA by each element of the i-th column of a∗, and
adding the result to a running total. The stream Scmaj(A) from the R1CS instance gives access to the
non-zero entries of A, column by column. For yA, instead of generating the entire stream of yA for
each i, which would cost O(N2) field operations in total, the prover generates elements of yA on the
fly, at a cost O(logN) operations per element. Since A hasM non-zero entries, the stream of a∗

costs O(M logN) operations to compute. The scalar product protocol requires O(logN) passes
over the stream, and the prover runs in O(M log2 N) time.
Combining this with the space-efficient realizations of the scalar-product and tensor-product

subprotocols, which require O(logN) passes over their inputs, we obtain a space-efficient prover
algorithm which runs in O(M log2 N) time and O(logN) space.

4.2.6 Elastic holographic PIOP for R1CS
The verifier complexity in the non-holographic PIOP for R1CS described in Section 4.2.5 is linear in
the size of the R1CS instance. To run a scalar-product protocol to check Equation (4.5), the verifier
must compute a∗,b∗, c∗ via expensive matrix-vector multiplications involving all of the non-zero
entries of the matrices A,B,C.
Below we describe how to construct a holographic PIOP for R1CS, in which the verifier’s direct

access to A,B,C is replaced by query access. In this PIOP, the prover can either run in linear-time
and linear-space or quasilinear-time and log-space, while the verifier runs in logarithmic time (and
thus logarithmic space).

Theorem 5 (informal). For every finite field F, there exists an holographic PIOP forRR1CS over F
with the following parameters:
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• soundness error O(M/|F|);
• round complexity O(logM);
• proof length O(M) and query complexity O(logM);
• an indexer that runs in time O(M) and space O(M);
• a time-efficient prover that runs in time O(M) and space O(M);
• a space-efficient prover that runs in time O(M log2 M) and space O(logM) with O(logM)

input passes.
• a verifier that runs in time O(|x|+ logM) (and thus space O(|x|+ logM)).

Here, M is the number of non-zero entries in the R1CS matrices.

High-level overview. Our protocol follows the strategy in [BCG20]. The main difference between
the holographic PIOP here and the non-holographic PIOP in Section 4.2.5 is that the prover and
verifier use an alternative strategy to check Equation (4.4). The verifier does not compute a∗

(respectively, b∗, c∗) to check that ⟨z, a∗⟩ = uA (same for B,C, cf. Equation (4.4)). Instead, the
prover sends additional oracle messages to the verifier, which correspond to partial computations of
the scalar product; the verifier checks these via multiple auxiliary subprotocols. The key subprotocols
are a look-up protocol and an entry-product protocol.
Our main contribution is a space-efficient realization of these subprotocols, which leads to a space-

efficient holographic R1CS protocol. The main challenge is to show that it is possible to generate
the prover’s extra messages in a space-efficient manner from R1CS streams (Definition 4.4.9). This
places particular restrictions on the design of a space-efficient look-up protocol, which we explain
how to deal with in Section 4.2.6.1. We explain how to construct a space-efficient entry-product
protocol in Section 4.2.6.2.
Achieving holography. For a matrix U ∈ {A,B,C}, consider the vectors rowU , colU , valU ∈ FM

such that, for every i ∈ [M ], valU,i ∈ F is the (rowU,i, colU,i)-entry of U , ordered column-major. We
assume that the matrices A,B,C have the same support, which means that row := rowA = rowB =
rowC and col := colA = colB = colC . This can be achieved by suitably padding valA, valB, valC
with zeroes, and increases the length of row, col, val by at most a factor of 3.
The prover constructs the following vectors and sends them to the verifier as oracle messages:

r∗
A := yA|row , r∗

B := yB|row , r∗
C := yC |row , z⋆ := z|col , (4.8)

where r∗
A is the vector whose i-th element is the rowi-th element of a∗, and similarly for r∗

B, r∗
C , z⋆.

That is, yA|row := (yA,i)i∈row. One proceeds similarly for r∗
B, r∗

C . Using Equation (4.8), Equa-
tion (4.3) can be reformulated as:

⟨r∗
A ◦ valA, z⋆⟩ = uA ,

⟨r∗
B ◦ valB, z⋆⟩ = uB ,

⟨r∗
C ◦ valC , z⋆⟩ = uC .

(4.9)

Then, the verifier must check the three claims of Equation (4.9), and that r∗
A, r∗

B, r∗
C , z⋆ were correctly

computed. The prover and verifier run a twisted scalar-product protocol for the three claims. To
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check that r∗
A, r∗

B , r∗
C and z⋆ were correctly computed, the prover and verifier run a look-up protocol,

which we describe in more detail in Section 4.2.6.1.
Elastic realization. The twisted scalar-product protocol and look-up protocol are elastic protocols
with both time and space-efficient prover realization, and a succinct verifier. Our holographic PIOP
for R1CS inherits a time-efficient prover and succinct verifier from these subprotocols. However, to
give a space-efficient prover realization, we must show that the prover can produce streams of r∗

A, r∗
B ,

r∗
C , using input R1CS streams and the verifier challenges. The R1CS streams Scmaj(A), Scmaj(B) and
Scmaj(C) of thematricesA,B andC produce elements of the form (i, j, e) ∈ [N ]×[N ]×F. Streaming
only the first element of the triple produces the stream Scmaj.row(A) = Scmaj.row(B) = Scmaj.row(C) of
the vector row (we recall that we assumed the support of A,B,C to be the same, and that row is
ordered column-major).
Similarly, the second element of the triple induces a stream Scmaj.col(A) of the vector col, which

is also equal to Scmaj.col(B) and Scmaj.col(C), again since the support is the same. Additionally,
Scmaj.col(A) is non-increasing: the column indices, in the dense representation of the matrix, are
sorted in decreasing order when streamed column-major. As a result, the entries of z⋆ can be
produced one by one in O(1) space from streams S(z) and Scmaj(A): examine each entry of
Scmaj.col(A), advance forwards z if the column changed, and output that same entry as long as the
next element of Scmaj.col(A) stays unchanged.
The streams Scmaj.val(A) (respectively, Scmaj.val(B) and Scmaj.val(C)) are defined by projecting

onto the third element of the streams Scmaj(A) (respectively, Scmaj(B) and Scmaj(C)), and produce
the streams for the vectors valA, valB, and valC in column-major order.
For r∗

A, r∗
B and r∗

C , recall that yB = ⊗j(1, ρj), yC = ⊗j(1, υ2j

), and yA = yB ◦ yC =
⊗j(1, ρjυ

2j

). Thus, any entry of r∗
B or r∗

C (and hence r∗
A) can be computed in O(logN) operations

from υ ∈ F× and ρ0, . . . , ρn−1 ∈ F×.

4.2.6.1 Lookup protocol

Lookup protocols enable the prover to convince the verifier that all of the entries in a vector g∗ ∈ FM

appear as entries of another vector g ∈ FN according to the data stored in the address vector
addr ∈ [N ]M , i.e.:

{(g∗
i , addri)}i∈[M ] ⊆ {(gj, j)}j∈[N ] .

We denote this condition by “(g∗, addr) ⊆ (g, [N ])”. In order to verify that r∗
U and z⋆ were correctly

computed, the verifier must check four lookup relations:

(r∗
A, row) ⊆ (yA, [N ]) ,

(r∗
B, row) ⊆ (yB, [N ]) ,

(r∗
C , row) ⊆ (yC , [N ]) ,

(z⋆, col) ⊆ (z, [N ]) .

(4.10)

Note that yA = yB ◦ yC , and r∗
A, r∗

B , r∗
C come from looking up the entries of yA, yB and yC at

the indices specified by row. Therefore, instead of checking that (r∗
A, row) ⊆ (yA, [N ]), it suffices
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to check the Hadamard product relation yA = yB ◦ yC . This can be done using an extension of the
twisted scalar product protocol. This leaves four look-up relations to check.
Polynomial identities for look-up relations. To verify look-up relations, we use the polynomial
identity from [GW20] and construct a PIOP to verify it via an approach similar to [BCG20].
We reduce the lookup conditions

(
r∗

U , row
)
⊆

(
yU , [N ]

)
and

(
z⋆, col

)
⊆

(
z, [N ]

)
to simpler

inclusion conditions such as f∗ ⊆ f , where each entry in the vector f∗ equals some entry
in the vector f . To do so, for each matrix U ∈ {A,B,C}, we algebraically hash the pairs
(z⋆, col), (z, [N ]), (r∗

U , row), (yU , [N ]) into vectors z⋆ + η · col (and similarly for the other pairs)
in parallel, by taking a random linear combination of each pair using the same random challenge
η ∈ F× from the verifier. Let sort(g, f) denote the function that sorts the entries of g || f according
to order of appearance in f .

Lemma 4.2.13 ([GW20, Claim 3.1]). Let f∗ ∈ FM and f ∈ FN . Then f∗ ⊆ f if and only if there
exists a witness w ∈ FM+N such that the equation below in F[Y, Z] is satisfied:

M+N−1∏
j=0

(
Y (1+Z)+wj+1+wj ·Z

)
= (1+Z)M

M−1∏
j=0

(Y +fj)
N−1∏
j=0

(
Y (1+Z)+fj+1+fj ·Z

)
(4.11)

where indices are taken (respectively) modulo M +N , N . If f∗ ⊆ f then w := sort(f∗, f) is a valid
witness.

The strategy in the look-up protocol is for the prover to computew and prove that Equation (4.11)
is satisfied, for every look-up relation that needs to be checked. The prover computes w and sends it
to the verifier. Then, the verifier sends random challenges υ, ζ ∈ F× to the prover, who computes
each of the three product expressions in Equation (4.11), evaluated at υ and ζ:

e0 =
M+N−1∏

i=0

(
υ(1 + ζ) + wi+1 mod M+N + wi · ζ

)
,

e1 =
M−1∏
i=0

(υ + f ∗
i ),

e2 =
N−1∏
i=0

(
υ(1 + ζ) + fi+1 mod N + fi · ζ

)
.

(4.12)

The prover then sends the three product values e0, e1, e2 to the verifier. The verifier checks that
Equation (4.11) holds at υ and ζ by checking that e0 = (1 + ζ)Me1e2, and uses three entry-product
subprotocols, which we describe in Section 4.2.6.2, to check that e0, e1, e2 were correctly computed
from f∗, f , and w.
This approach requires polynomial query access to f∗

⟳, the cyclic right-shift of f∗, since the
inputs to the entry product protocols depend on f∗

⟳. The look-up protocol in [BCG20] uses a shift
subprotocol to check this condition. By contrast, we avoid this additional step by considering instead
the lookup protocol over vectors with a leading zero coefficient. Queries on the right-shift f∗

⟳ can be
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related to queries on f∗ with a single evaluation query, since the leading coefficient is known in
advance. We explain this optimization in Section 4.8.
Elastic realization. As shown in prior work [BCG20], if the underlying entry product protocols have
a linear-time prover realization and succinct verifier, then the same is true for the look-up protocol.
We focus on explaining a space-efficient prover realization of the look-up protocol. Assuming that
the entry-product protocol has a suitable space-efficient realization, it suffices to explain how to
realize streaming access to look-up protocol vectors f∗, f ,w using previously derived streams.
First we consider (z⋆, col) and (z, [N ]). Each pair is algebraically hashed into vectors f∗ and f .

One can produce the streams S(f∗) and S(f) from the streams S(z⋆),Scmaj.col(A),S(z),S([N ]), by
applying the same algebraic hash function to pairs of entries on-the-fly. The same applies to input
pairs (r∗

U , row) and (yU , [N ]).
Next we explain how to generate a stream of w = sort(f∗, f) using small space. This is more

challenging because storing the entire vectors f∗ and f and sorting them requires space O(M +N).
In the case of inputs (z⋆, col) and (z, [N ]), as col is a non-decreasing sequence, it turns out that
Scmaj.col(A) is already sorted into a suitable order, and it suffices to merge the streams of f∗ and f
together to produce a stream for w. The same is not true for row, which is not necessarily ordered.
However, the vector row in non-decreasing form is already available from the inputs: it can be
constructed from Srmaj(A), the sparse representation of the matrix in row-major order. To apply the
same idea to input pairs r∗

U and row, we build Srmaj.row(A), which is non-decreasing, and use it to
produce the stream of the sorted vector for the lookup protocol. We describe our look-up protocol in
more detail in Section 4.8.2.1.
On alternative proof techniques for look-up relations. Prior work such as [Set20] checks look-up
relations using an offline memory-checking [BEGKN91; CDDGS03] abstraction in which the prover
shows that g∗ was correctly constructed entry by entry from g using read and write operations. This
leads to an alternative polynomial identity replacing Equation (4.25), which uses a list of timestamps
recording when a particular element of g∗ is read from g. In this case though, it is unclear how to
generate the timestamps required by this method without storing linear memory. While in [GW20]
the polynomial relation is independent from the ordering of the matrix (row-major or column-major),
the memory-checking approach requires random access to the vector row in order to access the last
visited timestamps, which cannot be done in small space.

4.2.6.2 Entry product protocol

Let f = (f0, . . . , fN−1) ∈ FN such that e = f0 · · · fN−1. We describe an entry-product protocol,
building on [BCG20, Sec. 6.4], that reduces an entry product statement

∏
i fi = e to a single

scalar-product relation, using polynomial evaluation query access to f .
Compared with the prior work, our work exploits the structure of univariate polynomials to

simplify the scheme and remove the need for cyclic-shift tests [BCG20, Sec. 6.3]. We propose
additional optimizations in Section 4.2.7 which improve the concrete efficiency of our protocol.
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High-level overview. Let f be as above, with fN−1 = 1.6 Let ψ ∈ F× and let y′ = (1, ψ, . . . , ψN−1).
Let g be the vector of partial products of the entries of f , that is:

g := (∏
i≥0 fi,

∏
i≥1 fi, . . . , fN−2fN−1, fN−1) (4.13)

Then, observe that:

⟨g ◦ y′, f⟳⟩ =
N−1∑
i=1

gifi−1ψ
i + g0fN−1

=
N−1∑
i=1

gi−1ψ
i + e+ gN−1ψ

N − gN−1ψ
N

= ψg(ψ) + e− ψN .

(4.14)

In the entry product protocol, the prover sends the oracle g to the verifier, and the verifier replies
with the random challenge ψ ∈ F×, and makes a polynomial evaluation query g(ψ) = v. Then, both
parties engage in a twisted scalar product protocol to verify Equation (4.14). Polynomial evaluation
queries f⟳(x) for x ∈ F made as part of the twisted scalar-product protocol can be computed using
evaluation queries f(x). To do this, note that f⟳(x) = xf(x) − xN + 1 since fN−1 = 1; thus the
verifier can compute f⟳(x) from f(x) in O(logN) operations. We give a formal description of the
entry product protocol in Section 4.8.3.
Elastic realization. As with other subprotocols, the entry-product protocol inherits a linear-time
prover realization and succinct verifier from the underlying twisted scalar-product protocol.
To give a space-efficient realization, it suffices to show that g can be generated element-by-

element given access to the stream S(f): the partial products of elements of f can be produced by
streaming each successive element of S(f) and multiplying it into a running product. Note that the
partial products in g are computed from the last entry to the first, starting with fN−1. This is because
streams of polynomials move from the highest-order coefficient to the lowest to be compatible with
space-efficient commitment algorithms, as explained in Section 4.2.3.

4.2.7 Implementation and optimizations
We implemented the elastic SNARKs from Sections 4.2.5 and 4.2.6 by leveraging and extending
arkworks [ark], a Rust ecosystem for developing and programming with zk-SNARKs. Our
implementation is called ark-gemini, and is open-sourced as part of arkworks. The code structure
follows the modular design of our construction, which involves combining an elastic polynomial
commitment scheme and an elastic PIOP. We deem each of the components of our implementation
(the streaming infrastructure, the commitment scheme, and the subprotocols for sumcheck, tensor
check, entry product, and lookup) to be of independent interest for future work on space-efficient
SNARKs. Below, we provide an overview of the streaming infrastructure and the algorithmic
optimizations that we adopted in the implementation.

6 This restriction is merely didactical. Given any f ∈ FN , representing the coefficients of a degreeN−1 polynomial,
it is easy to simulate polynomial-evaluation query access to (f , 1) using the polynomial f(X) + XN+1. For any
evaluation query in x ∈ F, forward evaluation queries to f and add xN+1 before returning. This costs O(log N) F-ops.
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4.2.7.1 Streaming infrastructure

We extend the arkworks framework with support for streams in order to express space-efficient
protocols. A stream is a wrapper over iter::Iterator, the Rust interface for iterators. Streams
can be restarted and iterated over multiple times. We use Rust’s borrow abstractions to produce
streams that avoid copying elements whenever possible: a stream either returns a field element, or a
reference to a field element. In other words, we have a zero-copy interface where data structures
do not require to be copied from memory, unless really needed. In practice, input streams can be
instantiated with arrays (e.g., memory-mapped files) or a concurrent data stream downloaded from
the web, but could be potentially extended to new inputs. Streams can be composed.
Baum, Malozemoff, Rosen, and Scholl [BMRS21] also study streaming provers, and provide a

Rust implementation relying on asynchronous programming features of Rust. Rust’s asynchronous
streams are also iterators, and thus our approach can be seen as a generalization of their framework.

4.2.7.2 Optimizations

We leverage several algorithmic optimizations that improve the concrete performance of our scheme.
Elastic provers. Our elastic SNARK allows switching from the space-efficient implementation
to the time-efficient implementation with specified memory threshold. For example, in the scalar
product, if the prover has enough memory, then it can transcribe the intermediate prover state and
proceed with the time-efficient implementation of the prover function. This allows for a more
fine-grained control of the space complexity of the prover, and to benefit from the speed-up of the
time-efficient prover for the last few rounds of the protocol. Since the prover’s messages are the
same in both modes, this switch does not affect the end result.
Batch tensor-product protocols. As discussed in Section 4.2.4.2, we use a tensor product protocol
to check the multivariate evaluation claims resulting from the sumcheck protocol. In our holographic
PIOP, we batch multiple tensor product claims in parallel using the same randomness. Moreover,
the polynomials in each round can be batched into a single polynomial commitment per round of the
tensor product protocol.
Batch [KZG10] for multiple points and polynomials. Boneh et al. [BDFG20] proposed an
optimization of [KZG10] to batch evaluation proofs for a set of evaluation points over different
polynomials, exploiting the structure of univariate polynomials. We adapt and implement these
optimizations to our elastic polynomial commitment scheme. In particular, while our tensor product
protocol requires the verifier to query different polynomials at different evaluation points, evaluation
proofs are batched into a single group element. This makes the concrete size of the evaluation
proof smaller than for multi-linear approaches such as [ZGKPP17b; ZGKPP18], which require a
logarithmic-size evaluation proof. We elaborate on this in Section 4.9.
Offline memory-checking. As discussed in Section 4.2.6.1, the offline memory-checking protocol
is not compatible with space efficiency, because the computation of timestamps (in general) requires
random-access over the sparse representation of the R1CS matrices A,B,C. Nevertheless, we
observe that in the particular implementation of our protocol, the offline memory checking can
be used to prove the lookup for

(
z⋆

U , colU
)
⊆

(
z, [N ]

)
. We view the offline memory-checking as



4.2. TECHNIQUES 129

an optimization because it is concretely more efficient than the plookup protocol. That is because
the sender in the plookup protocol must send additional commitments to the verifier; whereas, the
commitments in the offline memory-checking can be precomputed by the indexer. We elaborate on
this in Section 4.8.2.2.

4.2.8 Evaluation
We run extensive benchmarks for Gemini (both preprocessing and non-preprocessing SNARKs),
over an Amazon AWS EC2 c5.9xlarge instance, with 36 cores. We use the Rust library rayon for
multi-threading, and use parallelism for multi-scalar multiplications and for the batched sumcheck in
the preprocessing SNARK (multiple sumcheck instances are run in parallel). We select BLS12-381
as the underlying pairing-friendly elliptic curve, but note that we do not rely on the smoothness of
this curve’s prime field (see Remark 4.2.7).
We benchmark instance sizes N from 218 to 235 (withM = N ). These sizes are much larger

than what is commonly reported in the literature, and showcase the behavior of our SNARK over
very large instances.
Proving space. Gemini supports proving instances of arbitrary sizes. Figure 4.2 shows that memory
usage remains constant as instance size increases: it is below 1GBmemory for the non-preprocessing
SNARK, and slightly more than 1GB for the preprocessing SNARK. Two main parameters affect
memory usage.

• The memory budget allocated for multi-scalar multiplication (MSM). Algorithms for MSM
(e.g., Pippenger’s algorithm) achieve improved time efficiency at the expense of large
space usage (linear in the number of scalar multiplications), which precludes an elastic
implementation. In practice, to maintain space efficiency, it is useful to allocate a constant-size
buffer, and apply the MSM algorithm over chunks of the inputs, accumulating the final result.
We set the buffer to be of size 220.

• The sumcheck round threshold, after which the elastic prover transcribes the sumcheck
intermediate state and proceeds with the time-efficient algorithm. We set the threshold to 22:
the last 22 rounds of the sumcheck protocol are performed with the time-efficient prover.

The memory usage is obtained reading the value of resident data and stack memory at regular
intervals of 10 seconds on /proc/[pid]/statm.
The overall memory consumption appears constant, suggesting that the above parameters

dominate the logarithmic factor in space complexity. The difference in memory consumption
between the two SNARKs is explained by the batch sumcheck (used solely in the preprocessing
SNARK), where multiple instances are transcribed in memory at the same time.
Our benchmarks stop at 235 for the non-preprocessing SNARK and the 232 for the preprocessing

one, but the upper limit in our benchmarks is arbitrary: as long as it is possible to generate the input
streams for the time prover, then prover can terminate while keeping memory usage small. Prior
work on preprocessing SNARKs for R1CS provide benchmarks for sizes up to 220. When running
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benchmarks ourselves to compare our work with previous literature such as Marlin7, we were unable
to proceed beyond size 224 due to out of memory crashes. This is due to the kernel’s OOM (Out
Of Memory) Killer process that intervenes forbidding new allocations and terminating the prover
before the end of its execution.8
Proving time. The elastic prover switches to the time-efficient mode if the intermediate state fits
within the memory budget. In particular, when the instance size is small enough, the elastic prover
runs in the time-efficient mode only. The most time expensive operations in the protocol are the
cryptographic operations, namely the multi-scalar multiplications. For this reason, in Figure 4.2,
where we show the running times for for different values ofN , withM = N , it is possible to observe
a graph that evolves almost linearly. The squared logarithmic factor does not influence noticeably
the overall runtime (as far as we were able to measure within the window of instance sizes of our
benchmarks).
Proving cost in dollars. The preprocessing SNARK prover spends about 7.6 × 10−5 seconds
per gate. Using the AWS estimator (on-demand hourly cost 1.836 USD obtained from https://

calculator.aws), we conclude that the cost for the preprocessing SNARK is about 2.30×10−5 USD
per gate. In particular, the estimated cost for instance size 231 is 89 USD. In contrast, for this
instance size, DIZK [WZCPS18] incurs a much higher cost at around 500 USD; this is because
DIZK runs the prover on 20 more powerful and expensive machines (r3.8xlarge EC2 instances
with on-demand hourly cost 2.656 USD) for about 10 hours. In the case of non-preprocessing
SNARK, the cost is lower and around 40 USD for the size 235.
Proof size and verification time. We measure the proof size and verification time for the
preprocessing SNARK. The verifier can cheaply verify proofs for large instances since it does not
read the instance (instead, it uses a short verification key derived from the instance). For instance
sizes ranging from 212 to 235, the proof size is about 13− 27 KB and the verification time is about
16− 30 ms.

7cf. https://github.com/arkworks-rs/marlin.
8We observe that the program will still crash if we instruct the kernel to allow for memory over commitment. See

vm.overcommit=2 at https://www.kernel.org/doc/Documentation/vm/overcommit-accounting.
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Figure 4.2: Running time (above) and memory usage (below) for the elastic prover in the preprocessing
protocol (blue) and the non-preprocessing protocol (red), for different R1CS sizes with N = M . The
black squares indicate the size for which the time-efficient prover triggers an out-of-memory crash (it
uses too much memory).
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4.3 Preliminaries

4.3.1 Notation
For integers a, b with a < b integers, let [a, b] denote the set {a, . . . , b − 1}; [b] will be used as
a shorthand for [0, b]. Let log : N → Z denote the base-2 logarithm function, rounded up to the
nearest integer. Let F be a field; and let F× denote its invertible elements. For a vector a over F of
length N , let ai denote its i-th entry. Let a ◦ b denote the Hadamard product of vectors a and b;
a · b their dot product and a⊗ b their tensor product. We view vectors both as an element of FN as
well as a polynomial in F[X] of degree at most N . Given a vector a ∈ FN and an indexing vector
idx ∈ [N ]M , let a|idx ∈ FM be the vector whose i-th element is aidxi

. We will occasionally explicitly
refer to the polynomial associated with a vector a ∈ FN using the notation a(X) ∈ F[X].
Algorithms are written in calligraphic math font. We use standard big O notation for asymptotic

operations over field elements. We use negl(λ) as a shorthand for negl(λ) = λ−ω(1). We use Oλ to
describe big O notation in which λ is considered a constant. This will be useful when describing the
cost of cryptographic operations, which depend on a security parameter λ.
We use S(a) to denote the stream of a. This is defined in Page 110 for vectors and matrices, and

in Definition 4.4.9 for R1CS instances.

Definition 4.3.1. Let v ∈ FN . We denote with v⟳ ∈ FN the right rotation, i.e v⟳ := (vN , v1, . . . , vN−1).

Definition 4.3.2 (multilinear polynomials). Let f ∈ FN , with N = 2n. Write f̂(X0, . . . , Xn−1) for
the multilinear polynomial whose coefficients are the entries of f , ordered so that fi0...in−1 is the
coefficient of X i0

0 · · ·X
in−1
n−1 .

Definition 4.3.3 (odd and even parts). Let f(X) ∈ F[X]. Let fe(X), fo(X) ∈ F[X] be the even and
odd parts of f(X) i.e. the unique polynomials such that f(X) = fe(X2) +Xfo(X2).

4.3.2 Polynomial IOPs
A polynomial IOP [CHMMVW20; BFS20] over a field family F for an indexed relation R is
specified by a tuple

IOP = (k, o, d, I,P ,V)

where k, o, d : {0, 1}∗ → N are polynomial-time computable functions and I,P ,V are three
algorithms known as the indexer, prover, and verifier. The parameter k specifies the number of
interaction rounds, o specifies the number of polynomials in each round, and d specifies degree
bounds on these polynomials.
In the offline phase (“0-th round”), the indexer I receives as input a field F ∈ F and

an index i for R, and outputs o(0) polynomials p(0)
0 , . . . ,p(0)

o(0)−1 ∈ F[X] of degrees at most
d(|i|, 0, 1), . . . , d(|i|, 0, o(0)) respectively. Note that the offline phase does not depend on any
particular instance or witness, and merely considers the task of encoding the given index i.
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In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P
receives (F, i,x,w) and the verifier V receives (F,x) and oracle access to the polynomials output
by I(F, i). The prover P and the verifier V interact over k = k(|i|) rounds.
For j ∈ [k], in the j-th round of interaction, the verifier V sends a message ρj ∈ F× to the prover

P; then the prover P replies with o(i) oracle polynomials p(j)
0 , . . . ,p(j)

o(j)−1 ∈ F[X]. The verifier
may query any of the polynomials it has received any number of times. A query consists of a location
z ∈ F for an oracle p(j)

i , and its corresponding answer is p(j)
i (z) ∈ F. After the interaction, the

verifier accepts or rejects. The function d determines which provers to consider for the completeness
and soundness properties of the proof system. In more detail, we say that a (possibly malicious)
prover P̃ is admissible for IOP if, on every interaction with the verifier V , it holds that for every
round j ∈ [k] and oracle index i ∈ [o(j)] we have deg(p(j)

i ) ≤ d(|i|, j, i). The honest prover P is
required to be admissible under this definition.

Remark 4.3.4 (non-oracle messages). We also allow the prover in an IOP to arbitrary messages that
the verifier will simply read in full (without making any queries), at any point in the interaction, as in
a typical interactive proof. We refer to such messages as non-oracle messages, to differentiate them
from the oracle messages to which the verifier has query access. These non-oracle messages can
typically be viewed as degenerate cases of oracle messages, and we use them in protocol descriptions
for ease of exposition.

We say that IOP has perfect completeness and soundness error ϵ if the following holds.

• Completeness. For every field F ∈ F and index-instance-witness tuple (i,x,w) ∈ R,
the probability that P(F, i,x,w) convinces VI(F,i)(F,x) to accept in the interactive oracle
protocol is 1.

• Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and admissible prover
P̃ , the probability that P̃ convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is
at most ϵ.

The proof length l is the sum of all degree bounds in the offline and online phases, l(|i|) :=∑k(|i|)−1
j=0

∑o(i)−1
i=0 d(|i|, j, i).

The query complexity q is the total number of queries made by the verifier to the polynomials.
This includes queries to the polynomials output by the indexer and those sent by the prover.
All PIOPs that we construct achieve the stronger property of knowledge soundness (against

admissible provers). We define both of these properties below.
Knowledge soundness. We say that IOP has knowledge error ϵ if there exists a probabilistic
polynomial-time extractor E for which the following holds. For every field F ∈ F , index i, instance
x, and admissible prover P̃ , the probability thatEP̃(F, i,x, 1l(|i|)) outputsw such that (i,x,w) ∈ R
is at least the probability that P̃ convinces VI(F,i)(F,x) to accept minus ϵ. Here the notation EP̃

means that the extractor E has black-box access to each of the next-message functions that define
the interactive algorithm P̃ . (In particular, the extractor E can “rewind” the prover P̃ .) Note that
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since E receives the proof length l(|i|) in unary, E has enough time to receive, and perform efficient
computations on, polynomials output by P̃ .
Additional properties. All of our PIOP protocols will satisfy the following additional properties:

– Public coins: IOP is public-coin if each verifier message to the prover is a uniformly random
string of some prescribed length (or an empty string). Hence the verifier’s randomness is
its messages ρ0, . . . , ρk−1 ∈ F× and possibly additional randomness ρk ∈ F× used after the
interaction. All verifier queries can be postponed, without loss of generality, to a query phase
that occurs after the interactive phase with the prover.

– Non-adaptive queries: IOP is non-adaptive if all of the verifier’s query locations are solely
determined by the verifier’s randomness and inputs (the field F and the instance x).

Polynomial IOPs of proximity.
An polynomial IOP of proximity is similar to a PIOP, with the difference that the verifier V

has query access to the candidate witness w (we assume that w can be parsed as a polynomial
or polynomials) as well as (I(F, i),p(0)

0 , . . . ,p(k−1)
o(k)−1). Completeness and soundness properties of

PIOPPs are defined similarly to those of PIOPs, except that V has query access to the polynomials
in the witness w.
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4.4 Streaming model
We provide a formal model of streams and streaming algorithms.

Definition 4.4.1. A stream is a sequenceK ∈ ΣI , where Σ is a finite alphabet, and I is a well-ordered
set.

Definition 4.4.2 (streaming oracle). Let K be a stream over the alphabet Σ and index I . The
streaming oracle S(K) of K behaves as follows:

• On inputs start and a session numberL ∈ N, the oracle creates or resets a counter iL ∈ I∪{⊥}
which is initially set to the first element of I .

• On inputs next and a session number L ∈ N, if iL ∈ I , then the oracle returns kiL
∈ U , and

updates iL to the next element of I (or to ⊥ if iL is equal to the last element of I). If iL = ⊥
then the oracle returns ⊥.

Remark 4.4.3. The use of session numbers L allows the same stream to be accessed in different
positions by multiple algorithms simultaneously. However, to avoid an unrealistic streaming model
in which algorithms have arbitrary random access to streamed data, in this work, no stream will be
accessed through more than a logarithmic number of sessions simultaneously.

If v is an array whose elements have a clear ordering in context, then we simply say that A
has streaming oracle access to v. We now introduce the streaming algorithm, which has access to
streaming oracles in a specific order and produce an output stream.

4.4.1 Streaming algorithms
Definition 4.4.4 (streaming algorithm). We say thatA is a streaming algorithm over Σ ifA receives
no inputs, but has access to various streaming oracles S(K1), . . . ,S(Kl) over some alphabet Σ
through start and next commands. In addition, A produces output upon receiving the command
next, which takes one element of Σ as input. We write O = A(S(K1), . . . ,S(Kl)) to show that O is
the entire output stream of A.

It is possible to compose streaming algorithms so that one stream algorithm has streaming access
to the output of another stream algorithm.

Definition 4.4.5 (composing streaming algorithms). Let A and B be streaming algorithms. Suppose
that B takes inputs S(K1), . . . ,S(Kl). We write A(B) when A interacts with B as follows:

• when A sends a start command to B, the execution of B is reset, and A also sends start
commands to each of S(K1), . . . ,S(Kl);

• A forwards any start or next command from B to the correct streaming oracle, and returns
the output to B;
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• on input next, the execution of B yields the next outputs and returns it to A.

Lemma 4.4.6. If A is a streaming algorithm with time complexity tA, space complexity sA, and kA
input passes, and B is a streaming algorithm with time complexity tB, space complexity sB, and kB
input passes, then A composed with B has time complexity tA + kAtB, space complexity sA + sB,
and kAkB input passes.

4.4.2 Streaming R1CS
We introduce the streaming R1CS model. We begin by recalling the indexed R1CS relation.

Definition 4.4.7. The indexed relationRR1CS is the set of all triples (i,x,w) =
(
(F, N,M,A,B,

C),x,w
)

where F is a finite field, A,B,C are matrices in FN×N each having at most M non-zero
entries, and z := (x,w) is a vector in FN such that Az ◦Bz = Cz.

We define a streaming R1CS instance in the terms of the sparse representation of the R1CS matrices
A,B and C.

Definition 4.4.8. The stream of U is a pair
(
Srmaj(U),Scmaj(U)

)
, where Srmaj(U) denotes the

sequence of elements in the support (row, column, value) ordered in in row major (that is,
lexicographic order with row), and Scmaj(U) denotes the ordering of the ordering of the same
sequence in column major.

Definition 4.4.9 (streaming R1CS). The streams associated with ((F, N,M,A,B,C),x,w) consist
of:

• index streams: streams of the R1CS matrices, in row-major and column-major: (Srmaj(A),Scmaj(A)),
(Srmaj(B),Scmaj(B)), (Srmaj(C),Scmaj(C));

• instance stream: stream of the instance vector S(x);
• witness streams: stream of the witness S(w) and of the computation trace vectors
S(Az),S(Bz),S(Cz).

The field description F, instance size N , and maximum number M of non-zero entries are explicit
inputs.

The streaming R1CS relation naturally captures other models of computation, such as R1CS
automata.

Definition 4.4.10 (R1CS automata). Let F be a finite field, T ∈ N be a computation time, and k ∈ N
a computation width. We consider execution traces f ∈ (Fk)T . Each state f [t] ∈ Fk represents the
state of the computation at time t ∈ [T ].

An R1CS automaton is specified by matrices A,B,C ∈ Fk×2k that define constraints between
different time steps, and a set of boundary constraints B ⊆ [T ]× [k]× F.

An execution trace f is accepted by the automaton if:
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• f satisfies the R1CS time constraints i.e. ∀t ∈ [T ], it holds that Af [t, t+ 1] ◦Bf [t, t+ 1] =
Af [t, t+ 1];

• f satisfies the R1CS boundary conditions i.e. ∀(t, j, α) ∈ B it holds that f [t]j = α.

Theorem 4.4.11 (automata to streaming R1CS). Let (F, k, T, A,B,C,B) be an R1CS automata
instance. Then there is an R1CS instance which verifies the same computation as (F, k, T, A,B,C,B),
and whose streams, for the streaming R1CS model, can be produced in time O(k2 log k) and space
O(k2).

Further, the witness streams can be produced from f in O(k2) operations per element of Fk,
and using space O(k2).
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4.5 Tensor-product protocol
We introduce a tensor-product checking protocol which is used in our constructions. Then we show
how to batch multiple tensor-product checks, which leads to better performance than running the
basic protocol multiple times.

4.5.1 Basic tensor-product protocol
The tensor-product protocol checks the following relation.

Definition 4.5.1. The tensor-product relationRTC is the set of tuples

(i,x,w) = (⊥, (F, N, ρ0, . . . , ρn−1, u), f)

where n = logN , f ∈ FN , u ∈ F, and ⟨f ,⊗j(1, ρj)⟩ = u.

Theorem 4.5.2. For every finite field F and positive integer N , there is a PIOP for the indexed
relationRTC that supports instances over F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(1) passes

O(logN) F-ops O
(

N
|F|

)
O(logN) O(logN) O(logN)

We prove Theorem 4.5.2 with the following construction.

Construction 1. We construct a PIOP for the indexed relationRTC. The prover P takes as input an
index i = ⊥, instance x = (F, N, ρ0, . . . , ρn−1, u), and witness w = f ; the verifier V takes as input
the index i and the instance x.

• Write f (0)(X) = f(X).

• For j ∈ [n], the prover P computes

f (j)(X) := f (j−1)
e (X) + ρj−1 · f (j−1)

e (X) .

where f (j)(X) = f (j−1)
e (X2)+Xf (j)(X2)o. The prover sends the oracle messages f (1), . . . , f (n−1)

to the verifier.

• The verifier V samples a challenge β ← F× uniformly at random and makes the following
evaluation queries for j ∈ [n]:

e(j) := f (j)(β), ē(j) := f (j)(−β), ê(j) := f (j+1)(β2), (4.15)

Skip ê(n) and artificially set ê(n) := u.
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• check that, for all j ∈ [n]:

ê(j) = e(j) + ē(j)

2 + ρj ·
e(j) − ē(j)

2β , (4.16)

Lemma 4.5.3. Construction 1 has perfect completeness.

Proof. Suppose that ⟨f ,⊗j(1, ρj)⟩ = u. We argue that the verifier’s consistency checks of
Equation (4.16) are satisfied. Firstly, indexing f ∈ FN by i0, . . . , in−1 ∈ {0, 1}, one can prove by
induction on j that:

f (j)(X) =
∑

i0,...,in−1∈{0,1}
f (i0,...,in−1)2ρ

i0
0 · · · ρ

ij−1
j−1X

ij+2ij+1+···+2n−1−j
in−1

for j ∈ [n]. This shows that f (n)(β) = f (n)(−β) = u. By definition of f (j−1)
e and f (j−1)

o

(Definition 4.3.3), we have f (j−1)(X) = f (j−1)
e (X2) +X · f (j−1)

o (X2) and f (j)(X) := f (j−1)
o (X) +

ρj−1 · f (j−1)
e (X). Thus f (j−1)(X) + f (j−1)(−X) = 2f (j−1)

e (X2) and f (j−1)(X) − f (j−1)(−X) =
2Xf (j−1)

o (X2). Evaluation at β and taking linear combinations of the last two equations shows that
the consistency checks are satisfied.

Lemma 4.5.4. Construction 1 has soundness error N−1
|F×|

.

Proof. Suppose that ⟨f ,⊗j(1, ρj)⟩ ≠ u. Fix a malicious prover, which determines certain next-
message functions f̃ (1)(X), . . . , f̃ (n−1)(X), e(0) and ē(0). Set f̃ (n) = e(n) = ē(n) = u, noting that f̃ (j)

has degree at most N/2j .
Since ⟨f ,⊗j(1, ρj)⟩ ≠ uwe must have f (j)(X) ̸= f (j−1)

e (X)+ρj−1 · f (j−1)
o (X), for some j ∈ [n].

Let j∗ be the largest value of j for which this happens. This implies that:

p(X) := f (j∗)(X2)− f (j∗−1)(X) + f (j∗−1)(−X)
2 − ρj

∗−1
f (j−1)(X)− f (j∗−1)(−X)

2β

is a non-zero polynomial of degree at most 2n−(j∗−1) − 1. Setting X = Y 2j
∗−1
, and evaluating at

Y = β, the probability that p evaluates to 0 is at most 2n−1
|F×|
. This implies that the verifier check in

Equation (4.16) is satisfied with probability at most N−1
|F×|
.

Lemma 4.5.5. The prover for Construction 1 can be implemented in O(N) operations in F, and
space complexity O(N).

Proof. The prover requires O(N/2j) space to store f (j)(X), and N/2j operations to compute
f (j+1)(X) from f (j)(X). Summing up the prover’s time complexity at each step gives O(N)
operations.

Lemma 4.5.6. The prover for Construction 1 can be implemented in O(N logN) operations in F,
and space complexity O(logN) with O(1) passes over f .
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Stream Sfold(S(f), (ρ0, . . . , ρℓ−1))
if Stack.Len() < 2 :

Item := (0,S(f).next())
else :

(k, x) := Stack.Pop()
(k′, x′) := Stack.Pop()
if k ̸= k′ :

Stack.Push((k′, x′))
Stack.Push((k, x))
Item := (0,S(f).next())

else :
Item := (k + 1, x′ + ρkx)

if Item0 < ℓ :
Stack.Push(Item)

yield Item

Stream Sj-th fold(f ,ρ) = S(f (j))
while (k, x) := Sfold(f , ρ).next() :

if k = j : return x

else : continue

Figure 4.3: On the left-hand side, the stream for generating the coefficients of all all folded polynomials
f (0), . . . , f (n), as a pair composed of the current round number, and the next coefficient. On the right, the
stream for generating coefficients of the vector f (j), given S(f) and ρ = (ρ0, . . . , ρn−1) with n ≥ j.

Proof. Figure 4.3 gives an algorithmSfold(S(f), j, ρ0, . . . , ρj−1) for producing streams ofS(f (0)), . . . ,S(f (j))
simultaneously. The indices k of items (k, x) in Stack form an ascending sequence with k ≤ j.
Whenever two items (k, x) and (k, x′) are next to each other at the beginning of the sequence, they
are merged using O(1) field operations. The algorithm never adds an item with k = j to the stack,
so the stack never contains more than j ≤ logN elements. To produce an item with k = j requires
passing through and merging together exactly 2j elements of the stream of f , and uses 2j operations.
Producing all N/2j elements of S(f (j)) costs N/2j · 2j = N operations.
To produce the streams S(f (0)), . . . ,S(f (n)) requires a single pass over S(f) and uses O(N)

operations.

4.5.2 Batched tensor-product protocol
We present a protocol for checkingm instances ofRTC at the same time. The new protocol gives a
query complexity which depends additively onm instead of multiplicatively.
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Definition 4.5.7. The batched tensor-product relationRBTC is the set of tuples

(i,x,w) =
(
⊥, (F, N, ρ0, . . . , ρn−1, {ui}m−1

i=0 ), (f0, . . . , fm−1)
)

where N = 2n, f0, . . . , fm−1 ∈ FN , u0, . . . , um−1 ∈ F, and ⟨fi,⊗j(1, ρj)⟩ = ui for each i ∈ [m].

Theorem 4.5.8. For every finite field F and positive integer N , there is a holographic PIOP for the
indexed relationRBTC that supports instances over F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(mN) F-ops
O(mN) memory

O(N(logN +m)) F-ops
O(logN) memory
O(logN) passes

O(m+ logN) F-ops O
(

m+N
|F|

)
O(logN) O(m+ logN) O(m+ logN)

Construction 2. We construct a PIOP for the indexed relationRBTC. The prover P takes as input
an index i = ⊥, instance x = (F, N, ρ0, . . . , ρn−1, {ui}m−1

i=0 ), and witness w = (f0, . . . , fm−1); the
verifier V takes as input the index i and the instance x.

• The verifier samples random challenge ζ ∈ F×.

• The prover P computes the polynomial f(X) = ∑m−1
i=0 ζ ifi(X) and sends it to the verifier.

• The prover and verifier run the tensor-product check with (i,x,w) =
(
⊥, (F, N, ρ0, . . . , ρn−1,

∑
i uiζ

i), f
)

and randomness β0 to check that ⟨f ,⊗j(1, ρj)⟩ = ∑
i uiζ

i.

• The verifier samples randomness β and makes an oracle query to learn f(β). For i =
0, . . . ,m− 1, the verifier makes oracle queries to learn fi(β). The verifier checks whether
f(β) = ∑m−1

i=0 fi(β)ζ i.

Remark 4.5.9. Since the simple tensor-product check requires an evaluation of f at a random
point, Construction 2 can be optimized so that Construction 1 uses the same randomness β as
Construction 2, which saves one evaluation query.

Lemma 4.5.10. Construction 2 has perfect completeness.

Proof. Suppose that ⟨fi,⊗j(1, ρj)⟩ = ui for each i. By definition, f = ∑m−1
i=0 ζ ifi. Querying each

polynomial in this expression at β, it is clear that the verifier’s check is satisfied.
Next, since ⟨fi,⊗j(1, ρj)⟩ = ui for each i, taking a linear combination of these expressions

using powers of ζ, it is clear that ⟨f ,⊗j(1, ρj)⟩ = ∑
i uiζ

i, so the basic tensor-product protocol
accepts.

Lemma 4.5.11. Construction 2 has soundness error m+N−2
|F×|

.
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Proof. Suppose that there is some i for which ⟨fi,⊗j(1, ρj)⟩ ≠ ui. Fix a malicious prover, which
determines next-message function f̃(X). Let f(X) = ∑m−1

i=0 ζ ifi(X). By the Schwartz–Zippel
lemma, ⟨f ,⊗j(1, ρj)⟩ ≠ ∑m−1

i=0 ζ iui, except with probability at most (m− 1)/|F×| over the random
choice of ζ . If f̃(X) = f(X), then by the soundness of the basic tensor-product protocol, the verifier
accepts with probability at most (N − 1)/|F×|. If f̃(X) ̸= f(X), then by the Schwartz–Zippel
lemma, f(β) ̸= ∑m−1

i=0 ζ ifi(β), except with probability at most (N − 1)/|F×| over the random choice
of β.

Lemma 4.5.12. Construction 2 can be implemented in O(N(logN + m)) operations in F, and
space complexity O(m+ logN) with O(logN) passes over each fi for i ∈ [m].

Proof. By Lemma 4.5.6, the basic tensor-product check requires O(logN) passes over S(f) and
uses O(logN) memory. Since f(X) = ∑m−1

i=0 ζ ifi(X), the stream S(f) can be computed by a
streaming algorithm that uses O(mN) operations, O(1) space (never storing more than a single
coefficient of one fi polynomial and the partial computation of a coefficient of f ), and a single pass
over each of itsm inputs. Composing the two streaming algorithms and using Lemma 4.4.6 gives
the result.
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4.6 Elastic protocols for scalar products
We describe elastic PIOP protocols which reduce checking twisted scalar product relations to
consistency checks of the type described in Section 4.5.

Definition 4.6.1. The twisted scalar product relationRTSP is the set of tuples

(i,x,w) = (⊥, (F, N, u), (f ,y,g))

where f ,y,g ∈ FN , u ∈ F, and ⟨f ◦ y,g⟩ = u.

Standard scalar products are the special case where every entry of y is equal to 1.
We give two elastic PIOPs forRTSP. The first, in Section 4.6.1, is a protocol for the special case

where y := ⊗n−1
j=0 (1, υj) for public υ0, . . . , υn−1.

Theorem 4.6.2. For every finite field F, every N ∈ N with n = logN , there is a holographic PIOP
for the indexed relationRTSP with y := ⊗n−1

j=0 (1, υj) for public υ0, . . . , υn−1 ∈ F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(logN) passes

O(logN) F-ops O
(

N
|F|

)
O(logN) O(logN) O(logN)

The second protocol, in Section 4.6.4, reduces the general case to the special case. Finally, in
Section 4.6.5, we give a PIOP for Hadamard products of vectors, which also follows from the special
case of twisted scalar products.

Definition 4.6.3. The Hadamard product relationRHP is the set of tuples (i,x,w) = (⊥, (F, N), (f ,g,h))
where f ,g,h ∈ FN and f ◦ g = h.

Theorem 4.6.4. For every finite field F and positive integer N , there is a holographic PIOP for the
indexed relationRHP that supports instances over F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(logN) passes

O(logN) F-ops O
(

N
|F|

)
O(logN) O(logN) O(logN)

4.6.1 Elastic scalar-product protocol (special case)
Construction 3. We construct a PIOP for the indexed relationRTSP. The prover P takes as input
an index i = ⊥, instance x = (F, υ0, υ1, . . . , υn−1, u), and witness w = (f ,g); the verifier V takes
as input the index i and the instance x.
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Interactive phase. Let H := {−1, 1}. The prover and verifier run a multivariate sumcheck
protocol on the multivariate polynomials f̂ , ĝ associated with f ,g ∈ FN to show that

1
2n

∑
ω∈Hn

( ̂f ◦ y · ĝ)(ω) = u . (4.17)

The verifierV for the multivariate sumcheck protocol outputs a claim that
( ̂f ◦ y · ĝ

)
(ρ0, . . . , ρn−1) =

u, where ρ0, . . . , ρn−1 is the verifier randomness used in the sumcheck protocol.
The prover sends claimed evaluations uA, uB ∈ F to the verifier, corresponding to the claims that̂f ◦ y(ρ0, . . . , ρn−1) = uA. and ĝ(ρ0, . . . , ρn−1) = uB. The verifier checks whether uA · uB = uC .
Rewriting the first evaluation claim, the output of the interactive phase consists of the two claims:

f̂(υ0ρ0, . . . , υn−1ρn−1) = uA , ĝ(ρ0, . . . , ρn−1) = uB . (4.18)

Query phase. The prover and the verifier run the univariate PIOP for tensor products from
Construction 1 to check that the two claims from Equation (4.18) are true:

• one execution with x = (F, N, υ0ρ0, . . . , υn−1ρn−1, uA) and w = f ; and

• one execution with x = (F, N, ρ0, . . . , ρn−1, uB) and w = g.

Remark 4.6.5. The message complexity of the sumcheck protocol can be reduced from 3 logN to
2 logN field elements. In each round of the sumcheck protocol, the prover sends the coefficients of
the polynomial q(j), and the verifier checks whether q(j)(1) + q(j)(−1) = 2 · q(j−1)(ρj−1). Since
q(j)(X) = qj,0 + qj,1X+ qj,2X

2 is quadratic, q(j)(1)+q(j)(−1) = 2qj,0 +2qj,2, and the verification
checks amount to checking whether 2qj,0 + 2qj,2 = q(j−1)(ρj−1). Thus, instead of having the prover
send qj,1 in each round, and asking the verifier to perform the aforementioned checks, the verifier
can simply use q(j−1)(ρj−1) (which is known from the previous round, or equal to u when j = 0) as
the definition of the value of qj,1.

Remark 4.6.6. Construction 3 is a univariate PIOP and uses Construction 1 to reduce claims about
multivariate polynomial evaluations, which can be rewritten as tensor products, to claims about
univariate polynomial evaluations. However, one can convert Construction 3 into a multivariate PIOP
by concluding the protocol using a multivariate evaluation query rather than invoking Construction 1.
This means that one can compile our PIOPs into succinct arguments using either multivariate or
univariate polynomial commitment schemes.

4.6.2 Proof of Theorem 4.6.2
We prove completeness in Lemma 4.6.9. We prove soundness in Lemma 4.6.10. We analyse the
complexity of the time-efficient prover and the verifier in Lemma 4.6.11. We analyse the complexity
of the space-efficient prover in Lemma 4.6.12.
In our analysis, we rely on results from prior work, stated in two lemmas. The first relates

polynomial coefficients to sums of evaluations.
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Lemma 4.6.7 ([BCG20, Lemma 5.7]). LetH be a multiplicative subgroup of a finite field F and let
p(X0, . . . , Xn−1) ∈ F[X0, . . . , Xn−1]. If we denote by pi0,...,in−1 ∈ F the coefficient ofX i0

0 · · ·X
in−1
n−1

in the polynomial p(X0, . . . , Xn−1), then

∑
ω∈Hn

p(ω) =
 ∑

i≡0 mod |H|
pi

 · |H|n . (4.19)

The second describes the properties of sumcheck protocol for products of multilinear polynomials,
as studied in [Tha13; XZZPS19; BCG20].

Lemma 4.6.8. For every finite field F and every N ∈ N with n = logN , the sumcheck protocol for

1
2n

∑
ω∈Hn

(f̂ · ĝ)(ω) = u . (4.20)

forH = {−1, 1} and the multilinear polynomials f̂(X0, . . . , Xn−1) and ĝ(X0, . . . , Xn−1) associated
with f ,g ∈ FN has the following properties: soundness error is O(n/|F|) (as a reduction to claims
about polynomial evaluations); round complexity is O(n); the prover uses O(N) field operations;
and the verifier uses O(n) field operations.

Lemma 4.6.9. Construction 3 has perfect completeness.

Proof. Suppose that ⟨f◦y,g⟩ = u. ByLemma4.6.7, 1
2n

∑
ω∈Hn( ̂f ◦ y·ĝ)(ω) =

(∑
i≡0 mod 2( ̂f ◦ y · ĝ)i

)
.

Since ̂f ◦ y and ĝ are multilinear polynomials, the contributions to the coefficients of ̂f ◦ y · ĝ
with i ≡ 0 mod 2 are exactly the terms ̂f ◦ yj · ĝj where j ∈ {0, 1}n is the unique vector such that
i = 2j. Hence, 1

2n

∑
ω∈Hn( ̂f ◦ y · ĝ)(ω) = ⟨f ◦ y,g⟩ = u.

By the completeness property of the sumcheck protocol (Lemma4.6.8), the claims f̂(υ0ρ0, . . . , υn−1ρn−1) =
uA and ĝ(ρ0, . . . , ρn−1) = uB are true.
By completeness of the PIOP for tensor products, Construction 1, the verifier accepts.

Lemma 4.6.10. Construction 3 has soundness error ϵSP := O(N/|F|).

Proof. Suppose that ⟨f ◦ y,g⟩ ≠ u. By the soundness of the sumcheck protocol, the probability
that the sumcheck verifier accepts and the output claims are both true is at most 2n

|F| . If the claims
produced by the sumcheck protocol are not true, then by the soundness of the tensor-product protocol
(Construction 1), the probability that the verifier for the tensor-product protocol accepts is at most
N
|F| . The result follows by a union bound.

Lemma 4.6.11. The prover in Construction 3 has arithmetic complexity O(N). The verifier in
Construction 3 has arithmetic complexity O(logN).

Proof. This follows from the arithmetic complexities of the prover and the verifier in the sumcheck
protocol given in Lemma 4.6.8, and those of the tensor-product protocol given in Theorem 4.5.2.
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4.6.3 Space efficient realization of Construction 3
Lemma 4.6.12. The prover for Construction 3 can be implemented using a streaming algorithm with
arithmetic complexity O(N logN) that makes O(logN) passes over the streams S(f) and S(g).

Remark 4.6.13. Lemma 4.6.12 follows directly from [CTY11; CMT12], which proves results about
streaming provers for interactive proofs for uniform circuits. We provide a direct proof below for the
special case of twisted scalar products.
The techniques used to prove Lemma 4.6.12 are related to those in [BHRRS20], used for

messages for a split-and-fold protocol that was shown to be closely related to the sumcheck protocol
in [BCS21]. Our algorithm has a prover arithmetic complexity of O(N logN), which is more
efficient than the O(N log2 N) algorithm given in [BHRRS20] and has a significant impact on
concrete efficiency. We must also carefully modify our protocol to account for the vector y to reason
about a twisted scalar-product relation, which requires extra thought.

Proof. We show how to implement the space-efficient prover for Construction 3 using streaming
access to the inputs f and g. By Lemma 4.5.6, the tensor product protocol can be implemented
in space O(logN) using O(1) passes. It remains to show how to compute the next-message
function for the sumcheck protocol in small space. Define partially evaluated polynomials in
F[Xj, Xj+1, . . . , Xn]

f (j)(Xj, . . . , Xn−1) := ̂f ◦ y(ρ0, . . . , ρj−1, Xj, . . . , Xn−1) =
∑

ij ,...,in−1∈{0,1}
f (j)
ij ,...,in−1

X
ij

j · · ·X
in−1
n−1 ,

g(j)(Xj, . . . , Xn−1) := ĝ(ρ0, . . . , ρj−1, Xj, . . . , Xn−1) =
∑

ij ,...,in−1∈{0,1}
g(j)

ij ,...,in−1
X

ij

j · · ·X
in−1
n−1 .

In the (j + 1)-th round of the sumcheck protocol, the prover P sends the polynomial

q(j)(X) := 1
2n−(j+1)

∑
ωj+1,...,ωn−1∈H

( ̂f ◦ y · ĝ)(ρ0, . . . , ρj−1, Xj, ωj+1, . . . , ωn−1)

= 1
2n−(j+1)

∑
ωj+1,...,ωn−1∈H

(f (j) · g(j))(Xj, ωj+1, . . . , ωn−1) .

By Lemma 4.6.7, we see that

q(j)(X) =
∑

ij ,kj∈{0,1}

∑
ij+1∈{0,1}

· · ·
∑

in−1∈{0,1}
f (j)
ij ,ij+1,...,in−1

· g(j)
kj ,ij+1...,in−1

X
ij+kj

j .



4.6. ELASTIC PROTOCOLS FOR SCALAR PRODUCTS 147

This implies that

qj,0 =
 ∑

ij+1∈{0,1}
· · ·

∑
in−1∈{0,1}

f (j)
0,ij+1,...,in−1

· g(j)
0,ij+1...,in−1

 ,

qj,1 =
 ∑

ij∈{0,1}
· · ·

∑
in−1∈{0,1}

f (j)
ij ,ij+1,...,in−1

· g(j)
1−ij ,ij+1...,in−1

 , and

qj,2 =
 ∑

ij+1∈{0,1}
· · ·

∑
in−1∈{0,1}

f (j)
1,ij+1,...,in−1

· g(j)
1,ij+1...,in−1

 .

From these formulae, it is clear that qj,0, qj,1 and qj,2, can be computed simultaneously in O(1)
memory using streams for f (j) and g(j).
Next, we show that streams of f (j) and g(j) can be generated in O(logN) memory and O(N)

operations using a single pass over the streams of f or g. The algorithm Sfold(·) described in
Figure 4.3 and analysed in Lemma 4.5.6 generates the stream of g(j) from the stream of g for any j
with the required complexity parameters. Similarly, Sfold(·) generates f (j) from the stream of f ◦ y
for any j. To complete the proof, we explain how to generate the stream of f ◦ y using a single pass
over the stream of f , and υ0 . . . , υn−1, using O(logN) space.
The entries of f ◦ y are given by (fi0,...,in−1υ

i0
0 · · · υ

in−1
n−1 )i0,...,in−1∈{0,1}. To generate the stream of

f ◦y in a single pass over the stream of f , begin by computing the sequence υ0, υ0υ1, . . . , υ0 · · · υn−1.
Then, compute the sequence d0 := υ0υ

−1
1 , d1 := υ0υ1υ

−1
2 , . . . , dn−1 := υ0 · · · υn−1υ

−1
n . Next, define

S(n) as follows. Let S(0) := (υ0), and define S(j+1) recursively as the concatenation S(j) || (dj) || S(j).
Now, the sequence (yi0,...,in−1)i0,...,in−1 can be computed by starting with z = υ0υ1 · · · υn−1 (which
is equal to y1,...,1), and multiplying z by each element of the palindromic sequence S(n) ∈ FN−1 in
turn.
This method generates the stream ofy inO(logN) space usingO(N) operations, andmultiplying

this stream by the streamof f gives the streamof f◦ywith the stated time andmemory complexity.

4.6.4 Elastic scalar-product protocol (general case)
To verifyRTSP, the prover and verifier begin by running one scalar-product subprotocol on f ◦ g and
h. This reduces the claim that ⟨f ◦ g,h⟩ = u to claims about f ◦ g and h. Then, the claim about
f ◦ g can be rewritten as claim about scalar-product between f and g. Finally, the prover and verifier
run a second scalar-product subprotocol to reduce this to claims about f and g. The end result is a
claim about each of f , g and h.

Construction 4. We construct a PIOP for the indexed relationRTSP. The prover P takes as input
an index i = ⊥, instance x = (F, N, u), and witness w = (f ,g,h); the verifier V takes as input the
index i and the instance x.

Interactive phase. Letting f (0)(X) := f ◦ g(X),g(0)(X) := h(X), h(0)(X) := f(X), and
k(0)(X) := g(X) the protocol proceeds as follows.
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• The prover and verifier run the interactive phase of the scalar-product protocol (Construction 3)
with index i = ⊥, instance x = (F, N, u), and witnessw = (f ◦g,h) to check that ⟨f ◦g,h⟩ =
u. The protocol outputs claims that uA = ⟨f ◦ g,⊗j(1, ρj)⟩ and uB = ⟨h,⊗j(1, ρj)⟩, where
ρ0, . . . , ρn−1 is the verifier randomness used in the subprotocol.

• The prover and verifier run the interactive phase of the scalar-product protocol (Construction 3)
with index i = ⊥, instance x = (F, N, ρ0, . . . , ρn−1, uA), and witness w = (f ◦ ⊗j(1, ρj),g)
to check that ⟨f ◦ ⊗j(1, ρj),g⟩ = uA. The protocol outputs claims that uC = ⟨f ,⊗j(1, ρjrj)⟩
and uD = ⟨g,⊗j(1, rj)⟩, where r0, . . . , rn−1 is the verifier randomness used in the subprotocol.

• The output of the interactive phase consists of the three claims:

uC = ⟨f ,⊗j(1, ρjrj)⟩ , uD = ⟨g,⊗j(1, rj)⟩ , uB = ⟨h,⊗j(1, ρj)⟩ . (4.21)

Query phase. The prover and the verifier run the univariate PIOP for tensor products from
Construction 1 to check that the three claims from Equation (4.21) are true:

• one execution with x = (F, N, ρ0r0, . . . , ρn−1rn−1, uC) and w = f ;

• one execution with x = (F, N, r0, . . . , rn−1, uD) and w = g; and

• one execution with x = (F, N, ρ0, . . . , ρn−1, uB) and w = h.

Lemma 4.6.14. Construction 4 has perfect completeness.

Sketch. Suppose that ⟨f ◦g,h⟩ = u. By Lemma 4.6.9 (completeness of Construction 3), the verifier
for the first scalar-product subprotocol will accept, and the subprotocol produces correct claims about
uA and uB . Writing uA = ⟨f ◦ g,⊗j(1, ρj)⟩ = ⟨f ◦ ⊗j(1, ρj),g⟩ and applying similar reasoning to
the second scalar-product subprotocol completes the proof.

Lemma 4.6.15. Construction 4 has soundness error 2ϵSP.

Proof. Suppose that ⟨f ◦g,h⟩ ≠ u. By Lemma 4.6.10 (soundness of Construction 3), the probability
that the verifier for the first scalar-product subprotocol accepts and that the claims about uA and uB

are true is at most ϵSP. If the claim about uA is false, then by Lemma 4.6.10, the probability that the
verifier for the second scalar-product subprotocol accepts and that the claims about uC and uD are
true is at most ϵSP.
Therefore, by a union bound, except with probability at most 2ϵSP, at least one of the claims

about uB, uC or uD is false, or the verifier rejects.

Lemma 4.6.16. The prover in Construction 4 has arithmetic complexity O(N), and the verifier has
arithmetic complexity O(logN).

Sketch. By Lemma 4.6.11, the prover in Construction 3 has arithmetic complexity O(N) and the
verifier in Construction 3 has arithmetic complexity O(logN). Construction 4 consists of two
executions of Construction 3, so the result follows.
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Lemma 4.6.17. Construction 4 has an implementation with a streaming prover that usesO(N logN)
arithmetic operations over F, O(logN) space, and O(logN) passes over S(f), S(g) and S(h).

Proof. This follows immediately from the space-efficient implementation of Construction 3 and its
analysis in Lemma 4.6.12.

4.6.5 Hadamard-product protocol
We describe a Hadamard product protocol.

Construction 5. We construct a PIOP for the indexed relationRHP. The prover P takes as input
an index i = ⊥, instance x = (F, N), and witness w = (f ,g,h); the verifier V takes as input the
index i and the instance x.

Interactive phase. The protocol proceeds as follows.

• The verifier V sends uniformly random challenge υ ∈ F×.

• The prover P computes u = ⟨h,y⟩, where y := (1, υ, . . . , υN−1), and sends the non-oracle
message u ∈ F. Note that in the space-efficient variant, the prover need not compute y from υ
explicitly.

• The prover P and verifier V engage in a twisted scalar-product protocol with w := (f ,g) and
x := (F, N, υ, u) to show that ⟨f ◦ y,g⟩ = u. The twisted scalar product protocol outputs
claims uA = ⟨f ,y ◦ ⊗j(1, ρj)⟩ and uB = ⟨g,⊗j(1, ρj)⟩.

The output of the interactive phase consists of three claims

uA = ⟨f ,y ◦ ⊗j(1, ρj)⟩ , uB = ⟨g,⊗j(1, ρj)⟩ , u = ⟨h,y⟩ .

Query phase. The prover and the verifier run the univariate PIOP for tensor products from
Construction 1 to check that the three claims from Equation (4.21) are true:

• one execution with x = (F, N, υ20
ρ0, . . . , υ

2n−1
ρn−1, uA) and w = f ;

• one execution with x = (F, N, ρ0, . . . , ρn−1, uB) and w = g; and

• one execution with x = (F, N, υ20
, . . . , υ2n−1

, u) and w = h.

Theorem 4.6.4 follows in a straightforward manner from Theorem 4.6.2, with soundness using
the Schwartz–Zippel lemma.
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4.7 A non-holographic protocol for R1CS
We present a non-holographic protocol forRR1CS.

Theorem 4.7.1. For every finite field F and positive integer N , there is a PIOP for the indexed
relation RR1CS for instances with N × N matrices with M non-zero entries, with the following
complexity parameters:

time-efficient
prover

space-efficient
prover

time-efficient
verifier

space-efficient
verifier

soundness
error

round
complexity

proof
length

query
complexity

O(M) F-ops
O(M) memory

O(M log2 N) F-ops
O(logN) memory
O(logN) passes

O(M) F-ops
O(M) memory

O(M logN) F-ops
O(logN) memory
O(1) passes

O
(

N
|F|

)
O(logN) O(logN) O(logN)

Note that Theorem 4.7.1 features an elastic verifier as well as an elastic prover.

Construction 6. We construct a PIOP for the indexed relationRR1CS. The indexer algorithm is
trivial. The prover P takes as input an index i = (F, N,M,A,B,C), instance x = x, and witness
w = w; the verifier V takes as input the index i and the instance x. The protocol proceeds as
follows.

• The prover P sets z := (x,w) ∈ FN and sends the oracle message w to the verifier. The
prover computes Az, Bz, Cz ∈ FN .

• The prover P and verifier V run the interactive phase of the Hadamard-product protocol
(Construction 5) with x := (F, N) and w := (Az, Bz, Cz) to show that Az ◦Bz = Cz. This
generates claims that uA = ⟨Az,y ◦ ⊗j(1, ρj)⟩, uB = ⟨Bz,⊗j(1, ρj)⟩ and uC = ⟨Cz,y⟩ for
verifier randomness ρ0, . . . , ρn−1, υ ∈ F and y := (1, υ, . . . , υN−1). Rewrite these claims as

uA = ⟨z, a∗⟩ , (4.22)
uB = ⟨z,b∗⟩ , (4.23)
uC = ⟨z, c∗⟩ , (4.24)

where a∗ := y⊺ ◦ ⊗j(1, ρj)⊺A, b∗ := ⊗j(1, ρj)⊺B and c∗ := y⊺C.

• Note that to run the holographic protocol, the prover and verifier use Construction 7 instead
of what follows from this point.
The verifier V samples random challenge η ← F× and sends η to the prover P . The challenge
is used to bundle the three claims into one:

uA + η · uB + η2 · uC = ⟨z, a∗ + η · b∗ + η2 · c∗⟩ .

The prover and verifier run the interactive phase of the scalar-product protocol (Construction 3)
to check this claim. This produces two claims:
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– a claim
uD = ⟨z,⊗j(1, ρ′

j)⟩

about z which the verifier can check using the tensor product protocol (Construction 1)
with x = (F, N, ρ′

0, . . . , ρ
′
n−1, uD) and w = z;

– a claim
uE = ⟨a∗ + η · b∗ + η2 · c∗, ⊗j (1, ρ′

j)⟩

which the verifier can check for themselves. Here, ρ′
0, . . . , ρ

′
n−1 ∈ F is the verifier

randomness used in the scalar-product protocol.

4.7.1 Proof of Theorem 4.7.1
Completeness follows from the completeness of each subprotocol and Equations (4.22) to (4.24).
The soundness error of the protocol and query complexity follow from those of the scalar-product
protocol, Hadamard product protocol and consistency-check protocol. We analyse the complexity of
the time-efficient prover in Lemma 4.7.2. We analyse the complexity of the space-efficient prover in
Lemma 4.7.3. We analyse the complexity of the time-efficient prover in Lemma 4.7.4. We analyse
the complexity of the space-efficient prover in Lemma 4.7.5.

Lemma 4.7.2. The prover in Construction 6 can be implemented with arithmetic complexity O(M)
and O(M) memory.

Proof sketch. The prover P computes Az, Bz and Cz, which uses O(M) arithmetic operations
and O(M) space. The prover P uses the Hadamard-product protocol, scalar-product protocol and
consistency-check protocol as subroutines, running the protocols on vectors of length N . This uses
O(N) arithmetic operations and O(N) memory.

Lemma 4.7.3. The prover in Construction 6 can be implemented with arithmetic complexity
O(M log2 N), O(logN) memory, and O(logN) passes over the streams S(z), S(Az), S(Bz) and
S(Cz), and Scmaj(U) for U ∈ {A,B,C}.

Proof sketch. We explain how to implement the space-efficient prover for Construction 6. Recall
that Scmaj(U) provides streaming access to the vectors rowU , colU and valU ∈ FM of row indices,
column indices and non-zero entries of U ∈ {A,B,C} in column major order.
The prover P uses the Hadamard-product protocol, scalar-product protocol and tensor-product

protocol as subroutines, running the protocols on vectors of length N . These protocols use
O(N logN) arithmetic operations, O(logN) memory and O(logN) passes over the witnesses for
the protocols.
The prover has direct access to streams for the witnesses for the Hadamard-product protocol and

the consistency check. However, one of the witnesses for the scalar-product protocol is the vector
a∗ + η · b∗ + η2c∗ where a∗ = y⊺ ◦ ⊗j(1, ρj)⊺A, b∗ = ⊗j(1, ρj)⊺B and c∗ = y⊺C.
The prover can generate the streams of a∗, b∗ and c∗ using the algorithm in Figure 4.4. The

prover multiplies each of the M non-zero elements of A, B and C by O(logN) field elements
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(the seeds used to generate vectors such as ⊗j(1, ρj)). Since the Hadamard-product prover makes
O(logN) passes over streams of the witness (e.g. zA), the prover uses O(M log2 N) arithmetic
operations.

Stream S(u∗) = Smat-prod(ρ, U)
Initialize:

j′ := N

(i, j, a) := Scmaj(U).next()
Next element:

Item = 0; Decrement j′

// Accumulate the inner product until end of line is reached
while (j′ = j) :

// Let bk be the k-th bit of i, for k ∈ [n]

// t = yi could be computed more efficiently

// in specific R1CS instances

t :=
∏

k ρ
bk
k

Item := Item + t · a
(i, j, a) := Scmaj(U).next()

yield Item

Stream S(y) = Stensor(ρ)
Initialize:

j := N

// Let bk be the k-th bit of N

t :=
∏

k ρ
bk
k

carry :=
[
ρ−1

i

∏
k<i ρk

]
i∈[n]

Next element:
Decrement j

// k is the position of the borrow

k := least bit set of j

t := t · carryk

yield t

Figure 4.4: Streams S(a∗), S(b∗), S(c∗), and S(y).

Lemma 4.7.4. The verifier in Construction 6 can be implemented with O(M) field operations.

Proof. The verifier V uses the scalar-product protocol and consistency-check protocol as subroutines.
The dominant cost for the verifier is the computation of the claim

uE = ⟨a∗+η ·b∗+η2c∗,⊗j(1, ρ′
j)⟩ = ⟨

(
y⊺ ◦ ⊗j(1, ρj)⊺

)
·A+η⊗j (1, ρj)⊺B+η2y⊺C,⊗j(1, ρ′

j)⟩ .

This requires O(M) field operations, because it costs O(N) to calculate all entries of the vectors
⊗j(1, ρj), υ and⊗j(1, ρ′

j), and y ◦⊗j(1, ρj), O(M) entries to perform multiplications by A, B and
C and then O(N) to evaluate the scalar product. Note that V can evaluate z(X) at any point γ with
O(|x|) operations by querying w at γ and computing the expression x(X) +X |x|w(X) by using
x.

Lemma 4.7.5. The verifier in Construction 6 can be implemented with arithmetic complexity
O(M logN), O(logN) memory, and O(1) passes over the streams Scmaj(U) for U ∈ {A,B,C}.
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Proof sketch. As in Lemma 4.7.4, the main cost for the verifier in this protocol is the cost of checking
the claim

uE = ⟨a∗ + η · b∗ + η2c∗,⊗j(1, ρ′
j)⟩

= ⟨
(
y⊺ ◦ ⊗j(1, ρj)⊺

)
· A,⊗j(1, ρ′

j)⟩+ η · ⟨⊗j(1, ρj)⊺B,⊗j(1, ρ′
j)⟩+ η2 · ⟨y⊺C,⊗j(1, ρ′

j)⟩ .

The verifier can compute the value on the right hand side as follows. Consider the term
⟨⊗j(1, ρj)⊺B,⊗j(1, ρ′

j)⟩ = ∑
k∈[M ][⊗j(1, ρj)⊺]rowB,k

· valB,k · [⊗j(1, ρ′
j)]colB,k

. To compute this
term, the verifier sets a running total z to be equal to 0, and for each k ∈ [M ], streams the
k-th element of rowB, colB and valB to get values i, j and v. The verifier computes the binary
decomposition of i and j and uses them to compute the i-th and j-th entries of ⊗j(1, ρj)⊺ and
⊗j(1, ρ′

j)⊺, by performing at most O(logN) multiplications. The verifier then multiplies these
values values together, multiplies by v, and adds the result to the running total z. Repeating
this process for the terms containing A and C, it is easy to see that the verifier uses O(M logN)
operations and O(logN) space.
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4.8 Achieving holography
We extend the non-holographic elastic PIOP of the previous section to additionally achieve
holography.

Theorem 4.8.1. For every finite field F and positive integers N,M , there is a holographic PIOP for
the indexed relationRR1CS for instances with N ×N matrices with M non-zero entries and public
input x, with the following complexity parameters:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(M) F-ops
O(M) memory

O(M log2 N) F-ops
O(logM) memory
O(logM) passes

O(|x|+ logM) F-ops O
(

M
|F|

)
O(logM) O(logM) O(logM)

4.8.1 Proof of Theorem 4.8.1
Part of Construction 6 (the non-holographic R1CS protocol) generates the claims that

uA = ⟨z,y⊺ ◦ ⊗j(1, ρj)⊺ · A⟩ ,
uB = ⟨z,⊗j(1, ρj)⊺B⟩ ,
uC = ⟨z,y⊺C⟩ ,

and then checks these claims using a scalar-product protocol. The holographic protocol checks the
claims using the alternative construction following the strategy in [BCG20]. The key subprotocols
are a look-up protocol in Section 4.8.2 and an entry-product protocol in Section 4.8.3. As discussed in
Section 4.2, we leverages plookup in Section 4.8.2.1 and offline-memory checking in Section 4.8.2.2
to build the look-up protocol.

Remark 4.8.2. In the construction, we will assume that the matrices A, B and C have the same
support, which means that row := rowA = rowB = rowC and col := colA = colB = colC . This can
be achieved by padding valA, valB and valC with zeroes as required, and increases the length of the
sparse representations of A, B and C by at most a factor of 3.

Construction 7. We construct a PIOP for the indexed relationRR1CS. The indexer algorithm takes
as input an index (F, N,M,A,B,C), outputs the oracle messages valU for U ∈ {A,B,C}, and
runs the indexer algorithm of Construction 8 on row and col.9 The prover P takes as input the
index i = (F, N,M,A,B,C), instance x = x, and witness w = w; the verifier V takes as input the
instance x and has query access to the indexer’s oracle messages. The protocol proceeds as follows.

• The protocol begins by running the first two steps of Construction 6.
9If the lookup protocol is implemented using the memory-checking protocol, the indexer runs the indexer of

Construction 9 and Construction 8.
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• The prover P constructs the vectors

z⋆ := z|col , r⋆
A := (y ◦ ⊗j(1, ρj))|row ,

r⋆
B := (⊗j(1, ρj))|row ,

r⋆
C := y|row .

It sends z⋆, r⋆
A, r⋆

B, r⋆
C ∈ FM as oracle messages to the verifier.

• The prover P and verifier V engage in the following scalar product subprotocols in parallel
using the same verifier randomness for each subprotocol:

– one with statement x = (F,M, uA) and witness w = (r⋆
A, valA, z⋆);

– one with statement x = (F,M, uB) and witness w = (r⋆
B, valB, z⋆); and

– one with statement x = (F,M, uC) and witness w = (r⋆
C , valC , z⋆).

• Let rB := ⊗j(1, ρj), rC := y and rA := y ◦⊗j(1, ρj). The prover P and the verifier V engage
(in parallel) the following subprotocols:

– z⋆ ⊆ z: invoke lookup with index i = col with statement x = (F,M,N) and witness
w = (z⋆, z)

– r⋆
A = r⋆

B ◦ r⋆
C: invoke Hadamard protocol protocol with statement x = (F,M) and

witness w = (r⋆
B, r⋆

C , r⋆
A)

– r⋆
B ⊆ rB: invoke lookup with index i = row with statement x = (F,M,N) and witness
w = (r⋆

B, rB)
– r⋆

C ⊆ rC: invoke lookup with index i = row, statement x = (F,M,N) and witness
w = (r⋆

C , rB)

4.8.2 Lookup protocol
Definition 4.8.3. The lookup relationRLU is the set of tuples (i,x,w) = (addr, (F,M,N), (f∗, f))
where f∗ ∈ FM , f ∈ FN , addr ∈ [N ]M such that f∗

i = faddri
.

We can transform the relations in Construction 7 into the above lookup relations. For example,
for the relation z⋆ ⊆ z, we consider representing z⋆ as f∗, z as f , and col as addr. It is non-trivial to
construct this protocol for this relation in the streaming model. At first glance, it would appear that
random access to the vector f is necessary, since f∗ is indexed both by i ∈ [N ] and by addri. To
overcome these issues, we require the stream of the index addr to be implemented as two different
streaming oracles.

(i) S(addr), the stream of the vector addr;

(ii) Ssort(addr), the stream of the vector addr, sorted in decreasing order.
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Stream S(z⋆) = Slu(z, U)
Initialize:

a := ⊥ // holds zi

i := N

Next message:
// Get coli

(_, c, _) := Scmaj(U).next()
// Fast-forward S(z) to i

while (i > c)
Decrement i

a := S(z).next()
// Since col is ordered, now i = c

yield a

Stream Stensor-lu(r⋆
U) = S(ρ, U)

Next message:
// Get rowi

(r, _, _) := Scmaj(U).next()
// Let bk be the k-th bit of r

// t could be computed more efficiently

// in specific R1CS instances

t :=
∏

k ρ
bk
k

yield t

Figure 4.5: Stream of the vectors z⋆, r⋆
A, r⋆

B, r⋆
C . Scmaj(U) produces the sparse representation triplets

(row, col, value) in column-major; we use pattern-matching with “_” to assign the value we are interested
in.

The previous literature studying PIOPs forRLU essentially follows two different approaches: the
plookup protocol and the offline-memory checking protocol. Only the plookup protocol is compatible
with our elastic model. In the following sections, we discuss both of these two lookup protocols and
their limitations.

Theorem 4.8.4. For every finite field F and positive integer N , there is a holographic PIOP for the
indexed relationRLU with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(M) F-ops
O(M) memory

O(M logM) F-ops
O(logM) memory
O(logM) passes

O(logM) F-ops O
(

M
|F|

)
O(logM) O(logM) O(logM)

Remark 4.8.5. In the lookup protocol, the verifier needs to query the polynomial f(x) = ∑d
i=0 i · xi

at a random point α. This can be computed in time O(log d) with f(α) = α(1−α
d)

(1−α)2 − dα
d+1

1−α
,

by differentiating the geometric series formula. If α = 1, we obtain the well-known formula
f(1) = d(d+ 1)/2.
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4.8.2.1 Plookup

This technique was previously employed in [GW20; BCG20]. It expresses the lookup as a polynomial
relation of this form:

Lemma 4.8.6 ([GW20, Claim 3.1]). Let f∗ ∈ FM and f ∈ FN . Then f∗ ⊆ f if and only if there
exists w ∈ FM+N such that the equation below in F[Y, Z] is satisfied:

M+N−1∏
j=0

(
Y (1+Z)+wj+1+wj ·Z

)
= (1+Z)M

M−1∏
j=0

(Y +fj)
N−1∏
j=0

(
Y (1+Z)+fj+1+fj ·Z

)
(4.25)

where indices are taken (respectively) modulo M +N , N . If f∗ ⊆ f , then w := sort(f∗, f) satisfies
Equation (4.25).

In the above equation, we consider the subset relation a ⊆ d, and use a⟳ to denote the rotation
of the vector a. Therefore, it is sufficient to test the above polynomial equality over two random
points in the field.
As the above equation will prove a simpler subset statement that a ⊆ d, we will hash the values

with their indices to prove the lookup relationRLU: the verifier sends η ∈ F sampled uniformly ar
random and then, the prover defines:

a :=z⋆ + η · col
d :=z + η · [N ]

(4.26)

We proceed similarly for r∗
U , and rU . We note that there is no need to send these oracles to the

verifier: the verifier simply needs to substitute Equation (4.26) and ask for an evaluation in the
vectors composing it.

Remark 4.8.7. Note that the verifier does not have the oracle access to the shift vectors d⟳ and
w⟳. To avoid having the prover send the shifted oracles and having the verifier check consistency
between them, the prover can add a leading zero to d and w. The plookup relation Equation (4.25)
still holds as long as there is no zero entry in the set, which is guaranteed by the algebraic hash. As
a result, the verifier can obtain the evaluation of the shifted oracles as follows:

d⟳(x) = xNd(x) w⟳(x) = xN+Mw(x) . (4.27)

Construction 8. We construct a PIOP for the indexed relation RLU. Given i = addr as input,
the indexer algorithm outputs addr as an oracle message. The prover P takes as input an index
i = addr, instance x = (F,M,N), and witness w = (f∗, f); the verifier V has query access to the
index i and the witness w and takes as input the instance x. The protocol proceeds as follows.

• The prover P constructs and sends the oracle message w to the verifier V .

• The verifier V samples random elements υ, ζ ← F× and sends them to P .
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• The prover P computes:

ea :=
M−1∏
j=0

(aj + ζ)

ed :=
N−1∏
j=0

((1 + ζ)υ + d⟳j + ζdj)

ew :=
M+N−1∏

j=0
((1 + ζ)υ + w⟳j + ζwj)

and sends them to the verifier.

• The verifier V checks that (1 + υ)Meaed = ew

• The prover P and the verifier V engage (in parallel) the entry-product subprotocol with the
following statements and witnesses:

– entry product with statement x = (F,M, ea) and witness w = (a + υ);
– entry product with statement x = (F, N, ed) and witness w = ((1 + ζ)υ + d⟳ + ζd);
– entry product with statement x = (F, N+M, ew) and witnessw = ((1+ζ)υ+w⟳+ζw).

In order to achieve space-efficiency, we design the algorithm in Figure 4.6 to realize the stream
of the vectors in Construction 8. For example, we can use Sset(Smerge(z⋆

U , z)) to construct the stream
of the sorted vector w.

4.8.2.2 Memory checking

The offline memory-checking technique originated in [BEGKN91] and was used in prior argument
systems [SATJ18; Set20]. It can be used to prove claims of the form f∗ ⊂ f , but and unlike the
plookup protocol some oracles can be computed by the indexer. The indexer, for the specific relation
RLU, computes three oracles from the index addr: the read timestamp read-ts, the write timestamp
write-ts, and the audit timestamp audit-ts as follows:

read-ts := (max j ∈ [M ] : addrj = addri)i∈addr , (4.28)
write-ts := [N ] , (4.29)
audit-ts := (max j < i : addrj = addri)i∈addr . (4.30)

If, at the i-th position, no such maximum exists, the element is set to zero. At the core of the
memory-checking protocol there is the following polynomial relation.
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Stream Smerge(S1,S2)
Initialize:

a := S1.next()
b := S2.next()

Next message:
if (a ̸= b)

a := S1.next()
else

b := S2.next()
yield a

Stream Ssubset(S1, ζ)
Next message:

a := S1.next()
yield a + ζ

Stream Sset(S1, υ, ζ)
Initialize:

a := 0
Next message:

b := a

a := S1.next()
if a ̸= ⊥

yield υ(1 + ζ) + a + ζ · b
else

yield υ(1 + ζ) + ζ · b

Figure 4.6: Stream of the vectors for the lookup protocol.

Theorem 4.8.8. Let f∗ ∈ FM , f ∈ FN , and addr ∈ [N ]M . We have f∗
i = faddri

for all i ∈ [M ] if and
only if

N∏
j=1

(X − HY (j, fj))·
M∏

j=1
(X − HY (addrj, f∗

j ,write-tsj))

=
M∏

j=1
(X − HY (addrj, f∗

j , read-tsj)) ·
N∏

j=1
(X − HY (j, fj, audit-tsj))

(4.31)

where HY (a, b, c) = a+ Y · b+ Y 2 · c, and read-ts, write-ts and audit-ts are vectors produced by
the offline memory-checking procedure described in [Set20].

The prior work [Set20] expresses Equation (4.31) in the circuit, and leverages an external proof
system to generate the proof. In contrast, we reduce the Equation (4.31) into four entry product
arguments. The verifier samples random challenges β, σ ∈ F×, and both parties engage in the entry
product protocols for X = β and Y = σ. As discussed in Section 4.2.7.2, the offline-memory
checking is only compatible with the lookup claim

(
z⋆, col

)
⊆

(
z, [N ]

)
.

The timestamp oracles read-ts,write-ts, and audit-ts can be computed in linear-time by the
indexer, as shown in Fig. 4.7. Then if the underlying entry product protocol is linear-time, the
overall offline memory-checking protocol is also linear-time. We now consider the space-efficient
realization. The biggest challenge is to produce the streams of timestamp oracles read-ts,write-ts,
and audit-ts. However, we observe that because we organize the non-zero entries in the column-major
order, the elements in the stream of colU are in non-descending order. As a result, the streams of
read-ts,write-ts, and audit-ts can be computed by a single pass of colU .
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Indexer for Construction 9

read-ts := (0)i∈[N ]

write-ts := (0)i∈[N ]

audit-ts := (0)i∈[N ]

for (i, a) ∈ [N ]× addr
write-ts[i] := i

read-ts[i] := audit-ts[a]
audit-ts[a] := i

Figure 4.7: Linear-time algorithm for generating the timestamp vectors in Construction 9 [BEGKN91;
Set20].

Construction 9. We construct a holographic PIOP for the indexed relationRLU. On input addr,
the indexer produces the oracle messages read-ts, audit-ts. The prover P takes as input an index
i = addr, instance x = (F,M,N), and witness w = (f∗, f); the verifier V takes as input the index
i and the instance x. The prover P and the verifier V proceed as follows:

• The verifier V samples random elements β, σ ← F× and sends them to P .

• The prover P computes:

einit =
N∏

j=1
(β − Hσ(j, fj)),

ews =
M∏

j=1
(β − Hσ(addrj, f

∗
j ,write-tsj)),

ers =
M∏

j=1
(β − Hσ(addrj, f

∗
j , read-tsj)),

eas =
N∏

j=1
(β − Hσ(j, fj, audit-tsj)) .

and sends them to the verifier.

• The verifier V checks that einit · ews = ers · eas

• Let init, as ∈ FN and ws, rs ∈ FM denote the vectors involved in each entry product. The
prover P and the verifier V engage entry-product subprotocols with the following statements
and witnesses:
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– entry product with statement x = (F,M, einit) and witness w = init;
– entry product with statement x = (F,M, ews) and witness w = ws;
– entry product with statement x = (F,M, ers) and witness w = rs;
– entry product with statement x = (F, N, eas) and witness w = as.

An oracle query to e.g. init in a subprotocol is made by taking the appropriate linear
combination of queries to (0, . . . , N − 1), f and 0N .

4.8.3 Entry product
Let f be a monic polynomial whose product of coefficients is e. We design a proof system for
proving that e = ∏

i fi. More formally:

Definition 4.8.9. The entry product relationREP is the set of tuples (i,x,w) = (⊥, (F, N, e), f)
where f ∈ FN and

∏N−1
i=0 fi = e.

Theorem 4.8.10. For every finite field F and positive integer N , there is a PIOP for the indexed
relationREP with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(logN) passes

O(logN) F-ops O
(

N
|F|

)
O(logN) O(logN) O(logN)

We can evaluate Equation (4.32) at a random point α and check it using a scalar-product protocol.
This requires one scalar-product protocol and two evaluation queries.

Construction 10. We construct a PIOP for the indexed relationREP. The prover P takes as input
an index i = ⊥, instance x = (F, N, e), and witness w = f ; the verifier V takes as input the index i
and the instance x. The prover P and the verifier V proceed as follows:

• The prover P constructs g := (∏
i≥0 fi,

∏
i≥1 fi, . . . , fN−2fN−1, fN−1), and sends the

field element fN−1 and the oracle message g to the verifier.

• The verifier samples a random α← F× and sends it to the prover.

• The verifier queries the oracle for g to learn g(α), and the prover and verifier compute
u := g(Y )Y + fN−1(e− Y N).
The prover P and verifier V engage in a twisted scalar-product protocol (Construction 3) with
index i = ⊥, instance x = (F, N,y, u), and witness w = (g ◦ y, f⟳) and produces claims
that A = ⟨g,⊗j(1, υjρj)⟩ and C = ⟨f⟳,⊗j(1, ρj)⟩. where y = (α0, . . . , αN−1) = ⊗j(1, υj)
and (ρ0, . . . , ρn−1) are the verifier randomnesses in the scalar product protocol. They check
these claims using the tensor product protocol (Construction 1).
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Lemma 4.8.11. Let f ,g ∈ FN , with fN−1 ̸= 0. Let e ∈ F. Then

⟨g ◦Y, f⟳⟩ = g(Y )Y + fN−1(e− Y N) (4.32)

if and only if
g := (∏

i≥0 fi,
∏

i≥1 fi, . . . , fN−2fN−1, fN−1) .

and
∏

i≥0 fi = e.

Proof. If f = (f0, f1, f2, . . . , fN−1), then f⟳ = (fN−1, f0, f1, . . . , fN−2), so

⟨g ◦Y, f⟳⟩ = g0fN−1 + g1f0Y + · · ·+ gN−2fN−3Y
N−2 + gN−1fN−2Y

N−1 . (4.33)

We also have

g(Y )Y + fN−1(e− Y N) =
N−1∑
i=1

gi−1Y
i + fN−1e+ gN−1Y

N − fN−1Y
N . (4.34)

Comparing coefficients shows that the polynomials in Equation (4.33) and Equation (4.34) are
equal if and only if gi = gi+1fi for i ∈ [N − 1], with gN−1 = fN−1 and g0fN−1 = efN−1. Since
fN−1 ̸= 0, the claim follows.

Remark 4.8.12. Construction 10 requires f to be a monic polynomial, however, the polynomial f ′

in the lookup protocol does not satisfy this condition. To solve that, the prover and the verifier run
the entry product for f(x) = f ′(x) + xn. Note that the claim of the entry product remains the same.
Moreover, the verifier can easily query the shifted oracle as follows: f⟳(x) = 1 + xf ′(x).
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4.9 Polynomial commitment schemes
We use polynomial commitment schemes to compile our PIOPs into cryptographic arguments. We
require elastic polynomial commitment schemes to compile elastic PIOPs into elastic argument
systems. We will use the same polynomial commitment scheme as [CHMMVW20], which is a
variant of the construction in [KZG10]. Our contribution is to show that this scheme has elastic
commitment and opening algorithms.

Theorem 4.9.1. The commitment scheme of [CHMMVW20] is elastic, with:

setup
time

time-efficient
commitment

time-efficient
opening

space-efficient
commitment

space-efficient
opening

check
time

commitment and
opening sizes

MSM(D) ops
MSM(D) ops
O(D) memory

MSM(D) ops
O(D) memory

O(D) SM ops
O(1) SM memory
O(1) passes

O(D) SM ops
O(1) SM memory
O(1) passes

O(1) SM
+ O(1) PA O(1) GE

In the above theorem, we let MSM denote multi-scalar exponentiation, SM denotes exponenti-
ation, PA denotes pairing, GE denotes a group element, and D denotes the maximum degree of
the polynomials. In the rest of this section, we give formal definitions for an elastic polynomial
commitment scheme and show how to construct it.

4.9.1 Definition
A polynomial commitment scheme over a field familyF is a tuple of algorithms PC = (Setup,Com,
Open,Check) with the following syntax.

• Setup PC.Setup(1λ, D) → (ck, rk). On input a security parameter λ (in unary), and a
maximum degree bound D ∈ N, PC.Setup samples a commitment key ck and verification
key rk, which contain the description of a finite field F ∈ F .

• Commit PC.Com(ck,p)→ C. On input ck and a univariate polynomial p of degree at most
D over the field F, PC.Com outputs commitment C to the polynomial p.

• Open PC.Open(ck,p, z) → π. On input ck, a univariate polynomial p, degree bounds D,
and a query point z ∈ F, PC.Open outputs an evaluation proof π.

• Check PC.Check(rk, C, z, v, π) ∈ {0, 1}. On input rk, the commitment C, query point z ∈ F,
alleged evaluation v, and an evaluation proof π, PC.Check outputs 1 if π attests that the
polynomial p committed in C has degree at most D and evaluates to v at z.

A polynomial commitment scheme PC must satisfy completeness and extractability.
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Definition 4.9.2 (Completeness). For every degree bound D ∈ N and efficient adversary A,

Pr


deg(p) ≤ D

⇓
PC.Check(rk, C, z, v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ, D)
(p, z)← A(ck, rk)

C ← PC.Com(ck,p)
v = p(z)

π ← PC.Open(ck,p, z)

 = 1 .

Definition 4.9.3 (Extractability). For every degree bound D ∈ N and efficient adversary A there
exists an efficient extractor E such that for every round bound r ∈ N, efficient query samplerQ, and
efficient adversary B the probability below is negligibly close to 1 (as a function of λ):

Pr


PC.Check(rk, C, z, v, π) = 1

⇓

deg(p) ≤ D and v = p(z)

∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ, D)
C ← A(ck, rk)
p← E(ck, rk)
z ← Q(ck, rk)

(π, v, st)← B(ck, rkz)

 .

(The above definition captures the case where A,Q,B share the same random string to win the
game.)

4.9.2 An elastic polynomial commitment scheme
The polynomial commitment scheme of [KZG10] consists of the following algorithms.

• Setup PC.Setup(1λ, D)→ ck. First,PC.Setup samples a bilinear group (G1,G2,GT , q, G,H, e)←
SampleGrp(1λ). Next, PC.Setup samples β ∈ F, computes βH and computes the vector

Σ = (GD, GD−1, . . . , G1, G0) :=
(
βDG βD−1G . . . βG G

)
∈ GD+1

1 .

Finally, PC.Setup outputs ck := ((G1,G2,GT , q, G,H, e),Σ) and rk := (G,H, βH).

• Commit PC.Com(ck,p)→ C. The commitment algorithm PC.Com parses p(X) ∈ F[X] of
degree d ≤ D as

∑d
j=0 pjX

j and outputs C := ∑d
j=0 pj ·Gj ∈ G1.

• Open PC.Open(ck,p, z) → π. The opening algorithm PC.Open computes witness poly-
nomial w(X) := p(X)−p(z)

X−z
, parses w(X) as ∑d−1

j=0 wjX
j and outputs the evaluation proof

π := ∑d−1
j=0 wjGj ∈ G1.

• Check PC.Check(rk, C, z, v, π) ∈ {0, 1}. The check algorithm PC.Check outputs 1 if and
only if e(C − vG,H) = e(π, βH − zH).

Below we explain how to implement this scheme in small space using streaming algorithms. We
only need to consider the Com and Open algorithms, since the Check algorithm is succinct and the
setup algorithm has natural time-and-space-efficient realizations.
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The stream S(Σ) of the vector Σ is simply the sequence (GD, . . . , G0). The stream S(p)
associated with the polynomial p = ∑D

j=0 pjX
j is the sequence (pd, . . . , p0). Note that it is

important that S(Σ) and S(p) are ordered from highest powers of β and X to lowest in order to
support an efficient PC.Open algorithm.
Commit. On input ((G1,G2,GT , q, G,H, e),S(Σ),S(p)), PCs.Com sets C = 0 ∈ G1. Then,
for j = d, d − 1, . . . , 0, PCs.Com uses the streaming oracles to get pj = S(p).next() and Gj =
S(Σ).next() and computes C := C + pjGj . Otherwise, PCs.Com outputs C ∈ G1.
Note that PCs.Com only needs to store the value of C throughout the entire loop.

Open. On input ((G1,G2,GT , q, G,H, e),S(Σ),S(p)), evaluation point z ∈ F, opening challenge
ξ ∈ F, PCs.Open sets π = 0 ∈ G1 and wd := 0 ∈ F, and consumes the first element of the stream
S(Σ) by fetching Gd = S(Σ).next().
Then, for j = d− 1, . . . , 0, PCs.Open uses the streaming oracles to get pj+1 = S(p).next() and

Gj = S(Σ).next(), and computes wj := pj+1 + wj+1z and π := π + wjGj .
Finally, PCs.Com outputs π ∈ G1.
Note that PCs.Com only needs to store the values of π, wj+1 for the next iteration of the loop.

Remark 4.9.4. The Open and Check algorithms (as well as the completeness and extractability
properties) can be generalized as in [CHMMVW20; BDFG20] to allow batched opening and
evaluation checking. Given polynomials p0, . . . ,pm−1 and claimed evaluations v0, . . . , vm−1 at
a point z, the party verifying the commitment and openings selects a random opening challenge
ξ ∈ F, and the PC.Open and PC.Check algorithms are run on polynomial p := ∑m−1

i=0 ξipi and
claimed evaluation v := ∑m−1

i=0 ξivi. Given points z0, . . . , zℓ and claimed evaluations v0, . . . , vℓ, the
evaluation proof defines Z(X) := ∏

i(X − zi). Let q(X) and r(X) be respectively quotient and
reminder of the Euclidian division between p(X) and Z(X). Let R,Z ∈ G be the group elements
associated to r(X) and Z(X). The evaluation proof is π := ⟨q(X), ck⟩ while the evaluations are
obtained as vi := r(zi). The PC.Check algorithm reconstructs r(X) from the claimed evaluations
via polynomial interpolation and checks that e(C −R,H) = e(π, Z).
We briefly describe how the PC.Open algorithm can be implemented in small space. The stream

S(p) can be computed by a streaming algorithm that uses O(mℓD) operations, O(ℓ) space (never
storing more than pi, . . . ,pi−ℓ+1 coefficients for the partial computation of the opening), and a
single pass over each of the m polynomials pi. Composing this streaming algorithm with the
opening algorithm using Lemma 4.4.6 gives a batched opening algorithm.
The complexity of batched operations for PC is given in the following table.

time-efficient
opening

space-efficient
opening

check
time

opening
size

O(D) SM+O(mℓD) F ops
O(mD +mℓ) memory

O(D) SM+O(mℓD) F ops
O(ℓ) SM memory
O(1) passes

O(m+ ℓ) SM
+ O(1) PA O(1) GE

We note that, in Construction 1, ℓ = 3 as we demand evaluations for β,−β, β2 as displayed in
Eq. (4.15).
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4.10 Elastic argument systems
We describe a compiler that uses elastic polynomial commitment schemes and elastic PIOPs to
construct elastic cryptographic arguments.

Theorem 4.10.1. Consider the following.

• A holographic PIOP over a field family F , for an indexed relationR, with:

indexer
time

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

communication
complexity

tI

tP time
sP memory

t′P time
s′

P memory
kP passes

tV time ϵ k l q cc

– a public-coin verifier and non-adaptive queries; and
– message schedule specified by o and d with output stream ordering {(a, b, c) : a ∈

[k], b ∈ [o(a)], c ∈ d(|i|, a, b)} ordered first in ascending order by round number a, then
ascending order by oracle number b, then descending order by polynomial coefficient c.

– maximum degree bound D := maxa,b{d(|i|, a, b)};

• A polynomial commitment scheme PC over a field family F , with

setup
time

time-efficient
commitment

time-efficient
opening

space-efficient
commitment

space-efficient
opening

check
time

commitment and
opening sizes

tPC.G

tPC.Com time
sPC.Com space

tO time
sO memory

t′PC.Com time
s′

PC.Com memory
kPC.Com passes

t′O time
s′

O memory
po passes

tPC.Check |PC.Com|

and input ordering {pd, pd−1, . . . , p0} for all streams of input polynomials p(X) = ∑d
i=0 piX

i,
for the PC.Com and PC.Open algorithms.

Then there is a preprocessing argument forR with

generator
time

indexer
time

verifier
time

soundness
error

round
complexity

communication
complexity

tPC.G tI + o(0) · tPC.Com tV + qtPC.Check ϵ+ negl(λ) k + 2 cc + ∑k
i=1 o(i) · |PC.Com|+ q · |PC.Open|

and prover complexity

time-efficient
prover

space-efficient
prover

tP + ∑k−1
i=0 o(i) · tPC.Com + q(tO + te) time

sP + sPC.Com + sO memory
(kPC.Com + po)t′P + ∑k−1

i=0 o(i) · t′PC.Com + q · (t′O + te) time
s′

P + ∑k−1
i=0 o(i) · s′

PC.Com + q · s′
O +O(q) memory

(kPC.Com + po) · kP passes
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In Section 4.10.1 we give formal definitions for preprocessing arguments with a universal
structured reference string. In Section 4.10.2 we present a compiler and prove Theorem 4.10.1.

4.10.1 Preprocessing arguments with universal SRS
Following [CHMMVW20, Section 7], a preprocessing argument ARG with universal SRS for an
indexed relationR is a tuple of probabilistic polynomial-time algorithms (GARG, IARG,PARG,VARG)
consisting of a generator GARG, an indexer IARG, a prover PARG and a verifier VARG such that the
following properties hold.

• Completeness. For all size bounds N ∈ N and efficient A,

Pr

 (i,x,w) ̸∈ RN
∨

⟨PARG(ipk,x,w),VARG(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← GARG(1λ,N)
(i,x,w)← A(srs)

(ipk, ivk)← Isrs
ARG(i)

 = 1 .

• Soundness. For all size bounds N ∈ N and efficient P̃ = (P̃1, P̃2),

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃2(st),VARG(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
srs← GARG(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs

ARG(i)

 = negl(λ) .

All of the constructions in this paper achieve the stronger property of knowledge soundness as
defined in [CHMMVW20, Section 7], using the same proof as in [CHMMVW20].

4.10.2 Elastic PIOP to argument compiler
We show how to compile our elastic PIOPs into an elastic argument systems elastic commitment
schemes. We follow the compiler construction analysed in [CHMMVW20, Theorem 8.1].

Construction 11. As the input PIOP has a public-coin verifier and non-adaptive queries, we assume
that all of the verifier queries in the PIOP take place at the end.
Setup. srs ← GARG(1λ,N): Let D := maxi∈[k] maxj∈[o(i)] d(|i|, i, j). The generator GARG runs
PC.Setup(1λ, D) to get output ck, which contains the description of a finite field F ∈ F .
Offline phase. In the offline phase (“0-th round”), the indexer IARG receives as input a commitment
key ck, a field F ∈ F and an index i forR. Then IARG runs the IOP indexer I, which outputs o(0)
polynomials p0,1, . . . ,p0,o(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, o(0)) respectively.
For each polynomial p0,i, the indexer IARG computes C0,i = PCs.Com(ck,p0,i,⊥).
Online phase. In the online phase, given the commitment key ck, an instance x and witness w such
that (i,x,w) ∈ R, the prover PARG receives (F, ck, i,x,w) and the verifier V receives (F,x, ck)
and the commitments produced by IARG(F, i, ck). The prover PARG and the verifier VARG interact
over k + 2 = k(|i|) + 2 rounds.
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• For i ∈ [k], in the i-th round of interaction, the verifier VARG runs V and forwards its
message ρi ∈ F× to the prover PARG. The prover PARG forwards this message to P
which replies with o(i) oracle polynomials pi,1, . . . ,pi,o(i) ∈ F[X] of degrees at most
d(|i|, i, 1), . . . , d(|i|, i, o(i)) respectively. For each polynomial pi,j , the proverPARG computes
the commitment Ci,j := PC.Com(ck,pi,j,⊥) and sends Ci,j to the verifier VARG.

• The verifier VARG runs V to obtain opening queries, each consisting of an evaluation point
z ∈ F, and a pair of indices (i, j) which specify an oracle pi,j . The verifier VARG forwards all
of the queries to the prover PARG. Then, for each query (z, i, j), the prover PARG computes
v := pi,j(z) ∈ F, computes π := PC.Open(ck,pi,j, z), and sends v and π to VARG. The
verifier VARG forwards the evaluation point v to V .

• The verifier VARG computes b← PC.Check(ck, C, z, v,w) for each opening query. If b = 1
for every execution of PC.Check, and V accepts, then VARG accepts. Otherwise, VARG rejects.

4.10.3 Proof of Theorem 4.10.1
The completeness and soundness properties, and indexer, prover and verifier efficiency for the
time-efficient argument produced by the compiler follow from the proof of [CHMMVW20, Theorem
8.1].
To prove Theorem 4.10.1, it remains to describe a space-efficient implementation of the prover

algorithm Construction 11.

Construction 12 (space-efficient prover). We describe a space-efficient prover algorithm for the
online phase of ARG.

For i ∈ [k], in the i-th round of interaction, PARG initializes o(i) different sessions with the space
efficient commitment algorithm PC.Com, using o(i) different sessions for the streaming oracle S(ck),
and runs the space-efficient implementation of the prover algorithm P (for the i-th round) kPC.Com
times, forwarding each coefficient of each polynomial pi,j(X) to the correct session for PC.Com.

To answer the verifier’s queries, PARG initializes q different sessions with the PC.Open algorithm,
using q different sessions for the streaming oracle S(ck). For each i ∈ [k], consider the evaluation
queries (z1, i, j1), . . . , (zt, i, jt) made during the i-th round. The prover PARG executes P , po times,
to produce po passes over the coefficients of the polynomials pi,0(X), . . . ,pi,o(i)(X). The prover
PARG forwards the coefficients produced during each pass to the correct session for the PC.Open
algorithm. During the first pass over each of the polynomials pi,jr

(X), PARG computes pi,jr
(zr)

using Horner’s rule.

Note that input/output orderings of the P algorithm and the PC.Com and PC.Open algorithms
ensure that the polynomials produced by P are fed to PC.Com and PC.Open in the correct order.
We justify each of the complexity parameters of Construction 12 in turn.

Prover time. For each round i ∈ [k], the prover PARG runs the prover algorithm P for the i-th round
a total of kPC.Com + po times. In total, this incurs a time cost of kPC.Com + po complete executions
of P .
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In addition, PARG commits to
∑k−1

i=0 o(i) polynomials using PC.Com, and for q queries, evaluates
a polynomial of degree D and runs PC.Open.
This gives a total prover time of (kPC.Com + po)t′P +

sumk−1
i=0 o(i) · t′PC.Com + q · (t′O + te).

Prover space. For each round i ∈ [k], the proverPARG runs the prover algorithmP for the i-th round,
while running o(i) executions of PC.Com in parallel. This gives space costs of s′

P + o(i)s′
PC.Com.

Subsequently, PARG runsP again to answer evaluation queries, running q executions of PC.Open
and computing evaluations of at most q polynomials in parallel at any time. This gives space costs
of q · s′

O +O(q).
Number of passes. The prover PARG runs P a total of kPC.Com + po times in order to provide
enough passes for PC.Com and PC.Open. Each execution of P uses at most kP , giving a total of
(kPC.Com + po) · kP .
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Chapter 5

Ghostor: Toward a Secure Data-Sharing
System from Decentralized Trust

Data-sharing systems are often used to store sensitive data. Both academia and industry have
proposed numerous solutions to protect user privacy and data integrity from a compromised server.
Practical state-of-the-art solutions, however, use weak threat models based on centralized trust—they
assume that part of the server will remain uncompromised, or that the adversary will not perform
active attacks. We propose Ghostor, a data-sharing system that, using only decentralized trust, (1)
hides user identities from the server, and (2) allows users to detect server-side integrity violations.
To achieve (1), Ghostor avoids keeping any per-user state at the server, requiring us to redesign the
system to avoid common paradigms like per-user authentication and user-specific mailboxes. To
achieve (2), Ghostor develops a technique called verifiable anonymous history. Ghostor leverages
a blockchain rarely, publishing only a single hash to the blockchain for the entire system once
every epoch. We measured that Ghostor incurs a 4–5x throughput overhead compared to an
insecure baseline. Although significant, Ghostor’s overhead may be worth it for security- and
privacy-sensitive applications.
This work was previously published in [HKP20].
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5.1 Introduction
Systems for remote data storage and sharing have seen widespread adoption over the past decade.
Every major cloud provider offers it as a service (e.g., Amazon S3, Azure Blobs), and it is estimated
that 39% of corporate data uploaded to the cloud is related to file sharing [Kep15]. Given the
relentless attacks on servers storing data [Ide18], a long-standing problem in academia [LKMS04;
FZFF10; SCCKMS10; KL15; KFPC16; Bla93; GSMB03a; HAJSS14; LCSJLB14; Pop+14] and
industry [Cry; Inc; Key; Pri; Vir] has been to provide useful security guarantees even when the
storage server, and some users, are compromised by an adversary.
To address this, early systems [GSMB03a; KRSWF03] have users encrypt and sign files.

However, a sophisticated adversary can still:
• observe metadata about users’ identities [CWWZ10; GMNRS16; IKK12; Wha12]. Even if the
files are encrypted, the adversary sees which users are sharing a file, which user is accessing a
file at a given time, and the list of users in the system. Figure 5.1 shows an example where the
attacker can conclude that Alice has cancer from such metadata. Further, this allows the attacker
to learn the graph of user social relations [Sea18; SH12].

• perform active attacks. Despite the signatures, an adversary can revert a file to an earlier state
as in a rollback attack, or hide users’ updates from each other as in a fork attack, without being
detected. These are dangerous if, for example, the shared file is Alice’s medical profile, and she
does not learn that her doctor changed her treatment.
Research over the past 15 years has striven to mitigate these attacks by providing anonymity—hiding
users’ identities from the storage server—or verifiable consistency—enabling users to detect rollback
and fork attacks. In achieving these stronger security guarantees, however, state-of-the-art systems
employ weaker threat models that rely on centralized trust: a trust assumption on a few specific
machines. For example, they rely on a trusted party [SS13; MMRS17], split the server into
two components assuming one is honest [KH12; PP12; KFPC16], or assume the adversary is
honest-but-curious (not malicious) [ZYG11; BLNN15; MMRS15; BHKP16] meaning the attacker
does not change the server’s data or execution.
Attackers have notoriously performed highly targeted attacks, spreading malware with the ability

to modify software, files, or source code [Zeta; Zetb; Lem]. In such attacks, a determined attacker
can compromise any few central servers. Ideally, we would avoid any trust in the server or other
clients, but unfortunately, that is impossible: Mazières and Shasha [MS02] proved that, if one cannot
assume that clients are reliably online [KL15], clients cannot detect fork attacks without placing
some trust in the server. Hence, this paper asks the question: Can we achieve strong privacy and
integrity guarantees in a data-sharing system without relying on centralized trust?
To answer this question, we design and build Ghostor, an object store based on decentralized

trust that achieves anonymity and verifiable linearizability (abbreviated VerLinear). At a high level,
anonymity1 means that the protocol does not reveal directly to the server any user identity with any
request, as previously defined in the secure storage literature [ZYG11; KH12; PP12; MMRS15]. As

1Outside of secure storage, anonymity is sometimes defined differently. In secure messaging, for example, an
anonymous system is expected to hide the timing of accesses [HLZZ15a] and which files/mailboxes are accessed, but
not necessarily the system’s membership [CGBM15].
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E2EE Systems Ghostor's Anonymous E2EE
Alice and BobMD have accounts This system has unknown users
Alice owns medical profile file F
Alice and BobMD have access to F
Alice reads F at 2pm
BobMD writes to F at 3pm

File F exists with unknown owner
F's Access Control List is unknown
Unknown reads F at 2pm
Unknown (could be same as
above) writes to F at 3pmGoogle search says BobMD

is an oncologist. Each of
these tells me that Alice
might suffer from cancer.

Figure 5.1: An example of what a server attacker sees in a typical end-to-end encrypted (E2EE) system
versus Ghostor’s Anonymous E2EE

shown in Figure 5.1, the server does not see which user owns which objects, which users have read or
write permissions to a given object, or even who are the users of the system. The server essentially
sees ghosts accessing the storage, hence the name “Ghostor.” VerLinear means clients can verify
that each write is reflected in later reads, except for benign reordering of concurrent operations as
formalized by linearizability [HW90]. To achieve these properties, we build Ghostor’s integrity on
top of a consistent storage primitive based on decentralized trust, like a blockchain [Nak08; But+13;
Zcab] or verifiable ledger [HB17; ELC], while using it only rarely.

Hides which users are part of the system

Hides which user makes each access

Hides the ACL of each object

Hides which object is accessed

Hides the data in each object

Hides the type of each access (read or write)G
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Figure 5.2: Information leakage in a data-sharing system and associated privacy properties
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5.1.1 Hiding User Identities
Achieving anonymity in practical data-sharing systems like Ghostor is difficult because common
system design paradigms, like user login, per-user mailboxes on the server, and client-side caching,
let the server track users. As we explain in Section 5.4, even using user-specific keys to sign updates
to data objects can reveal to the server which user performed the update, and requires knowledge
of the ACL to check that the signer is an authorized user. We re-architect the system to avoid
these paradigms (Section 5.4), using data-centric key distribution and encrypted key lists instead of
server-side ACLs. Like prior systems [GSML16; AT83; KHAPC19], Ghostor uses cryptographic
keys as capabilities, allowing the server and other users to verify that each access is performed by an
authorized user. Ghostor also leverages this technique to achieve anonymity by having all users
authorized to perform a particular operation on an object (e.g., all users with read access to an object)
share the same capability for performing that operation on that object, and by distributing these
capabilities to users without revealing ACLs to the server. We find this technique, anonymously
distributed shared capabilities, interesting because anonymity is not typically a goal of public-key
access control [GSML16; AT83] or capability-based systems [Lev84; SSF99; MWC10].
An additional challenge is to guard against resource abuse while preserving anonymity. This is

typically done by enforcing per-user resource quotas (e.g., Google Drive requires users to pay for
additional space), but this is incompatible with Ghostor’s anonymity. One solution is for users to pay
for each operation via an anonymous cryptocurrency (e.g., Zcash [Zcab]), but this puts an expensive
blockchain operation in the critical path. To avoid this, Ghostor leverages blind signatures [CPS94;
Cha83; Cha84] to allow a user to pay the Ghostor server for service in bulk and in advance, while
removing the linkage between payments and operations.

 Practical
systems

Theoretical
schemes

E2EE Systems:
CFS, SiRiUS, Plutus,
Sieve, ShadowCrypt,

Keybase, etc.

Ghostor's
techniques

Anonymous, E2EE,
VerLinear System:

Ghostor

Globally Oblivious
Schemes:

 AnonRAM, PANDA,
etc.

Metadata-Hiding File-
Sharing Scheme:

Ghostor-MH (§7.2)

Ghostor's
techniques

Figure 5.3: Ghostor’s contributions. Ghostor’s techniques can be applied to both oblivious and
non-oblivious systems.

Relationship to obliviousness. Figure 5.2 positions Ghostor’s anonymity with respect to other
privacy properties. Global obliviousness [BHKP16; MMRS17], which hides which object is
accessed across all uncompromised objects and users in the system, is orthogonal to Ghostor’s
anonymity, which hides which user performs each access. Obliviousness and anonymity are also
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complementary: (1) In some cases, without obliviousness, users may be identified based on access
patterns. (2) Without anonymity, knowing which user issued a request may reveal information
about what data that request may access. Ghostor’s techniques for anonymity are a transformation
(Figure 5.3):
• If to an E2EE system, we obtain Ghostor, an anonymous E2EE system.
• If applied to a globally oblivious scheme, we obtain Ghostor-MH, a data-sharing scheme

that hides all metadata (except when initializing a group of objects or redeeming payments, as
explained in Section 5.7.2).
Hiding metadata from a malicious adversary, as in Ghostor-MH, is a very strong guarantee—existing
globally oblivious schemes inherently reveal user identities [MMRS17] or assume the adversary is
honest-but-curious [MMRS15; BHKP16]. However, globally oblivious data-sharing schemes, like
Ghostor-MH, are theoretical schemes that are far from practical. Thus, Ghostor-MH is only a proof
of concept demonstrating the power of Ghostor’s techniques to lift a globally oblivious scheme all
the way to virtually zero leakage for a malicious adversary.

5.1.2 Verifiable Consistency
To provide VerLinear, prior work has clients sign hashes [KL15] so the clients can verify that they
see the same hash, or store hashes on a separate hash server [KFPC16], trusted not to collude with
the storage server. Neither technique can be used in Ghostor: client signatures are at odds with
anonymity, and the hash server is a trusted party, which Ghostor aims to avoid.
One way to adapt the prior designs to Ghostor’s decentralized trust is to store hashes on a

blockchain, which can be accomplished by running the hash server in a smart contract. Unfortunately,
this design is too slow to be practical. The client posts a hash on the blockchain for every object
write, which is expensive: blockchains incur high latency per transaction, have low transaction
throughput, and require cryptocurrency payment for each transaction [But+13; Nak08; Zcab].
To sidestep the limitations of a blockchain, we design Ghostor to only interact with the blockchain

rarely and outside of the critical path. Ghostor divides time into intervals called epochs. At the end
of each epoch, the Ghostor server publishes to the blockchain a small checkpoint, which summarizes
the operations performed during that epoch for all objects and users in the system. Each user can
then verify that the results of their accesses during the epoch are consistent with the checkpoint.
The consistency properties of a blockchain ensure all clients see the same checkpoint, so the
server is committed to a single history of operations and cannot perform a fork attack. Commit
chains [KZFMSG18] and monitoring schemes [Bon16; TD17] are based on similar checkpoints, but
Ghostor applies them to object storage while maintaining users’ anonymity.
A significant obstacle is that a hash-chain-based history is not amenable to concurrent appends.

Each entry in the history contains the hash of the previous entry, causing one operation to fail if
a concurrent operation appends a new entry. Existing techniques for concurrent operations, such
as SUNDR’s VSLs [LKMS04], reveal per-user version numbers that would undermine Ghostor’s
anonymity. Our insight in Ghostor is to have the server, not the client, populate the hash of the
previous entry when appending a new entry. To make this safe despite a malicious adversary, we
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carefully design a conflict resolution strategy, involving multiple linked entries in the history for
each write, that prevents attackers from manipulating data via replay or time-stretch attacks.
We call the resulting design a verifiable anonymous history.

Goal Technique
Anonymous user access control Anonymously distributed shared capabil-

ities (Section 5.4)
Anonymous server integrity verifi-
cation

Verifiable anonymous history (Sec-
tion 5.5)

Concurrent operations on a single
object

Optimized GETs, two-phase protocol for
PUTs (Section 5.5.4)

Anonymous resource abuse preven-
tion

Blind signatures and proof of work (Sec-
tion 5.6)

Hiding user IP addresses Anon. network, e.g., Tor (Section 5.8)

Table 5.1: Our goals and how Ghostor achieves each one

5.1.3 Summary of Contributions
Our goals and techniques are summarized in Table 5.1. Overall, this paper’s contributions are:
• We design an object store providing anonymity and verifiable linearizability based only on

decentralized trust.
• We develop techniques to (1) share capabilities for anonymity and distribute them anonymously,
(2) create and checkpoint a verifiable anonymous history, and (3) support concurrent operations
on a single object with a hash-chain-based history.

• We combine these with existing building blocks to instantiate Ghostor, an object store with
anonymity and VerLinear.

• We also apply these to a globally oblivious scheme to instantiate Ghostor-MH, which hides nearly
all metadata.
We also implemented Ghostor and evaluated it on Amazon EC2. Overall, Ghostor brings a 4-5x
throughput overhead on top of a simplistic and completely insecure baseline. There are two types of
latency overhead. Completing an individual operation takes several seconds. Afterward, it may take
several minutes for a checkpoint to be incorporated into the blockchain, to confirm that no active
attack has occurred for a batch of operations. We explain how these latencies play out in the context
of a particular application, EHR Sharing (Section 5.7.1).
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5.2 System Overview
Ghostor is an object store, which stores unstructured data items (“objects”) and allows shared access
to them by multiple users. We instantiate Ghostor as an object store (as in Amazon S3 or Azure
Blobs) because it is a basic primitive on top of which more complex systems can be built. Figure 5.4
illustrates Ghostor’s architecture. Multiple users, with separate clients, have shared access to objects
on the Ghostor server.

Ghostor Server

Blockchain checkpointscheckpoints

Verification Daemon

Ghostor
Library

digests

Ghostor Client

Application

alarm

StorageServer SideUser Side

verifiable
anonymous history

root
hash

…
…
…

Figure 5.4: System overview of Ghostor. Shaded areas indicate components introduced by Ghostor.

Server. The Ghostor storage server processes requests from clients. At the end of each epoch, the
server generates a single small checkpoint and publishes it to the blockchain.
Client. The client software consists of a Ghostor library, linked into applications, and a verification
daemon, which runs as a separate process. The Ghostor library receives requests from the application
and interacts with the server to satisfy each request. Upon accessing an object, the library forwards
a digest summarizing the operation to the verification daemon. At the end of each epoch, the
daemon (1) fetches object histories from the server, (2) verifies that they are consistent with the
server’s checkpoint on the blockchain, and (3) checks that the digests collected during the epoch are
consistent with the object histories, as explained in Section 5.5.
The daemon stores the user’s keypair. If a user loses her secret key, she loses access to all objects

that she created or was granted access to. Similarly, an attacker who steals a user’s secret key can
impersonate that user. To securely back up her key on multiple devices, a user can use standard
techniques like secret sharing [Sha79; WMZV16; Sec]. A user who accesses Ghostor from multiple
devices uses the same key on all devices.
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Application developers interact with Ghostor using the API below. Developers can work with
usernames, ACLs, and object IDs, but Ghostor clients will not expose them to the Ghostor server.
Below is a high-level description of each API call; a step-by-step technical description is in the full
version[HKP20].
3 create_user(): Creates a Ghostor user by generating keys for a new user. This operation runs
entirely in the Ghostor client—the server does not know this operation was invoked.
3 user.pay(sum): Users pay the server through an anonymous cryptocurrency such as Zcash [Zcab],
and obtain tokens from the server proportional to the amount paid. These tokens can later be
anonymously redeemed and used as proof of payment when invoking the below API functions.
3 user.create_object(id): Creates an object with ID id, owned by user who invokes this. The client
expends one token obtained from a previous call to pay. The id can be a meaningful name (e.g., a
file path). It lives only within the client—the server receives some cryptographic identifier—so
different clients can assign different ids to the same object.
3 user.set_acl(id, acl): The user who invokes this must be the owner of the object with ID id. This
function sets a new ACL for that object. For simplicity, only the owner of an object can set its ACL,
but Ghostor can be extended to permit other users as well. The client encodes acl into an object
header that hides user identities, as in Section 5.4. If new users are given access, they are notified
via an out-of-band channel. Existing data-sharing systems also have this requirement; for example,
Dropbox and Box send an email with an access URL to the user. In Ghostor, all keys are transferred
in-band; the out-of-band channel is used only to inform the user that she has been given access.
Ghostor does not require a specific out-of-band channel; for example, one could use Tor [DMS04a]
or secure messaging [TGLZZ17a; HLZZ15a].
3 user.get_object(id), user.put_object(id, content): The user can GET or PUT an object if permitted
by its ACL.
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5.3 Threat Model and Security Guarantees
Against a malicious attacker who has compromised the server, Ghostor provides:
• verifiable linearizability, as described in Section 5.3.2, and
• a notion of user anonymity, described in Section 5.3.3: briefly, it does not reveal user identities,
but reveals object access patterns. Ghostor-MH additionally hides access patterns.
Ghostor does not protect against attacks to availability. Nevertheless, its anonymity makes it more
difficult for the server to selectively deny service to (or fork views of) certain users. Users, and the
Ghostor client instances running on their behalf, can be malicious and can collude with the server.
Formal definitions and proofs for these properties require a large amount of space, so we relegate

them to the full version[HKP20]. Below, we include only informal definitions.

5.3.1 Assumptions
Ghostor is designed to derive its security from decentralized trust. Thus, our threat model assumes
an adversary who can compromise any few machines, as described below.
Blockchain. Ghostor makes the standard assumption that the blockchain is immutable and consistent
(all users see the same transaction history). This is based on the assumption that, in order to attack
a blockchain, the adversary cannot simply compromise a few machines, but rather a significant
fraction of the world’s computing power. Ghostor’s design is not tied to a specific blockchain. Our
implementation uses Zcash [Zcab] because it supports both public and private transactions; we use
Zcash’s private transactions for Ghostor’s anonymous payments. The privacy guarantees of Zcash
can be implemented on top of other blockchains as well [BS+14].
Network. We assume clients communicate with the server in a way that does not reveal their
network information. This can be done using mixnets [Cha81a] or secure messaging [TGLZZ17a;
HLZZ15a] based on decentralized trust. Our implementation uses Tor [DMS04a].

5.3.2 Verifiable Linearizability
If an attack is immediately detectable to a user—for example, if the server fails to honor payment or
provides a malformed response (e.g., bad signature)—we consider it an attack on availability, which
Ghostor does not prevent.
Clients should be able to detect active attacks, including fork and rollback attacks. Some

reordering of concurrent operations, however, is benign. We use linearizability [HW90] to define
when reordering at the server is considered benign or malicious. Informally, linearizability requires
that after a PUT completes, all later GETs return the value of either (1) that PUT, (2) a PUT that was
concurrent with it, or (3) a PUT that comes after it. We provide a more formal definition in the
full version[HKP20]. Ghostor provides verifiable linearizability (abbreviated VerLinear). This
means that if the server deviates from linearizability, clients can detect it at the end of the epoch.
We discuss how to choose the epoch length in Section 5.9. Ghostor does not provide consistency
guarantees for malicious user, or for objects for which a malicious user has write access.
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Guarantee 5.3.1 (Verifiable linearizability). For any object F and any list E of consecutive epochs,
suppose that, for each epoch in E, the set of honest users who ran the verification procedure includes
all writers of F in that epoch (or is nonempty if F was not written). If the server did not linearizably
execute the operations that verifying clients performed in the epochs that they verified, then at least
one of the verifying clients will encounter an error in the verification procedure and can generate a
proof that the server misbehaved.

5.3.3 Anonymity
As explained in Section 5.1.1, Ghostor’s anonymity means that the server sees no user identities
associated with any action. In particular, an adversary controlling the server cannot tell which user
accesses each object, which users are authorized to access each object, or which users are part of the
system.
Ghostor. We informally define Ghostor’s privacy via a leakage function: what the server learns
when a user makes each API call (Section 5.2). For create_object – put_object, the server learns
the object ID, the type of operation, and whether the user is authorized according to the object’s
ACL (past and present). The server also sees the time of the operation, and the size of the encrypted
ACL and encrypted object, which can be hidden via padding at an extra cost. create_user leaks
no information to the server, and pay reveals the sum paid and when. The server learns no user
identities, no object contents, and no ACLs. If the attacker has compromised some users, he learns
the contents of objects those users can access, including prior versions encrypted under the same
key. Collectively, the verification daemons leak the number of clients performing verification for
each object. If all clients in an object’s ACL are honest and running, this equals the ACL size. If
the ACL is padded to a maximum size, the owner should run verification more times to hide the
ACL size. Ghostor does not hide access patterns or timing (Figure 5.2). An adversary who uses
this information cannot see the contents of files and ACLs because they are encrypted. But such an
adversary could try to deduce correlations between which users issue different operations based on
access patterns and timing, and in some cases, identify the user based on that information. This
can be partially mitigated by carefully designing the application using Ghostor (Section 5.4.5). In
contrast, Ghostor-MH does hide access patterns. In the full version[HKP20], we formally define
Ghostor’s privacy guarantee in the simulation paradigm of Secure MPC.
Ghostor-MH. We informally define Ghostor-MH’s privacy via a leakage function, as above.
create_object reveals that a group of objects was created. set_acl, get_object, and put_object
reveal nothing if the object’s ACL contains only honest users; otherwise, they reveal which object
was accessed. create_user and pay have the same leakage as described for Ghostor above. The
leakage function also includes the total number of honest users in the system.
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5.4 Hiding User Identities
System design paradigms used in typical data-sharing systems are incompatible with anonymity. We
identify the incompatible system design patterns and show how Ghostor replaces them. Ultimately,
we arrive at anonymously distributed shared capabilities, which allow Ghostor to enforce access
control for anonymous users without server-visible ACLs.

Keypair or Key Description
(PVK, PSK) Signing keypair used to set

ACL
(RVK, RSK) Signing keypair used to get

object
(WVK,WSK) Signing keypair used to put

object
(OSK) Symmetric key for object con-

tents

Table 5.2: Per-object keys in Ghostor. The server uses the global signing keypair (SVK, SSK) to sign
digests for objects.

5.4.1 No User Login or User-Specific Mailboxes
Data-sharing systems typically have some storage space on the server, called an account file,
dedicated to a user’s account. For example, Keybase [Key] has a user account and Mylar [Pop+14]
has a user mailbox where the user receives a key to a new file. Accesses to the account file, however,
can be used to link user operations. As an example, suppose that when a user accesses an object,
her client first retrieves the decryption key from a user-specific mailbox. This violates anonymity
because the server can tell whether or not two accesses were made by the same user, based on
whether the same mailbox was accessed first. Instead, Ghostor’s anonymity requires that any
sequence of API calls (Section 5.2) with the same inputs, when performed by any honest user, results
in the same server-side accesses.
Ghostor does not have any user-specific storage as in existing systems. To allow in-band key

exchange, Ghostor associates a header with each object. The object header functions like an
object-specific mailbox, in that it is used to distribute the object’s keys among users who have access
to the object. Unlike a user-specific mailbox, it preserves anonymity because, for a given object,
each user reads the same header before accessing it.

5.4.2 No Server-Visible ACLs
An honest server must be able to prevent unauthorized users from modifying objects, and users must
be able to verify that objects returned by the server were produced by authorized writers. This is
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typically accomplished by having writers sign objects, and having the server check that the user who
signed the object is on the object’s ACL. However, this requires the ACL to be visible to the server,
which violates anonymity.
We observe that by switching to a design based on shared capabilities, we can allow the server

and other users to verify that writes are indeed made by authorized users, without requiring the
server or other users to know the ACL of the object, or which users are authorized. Every Ghostor
object has three associated signing keypairs (Table 5.2). All users of the object (and the server)
know the verifying keys PVK, RVK, andWVK because PVK is the name of the object, and RVK and
WVK are in the object header; the associated signing keys PSK, RSK, andWSK are capabilities that
grant access to set the ACL, get the object, and put the object, respectively. To distribute these
capabilities to users in the object’s ACL, the owner places a key list in the object header. The key list
contains, for each user in the ACL, a list of capabilities encrypted under that user’s public key. The
owner randomly shuffles the key list and, optionally, pads it to a maximum size to hide each user’s
position. If a user has read/write access to an object, her entry in the key list containsWSK, RSK,
and OSK; a user with only read access is given a dummy key instead ofWSK. Crucially, different
users with the same permission share the same capability, so the server cannot distinguish between
users on the basis of which capability they use. When accessing an object, a user downloads the
header and decrypts her entry in the key list to obtain OSK (used to decrypt the object contents) and
her capabilities for the object.
Users sign updates to the object withWSK, allowing the server and other users to verify that each

update is made by a user with write access. PSK is stored locally by the owner and is used to sign
the header. The owner can set the object’s ACL by (1) freshly sampling (RVK,RSK), (WVK,WSK),
and OSK, (2) re-encrypting the object with OSK and signing it withWSK, (3) creating a new object
header with an updated key list, (4) signing the new header with PSK, and (5) uploading it to the
server. (RVK,RSK) will be relevant in Section 5.5.
Ghostor’s object layout is summarized in Figure 5.5.

Enc(Object Content) OSK

Object Header
• (RVK, WVK)
• SignatureHeader

KeyList
• Enc(RSK, WSK, OSK) User1

• Enc(RSK, OSK) User2
• ......

Object Name: PVK

Figure 5.5: Object layout in Ghostor
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5.4.3 No Server-Visible User Public Keys
Prior systems [LKMS04] reveal the user’s public key to the server when the client interacts with it.
For example, SUNDR requires users to provide a signature along with each operation. First, the
signature itself could leak the user’s public key. Second, to check the legitimacy of writes, the server
needs to know the user’s public key to verify the signature. The server can use the public key as a
pseudonym to track users.
The key list in Section 5.4.2, however, potentially leaks users’ public keys: each entry in the

key list is a set of capabilities encrypted under a user’s public key, but public-key encryption is
only guaranteed to hide the message being encrypted, not the public key used to encrypt it. For
example, an RSA ciphertext leaks which public key was used for encryption. Therefore, Ghostor
uses key-private encryption [BBDP01], which is guaranteed to hide both the message and the public
key.
In summary, Ghostor has users share capabilities for anonymity, and then distributes the

capabilities anonymously, without revealing ACLs to the server. We call the resulting technique
anonymously distributed shared capabilities.

5.4.4 No Client-Side Caching
Assuming that an object’s ACL changes rarely, it may seem natural for clients to locally cache
an object’s keypairs (RVK,RSK) and (WVK,WSK), to avoid downloading the header on future
accesses to that object. Unfortunately, the mere fact that a client did not download the header before
performing an operation tells the server that the same user recently accessed that object. As a result,
Ghostor’s anonymity prohibits user-specific caching. That said, server-side caching of commonly
accessed objects is allowed.

5.4.5 Careful Application Design
Ghostor does not hide access patterns or timing information from the server. A sophisticated
adversary could, for example, deny or delay accesses to a particular object and see how access
patterns shift, to try and deduce which user made which accesses. Therefore, one should carefully
design the application using Ghostor to avoid leaking user identities in its access patterns. For
example, just as Ghostor has no client-side caching or user-specific mailboxes, an application using
Ghostor should avoid caching data locally to avoid requests to the server or using an object as a
user-specific mailbox. Note that Ghostor-MH hides these access patterns.
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5.5 Achieving Verifiable Consistency
Ghostor’s verifiable anonymous history achieves the “verifiable equivalent” of a blockchain for
critical-path operations, while using the underlying blockchain rarely. It consists of: (1) a hash
chain of digests, (2) periodic checkpoints on a real blockchain, and (3) a verification procedure that
does not require knowledge of user identities.

5.5.1 Hash Chain of Digests in Ghostor
We now achieve fork consistency for a single object in Ghostor using techniques inspired from
SUNDR [LKMS04], but modified because SUNDR is not anonymous. Each access to an object,
whether a GET or a PUT, is summarized by a digest shown in Table 5.3. The object’s history is stored
as a chain of digests.

Field Description
Epoch epoch when operation was committed
PVK,WVK, RVK permission/writer/reader verifying key
Hashprev hash of previous digest in chain
Hashkeylist hash of key list
Hashdata hash of object contents
Sigclient client signature with RSK,WSK, or PSK
Sigserver server signature using SSK
nonce random nonce chosen by client

Table 5.3: A digest for an operation in Ghostor

To access the object, a client first produces a digest summarizing that operation as in Table 5.3.
This requires fetching the object header from the server, so that the client can obtain the secret key
(RSK,WSK, or PSK) for the desired operation. Then the client fetches the latest digest for the object
and computes Hashprev in the new digest. To GET the object, the client copies Hashdata from the
latest digest; to PUT it, the client hashes the new contents to obtain Hashdata. If the client is changing
permissions, then Hashkeylist is calculated from the new header; otherwise, it is copied from the latest
digest.
Then the client signs the digest with the appropriate key and provides the signed digest to the

server. The server signs the digest using SSK, appends it to a log, and returns the signed digest and
the result of the operation. At the end of the epoch, the client downloads the digest chain for that
object and epoch, and verifies that (1) it is a valid history for the object, and that (2) it contains the
operations performed by that client. We specify protocol details in the full version[HKP20].
Ghostor’s digests differ from SUNDR in two main ways. First, for anonymity, a client does not

sign digests using the user’s secret key, but instead uses RSK,WSK, or PSK, which can be verified
without knowing the user’s public key. When inspecting the digest, the server no longer learns
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which user performed the operation, only that the user has the required permission. Second, each
digest is signed by the server. Thus, if the server violates linearizability, the client can assemble the
offending digests into a proof of misbehavior.

5.5.2 Checkpoint and Verification
The construction so far is susceptible to fork attacks [LKMS04], in which the server presents two
users with different views over the same object. To detect fork attacks, Ghostor requires the server
to produce a checkpoint at the end of each epoch, consisting of the hash of the object’s latest digest
and the epoch number, and publish the checkpoint to the blockchain. The verification procedure run
by a client consists of fetching the checkpoint from the blockchain, checking it corresponds to the
hash for the last digest in the list of digests obtained from the server, and running the verification
in Section 5.5.1. The blockchain guarantees that all users see the same checkpoint. This prevents
the server from forking two users’ views, as the latest digests for two different views cannot both
match the published checkpoint. In this way, we bootstrap the blockchain’s consistency guarantees
to achieve verifiable consistency over an entire epoch of operations.

5.5.3 Multiple Objects per Checkpoint
So far, the server puts one checkpoint in the blockchain per object, which is undesirable when there
are many objects. We address this as follows. The server computes the hash of the final digest of
each object, builds a Merkle tree over those hashes, and publishes the root hash in the blockchain
as a single checkpoint for all objects. To verify integrity at the end of an epoch, a Ghostor client
fetches the digest chain from the server for objects that are either (1) accessed by the client during
the epoch or (2) owned by the client’s user. It verifies that all operations that it performed on those
objects are included in the objects’ digest chains. Then, it requests Merkle proofs from the server to
check that the hash of the latest digest is included in the Merkle tree at the correct position based on
the object’s PVK. Finally, it verifies that the Merkle root hash matches the published checkpoint.
Although we maintain a separate digest chain for each object, the collective history of operations,

across all objects, is also linearizable. This follows from the classical result that linearizability is a
local property [HW90]. Thus, Ghostor provides verifiable linearizability across all objects, while
supporting full concurrency for operations on different objects.

5.5.4 Concurrent Operations on a Single Object
As explained in Section 5.5.1, the client must fetch the latest digest from the server to construct a
digest for a new GET or PUT. If two clients attempt to GET or PUT an object concurrently, they may
retrieve the same latest digest for that object, and therefore construct new digests that both have the
same Hashprev. An honest server can only accept one of them; the other operation must be aborted.
A naïve fix is for clients to acquire locks (or leases) on objects during network round trips, but this
limits single-object throughput according to client round-trip times. How can we allow concurrent
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operations on a single object without holding server-side locks during round trips? We explain our
techniques at a high level below; the full version[HKP20] contains a full description of our protocol.
GETs. We optimize GETs so that clients need not fetch the latest digest, obviating the need to lock for
a round trip. When a client submits a GET request to the server, the client need not include Hashprev,
Hashdata, or Hashkeylist in the digest presented to the server. The client includes the remaining fields
and a signature over only those fields. Then, the server chooses the hashes for the client and returns
the resulting digest, signed by the server. Although the server can replay operations, this is harmless
because GETs do not affect data. When the verification daemon verifies a GET, it checks the client
signature without including Hashprev, Hashdata, or Hashkeylist.
PUTs. The above technique does not apply to PUTs, because the server can roll back objects by
replaying PUTs. Simply using a client-provided nonce to detect replayed PUTs is not sufficient,
because the server can delay incorporating a PUT (which we call a time-stretch attack) to manipulate
the final object contents. For PUTs, Ghostor uses a two-phase protocol. In the Prepare phase, the
client operates in the same way as GET, but signs the digest withWSK; the server fills in the hashes,
signs the resulting digest, appends it to the object’s digest chain, and returns it to the client. In the
Commit phase, the client creates the final digest for the operation—omitting Hashprev and appending
an additional field Hashprep, which is the hash of the server-signed digest obtained in the Prepare
phase—and uploads it to the server with the new object contents. The server fills in Hashprev based
on the object’s digest chain (which could have changed since the Prepare phase), signs the resulting
digest, appends it to the object’s digest chain, and returns it to the client. The server can replay
Prepare requests, but it does not affect object contents. The server cannot generate a Commit digest
for a replayed Prepare request, because the client signed the Commit digest including the hash of
the server-signed Prepare digest, which includes Hashprev. The server can replay a Commit request
for a particular Prepare request, but this is harmless because of our conflict resolution strategy
described below.
Resolving Conflicts. If two accesses are concurrent (i.e., neither commits before the other prepares),
then linearizability does not require any particular ordering of those operations, only that all clients
perceive the same ordering. If a GET is concurrent with a PUT (GET digest between the Prepare and
Commit digests for a PUT), Ghostor linearizes the GET as happening before the PUT. This allows the
result of the GET to be served immediately, without waiting for the PUT to finish. For concurrent
PUTs, it is unsafe for the linearization order to depend on the Commit digest, because the server
could perform a time-stretch or replay attack on a Commit digest, to manipulate which PUT wins.
Therefore, Ghostor chooses as the winning PUT the one whose Prepare digest is latest. The server
can still delay Prepare digests, but the client can choose not to Commit if the delay is unacceptably
large. To simplify the implementation of this conflict resolution procedure, we require that the
Prepare and Commit phases happen over the same session with the client, during which the server
can keep in-memory state for the relevant object. This allows the server to match Prepare and
Commit digests without additional accesses to secondary storage.
Verification Complexity. To verify PUTs, the verification daemon must check that Hashdata only
changes on Commit digests for winning writes. Thus, it must keep track of all Prepare digests since
the latest Prepare digest whose corresponding Commit has been seen. We can bound this state by
requiring that PUT requests do not cross an epoch boundary.
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ACL Updates. We envision that updates to the ACL will be rare, so our implementation does not
allow set_acl operations to proceed concurrently with GETs or PUTs. It may be possible to apply a
two-phase technique, similar to our concurrent PUT protocol, to allow set_acl operations to proceed
concurrently with other operations. We leave exploring this to future work.
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5.6 Mitigating Resource Abuse
To prevent resource abuse, commercial data-sharing systems, like Google Drive and Dropbox,
enforce per-user resource quotas. Ghostor cannot do this, because Ghostor’s anonymity prevents
it from tracking users. Instead, Ghostor uses two techniques to prevent resource abuse without
tracking users: anonymous payments and proof of work.

5.6.1 Anonymous Payments
A strawman approach is for users to use an anonymous cryptocurrency (e.g., Zcash [Zcab]) to pay
for each expensive operation (e.g., operations that consume storage). Unfortunately, this requires a
separate blockchain transaction for each operation, limiting the system’s overall throughput.
Instead, Ghostor lets users pay for expensive operations in bulk via the pay API call (Section 5.2).

The server responds with a set of tokens proportional to the amount paid via Zcash, which can
later be redeemed without using the blockchain to perform operations. Done naïvely, this violates
Ghostor’s anonymity; the server can track users by their tokens (tokens issued for a single pay call
belong to the same user).
To circumvent this issue, Ghostor uses blind signatures [CPS94; Cha83; Cha84]. AGhostor client

generates a random token and blinds it. After verifying that the client has made a cryptocurrency
payment, the server signs the blinded token. The blind signature protocol allows the client to unblind
it while preserving the signature. To redeem the token, the client gives the unblinded signed token to
the server, who can verify the server’s signature to be sure it is valid. The server cannot link tokens
at the time of use to tokens at the time of issue because the tokens were blinded when the server
originally signed them.

5.6.2 Proof of Work (PoW)
Another way to mitigate resource abuse is proof of work (PoW) [Bac02]. Before each request from
the client, the server sends a random challenge to the client, and the client must find a proof such
that Hash(challenge, proof, request) < diff. diff controls the difficulty, which is chosen to offset the
amplification factor in the server’s work. Because of the guarantees of the hash function, the client
must iterate through different proofs until it finds one that works. In contrast, the server efficiently
checks the proof by computing one hash.

5.6.3 Anonymous Payments & PoW in Ghostor
Ghostor uses anonymous payments and PoW together tomitigate resource abuse. Our implementation
requires anonymous payment only for create_object, which requires the server to commit additional
storage space for the new object. This is analogous to systems like Google Drive or Dropbox,
which require payment to increase a user’s storage limit but do not charge based on the count or
frequency of object accesses. Implicit in this model are hard limits on object size and per-object
access frequency, which Ghostor can enforce. Although our implementation requires payment only
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for create_object, an alternate implementation may choose to require payment for every operation
except pay. Ghostor requires PoW for all API calls. This includes pay and create_object, to offset
the cost of Zcash payments and verifying blind signatures.
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5.7 Applying Ghostor to Applications
In this section, we discuss two applications of Ghostor that we implemented: EHR Sharing and
Ghostor-MH.

5.7.1 Case Study: EHR Sharing
Our goal in this section is to show how a real application may interface with Ghostor’s semantics
(e.g., ownership, key management, error handling) and how Ghostor’s security guarantees might
benefit a real application. To make the discussion concrete, we explore a particular use case:
multi-institutional sharing of electronic health records (EHRs). It has been of increasing interest to
put patients in control of their data as they move between different healthcare providers [GCL; Sha;
Hop]. As it is paramount to protect medical data in the face of attackers [Dav], various proposals for
multi-institutional EHR sharing use a blockchain for access control and integrity [Med; AEVL16].
Below, we explore how to design such a system using Ghostor to store EHRs in a central object
store, using only decentralized trust. We also implemented the system for Open mHealth [Ope].
Each patient owns one or more objects in the central Ghostor system representing their EHRs.

Each patient’s Ghostor client (on her laptop or phone) is reponsible for storing the PSKs for these
objects. The PSKs could be stored in a wristband, as in [Med], in case of emergency situations
for at-risk patients. When the patient seeks treatment from a healthcare provider, she can grant
the healthcare provider access to the objects containing the relevant information in Ghostor. Each
healthcare provider’s Ghostor client maintains a local metadata database, mapping patient identities
(object IDs, Section 5.2) to PVKs. This mapping could be created when a patient checks in to the
office for the first time (e.g., by sharing a QR code).
Benefits. Existing proposals leverage a blockchain to achieve integrity guarantees [Med; AEVL16]
but use the blockchain more heavily than Ghostor: for example, they require a blockchain
transaction to grant access to a healthcare provider, which results in poor performance and scalability.
Additionally, Ghostor provides anonymity for sharing records.
Epoch Time. An important aspect of Ghostor’s semantics is that one has to wait until the next epoch
before one can verify that no fork has occurred. It is reasonable to fetch a patient’s record at the time
that they check in to a healthcare facility, but before they are called in for treatment. This allows
the time to wait until the end of an epoch to overlap with the patient’s waiting time. In the case of
scheduled appointments, the record can be fetched in advance so that integrity can be verified by the
time of the appointment. An epoch time of 15–30 minutes would probably be sufficient.
Error Handling. If a healthcare provider detects a fork when verifying an epoch, it informs other
healthcare providers of the integrity violation out-of-band of the Ghostor system. Ghostor does not
constrain what happens next. One approach, used in Certificate Transparency (CT), is to abandon
the Ghostor server for which the integrity violation was detected. We envision that there would be
a few Ghostor servers in the system, similar to logs in CT, so this would require affected users to
migrate their data to a new server. Another approach is to handle the error in the same way that
blockchain-based systems [Med; AEVL16] handle cases where the hash on the blockchain does
not match the hash of the data—treat it as an availability error. While neither solution is ideal,
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it is better than the status quo, in which a malicious adversary is free to perform fork or rollback
attacks undetected, causing patients to receive incorrect treatments based on old or incorrect data,
potentially resulting in serious physical injury.

5.7.2 A Metadata-Hiding Data-Sharing Scheme
Ghostor’s anonymity techniques can be combined with a globally oblivious scheme, Anon-
RAM [BHKP16], to obtain a metadata-hiding object-sharing scheme, Ghostor-MH. Ghostor-MH is
not a practical system, but only a theoretical scheme; our goal is to show that Ghostor’s techniques
are complementary to and compatible with those in globally oblivious schemes. We apply Ghostor’s
techniques in Ghostor-MH as follows. First, we apply Ghostor’s principle of switching from a
user-centric to a data-centric design. Whereas each ORAM instance in AnonRAM corresponds to
a user, each ORAM instance in Ghostor-MH corresponds to an object group, a fixed-sized set of
objects with a shared ACL. Second, we apply the design of Ghostor’s object header in Ghostor-MH.
This is accomplished by storing the ORAM secret state, encrypted, on the server. Finally, we use
similar techniques to mitigate resource abuse in Ghostor-MH as we do in Ghostor.
In Section 5.7.2.2 below, we provide a more in-depth explanation of Ghostor-MH. We first

provide more details about AnonRAM in Section 5.7.2.1. This is necessary because, as explained in
Section 5.7.2, we construct Ghostor-MH by applying Ghostor’s techniques to AnonRAM [BHKP16].

5.7.2.1 Overview of AnonRAM

ORAM [GO96] is a technique to access objects on a remote server without revealing which objects
are accessed. Many ORAM schemes, such as Path ORAM [Ste+13], allow a single user to access
data. Path ORAM [Ste+13] works by having the client shuffle a small amount of server-side data
with each access, such that the server cannot link requests to the same object. Clients store mutable
secret state, including a stash and position map, used to find objects after shuffling.
AnonRAM extends single-user ORAM to support multiple users. Each AnonRAM user

essentially has her own ORAM on the server. When a user accesses an object, she (1) performs the
access as normal in her own ORAM, and (2) performs a fake access to all of the other users’ ORAMs.
To the server, the fake accesses are indistinguishable from genuine accesses, so the server does not
learn to which ORAM the user’s object belongs. This, together with each individual ORAM hiding
which of its objects was accessed, results in global obliviousness across all objects in all ORAMs.
To support fake accesses, re-randomizable public-key encryption (e.g., El Gamal) is used to

encrypt objects in each ORAM. To guard against malicious clients, the server requires a zero-
knowledge proof with each real or fake access, to prove that either (1) the client knows the secret
key for the ORAM, or (2) the new ciphertexts encrypt the same data as existing ciphertexts (i.e.,
they were re-randomized correctly).
A limitation of AnonRAM is that there is no object sharing among users; each user can

access only the objects she owns. Furthermore, AnonRAM and similar schemes (Section 5.10) are
theoretical—they consider oblivious storage from a cryptographic standpoint, but do not consider
challenges like payment, user accounts, and resource abuse.
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5.7.2.2 Ghostor-MH

Recall from Section 5.7.2 that we apply to AnonRAM Ghostor’s principle of switching from a
user-centric to a data-centric design. Each ORAM now corresponds to an object group, which is a
fixed-size set of objects with a shared ACL. Each object group has one object header and one digest
chain.
Ghostor-MH uses Path ORAM, which organizes server-side storage as a binary tree. To guard

against a malicious adversary controlling the server, we build a Merkle tree over the binary tree, and
compute Hashdata in each digest as the hash of the Merkle root and ORAM secret state. This allows
each client to efficiently compute the new Hashdata after each ORAM access, without downloading
the entire ORAM tree. The ORAM secret state is stored on the server, encrypted with OSK, so
multiple clients can access an object group. This is analogous to Ghostor’s object header, which
stores an object’s keys encrypted on the server.
To access an object, a client (1) identifies the object group containing it, (2) downloads the object

header and encrypted ORAM secret state, (3) obtains OSK from the object header, (4) decrypts the
ORAM secret state, (5) uses it to perform the ORAM access, (6) encrypts and uploads the new
ORAM secret state, (7) computes a new digest for the operation, (8) has the server sign it, and (9)
sends it to the verification daemon. For all other object groups, the client performs a fake access
that fetches data from the server and generates a digest, but only re-randomizes ciphertexts instead
of performing a real access. This hides which object group contains the object. When writing an
object, the client pads it to a maximum size (the ORAM block size) to hide the length of the object.
Below, we explain some more details about Ghostor-MH:

Fake accesses. OSK is replaced with an El Gamal keypair. This allows ciphertexts in the ORAM
tree and the ORAM secret state to be re-randomized. We no longer attach a client signature to each
digest, but instead modify the zero-knowledge proof in AnonRAM to prove that either the client can
produce a signature over the digest withWSK, or the ciphertexts were properly re-randomized.
Hiding timing. Similar to secure messaging systems [HLZZ15a], Ghostor-MH operates in rounds
(shorter than epochs) to hide timing. In each round, each client either accesses an object as described
above, or performs a fake access on all ORAMs if there is no pending object access. Each client
chooses a random time during the round to make its request to the server.
Using tokens. In a globally oblivious system like Ghostor-MH, it is impossible to enforce the
per-object quotas discussed in Section 5.6.3. Thus, it is advisable to require users to expend tokens
for all operations (except pay), not just create_object. Our PoW mechanism applies to Ghostor-MH
unchanged.
Object group creation. The server can distinguish payment (to obtain tokens) and object group
creation from GET/PUT operations. The most secure solution is to have a setup phase to create all
object groups and perform all payment in advance. Barring this, we propose adding a special round
at the start of each epoch, used only for creation and payment; all object accesses during an epoch
happen after this special round.
List of object groups. To make fake accesses, each client must know the full list of object groups.
To ensure this, we can add an additional digest chain to keep track of all created object groups,
checkpointed every epoch with the rest of the system.
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Changing permissions. In our solution so far, the server can distinguish a set_acl operation from
object accesses. To fix this, we require the owner of each object group to perform exactly one set_acl
for that object group during each epoch; if he does not wish to change it, he sets it to the same value.
Concurrency. When a client iterates over all ORAMs to make accesses (fake or real), the client
locks each ORAM individually and releases it after the access. No “global lock” is held while a
client makes fake accesses to all ORAMs.
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5.8 Implementation
We implemented a prototype of Ghostor in Go. It consists of three parts, as in Figure 5.4, server
(≈ 2100 LOC), client library (≈ 1000 LOC), and verification daemon (≈ 1000 LOC), which all
depend on a set of core Ghostor libraries (≈ 1400 LOC).
Our implementation uses Ceph RADOS [WBMLM06] for consistent, distributed object storage.

We use SHA-256 for the cryptographic hash and the NaCl secretbox library (which uses XSalsa20
and Poly1305) for authenticated symmetric-key encryption. For key-private asymmetric encryption
(to encrypt signing keys in the object header), we implemented the El Gamal cryptosystem, which is
key-private [BBDP01], on top of the Curve25519 elliptic curve. We use an existing blind signature
implementation [Rsa] based on RSA with 2048-bit keys and 1536-bit hashes. We use Ed25519 for
digital signatures.
As discussed in Section 5.3, Ghostor uses external systems for anonymous communication and

payment. In our implementation, clients use Tor [DMS04a] to communicate with the server and
Zcash 1.0.15 for anonymous payments. We build a Zcash test network, separate from the Zcash
main network. Ghostor, however, could also be deployed on the Zcash main chain. Zcash is also
used as the blockchain to post checkpoints. Our implementation runs as a single Ghostor server that
stores its data in a scalable, fault-tolerant, distributed storage cluster. We discuss how to scale to
multiple servers in the full version[HKP20].
We implemented a proof of concept of our theoretical scheme Ghostor-MH (Section 5.7.2), in

≈ 2100 additional LOC. As it is a theoretical scheme, our focus in evaluating Ghostor-MH is simply
to understand the latency of operations.
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5.9 Evaluation
We run experiments on Amazon EC2. Except in Section 5.9.3 and Section 5.9.5, Ghostor’s storage
cluster consists of three i3en.xlarge servers. We configure Ceph to replicate each object (key-value
pair) on two SSDs on different machines, for fault-tolerance.

5.9.1 Microbenchmarks
Basic Crypto Primitives. We measured the latency of crypto operations used in Ghostor’s critical
path. En/decryption of object contents varies linearly with the object size, and takes ≈ 2 ms for 1
MiB. Key-private en/decryption for object headers and signing/verification of digests takes less than
150 us.
Blind Signatures. We also measure the blind signature scheme used for object creation, which
consists of four steps. (1) The client generates a blinded hash of a random number. (2) The server
signs the blinded hash. (3) The client unblinds the signature, obtaining the server’s signature over
the original number. (4) The server verifies the signature and the number during object creation.
Results are shown in Fig. 5.6.
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Figure 5.6: Blind signature

A 50% R, 50% W
B 95% R, 5% W
C 100% R
D 95% R, 5% Insert
E 95% R, 5% Range
F 50% R, 50% R-Modify-W

Figure 5.7: YCSB workloads (R: read, W:
write)

Verification Procedure. In Figure 5.8, we measure the overhead of verification for digests in a
single epoch. For client verification time, we perform an end-to-end test, measuring the total time
to fetch digests and to verify them. The client has 1,000 signed digests for operations the client
performed during the epoch that the client needs to check were included in the history of digests.
We vary the total number of digests in the object’s history for that epoch. The reported values in
Figure 5.8a are the total time to verify the object, divided by the total number of operations on the
object, indicating the verification time per digest. The trend indicates a constant overhead when the
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Figure 5.8: Operations for verification

total number of operations on the object is small, that is amortized when the number of operations is
large.
Figure 5.8b shows the server’s overhead to compute the Merkle root. We inserted objects using

YCSB (Section 5.9.2.2) during an epoch, and measured the time to compute the Merkle root at the
end of that epoch. For 10,000 objects, this takes about 2.5 seconds; for 1,000,000 objects, it takes
about 280 seconds. Reading the latest digest for each object (leaves of the Merkle tree) dominates
the time to compute the Merkle root (2 seconds for 10,000 objects, 272 seconds for 1,000,000
objects). The reason is that our on-disk data structures are optimized for single-object operations,
which are in the critical path. In particular, each object’s digest chain is stored as a separate batched
linked list, so reading the latest digests requires a separate read for each object.

5.9.2 Server-Side Overhead
This section measures to what extent anonymity and VerLinear affect Ghostor’s performance. To
ensure that the bottleneck was on the server, we set proof of work to minimum difficulty and do not
use anonymous communication (Section 5.3), but we return to evaluating these in Section 5.9.3.
We measure the end-to-end performance of operations in Ghostor, both as a whole and for

instantiations of Ghostor having only anonymity or VerLinear. We compare these to an insecure
baseline as well as to competitive solutions for privacy and verifiable consistency, as we now
describe.
1. Insecure system (“Insec”). This system uses the traditional ACL-based approach for serving
objects. Each object access is preceded by a read to the object’s ACL to verify that the user has
permission to access the object. Similarly, creating an object requires a read to a per-user account
file. It provides no security against a compromised server.
2. End-to-End Encrypted system (“E2EE”). This system encrypts objects placed on the server using
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end-to-end encryption similarly to SiRiUS [GSMB03a]. Such systems have an encrypted KeyList
similar to Ghostor’s, but clients can cache their keys locally on most accesses unlike Ghostor.
3. Ghostor’s anonymity system (“Anon”). This is Ghostor with VerLinear disabled. This fits a
scenario where one wants to hide information from a passive server attacker. Unlike the E2EE
system above, this system cannot cache keys locally—every operation incurs an additional round
trip to fetch the KeyList from the server. In addition, every operation incurs yet another round trip at
the beginning for the client to perform a proof of work. On the positive side, the server does not
maintain any per-user ACL.
4. Fork Consistent system (“ForkC”). This system maintains Ghostor’s digest chain (Section 5.5.1),
but does not post checkpoints. Each operation appends to a per-object log of digests, using the
techniques in Section 5.5.4. This system also performs an ACL check when creating an object.
5. Ghostor’s VerLinear system (“VLinear”). This system corresponds to the VerLinear mechanism
in Section 5.5 (including Section 5.5.2). This matches a use case where one wants integrity, but
does not care about privacy. We do not include the verification procedure, already evaluated in
Section 5.9.1.
6. Ghostor. This system achieves both anonymity and VerLinear, and therefore incurs the costs of
both guarantees.

5.9.2.1 Object Accesses

In each setup, we measured the latency for create, GET, and PUT operations (Figure 5.9a), throughput
for GETs/PUTs to a single object (Figure 5.10a), and the throughput for creating objects and for
GETs/PUTs to multiple objects (Figure 5.10b).
Fork consistency adds substantial overhead, because additional accesses to persistent storage are

required for each operation, to maintain each object’s log of digests. Ghostor, which both maintains
a per-object log of digests and provides anonymity, incurs additional overhead because clients do
not cache keys, requiring the server to fetch the header for each operation. In contrast, for Anon,
the additional cost of reading the header is offset by the lack of ACL check. For 1 MiB objects,
en/decryption adds a visible overhead to latency.
End-to-end encryption adds little overhead to throughput; this is because we are measuring

throughput at the server, whereas encryption and decryption are performed by clients. The only
factor affecting server performance is that the ciphertexts are 40 bytes larger than plaintexts.
Single-object throughput is lower for ForkC, VLinear, and Ghostor, because maintaining a digest

chain requires requests to be serialized across multiple accesses to persistent storage. In contrast,
Insec, E2EE, and Anon serve requests in parallel, relying on Ceph’s internal concurrency control.
In the multi-object experiments, in which no two concurrent requests operate on the same

object, this bottleneck disappears. For small objects, throughput drops in approximately an inverse
pattern to the latency, as expected. For large objects, however, all systems perform commensurately.
This is likely because reading/writing the object itself dominated the throughput usage for these
experiments, without any concurrency overhead at the object level to differentiate the setups.



5.9. EVALUATION 197

Create
Object

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

10

20

30

40

50

La
te

nc
y 

(m
s)

Insec.
E2EE
Anon
ForkC
VLinear
Ghostor

(a) Latency benchmarks

Operation ms
Proof of Work 0.57
Read Header 1.1
Cl. Processing 0.68
Check Cl. Digest 0.14
Read/Fill Digest 3.2
Append Digest 1.5
Read Data 2.1
Cl. Processing 9.1

(b) Latency Breakdown for Ghostor, Read 1
MiB

Figure 5.9: Latency measurements

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

2000

4000

6000

Si
ng

le
-O

bj
ec

t T
pu

t (
op

/s
)

Insec.
E2EE
Anon
ForkC
VLinear
Ghostor

(a) Single-Object Throughput

Create
Object

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

5000

10000

M
ul

ti-
Ob

je
ct

 T
pu

t (
op

/s
)

(b)Multi-Object Throughput

Insert A B C D F
YCSB Workload

0

2500

5000

7500

10000

12500
Th

ro
ug

hp
ut

 (o
p/

s)

(c) Throughput for YCSB

Figure 5.10: Benchmarks comparing throughput of the six setups described in Section 5.9.2

5.9.2.2 Yahoo! Cloud Serving Benchmark

In this section, we evaluate our system using the Yahoo! Cloud Serving Benchmark (YCSB). YCSB
provides different workloads representative of various use cases, summarized in Figure 5.7. We do
not use Workload E because it involves range queries, which Ghostor does not support. As shown in
Figure 5.10c, anonymity incurs up to a 25% overhead for benchmarks containing insertions, owing
to the additional accesses to storage required to store used object creation tokens. However, it shows
essentially no overhead for GETs and PUTs. Fork consistency adds a 3–4x overhead compared to
the Insec baseline. VerLinear adds essentially no overhead on top of fork consistency; this is to be
expected, because the overhead of VerLinear is outside of the critical path (except for insertions,
where the overhead is easily amortized). Ghostor, which provides both anonymity and VerLinear,
must forgo client-side caching, and therefore incurs additional overhead, with a 4–5x throughput



5.9. EVALUATION 198

reduction overall compared to the Insec baseline.

5.9.3 End-to-End Latency
We analyze Ghostor’s performance from the client’s perspective, including PoW and anonymous
communication (Section 5.3). In these experiments, we use three m4.10xlarge instances each with
three gp2 SSDs for Ghostor’s storage cluster.

5.9.3.1 Microbenchmarks

The latency experienced by a Ghostor client is the latency measured in Figure 5.9, plus the additional
overhead due to the proof of work mechanism and anonymous communication. The difficulty of the
proof of work problem is adjustable. For the purpose of evaluation, we set it to a realistic value
to prevent denial of service. Figure 5.9b indicates that it takes ≈ 32 ms for a Ghostor operation;
therefore, we set the proof of work difficulty such that it takes the client, on average, 100 times
longer to solve (≈ 3.2 s). Figure 5.11 shows the distribution of latency for the client to solve the
proof of work problem. As expected, the distribution appears to be memoryless.
In our implementation, a client connects to a Ghostor server by establishing a circuit through

the Tor [DMS04a] network. The performance of the connection, in terms of both latency and
throughput, varies according to the circuit used. Figure 5.11 shows the distribution of (1) circuit
establishment time, (2) round-trip time, and (3) network bandwidth. We used a fresh Tor circuit for
each measurement. Based on our measurements, a Tor circuit usually provides a round-trip time
less than 1 second and bandwidth of at least 2 Mb/s.

5.9.3.2 Macrobenchmarks

We now measure the end-to-end latency of each operation in Ghostor’s client API (Section 5.2),
including all overheads experienced by the client. As explained in Section 5.9.3.1, the overhead
due to proof of work and Tor is quite variable; therefore, we repeat each experiment 1000 times,
using a separate Tor circuit each time, and report the distribution of latencies for each operation in
Figure 5.13. Comparing Figure 5.13 to Figure 5.9, the client-side latency is dominated by the cost
of PoW and Tor; Ghostor’s core techniques in Figure 5.9 have relatively small latency overhead. For
the pay operation, we measure only the time to redeem a Zcash payment for a single token, not
the time for proof of work or making the Zcash payment (see Section 5.9.4 for a discussion of this
overhead). GET and PUT for large objects are the slowest, because Tor network bandwidth becomes
a bottleneck. The create_user operation (not shown in Figure 5.13) is only 132 microseconds,
because it generates an El Gamal keypair locally without any interaction with the server.

5.9.4 Zcash
In our implementation, we build our own Zcash test network to avoid the expense from Zcash’s
main network. Since our system leverages Zcash in a minimal way, the overhead of Zcash is not on
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Figure 5.12: Ghostor-MH

the critical path of our protocol. According to the Zcash website [Zcab] and block explorer [Bitb],
the block size limit is about 2 MiB, and block interval is about 2.5 minutes. In the past six months,
the maximum block size has been less than 150 KiB and the average transaction fee has been much
less than 0.001 ZEC (0.05 USD at the time of writing). Hence, even with shorter epochs (less time
for misbehavior detection), the price of Ghostor’s checkpoints is modest since there is a single
checkpoint per epoch for the whole system.

5.9.5 Ghostor-MH
For completeness, we evaluate the theoretical Ghostor-MH scheme presented in Section 5.7.2 using
the EC2 setup from Section 5.9.3, focusing only on the latency of accessing an object. We do not
use Tor and we set the PoW difficulty to minimum. Latency is dominated by en/decryption on the
client, because object contents and ORAM state are encrypted with El Gamal encryption, which
is much slower than symmetric-key encryption. Figure 5.12a shows the object access latency for
an object group, as we vary its size. It scales logarithmically, as expected from Path ORAM. An
additional overhead of ≈ 2 s comes from re-encrypting ORAM client state (32 KiB, after padding
and encryption) on each access. Figure 5.12b shows the object access latency as we vary the number
of object groups (each object group is 31 KiB). It scales linearly, because the client makes fake
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Figure 5.13: End-to-end latencies of client-side operations

accesses to all other object groups to hide which one it truly accessed. Latency could potentially be
improved by using multiple client CPU cores.
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5.10 Related Work
Systems Providing Consistency. We have already compared extensively with SUNDR [LKMS04].
Venus [SCCKMS10] achieves eventual consistency; however, Venus requires some clients to be
frequently online and is vulnerable to malicious clients. Caelus [KL15] has a similar requirement
and does not resist collusion of malicious clients and the server. Verena [KFPC16] trusts one of
two servers. SPORC [FZFF10], which combines fork consistency with operational transformation,
allows clients to recover from a fork attack, but does not resist faulty clients. Depot [Mah+11] can
tolerate faulty clients, but achieves a weaker notion of consistency than VerLinear. Furthermore, its
consistency techniques are at odds with anonymity. Ghostor and these systems use hash chains [HS90;
MB02] as a key building block.
Systems Providing E2EE.Many systems provide end-to-end encryption (E2EE), but leak significant
user information as discussed in Section 5.3.3: academic systems such as Persona [BBSBS09],
DEPSKY [BCQAS13], CFS [Bla93], SiRiUS [GSMB03a], Plutus [KRSWF03], ShadowCrypt [HA-
JSS14], M-Aegis [LCSJLB14], Mylar [Pop+14] and Sieve [WMZV16] or industrial systems such as
Crypho [Cry], Tresorit [Inc], Keybase [Key], PreVeil [Pre], Privly [Pri] and Virtru [Vir].
Systems Using Trusted Hardware. Some systems, such asHaven [BPH15] andA-SKY [CVPPFR19],
protect against a malicious server by using trusted hardware. Existing trusted hardware, like Intel
SGX, however, suffer from side-channel attacks [VB+18].
Oblivious Systems. A complementary line of work to Ghostor aims to hide access patterns:
which object was accessed. Standard Oblivious RAM (ORAM) [GO96; SCSL11; WCS15] works
in the single-client setting. Multi-client ORAM [BHKP16; HOWW19a; KPK17; MMRS17;
MMRS15; SZEALT16; SS13] extends ORAM to support multiple clients. These works either
rely on central trust [SZEALT16; SS13] (either a fully trusted proxy or fully trusted clients) or
provide limited functionality (not providing global object sharing [BHKP16], or revealing user
identities [MMRS17]). GORAM [MMRS15] assumes the adversary controlling the server does
not collude with clients. Furthermore, it only provides obliviousness within a single data owner’s
objects, not global obliviousness across all data owners.
AnonRAM [BHKP16] and PANDA [HOWW19a] provide global obliviousness and hide user

identity, but are slow. They do not provide for sharing objects or mitigate resource abuse. One can
realize these features by applying Ghostor’s techniques to these schemes, as we did in Section 5.7.2
to build Ghostor-MH. Unlike these schemes, Ghostor-MH is a metadata-hiding object-sharing
scheme providing both global obliviousness and anonymity without trusted parties or non-collusion
assumptions.
Decentralized Storage. Peer-to-peer storage systems, like OceanStore [Kub+00], Pastry [RD01],
CAN [RFHKS01], and IPFS [Ben14], allow users to store objects on globally distributed, untrusted
storage without any coordinating central trusted party. These systems are vulnerable to rollback/fork
attacks on mutable data by malicious storage nodes (unlike Ghostor’s VerLinear). While some of
them encrypt objects for privacy, they do not provide a mechanism to distribute secret keys while
preserving anonymity, as Ghostor does. Recent blockchain-based decentralized storage systems,
like Storj [Sto], Swarm [TFJ16], Filecoin [Fil], and Sia [Sia], have similar shortcomings.
Decentralized Trust. As discussed in Section 5.1, blockchain systems [CL99; YMRGA19; Nak08;
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But+13] and verifiable ledgers [LLK13a; MBBFF15] can serve as the source of decentralized trust
in Ghostor.
Another line of work aims to provide efficient auditing mechanisms. EthIKS [Bon16] leverages

smart contracts [But+13] to monitor key transparency systems [MBBFF15]. Catena [TD17] builds
log systems based on Bitcoin transactions, which enables efficient auditing by low-power clients. It
may be possible to apply techniques from those works to optimize our verification procedure in
Section 5.5.2. However, none of them aim to build secure data-sharing systems like Ghostor.
Secure Messaging. Secure messaging systems [CGBM15; TGLZZ17a; HLZZ15a] hide network
traffic patterns, but they do not support object storage/sharing as in our setting. Ghostor can
complementarily use them for its anonymous communication network.
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Chapter 6

JEDI: Many-to-Many End-to-End
Encryption and Key Delegation for IoT

As the Internet of Things (IoT) emerges over the next decade, developing secure communication
for IoT devices is of paramount importance. Achieving end-to-end encryption for large-scale IoT
systems, like smart buildings or smart cities, is challenging because multiple principals typically
interact indirectly via intermediaries, meaning that the recipient of a message is not known in advance.
This paper proposes JEDI (Joining Encryption and Delegation for IoT), a many-to-many end-to-end
encryption protocol for IoT. JEDI encrypts and signs messages end-to-end, while conforming to
the decoupled communication model typical of IoT systems. JEDI’s keys support expiry and
fine-grained access to data, common in IoT. Furthermore, JEDI allows principals to delegate their
keys, restricted in expiry or scope, to other principals, thereby granting access to data and managing
access control in a scalable, distributed way. Through careful protocol design and implementation,
JEDI can run across the spectrum of IoT devices, including ultra low-power deeply embedded
sensors severely constrained in CPU, memory, and energy consumption. We apply JEDI to an
existing IoT messaging system and demonstrate that its overhead is modest.
This work was previously published in [KHAPC19].
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6.1 Introduction
As the Internet of Things (IoT) has emerged over the past decade, smart devices have become
increasingly common. This trend is only expected to continue, with tens of billions of new
IoT devices deployed over the next few years [Cis14]. The IoT vision requires these devices to
communicate to discover and use the resources and data provided by one another. Yet, these devices
collect privacy-sensitive information about users. A natural step to secure privacy-sensitive data is
to use end-to-end encryption to protect it during transit.
Existing protocols for end-to-end encryption, such as SSL/TLS and TextSecure [FMBBSH16],

focus on one-to-one communication between two principals: for example, Alice sends a message to
Bob over an insecure channel. Such protocols, however, appear not to be a good fit for large-scale
industrial IoT systems. Such IoT systems demand many-to-many communication among decoupled
senders and receivers, and require decentralized delegation of access to enforce which devices can
communicate with which others.
We investigate existing IoT systems, which currently do not encrypt data end-to-end, to understand

the requirements on an end-to-end encryption protocol like JEDI. We use smart cities as an example
application area, and data-collecting sensors in a large organization as a concrete use case. We
identify three central requirements, which we treat in turn below:
▷ Decoupled senders and receivers. IoT-scale systems could consist of thousands of principals,
making it infeasible for consumers of data (e.g., applications) to maintain a separate session with
each producer of data (e.g., sensors). Instead, senders are typically decoupled from receivers.
Such decoupling is common in publish-subscribe systems for IoT, such as MQTT, AMQP, XMPP,
and Solace [Sol]. In particular, many-to-many communication based on publish-subscribe is the
de-facto standard in smart buildings, used in systems like BOSS [DH+13], VOLTTRON [Vol],
Brume [MRK18] and bw2 [AKCCK17], and adopted commercially in AllJoyn and IoTivity. Senders
publish messages by addressing them to resources and sending them to a router. Recipients subscribe
to a resource by asking the router to send them messages addressed to that resource.
Many systems for smart buildings/cities, like sMAP [DHJTOC10], SensorAct [ABCSSS12],

bw2 [AKCCK17], VOLTTRON [Vol], and BAS [KFKC12], organize resources as a hierarchy.
A resource hierarchy matches the organization of IoT devices: for instance, smart cities contain
buildings, which contain floors, which contain rooms, which contain sensors, which produce streams
of readings. We represent each resource—a leaf in the hierarchy—as a Uniform Resource Indicator
(URI), which is like a file path. For example, a sensor that measures temperature and humidity
might send its readings to the two URIs buildingA/floor2/roomLHall/sensor0/temp and
buildingA/floor2/roomLHall/sensor0/hum. A user can subscribe to a URI prefix, such as
buildingA/floor2/roomLHall/*, which represents a subtree of the hierarchy. He would then
receive all sensor readings in room “LHall.”

1Image credits: https://tweakers.net/pricewatch/1275475/asus-f540la-dm1201t.html, https://
www.lg.com/uk/mobile-phones/lg-H791, https://www.bestbuy.com/site/nest-learning-thermostat-
3rd-generation-stainless-steel/4346501.p?skuId=4346501, https://www.macys.com/shop/product/
fitbit-charge-2-heart-rate-fitness-wristband?ID=2999458
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Figure 6.1: IoT comprises a diverse set of devices, which span more than four orders of magnitude of
computing power (estimated in Dhrystone MIPS).1

▷ Decentralized delegation. Access control in IoT needs to be fine-grained. For example, if Bob
has an app that needs access to temperature readings from a single sensor, that app should receive
the decryption key for only that one URI, even if Bob has keys for the entire room. In an IoT-scale
system, it is not scalable for a central authority to individually give fine-grained decryption keys
to each person’s devices. Moreover, as we discuss in Section 6.2, such an approach would pose
increased security and privacy risks. Instead, Bob, who himself has access to readings for the entire
room, should be able to delegate temperature-readings access to the app. Generally, a principal with
access to a set of resources can give another principal access to a subset of those resources.
Vanadium [TS16] and bw2 [AKCCK17] introduced decentralized delegation (SPKI/SDSI [CEEFMR01]

and Macaroons [BPETVL14]) in the smart buildings space. Since then, decentralized delegation
has become the state-of-the-art for access control in smart buildings, especially those geared toward
large-scale commercial buildings or organizations [FC15; HK18]. In these systems, a principal
can access a resource if there exists a chain of delegations, from the owner of the resource to that
principal, granting access. At each link in the chain, the extent of access may be qualified by caveats,
which add restrictions to which resources can be accessed and when. While these systems provide
delegation of permissions, they do not provide protocols for encrypting and decrypting messages
end-to-end.
▷ Resource constraints. IoT devices vary greatly in their capabilities, as shown in Figure 6.1. This
includes devices constrained in CPU, memory, and energy, such as wearable devices and low-cost
environmental sensors.
In smart buildings/cities, one application of interest is indoor environmental sensing. Sensors

that measure temperature, humidity, or occupancy may be deployed in a building; such sensors
are battery-powered and transmit readings using a low-power wireless network. To see ubiquitous
deployment, they must cost only tens of dollars per unit and have several years of battery life.
To achieve this price/power point, sensor platforms are heavily resource-constrained, with mere
kilobytes of memory (farthest right in Figure 6.1) [Ham; Par; Fel09; LLLMSL14; BMPR14; AKC17;
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Figure 6.2: JEDI keys can be qualified and delegated, supporting decentralized, cryptographically-
enforced access control via key delegation. Each person has a decryption key for the indicated resource
subtree that is valid until the indicated expiry time. Black arrows denote delegation.

AFC16]. The power consumption of encryption is a serious challenge, even more so than its
latency on a slower CPU; the CPU and radio must be used sparingly to avoid consuming energy too
quickly [YHE02; Kim+18]. For example, on the sensor platform used in our evaluation, an average
CPU utilization of merely 5% would result in less than a year of battery life, even if the power cost
of using the transducers and network were zero.

6.1.1 Overview of JEDI
This paper presents JEDI, a many-to-many end-to-end encryption protocol compatible with the
above three requirements of IoT systems. JEDI encrypts messages end-to-end for confidentiality,
signs them for integrity while preserving anonymity, and supports delegation with caveats, all while
allowing senders and receivers to be decoupled via a resource hierarchy. JEDI differs from existing
encryption protocols like SSL/TLS, requiring us to overcome a number of challenges:
1. Formulating a new system model for end-to-end encryption to support decoupled senders and

receivers and decentralized delegation typical of IoT systems (Section 6.1.1.1)
2. Realizing this expressive model while working within the resource constraints of IoT devices
(Section 6.1.1.2)

3. Allowing receivers to verify the integrity of messages, while preserving the anonymity of senders
(Section 6.1.1.3)

4. Extending JEDI’s model to support revocation (Section 6.1.1.4)
Below, we explain how we address each of these challenges.
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6.1.1.1 JEDI’s System Model (Section 6.2)

Participants in JEDI are called principals. Any principal can create a resource hierarchy to
represent some resources that it owns. Because that principal owns all of the resources in the
hierarchy, it is called the authority of that hierarchy.
Due to the setting of decoupled senders and receivers, the sender can no longer encrypt

messages with the receiver’s public key, as in traditional end-to-end encryption. Instead, JEDI
models principals as interacting with resources, rather than with other principals. Herein lies the
key difference between JEDI’s model and other end-to-end encryption protocols: the publisher of a
message encrypts it according to the URI to which it is published, not the recipients subscribed to
that URI. Only principals permitted to subscribe to a URI are given keys that can decrypt messages
published to that URI.
IoT systems that support decentralized delegation (Vanadium, bw2), as well as related non-IoT

authorization systems (e.g., SPKI/SDSI [CEEFMR01] and Macaroons [BPETVL14]) provide
principals with tokens (e.g., certificate chains) that they can present to prove they have access
to a certain resource. Providing tokens, however, is not enough for end-to-end encryption;
unlike these systems, JEDI allows decryption keys to be distributed via chains of delegations.
Furthermore, the URI prefix and expiry time associated with each JEDI key can be restricted at
each delegation. For example, as shown in Figure 6.2, suppose Alice, who works in a research
lab, needs access to sensor readings in her office. In the past, the campus facilities manager, who
is the authority for the hierarchy, granted a key for buildingA/* to the building manager, who
granted a key for buildingA/floor2/* to the lab director. Now, Alice can obtain the key for
buildingA/floor2/alice_office/* directly from her local authority (the lab director).

6.1.1.2 Encryption with URIs and Expiry (Section 6.3)

JEDI supports decoupled communication. The resource to which a message is published acts as a
rendezvous point between the senders and receivers, used by the underlying system to route messages.
Central to JEDI is the challenge of finding an analogous cryptographic rendezvous point that senders
can use to encrypt messages without knowledge of receivers. A number of IoT systems [SBDHR18;
PSWCT01] use only simple cryptography like AES, SHA2, and ECDSA, but these primitives are not
expressive enough to encode JEDI’s rendezvous point, which must support hierarchically-structured
resources, non-interactive expiry, and decentralized delegation.
Existing systems [WMZV16; WLW10; WLWG11] with similar expressivity to JEDI use

Attribute-Based Encryption (ABE) [GPSW06; BSW07]. Unfortunately, ABE is not suitable for
JEDI because it is too expensive, especially in the context of resource constraints of IoT devices.
Some IoT systems rule it out due to its latency alone [SBDHR18]. In the context of low-power
devices, encryption with ABE would also consume too much power. JEDI circumvents the problem
of using ABE or basic cryptography with two insights: (1) Even though ABE is too heavy for
low-power devices, this does not mean that we must resort to only symmetric-key techniques.
We show that certain IBE schemes [AKN] can be made practical for such devices. (2) Time is
another resource hierarchy: a timestamp can be expressed as year/month/day/hour, and in this
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hierarchical representation, any time range can be represented efficiently as a logarithmic number of
subtrees. With this insight, we can simultaneously support URIs and expiry via a nonstandard use of
a certain type of IBE scheme: WKD-IBE [AKN]. Like ABE, WKD-IBE is based on bilinear groups
(pairings), but it is an order-of-magnitude less expensive than ABE as used in JEDI. To make JEDI
practical on low-power devices, we design it to invoke WKD-IBE rarely, while relying on AES
most of the time, much like session keys. Thus, JEDI achieves expressivity commensurate to IoT
systems that do not encrypt data—significantly more expressive than AES-only solutions—while
allowing several years of battery life for low-power low-cost IoT devices.

6.1.1.3 Integrity and Anonymity (Section 6.4)

In addition to being encrypted, messages should be signed so that the recipient of a message can be
sure it was not sent by an attacker. This can be achieved via a certificate chain, as in SPKI/SDSI
or bw2. Certificates can be distributed in a decentralized manner, just like encryption keys in
Figure 6.2.
Certificate chains, however, are insufficient if anonymity is required. For example, consider

an office space with an occupancy sensor in each office, each publishing to the same URI
buildingA/occupancy. In aggregate, the occupancy sensors could be useful to inform, e.g.,
heating/cooling in the building, but individually, the readings for each room could be considered
privacy-sensitive. The occupancy sensors in different rooms could use different certificate chains, if
they were authorized/installed by different people. This could be used to deanonymize occupancy
readings. To address this challenge, we adapt the WKD-IBE scheme that we use for end-to-end
encryption to achieve an anonymous signature scheme that can encode the URI and expiry and
support decentralized delegation. Using this technique, anonymous signatures are practical even on
low-power embedded IoT devices.

6.1.1.4 Revocation (Section 6.5)

As stated above, JEDI keys support expiry. Therefore, it is possible to achieve a lightweight
revocation scheme by delegating each key with short expiry and periodically renewing it to extend
the expiry. To revoke a key, one simply does not renew it. We expect this expiry-based revocation to
be sufficient for most use cases, especially for low-power devices, which typically just “sense and
send.”
Enforcing revocation cryptographically, without relying on expiration, is challenging. As we

discuss in Section 6.5, any cryptographically-enforced scheme that provides immediate revocation
(i.e., keys can be revoked without waiting for them to expire) is subject to the fundamental limitation
that the sender of a message must know which recipients are revoked when it encrypts the message.
JEDI provides a form of immediate revocation, subject to this constraint. We use techniques from
tree-based broadcast encryption [NNL01; DF02] to encrypt in such a way that all decryption keys
for that URI, except for ones on a revocation list, can be used to decrypt. Achieving this is nontrivial
because we have to combine broadcast encryption with JEDI’s semantics of hierarchical resources,
expiry, and delegation. First, we modify broadcast encryption to support delegation, in such a way
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that if a key is revoked, all delegations made with that key are also implicitly revoked. Then, we
integrate broadcast revocation, in a non-black-box way, with JEDI’s encryption and delegation, as a
third resource hierarchy alongside URIs and expiry.

6.1.2 Summary of Evaluation
For our evaluation, we use JEDI to encrypt messages transmitted over bw2 [AKCCK17; Bw2], a
deployed open-source messaging system for smart buildings, and demonstrate that JEDI’s overhead
is small in the critical path. We also evaluate JEDI for a commercially available sensor platform
called “Hamilton” [Ham], and show that a Hamilton-based sensor sending one sensor reading every
30 seconds would see several years of battery lifetime when sending sensor readings encrypted with
JEDI. As Hamilton is among the least powerful platforms that will participate in IoT (farthest to the
right in Figure 6.1), this validates that JEDI is practical across the IoT spectrum.
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6.2 JEDI’s Model and Threat Model
A principal can post a message to a resource in a hierarchy by encrypting it according to the
resource’s URI, hierarchy’s public parameters, and current time, and passing it to the underlying
system that delivers it to the relevant subscribers. Given the secret key for a resource subtree and
time range, a principal can generate a secret key for a subset of those resources and subrange of that
time range, and give it to another principal, as in Figure 6.2. The receiving principal can use the
delegated key to decrypt messages that are posted to a resource in that subset at a time during that
subrange.

JEDI does not require the structure of the resource hierarchy to be fixed in advance. In Figure 6.2,
the campus facilities manager, when granting access to buildingA/* to the building manager, need
not be concerned with the structure of the subtree rooted at buildingA. This allows the building
manager to organize buildingA/* independently.

6.2.1 Trust Assumptions
A principal is trusted for the resources it owns or was given access to (for the time ranges for which it
was given access). In other words, an adversary who compromises a principal can read all resources
that principal can read and forge new messages as if it were that principal. In particular, an adversary
who compromises the authority for a resource hierarchy gains control over that resource hierarchy.
JEDI allows each principal to act as an authority for its own resource hierarchy in its own

trust domain, without a single authority spanning all hierarchies. In particular, principals are not
organized hierarchically; a principal may be delegated multiple keys, each belonging to a different
resource hierarchy. In the example in Figure 6.2, Alice might also receive JEDI keys from her
landlord granting access to resources in her apartment building, in a separate hierarchy where her
landlord is the authority. If Alice owns resources she would like to delegate to others, she can set up
her own hierarchy to represent those resources. Existing IoT systems with decentralized delegation,
like bw2 and Vanadium, use a similar model.

6.2.2 Applying JEDI to an Existing System
As shown in Figure 6.3, JEDI can be applied as a wrapper around existing many-to-many communi-
cation systems, including publish-subscribe systems for smart cities. The transfer of messages from
producers to consumers is handled by the existing system. A common design used by such systems
is to have a central broker (or router) forward messages; however, an adversary who compromises
the broker can read all messages. In this context, JEDI’s end-to-end encryption protects data
from such an adversary. Publishers encrypt their messages with JEDI before passing them to the
underlying communication system (without knowledge of who the subscribers are), and subscribers
decrypt them with JEDI after receiving them from the underlying communication system (without
knowledge of who the publishers are).



6.2. JEDI’S MODEL AND THREAT MODEL 211

Existing IoT System

Data

JEDI

Data(e.g., bldg/flo
or/room/sens
or/reading)

(e.g., Publish/Subscribe
on URI-based Resources)

Encrypt

URI

URI Data

JEDI

Data

Decrypt

URI

Message Message

SubscriberPublisher

(e.g., indoor
sensor)

(e.g., user's
app)

Figure 6.3: Applying JEDI to a smart buildings IoT system. Components introduced by JEDI are
shaded. The subscriber’s key is obtained via JEDI’s decentralized delegation (Figure 6.2).

6.2.3 Comparison to a Naïve Key Server Model
To better understand the benefits of JEDI’s model, consider the natural strawman of a trusted key
server. This key server generates a key for every URI and time. A publisher encrypts each message
for that URI with the same key. A subscriber requests this key from the trusted key server, which
must first check if the subscriber is authorized to receive it. The subscriber can decrypt messages
for a URI using this key, and contact the key server for a new key when the key expires. JEDI’s
model is better than this key server model as follows:
• Improved security. Unlike the trusted key server, which must always be online, the authority in
JEDI can delegate qualified keys to some principals and then go offline, leaving these principals to
qualify and delegate keys further. While the authority is offline, it is more difficult for an attacker
to compromise it and easier for the authority to protect its secrets because it need only access
them rarely. This reasoning is the basis of root Certificate Authorities (CAs), which access their
master keys infrequently. In contrast, the trusted key server model requires a central trusted party
(key server) to be online to grant/revoke access to any resource.

• Improved privacy. No single participant sees all delegations in JEDI. An adversary in JEDI who
steals an authority’s secret key can decrypt all messages for that hierarchy, but still does not
learn who has access to which resource, and cannot access separate hierarchies to which the first
authority has no access. In contrast, an adversary who compromises the key server learns who has
access to which resource and can decrypt messages for all hierarchies.

• Improved scalability. In the campus IoT example above, if a building admin receives access to all
sensors and all their different readings for a building, the admin must obtain a potentially very
large number of keys, instead of one key for the entire building. Moreover, the campus-wide key
server needs to grant decryption keys to each application owned by each employee or student
at the university. Finally, the campus-wide key server must understand which delegations are
allowed at lower levels in the hierarchy, requiring the entire hierarchy to be centrally administered.
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6.2.4 IoT Gateways
Low-power wireless embedded sensors, due to power constraints, often do not use network protocols
like Wi-Fi, and instead use specialized low-power protocols such as Bluetooth or IEEE 802.15.4.
It is common for these devices to rely on an application-layer gateway to send data to computers
outside of the low-power network [ZKCAJD15]. This gateway could be in the form of a phone app
(e.g., Fitbit), or in the form of a specialized border router [Zig; Bra+12]. In some traditional setups,
the gateway is responsible for performing encryption/authentication [PSWCT01]. JEDI accepts that
gateways may be necessary for Internet connectivity, but does not rely on them for security—JEDI’s
cryptography is lightweight enough to run directly on the low-power sensor nodes. This approach
prevents the gateway from becoming a single point of attack; an attacker who compromises the
gateway cannot see or forge data for any device using that gateway.

6.2.5 Generalizability of JEDI’s Model
Since JEDI decouples senders from receivers, it has no requirements on what happens at any
intermediaries (e.g., does not require messages to be forwarded from publishers to subscribers in
any particular way). Thus, JEDI works even when messages are exchanged in a broadcast medium,
e.g., multicast. This also means that JEDI is more broadly applicable to systems with hierarchically
organized resources. For example, URIs could correspond to filepaths in a file system, or URLs in a
RESTful web service.

6.2.6 Security Goals
JEDI’s goal is to ensure that principals can only read messages from or send messages to resources
they have been granted access to receive from or send to. In the context of publish-subscribe, JEDI
also hides the content of messages from an adversary who controls the router.
JEDI does not attempt to hide metadata relating to the actual transfer of messages (e.g., the

URIs on which messages are published, which principals are publishing or subscribing to which
resources, and timing). Hiding this metadata is a complementary task to achieving delegation and
end-to-end encryption in JEDI, and techniques from the secure messaging literature [CSPZKA16;
CGBM15; HLZZ15a] will likely be applicable.
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6.3 End-to-End Encryption in JEDI
A central question answered in this section is: How should publishers encrypt messages before
passing them to the underlying system for delivery (Section 6.3.4)? As explained in Section 6.1.1.2,
although ABE, the obvious choice, is too heavy for low-power devices, we identify WKD-IBE,
a more lightweight identity-based encryption scheme, as sufficient to achieve JEDI’s properties.
The primary challenge is to encode a sufficiently expressive rendezvous point in the WKD-IBE ID
(called a pattern) that publishers use to encrypt messages (Section 6.3.4).

6.3.1 Building Block: WKD-IBE
We first explain WKD-IBE [AKN], the encryption scheme that JEDI uses as a building block.
Throughout this paper, we denote the security parameter as κ.
In WKD-IBE, messages are encrypted with patterns, and keys also correspond to patterns. A

pattern is a list of values: P = (Z∗
p ∪ {⊥})ℓ. The notation P (i) denotes the ith component of P ,

1-indexed. A pattern P1 matches a pattern P2 if, for all i ∈ [1, ℓ], either P1(i) = ⊥ or P1(i) = P2(i).
In other words, if P1 specifies a value for an index i, P2 must match it at i. Note that the “matches”
operation is not commutative; “P1 matches P2” does not imply “P2 matches P1”.
We refer to a component of a pattern containing an element of Z∗

p as fixed, and to a component
that contains ⊥ as free. To aid our presentation, we define the following sets:
Definition 6.3.1. For a pattern S, we define:

fixed(S) = {(i, S(i)) | S(i) ̸= ⊥}
free(S) = {i | S(i) = ⊥}

A key for pattern P1 can decrypt a message encrypted with pattern P2 if P1 = P2. Furthermore,
a key for pattern P1 can be used to derive a key for pattern P2, as long as P1 matches P2. In summary,
the following is the syntax for WKD-IBE.
• Setup(1κ, 1ℓ)→ Params,MasterKey;
• KeyDer(Params,KeyPatternA

,PatternB)→ KeyPatternB
, derives a key for PatternB, where either

KeyPatternA
is theMasterKey, or PatternA matches PatternB;

• Encrypt(Params,Pattern,m)→ CiphertextPattern,m;
• Decrypt(KeyPattern,CiphertextPattern,m)→ m.
We use the WKD-IBE construction in §3.2 of [AKN], based on BBG HIBE [BBG05]. Like the

BBG construction, it has constant-size ciphertexts, but requires the maximum pattern length ℓ to
be known at Setup time. In this WKD-IBE construction, patterns containing ⊥ can only be used
inKeyDer, not in Encrypt; we extend it to support encryption with patterns containing ⊥. We
include the WKD-IBE construction with our optimizations in [KHAPC19].
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6.3.2 Concurrent Hierarchies in JEDI
WKD-IBE was originally designed to allow delegation in a single hierarchy. For example, the
original suggested use case of WKD-IBE was to generate secret keys for a user’s email addresses in
all valid subdomains, such as sysadmin@*.univ.edu [AKN].
JEDI, however, uses WKD-IBE in a nonstandard way to simultaneously support multiple

hierarchies, one for URIs and one for expiry (and later in Section 6.5, one for revocation), each in
the vein of HIBE. We think of the ℓ components of a WKD-IBE pattern as “slots” that are initially
empty, and are progressively filled in with calls toKeyDer. To combine a hierarchy of maximum
depth ℓ1 (e.g., the URI hierarchy) and a hierarchy of maximum depth ℓ2 (e.g., the expiry hierarchy),
one can Setup WKD-IBE with the number of slots equal to ℓ = ℓ1 + ℓ2. The first ℓ1 slots are
filled in left-to-right for the first hierarchy and the remaining ℓ2 slots are filled in left-to-right for the
second hierarchy (Figure 6.4).

6.3.3 Overview of Encryption in JEDI
Each principal maintains a key store containing WKD-IBE decryption keys. To create a resource
hierarchy, any principal can call the WKD-IBE Setup function to create a resource hierarchy. It
releases the public parameters and stores themaster secret key in its key store, making it the authority
of that hierarchy. To delegate access to a URI prefix for a time range, a principal (possibly the
authority) searches its key store for a set of keys for a superset of those permissions. It then qualifies
those keys usingKeyDer to restrict them to the specific URI prefix and time range (Section 6.3.5),
and sends the resulting keys to the recipient of the delegation.2 The recipient accepts the delegation
by adding the keys to its key store.
Before sending a message to a URI, a principal encrypts the message using WKD-IBE. The

pattern used to encrypt it is derived from the URI and the current time (Section 6.3.4), which are
included along with the ciphertext. When a principal receives a message, it searches its key store,
using the URI and time included with the ciphertext, for a key to decrypt it.
In summary, JEDI provides the following API:
Encrypt(Message,URI,Time)→ Ciphertext
Decrypt(Ciphertext,URI,Time,KeyStore)→ Message
Delegate(KeyStore,URIPrefix,TimeRange)→ KeySet
AcceptDelegation(KeyStore,KeySet)→ KeyStore′

Note that the WKD-IBE public parameters are an implicit argument to each of these functions.
Finally, although the above API lists the arguments to Delegate as URIPrefix and TimeRange,
JEDI actually supports succinct delegation over more complex sets of URIs and timestamps (see
Section 6.3.7).

2JEDI does not govern how the key set is transferred to the recipient, as there are existing solutions for this. One
can use an existing protocol for one-to-one communication (e.g., TLS) to securely transfer the key set. Or, one can
encrypt the key set with the recipient’s (normal, non-WKD-IBE) public key, and place it in a common storage area.
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H("𝚊") H("𝚋") H($) ⊥ H("𝟷𝟽") H("𝙹𝚞𝚗") H("𝟶𝟾") H("𝟶𝟼")
1 2 3 4 5 6 7 8i

S(i)

= 4 slots for URI Hierarchyℓ1 = 4 slots for Time Hierarchyℓ2

Figure 6.4: Pattern S used to encrypt message sent to a/b on June 08, 2017 at 6 AM. The figure uses 8
slots for space reasons; JEDI is meant to be used with more slots (e.g., 20).

6.3.4 Expressing URI/Time as a Pattern
A message is encrypted using a pattern derived from (1) the URI to which the message is addressed,
and (2) the current time. LetH : {0, 1}∗ → Z∗

p be a collision-resistant hash function. Let ℓ = ℓ1 +ℓ2
be the pattern length in the hierarchy’s WKD-IBE system. We use the first ℓ1 slots to encode the
URI, and the last ℓ2 slots to encode the time.
Given a URI of length d, such as a/b/c (d = 3 in this example), we split it up into individual

components, and append a special terminator symbol $: ("a", "b", "c", $). Using H , we map
each component to Z∗

p, and then put these values into the first d+ 1 slots. If S is our pattern, we
would have S(1) = H("a"), S(2) = H("b"), S(3) = H("c"), and S(4) = H($) for this example.
Now, we encode the time range into the remaining ℓ2 slots. Any timestamp, with the granularity of
an hour, can be represented hierarchically as (year, month, day, hour). We encode this into
the pattern like the URI: we hash each component, and assign them to consecutive slots. The final
ℓ2 slots encode the time, so the depth of the time hierarchy is ℓ2. The terminator symbol $ is not
needed to encode the time, because timestamps always have exactly ℓ2 components. For example,
suppose that a principal sends a message to a/b on June 8, 2017 at 6 AM. The message is encrypted
with the pattern in Figure 6.4.

6.3.5 Producing a Key Set for Delegation
Now, we explain how to produce a key set corresponding to a URI prefix and time range. To express
a URI prefix as a pattern, we do the same thing as we did for URIs, without the terminator symbol $.
For example, a/b/* is encoded in a pattern S as S(1) = H("a"), S(2) = H("b"), and all other
slots free. Given the private key for S, one can use WKD-IBE’s KeyDer to fill in slots 3 . . . ℓ1.
This allows one to generate the private key for a/b, a/b/c, etc.—any URI for which a/b is a prefix.
To grant access to only a specific resource (a full URI, not a prefix), the $ is included as before.
In encoding a time range into a pattern, single timestamps (e.g., granting access for an hour)

are done as before. The hierarchical structure for time makes it possible to succinctly grant
permission for an entire day, month, or year. For example, one may grant access for all of
2017 by filling in slot ℓ2 with H("2017") and leaving the final ℓ2 − 1 slots, which correspond
to month, day, and year, free. Therefore, to grant permission over a time range, the number of
keys granted is logarithmic in the length of the time range. For example, to delegate access to
a URI from October 29, 2014 at 10 PM until December 2, 2014 at 1 AM, the following keys
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need to be generated: 2014/Oct/29/23, 2014/Oct/29/24, 2014/Oct/30/*, 2014/Oct/31/*,
2014/Nov/*, 2014/Dec/01/*, and 2014/Dec/02/01. The tree can be chosen differently to support
longer time ranges (e.g., additional level representing decades), change the granularity of expiry
(e.g., minutes instead of hours), trade off encryption time for key size (e.g., deeper/shallower tree),
or use a more regular structure (e.g., binary encoding with logarithmic split). For example, our
implementation uses a depth-6 tree (instead of depth-4), to be able to delegate time ranges with
fewer keys.
In summary, to produce a key set for delegation, first determine which subtrees in the time

hierarchy represent the time range. For each one, produce a separate pattern, and encode the time
into the last ℓ2 slots. Encode the URI prefix in the first ℓ1 slots of each pattern. Finally, generate the
keys corresponding to those patterns, using keys in the key store.

6.3.6 Optimizations for Low-Power Devices
On low-power embedded devices, performing a single WKD-IBE encryption consumes a significant
amount of energy. Therefore, we design JEDI with optimizations to WKD-IBE.

6.3.6.1 Hybrid Encryption and Key Reuse

JEDI uses WKD-IBE in a hybrid encryption scheme. To encrypt a messagem in JEDI, one samples
a symmetric key k, and encrypts k with JEDI to produce ciphertext c1. The pattern used for
WKD-IBE encryption is chosen as in Section 6.3.4 to encode the rendezvous point. Then, one
encryptsm using k to produce ciphertext c2. The JEDI ciphertext is (c1, c2).
For subsequent messages, one reuses k and c1; the new message is encrypted with k to produce

a new c2. One can keep reusing k and c1 until the WKD-IBE pattern for encryption changes, which
happens at the end of each hour (or other interval used for expiry). At this time, JEDI performs
key rotation by choosing a new k, encrypting it with WKD-IBE using the new pattern, and then
proceeding as before. Therefore, most messages only incur cheap symmetric-key encryption.
This also reduces the load on subscribers. The JEDI ciphertexts sent by a publisher during a

single hour will all share the same c1. Therefore, the subscriber can decrypt c1 once for the first
message to obtain k, and cache the mapping from c1 to k to avoid expensive WKD-IBE decryptions
for future messages sent during that hour.
Thus, expensive WKD-IBE operations are only performed upon key rotation, which happens

rarely—once an hour (or other granularity chosen for expiry) for each resource.

6.3.6.2 Precomputation with Adjustment

Even with hybrid encryption and key reuse to perform WKD-IBE encryption rarely, WKD-IBE
contributes significantly to the overall power consumption on low-power devices. Therefore, this
section explores how to perform individual WKD-IBE encryptions more efficiently.
Most of the work to encrypt under a pattern S is in computing the quantity QS = g3 ·∏

(i,ai)∈fixed(S) h
ai
i , where g3 and the hi are part of the WKD-IBE public parameters. One may
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consider computing QS once, and then reusing its value when computing future encryptions under
the same pattern S. Unfortunately, this alone does not improve efficiency because the pattern S
used in one WKD-IBE encryption is different from the pattern T used for the next encryption.
JEDI, however, observes that S and T are similar; they match in the ℓ1 slots corresponding to

the URI, and the remaining ℓ2 slots will correspond to adjacent leaves in the time tree. JEDI takes
advantage of this by efficiently adjusting the precomputed value QS to compute QT as follows:

QT = QS ·
∏

(i,bi)∈fixed(T )
i∈free(S)

h
bi
i ·

∏
(i,ai)∈fixed(S)

i∈free(T )

h
−ai
i ·

∏
(i,ai)∈fixed(S)
(i,bi)∈fixed(T )

ai ̸=bi

h
bi−ai
i

This requires oneG1 exponentiation per differing slot between S and T (i.e., the Hamming distance).
Because S and T usually differ in only the final slot of the time hierarchy, this will usually require
one G1 exponentiation total, substantially faster than computing QT from scratch. Additional
exponentiations are needed at the end of each day, month, and year, but they can be eliminated by
maintaining additional precomputed values corresponding to the start of the current day, current
month, and current year.
The protocol remains secure because a ciphertext is distributed identically whether it was

computed from a precomputed value QS or via regular encryption as in [KHAPC19].

6.3.7 Extensions
Via simple extensions, JEDI can support (1) wildcards in the middle of a URI or time, and (2)
forward secrecy. We describe these extensions in the appendix of our extended paper [KHAPC19].

6.3.8 Security Guarantee
We formalize the security of JEDI’s encryption below.

Theorem 6.3.2. Suppose JEDI is instantiated with a Selective-ID CPA-secure [BB04; AKN],
history-independent (defined in our extended paper [KHAPC19]) WKD-IBE scheme. Then, no
probabilistic polynomial-time adversaryA can win the following security game against a challenger
C with non-negligible advantage:
Initialization. A selects a (URI, time) pair to attack.
Setup. C gives A the public parameters of the JEDI instance.
Phase 1. A can make three types of queries to C:
1. A asks C to create a principal; C returns a name in {0, 1}∗, which A can use to refer to that
principal in future queries. A special name exists for the authority.
2. A asks C for the key set of any principal; C gives A the keys that the principal has. At the time
this query is made, the requested key may not contain a key whose URI and time are both prefixes of
the challenge (URI, time) pair.
3. A asks C to make any principal delegate a key set of A’s choice to another principal (specified
by names in {0, 1}∗).
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Challenge. When A chooses to end Phase 1, it sends C two messages, m0 and m1, of the same
length. Then C chooses a random bit b ∈ {0, 1}, encrypts mb under the challenge (URI, time) pair,
and gives A the ciphertext.
Phase 2. A can make additional queries as in Phase 1.
Guess. A outputs b′ ∈ {0, 1}, and wins the game if b = b′. The advantage of an adversary A is∣∣∣Pr[A wins]− 1

2

∣∣∣.
We prove this theorem in our extended paper [KHAPC19].
Although we only achieve selective security in the standard model (like much prior work [BBG05;

AKN]), one can achieve adaptive security if the hash function H in Section 6.3.5 is modeled as
a random oracle [AKN]. It is sufficient for JEDI to use a CPA-secure (rather than CCA-secure)
encryption scheme because JEDI messages are signed, as detailed below in Section 6.4.
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6.4 Integrity in JEDI
To prevent an attacker from flooding the system with messages, spoofing fake data, or actuating
devices without permission, JEDI must ensure that a principal can only send a message on a URI
if it has permission. For example, an application subscribed to buildingA/floor2/roomLHall/
sensor0/temp should be able to verify that the readings it is receiving are produced by sensor0, not
an attacker. In addition to subscribers, an intermediate party (e.g., the router in a publish-subscribe
system) may use this mechanism to filter out malicious traffic, without being trusted to read messages.

6.4.1 Starting Solution: Signature Chains
A standard solution in the existing literature, used by SPKI/SDSI [CEEFMR01], Vanadium [TS16],
and bw2 [AKCCK17], is to include a certificate chain with each message. Just as permission to
subscribe to a resource is granted via a chain of delegations in Section 6.3, permission to publish
to a resource is also granted via a chain of delegations. Whereas Section 6.3 includes WKD-IBE
keys in each delegation, these integrity solutions delegate signed certificates. To send a message, a
principal encrypts it (Section 6.3), signs the ciphertext, and includes a certificate chain that proves
that the signing keypair is authorized for that URI and time.

6.4.2 Anonymous Signatures
The above solution reveals the sender’s identity (via its public key) and the particular chain of
delegations that gives the sender access. For some applications this is acceptable, and its auditability
may even be seen as a benefit. For other applications, the sender must be able to send a message
anonymously. See Section 6.1.1.3 for an example. How can we reconcile access control (ensuring
the sender has permission) and anonymity (hiding who the sender is)?

6.4.2.1 Starting Point: WKD-IBE Signatures

Our solution is to use a signature scheme based on WKD-IBE. Abdalla et al. [AKN] observe that
WKD-IBE can be extended to a signature scheme in the same vein as has been done for IBE [BF01]
and HIBE [GS02]. To sign a messagem ∈ Z∗

p with a key for pattern S, one usesKeyDer to fill in
a slot withm, and presents the decryption key as a signature.
This is our starting point for designing anonymous signatures in JEDI. A message can be signed

by first hashing it to Z∗
p and signing the hash as above. Just as consumers receive decryption keys

via a chain of delegations (Section 6.3), publishers of data receive these signing keys via chains of
delegations.

6.4.2.2 Anonymous Signatures in JEDI

The construction in Section 6.4.2.1 has two shortcomings. First, signatures are large, linear in the
number of fixed slots of the pattern. Second, it is unclear if they are truly anonymous.
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Signature size. As explained in Section 6.3, we use a construction of WKD-IBE based on BBG
HIBE [BBG05]. BBG HIBE supports a property called limited delegation in which a secret key
can be reduced in size, in exchange for limiting the depth in the hierarchy at which subkeys can be
generated from it. We observe that the WKD-IBE construction also supports this feature. Because
we need not supportKeyDer for the decryption key acting as a signature, we use limited delegation
to compress the signature to just two group elements.
Anonymity. The technique in Section 6.4.2.1 transforms an encryption scheme into a signature
scheme, but the resulting signature scheme is not necessarily anonymous. For the particular
construction of WKD-IBE that we use, however, we prove that the resulting signature scheme
is indeed anonymous. Our insight is that, for this construction of WKD-IBE, keys are history-
independent in the following sense: KeyDer, for a fixed Params and PatternB, returns a private key
KeyPatternB

with the exact same distribution regardless of KeyPatternA
(see Section 6.3.1 for notation).

Because signatures, as described in Section 6.4.2.1, are private keys generated withKeyDer, they
are also history-independent; a signature for a pattern has the same distribution regardless of the key
used to generate it. This is precisely the anonymity property we desire.

6.4.3 Optimizations for Low-Power Devices
As in Section 6.3.6.1, we must avoid computing a WKD-IBE signature for every message. A
simple way to do this is to sample a digital signature keypair each hour, sign the verifying key with
WKD-IBE at the beginning of the hour, and sign messages during the hour with the corresponding
signing key.
Unfortunately, this may still be too expensive for low-power embedded devices because it

requires a digital signature, which requires asymmetric-key cryptography, for every message. We
can circumvent this by instead (1) choosing a symmetric key k every hour, (2) signing k at the
start of each hour (using WKD-IBE for anonymity), and (3) using k in an authenticated broadcast
protocol to authenticate messages sent during the hour. An authenticated broadcast protocol, like
µTESLA [PSWCT01], generates a MAC for each message using a key whose hash is the previous
key; thus, the single signed key k allows the recipient to verify later messages, whose MACs are
generated with hash preimages of k. In general, this design requires stricter time synchronization
than the one based on digital signatures, as the key used to generate the MAC depends on the time at
which it is sent. However, for the sense-and-send use case typical of smart buildings, sensors anyway
publish messages on a fixed schedule (e.g., one sample every x seconds), allowing the key to depend
only on the message index. Thus, timely message delivery is the only requirement. Our scheme
differs from µTESLA because the first key (end of the hash chain) is signed using WKD-IBE.
Additionally, we use a technique similar to precomputation with adjustment (Section 6.3.6.2)

for anonymous signatures. Conceptually, KeyDer, which is used to produce signatures, can be
understood as a two-step procedure: (1) produce a key of the correct form and structure (called
NonDelegableKeyDer), and (2) re-randomize the key so that it can be safely delegated (called
ResampleKey). Re-randomization can be accelerated using the same precomputed value QS that
JEDI uses for encryption (Section 6.3.6.2), which can be efficiently adjusted from one pattern to
the next. The result ofNonDelegableKeyDer can also be adjusted to obtain the corresponding



6.4. INTEGRITY IN JEDI 221

result for a similar pattern more efficiently. We fully explain our adjustment technique for signatures
in our extended paper [KHAPC19].
Finally, WKD-IBE signatures as originally proposed (Section 6.4.2.1) are verified by encrypting

a random message under the pattern corresponding to the signature, and then attempting to decrypt
it using the key acting as a signature. We provide a more efficient signature verification algorithm
for this construction of WKD-IBE in our extended paper [KHAPC19].

6.4.4 Security Guarantee
The integrity guarantees of the method in this section can be formalized using a game very similar
to the one in Theorem 6.3.2, so we do not present it here for brevity. We do, however, formalize the
anonymous aspect of WKD-IBE signatures:
Theorem 6.4.1. For any well-formed keys k1, k2 corresponding to the same (URI, time) pair in
the same resource hierarchy, and any message m ∈ Z∗

p, the distribution of signatures over m
produced using k1 is information-theoretically indistinguishable from (i.e., equal to) the distribution
of signatures over m produced using k2.
This implies that even a powerful adversary who observes the private keys held by all principals

cannot distinguish signatures produced by different principals, for a fixed message and pattern. No
computational assumptions are required. We prove Theorem 6.4.1 in the appendix of our extended
paper [KHAPC19].
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6.5 Revocation in JEDI
This section explains how JEDI keys may be revoked.

6.5.1 Simple Solution: Revocation via Expiry
A simple solution for revocation is to rely on expiration. In this solution, all keys are time-limited,
and delegations are periodically refreshed, according to a higher layer protocol, by granting a new
key with a later expiry time. In this setup, the principal who granted a key can easily revoke it by not
refreshing that delegation when the key expires. We expect this solution to be sufficient for many
applications of JEDI.

6.5.2 Immediate Revocation
Some disadvantages of the solution in Section 6.5.1 are that (1) principals must periodically come
online to refresh delegations, and (2) revocation only takes effect when the delegated key expires.
We would like a solution without these disadvantages.
However, any revocation scheme that does not wait for keys to expire is subject to set of inherent

limitations. The recipient of the revoked delegation still has the revoked decryption key, so it can
still decrypt messages encrypted in the same way. This means that we must either (1) rely on
intermediate parties to modify ciphertexts so that revoked keys cannot decrypt them, or (2) require
senders to be aware of the revocation, and encrypt messages in a different way so that revoked keys
cannot decrypt them. Neither solution is ideal: (1) makes assumptions about how messages are
delivered, which we have avoided thus far (Section 6.2), and requires trust in an intermediary to
modify ciphertexts, and (2) weakens the decoupling of senders and receivers (Section 6.1.1). We
adopt the second compromise: while senders will not need to know who are the receivers, they will
need to know who has been revoked.

6.5.3 Immediate Revocation in JEDI
We extend tree-based broadcast encryption [NNL01; DF02] to support decentralized delegation of
decryption keys, and incorporate it into JEDI. We use tree-based broadcast encryption because it
only requires senders to know about revoked users when encrypting messages, as opposed to all
users in the system (as is required by other broadcast encryption schemes).

6.5.3.1 Tree-based Broadcast Encryption

Existing work [NNL01; DF02] proposes two methods of tree-based broadcast encryption: Complete
Subtree (CS) and Subset Difference (SD). We focus on the CS method here.
The CS method is based on a binary tree (Figure 6.5) where each node corresponds to a separate

keypair. Each user corresponds to a leaf of the tree and has the secret keys for all nodes on
the root-to-leaf path. To encrypt a message that is decryptable by a subset of users, one finds



6.5. REVOCATION IN JEDI 223
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Figure 6.5: Key management of the CS method. Red nodes indicate nodes associated with revoked
leaves. The green node is the root of the subtree covering unrevoked leaves.

a collection of subtrees that include all leaves except those corresponding to revoked users and
encrypts the message multiple times using the public keys corresponding to the root of each subtree.
By associating each node with an ID and encrypting with IBE, one can avoid generating a separate
keypair for each node.

6.5.3.2 Modifying Broadcast Encryption for Delegation

Users in broadcast encryption do not map one-to-one to users in JEDI. To avoid confusion, we refer
to “users” in broadcast encryption as “leaves” (abbreviated lf).
We modify the CS method to support delegation, as follows. Each key corresponds to a range of

consecutive leaves. When a user qualifies a key to delegate to another principal, she produces a new
key corresponding to a subrange of the leaves of the original key. When a key is revoked, publishers
are informed of the range of leaves corresponding to the revoked key. Then, they encrypt new
messages using the CS method, choosing subtrees that cover all leaves except those corresponding
to revoked leaves. If a key is revoked, that key and all keys derived from it can no longer decrypt
messages, which is a property that we want. Thus, if Alice has k leaves, she must store secret keys
for O(k + log n) nodes, where n is the total number of leaves (so the depth of the tree is log n).
In JEDI, we reduce this toO(log n) secret keys by using HIBE. We give each node vi an identifier

id(vi) ∈ {0, 1}∗ that describes the path from the root of the tree to that node. In particular, if vj is
an ancestor of vi, then id(vj) is a prefix of id(vi). Note that if we use HIBE with these IDs directly, a
user with the secret key for the root can generate keys for all nodes in the tree. To fix this, we use a
property called limited delegation, introduced by prior work [BBG05], to generate a HIBE key that
is unqualifiable (i.e., cannot be extended). For example, if Alice has leaves lf3 to lf4 in Figure 6.5,
she stores an unqualifiable key for node v1 and a qualifiable key for node v3. In general, each user
must store O(log k) qualifiable keys and O(log n) unqualifiable keys, thus O(log k + log n) total.

6.5.3.3 Using Delegable Broadcast Encryption in JEDI

Secret keys in our modified broadcast encryption scheme consist of HIBE keys, so incorporating it
into JEDI is simple. As discussed in Section 6.3.2, JEDI uses WKD-IBE in a way that provides
multiple concurrent hierarchies, each in the vein of HIBE. Therefore, we can instantiate a third
hierarchy of depth ℓ3 = log n and use it for revocation.
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Let r be the number of revoked keys. The CS method has O(r log n
r
)-size ciphertexts, so JEDI

ciphertexts grow to this size when revocation is used. When encrypting a message, senders use the
same encryption protocol from Section 6.3 for the first ℓ1 + ℓ2 slots, and repeat the process, filling
in the remaining ℓ3 slots with the ID of each node used for broadcast encryption. The size of secret
keys is O(log k + log n) after our modifications to the CS method, so JEDI keys grow by this factor,
to a total of O((log k + log n) · log T )WKD-IBE keys, where T is the length of the time range for
expiry.
The construction in this section works to revoke decryption keys, but cannot be used with

anonymous signatures (Section 6.4.2). Extensions of tree-based broadcast encryption to signatures
exist [LPY12a; LPY12b], and we expect them to be useful to develop a construction for anonymous
signatures.
How can JEDI inform publishers which leaves are revoked? One simple option is to have a

global revocation list, which principals can append to. However, storing this information in a single
list becomes a central point of attack, which we have avoided in our system thus far (Section 6.2).
To avoid this, one can store the revocation list in a global-scale blockchain, such as Bitcoin or
Ethereum, which would require an adversary to be exceptionally powerful to mount a successful
attack. When revoking a set of leaves, a principal uses those keys to sign a predetermined object (as
in Section 6.4.2), proving it owns an ancestor of that key in the hierarchy. To keep the revocation list
private, one can use JEDI’s encryption to ensure that only principals with permission to publish to
a particular resource can see which keys are revoked for that resource (since publishers too have
signing keys, as described in Section 6.4).

6.5.4 Security Guarantee
The security guarantee for immediate revocation can be stated as a modification to the game in
Theorem 6.3.2. In the Initialization Phase, whenA gives C the challenge (URI, time),A additionally
submits a list of revoked leaves. Furthermore, A may compromise principals in possession of
private keys that can decrypt the challenge (URI, time) pair during Phases 1 and 2, as long as all
leaves corresponding to those keys are in the revocation list submitted in the Initialization Phase.
We provide a proof in the appendix of the extended paper [KHAPC19].

6.5.5 Optimizing JEDI’s Immediate Revocation
A single JEDI ciphertext, with revocation enabled, consists of O(r log n

r
)WKD-IBE ciphertexts. To

compute them efficiently, we observe that there is a large overlap in the patterns used in individual
WKD-IBE encryptions, allowing us to use the “precomputation with adjustment” strategy from
Section 6.3.6.2.
Even with the above optimization, immediate revocation substantially increases the cost of

JEDI’s cryptography. To reduce this cost, we make three observations. First, to extend JEDI’s
hybrid encryption to work with revocation, it is sufficient to additionally rotate keys whenever the
revocation list changes, in addition to the end of each hour (as in Section 6.3.6.1). This means that,
in the common case where the revocation list does not change in between two messages, efficient
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symmetric-key encryption can be used. Second, the revocation list used to encrypt a message need
only contain revoked leaves for the particular URI to which the message is sent. This not only
makes the broadcast encryption more efficient (smaller r), but also causes the effective revocation
list for a stream of data to change even more rarely, allowing JEDI to benefit more from hybrid
encryption. Third, we can do the same thing as above using the expiry time rather than the URI,
allowing us to cull the revocation list by removing keys from it once they expire.
The efficiency of hybrid encryption depends on the revocation list changing rarely. We believe

this is a reasonable assumption; most revocation will be handled by expiry, so immediate revocation
is only needed if a principal must lose access unexpectedly. In the smart buildings use case
(Section 6.1), for example, a key would need to be revoked if a principal unexpectedly transfers to
another job.
The SD method for tree-based broadcast encryption can also be extended to support delegation

and incorporated into JEDI (described in the appendix of our extended paper [KHAPC19]), The SD
method has smaller ciphertexts but larger keys.
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6.6 Implementation
We implemented JEDI as a library in the Go programming language. We expect that only a
few applications will require the anonymous signature protocol in Section 6.4.2 or the tree-based
revocation protocol in Section 6.5.3; most applications can use signature chains (Section 6.4.1) for
integrity and expiry for revocation (Section 6.5.1). Therefore, our implementation makes anonymous
signatures optional and implements revocation separately. We expect JEDI’s key delegation to be
computed on relatively powerful devices, like laptops, smartphones, or Raspberry Pis; less powerful
devices (e.g., right half of Figure 6.1) will primarily send and receive messages, rather than generate
keys for delegation. Therefore, our focus for low-power platforms was on the “sense-and-send” use
case [BMPR14; DCS07; Fel09] typical of indoor environmental sensing, where a device periodically
publishes sensor readings to a URI. Whereas our Go library provides higher-level abstractions, we
expect low-power devices to use JEDI’s crypto library directly.

6.6.1 C/C++ Library for JEDI’s Cryptography
As part of JEDI, we implemented a cryptography library optimized in assembly for three different
architectures typical of IoT platforms (Figure 6.1). It implementsWKD-IBE and JEDI’s optimizations
andmodifications (in Section 6.3.6, Section 6.4.3, and our full paper). The construction ofWKD-IBE
is based on a bilinear group in which the Bilinear Diffie-Hellman Exponent assumption holds.
We originally planned to use Barreto-Naehrig elliptic curves [KKSK16; Che06] to implement
WKD-IBE. Unfortunately, a recent attack on Barreto-Naehrig curves [KB16] reduced their estimated
security level from 128 bits to at most 100 bits [BD]. Therefore, we use the recent BLS12-381
elliptic curve [Bow18].
State-of-the-art cryptography libraries implement BLS12-381, but none of them, to our knowl-

edge, optimize for microarchitectures typical of low-power embedded platforms. To improve energy
consumption, we implemented BLS12-381 in C/C++, profiled our implementation, and re-wrote
performance-critical routines in assembly. We focus on ARM Cortex-M, an IoT-focused family
of 32-bit microprocessors typical of contemporary low-power embedded sensor platforms [Ham;
Cam17; Imi]. Cortex-M processors have been used in billions of devices, including commercial IoT
offerings such as Fitbit and Nest Protect. Our assembly targets Cortex-M0+, which is among the
least powerful of processors in the Cortex-M series, and of those used in IoT devices (farthest to the
right in Figure 6.1). By demonstrating the practicality of JEDI on Cortex-M0+, we establish that
JEDI is viable across the spectrum of IoT devices (Figure 6.1).
The main challenge in targeting Cortex-M0+ is that the 32-bit multiply instruction provides only

the lower 32 bits of the product. Even on more powerful microarchitectures without this limitation
(e.g., Intel Core i7), most CPU time (≥ 80%) is spent on multiply-intensive operations (e.g., BigInt
multiplication and Montgomery reduction), so the lack of such an instruction was a performance
bottleneck. As a workaround, our assembly code emulates multiply-accumulate with carry in 23
instructions. Cortex-M3 and Cortex-M4, which are more commonly used than Cortex-M0+, have
instructions for 32-bit multiply-accumulate which produce the entire 64-bit result; we expect JEDI
to be more efficient on those processors.
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We also wrote assembly to optimize BLS12-381 for x86-64 and ARM64, representative of
server/laptop and smartphone/Raspberry Pi, respectively (first two tiers in Figure 6.1). Thus, our
Go library, which runs on these non-low-power platforms, also benefits from low-level assembly
optimizations.

6.6.2 Application of JEDI to bw2
We used our JEDI library to implement end-to-end encryption in bw2, a syndication and authorization
system for IoT. bw2’s syndication model is based on publish-subscribe, explained in Section 6.1.
Here we discuss bw2’s authorization model. Access to resources is granted via certificate chains from
the authority of a resource hierarchy to a principal. Individual certificates are called Declarations
of Trust (DOTs). bw2 maintains a publicly accessible registry of DOTs, implemented using
blockchain smart contracts, so that principals can find the DOTs they need to form DOT chains. A
trusted router enforces permissions granted by DOTs. Principals must present DOT chains when
publishing/subscribing to resources, and the router verifies them. Note that a compromised router
can read messages.
We use JEDI to enforce bw2’s authorization semantics with end-to-end encryption. DOTs

granting permission to subscribe now contain WKD-IBE keys to decrypt messages. By default,
DOTs granting permission to publish to a URI remain unchanged, and are used as in Section 6.4.1.
WKD-IBE keysmay also be included in DOTs granting publish permission, for anonymous signatures
(Section 6.4.2). Using our library for JEDI, we implemented a wrapper around the bw2 client
library. It transparently encrypts and decrypts messages using WKD-IBE, and includes WKD-IBE
parameters and keys in DOTs and principals, as needed for JEDI. bw2 signs each message with a
digital signature (first alternative in Section 6.4.3).
The bw2-specific wrapper is less than 900 lines of Go code. Our implementation required no

changes to bw2’s client library, router, blockchain, or core—it is a separate module. Importantly,
it provides the same API as the standard bw2 client library. Thus, it can be used as a drop-in
replacement for the standard bw2 client library, to easily add end-to-end encryption to existing bw2
applications with minimal changes.
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6.7 Evaluation
We evaluate JEDI via microbenchmarks, determine its power consumption on a low-power sensor,
measure the overhead of applying it to bw2, and compare it to other systems.

6.7.1 Microbenchmarks
Benchmarks labeled “Laptop” were produced on a Lenovo T470p laptop with an Intel Core i7-
7820HQ CPU @ 2.90 GHz. Benchmarks labeled “Raspberry Pi” were produced on a Raspberry Pi
3 Model B+ with an ARM Cortex-A53 @ 1.4 GHz. Benchmarks labeled “Sensor” were produced
on a commercially available ultra low-power environmental sensor platform called “Hamilton” with
an ARM Cortex-M0+ @ 48 MHz. We describe Hamilton in more detail in Section 6.7.3.

6.7.1.1 Performance of BLS12-381 in JEDI

Operation Laptop Rasp. Pi Sensor
G1 Mul. (Chosen Scalar) 109 µs 1.33 ms 509 ms
G2 Mul. (Chosen Scalar) 343 µs 3.86 ms 1.44 s
GT Mul. (Rand. Scalar) 504 µs 5.47 ms 1.90 s
GT Mul. (Chosen Scalar) 507 µs 5.48 ms 2.81 s
Pairing 1.29 ms 14.0 ms 3.83 s

Table 6.1: Latency of JEDI’s implementation of BLS12-381

Table 6.1 compares the performance of JEDI’s BLS12-381 implementation on the three platforms,
with our assembly optimizations. As expected from Figure 6.1, the Raspberry Pi performance is an
order of magnitude slower than Laptop performance, and performance on the Hamilton sensor is an
additional two-to-three orders of magnitude slower.

6.7.1.2 Performance of WKD-IBE in JEDI

Figure 6.6 depicts the performance of JEDI’s cryptography primitives. Figure 6.6 does not include
the sensor platform; Section 6.7.3 thoroughly treats performance of JEDI on low-power sensors.
In Figure 6.6a, we used a pattern of length 20 for all operations, which would correspond to,

e.g., a URI of length 14 and an Expiry hierarchy of depth 6. To measure decryption and signing
time, we measure the time to decrypt the ciphertext or sign the message, plus the time to generate a
decryption key for that pattern or ID. For example, if one receives a message on a/b/c/d/e/f, but
has the key for a/*, he must generate the key for a/b/c/d/e/f to decrypt it.
Figure 6.6a demonstrates that the JEDI encrypts and signs messages and generates qualified keys

for delegation at practical speeds. On a laptop, all WKD-IBE operations take less than 10 ms with
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up to 20 attributes. On a Raspberry Pi, they are 10x slower (as expected), but still run at interactive
speeds.

6.7.1.3 Performance of Immediate Revocation in JEDI

Laptop Rasp. Pi
Enc. 3.08 ms 37.3 ms
Dec. 3.61 ms 43.9 ms
KeyD. 4.77 ms 58.5 ms
Sign 4.80 ms 61.2 ms
Verify 4.78 ms 56.3 ms

(a) Latency ofEncrypt,Decrypt,KeyDer, Sign,
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Figure 6.6: Performance of JEDI’s cryptography
Figure 6.6b shows the cost of JEDI’s immediate revocation protocol (Section 6.5). A private key

containing k leaves consists of O(log k + log n)WKD-IBE secret keys where n is the total number
of leaves. Therefore, the performance of immediate revocation depends primarily on the number of
leaves.
To encrypt a message, one WKD-IBE encryption is performed for each subtree needed to cover

all unrevoked leaves. In general, encryption is O(r log n
r
), where r is the number of revoked leaves.

Each key contains a set of consecutive leaves, so encryption is also O(R log n
R

), where R is the
number of revoked JEDI keys. Decryption time remains almost the same, since only one WKD-IBE
decryption is needed.
To benchmark revocation, we use a complete binary tree of depth 16 (n = 65536). The time

to generate a new key for delegation is essentially independent of the number of leaves conveyed
in that key, because log k ≪ log n. We empirically confirmed this; the time to generate a key for
delegation was constant at 2.4 ms on a laptop and 31 ms on a Raspberry Pi as the number of leaves
in the key was varied from 5 to 1,000.
To benchmark encryption with revocation, we assume that there exist 2,048 users in the system

each with 32 leaves. We measure encryption time with a pattern with 20 fixed slots (for URI and
time) as we vary the number of revoked users. Figure 6.6b shows that encryption becomes expensive
when the revocation list is large (500 milliseconds on laptop and ≈ 5 seconds on Raspberry Pi).
However, such an encryption only needs to be performed by a publisher when the URI, time, or
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revocation list changes; subsequent messages can reuse the underlying symmetric key (Section 6.5.5).
Furthermore, the revocation list includes only revoked keys that match the (URI, time) pair being
used, so it is not expected to grow very large.

6.7.2 Performance of JEDI in bw2
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Figure 6.7: Critical-path operations in bw2, with/without JEDI
In bw2, the two critical-path operations are publishing a message to a URI, and receiving a

message as part of a subscription. We measure the overhead of JEDI for these operations because
they are core to bw2’s functionality and would be used by any messaging application built on
bw2. Our methodology is to perform each operation repeatedly in a loop, to measure the sustained
performance (operations/second), and report the average time per operation (inverse). To minimize
the effect of the network, the router was on the same link as the client, and the link capacity was
1 Gbit/s. In our experiments, we used a URI of length 6 and an Expiry tree of depth 6. We also
include measurements from a strawman system with pre-shared AES keys—this represents the
critical-path overhead of an approach based on the Trusted Key Server discussed in Section 6.2. Our
results are in Figure 6.7.
We implement the optimizations in Section 6.3.6.1, so only symmetric key encryption/decryption

must be performed in the common case (labeled “usual” in the diagram). However, the symmetric
keys will not be cached for the first message sent every hour, when the WKD-IBE pattern changes.
A WKD-IBE operation must be performed in this case (labeled “1st message” in the diagram).
For large messages, the cost of symmetric key encryption dominates. JEDI has a particularly
small overhead for 1 MiB messages in Figure 6.7b, perhaps because 1 MiB messages take several
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milliseconds to transmit over the network, allowing the client to decrypt a message while the router
is sending the next message.
We also consider creating DOTs and initiating subscriptions, which are not in the critical path of

bw2. These results are in Figure 6.8 (note the log scale in Figure 6.8a). Creating DOTs is slower with
JEDI, because WKD-IBE keys are generated and included in the DOT. Initiating a subscription in
bw2 requires forming a DOT chain; in JEDI, one must also derive a private key from the DOT chain.
Figure 6.8a shows the time to form a short one-hop DOT chain, and in the case of JEDI, includes
the time to derive the private key. For JEDI’s encryption (Section 6.3), these additional costs are
incurred only by DOTs that grant permission to subscribe. With anonymous signatures, DOTs
granting permission to publish incur this overhead as well, as WKD-IBE keys must be included.
Figure 6.8b puts this in context by measuring the end-to-end latency from initiating a subscription
to receiving the first message (measured using bw2’s “query” functionality).
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Figure 6.8: Occasional bw2 operations, with and without JEDI
For a DOT to be usable, it must be inserted into bw2’s registry. This requires a blockchain

transaction (not included in Figure 6.8). An important consideration in this regard is size. In the
unmodified bw2 system, a DOT that grants permission on a/b/c/d/e/f is 198 bytes. With JEDI,
each DOT also contains multiple WKD-IBE keys, according to the time range. In the “worst case,”
where the start time of a DOT is Jan 01 at 01:00, and the end time is Dec 31 at 22:59, a total of 45
keys are needed. Each key is approximately 1 KiB, so the size of this DOT is approximately 45 KiB.
Because bw2’s registry of DOTs is implemented using blockchain smart contracts, the bandwidth

for inserting DOTs is limited. Using JEDI would increase the size of DOTs as above, resulting in an
approximately 100-400x decrease in aggregate bandwidth for creating DOTs. However, this can be
mitigated by changing bw2 to not store DOTs directly in the blockchain. DOTs can be stored in
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Table 6.2: CPU and power costs on the Hamilton platform

Operation Time Average Current
Sleep (Idle) N/A 0.0063 mA
WKD-IBE Encrypt 6.50 s 10.2 mA
WKD-IBE Encrypt and Sign 9.89 s 10.2 mA

untrusted storage, with only their hashes stored in the blockchain-based registry. Such a solution
could be based on Swarm [TFJ16] or Filecoin [Fil].

6.7.3 Feasibility on Ultra Low-Power Devices
We use a commercially available sensor platform called “Hamilton” [Ham; AKC17] built around the
Atmel SAMR21 system-on-chip (SoC). The SAMR21 costs approximately $2.25 per unit [Ele] and
integrates a low-power microcontroller and radio. The sensor platform we used in this study costs
$18 to manufacture [Kim+18]. For battery lifetime calculations, we assume that the platform is
powered using a CR123A Lithium battery that provides 1400 mAh at 3.0 V (252 J of energy). Such
a battery costs $1. The SAMR21 is heavily constrained: it has only a 48 MHz CPU frequency based
on the ARM Cortex-M0+ microarchitecture, and a total of only 32 KiB of data memory (RAM).
Our goal is to validate that JEDI is practical for an ultra low-power sensor platform like Hamilton,
in the context of a “sense-and-send” application in a smart building. Since most of the platform’s
cost ($18) comes from the on-board transducers and assembly, rather than the SAMR21 SoC, using
an even more resource-constrained SoC would not significantly decrease the platform’s cost. An
analogous argument applies to energy consumption, as the transducers account for more than half of
Hamilton’s idle current [Kim+18].
Hamilton/SAMR21 is on the lower end of platforms typically used for sense-and-send applications

in buildings. Some older studies [Fel09; LLLMSL14] use even more constrained hardware like the
TelosB; this is because those studies were constrained by hardware available at the time. Modern
32-bit SoCs, like the SAMR21, offer substantially better performance at a similar price/power point
to those older platforms [Kim+18].

6.7.3.1 CPU Usage

Table 6.2 shows the time for encryption and anonymous signing in JEDI on Hamilton. The results
use the optimizations discussed in Section 6.3.6 and Section 6.4.3, and include the time to “adjust”
precomputed state. They indicate that symmetric keys can be encrypted and anonymously signed in
less than 10 seconds. This is feasible given that encryption and anonymous signing occur rarely,
once an hour, and need not be produced at interactive speeds in the normal “sense-and-send” use
case.
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Table 6.3: Average current and expected battery life (for 1400 mAh battery) for sense-and-send, with
varying sample interval

AES Only JEDI (enc) JEDI (enc & sign)
10 s 32 µA / 5.1 y 50 µA / 3.2 y 60 µA / 2.6 y
20 s 20 µA / 8.1 y 38 µA / 4.2 y 48 µA / 3.3 y
30 s 15 µA / 10 y 34 µA / 4.7 y 44 µA / 3.6 y

6.7.3.2 Power Consumption

To calculate the impact on battery lifetime, we consider a “sense-and-send” application, in which
the Hamilton device obtains readings from its sensors at regular intervals, and immediately sends
the readings encrypted over the wireless network. We measured the average current consumed for
varying sample intervals, when each message is encrypted with AES-CCM, without using JEDI
(“AES Only” in Table 6.3). We estimate JEDI’s average current based on the current, duration, and
frequency (once per hour, for these estimates) of JEDI operations, and add it to the average current of
the “AES Only” setup. Our estimates assume that the µTESLA-based technique in Section 6.4.3 is
used to avoid attaching a digital signature to each message. We divide the battery’s energy capacity
by the result to compute lifetime. As shown in Table 6.3, JEDI decreases battery life by about
40-60%. Battery life is several years even with JEDI, acceptable for IoT sensor platforms.
JEDI’s overhead depends primarily on the granularity of expiry times (one hour, for these

estimates), not the sample interval. To improve power consumption, one could use a time tree with
larger leaves, allowing principals to perform WKD-IBE encryptions and anonymous signatures less
often. This would, of course, make expiry times coarser.

6.7.3.3 Memory Budget

Performing WKD-IBE operations requires only 6.5 KiB of data memory, which fits comfortably
within the 32 KiB of data memory (RAM) available on the SAMR21. The code space required for
our implementation of WKD-IBE and BLS12-381 is about 74 KiB, which fits comfortably in the
256 KiB of code memory (ROM) provided by the SAMR21.
A related question is whether storing a hash chain in memory (as required for authenticated

broadcast, Section 6.4.3) is practical. If we use a granularity of 1 minute for authenticated broadcast,
the length of the hash chain is 60. At the start of an hour, one computes the entire chain, storing 10
hashes equally spaced along the chain, each separated by 5 hashes. As one progresses along the
hash chain, one re-computes each set of 5 hashes one additional time. This requires storage for only
15 hashes (< 4 KiB memory) and computation of only 105 hashes per hour, which is practical. One
could possibly optimize performance further using hierarchical hash chains [HJP05].

6.7.3.4 Impact of JEDI’s Optimizations

JEDI’s cryptographic optimizations (Section 6.3.6.2, Section 6.4.2.2, Section 6.4.3), which use
WKD-IBE in a non-black-box manner, provide a 2-3x performance improvement. Our assembly
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optimizations (Section 6.6) provide an additional 4-5x improvement. Without both of these
techniques, JEDI would not be practical on low-power sensors. Hybrid encryption and key reuse
(Section 6.3.6.1), which let JEDI use WKD-IBE rarely, are also crucial.

6.7.4 Comparison to Other Systems

Crypto Scheme
/ System

Avoids
Central
Trust?

Expressivity Performance

Trusted Key
Server (Sec-
tion 6.2)

– No + Supports arbitrary policies
(beyond hierarchies)

– No delegation

+ ≈ 10 µs to encrypt 1 KiB
message (same as JEDI in
common case, faster for first
message after key rotation)

– Trusted party generates one
key per resource

PRE (Lattice-
Based), as used
in PICADOR
[BGPRR17]

– No + Supports arbitrary policies
(beyond hierarchies)

– No delegation

+ ≈ 5 ms encrypt, ≈ 3 ms
decrypt (similar to JEDI: 3-4
ms)

– Trusted party must generate
one key per sender-receiver
pair

PRE (Pairing-
Based), as
used in Pilatus
[SHBFD17]

+ Yes – Delegation is single-hop
– Delegation is coarse (all-or-
nothing)

+ Can compute aggregates on
encrypted data

+ 0.6 ms encrypt, 1.3 ms
re-encrypt, 0.5 ms decrypt
(faster than JEDI: 3-4 ms)

+ Practical on constrained IoT
device with crypto accelera-
tor

CP-
ABE [BSW07]

+ Yes + Good fit for RBAC policies
– Cannot support JEDI’s hier-
archy abstraction with dele-
gation

+ Only symmetric crypto in
common case

– 14 ms encrypt for first
time after key rotation (4-5x
slower than JEDI: 3 ms)



6.7. EVALUATION 235

KP-ABE,
as used in
Sieve [WMZV16]

+ Yes + Succinct delegation based on
attributes

– Delegation is single-hop

+ Only symmetric crypto in
common case

– 25 ms encrypt for first
time after key rotation (8-9x
slower than JEDI: 3 ms)

Delegable Large
Univ. KP-
ABE [GPSW06]
(used in Alter-
native JEDI
Design)

+ Yes + Generalizes beyond hierar-
chies and supports multi-hop
delegation (subsumes JEDI)

+ Only symmetric crypto in
common case

– 60 ms encrypt for first time
after key rotation (20x slower
than JEDI: 3 ms)

– Impractical for low-power
sense-and-send

This paper:
WKD-IBE
[AKN] with
Optimizations,
as used in JEDI

+ Yes + Delegation is multi-hop
+ Succinct delegation of sub-

trees of resources (or more
complex sets, Section 6.3.7)

+ Non-interactive expiry

+ After key rotation (e.g., once
per hour), 3 ms encrypt, 4
ms decrypt (Figure 6.6a)

+ Only symmetric crypto in
common case

+ Practical for ultra low-power
“sense-and-send” without
crypto accelerator

Table 6.4: Comparison of JEDI with other crypto-based IoT/cloud systems

Table 6.4 compares JEDI to other systems and cryptographic approaches, particularly those geared
toward IoT, in regard to security, expressivity and performance. We treat these existing systems as
they would be used in a messaging system for smart buildings (Section 6.1). Table 6.4 contains
quantitative comparisons to the cryptography used by these systems; for those schemes based on
bilinear groups, we re-implemented them using our JEDI crypto library (Section 6.6.1) for a fair
comparison.
Security. The owner of a resource is considered trusted for that resource, in the sense that an
adversary who compromises a principal can read all of that principal’s resources. In Table 6.4, we
focus on whether a single component is trusted for all resources in the system. Note that, although
Trusted Key Server (Section 6.2) and PICADOR [BGPRR17] encrypt data in flight, granting or
revoking access to a principal requires participation of an online trusted party to generate new keys.
Expressivity. PRE-based approaches, which associate public keys with users and support delegation
via proxy re-encryption, are fundamentally coarse-grained—a re-encryption key allows all of a
user’s data to be re-encrypted. PICADOR [BGPRR17] allows more fine-grained semantics, but does
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not enforce them cryptographically. ABE-based approaches typically do not support delegation
beyond a single hop, whereas JEDI achieves multi-hop delegation. In ABE-based schemes, however,
attributes/policies attached to keys can describe more complex sets of resources than JEDI. That said,
a hierarchical resource representation is sufficient for JEDI’s intended use case, namely smart cities;
existing syndication systems for smart cities, which do not encrypt data and are unconstrained by the
expressiveness of crypto schemes, choose a hierarchical rather than attribute-based representation
(Section 6.1).
Performance. The Trusted Key Server (Section 6.2) is the most naïve approach, requiring an
online trusted party to enforce all policy. Even so, JEDI’s performance in the common case is the
same as the Trusted Key Server (Figure 6.7), because of JEDI’s hybrid encryption—JEDI invokes
WKD-IBE rarely. Even when JEDI invokes WKD-IBE, its performance is not significantly worse
than PRE-based approaches. An alternative design for JEDI uses the GPSW KP-ABE construction
instead of WKD-IBE, but it is significantly more expensive. Based Table 6.3, the power cost of a
WKD-IBE operation even when only invoked once per hour contributes significantly to the overall
energy consumption on the low-power IoT device; using KP-ABE instead of WKD-IBE would
increase this power consumption by an order of magnitude, reducing battery life significantly.
In summary, existing systems fall into one of three categories. (1) The Trusted Key Server allows
access to resources to be managed by arbitrary policies, but relies on a central trusted party who
must be online whenever a user is granted access or is revoked. (2) PRE-based approaches, which
permit sharing via re-encryption, cannot cryptographically enforce fine-grained policies or support
multi-hop delegation. (3) ABE-based approaches, if carefully designed, can achieve the same
expressivity as JEDI, but are substantially less performant and are not suitable for low-power
embedded devices.
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6.8 Related Work
We organize related work into the following categories.
Traditional Public-Key Encryption. SiRiUS [GSMB03b] and Plutus [KRSWF03] are encrypted
filesystems based on traditional public-key cryptography, but they do not support delegable and
qualifiable keys like JEDI. Akl et al. [AT83] and further work [CFGJP15; CMW06] propose
using key assignment schemes for access control in a hierarchy. A line of work [Tze02; HC04;
ABF07; AFB05] builds on this idea to support both hierarchical structure and temporal access. Key
assignment approaches, however, require the full hierarchy to be known at setup time, which is not
flexible in the IoT setting. JEDI does not require this, allowing different subtrees of the hierarchy to
be managed separately (Section 6.1.1, “Delegation”).
Identity-Based Encryption. Tariq et al. [TKR14] use Identity-Based Encryption (IBE) [BF01] to
achieve end-to-end encryption in publish-subscribe systems, without the router’s participation in the
protocol. However, their approach does not support hierarchical resources. Further, encryption and
private keys are on a credential-basis, so each message is encrypted multiple times according to the
credentials of the recipients.
Wu et al. [WTSB16] use a prefix encryption scheme based on IBE for mutual authentication

in IoT. Their prefix encryption scheme is different from JEDI, in that users with keys for identity
a/b/c can decrypt messages encrypted with prefix identity a, a/b and a/b/c, but not identities like
a/b/c/d.
Hierarchical Identity-Based Encryption. Since the original proposal of Hierarchical Identity-
Based Encryption (HIBE) [GS02], there have been multiple HIBE constructions [GS02; BB04;
BBG05; GH09] and variants of HIBE [YFDL04; AKN]. Although seemingly a good match
for resource hierarchies, HIBE cannot be used as a black box to efficiently instantiate JEDI. We
considered alternative designs of JEDI based on existing variants of HIBE, but as we elaborate in
the appendix of our extended paper [KHAPC19], each resulting design is either less expressive or
significantly more expensive than JEDI.
Attribute-Based Encryption. A line of work [YWRL10; WMZV16] uses Attribute-Based
Encryption (ABE) [GPSW06; BSW07] to delegate permission. For example, Yu et al. [YWRL10]
and Sieve [WMZV16] use Key-Policy ABE (KP-ABE) [GPSW06] to control which principals
have access to encrypted data in the cloud. Some of these approaches also provide a means to
revoke users, leveraging proxy re-encryption to safely perform re-encryption in the cloud. Our
work additionally supports hierarchically-organized resources and decentralized delegation of keys,
which [YWRL10] and [WMZV16] do not address. As discussed in Section 6.7.4, WKD-IBE is
substantially more efficient than KP-ABE and provides enough functionality for JEDI. WKD-IBE
could be a lightweight alternative to KP-ABE for some applications.
Other approaches prefer Ciphertext-Policy ABE (CP-ABE) [BSW07]. Existing work [WLW10;

WLWG11] combines HIBE with CP-ABE to produce Hierarchical ABE (HABE), a solution for
sharing data on untrusted cloud servers. The “hierarchical” nature of HABE, however, corresponds
to the hierarchical organization of domain managers in an enterprise, not a hierarchical organization
of resources as in our work.
Proxy Re-Encryption. NuCypher KMS [EW17] allows a user to store data in the cloud encrypted
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under her public key, and share it with another user using Proxy Re-Encryption (PRE) [BBS98].
While NuCypher assumes limited collusion among cloud servers and recipients (e.g.,m of n secret
sharing) to achieve properties such as expiry, JEDI enforces expiry via cryptography, and therefore
remains secure against any amount of collusion. Furthermore, NuCypher’s solution for resource
hierarchies requires a keypair for each node in the hierarchy, meaning that the creation of resources
is centralized. Finally, keys in NuCypher are not qualifiable. Given a key for a/*, one cannot
generate a key for a/b/* to give to another principal.
PICADOR [BGPRR17], a publish-subscribe system with end-to-end encryption, uses a lattice-

based PRE scheme. However, PICADOR requires a central Policy Authority to specify access
control, by creating a re-encryption key for every permitted pair of publisher and subscriber. In
contrast, JEDI’s access control is decentralized.
Revocation Schemes. Broadcast encryption (BE) [NNL01; DF02; BGW05; BW06; LSW10;
BWZ14; BZ17] is a mechanism to achieve revocation, by encrypting messages such that they
are only decryptable by a specific set of users. However, these existing schemes do not support
key qualification and delegation, and therefore, cannot be used in JEDI directly. Another line of
work builds revocation directly into the underlying cryptography primitive, achieving Revocable
IBE [BGK08; LV09; SE13b; WES17], Revocable HIBE [SE13a; SE15; LLWQNF] and Revocable
KP-ABE [AI09]. These papers use a notion of revocation in which URIs are revoked. In contrast,
JEDI supports revocation at the level of keys. If multiple principals have access to a URI, and one
of their keys is revoked, then the other principal can still use its key to access the resource. Some
systems [EW17; BCAR18] rely on the participation of servers or routers to achieve revocation.
Secure Reliable Multicast Protocol. Secure Reliable Multicast [MMR00; MR97] also uses a
many-to-many communication model, and ensures correct data transfer in the presence of malicious
routers. JEDI, as a protocol to encrypt messages, is complementary to those systems.
Authorization Services. JEDI is complementary to authorization services for IoT, such as
bw2 [AKCCK17], Vanadium [TS16], WAVE [And+19], and AoT [Net+16], which focus on
expressing authorization policies and enabling principals to prove they are authorized, rather than on
encrypting data. Droplet [SBDHR18] provides encryption for IoT, but does not support delegation
beyond one hop and does not provide hierarchical resources.
An authorization service that provides secure in-band permission exchange, likeWAVE [And+19],

can be used for key distribution in JEDI. JEDI can craft keys with various permissions, while WAVE
can distribute them without a centralized party by including them in its attestations.



239

Chapter 7

Non-Interactive Differentially Anonymous
Router

Anonymous routing is designed to protect privacy for communication and plays a fundamental
role in online applications. Almost all existing approaches for anonymous routing (e.g., mix-nets,
DC-nets, and others) rely on some interactive protocol among multiple servers or routers; and their
anonymity is guaranteed in the threshold model, i.e., they must assume that one or more of the
servers/routers behave honestly.
A recent work by Shi and Wu (Eurocrypt’21) suggested a new, non-interactive abstraction for

anonymous routing, coined Non-Interactive Anonymous Router (NIAR). They show how to construct
a NIAR scheme with succinct communication from bilinear groups. Unfortunately, the router needs
to perform quadratic computation (in the number of senders/receivers) to perform each routing.
In this paper, we show that if one is willing to relax the security notion to (ϵ, δ)-differential

privacy, henceforth also called (ϵ, δ)-differential anonymity, then, a non-interactive construction
exists with subquadratic router computation, also assuming standard hardness assumptions in bilinear
groups. Morever, even when 1 − 1/poly log n fraction of the senders are corrupt, we can attain
strong privacy parameters where ϵ = O(1/poly log n) and δ = negl(n).
This work was previously published in [BHMS21].
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7.1 Introduction
Anonymous communication systems allow users to communicate in an insecure channel without
leaking information about their identities or message contents. Interest in anonymous communication
systems has increased in recent years because they promise a foundation for building anonymous data-
sharing systems [BHKP16; HOWW19b; HKP20] and anonymous cryptocurrency systems [CFN90;
Cha82; BS+14; HABSG17; HMPS14; RMSK14; RMSK17; Dia21; LYKGKM19]. Various
abstractions and techniques for anonymous communication systems have been proposed [DD08;
EY09; SSABD18], including mix-nets [Cha81b; Abe99; BG12], the Dining Cryptographers’
nets [Cha88; CGF10; APY20], onion routing [DMS04b; GRS99], multi-server PIR-write [CBM15;
OS97; GIKM00], as well as other variants [ZZZR05; HLZZ15b; TGLZZ17b]. Notably, almost all
of these anonymous routing schemes are interactive in nature, where multiple players or routers
engage in some interactive protocol to accomplish the routing. Further, security typically relies on
threshold-type assumptions, e.g., either majority or at least one of the routers must be honest for
security to hold.
Interestingly, the very recent work by Shi and Wu [SW21b] suggest a new, non-interactive

abstraction called Non-Interactive Anonymous Router (NIAR), where routing is accomplished on a
single, untrusted router. In their scheme, there are n senders and n receivers, and each sender wants
to talk to a unique receiver. A trusted setup takes in the routing permutation π and generates secret
sender and receiver keys for everyone, as well as a token tk for the untrusted router that secretly
“encrypts” the routing permutation π. From this moment on, the n senders and n receivers can
engage in multiple rounds of communication. In each time step, each sender uses its sender key to
encrypt its message. When the router collects all n ciphertexts from the senders, it can apply the
token tk and transform the n incoming ciphertexts into n transformed and permuted ciphertexts. At
this moment, the receivers can each use their receiver key to decrypt its corresponding transformed
ciphertext. Importantly, the router is applying the permutation π encoded in the token tk in an
oblivious manner without learning what π is.
Shi and Wu show how to construct such a NIAR scheme assuming standard bilinear group

assumptions. Their scheme achieves succinct communication: the total communication in each
time step is only linear in n, i.e., each sender or receiver sends or receives only O(1) amount of
data. Unfortunately, although their NIAR scheme guarantees succinctness in communication, it is
not so succinct in terms of router computation. Specifically, the router needs to perform Θ(n2)
computation to perform the routing in each time step. In this paper, we raise the following natural
question:

Can we achieve privacy-preserving non-interactive routing with sub-quadratic router computation?

7.1.1 Our Results and Contributions
We show that if we are willing to relax the security notion to differential privacy [DMNS06],
then indeed, we can achieve sub-quadratic computation. We call our construction Non-Interactive
Differentially Anonymous Router (NIDAR). A NIDAR scheme has exactly the same syntax as the
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NIAR scheme of Shi and Wu [SW21b], except that we now define a more relaxed security notion
called (ϵ, δ)- computational differential anonymity (CDA), i.e., the analogy of (ϵ, δ)-differential
privacy in the context of anonymous routing.
To define differential anonymity, we first define a notion of neighboring for permutations. Two

permutations on the domain [n] are said to be neighboring, iff their only difference is that two
honest senders’ destinations are swapped. Informally speaking, a NIDAR scheme is said to be
differentially anonymous, iff no computationally bounded adversary can “effectively” distinguish
two neighboring routing permutations. The actual definition is a little more technical since we need
to take into account the fact that the adversary can corrupt a subset of the senders and receivers.
Like in the work of Shi and Wu [SW21b], we assume that each sender knows their own destinations,
so if the adversary corrupts some senders, it will learn their destinations. Further, if the adversary
corrupts a subset of the receivers, it naturally learns the messages received by the corrupt receivers
in each time step, and this is inherent. Therefore, in our actual definition of (ϵ, δ)-CDA which is
formalized in Section 7.2.2, we effectively consider two worlds. The only difference between the
two worlds is that an honest pair of senders swap their destinations. Our security definition requires
that for a computationally bounded adversary controlling the router and a subset of corrupt senders
and receivers, these two worlds are (ϵ, δ)-indistinguishable (by the standard distance notion in the
differential privacy literature [DMNS06; DR14; Vad17]), as long as the following conditions are
respected: 1) each corrupt sender has the same receiver in both worlds, and 2) each corrupt receiver
always receives the same message in both worlds. Note that these conditions are necessary to make
sure that the adversary cannot trivially distinguish between the two worlds.
Specifically, we prove the following theorem — we will first give the version with the most

general parameters, and then we will help the reader interpret the parameters with some typical
choices.

Theorem 7.1.1. Let ρ ∈ (0, 1) be the fraction of corrupt senders. Fix any desired δ ∈ (0, 1)
and any constant L = O(1), fix any Z such that (1 − ρ)Z ≥ C · (log 1

δ
+ log n) where C is a

sufficiently large constant. Then, assuming the hardness of the Decisional Linear assumption
in suitable bilinear groups, there exists a NIDAR scheme that satisfy (ϵ, δ)-CDA for ϵ = O(1) ·√

Z·min((1−ρ),ρ)(log 1
δ

+log n)+(log 1
δ

+log n)
(1−ρ)Z , that satisfies the following asymptotical performance bounds

where κ is a security parameter related to the strength of the hardness assumption:

• the router’s computation per time step is O(κL · n1+1/L · Z1−1/L),
• the per-sender communication and encryption time is O(kL · len) where len is the length of the

plaintext message;

• each sender key is of length O(κ · n1/L · Z1−1/L); and

• each receiver key is of length O(κ).

7.1.1.0.1 Typical parameters choices. We now give a typical example to help the reader interpret
the parameters. Below, we use poly1 and poly2 to denote potentially different polynomial functions.
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Suppose that up to 1− 1
poly1 log n

fraction of the senders are corrupt, then, there exists a NIDAR
scheme that is (ϵ, δ)-CDA for ϵ = 1

poly2 log n
and δ = negl(n), with the following asymptotical bounds

where L denotes an any arbitrary constant and Õ hides polylogarithmic factors:

• the router’s computation per time step is Õ(κL · n1+1/L),
• the per-sender ciphertext size and encryption time is O(kL · len) where len is the length of the
plaintext message;

• each sender key is of length Õ(κ · n1/L); and
• each receiver key is of length O(κ).

Intuitively, this means that even when a very large fraction of senders are corrupt, we can
still achieve ( 1

poly log n
, negl(n))-CDA. Recall that in the standard differential privacy literature, we

typically want ϵ = O(1) and δ = negl(n). Here we achieve something even better because our
ϵ = o(1); and the smaller the ϵ, the more private it is.

7.1.2 Technical Overview
For simplicity, let us first consider a two-layer scheme that makes use of two onion layers of NIAR.
We will assume that up to 99% fraction of the senders are corrupt for the time being, although in our
technical sections later, we remove this assumption and give the most general parametrization.

7.1.2.0.1 Reducing routing to shuffling. Instead of constructing NIDAR directly, it is sufficient
to construct a primitive where the router outputs the transformed ciphertexts destined for the n
receivers in a random order, where the permutation is hidden in the (ϵ, δ)-CDA sense. Suppose that
π is the actual permutation we want to realize, and πmid is the secret random permutation applied
by the shuffler, then the complement permutation π′ is defined to be a permutation that satisfies
π′ ◦ πmid = π. We can give the complement permutation π′ to the router in the clear, such that after
the router applies the shuffler to the incoming ciphertexts, and obtains the randomly permuted and
transformed ciphertexts, it can next apply π′ to the permuted and transformed ciphertexts. The
outcome will be in the order to be received by the n receivers, respectively.
Therefore, below we may focus on how to construct the differentially anonymous shuffler.

7.1.2.0.2 A two-step, matrix permutation algorithm. To overcome the quadratic router
computation, we would like to break up the task of permuting n elements to roughly O(

√
n)

permutations each of size only Õ(
√
n). To achieve this, our idea is to arrange the elements in a

square matrix, where each entry in the matrix is a bucket of polylogarithmic size. For technical
reasons needed later, we need to introduce filler elements. Specifically, assume that initially, each
bucket has exactly half real elements and half filler elements. Our goal is to output a random
permutation of the real elements.
We perform the permutation in the following two steps:
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1. Row-wise permutations. We permute each row in the matrix as follows. First, throw each
real element into a random bucket (and if the bucket is full, simply abort throwing an overflow
exception). Next, for each bucket in the row, pad each empty slot with a random, unconsumed
filler element.

2. Column-wise permutations. For each column, output a random permutation of the real elements
in the column, and throw away all the filler elements in the output.

Now, if we concatenate the outputs of all column-wise permutations, we obtain a permutation
of the real elements in the input matrix. This permutation has negligible statistical distance from
a uniform random one. In particular, it is not hard to show that if the buckets are of infinite size,
then the output permutation would indeed be random. In our case, however, we can prove through
standard measure concentration arguments that none of the buckets overflow except with negligible
probability, as long as the buckets are polylogarithmic in size.

7.1.2.0.3 Two onion layers of NIAR. Our differentially anonymous shuffler scheme employs two
onion layers of NIAR to realize the permutation in the above two-step manner. We invoke a NIAR
instance for each row-wise and each column-wise permutation. Each sender will be encrypting two
elements, a real element that encodes the message it wants to send, and a filler element that encodes
no information but is necessary for security. For each of the real and filler element of the sender, the
sender obtains two encryption keys, one corresponding to the column-wise NIAR instance, and one
corresponding to the row-wise NIAR instance. When a sender encrypts its real or filler element, the
encryption is performed in the reverse order: the inner encryption uses the sender key corresponding
to the column-wise NIAR instance, and the inner ciphertext will be encrypted again using the sender
key corresponding to the row-wise NIAR instance. The router’s routing operation, on the other hand,
is done in the forward order: it applies the NIAR tokens corresponding to all row-wise permutations
first, and then applies the NIAR tokens corresponding to all column-wise permutations.

7.1.2.0.4 Performance analysis. With the above scheme, the router only needs to perform the
routing operation for O(

√
n) many NIAR instances, each of size Õ(

√
n). Recall that the routing

cost of each NIAR instance is quadratic in the size of the instance. Thus, the total routing cost is
Õ(n1.5). The two onion layers of encryption, however, incurs an additional blowup: in each layer,
the plaintext message is encrypted bit by bit, and each bit encrypts to O(1) bilinear group elements.
Therefore, the ciphertext to plaintext ratio in each layer is some security parameter κ that is related
to the length of a bilinear group element. With two layers of encryption, we will incur κ2 blowup in
the ciphertext size as well as the router computation.

7.1.2.0.5 Understanding the leakage. The key technical challenge in our proof is how to bound
the leakage of the above two-layer onion construction. The issue is that the adversary can learn
which buckets the corrupt sender’s elements land in during the row-wise permutations, and as we
explain below, this leaks a little information about how many honest real elements choose each
bucket during the row-wise permutations.
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Recall that in our random process, all the real elements choose their destinations first in the
row-wise permutations, and then random filler elements are used to pad each bucket to its full
capacity. If a bucket has fewer real elements, it will demand more fillers. Since fillers are randomly
drawn among the set of real and corrupt fillers belonging to this row, chances are more corrupt
fillers will choose that bucket. Since the adversary knows how many corrupt fillers land in each
bucket during the row-wise permutations, it has a little leakage on the total number of real elements
in that bucket. Since the adversary also knows how many corrupt real elements land in the bucket, it
gets a little information about how many honest real elements land in the bucket.
Fortunately, despite this bit of leakage, we can prove that the scheme still satisfies a very strong

notion of (ϵ, δ)-differential anonymity. As we explained earlier, our parameters give strong privacy
guarantees particularly because we can achieve ϵ = 1/poly log n = o(1) even when 1− 1/poly log n
fraction of the senders may be corrupt, assuming a negligibly small δ.

7.1.2.0.6 Proof of differential anonymity. To show our scheme differentially anonymous,
imprecisely speaking, we need to prove the following statements:

1. the adversary’s view is simulatable, solely based on the leakage how many corrupt fillers go into
each bucket — henceforth, we call this leakage the “corrupt filler load vector”; and

2. the corrupt filler load vector is (ϵ, δ)-differentially private for appropriate choices of ϵ and δ.

For the former statement, we go through a sequence of hybrids and rely on the security of the
underlying NIAR scheme. Moreover, we need to rewrite the randomized experiment and change the
order in which the events are sampled, without changing the nature of the randomized process. The
actual proof is somewhat technical, so we defer the detailed explanation to subsequent technical
sections.
For proving the second statement, we draw an interesting connection to a database sampling

mechanism proposed by Chaudhuri and Mishra [CM06]. In their work, they consider a database
where each element has an attribute. A random fraction of the database elements are sampled,
and the frequency of each attribute is tallied and released. Chaudhuri and Mishra [CM06] show
that in this sampling mechanism, the released histogram (i.e., frequency of all attributes) satisfies
(ϵ, δ)-differential privacy for reasonable choices of ϵ and δ, as long as no individual attribute is too
rare by some technical definition of “rare”.
In our case, we can view the empty slots in each row (after throwing the real elements) as

the database elements. The attribute of each element is the bucket it belongs to. Imagine we are
sampling k elements where k corresponds to the number of corrupt fillers in this row. The adversary
is then able to see the attributes of these sampled k elements. In other words, the adversary can see
the number of corrupt fillers that go into each bucket in each row.
Unfortunately, we cannot directly use the analysis of Chaudhuri and Mishra [CM06]. They

aim to make their proof work for the most general parameters, and as a result, their parameters
are too loose for the special case we are interested in. Furthermore, their analysis makes some
undesirable assumptions, e.g., the sampling probability must be at most 1/2, and in our case, this
roughly translates to the requirement that the majority of senders must be honest. Finally, jumping
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ahead a little, their analysis also does not exactly match the random process for the multi-layer
scheme to be described later.
Instead of using their analysis, we present a new differential privacy analysis that is particularly

optimized for the parameters we are interested in. In this way, we avoid the restrictions on the
corruption threshold, and our analysis gives tighter bounds on the final ϵ and δ parameters. Again,
we defer the detailed proof to the subsequent technical sections.

7.1.2.0.7 Extension: O(1) layers of onions. We can further extend our construction to multiple
layers. However, since each onion layer will incur a κ blowup in the ciphertext size, we can only
support a constant number of layers.
To formally describe the L-layer scheme where L = O(1), we use a recursive formulation.

When the recursion is fully expanded out, it corresponds to routing on an R-way butterfly network
R = O(n1/L), and each atomic unit in this butterfly network is again a bucket of polylogarithmic size
— see Figure 7.1 of Section 7.4 for a graphical illustration. Again, the senders perform encryption in
the reverse order of the network, whereas the router’s evaluation is performed in the forward order.
We defer the technical details to Section 7.4.

7.1.3 Additional Related Work
Besides our work, differentially anonymous routing was also considered in private messaging
systems such as Vuvuzela [HLZZ15b], Stadium [TGLZZ17b], and Karaoke [LGZ18]. All of these
prior works, however, are in the interactive setting, whereas we propose a non-interactive abstraction.
In this sense, our security definitions are new. A few works on differential private information
retrieval [TDG16; AIVG20] are also remotely related to our work, but again their abstractions are
incomparable.

7.2 Definitions and Preliminaries

7.2.1 Syntax
A Non-Interactive Differentially Anonymous Router (NIDAR) has the same syntax as a Non-
Interactive Anonymous Router (NIAR) which was first proposed by Shi and Wu [SW21b] — the
main difference from NIAR is in the security definition which we shall present in Section 7.2.2.
Concretely, NIDAR is a cryptographic scheme consisting of the following, possibly randomized
algorithms:

• ({eku}u∈[n], {rku}u∈[n], tkπ)← Setup(1λ, n, π, len): the trusted Setup algorithm takes the secu-
rity parameter 1λ, the number of senders/receivers n, a permuation π ∈ Perm([n]) that represents
the mapping between the senders and the receivers, and the length of a plaintext message len.
The Setup algorithm outputs a sender key for each sender denoted {eku}u∈[n], a receiver key for
each receiver denoted {rku}u∈[n], and a token for the router denoted tkπ.
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• CTu,t ← Enc(eku, xu,t, t): sender u uses its sender key eku to encrypt the message xu,t where
t ∈ N denotes the current time step. The Enc algorithm produces a ciphertext CTu,t.

• (CT′
1,t,CT′

2,t, . . . ,CT′
n,t)← Rte(tkπ,CT1,t,CT2,t, . . . ,CTn,t): the routing algorithm Rte takes its

token tkπ, and n ciphertexts received from the n senders denoted CT1,t,CT2,t, . . . ,CTn,t, and
produces transformed ciphertexts CT′

1,t,CT′
2,t, . . . ,CT′

n,t where CT′
u,t is destined for the receiver

u ∈ [n].
• x ← Dec(rku,CT′

u,t): the decryption algorithm Dec takes a receiver key rku, a transformed
ciphertext CT′

u,t, and outputs a decrypted message x.

In the above formulation, the permutation π is known a-priori at Setup time. Once Setup has
been run, the senders can communicate with the receivers over an unbounded number of time steps t.

7.2.1.0.1 Correctness. Correctness requires that with probability 1 − negl(λ), the following
holds for any λ ∈ N, any len ∈ N, any (x1, x2, . . ., xn) ∈ ({0, 1}len)n, any t ∈ N, and any
permutation π ∈ Perm([n]): let ({eku}u∈[n], {rku}u∈[n], tkπ) ← Setup(1λ, n, π, len), let CTu,t ←
Enc(eku, xu, t) for u ∈ [n], let (CT′

1,t, CT′
2,t, . . ., CT′

n,t)← Rte(tkπ, CT1,t, CT2,t, . . ., CTn,t), and let
x′

u ← Dec(rku,CT′
u,t) for u ∈ [n]; it must be that

x′
π(u) = xu for every u ∈ [n].

7.2.1.0.2 Communication compactness. We say that a NIDAR scheme satisfies communication
compactness, iff the total communication cost per time step is upper bounded by poly(λ) ·O(n) · len.

7.2.2 Computational Differential Anonymity
We now define computational differential anonymity (CDA). Consider the following experiment
NIDAR-Exptb,A parametrized by a bit b ∈ {0, 1}:

• n,KS,KR, π
(0), π(1), len← A(1λ)

• ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, n, π(b), len)

• For t = 1, 2, . . . :

– if t = 1 then {x(0)
u,t}u∈HS

, {x(1)
u,t}u∈HS

← A(tk, {eku}u∈KS
, {rku}u∈KR

);
else {x(0)

u,t}u∈HS
, {x(1)

u,t}u∈HS
← A({CTu,t−1}u∈HS

);

– for u ∈ HS , CTu,t ← Enc(eku, x
(b)
u,t, t)

• The adversary A outputs b′ ∈ {0, 1}, and the experiment also outputs b′.

We say that A is admissible iff with probability 1, it guarantees that

1. there exist u ∈ HS and v ∈ HS such that
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• u ̸= v;
• π(0)(u) = π(1)(v) and π(0)(v) = π(1)(u);
• for any k ∈ [n], where k ̸= u and k ̸= v, π(0)(k) = π(1)(k);

2. for any u ∈ KR ∩ π(0)(HS) = KR ∩ π(1)(HS), x(0)
v0,t = x

(1)
v1,t where for b ∈ {0, 1},

vb:=(π(b))−1(u). In other words, here we require that in the two alternate worlds b = 0 or 1,
every corrupt receiver receiving from an honest sender must receive the same message.

Definition 7.2.1 (Computational differential anonymity). Let ϵ > 0 and δ ∈ (0, 1) be functions of
the security parameter λ. We say that a NIDAR scheme satisfies (ϵ, δ)-computational differential
anonymity (or (ϵ, δ)-CDA for short), iff for every nonuniform p.p.t. adversary A, for every λ ∈ N, it
holds that

Pr
[
NIDAR-Expt0,A(1λ) = 1

]
≤ eϵ(λ) × Pr

[
NIDAR-Expt1,A(1λ) = 1

]
+ δ(λ) .

7.2.3 Background on NIAR
In our NIDAR construction, we will use two or more onion layers of NIAR. A NIAR scheme has the
same syntax as NIDAR (see Section 7.2.1), but satisfies a stronger, simulation-based security notion
as defined below.
We consider static corruption where the set of corrupt players are chosen prior to the Setup

algorithm.

Real-world experiment RealA(1λ). The real-world experiment is described below where KS ⊆ [n]
denotes the set of corrupt senders, and KR ⊆ [n] denotes the set of corrupt receivers. Let
HS = [n] \ KS be the set of honest senders andHR = [n] \ KR be the set of honest receivers. Let
A be a stateful adversary:

• n, π,KS,KR, len← A(1λ)
• ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, n, π, len)
• For t = 1, 2, . . .:

– if t = 1 then{xu,t}u∈HS
← A(tk, {eku}u∈KS

, {rku}u∈KR
); else {xu,t}u∈HS

← A({CTu,t−1}u∈HS
);

– for u ∈ HS , CTu,t ← Enc(eku, xu,t, t)

Ideal-world experiment IdealA,Sim(1λ). The ideal-world experiment involves not just A, but also a
p.p.t. (stateful) simulator denoted Sim, who is in charge of simulating A’s view knowing essentially
only what corrupt senders and receivers know. Further, the IdealA,Sim(1λ) experiment is parametrized
by a leakage function denoted Leak to be defined later. Henceforth for C ⊆ [n], we use π(C) to
denote the set {π(u) : u ∈ C}.

• n, π,KS,KR, len← A(1λ)
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• ({eku}u∈[n], {rku}u∈[n], tk)← Sim(1λ, n, len,KS,KR, Leak(π,KS,KR))
• For t = 1, 2, . . .:

– if t = 1 then{xu,t}u∈HS
← A(tk, {eku}u∈KS

, {rku}u∈KR
); else {xu,t}u∈HS

← A({CTu,t−1}u∈HS
);

– {CTu,t}u∈HS
← Sim

(
{∀u ∈ KR ∩ π(HS) : (u, xv,t) for v = π−1(u)}

)
.

In the above the function Leak(π,KS,KR) constains the destination of each corrupt sender, as
defined below:

Leak(π,KS,KR) := {∀u ∈ KS : (u, π(u))}

Definition 7.2.2 (NIAR simulation security). We say that a NIAR scheme satisfies simulation security
(with receiver insider protection), iff there exists a p.p.t. simulator Sim such that for any non-uniform
p.p.t. adversaryA,A’s view in RealA(1λ) and IdealA,Sim(1λ) are computationally indistinguishable.

Note that the above simulation-secure definition is equivalent to (0, negl(λ))-CDA. In particular,
Shi and Wu [SW21b] proved that the simulation-based security notion is equivalent to a natural
indistinguishability-based definition; and their indistinguishability-based notion is equivalent to
(0, negl(λ))-CDA due to a simple hybrid argument, since given any two permutations π(0) and π(1),
we can transform π(0) to π(1) in polynomially many steps, each time swapping the destinations of
two honest senders.

7.3 Two-Layer NIDAR Construction

7.3.1 A Two-Step Permutation Algorithm
We want to anonymously permute n elements. However, recall that a NIAR scheme on n elements
would incur at least n2 computational cost to route n messages in each time step. To reduce the
computational cost, our idea is to break up the big permutation on n elements into roughly

√
n

permutations each of size
√
n.

7.3.1.0.1 Strawman attempt. A strawman attempt is to write the n elements as a matrix — we
first permute each row, and then permute each column. Unfortunately, it turns out that this does
not result in a random permutation. More specifically, elements originally in the same row must
all go to distinct columns. Based on this, a polynomial time adversary could easily distinguish the
resulting permutation from a completely random one.

7.3.1.0.2 Our approach. Our approach is inspired by this strawman attempt. However, we make
two critical modifications. First, we introduce as many filler elements as there are real elements.
Second, we will work on a matrix of buckets, i.e., each entry in the matrix is now a bucket of size Z.
We will prove that if Z is at least polylogarithmic in size, then our algorithm produces a permutation
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that has negligible statistical distance from a uniform random one. We will describe our MatrixPerm
algorithm for an input of 2n elements rather than n, since later, in our NIDAR scheme, we always
invoke MatrixPerm on 2n elements, where each of the n senders contributes one real element and
one filler element. For simplicity, the reader may first imagine that the matrix is a square one, i.e.,
R = C and R ·C ·Z = 2n, although in the case when 2n/Z is not a perfect square, R and C do not
need to be strictly equal.

Algorithm MatrixPerm

7.3.1.0.3 Input. The input I is an array of 2n elements among which at least half are fillers,
and the remaining are real elements. View the input as an (R× C)-sized matrix (also denoted
I) where each entry in the matrix I[i, j] is a bucket consisting of Z elements, such that at least
half of the elements in each bucket are fillers. For simplicity, we assume that R · C · Z = 2n
(we will explain how to deal with the case when 2n is not divisible by R · Z later).

7.3.1.0.4 Algorithm.

1. Permute rows. For each row i ∈ [R], let I[i, :] = RowPerm(I[i, :]).
2. Permute columns. For each column j ∈ [C], let I[:, j] = ColPerm(I[:, j]).
3. Output. For each column j ∈ [C], output all the real elements in column j in lexicographical
ordering of their offset β within the column (and ignore all the filler elements).

Subroutine RowPerm

7.3.1.0.5 Input. A list of C buckets each of size Z, and each bucket contains at least half
filler elements.

7.3.1.0.6 Algorithm.

1. Initialize C output buckets each of capacity Z. Initially, all output buckets are empty.

2. For each real element in the input list, place it into a random output bucket.

3. If any bucket’s load exceeds Z, return overflow; else, for each empty slot in each bucket,
choose a random unconsumed filler element from the input array to fill the slot.

4. Randomly permute the elements within each bucket.

5. Return the list of output buckets.
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Subroutine ColPerm

7.3.1.0.7 Input. A list of R buckets each of size Z.

7.3.1.0.8 Algorithm.

1. Let X be the list of all real elements contained in the input, and let Y be the list of all filler
elements in the input.

2. Return RandPerm(X)||RandPerm(Y ) where RandPerm(·) outputs a random permutation
of the input array.

Lemma 7.3.1 (MatrixPerm ≈ uniform random permutation). The output of the MatrixPerm(I)
algorithm outputs a permutation of the real elements contained in the input I, and moreover, the
resulting permutation has statistical distance at most O(n) · exp(−Ω(Z)) from a uniform random
permutation.

Proof. First, pretend that in our algorithm, even if some bucket receives more than Z real elements
during the row-wise permutations, we do not abort throwing overflow, but instead continue with the
algorithm allowing the buckets to contain arbitrarily many elements. In this case, it is not hard to see
that the algorithm must output a uniform random permutation. Therefore, it suffices to prove that
the probability of overflow is upper bounded by O(n) · exp(−Ω(Z)). This follows from a simple
application of the Chernoff bound for each fixed bucket, and then taking a union bound over all
buckets.

7.3.1.0.9 More general parameters. So far, we have assumed that R · C · Z = 2n. However, in
some cases, 2n may not be divisible by R · Z. In this case, we may distribute the input elements
as evenly as possible across all rows, and as evenly as possible across the buckets in the same row.
Later in our application of MatrixPerm, each of the n senders contributes a real and a filler element,
and we want that for the same sender, its real and filler elements be assigned to the same bucket
in the input. Therefore, when 2n is not divisible by R · Z, we may assume each row has either Q
or Q + 2 elements for some Q, and each bucket has either Z elements or Z + 2 elements. Like
before, we still require that each bucket has at least as many filler elements as there are real elements.
Lemma 7.3.1 would still hold for this indivisible case as well.

7.3.2 Two-Layer NIDAR
In our construction, we will implement a permutation using the two-step MatrixPerm algorithm
described in Section 7.3.1. Moreover, each sender encrypts one real element and one filler element,
in a two-layer onion fashion as we explain in more detail below. The real element corresponds to the
message the sender actually wants to send, whereas the filler element does not encode any useful
content, and is only introduced for security. Recall that in MatrixPerm, we divide the input elements,
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symbolically denoted (1R, 1F, 2R, 2F, . . ., nR, nF) into a matrix of R×C buckets, each of size Z —
here, for u ∈ [n], uR denotes sender u’s real element, and uF denotes sender u’s real element. We
first randomly permute each row; then, we randomly permute each column while moving all the
real elements within each column to the front. In our NIDAR construction, we will invoke an NIAR
instance for each of the R row-wise permutations, and similarly, invoke an NIAR instane for each of
the C column-wise permutations. The column instances of NIAR will be used to encrypt the actual
messages, whereas the row instances of NIAR will be used to encrypt the ciphertexts produced by
the column instances, thus creating a two-layer onion.

7.3.2.0.1 Notational conventions. We always use the variable i ∈ [R] to index into rows, and
the variable j ∈ [C] to index into columns. When we write (i, α) where i ∈ [R] and α ∈ [C · Z],
we refer to the α-th element (as opposed to bucket) of the i-th row, when the C buckets in row i
is flattened out as a one-dimensional array. Similarly, when we write (j, β) where j ∈ [C] and
β ∈ [R · Z], we refer to the β-th element (as opposed to bucket) of the j-th column. We often use
the superscripts “−” and “|” to differentiate between variables of the row instances and variables of
the column instances.

7.3.2.0.2 Our two-layer NIDAR construction. We now describe our two-layer NIDAR construc-
tion below.

Two-Layer NIDAR Construction
Parameters: let Z be the bucket size such that (1− ρ)Z ≥ Θ(log 1

δ
) where ρ is the fraction of

corrupt senders, and Θ(·) hides an appropriately large constant. For simplicity, assume that
2n = R · C · Z and R = C. We will deal with the case when 2n/Z is not a perfect square or
2n is not divisible by Z later.

7.3.2.0.3 Assume: after the adversary chooses which users to corrupt and before the Setup
algorithm is first invoked, all senders are randomly permuted, and we renumber the senders
from 1 to n after this initial permutation. Throughout the following algorithms, we refer to
senders by these randomly renumbered identities.

• Setup(1λ, n, π, len):

1. Simulate MatrixPerm. Simulate a random run of theMatrixPerm algorithm on the symbolic
array (1R, 1F, 2R, 2F, . . . , nR, nF), where uR and uF denote the real and filler elements
corresponding to sender u ∈ [n], respectively. Let π−

i denote the permutation applied to
row i in RowPerm, and let π|

j denote the permutation applied to column j in ColPerm.
Let πmid be the permutation output by MatrixPerm on the real elements in the input. Let
m1,m2, . . . ,mC denote the number of real elements in each column after the row-wise
permutations. Let len′ denote the ciphertext length of a NIAR scheme (with R ·Z senders)
when the message length is len.
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2. Set up row instances of NIAR. For each row i ∈ [R], let(
{ek−

i,α}α∈[C·Z], {rk−
i,α}α∈[C·Z], tk−

i

)
← NIAR.Setup(1λ, C · Z, π−

i , len′)

3. Set up column instances of NIAR. For each column j ∈ [C], let(
{ek|

j,β}β∈[R·Z], {rk
|
j,β}β∈[R·Z], tk

|
j

)
← NIAR.Setup(1λ, R · Z, π|

j, len)

4. Output sender keys.
– suppose that in the MatrixPerm algorithm earlier, the symbolic elements uR and uF are
initially in positions (i, α) and (i, α+ 1), respectivelya; moreover, after the row-wise
permutations, they are in positions (j, β) and (j̃, β̃), respectively.

– give user u the encryption key eku := (ek−
i,α, ek|

j,β, ek−
i,α+1, ek|

j̃,β̃
)).

5. Output receiver keys. Let (rk1, . . . , rkn) := π′
(
{rk|

j,β}j∈[C],β∈[mj ]

)
where {rk|

j,β}j∈[C],β∈[mj ]

is flattened to a 1-dimensional array based on lexicographical order of (j, β).
6. Output token. Let π′ be the “complement permutation” such that π′ ◦ πmid = π; output

tk := (π′, {mj}j∈[C], {tk−
i }i∈[R], {tk

|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z])

• Enc(eku, xu,t, t):

1. parse eku := (ek−, ek|, fek−, fek|);
2. let ict← NIAR.Enc(ek|, xu,t, t); and let ct← NIAR.Enc(ek−, ict, t);

3. let ĩct← NIAR.Enc(fek|, 0, t); and let c̃t← NIAR.Enc(fek−, ĩct, t); and
4. output CT := (ct, c̃t).

• Rte(tk,CT1,t, . . . ,CTn,t) :

1. for each u ∈ [n], parse CTu,t := (ctu,t, c̃tu,t); view {CTu,t}u∈[n] as an (R × C)-matrix
where each entry is a bucket of size Z. Henceforth, we use CT[i :] to denote the i-th row
of this ciphertext matrix.

2. parse tk := (π′, {mj}j∈[C], {tk−
i }i∈[R], {tk

|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]);
3. for each row i ∈ [R], let icti,1, . . . , icti,C·Z ← NIAR.Rte(tk−

i ,CT[i :]), and for each
α ∈ [C · Z], let icti,α ← NIAR.Dec(rk−

i,α, icti,α);
4. view {icti,α}i∈[R],α∈[C·Z] also as a (R× C)-matrix where each entry is a bucket of size Z
—we shall use ict[: j] to denote the j-th column of this matrix;

5. for each column j ∈ [C], let CT′
j,1, . . . ,CT′

j,R·Z ← NIAR.Rte
(
tk|

j, ict[: j]
)
;
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6. view {CT′
j,β}j∈[C],β∈[mj ] as an array, apply π′ to the array, and output the result.

• Dec(rku,CT′
u): output NIAR.Dec(rku,CT′

u).
aWe may assume that uR and uF must be in adjacent positions in the same row initially.

7.3.2.0.4 More general parameters. So far, we assumed that R · C · Z = 2n and R = C. In
the more general case, 2n may not be divisible by Z, or 2n/Z may not be a perfect square. In this
case, we can choose R =

⌈√
2n/Z

⌉
, and the above algorithm would still work, as long as when we

assign the elements 1R, 1F, . . ., nR, nF to the initial matrix of buckets, the following constraints are
respected:

1. For any u ∈ [n], uR and uF are always assigned to the same bucket;
2. All rows’ total capacities (of real and filler elements) differ by at most 2;
3. All buckets’ total capacities (of real and filler elements) differ by at most 2. In other words, not
all buckets are of equal capacity Z; the capacity could be either Z or Z + 2.

The latter two constraints basically says that the loads across all rows and the loads across all buckets
within the same row should be as even as possible, subject to the first constraint.
When we have fixed the capacities of all buckets in this R× C matrix as mentioned above, we

can adjust the size parameter of each row-wise and column-wise NIAR instance accordingly. Our
proof can easily be modified to make this case work as well.

7.3.2.0.5 Correctness. Fix any security parameter λ ∈ N, any message length len ∈ N, any
plaintext messages (x1, x2, . . ., xn) ∈ ({0, 1}len)n, any timestamp t ∈ N, and any permuta-
tion π ∈ Perm([n]). Let ({eku}u∈[n], {rku}u∈[n], tkπ) be any key tuples output by the algorithm
Setup(1λ, n, π, len), letCTu be the ciphertext of xu output by the algorithmEnc(eku, xu) for u ∈ [n],
let (CT′

1, CT′
2, . . ., CT′

n) be the shuffled ciphertext output by the algorithm Rte(tkπ, CT1, CT2, . . .,
CTn), and let x′

u be the decryption result output by the algorithm Dec(rku,CT′
u) for u ∈ [n].

We need to show that xu = x′
π(u) for u ∈ [n]. According to the proof of Lemma 7.3.1, with

probability 1 − negl(λ), the algorithm Setup succeeds in simulating MatrixPerm algorithm and
produces corresponding key tuples. We first consider the correctness of the row-wise permutation.
For a user u ∈ [n], suppose the symbolic elements uR and uF in the MatrixPerm are initially in
positions (i, α) and (i, α + 1) (i ∈ [R] and α ∈ [C · Z]), and are in positions (j, β) and (j̃, β̃)
(j, j̃ ∈ [C] and β, β̃ ∈ [R · Z]), after the row-wise permutation. The user u receives the encryption
key ek−

i,α and ek−
i,α+1 for the outer encryption in the two-layer onion. Due to the correctness of the

NIAR instance for the row i, after running the algorithms NIAR.Rte and NIAR.Dec, with probability
1, the inner ciphertext of the user u’s real and filler messages will be in positions (j, β) and (j̃, β̃),
respectively.
Now, we consider the correctness of the column-wise permutation. Similarly, the user u receives

the encryption key ek|
j,β and ek|

j̃,β̃
for the inner encryption in the two-layer onion. Suppose the
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symbolic element uR is in the position (j′, β′) (j′ ∈ [C] and β′ ∈ [mj]) after the column-wise
permutation. Due to the correctness of the NIAR instance for the column j, after running the
algorithm NIAR.Rte, with probability 1, the intermediate result of the inner ciphertext will be in the
position (j′, β′).
Let {CT′

j,β}j∈[C],β∈[mj ] be the array of ciphertexts after the column permutation. Then the
πmid(u)-th element is the ciphertext of the user u’s real message and will be send to the receiver
π′ ◦ πmid(u). Due to the correctness of the NIAR instance for the column j, after running the
algorithm NIAR.Dec, with probability 1, the decryption result x′

π
′◦πmid(u) equals to the message xu.

Because π′ ◦ πmid = π, we have x′
π(u) = xu.

7.3.2.0.6 Efficiency. We now analyze the efficiency of our NIDAR scheme assuming that the
underlying NIAR is instantiated with the construction of Shi and Wu [SW21b]. We first review
the efficiency of the NIAR scheme by Shi and Wu. We will use the notation Oλ(·) to hide poly(λ)
factors. In the underlying NIAR scheme by Shi and Wu [SW21b], the per-sender ciphertext length
and per-sender computation in each time step are upper bounded by Oλ(len); each sender’s key is at
most Oλ(n) in size; each receiver’s key is Oλ(1) in size; the router’s token has length Oλ(n2); and
finally, the computational overhead for performing the Rte operation is Oλ(n2).
In our NIDAR scheme, each sender needs to compute O(1) many NIAR ciphertexts in every time

step, which takes Oλ(len) amount of time, and moreover, the ciphertext size (per sender) is upper
bounded by the same expression. Note that the row instances of NIAR have message lengths that are
polynomially larger than the column instances, and this polynomial blowup is accounted for in the
Oλ(·) notation. It is also not hard to verify that each sender’s key is Oλ(R ·Z +C ·Z) = Oλ(

√
nZ)

in size, and each receiver’s key is Oλ(1) in size.
We now analyze the computational overhead of the Rte operation as well as the router’s

token size. To perform the Rte operation, the router needs to evaluate the underlying NIAR’s Rte
function for R row instances each with C · Z senders, and for C column instances each with R · Z
senders. Therefore, the router’s total work is upper bounded by Oλ(R · (C · Z)2 + C · (R · Z)2) =
Oλ(

√
n/Z · (

√
n/Z · Z)2) = Oλ(n

3
2 · Z

1
2 ). Again, the Oλ(·) notation accounts for the polynomial

blowup in the plaintext size for the row instances. The router’s token size is also upper bounded by
the same expression, that is, Oλ(n

3
2 · Z

1
2 ).

7.3.3 Proofs
Recall that in our NIDAR construction, we first randomly permute all the users at the beginning of
Setup, and reassign their identities after this random permutation. This random permutation step is
there only to make sure that corruption choices are random. Therefore, henceforth in the proof, we
may equivalently pretend that the corruption choices are randomly made, and we skip this random
permutation step in the algorithm.
Suppose we start out with the symbolic vector (1R, 1F, 2R, 2F, . . ., nR, nF) where each index

u ∈ [n] denotes a user, the letter “R” denotes a real message, and “F” denotes a filler message. A
random subset of these users are corrupt. We now view this vector as a matrix of R× C buckets
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each of size Z, and we permute this vector using the MatrixPerm algorithm, where we first apply a
row-wise permutation to each row of buckets, and then we apply a column-wise permutation to each
column of buckets. Each position in this matrix can be denoted either as (i, α) where i ∈ [R] and
α ∈ [C ·Z]meaning it is the α-th position of the i-th row; or as (j, β) where j ∈ [C] and β ∈ [R ·Z]
meaning it is the β-th position of the j-th column.
We will use the following notations to denote the “senders” and “receivers” from the perspective

of each NIAR instance:

• Sources and destinations of the row-wise permutations. Let K−
i,S (orH−

i,S , resp.) denote all
coordinates (i, α) that correspond to a corrupt (or honest, resp.) element before applying the
row-wise permutation.
Note that all destinations in every row-wise permutation are considered corrupt, since the adversary
receives all of {rk−

i,α}i∈[R],α∈[C·Z] as part of the token. Therefore, we let K−
i,R = {(i, α)}α∈[C·Z].

• Sources and destinations of the column-wise permutations. Let K|
j,S (orH

|
j,S , resp.) denote

the all coordinates (j, β) that correspond to corrupt (or honest, resp.) elements sources in j-th
column-wise permutation.

Let K|
j,R (orH

|
j,R, resp.) denote the all coordinates (j, β) such that β ≤ mj , and moreover (j, β)

corresponds to a corrupt (or honest, resp.) destination in the j-th column-wise permutation
— recall that after the column-wise permutation, only the first mj coordinates of column j
contain real elements, and the adversary receives only the receiver keys (of the column instances)
corresponding to the corrupt real destinations.

7.3.3.1 Sequence of Hybrids

7.3.3.1.1 Experiment NIDAR-Expt0. Same as the original NIDAR-Expt0 experiment as defined
in Section 7.2.

7.3.3.1.2 Experiment Hyb0
1. Almost the same as NIDAR-Expt0 except that we replace each the

column instance of NIAR with a NIAR simulator. Recall that the NIAR’s simulator only needs to
know the destinations of all corrupt sources, as well as what message each corrupt destination
receives in each time step. We describe the modifications from NIDAR-Expt0 below, where we use
Sim|

j to denote the (stateful) NIAR simulator corresponding to the j-th column instance:

1. During Setup(1λ, n, π(0), len),
instead of calling

(
{ek|

j,β}β∈[R·Z], {rk
|
j,β}β∈[R·Z], tk

|
j

)
← NIAR.Setup(1λ, R ·Z, π|

j, len), we now
call(
{ek|

j,β}β∈[R·Z], {rk
|
j,β}β∈[R·Z], tk

|
j

)
← Sim|

j(1λ, R · Z, len,K|
j,S,K

|
j,R, Leak(π|

j,K
|
j,S,K

|
j,R))
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2. During Enc(eku, x
(0)
u,t , t) for u ∈ HS , instead of calling ictu,t ← NIAR.Enc(ek|

u, xu,t, t) and
ĩctu,t ← NIAR.Enc(fek|

u, 0, t) for u ∈ HS , we now call

{ictu,t, ĩctu,t}u∈HS
← Sim|

j

({
∀(j, β) ∈ K|

j,R ∩ π
|
j(H

|
j,S) : (β, yj,β,t)

})
where yj,β,t is the correct plaintext finally decrypted at the position β in the j-column in time
step t, assuming that {x(0)

u,t}u∈HS
is the challenge vector being encrypted.

Claim 7.3.2. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb0
1 and

NIDAR-Expt0 are computationally indistinguishable.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument. Specifically, we can swap the column instances of NIAR one by one with
an NIAR simulator.

7.3.3.1.3 Experiment Hyb0
2. Almost the same as Hyb0

1, except that that we now replace each row
instance of NIAR with a NIAR simulator as well, as described below — here we use Sim−

i to denote
the (stateful) NIAR simulator corresponding to the i-th column instance:

1. DuringSetup(1λ, n, π(0), len), instead of calling
(
{ek−

i,α}α∈[C·Z], {rk−
i,α}α∈[C·Z], tk−

i

)
← NIAR.Setup(1λ,

R · Z, π−
i , len′), we now call(

{ek−
i,α}α∈[C·Z], {rk−

i,α}α∈[C·Z], tk−
i

)
← Sim−

i (1λ, C · Z, len′,K−
i,S,K−

i,R, Leak(π−
i ,K−

i,S,K−
i,R))

where K−
i,R := {(i, α)}α∈[C·Z].

2. During Enc(eku, x
(0)
u,t , t) for u ∈ HS , instead of calling ctu,t ← NIAR.Enc(ek−

u , ictu,t, t) and
c̃tu,t ← NIAR.Enc(fek−

u , ĩctu,t, t), we now call

{ctu,t, c̃tu,t}u∈HS
← Sim−

i

({
∀(i, α) ∈ π−

i (H−
i,S) : (α, yi,α,t)

})
where yi,α,t is the simulated inner ciphertext to be routed to position α of row i during the
row-wise permutation in time step t.

Claim 7.3.3. Suppose that the NIAR scheme is SIM-secure. Then, the adversary’s views in Hyb0
1

and Hyb0
2 are computationally indistinguishable.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument. Specifically, we can swap the row instances of NIAR one by one with an
NIAR simulator.
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7.3.3.1.4 Experiment Hyb0
3. Hyb0

3 is a rewrite of Hyb0
2 where we change how we sample the

random coins. In Hyb0
3, we introduce an initial sampling phase where a subset of the random coins

and events are sampled. Then, based on the outcomes of these partial random coins and events,
we invoke a simulator that completes the rest of the experiment including interactions with the
adversary.
Below we first describe the initial sampling phase.

1. Samplem1,m2, . . . ,mC , by throwing n balls into C bins, and counting the bin loads.

2. Sample the complement permutation π′ at random, and compute πmid := (π′)−1 ◦ π(0), which is
the permutation to be realized by MatrixPerm. At this moment, the following random coins are
fully determined:

• which bucket each real element uR (either real or filler) should land in during the row-wise
permutations, and if any bucket’s load exceeds Z, return overflow just like before. More
specifically, suppose that sender u is mapped to π(0)(u) as its final destination. Now, let k be
the unique integer such that

∑k
j=1 mj < πmid(u) ≤ ∑k+1

j=1 mj , then the real element uR should
go into the k-th bucket in its corresponding row; and

• the destination of each real element uR during each of the column-wise permutations.

3. Sample the number of corrupt filler elements for all the buckets in all rows.

At this point, imagine we run the following simulator which continues to interact with the
adversary:

Input:

1. set of corrupt senders KS ⊆ [n] and set of corrupt receivers KR ⊆ [n];
2. for every u ∈ [n], if (π(0))−1(u) ∈ HS , what message the corrupt receiver u receives from
some honest sender in each time step, based on the {x(0)

u,t}u,t values.

3. the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(0);
4. m1,m2, . . . ,mC ;
5. π′;
6. how many corrupt filler elements land in each bucket during the row-wise permutations;

7.3.3.1.5 Simulator algorithm. The simulator now performs the following:

• For each row i ∈ [R], based on how many corrupt filler elements are to be received in each
bucket during the i-th row-wise permutation, randomly assign the corrupt filler elements
belonging to this row to the buckets;
Recall thatwhich bucket each corrupt real element should go during the row-wise permutations
was already determined during the initial sampling phase. Therefore, at this time, the simulator
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knows which bucket each corrupt element (including real and filler) lands in during the
row-wise permutations.

• For each bucket, the simulator picks a random unconsumed position for each corrupt element
that is supposed to go into this bucket during the row-wise permutation. At this moment, it
is fully determined where all corrupt elements go during the row-wise permutation.

• For each j ∈ [C], for all the corrupt filler elements in column j after the row-wise permutation,
pick a random (non-overlapping) position among the last R · Z −mj positions to be its
destination during the j-th column-wise permutation. At this moment, the routes of all
corrupt elements during the row-wise and column-wise permutations are fully determined.

• At this moment, it is not hard to see that the simulator can accomplish the interactions
with the adversary, since it knows all the inputs needed for calling the NIAR’s simulators
{Sim|

j}j∈[C] and {Sim−
i }i∈[R].

Claim 7.3.4. Hyb0
3 and Hyb0

2 are identically distributed.

Proof. It is not difficult to check that Hyb0
3 is simply a rewrite of Hyb0

2, where the random coins are
sampled in a different manner, by sampling a subset of the random coins and events first in an initial
sampling stage, and then having a simulator accomplish the remaining.

7.3.3.1.6 Experiment Hyb1
3. Hyb1

3 is almost the same asHyb0
3, except the following modifications.

Recall that the adversary submits π(0) and π(1) that are almost identical except for swapping the
destinations of two honest senders. Moreover, recall that in Hyb0

3, we first have an initial sampling
stage where part of the random coins are sampled; then we invoke a simulator with some input, and
the rest of the simulation is completed by this simulator.

1. During the initial sampling stage: let πmid := (π′)−1 ◦ π(1).

2. Part of the inputs to the simulator is changed to the following:

• for every u ∈ [n], if (π(1))−1(u) ∈ HS , what message the corrupt receiver u receives from
some honest sender in each time step, based on the {x(1)

u,t}u,t values;

• the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(1).

Lemma 7.3.5. Suppose that (1 − ρ)Z ≥ Θ(log 1
δ
) where Θ(·) hides some appropriately large

constant, where ρ is the fraction of corrupt senders. For any S,

Pr[viewA(Hyb0
3) ∈ S] ≤ eϵ · Pr[viewA(Hyb1

3) ∈ S] + δ′

where viewA(Hybb
3) denotes the adversary’s view in experiment Hybb

3 for b ∈ {0, 1}, and

ϵ = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z , δ′ = O(nδ)
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Proof. Observe that due to the admissibility rule on the adversary, for the above inputs to the
simulator, it does not matter whether we use {x(0)

u,t}u,t, π
(0) or {x(1)

u,t}u,t, π
(1) — the outcomes are

the same. In this sense, the only real difference in Hyb0
3 and Hyb1

3 is that πmid is now computed as
(π′)−1 ◦ π(1).
In both Hyb0

3 and Hyb1
3, the adversary’s view depends only on the simulator’s input (and the

internal random coins tossed by the simulator). Let the simulator’s input be Inpb in Hybb
3 for

b ∈ {0, 1}. By the post-processing lemma of differential privacy [Vad17; DR14], it suffices to prove
that for any S,

Pr[Inp0 ∈ S] ≤ eϵ · Pr[Inp1 ∈ S] + δ′ (7.1)

Recall that the input to the simulator consists of the following:

1. set of corrupt senders KS ⊆ [n] and set of corrupt receivers KR ⊆ [n];
2. for every u ∈ [n], if (π(b))−1(u) ∈ HS , what message the corrupt receiver u receives from some
honest sender in each time step, based on the {x(b)

u,t}u,t values.

3. the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(b);
4. m1,m2, . . . ,mC ;
5. π′;
6. how many corrupt filler elements land in each bucket during the row-wise permutations;

For 1-5, they are the same no matter whether we are in Hyb0
3 or Hyb1

3. Therefore, it suffices to prove
that the numbers of corrupt filler elements that land in all buckets satisfy the above Equation (7.1) in
the two experiments. This is the most technical step in our proof, we therefore present the full proof
of this statement in Lemma 7.3.10 of Section 7.3.3.2.

7.3.3.1.7 Experiment Hyb1
2. Same as Hyb0

2 except that π
(1) and {x(1)

u,t}u,t are used in place of
π(0) and {x(0)

u,t}u,t.

Claim 7.3.6. Hyb1
2 and Hyb1

3 are identically distributed.

Proof. The proof is the same as Claim 7.3.4, i.e., Hyb1
3 is a rewrite of Hyb1

2 where the sampling is
performed in a different way by sampling a subset of the random coins and events first, and then
invoking a simulator which samples the remaining randomness and completes the interactions with
the adversary.

7.3.3.1.8 Experiment Hyb1
1. Same as Hyb0

1 except that π
(1) and {x(1)

u,t}u,t are used in place of
π(0) and {x(0)

u,t}u,t.

Claim 7.3.7. Suppose that the NIAR scheme is SIM-secure. Then, the adversary’s views in Hyb1
1

and Hyb1
2 are computationally indistinguishable.

Proof. The proof follows in the same way as that of Claim 7.3.3.
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7.3.3.1.9 Experiment NIDAR-Expt1. Same as the original NIDAR-Expt1 experiment as defined
in Section 7.2.

Claim 7.3.8. Suppose that the NIAR scheme is SIM-secure. Then, the adversary’s views in Hyb1
1

and NIDAR-Expt1 are computationally indistinguishable.

Proof. The proof follows in the same way as that of Claim 7.3.2.

Theorem 7.3.9 (2-layer NIDAR). Let A be an arbitrary non-uniform p.p.t. adversary that controls
ρ fraction of the senders, and recall that for b ∈ {0, 1}, the experiment NIDAR-Exptb outputs the
adversaryA’s output. Suppose that (1−ρ)Z ≥ Θ(log 1

δ
) where Θ(·) hides a suitably large constant;

further, suppose that the underlying NIAR scheme is SIM-secure. Then, there exists a negligble
function negl(·), for any S,

Pr[NIDAR-Expt0 ∈ S] ≤ eϵ · Pr[NIDAR-Expt1 ∈ S] + δ′

where

ϵ = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z , δ′ = O(nδ) + negl(λ)

Proof. Due to the hybrid argument, the theorem follows fromClaims 7.3.2, 7.3.3, 7.3.4, Lemma 7.3.5,
as well as Claims 7.3.6, 7.3.7, and 7.3.8.

7.3.3.2 Differential Privacy Lemma

Consider the following experiment DPExptb where b ∈ {0, 1}, in which the adversary’s view
capatures the simulator’s input in the earlier hybrid experiment Hybb

3.

DPExptb

1. The adversary submits two neighboring permutations π(0) and π(1), i.e., the two permutations
are otherwise identical except for swapping the destinations of two honest senders.

2. The challenger randomly chooses a set of corrupt senders KS and tells the adversary the set
KS .

3. The challenger samplesm1, . . . ,mC at random as mentioned before and tells the adversary
these values.

4. The challenger samples a random π′. The challenger computes πmid = (π′)−1 ◦ π(b). Tell the
adversary π′.

5. Each row has C buckets, and each real element uR belongs to some row as mentioned earlier
where u ∈ [n]. For each row i ∈ [R], the challenger throws all real elements belonging to
row i into C buckets. Suppose that πmid(u) = v where

∑k
j=1 mj < v ≤ ∑k+1

j=1 mj , then the
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element uR should go into the k-th bucket in its respective row. If any bucket exceeds Z real
elements, abort throwing overflow.

6. For each row i, let µi,1, . . . , µi,C denote the remaining empty slots inside the buckets
belonging to row i. For each empty slot, fill it with a random filler element belonging to
this row. Tell the adversary for each i ∈ [R] and j ∈ [C], exactly how many corrupt filler
elements go into the j-th bucket of row i.

7. Return the adversary’s view.

We want to prove the following lemma, which is the core technical lemma needed the proof of
Lemma 7.3.5.

Lemma 7.3.10. Assume that (1− ρ)Z ≥ Θ(log 1
δ
) where ρ denotes the fraction of corrupt senders

and Θ(·) hides a sufficiently large constant. For any S,

Pr[DPExpt0 ∈ S] ≤ eϵ · Pr[DPExpt1 ∈ S] + δ′

where

ϵ = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z , δ′ = O(nδ)

Proof. The experiment DPExptb needs to flip various coins. We will use the following names to
refer to these coins:

• Corruption coins: the coins used to determine the corrupt set of senders KS;

• Routing coins: includes the random choice ofm1, . . . ,mC , and π′ — these coins determine
which bucket each real element will be thrown into;

• Filler coins: the coins used to decide which filler elements are used to fill the remaining
empty slots in each bucket, after the real elements are thrown into buckets.

Let M̃ b
i,j denote the total number of filler elements that the j-th bucket of the i-th row wants to

receive, assuming we are in DPExptb where b ∈ {0, 1}. Let u∗ and v∗ be the two honest senders
whose destinations got swapped in π(0) and π(1). If u∗ and v∗ belong to the same row initially, then,
fixing the same routing coins in DPExpt0 or DPExpt1 respectively, it must be that M̃0

i,j = M̃1
i,j for

all i, j. In this case, the adversary’s views are identical in DPExpt0 and DPExpt1.
Below we focus on the case when u∗ and v∗ do not belong to the same row initially— specifically,

suppose u∗ belongs to row i0 and v∗ belongs to row i1, respectively. Once the routing coins are
fixed in both DPExpt0 and DPExpt1, the following must hold:
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M̃0
i,j = M̃1

i,j , for almost all i ∈ [R] and j ∈ [C], except for some i0, j0, and i1, j1, where

M̃0
i1,j0 = M̃1

i1,j0 − 1, M̃0
i1,j1 = M̃1

i1,j1 + 1
M̃0

i0,j0 = M̃1
i0,j0 + 1, M̃0

i0,j1 = M̃1
i0,j1 − 1

7.3.3.2.1 Focus on a single row r0. Henceforth we shall first focus on the row i0, since
analyzing the other row i1 is similar. Suppose we have fixed the routing coins. We use the vector
{M1,M2, . . . ,Mjb

+ 1, . . . ,MC}j∈[C] to denote the total number of filler elements in each bucket
of the i0-th row, when we are in DPExptb.

# filler elements each bucket in row i0 :
DPExpt0 :

(
M1,M2, . . . ,Mj0−1,Mj0 + 1,Mj0+1, . . . , . . . ,MC

)
DPExpt1 :

(
M1,M2, . . . , . . . ,Mj1−1,Mj1 + 1,Mj1+1, . . . ,MC

)
For j ∈ [C], we use µj ≤Mj to denote the number of corrupt filler elements in the j-th bucket of

the i0-th row. In the random process of DPExptb, we can imagine that first, the total number of filler
elements of each bucket {M1,M2, . . . ,Mjb

+ 1, . . . ,MC}j∈[C] is determined, and then, the random
variables {µj}j∈[C] can be determined in the following way. Suppose that the i0-th row has ρ′ fraction
of corrupt senders. Suppose we have a database where exactly M1,M2, . . . ,Mjb

+ 1, . . . ,MC

elements have the attributes 1, 2, . . . , C, respectively. We now sample ρ′ · n
R
elements at random

without replacement from this database, and µj is the number of elements with attribute j. Note
that n

R
denotes the total number of filler elements (including honest and corrupt) belonging to any

specific row, and this is fixed regardless of whether we are in DPExpt0 or DPExpt1.

Claim 7.3.11. Suppose that (1− ρ)Z ≥ Θ′(log 1
δ
) where Θ′(·) hides a sufficiently large constant.

No matter whether we are in DPExpt0 or DPExpt1, the following statements hold. For any fixed
bucket, with probability at least 1 − δ over the choice of the routing coins, its load of real
elements is between [Z −O(

√
Z · log 1

δ
), Z +O(

√
Z · log 1

δ
)]. Further, for any fixed bucket, with

probability at least 1 − δ over the choice of routing coins, its load of filler elements is between
[Z −O(

√
Z · log 1

δ
), Z +O(

√
Z · log 1

δ
)].

As a direct corollary, for any fixed j ∈ [C], with probability at least 1− δ, Mj = Θ(Z) where
Θ(·) hides an appropriately large constant.

Proof. With the random process of DPExpt, essentially, every real element is assigned to a random
bucket within its row. The expected number of real elements each bucket receives is exactly Z.
Consider one fixed bucket. By the Chernoff bound, there are some appropriate constants c and c′
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such that

Pr
a fixed bucket’s real load ∈

Z − c ·
√
Z · log 1

δ
, Z + c ·

√
Z · log 1

δ


≥1− exp

(
−c′ · log 1

δ

)
= 1− δ

Claim 7.3.12. Suppose that (1−ρ)Z ≥ Θ′(log 1
δ
) where Θ′(·) hides an appropriately large constant.

Then, with probability 1− δ over the choice of the corruption coins, it must be that 1−ρ′ = Θ(1−ρ)
and ρ′Z = O(ρZ + log 1

δ
).

Proof. Follows in a straightforward fashion from the Chernoff bound.

Lemma 7.3.13. Let ρ′ be the fraction of corrupt senders in row i0. For any fixed j ∈ [C], the
following holds regardless of the choice of b, with probability at least 1− δ over the choice of filler
coins (of row i0):

µj ∈

ρ′Mj−O

√
min(ρ′, 1− ρ′)Mj log 1

δ
+ log 1

δ

 ,

ρ′Mj +O

√
min(ρ′, 1− ρ′)Mj log 1

δ
+ log 1

δ

 
As a corollary, suppose that (1− ρ)Z ≥ Θ(log 1

δ
) where Θ(·) hides a sufficiently large constant.

For any fixed j, it must be that conditioned on any specific choice of good routing coins and
corruption coins that satisfy the good events of Claims 7.3.11 and 7.3.12, with probability at least
1− δ over the choice of the filler coins (of row i0),

• Mj − µj ≥ Θ((1− ρ)Z);
• µj < Mj − 1.

Proof. By negative association and the Chernoff bound, with at least 1 − δ probability, the
total number of honest filler elements in bucket j of row i0 is within the range [(1 − ρ′)Mj −
O

(√
(1− ρ′)Mj log 1

δ
+ log 1

δ

)
, (1− ρ′)Mj +O

(√
(1− ρ′)Mj log 1

δ
+ log 1

δ

)
]. Observe that the

total number of honest and corrupt filler elements of the j-th bucket of row i0 is exactly Mj . It
follows that with at least 1− δ probability, µj ∈ [ρ′Mj −O

(√
(1− ρ′)Mj log 1

δ
+ log 1

δ

)
, ρ′Mj +

O
(√

(1− ρ′)Mj log 1
δ

+ log 1
δ

)
].

Similarly, by negative association and Chernoff bound, we get that with at least 1− δ probability,
µj ∈ [ρ′Mj − O

(√
ρ′Mj log 1

δ
+ log 1

δ

)
, ρ′Mj + O

(√
ρ′Mj log 1

δ
+ log 1

δ

)
]. The lemma follows

by combining the above.
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For convenience, we shall use the notation rc to denote the union of the router coins and the
corruption coins. We use rc to denote the random variable and use rc to denote any specific choice
of these coins. For any good choice rc that satisfies the good events of Claims 7.3.11 and 7.3.12, —
note that these coins fix theM1, . . .MC values. Let µ1, . . . , µC be a set of good values that satisfy
the good events of Lemma 7.3.13, w.r.t. theseM1, . . .MC values. We have the following where Prb

is taken over the choice of filler coins of row i0 in DPExptb.

Pr0[µ1, . . . , µC |rc = rc]
Pr1[µ1, . . . , µC |rc = rc] ≤

1− µj1
Mj1

+1

1− µj0
Mj0

+1

= 1 +

µj0
Mj0

+1 −
µj1

Mj1
+1

1− µj0
Mj0

+1

≤1 +
O(1) ·

√
Z min(1−ρ

′
,ρ

′) log 1
δ

+log 1
δ

Z

1− ρ

≤1 +O(1) ·

√
Z min(1− ρ′, ρ′) log 1

δ
+ log 1

δ

(1− ρ)Z

≤1 +O′(1) ·

√
min((1− ρ)Z, ρZ + log 1

δ
) log 1

δ
+ log 1

δ

(1− ρ)Z

≤1 +O′′(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z

≤ exp
O′′


√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z

 (♠)

In the above, the first step of the derivation is proven in Lemma 7.3.14 and the proof is deferred to
later.
Henceforth let ϵ := O′′

(√
Z·min((1−ρ),ρ) log 1

δ
+log 1

δ

(1−ρ)Z

)
.

7.3.3.2.2 Back to considering both rows i0 and i1. So far, we have focused only on the row i0.
Below, we shall complete the proof of Lemma 7.3.10, and we shall now consider both rows i0 and i1.
Let µ[i0] and µ[i1] denote the corrupt filler load vector for buckets in rows i0 and i1, respectively.
Now, consider an arbitrary set S := {(µ[i0],µ[i1])} containing choices of (µ[i0],µ[i1]) values.

We also use S to denote the event that the adversary sees corrupt filler load vectors of rows i0 and i1
that lie within S.
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Pr0[S] =
∑

µ[i0],µ[i1]∈S

Pr0[µ[i0],µ[i1]] =
∑

µ[i0],µ[i1]∈S

∑
rc

Pr0[µ[i0],µ[i1], rc]

=
∑

µ[i0],µ[i1]∈S

∑
rc:good

Pr0[µ[i0],µ[i1], rc] +
∑

µ[i0],µ[i1]∈S

∑
rc:¬good

Pr0[µ[i0],µ[i1], rc]

=
∑

µ[i0],µ[i1]∈S

∑
rc:good

Pr0[µ[i0] | rc ] · Pr0[µ[i1] | rc ] · Pr0[ rc] +O(C) · log 1
δ

≤
∑

µ[i0],µ[i1]∈S

∑
rc:good

eϵ · Pr1[µ[i0]| rc] · eϵ · Pr1[µ[i1]| rc] · Pr1[ rc] +O(C) · log 1
δ

≤
∑

µ[i0],µ[i1]∈S

∑
rc
e2ϵ · Pr1[µ[i0]| rc] · Pr1[µ[i1]| rc] · Pr1[ rc] +O(C) · log 1

δ

= e2ϵ · Pr1[S] +O(C) · log 1
δ

In the above, the subscript “ rc: good” means that theM1,M2, . . . ,MC values resulting from the
choice of rc satisfy the good events of Claims 7.3.11, 7.3.12, and Lemma 7.3.13, w.r.t. the choice
of µ[i0] and µ[i1] which are already fixed in the outer summation. The notation Prb[evt] denotes the
probability of seeing the event evt in DPExptb, and if we write Pr[evt] without a subscript, it means
that the probability of the relevant event evt is the same in both DPExpt0 and DPExpt1. The O(C)
factor before the log 1

δ
is due to taking a union bound over all choice of j ∈ [C].

7.3.3.2.3 Analysis of the sampling mechanism. Imagine that we have a database containing
M items, where each item is assigned some attribute from the domain [C], i.e., there are C total
attributes. Consider the following sampling mechanism Samp.

The sampling mechanism Samp
Sample s items at random (without replacement) from this database, and output a vector

(µ1, µ2, . . . , µC) reporting the total number of occurrences for each of the C attributes.

We now prove a useful lemma that will be needed in our differential anonymity proof. Consider
two neighboring databases DB and DB′. The only difference in DB and DB′ is that the i-th item’s
attribute is changed from k to k′. Suppose that in database DB, the total number of occurrences for
each of the C attributes is denoted (M1,M2, . . . ,Mk + 1, . . . ,MC), and in DB′, the total number
occurrences for each of the C attributes is denoted (M1,M2, . . . ,Mk

′ + 1, . . . ,MC). We use the
notations PrDB[µ1, . . . , µC ] and PrDB′ [µ1, . . . , µC ] to denote the probabilities of encountering the
sample (µ1, . . . , µC), when the database is DB and DB′, respectively.
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Lemma 7.3.14. Given any (µ1, . . . , µC) vector where µj ≤Mj for j ∈ [C],

PrDB[µ1, . . . , µC ]
PrDB′ [µ1, . . . , µC ] =

1− µ
k

′

M
k

′ +1

1− µk

Mk+1

Proof. We have

Pr
DB

[µ1, . . . , µC ] =

(
Mk+1

µk

)
· Πj∈[C],j ̸=k

(
Mj

µj

)
(

M
s

)

Pr
DB′

[µ1, . . . , µC ] =

(
M

k
′ +1

µ
k

′

)
· Πj∈[C],j ̸=k

′

(
Mj

µj

)
(

M
s

)
whereM := ∑

j∈[C] Mj and s = ∑
j∈[C] µj . Therefore,

PrDB[µ1, . . . , µC ]
PrDB′ [µ1, . . . , µC ] =

(
Mk+1

µk

)
·

(
M

k
′

µ
k

′

)
(

Mk

µk

)
·

(
M

k
′ +1

µ
k

′

) = Mk + 1
Mk + 1− µk

· Mk
′ + 1− µk

′

Mk
′ + 1 =

1− µ
k

′

M
k

′ +1

1− µk

Mk+1

7.4 Multi-Layer NIDAR

7.4.1 Multi-Layer NIDAR Construction
Inspired by the two-layer construction, we now suggest a multi-layer variant. To formally describe
the scheme, we will use a recursive construction.

L-layer NIDAR where L ≥ 2

7.4.1.0.1 Assume: (same as before) after the adversary chooses which users to corrupt and
before the Setup algorithm is first invoked, all senders are randomly permuted, and we renumber
the senders from 1 to n after this initial permutation. Throughout the following algorithms, we
refer to senders by these randomly renumbered identities.

7.4.1.0.2 Parameters: let L ≥ 2 be the total number of layers. Let Z be an even number
that denotes the bucket size. For simplicity, we will first assume that R := (2n/Z)1/L is an
integer, and R is also the fanout in the butterfly network when the recursions are expanded all
the way (see Figure 7.1). We will deal with the indivisible case later in this section.

7.4.1.0.3 Main algorithms: we describe the main algorithms below, where each algorithm
may in turn call a recursive subroutine, denoted RecSetup, RecEnc, and RecRte, respectively.
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We will define these recursive subroutines subsequently in Section 7.4.2.

• Setup(1λ, n, π, len):

– let (πmid, {ekv}v∈[2n], {rk
|
j,β}j∈[C],β∈[mj ], tk′)← RecSetup(1λ, 2n, L, 1), where

tk′ :=
(
{mj}j∈[C], {tk−

i }i∈[R], {tk
|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]

)
;

note that since each sender encrypts a real element and a filler element, we may pretend
that each sender acts as two virtual senders, and this is why we pass 2n to the recursive
call RecSetup;

– for each u ∈ [n], let eku := {ek2(u−1)+1, ek2u};
– compute the complement permutation π′ such that π′ ◦ πmid = π;
– let rk1, . . . , rkn := π′

(
{rk|

j,β}j∈[C],β∈[mj ]

)
where {rk|

j,β}j∈[C],β∈[mj ] is flattened as a 1-
dimensional array in the lexicographical ordering of (j, β);

– let the router’s token tk :=
(
π′, {mj}j∈[C], {tk−

i }i∈[R], {tk
|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]

)
;

– output the sender and receiver keys {eku, rku}u∈[n], as well as the router token tk.

• Enc(eku, xu,t, t):

– parse eku = (ek, ek′);
– call ct← RecEnc(ek, x, t, L) and ct′ ← RecEnc(ek′, 0, t, L); and
– output CT := (ct, ct′).

• Rte(tk,CT1,t, . . . ,CTn,t):

– let tk′ be the same as tk but without the π′ term;
– for each u ∈ [n], parse CTu,t := (ct2(u−1)+1, ct2u);
– call CT′

1, . . . ,CT′
n ← RecRte(tk′, ct1, . . . , ct2n, L, 1) and return π′(CT′

1, . . . ,CT′
n).

• Dec(rku,CT′
u): output NIAR.Dec(rku,CT′

u).

7.4.2 Recursive Subroutines
7.4.2.0.1 Subroutine RecSetup(1λ, n, len, nLayer, bFin): If nLayer = 1, then

1. view the symoblic input 1R, 1F, 2R, 2F, . . ., n
2R,

n
2F as R buckets each of size Z such that

each bucket has half real and half filler elements, and simulate a run of the RowPerm algorithm
resulting in the permutation π — recall that the RowPerm algorithm may throw an overflow
exception if any bucket receives more real elements than its capacity.

2. let
(
{ekv, rkv}v∈[n], tk

)
← NIAR.Setup(1λ, n, π, len), and return

(
{ekv, rkv}v∈[n], tk

)
.
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Else, continue with the following:

1. View the symbolic vector 1R, 1F, 2R, 2F, . . ., n
2R,

n
2F as a matrix containing R×C buckets each

of size Z, where R is a global parameter defined earlier, and C = n/(R · Z).

• If bFin = 1, then for each column, simulate a run of the ColPerm algorithm which randomly
permutes the column and moves real elements to the front; and let m1,m2, . . . ,mC be the
number of real elements in each column after applying the row-wise permutations;

• Else if bFin = 0, then for each column, simulate a run of the RowPerm algorithm which
assigns each real element to a random bucket, and uses the remaining filler elements at random
to pad all buckets to its maximum capacity; furthermore, a random permutation is applied to
within each bucket.

Let π|
1, . . . , π

|
C denote the resulting column-wise permutations.

2. For each j ∈ [C], call(
{ek|

j,β}β∈[R·Z], {rk
|
j,β}β∈[R·Z], tk

|
j

)
← NIAR.Setup(1λ, R · Z, π|

j, len)

3. For each i ∈ [R], recursively call(
π−

i , {ek−
i,α}α∈[C·Z], {rk−

i,α}α∈[C·Z], tk−
i

)
← RecSetup(1λ, C · Z, κ · len, nLayer− 1, 0)

where 1/κ denotes the rate of NIAR.Enc (i.e., κ is the ciphertext size divided by the plaintext
size).

4. Let πmid be the effective permutation after applying the row-wise permutation π−
i to each row

i ∈ [R], and applying the column-wise permutation π|
j to each column j ∈ [C]. In particular,

if bFin = 1 then πmid denotes the permutation on only the real elements; else, πmid denotes the
permutation on all elements (including real and filler).

5. For v ∈ [n], suppose that the element v corresponds to the initial position (i, α), and is routed to
position (j, β) after the row-wise permutations1, then, let ekv := (ek−

i,α, ek|
j,β).

6. If bFin = 1, then let tk :=
(
{mj}j∈[C], {tk−

i }i∈[R], {tk
|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]

)
and return(

πmid, {ekv}v∈[n], {rk
|
j,β}j∈[C],β∈[mj ], tk

)
.

Else, let tk :=
(
{tk−

i }i∈[R], {tk
|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]

)
and return

(
πmid, {ekv}v∈[n], {rk

|
j,β}j∈[C],β∈[R·Z],

tk
)
.

1As before, position (i, α) refers to the α-th position of the i-th row, and position (j, β) refers to the β-th position
of the j-th column.
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7.4.2.0.2 Subroutine RecEnc(ek, x, t, nLayer): IfnLayer = 1, then letCT := NIAR.Enc(ek, x, t)
and return CT. Else,

1. parse ek := (ek−, ek|);
2. let ict← NIAR.Enc(ek|, x, t) and let CT← RecEnc(ek−, ict, t, nLayer− 1);
3. return CT.

7.4.2.0.3 Subroutine RecRte(tk,CT1, . . . ,CTn, nLayer, bFin):

• If bFin = 1, then parse tk :=
(
{mj}j∈[C], {tk−

i }i∈[R], {tk
|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]

)
; else parse

tk :=
(
{tk−

i }i∈[R], {tk
|
j}j∈[C], {rk−

i,α}i∈[R],α∈[C·Z]

)
.

• Let R := (n/Z)1/nLayer, C := n/(R · Z), and view CT1, . . . ,CTn as an (R × C) matrix where
entries are buckets of size Z. We shall use CT[i :] to denote the i-th row of the CT matrix.
For each row i ∈ [R], let icti,1, . . . , icti,C·Z ← RecRte(tk−

i ,CT[i :], nLayer− 1, 0), and for each
α ∈ [C · Z], let icti,α ← NIAR.Dec(rk−

i,α, icti,α);
• View {icti,α}i∈[R],α∈[C·Z] also as a (R× C)-matrix where each entry is a bucket of size Z —we
shall use ict[: j] to denote the j-th column of this matrix.
For each column j ∈ [C], let CT′

j,1, . . . ,CT′
j,R·Z ← NIAR.Rte

(
tk|

j, ict[: j]
)
;

• If bFin = 1, then view {CT′
j,β}j∈[C],β∈[mj ] as a 1-dimensional array, and return the result.

Else, then view {CT′
j,β}j∈[C],β∈[R·Z] as a 1-dimensional array, and return the result.

7.4.2.0.4 More general parameters. So far, we have assumed that
(

2n
Z

)1/L
is an integer. If not,

we can let R := ⌈{⌉
(

2n
Z

)1/L
}, and this determines the structure of the routing network when the

recursions are expanded all the way (see Figure 7.1). Moreover, in this indivisible case, each bucket
will not all be of uniform capacity. It is not hard to ensure the invariant that every bucket’s capacity
is either Z or Z + 2, and morever, all buckets’ capacities are even. With the slightly modified bucket
size, we need to modify the instance size for each NIAR instance accordingly. With this resulting
algorithm, all of our analyses would still hold.

7.4.2.0.5 Correctness The correctness of the multi-layer NIDAR can be generalized from the
two-layer design. Specifically, by extending the proof of Lemma 7.3.1, with probability 1− negl(λ),
RecSetup will succeed in simulating the permutation without overflow and outputting key tuples.
Then the user will encrypt the real and filler messages in an onion way according to the path decided
by the RecSetup algorithm. Similarly, for each layer of decryption in RecRte, the correctness of
NIAR scheme guarantees each element will be routed to match RecSetup algorithm. In the final
array of intermediate ciphertexts, the πmid(u)-th element is the ciphertext of the user u’s real message
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RRRRFF RRRFFF RRFFFF RRRRRF RRRFFF RRRRFF RRFFFF RRRRRF RRFFFF

Level 3

Level 2

Level 1

Order of 
NIAR.EncOrder of 

NIAR.Rte

Figure 7.1: An R-way butterfly network when the recursion is fully expanded. In this example,
nLayer = 3, 2n/Z = 27, and R = (2n/Z)1/nLayer = 3. The elements are being routed from level 1
to level L, and the onion layers of encryption are performed in the reverse order where level 1 is the
outer-most layer. Each small box � denotes a bucket, and each dashed big box is either a RowPerm
or a ColPerm instance. The last level is special and employs ColPerm instances which route the real
elements to the front in a random order.

and will be send to the receiver π′ ◦ πmid(u). Because π′ ◦ πmid = π, the π(u)-th receiver will obtain
the u-th sender’s message.

7.4.2.0.6 Efficiency. For our efficiency analysis, suppose that the underlying NIAR is instantiated
with the construction of Shi and Wu [SW21b]. We reviewed the asymptotic efficiency of the
underlying NIAR scheme in Section 7.3.2. Recall that earlier, we used the notation Oλ(·) to hide
poly(λ) parameters — in fact, this notation hides a multiplicative factor related to the length of each
bilinear group element in the underlying NIAR. If we use κ = poly(λ) to denote the bit-length of a
single bilinear group element in the underlying NIAR, then, Oλ(·) can be equivalently expressed as
O(·) · κ. Note also that underlying NIAR’s coding rate is Θ( 1

κ
). i.e., the ratio of the ciphertext size

and the plaintext size is Θ(κ).
Suppose the number of layers L = O(1), and we now analyze the asymptotical performance

bounds for our multi-layer NIDAR. Clearly, the receiver key is still O(κ) in size like before. The
sender key size isO(κ ·R ·Z ·L) = O

(
κ ·

(
n
Z

)1/L
· Z

)
. Each of the L layers incur a multiplicative

κ factor blowup in the ciphertext size. Therefore, the per-sender ciphertext size as well as encryption
runtime are O(κL · len). The Rte cost is O(κL · n

R·Z · (R · Z)2) = O
(
κL ·

(
n
Z

)1/L
· n · Z

)
.

7.4.2.0.7 Expanding the recursion. Recall that part of the goal of the recursive RecSetup
algorithm is to sample the permutation πmid, and this permutation is realized over multiple layers
of routing. For ease of understanding as well as in our proofs, it is often be helpful to think about
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what actually happens when we fully expand the recursion out. The network structure looks like
Figure 7.1 when we fully expand the recursion out. In this example, we assume that 2n/Z = 27,
and R = 3 in each level of the recursion. Each little box � represents a bucket. Each big dashed
box represents a RowPerm or ColPerm instance.
The elements are routed from level 1 to level 3. Except for the last level which is a little special

and uses ColPerm, for all other levels, each dashed box denotes a RowPerm instance. Inside each
RowPerm instance, all real elements are thrown into random buckets, and if any bucket’s load
exceeds Z, simply throw an overflow exception. Next, for each remaining empty slot inside each
bucket, we fill them with a random unconsumed filler element belonging to this instance. In the
last level, each dashed box represents a ColPerm instance, which randomly permutes all elements
moving all real elements to the front.
Our multi-layer NIDAR scheme is routing real elements as follows. In each RowPerm instance

in levels 1 through L − 1, the real elements are throw at random into buckets, and an overflow
exception is thrown if any bucket receives more real elements than its capacity Z. In the last level,
all the real elements are routed to the front arranged in a random order in each ColPerm instance.
The following lemma is a counterpart of Lemma 7.3.1 for the multi-layer case.

Lemma 7.4.1. The output of the the above random process outputs a permutation of the real elements,
and moreover, the resulting permutation has statistical distance at most O(nL) · exp(−Ω(Z)) from
a uniform random permutation.

Proof. The proof is essentially identical to that of Lemma 7.3.1.

7.4.3 Proofs
Theorem 7.4.2 (L-layer NIDAR). Let L ≥ 2 = O(1) be the number of layers, and let A be
an arbitrary non-uniform p.p.t. adversary that controls ρ fraction of the senders. Suppose that
(1−ρ)Z ≥ Θ(log 1

δ
) where Θ(·) hides a suitably large constant; further, suppose that the underlying

NIAR scheme is SIM-secure. Then, there exists a negligble function negl(·), for any S,

Pr[NIDAR-Expt0 ∈ S] ≤ eϵ · Pr[NIDAR-Expt1 ∈ S] + δ′

where

ϵ =

√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z , δ′ = O(n · δ) + negl(λ)

The remainder of this section will be dedicated to the proof of Theorem 7.4.2. The proof of the
multi-layer scheme is an extension of the two-layer proof. Recall that our multi-layer construction is
recursive. If a NIAR instance is instantiated in a recursive call when the variable nLayer = ℓ, we
say that this is a level-ℓ NIAR instance. Suppose that R := (n/Z)1/L is an integer. If one fully
expands the recursion out, then there are R number of level-L instances, R2 number of level-(L− 1)
instances, and so on, and finally, there are RL number of level-1 instances.
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7.4.3.1 Sequence of Hybrids

We first define a sequence of hybrids.

7.4.3.1.1 Experiment NIDAR-Expt0. Same as the original NIDAR-Expt0 experiment as defined
in Section 7.2. Henceforth, we may assume that during the experiment NIDAR-Expt0 that interacts
withA, the experiment samples all the randomness needed in all instances of RowPerm and ColPerm
upfront for the entire recursion. In this way, it will be determined at the beginning of the experiment
where all elements will be routed to in each instance of RowPerm or ColPerm when the recursion is
fully expanded.

7.4.3.1.2 Experiment Hyb0
L. Almost the same as NIDAR-Expt0 except that each level-L NIAR

instance is replaced now with with a NIAR simulator. Recall that the NIAR’s simulated Setup
algorithm needs to know the destinations of all corrupt sources, and the NIAR’s simulated Enc
algorithm needs to know what message each corrupt destination receives in each time step. As
mentioned earlier, since we assume that the experiment chooses all random coins needed by all
RowPerm and ColPerm instances upfront, therefore, it is possible to pass to the NIAR simulator
which are the corrupt sources in each level-L NIAR instances, and which are their destinations.

Claim 7.4.3. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in HybL
1 and

NIDAR-Expt0 are computationally indistinguishable.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument.

7.4.3.1.3 Experiment Hyb0
L−k for k ∈ [L− 1]. Hyb0

L−k is almost identical to Hyb0
L−k+1, except

that in all level-(L− k) instances, we replace each NIAR instance with a NIAR simulator.

Claim 7.4.4. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb0
L−k and

Hyb0
L−k−1 are computationally indistinguishable for k ∈ {0, 1, . . . , L− 2}.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument.

7.4.3.1.4 Experiment Hyb0
⋆. Hyb0

⋆ is a rewrite of Hyb0
1, where we change how we sample the

random coins. In Hyb0
⋆, we introduce an initial sampling phase where a subset of the random coins

and events are sampled. Then, based on the outcomes of these partial random coins and events,
we invoke a simulator that completes the rest of the experiment including interactions with the
adversary.
Henceforth, it is often helpful to think of the recursive algorithm that chooses the permutation

πmid as fully expanded out. Earlier in Section 7.4, we described what things look like when the
recursion is fully expanded out, and how the permutation πmid is chosen over multiple layers of
routing.
Below we first describe the initial sampling phase.
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1. Samplem1,m2, . . . ,mC , by throwing n balls into 2n/(R · Z) bins, and counting the bin loads.

2. Sample the complement permutation π′ at random, and compute πmid := (π′)−1 ◦ π(0), which is
the permutation chosen by RecSetup (specifically, the simulated version where all NIAR instances
are replaced with NIAR simulators). At this moment, the following random coins are fully
determined:

• which bucket each real element uR (either real or filler) should land in during each RowPerm
instance in the expanded recursion, and if any bucket’s load exceeds Z, return overflow just
like before;
and

• the destination of each real element uR during each ColPerm instance.

3. Sample the number of corrupt filler elements for all the buckets in all RowPerm instances in
the expanded recursion. To sample these random variables, we can go from level 1 to level
L− 1 in the expanded recursion, and in each level, for each RowPerm instance, recall that the
destinations of the real elements have already been fixed when we sampled π′. We can now
sample the destinations for all the filler elements. After this, we calculate the number of corrupt
filler elements that land in each bucket during each RowPerm instance, and throw away the rest
of the information we have sampled since they will be resampled again freshly by the simulator,
in the next stage.

At this point, imagine we run the following simulator which continues to interact with the
adversary:

Input:

1. set of corrupt senders KS ⊆ [n] and set of corrupt receivers KR ⊆ [n];
2. for every u ∈ [n], if (π(0))−1(u) ∈ HS , what message the corrupt receiver u receives from
some honest sender in each time step, based on the {x(0)

u,t}u,t values.

3. the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(0);
4. m1,m2, . . . ,mC ;
5. π′;
6. how many corrupt filler elements land in each bucket during each RowPerm instance in the
expanded recursion.

7.4.3.1.5 Simulator algorithm. The simulator now performs the following:

• Consider the expanded recursion. Starting from level-1 to L−1, for every RowPerm instance,
based on how many corrupt filler elements are to be received in each bucket during the
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RowPerm instance, randomly assign the corrupt filler elements belonging this RowPerm
instance to the buckets;
Recall that which bucket each corrupt real element should go during each RowPerm instance
was already determined during the initial sampling phase. Therefore, at this time, the
simulator knows which bucket each corrupt element (including real and filler) lands in during
each RowPerm instance.

• For each bucket in each RowPerm instance, the simulator picks a random unconsumed
position for each corrupt element that is supposed to go into this bucket during this RowPerm
instance. At this moment, it is fully determined where all corrupt elements go during all
RowPerm instances.

• For each j ∈ [C], consider the ColPerm instance of column j in the last level of the recursion:
for all the corrupt filler elements in column j belonging to this ColPerm instance, pick a
random (non-overlapping) position among the last R · Z −mj positions to be its destination.
At this moment, the routes of all corrupt elements during all RowPerm and ColPerm instances
are fully determined.

• At this moment, it is not hard to see that the simulator can accomplish the interactions with
the adversary, since it knows all the inputs needed for calling the NIAR’s simulators.

Claim 7.4.5. The adversary’s views in Hyb0
1 and Hyb0

⋆ are identically distributed.

Proof. It is not difficult to check that Hyb0
⋆ is simply a rewrite of Hyb0

1, where the random coins are
sampled in a different manner, by sampling a subset of the random coins and events first in an initial
sampling stage, and then having a simulator accomplish the remaining.

7.4.3.1.6 Experiment Hyb1
⋆. Hyb1

⋆ is almost identical to Hyb0
⋆ except the following changes.

1. During the initial sampling stage: let πmid := (π′)−1 ◦ π(1).

2. Part of the inputs to the simulator is changed to the following:

• for every u ∈ [n], if (π(1))−1(u) ∈ HS , what message the corrupt receiver u receives from
some honest sender in each time step, based on the {x(1)

u,t}u,t values;

• the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(1).

Due to the admissibility rule on the adversary, for the above inputs to the simulator, it does not
matter whether we use {x(0)

u,t}u,t, π
(0) or {x(1)

u,t}u,t, π
(1) — the outcomes are the same. In this sense,

the only real difference in Hyb0
⋆ and Hyb1

⋆ is that πmid is now computed as (π′)−1 ◦ π(1).

Lemma 7.4.6. Suppose that (1 − ρ)Z ≥ Θ(log 1
δ
) where Θ(·) hides some appropriately large

constant, where ρ is the fraction of corrupt senders. For any S,

Pr[viewA(Hyb0
⋆) ∈ S] ≤ eϵ · Pr[viewA(Hyb1

⋆) ∈ S] + δ′
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where viewA(Hybb
3) denotes the adversary’s view in experiment Hybb

⋆ for b ∈ {0, 1}, and

ϵ = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z , δ′ = O(nδ)

Proof. The full proof of this lemma is deferred to Section 7.4.3.2.

7.4.3.1.7 Experiment Hyb1
L−k for k ∈ [L − 1] ∪ {0}. Same as Hyb0

L−k except that π
(1) and

{x(1)
u,t}u,t are used in place of π(0) and {x(0)

u,t}u,t.

Claim 7.4.7. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb1
L−k and

Hyb1
L−k−1 are computationally indistinguishable for k ∈ {0, 1, . . . , L− 2}.

Proof. Symmetric to the proof of Claim 7.4.4.

7.4.3.1.8 Experiment NIDAR-Expt1. Same as the original NIDAR-Expt1 experiment as defined
in Section 7.2.

Claim 7.4.8. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb1
L and

NIDAR-Expt1 are computationally indistinguishable.

Proof. Symmetric to the proof of Claim 7.4.3.

7.4.3.1.9 Proof of Theorem 7.4.2. The proof of Theorem 7.4.2 due to the standard hybrid lemma
and Claims 7.4.3, 7.4.4, 7.4.5, 7.4.7, and 7.4.8, and Lemma 7.3.5.

7.4.3.2 Differential Privacy Lemma

Let R = (2n/Z)1/nLayer, and consider an R-way butterfly network like the one depicted earlier
in Figure 7.1. Now, consider the following experiment DPExptb where b ∈ {0, 1}, in which the
adversary’s view capatures the simulator’s input in the earlier hybrid experiment Hybb

⋆.

DPExptb

1. The adversary submits two neighboring permutations π(0) and π(1), i.e., the two permutations
are otherwise identical except for swapping the destinations of two honest senders.

2. The challenger randomly chooses a set of corrupt senders KS and tells the adversary the set
KS .

3. The challenger samplesm1, . . . ,mC at random as mentioned before and tells the adversary
these values.
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4. The challenger samples a complement random π′. The challenger computes πmid =
(π′)−1 ◦ π(b). Tell the adversary the complement permutation π′.

5. At this moment, it is fully determined that in the each RowPerm instance in R-way butterfly
network, which bucket each real element will land. If any bucket exceeds Z real elements,
abort throwing overflow.

6. For all RowPerm instances, simulate how many corrupt filler elements land in each bucket
during this instance. Tell the adversary the number of corrupt filler elements that land in
each bucket for all RowPerm instances.

7. Return the adversary’s view.

Lemma 7.4.9. Suppose that the total number of levels L = O(1). Lemma 7.3.10 still holds for the
new definition of DPExpt0 and DPExpt1.

Proof. Like in the proof of Lemma 7.3.10, we define three types of coins, corruption coins, routing
coins, and filler coins. Their definitions are the same as before.
Once we fix the routing coins and corruption coins, the number filler elements in all buckets are

fixed. Henceforth let M̃
b

ℓ,r denote the filler loads in all buckets of the r-th RowPerm instance in
level ℓ, after this RowPerm instance finishes its routing in DPExptb. For each level ℓ ∈ [L− 1], it
must be that there are at most four r’s where M̃

0
ℓ,r ̸= M̃

1
ℓ,r. Henceforth, for each RowPerm instance

indexed by (ℓ, r) such that M̃
0
ℓ,r ̸= M̃

1
ℓ,r, we call such an instance a distinguishing instance. For

each distinguishing instance (ℓ, r), there are the following possible scenarios:

1. there exists j0 and j1 such that the filler load vector becomes {M1,M2, . . . ,Mjb
+1, . . . ,MR}j∈[R]

in this RowPerm instance in DPExptb for b ∈ {0, 1};
2. there exists j0 the filler load vector becomes {M1,M2, . . . ,Mj0 + 1, . . . ,MR}j∈[R] in this

RowPerm instance in DPExpt0, and becomes {M1,M2, . . . ,Mj0 , . . . ,MR}j∈[R] in this RowPerm
instance in DPExpt1;

3. there exists j1 the filler load vector becomes {M1,M2, . . . ,Mj1 + 1, . . . ,MR}j∈[R] in this
RowPerm instance in DPExpt1, and becomes {M1,M2, . . . ,Mj1 , . . . ,MR}j∈[R] in this RowPerm
instance in DPExpt0.

Henceforth, we may assume that for every (ℓ, r), M̃
b

ℓ,r = Mℓ,r + ∆b
ℓ,r for some Mℓ,r and∆b

ℓ,r

such that

1. for every RowPerm instance (ℓ, r) that is not distinguishing,∆0
ℓ,r = ∆1

ℓ,r = 0;
2. for a distinguishing RowPerm instance (ℓ, r), it must be one of the following cases:

a) for b ∈ {0, 1}, there is a jb such that ∆b
ℓ,r,jb

= 1; all other coordinates in∆b
ℓ,r are 0;

b) ∆1
ℓ,r = 0; moreover, there is a j0 such that∆0

ℓ,r,j0 = 1, and all other coordinates in∆0
ℓ,r are 0;
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c) ∆0
ℓ,r = 0; moreover, there is a j1 such that∆1

ℓ,r,j1 = 1, and all other coordinates in∆1
ℓ,r are 0.

Below is the new counterpart of Claim 7.3.11. Henceforth we will often index a bucket by a
tuple (ℓ, r, j) meaning that it is the j-th bucket in the RowPerm instance indexed by (ℓ, r).
Claim 7.4.10. Suppose (1 − ρ)Z ≥ Θ′(log 1

δ
) where Θ′(·) hides a sufficiently large constant. It

must be that for any fixed bucket indexed by (ℓ, r, j), with probability at least 1− δ, Mℓ,r,j = Θ(Z)
where Θ(·) hides an appropriately large constant.

Proof. Due to a straightforward application of the Chernoff bound.

The following claim will be used as a counterpart of Claim 7.3.12 and Lemma 7.3.13 in the
multi-layer case.

Claim 7.4.11. Suppose that (1− ρ)Z ≥ Θ1(log 1
δ
) where Θ1(·) hides a sufficiently large constant

and L = O(1). For every fixed bucket in level 1, the fraction of filler elements that are honest among
fillers is at least Θ2(1− ρ), except with 1

δ
probability over the choice of the corruption coins.

Further, suppose that in some RowPerm instance denoted (ℓ, r), the fraction of filler elements
that are honest is Θ3(1− ρ), and suppose that every coordinate in Mℓ,r satisfies the good event of
Claim 7.4.10. Then, for any fixed bucket within this RowPerm instance denoted (ℓ, r, j), with 1− 1

δ

probability over the choice of the filler coins of this RowPerm instance,

• Mℓ,r,j − µℓ,r,j ≥ Θ4((1− ρ)Z) where µℓ,r,j is the number of corrupt filler elements that land in
the bucket indexed by ℓ,r,j during the RowPerm instance indexed by (ℓ, r);

• among the filler elements that land in the bucket indexed by ℓ,r,j during the RowPerm instance
indexed by (ℓ, r), the fraction of honest elements is at least Θ5(1− ρ);

• µℓ,r,j < Mℓ,r,j − 1.

Proof. The statement about the first level follows due to a straightforward application of the Chernoff
bound. The rest of the claim can be proven in a similar fashion as that of Lemma 7.3.13 due to
negative association and the Chernoff bound, and observing that since the constants are blown up
over only O(1) levels, they remain constants.

Henceforth, we use rc to denote some specific choice of the routing and corruption coins. We
use µ1:ℓ to denote some specific choice of the corrupt filler load vectors of all levels from 1 to ℓ.
Lemma 7.4.12. Fix some good choice of rc that satisfies the good events of Claims 7.4.10 for all
buckets. Further, consider an arbitrary ℓ ∈ [L− 1] and fix some good choice of µ1:ℓ such that given
rc and µ1:ℓ, the good events of Claim 7.4.11 hold for all buckets in levels 1 to ℓ. Now, consider
some distinguishing RowPerm instance indexed by (ℓ, r), taking probability over the filler coins of
the instance (ℓ, r), we have that

Pr0[µℓ,r| rc,µ1:ℓ−1]
Pr1[µℓ,r| rc,µ1:ℓ−1]

≤ eϵ where ϵ := O′′


√
Z ·min((1− ρ), ρ) log 1

δ
+ log 1

δ

(1− ρ)Z
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Proof. Recall that there are three cases for a distinguishing instance.
For case (a), the lemma follows due to the same analysis as Lemma 7.3.14 and the proof of

Lemma 7.3.10. For cases (b) and (c), we will instead use Lemma 7.4.13 (to be proven later) in place
of Lemma 7.3.10. For case (b), we have

Pr0[µℓ,r| rc,µ1:ℓ−1]
Pr1[µℓ,r| rc,µ1:ℓ−1]

≤
1−

∑
j

µℓ,r,j∑
j

Mℓ,r,j+1

1− µℓ,r,j0
Mℓ,r,j0

+1

For case (c), we have

Pr0[µℓ,r| rc,µ1:ℓ−1]
Pr1[µℓ,r| rc,µ1:ℓ−1]

≤
1− µℓ,r,j1

Mℓ,r,j1
+1

1−
∑

j
µℓ,r,j∑

j
Mℓ,r,j+1

In both cases (b) and (c), plugging in Claims 7.4.10 and 7.4.11, it is not hard to see that the same
calculation steps in the proof of Lemma 7.3.10 — specifically, Equation (♠) — still hold here. Thus
we arrive at the statement claimed.

Now, consider an arbitrary set S = {µ} of choices of µ’s, where µ denotes the vector of corrupt
filler loads of all buckets. Let rc be some choice of routing and corruption coins. We use G( rc,µ)
to denote the event that given rc the resulting Mℓ,r’s and µ satisfy the good events of Claims 7.4.10
and 7.4.11.
We have

Pr
0

[S] =
∑
µ∈S

∑
rc

Pr
0

[µ, rc]

=
∑
µ∈S

∑
rc:G( rc,µ)

Pr
0

[µ, rc] +
∑
µ∈S

∑
rc:¬G( rc,µ)

Pr
0

[µ, rc]

=
∑
µ∈S

∑
rc:G( rc,µ)

Pr[ rc] · Pr
0

[µ1| rc] · Pr
0

[µ2| rc,µ1:1] · Pr
0

[µ3| rc,µ1:2] . . . · Pr
0

[µL−1| rc,µ1:L−2]

+O(n) · log 1
δ

≤
∑
µ∈S

∑
rc:G( rc,µ)

e2(L−1)·ϵ · Pr[ rc] · Pr
1

[µ1| rc] · Pr
1

[µ2| rc,µ1:1] . . . · Pr
1

[µL−1| rc,µ1:L−2]

+O(n) · log 1
δ

≤e4(L−1)·ϵ · Pr
1

[S] +O(n) · log 1
δ

Note that in the last but second inequality, the e4(L−1)·ϵ term comes from the fact that there are L− 1
levels, and moreover, for each level, there are at most 4 distinguishing instances. Furthermore, the
O(n) factor in the O(n) · log 1

δ
term comes from taking a union bound over all buckets.
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7.4.3.2.1 Analysis of the sampling mechanism (variant). We consider the same sampling
mechanism as before, except that 1) the attributes are chosen from [R] rather than [C]; and 2) the two
neighboring database are now DB := (M1,M2, . . . ,Mk, . . . ,MR) and DB′ := (M1,M2, . . . ,Mk +
1, . . . ,MR).

Lemma 7.4.13. Given any (µ1, . . . , µR) vector where µj ≤Mj for j ∈ [R],

PrDB[µ1, . . . , µR]
PrDB′ [µ1, . . . , µR] =

1− µk

Mk+1

1− s
M+1

Proof. We have

Pr
DB

[µ1, . . . , µR] =

(
Mk

µk

)
· Πj∈[R],j ̸=k

(
Mj

µj

)
(

M
s

)

Pr
DB′

[µ1, . . . , µR] =

(
Mk+1

µk

)
· Πj∈[R],j ̸=k

(
Mj

µj

)
(

M+1
s

)
whereM := ∑

j∈[R] Mj and s = ∑
j∈[R] µj .

Therefore,

PrDB[µ1, . . . , µR]
PrDB′ [µ1, . . . , µR] =

(
Mk

µk

)
·

(
M+1

s

)
(

Mk+1
µk

)
·

(
M
s

) = M + 1
M + 1− s ·

Mk + 1− µk

Mk + 1 =
1− µk

Mk+1

1− s
M+1
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