
An Updated Model of Computation for VLSI and

Applications to FPGA Implementation

Nathaniel Young

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-108

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-108.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

An Updated Model of Computation for VLSI and Applications to FPGA

Implementation

by Nathaniel Young

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for the

degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John Wawrzynek

Research Advisor

(Date)

* * * * * * *

Professor Satish Rao

Second Reader

(Date)

May 13, 2022

 May 13, 2022

Acknowledgements

I would like to thank my excellent advisor, Professor John Wawrzynek, for
providing me with both the opportunity to study hardware through a theoretical
lens and plenty of indispensable guidance and support with which to do so. I
would like to thank Professor Satish Rao as well, for supporting me similarly
and helping me to understand a lot of difficult concepts – all with great patience.
I would also like to thank the other students in Prof. Wawrzynek’s group and
beyond, most notably Arya Reais-Parsi and Grace Dinh, for many valuable
conversations and collaborations. I want to thank my parents for supporting
me unfalteringly in everything, and finally I want to thank the rest of my family
and friends, especially my brothers Benjamin and Jonathan, who kept me sane
during the pandemic.

i

Abstract

In this report, we present a theoretical model for VLSI computation,
with assumptions updated for modern technology, and a number of asymp-
totic lower bounds in this model. Among other facts, we show uncondi-
tionally that all n-input computations of a single output require time
⌦(3

p

n), that dense matrix multiplication requires time ⌦(n) for n⇥n ma-
trices, and that sparse-matrix-times-dense-vector multiplication (SpMV)
requires time ⌦(

p

n/ log n) for some matrices. We also show that im-
plementation of the Bellman-Ford shortest paths algorithm requires time
⌦(n4/3) for some graphs.

Additionally, we develop bounds on placement quality for FPGA de-
signs, and algorithms for applying them. We present comparisons between
our bounds and the quality of an actual placement for several benchmark
designs.

1 Introduction

In 1979, shortly after the practical development of Very Large-Scale Integrated
circuits (VLSI), Clark Thompson developed a theoretical model of VLSI chips
and several asymptotic lower bounds to go with it. His results sparked more
than a decade of interest among theoreticians in applying graph theory, commu-
nication complexity, and similar fields to problems in VLSI circuit layout and
to the problem of mapping computation to VLSI chips in general.

Today, far more advanced VLSI technology is the backbone of all computa-
tion, but theoretical interest in it has waned, and most research into hardware
design takes practical approaches to practical problems. However, with ex-
ponential scaling of single-core processor performance dead, and Moore’s law
faltering, there is renewed interest in building task-specific hardware and in ap-
proaching the physical limits of parallel computation. In order to understand
those limits, it may be time for a resurgence of theoretical study of VLSI models
and higher-level hardware models.

In the first part of this report, we provide modernized assumptions for VLSI
models and several asymptotic lower bounds using them. Some are updated
from lower bounds which were already known using the VLSI models of the
1980s, and some are entirely new.

In the second part, we provide a theoretical framework and several explicit
algorithmic tools – mainly lower bounds on the length of the longest path after
placement – for the analysis of digital designs, with a focus on implementation on
field-programmable gate arrays (FPGAs). Some of these tools take inspiration
directly from the VLSI lower bounds of the first part.

Though they have connections to each other, the two parts of this report
can be considered independent; readers interested only in VLSI theory can skip
the second part, and readers interested only in FPGA implementation can skip
the first.

1

2 VLSI lower bounds

In this section, we will present lower bounds on the chip area and execution
time of VLSI implementations of several algorithms and classes of algorithms.

The first task will be to develop the assumptions that make up a model of
VLSI computations. VLSI technology has changed significantly since the 1980s,
and which models are reasonable have changed with it.

We will show some simple, very general lower bounds using these assump-
tions, and then how to use them in more sophisticated arguments and how to
generalize them.

The result of most practical interest is probably theorem 2.13, which provides
a bound on the time needed to multiply a sparse matrix by a dense vector;
however, the result of most theoretical interest may be theorem 2.4, which
provides a non-obvious lower bound on the VLSI execution time of the Bellman-
Ford shortest paths algorithm by using algorithm structure to ‘amplify’ a simple
unconditional lower bound through iteration.

2.1 Preliminaries

The bounds in this section concern implementation of certain computation
graphs on VLSI chips. Before we present them, we should discuss what our
terms mean.

A computation graph is a directed acyclic graph (DAG) which represents all
the work taking place in some computation. Each node in the graph represents
a value in the computation, and edges represent dependencies between them.
Sources and sinks in the computation graph correspond to inputs and outputs
of the computation respectively. Two computation graphs representing compu-
tations to solve the same problem will therefore have identical sets of sources
and sinks, but the structure of the internal nodes of the computation may di↵er,
as the two algorithms may compute di↵erent intermediate values. Note that a
computation graph is a nonuniform model; that is, it is stated for a fixed size
of input and output, and no notion of how to generate computation graphs for
arbitrary input sizes from a fixed general representation is given.

A value b in a computation is said to depend on another value a if it is
impossible to accurately compute b without first knowing a; that is, if there is
some setting to the inputs of the computation such that a change in the setting
to a induces a change in the correct setting to b. Note that if a computation
graph G contains a and b, with b depending on a, then there must be a path in
G from a to b. Two values are said to have communication with each other if
one depends on the other.

A value in a computation graph is said to be useful if at least some output
depends on it. We will generally assume that all values in a computation graph
are useful.

A VLSI chip is said to implement a computation graph if the entire computa-
tion represented by the graph is performed by the chip: all values are computed
(or in the case of inputs, are received) somewhere on the chip at some time, and

2

all communications necessary to perform these computations have happened
physically in the wires on the chip.

2.2 Assumptions

For our lower bounds in the VLSI model, we will use four main assumptions:

1. No two distinct values produced or used by the computation may appear
at the same place on the chip at the same time (each value requires its
own ⌦(1) space).

2. Across any boundary of length ` in the chip, only O(`) values may pass
at any one time.

This assumption was the primary one used in 1980s VLSI theory. Since
a chip of area A can be divided into two equal halves with a boundary
of length

p
A, finding that at least b values must cross any such bound-

ary gives an area-time tradeo↵:
p
AT ≥ ⌦(b). Squaring this relationship

(to make it look nicer) gives the primary object of study of that line of
work (after which it is commonly named): an AT 2 bound. This approach
was introduced by Thompson [17][18], who used it in conjunction with
communication complexity to find unconditional lower bounds on AT 2 for
several problems. Later authors writing similar bounds often used other
methods for finding b, but almost all bounds were stated unconditionally
for particular problems, independent of the algorithm being implemented
to solve them, and so no such bound (without the use of other assump-
tions) is larger than AT 2 ≥ ⌦(n2) for a problem with n bits of input and
output.

3. Communicating a value a distance d across the chip requires T = ⌦(d)
time.

In the classic VLSI theory literature from the 1980s, this assumption made
little appearance. It was used by Chazelle and Monier, who justified it
using speed-of-light delay [2], but at the time, it was controversial. On-
chip communications in the 1980s were performed at nowhere near the
speed of light, and a communication which was running too slowly could
in many cases be sped up by increasing the size of the transistors in the
driver circuitry for the wire along which the communication took place.
A theoretical study of minimizing wirelength from the time [12] stated
that a reasonable assumption appeared to be T = ⌦(

p
d). In modern

chips, however, long communications are done through a linear number of
constant-length bu↵ered wire segments to avoid introducing a quadratic
RC delay, and the speed of the very fastest communications along wires
is a↵ected by transmission-line delay, which is linear in distance [13]. So,
we now regard T = ⌦(d) as not only a technically correct assumption due
to speed-of-light delay, but also a practical assumption relevant for actual
modern chips.

3

4. All inputs to the computation must enter the chip at a single place and
time, and all outputs from the computation must leave the chip at a single
place and time.

Note that this means all values used by the computation are assigned a
single spot on the chip where they originate, and computation using that
value must pay the time and area cost to communicate with that spot.

This assumption is quite reasonable from the perspective of chip design,
but it is a little less obvious for general computation – is it really not
allowed to copy the input to the computation multiple times before putting
those copies on the chip? However, this assumption will be important for
a few of our bounds, and it does make sense. A computation which wishes
to replicate an input in many places should pay the communication cost
to do so on the chip.

Some prior work in VLSI theory assumed that inputs to the chip must
appear on the chip perimeter. Chazelle and Monier, for instance, relied
on all the inputs to the computation passing through some convex bound-
ary for most of their lower bounds [2]. However, modern “3D packaging”
allows for this assumption to be broken and for communication onto and
o↵ of the chip to happen at arbitrary points on its surface, so we no longer
regard that stronger assumption as reasonable. In addition, allowing in-
puts to appear at any place and time on the chip means that they do
not strictly have to be input to the chip then – the input values to the
computation could be the outputs of an earlier computation performed on
the same chip, and bounds using these assumptions will still hold.

2.3 Basic Lower Bounds

We will present a few simple lower bounds here, which we will expand upon
later.

Theorem 2.1 (AT ≥ ⌦(N)). Performing a computation of N values on a VLSI
chip, using minimal bounding box area A and time T , requires AT ≥ ⌦(N).

Proof. This follows immediately from the first assumption; since all N values
require their own constant amount of area and time, and no two overlap, we
can sum their area-time requirements together, for AT ≥ N ·⌦(1) = ⌦(N).

This fact also appears in [15]. Figure 1 shows a useful picture to keep in
mind: the area of a chip, extended through a third dimension representing time
to produce an “area-time volume.” With this intuition, theorem 2.1 states that
the area-time volume must be ⌦(N), because each value computed requires a
constant area-time volume of its own.

Theorem 2.2 (T ≥ ⌦(
p
A)). Performing a one-output computation where all

values are useful on a VLSI chip, using time T and a minimal bounding box of
area A, requires T ≥ ⌦(

p
A).

4

p
A

p
A

T

Figure 1: An area-time volume for a square chip, with a single ‘time slice’
(the chip at a single timestep) indicated.

Proof. The intuition for this result is that all values must be communicated
to the output, so at least some communication must cross at least half the
bounding box. We will now formalize this somewhat.

Without loss of generality, assume the bounding box for the computation is
at least as wide as it is tall; since the area is A, this means the width of the
box is at least

p
A. Now, again without loss of generality, assume the output

of the computation is in the right half of the box (or exactly in the middle
horizontally); this means that the distance from the left edge of the bounding
box to the output is at least

p
A/2. Since the bounding box is minimal, there

must be some value in the computation which is on the left edge; call this value
xL. Then, considering the path from xL to the output, we have

X

(u,v)2(xL!o)

dx(u, v) ≥
p
A/2

where dx(u, v) is the horizontal distance between u and v and the sum is over
all edges in the path from xL to the output (this is by the triangle inequality,
applied to the distances between values). But for any edge (u, v), the time
di↵erence T (u, v) between when u is produced and when v is produced is at least
⌦(d(u, v)) ≥ ⌦(dx(u, v)) by assumption 3. So, summing the delays incurred by
the path, we have that

T (xL, o) =
X

(u,v)2xL!o

T (u, v) ≥ ⌦(
p
A)

which gives us T ≥ ⌦(
p
A).

In later theorems, we will not bother with the above argument that a path in-
curs communication time at least as large as the distance between its endpoints;
we will allow ourselves to assume that as a direct consequence of assumption 3.

Corollary 2.3 (T ≥ ⌦(3
p
N)). Performing a one-output computation of N

values, all useful, on a VLSI chip in time T requires T ≥ ⌦(3
p
N).

5

p
A

≥
p
A/2

Figure 2: A picture for the proof of theorem 2.2

Proof. This follows directly from the above two theorems. Consider the minimal
bounding box area A used for this computation. We have that T 2 ≥ ⌦(A) and
AT ≥ ⌦(N), which gives us T 3 ≥ ⌦(AT) ≥ ⌦(N), or T ≥ ⌦(3

p
N).

This result is interesting in that it provides an unconditional bound on the
e↵ect of parallelization on a chip – no computation of a single output can be
parallelized to run faster than the cube root of the serial runtime. Note also
that any computation which uses n inputs and depends on all of them has
T ≥ ⌦(3

p
n).

Chazelle and Monier [2] found a lower bound T ≥ ⌦(
p
n) on n-input compu-

tations, which is larger, but as noted in the assumptions above, they assumed
that all inputs to the computation had to pass through some convex boundary
on the chip, which we do not regard as reasonable for modern chips.

To see the relevance of this result to an actual parallel computation, let’s con-
sider computing the sum of an array of n numbers. The classic way to approach
parallelizing this computation is a binary tree as in figure 3a; this computation
graph has depth O(log n), and so in communication-ignoring models, will take
O(log n) parallel time. On a chip, however, the communication dominates the
asymptotic runtime. One way to implement the binary reduction tree on a chip
is the famous H-tree layout (figure 3b); this incurs ⇥(

p
A) = ⇥(

p
n) communi-

cation time (the longest individual wires alone in an H-tree layout have lengthp
A/4) [8].
In order to match the lower bound of corollary 2.3, we will first notice that

theorem 2.2 implies that we should not use an area of greater than A = ⇥(n2/3).
This is enough area to store and accumulate n2/3 independent partial sums of

6

+

+ +

+ + + +

(a) A binary sum-reduction tree
(b) The H-Tree layout for balanced bi-
nary trees

Figure 3: Classic binary reduction trees

p
A = 3

p
n

p
A = 3

p
n

T = 3
p
n

T = 2 3
p
n

Figure 4: An O(3
p

n)-time scheduling of an n-element reduction

3
p
n elements each by bringing n2/3 di↵erent elements onto the chip at every

time step. Once these have been accumulated, they can be summed to produce
a single output using any

p
A time reduction tree. This approach takes 3

p
n

time to bring in the inputs and accumulate the n2/3 sums, plus a further 3
p
n

time to sum these n2/3 values together, for O(3
p
n) time total. A diagram of

this process (using a simple 2 3
p
n-depth, 2 3

p
n-time reduction tree) is provided

in figure 4.

2.4 A first nontrivial application

In this section, we will see a way to apply corollary 2.3 iteratively, and obtain
an interesting lower bound on the parallel implementation time of a practical
algorithm.

7

(a) A 4-node undirected graph and its
“bipartite version”

(b) 3 iterations of the Bellman-Ford
computation graph for the graph in fig-
ure 5a

Figure 5: Bellman-Ford graphs

Theorem 2.4 (Bellman-Ford takes n4/3/d time). Performing the Bellman-Ford
algorithm for Single Source Shortest Paths for an undirected graph of n nodes
and unweighted diameter d, on a chip, requires time T ≥ ⌦(n4/3/d).

Proof. First, we will show that performing d iterations of Bellman-Ford on a
graph of diameter d requires ⌦(3

p
n) time (between the time the first input is

presented and the time the first output is produced); then the overall result will
follow by repetition of this result n−1

d times, for the n− 1 iterations that must
be performed in the worst case.

Recall that a single ‘iteration’ of the Bellman-Ford algorithm involves, for
each node v in the graph, checking each of its neighbors u to determine whether
the shortest path length to v computed at the previous iteration can be ex-
tended to u to construct a shorter path from the source to u than was found
at the previous iteration. The computation graph for a single iteration, then,
is essentially the ‘bipartite version’ of the input graph (see figure 5a for an ex-
ample). To see that any d iterations must take at least 3

p
n time, we appeal to

corollary 2.3. Consider the computation graph CG which is the DAG of those
d iterations (see figure 5b). Since the input graph has diameter d, there is a
path in the computation graph of those d iterations from any input to any out-
put. Accordingly, each output depends on all n inputs, meaning that none can
complete before 3

p
n time after the first input arrives.

8

2.5 More general bounds

In this section, we will see a few more bounds on computation time, with an
application to two important tasks: dense matrix-matrix multiplication, and
sparse matrix-vector multiplication.

Definition 2.5 (Path Diameter). We say that a computation graph has path
diameter δ when the undirected diameter of its transitive closure has diameter δ;
that is, the path diameter is the minimum value δ where for any two values in the
computation x and y there is a series of at most δ paths which together connect
x to y. Formally, this means that there is a series of δ−1 values v1, v2, . . . , vδ−1

where x has communication with v1, v1 has communication with v2, and so on,
with vδ−1 having communication with both vδ−2 and y.

Another way of thinking about path diameter is that it is the maximum
number of times one needs to ‘change direction’ to get from any node to any
other (using only forward edges followed by only backward edges followed by
only forward edges, etc).

Theorem 2.6 (T ≥ ⌦(
p
A/δ)). Implementing a computation graph of path

diameter δ on a VLSI chip, using time T and a minimal bounding box of area
A, requires T ≥ ⌦(

p
A/δ).

Proof. We can prove this using a generalization of the strategy taken for the-
orem 2.2. We will show that there must exist two values in the computation
graph which have communication with each other and which are at least a dis-
tance

p
A/δ apart; this will imply that ⌦(

p
A/δ) time is needed to perform this

communication.
Suppose (towards a contradiction) that any two values in the computation

graph which have communication with each other (and so are connected by a
single path) are strictly less than

p
A/δ apart. Once again, assume without loss

of generality that the bounding box is at least as wide as it is tall (and so has
width at least

p
A). Consider the two values xL and xR in the computation

which define the left and right edges of the bounding box. Since the graph has
path diameter δ, consider the δ−1 values v1 . . . vδ−1 that connect xL to xR. By
assumption, we have that d(xL, v1) <

p
A/δ, that d(v1, v2) <

p
A/δ, and so on,

with d(vδ−1, xR) <
p
A/δ. Thus, by the triangle inequality, we have:

d(xL, xR) d(xL, v1) +
X

i2[δ−2]

d(vi, vi+1) + d(vδ−1, xR) < δ(
p
A/δ) =

p
A.

However, xL and xR are on opposite ends on the chip, meaning they are a
distance of exactly

p
A apart from each other in the horizontal direction (and

so at least
p
A total); this is a contradiction.

So there must be some pair of values in the computation graph which have
a single path between them and are at least

p
A/δ apart on the chip. By

assumption 3 (and the argument made in theorem 2.2), this path – and thus
the computation as a whole – must take at least ⌦(

p
A/δ) time total.

9

p
A

≥
p
A/δ

Figure 6: The path diameter bound of theorem 2.6

The reader may notice that in fact, theorem 2.2 can be viewed as a spe-
cial case of theorem 2.6, as any computation graph implementing a one-output
computation in which all values are useful has path diameter at most 2, due to
communication with the output. We proved them separately in order to pro-
vide better intuition, and because it is not clear how to state theorem 2.6 in the
same unconditional language as theorem 2.2, without appealing to the specific
computation graph being implemented.

Corollary 2.7 (T ≥ ⌦(3

p

N/δ2)). Implementing a computation graph of path

diameter δ on a VLSI chip in time T requires T ≥ ⌦

⇣

3

p

N/δ2
⌘

.

Proof. This, like corollary 2.3, follows directly from theorems 2.6 and 2.1: T 2 ≥

⌦(A/δ2), which gives us T 3 ≥ ⌦(N/δ2) or equivalently T ≥ ⌦(3

p

N/δ2).

Lemma 2.8 (Matrix Multiplication has constant δ). Any computation graph
implementing dense matrix multiplication in which all values are useful has path
diameter at most 6.

Proof. This fact is best illustrated with a short sequence of symbols:

v1 ! Cij Ai0 ! Cin B0n ! Cmn v2.

Given any two values v1 and v2, consider the output values they contribute to;
call them Cij and Cmn respectively. These can be linked by a sequence of 4
paths: Cij depends on row i of A, and Cmn depends on column n of B; Cin

depends on both of these. This is 6 paths total, linking our two arbitrary values
v1 and v2.

10

Theorem 2.9 (Matrix Multiplication takes T ≥ ⌦(n)). Implementing multipli-
cation of two dense n⇥ n matrices on a chip using time T requires T ≥ ⌦(n).

Proof. This follows from the early VLSI theory results of [14], showing that
AT 2 ≥ ⌦(n4), combined with theorem 2.6 and lemma 2.8: T 4 ≥ ⌦(n4/36),
meaning T ≥ ⌦(n).

This result was also found by Chazelle and Monier [2], but again using the
convex-boundary assumption; we regard our contribution here as showing that
this result still holds under more modern assumptions.

We will not give the details here, but it is well-known that this time bound
is achievable, for instance by keeping the output matrix in place on the chip
and computing it incrementally as a sum of outer products.

Definition 2.10 (Minimum balanced hypergraph cut). Consider the ‘hyper-
graph version’ of a directed graph G which is obtained by collecting all edges
directed out of each node v into a single hyperedge hv. The minimum balanced
hypergraph cut of G is then the minimum number of hyperedges cut by any
balanced partition of its hypergraph version.

Note that given a partition of a computation graph, the number of hyper-
edges it cuts is exactly the number of values which are communicated between
one side of the partition and the other. When minimized over all balanced
partitions, this quantity is the same as the “minimal information cross-flow” of
the computation, but is a more tangible quantity for fixed computation graphs,
which is why we use minimum balanced hypergraph cut instead of minimal
information cross-flow in the statement of the following theorem.

Theorem 2.11 (AT 2 ≥ ⌦(b2)). Implementing a computation graph with a
minimum balanced hypergraph cut of size b (or any computation which requires
communicating at least b bits across any balanced cut of the inputs and outputs),
on a chip of area A and time T , requires AT 2 ≥ ⌦(b2).

As noted in the explanation of assumption 2, this “A-T-squared” style of
bound was the main object of study in 1980s VLSI theory. We will not reproduce
a proof here; instead, we refer the reader to [14] for further discussion, and [18]
for the original use of the approach and proof.

Corollary 2.12 (T ≥ ⌦(
p

b/δ)). Implementing a computation graph of path
diameter δ and minimum balanced hypergraph cut b on a VLSI chip in time T

requires T ≥ ⌦

⇣

p

b/δ
⌘

.

Proof. This follows directly from theorems 2.6 and 2.11: T 2 ≥ ⌦(A/δ2), which
gives us T 4 ≥ ⌦(b2/δ2) or equivalently T ≥ ⌦(

p

b/δ).

Theorem 2.13 (SpMV takes time T ≥ ⌦(
p

b/d) and T ≥ ⌦(3

p

n/d2)). Mul-
tiplying a sparse n ⇥ n matrix A by a dense n-element vector v on a chip in

time T requires T ≥ ⌦

⇣

p

b/d
⌘

and, separately, T ≥ ⌦

⇣

3

p

n/d2
⌘

, where b

11

Figure 7: A sparse matrix and the bipartite computation graph which its
pattern of nonzeros induces

is the minimum hypergraph cut, and d is the diameter, of the bipartite graph
whose adjacency matrix has the same pattern of nonzeros as A. Furthermore,
this bound applies even when the matrix is known far in advance, and arbitrary
precomputation and chip organization can be performed using it.

Proof. This result will follow easily after noting that the dependency graph be-
tween values of the input and output vector is exactly the bipartite graph whose
adjacency matrix is the matrix by which the input vector is being multiplied:
vi influences (Av)j if and only if Aji is nonzero. An example of this is shown in
figure 7.

So, if this bipartite graph has minimum hypergraph cut b and diameter d,

we have T ≥ ⌦

⇣

p

b/d
⌘

by corollary 2.12, and T ≥ ⌦

⇣

3

p

n/d2
⌘

by corollary

2.7.
Note that we have not made any appeal to the values input to the compu-

tation as part of the sparse matrix itself. We have bounded the execution time
not of the computation graph using the sparse matrix, but just the computa-
tion graph induced by it, which means that our bound does not include the time
for the matrix to be input and organized, and our argument does not assume
anything about when the matrix is learned or how it is stored or used.

Since some bipartite graphs (specifically, bipartite expander graphs) have
minimum balanced hypergraph cut ⌦(n) and diameter O(log n), for the corre-

12

sponding matrices we have T ≥ ⌦

⇣

p

n/ log n
⌘

.

We will not give any thorough or rigorous analysis of upper bounds for
SpMV, but on a

p
n ⇥
p
n grid of values (such as a VLSI chip holding many

input values), it appears that all values can be broadcast to all grid points inp
n time: the maximum distance traveled is

p
n, and the average congestion is

also
p
n. This communication structure, applied to the elements of an input

vector, suffices to perform any multiplication by a matrix.
Note that if the matrix A is taken to define a directed graph G on n nodes,

instead of an undirected bipartite graph on 2n nodes, the computation graph
above is almost the same as that for performing an iteration of Bellman-Ford on

G. This does not immediately imply a lower bound of ⌦
⇣

n
p

b/d
⌘

for Bellman-

Ford, however, as the lower bound of corollary 2.12 is from the first input to
the last output, rather than the first output, and so cannot be iterated without
some extra arguments or assumptions about synchronization between successive
iterations.

2.6 Other models and quantities

An interesting bit of intuition about the AT 2 bounds of the 1980s is that they
appear to be comparing the minimum bisection of the computation to that of the
architecture; that is, a computation graph with a minimum balanced hypergraph
cut of b requires

p
AT ≥ ⌦(b) because the chip can be divided into two pieces of

equal area, with a communication bandwidth of only
p
A bits between them. For

this reason, the same bound applies equally to specific interconnect structures,
3d volumes, etc: on an architecture with minimum balanced cut c, cT ≥ ⌦(b).
Note that for a general 3d volume V , c = V 2/3.

By the same token, it appears that theorem 2.6 above compares the diameter
of the computation graph (really, the path diameter) to that of the architecture.
A computation graph with a path diameter of δ requires T ≥

p
A/δ because

there are two points on the chip which require
p
A time to communicate between

them; in a sense, the chip has “time diameter”
p
A. Once again, this bound

applies elsewhere: on an architecture with time diameter d, T ≥ d/δ. Note that
for a general 3d volume V , d = 3

p
V .

Some of the particular approaches we used above which we consider new to
VLSI complexity have been used previously for other models; notably, the focus
on particular algorithms (like Bellman-Ford) rather than the problems they
solve (like shortest paths) is important to bounds on communication between
processors and memory [3][7].

In addition to other architecture models, it is useful to consider bounds on
other resources in VLSI implementation. In this section, we presented bounds
mainly on the longest communication distance required by the algorithm be-
cause we were interested in computation latency, but it would be interesting to
also see bounds on total communication distance (which is a bound on total
energy consumption), on o↵-chip memory usage and communication, and so
forth. We leave these considerations to future work.

13

3 Digital Designs

In this section, we will present a particular simplified model of synchronous dig-
ital designs, which we call “digital design graphs,” motivated by timing analysis
and timing-driven placement. We will then show how a few standard analysis
algorithms fit into this model, and present several lower bounds on placement
quality, along with algorithms which apply them. Most of the lower bounds
for placement quality are closely analogous to the time lower bounds from the
VLSI theory section, but they di↵er qualitatively and quantitatively because an
entire digital design must be mapped to the chip at once, whereas we imposed
no such restriction on mapping general computation graphs to chips. We end
the section with empirical results from these algorithms on benchmark designs,
as well as a few insights into how looking at digital design graphs may inform
placement algorithms.

3.1 Digital Design Graphs and Dagification

Definition 3.1 (Digital Design Graphs). A digital design graph is a directed
graph G = (V,E) along with a set S ✓ V of ‘synchronous’ nodes, where all
sinks and sources of G are in S and all directed cycles in G contain at least one
element of S.

In a design synthesized for a homogeneous FPGA, one can think of the
elements of S as flip-flops, latches, and I/Os, while the elements of V \ S are
LUTs. In a design synthesized for an ASIC, V \ S represents all combinational
elements.

An edge (u, v) is present in a digital design graph when element v is a sink
for the net which has its source at u; that is, when v is a consumer of the value
produced by u.

The assumption that all sinks and sources of G are contained in S corre-
sponds to the assumption that the inputs and outputs of the digital design are
synchronous; the assumption that all cycles contain at least one element of S
corresponds to the assumption that the design contains no combinational loops.

For simplicity, we will assume all elements are single-output, but most al-
gorithms and theorems presented in this section generalize easily beyond this
case. For designs with multiple-output components, the digital design graph is
replaced by a directed multigraph (that is, a graph with parallel edges allowed),
since it is possible that some single component v will receive more than one of
the values produced by u, and so there will need to be several di↵erent edges
(u, v).

A digital design graph is almost exactly the same thing as a netlist, but we
redefine it explicitly here anyway because we will want to be careful about ex-
actly which aspects of the design we analyze. Since we will be organizing most
of our e↵ort around analyzing and minimizing delay, rather than wire area or
routability, it makes sense for us to break up the nets (which are hyperedges)
into many individual edges (replace each net with a star graph) so that each

14

50

90

70

60

60

50

Figure 8: An imagined digital design graph, with imagined delays as edge
weights

In this and all pictures of digital designs in this section, yellow nodes indicate inputs to the

design, red nodes indicate synchronous internal nodes (e.g. flip-flops), blue nodes indicate

logic gates, and green nodes indicate outputs to the design.

Figure 9: An imagined digital design graph, and its dagified version

Note that the dagification procedure has broken both internal synchronous nodes into an

‘input’ side and an ‘output’ side.

edge can be assigned a separate delay without confusion.

Suppose each edge (u, v) of a graph G is weighted by the delay between the
elements u and v; in particular, the delay between the value being produced at
u and it being received at v, plus the logic delay of v measured from the input
port on which it receives from u. For a synchronous element s, we will add the
setup time of s to the delay of the edge (x, s) on which s receives its input, and
add the clock-to-Q delay of s (if it has one) to the delays of all edges (s, y) on
which it produces its output.

We will now see some algorithms for analyzing digital design graphs. Many of
the algorithms in this section will depend on a procedure we call “dagification.”

Definition 3.2 (The dagification procedure). To “dagify” a digital design graph
G with synchronous elements S, split each synchronous element s into two copies
so and si. Instead of edges (x, s), include edges (x, si); instead of edges (s, y),
include edges (so, y); do not connect si to so. Leave the rest of the graph
unchanged.

Since we assumed that the design does not contain any combinational loops,
and therefore that all directed cycles in the graph contain a synchronous element,
the dagification process will break all cycles in the graph, thus producing a
directed acyclic graph or DAG (hence “dagification”).

15

The usefulness of the dagification procedure comes mainly from facts like
the following:

Theorem 3.3 (Critical Path Length). The critical path length in a delay-
weighted digital design is equal to the weighted length of the longest path in
the dagified version of the digital design graph.

Proof. The critical path of the digital design is the path which starts at a
synchronous element, ends at a synchronous element, contains no synchronous
elements besides, and whose total delay is maximum. We can drop the explicit
requirement that the path begins and ends at synchronous elements without
a↵ecting this definition, since delays are positive and so the paths which include
edges up to synchronous elements at the start and end have larger delay than
their subpaths which do not; then the critical path is just “the largest delay
path which does not pass through any synchronous elements” (these paths are
exactly the combinational paths in the design).

Note that no paths in the dagified version of a digital design pass through a
synchronous element, and that by construction there is a one-to-one correspon-
dence, preserving weights, between such paths in the digital design graph and
paths in the dagified version. So the longest combinational path in the design
exactly corresponds to the longest weighted path in the dagified graph.

Together with the classic linear-time dynamic programming algorithm for
finding the longest path in a DAG, the fact above shows that the dagification
procedure gives us a linear time algorithm for finding the critical path in a
digital design.

Most timing analysis algorithms (and indeed perhaps most algorithms for
analyzing digital designs in any way) almost certainly use something like dagifi-
cation implicitly; it is not original. The timing engine in nextpnr, for instance,
does not construct the DAG explicitly, but it does maintain a topological order
of its nodes [16]. Despite these uses, we are not aware of a reference which
describes dagification explicitly in the context of digital design analysis. Af-
ter all, there are much more difficult concepts to be dealt with in actual static
timing analysis for ASIC flows (extracting the net and gate delays themselves,
crosstalk, clock skew, false and multicycle paths, clock domains, etc). However,
we do know that similar concepts have been used in scheduling digital signal
processing computations, which are often described in a form similar to that of
digital designs.1

Note a particularly attractive intuitive property of dagification: the dagified
version of a digital design is exactly the computation graph performed by the
design in a single cycle. This intuition will be useful for some of the ideas
described in the next two subsections.

1Thanks for this insight goes to Christopher Yarp, who uses and describes a procedure
very much like dagification in his PhD thesis.

16

3.2 Analysis of Digital Designs

In this section, we will use the notions of digital design graphs and dagification
in several algorithms useful for static analysis of digital designs.

3.2.1 Criticality

Theorem 3.4 (Criticality). There is a linear-time algorithm which computes,
for all edges in a (weighted) digital design, the (weighted) length of the longest
combinational path which contains that edge.

Proof. The algorithm proceeds as follows: first, dagify the digital design graph
and compute the topological order of the dagified graph. Then, for each node in
the dagified graph, compute the (weighted) length `s of the longest path which
starts at that node, and the (weighted) length `t of the longest path which ends
at that node. Then, for each edge (u, v) in the graph, the length of the longest
path which contains it is

`t(u) + wu,v + `s(v)

where wu,v is the weight of the edge (u, v) (or 1 if the graph is unweighted).
The `s and `t values can be computed in linear time total through the

dynamic programming algorithm for longest path: `t(s) = 0 for all sources s of
the DAG, then for all other vertices v, `t(v) = maxu `t(u) + wu,v. All of these
values can be computed without redundant computation by processing vertices
in topological order. `s values can be computed similarly, in reverse topological
order.

Given the above, it is easy to see that the algorithm as a whole is correct,
since any path containing an edge (u, v) consists of a (possibly empty) path to
u, followed by (u, v), followed by a (possibly empty) path from v. It is also easy
to see that the algorithm runs in linear time, since dagification, topological sort,
and aggregating values for every edge all take linear time.

In the weighted case, the criticality notion above is useful for determin-
ing which wires should be prioritized for timing optimization during placement
(nextpnr appears to use a similar type of criticality for its timing-driven ana-
lytical placer).

In the unweighted case (before placement), however, it only gives a crude
measure of edge importance, as the criticality of each edge does not take into
account the criticality of other edges in the same path. An example of this is
given in figure 10. In order to improve the usefulness of our analysis in the
unweighted case, we propose a way to “fairly” assign timing budgets to each
edge: assign each node v a “time proportion” value p(v) = `t(v)/(`s(v)+ `t(v)),
representing what proportion of the cycle time we expect to have elapsed by
the time the node is reached, and then assign each edge a budget equal to the
di↵erence in time proportions of its endpoints: (u, v) gets budget p(v)− p(u).

This second notion of criticality is not truly ‘fair’ either, but it is better than
the first.

17

4 4 4 4

3

Figure 10: An example where criticality does not provide a good measure
of edge importance

Each edge in the graph is labeled with its ‘unweighted criticality’ (in the sense of theorem

3.4). The edge with criticality 3 does not need to complete before both of the edges below it

complete, so it should be considered as having half their timing importance, but it actually

has three-quarters their criticality.

3.2.2 Bounds

The criticality analyses above are potentially useful, but they do not incorpo-
rate any of the complications arising from the fact that the real performance of
digital designs is only determined after they are placed and routed; properties
of the design which make it impossible to place without long wires can outweigh
the ‘post-synthesis’ criticality and timing considerations above. In an attempt
to address this shortcoming, we now present a few bounds on the possible im-
plementation quality of digital designs, computable from the structure of the
digital design graph alone.

Note that these bounds are not asymptotic – they hold, including constant
factors and additive constants, for all parameter ranges. As such, they are
stated in exact terms, and we will not present examples of designs or tasks
for which application of these bounds by hand will yield interesting results.
Instead, we will present algorithms in the next subsection which can be used to
automatically apply these bounds to input digital design graphs.

Before we present bounds on placement quality, we will present a general
bound on the longest edge length in the layout of a graph in two dimensions.
This will provide intuition for (and be used in) the later arguments. The bound
will rely on the following lemma:

Lemma 3.5 (Number of grid points in two-dimensional `1 ball). The number
of elements of Z2 (integer points in 2d space) within `1 (Manhattan) distance
at most k from the origin is at most 2(k + 2)2 for any nonnegative integer k.

Proof. We will first count the number of such grid points within the nonnegative
quadrant (and find it to be

�

k+2
2

�

, including points on the axes); then, since each
point is in at least one quadrant and there are 4 quadrants, the total number of
points is at most 4

�

k+2
2

�

= 2(k + 2)(k + 1) 2(k + 2)2.
To count the number of nonnegative grid points, note that each is uniquely

identified by its coordinates (x, y) where x ≥ 0, y ≥ 0, and x+y k (and every
such pair of coordinates corresponds to a unique point). Equivalently, we can
identify points with triples (x, y, z) where x, y, z ≥ 0 and x + y + z = k. The
number of choices for these points is exactly the number of ways to distribute k
identical balls among 3 bins (think of x as the number of balls in the first bin, y

18

as the number of balls in the second, and z as the number of balls in the third).
By a standard counting argument, this is

�

k+2
2

�

.

Now we can prove the bound itself.

Theorem 3.6 (Maximum distance in placement on grids). Suppose we have a
set S of |S| = n distinct grid points. Then, for any point a 2 S, there must be
some point b 2 S such that the `1 distance |ax − bx|+ |ay − by| between a and b
is at least

�p

n
2 − 2

�

.

Proof. Suppose (towards a contradiction) that this is not true: all points are
within strictly less than (

p

n
2 −2) distance of some a. Without loss of generality,

we will assume a is the origin (if not, shift all points in the set so that a is at the
origin, without changing any distances). However, the number of distinct grid
points within distance less than

p

n
2 − 2 of the origin is less than n by lemma

3.5. This is a contradiction, since there are n distinct elements in S.

We will view results such as theorem 3.6 about placement on grids as ap-
plying directly to placement on a homogeneous FPGA, given the design to be
placed as a graph of (virtual) configurable logic blocks (CLBs). Note that this
means we will count wirelength in units of “number of CLBs” (with a wire
connecting two adjacent CLBs having length 1, a wire which passes one CLB
to connect the two CLBs on either side of it having length 2, etc). The first
application of this view is in the following corollary to theorem 3.6.

Corollary 3.7 (Descendant counting). Let G = (V,E) be a digital design graph
where the nodes are CLBs. Suppose there is a vertex v 2 V which has k descen-
dants in the dagified version of G; then, in any placement of G there must be a
combinational path (in particular, a combinational path starting with v) which

has total wirelength at least
q

k
2 − 2.

Proof. It is easy to see by theorem 3.6 that in any placement of G, some descen-

dant u of v must have `1 distance at least
q

k
2 − 2 from v. Therefore, the total

length of the path between v and u must be at least
q

k
2 − 2 by the triangle

inequality.

This bound can be seen as analogous to corollary 2.3 from the VLSI theory
section, and like corollary 2.3, it can be improved by iteration. Suppose we find
a set D of |D| = k1 nodes, all of which are descended from v, and all of which
have at least k2 descendants of their own (these sets of descendants need not
be disjoint). Then, in any layout of the graph, there must be a path beginning

at v of total wirelength at least
q

k1

2 +
q

k2

2 − 4, which is sometimes larger

than the corresponding bound without iteration of
q

k1+k2

2 − 2. This approach

can be continued for an arbitrary number of iterations, finding a node which
has k1 descendants, each of which has k2 descendants, each of which has k3

19

descendants, etc. up to km, for a total path length bound of
Pm

i=1

✓

q

ki

2 − 2

◆

.

This iteration procedure is very similar to that used for theorem 2.4.
During empirical evaluations, the iterated bound found mainly nodes with

large numbers of descendants in the dagified digital design, and reported bounds
equal to or only slightly larger than those which would be obtained by applying
corollary 3.7 directly. This suggests that the corollary could provide a useful
bound without iteration if the largest number of descendants of any node in
the graph can be computed more quickly than the potentially stronger iterated
bound. It appears that, if we are content with an approximate answer, it can
(see theorem 3.13).

Theorem 3.8 (Radius bound for placement on grids). Let G = (V,E) be an
undirected, unweighted graph with n nodes, and let each vertex v of the graph
be assigned a unique pair of integers (vx, vy) (i.e., let G be placed on a two-
dimensional grid without collisions between vertices). Suppose some vertex c 2
V has eccentricity at most r (that is, every vertex in V can be connected to c by
a path of length at most r). Then, there is some edge (u, v) 2 E such that the
`1 distance |ux − vx|+ |uy − vy| between its endpoints is at least

�p

n
2 − 2

�

/r.

Proof. Suppose (towards a contradiction) that all edges connect endpoints that
are placed strictly less than (

p

n
2 −2)/r apart in `1 distance. Then every vertex

in the graph is placed within less than `1 distance
p

n
2 − 2 of c. However, the

number of other grid points within distance less than
p

n
2 − 2 of the origin is

less than n by lemma 3.5. This is a contradiction, since G has n vertices.

Definition 3.9 (Path-Condensed digital design). Given a digital design graph
G = (V,E) with synchronous elements S ✓ V , the path-condensed version of
G is an undirected graph on the same set of vertices V as G and an edge (u, v)
whenever there is a combinational path (that is, a path which does not pass
through any synchronous elements) from u to v (or vice versa) in G.

Definition 3.10 (Combinational path radius in digital designs). The combi-
national path radius of a digital design graph (or a subgraph of a digital design
graph) G is the undirected radius of the path-condensed version of G (or if G
is a subgraph of a larger digital design graph, of the subgraph induced on the
nodes of G of the path-condensed version of the larger graph). Equivalently, it
is the minimum number r for which there is some node c from which all nodes
in G can be reached using a sequence of at most r combinational paths (some
potentially backwards).

The combinational path radius of digital design graphs presented here and
the path diameter of the VLSI theory section (definition 2.5) are similar, but
note the two main di↵erences between them: first, we use radius instead of
diameter (so that we can apply theorem 3.8), and second, we use the fact that
some of the sources of the dagified graph are in fact the same nodes as some of
its sinks, by allowing paths to connect through synchronous elements. Indeed,
the path diameter of the dagified graph is an upper bound for the combinational

20

path diameter of the graph (if it is defined analogously to combinational path
radius), and the path-condensed version of a digital design graph can be found by
dagifying it, taking the transitive closure, and then “undagifying” by merging
each pair of si and so nodes back together. We will use combinational path
radius in a bound analogous to that of corollary 2.7.

Theorem 3.11 (Combinational path radius bound). Suppose a digital design
graph G has a subgraph of size m with combinational path radius r; then in any
placement of G there must be a combinational path which has `1 length at least
�p

m
2 − 2

�

/r.

Proof. Applying theorem 3.8 immediately gives us that in any placement of
G, one of the edges from the path-condensed version of G has length at least
(
p

m
2 − 2)/r. By construction of the path-condensed version, the endpoints of

this edge are connected by a combinational path in G. This path must have
total length at least (

p

m
2 − 2)/r by the triangle inequality.

Theorem 3.12 (Weighted radius bound). Let G = (V,E) be a (weighted) digital
design graph (or a subgraph of one) with m nodes and undirected weighted radius
r. Then in any placement of G, there must be some edge e 2 E with `1 length
we ·

�p

m
2 − 2

�

/r.

Proof. This fact can be seen through a similar argument to that made for the-
orem 3.8. By lemma 3.5, some node must be at least (

p

m
2 − 2) away from the

central element c in `1 distance. This element is connected to c by a path p of
weighted length

P

e2p we r, so by an averaging argument, at least one edge e

on this path must have `1 length at least we · (
p

m
2 − 2)/r (otherwise the total

length of the path would be strictly less than
P

e2p(we·(
p

m
2 −2)/r) (

p

m
2 −2),

which is a contradiction).

Note that we have had to be careful about which quantities we bound in order
to make the bounds useful. Applying theorem 3.8 to a digital design directly
would lead only to a bound on the maximum wirelength in the placement; while
this is useful in that it does provide a lower bound on the length of the longest
combinational path, it is a fairly weak bound. In fact, even bounds on total
wirelength would not tell us much – if we know that any placement of the graph
must have several long wires, we care very much whether it is also the case that
those wires must be in the same combinational path.

The bounds above represent a few di↵erent ways of handling this subtlety.
The basic descendant-counting bound works only with distances between nodes
which are both members of at least one common combinational path. The path
radius bound finds distances between nodes which can be connected through
k combinational paths, but then divides by k to get a bound on the distance
between two nodes in the same path. Note that both of these su↵er from the
same problem – they provide a bound only on the distance between two nodes
in a path, and they take this distance as the bound on the path wirelength. If
all placements of a particular digital design require that some path “zig-zags”

21

heavily, making its length much larger than the distance between any two of its
nodes, the basic descendant-counting bound and the path radius bound will not
capture this behavior. The iterated descendant-counting bound, on the other
hand, appears to have no such restriction, and could perhaps find larger bounds
in cases where “zig-zags” are necessary.

The weighted radius bound is qualitatively di↵erent from the others – rather
than providing an unconditional bound on the length of the longest edge, it finds
a bound which is relative to provided weights. If we think of we as a timing
budget (really, a wirelength budget) for edge e, then the bound implies that it
is impossible to hit all budgets simultaneously whenever there is a subgraph for
which (

p

m
2 − 2)/r is greater than 1.

3.2.3 Algorithms computing bounds

Most of the bounds presented above suggest fairly natural, simple algorithms
for computing them given a digital design. For the combinational path radius
bound, compute the path-condensed version P of the design, and run breadth-
first search from every node; this will enumerate, for all nodes c and all integers
r, the largest subgraph of P with radius r centered at c. Whichever of these sub-
graphs maximizes (

p

m
2 −2)/r defines the bound. Similarly, the weighted radius

bound can be computed by running a shortest-paths-tree algorithm from every
node in the undirected version of the digital design, and the descendants bound
can be computed simply by finding the number of descendants of every node in
the dagified graph. We will present an explicit algorithm for computing the iter-
ated descendants bound, and we will also present a nearly-linear-time algorithm
for counting descendants (the naive algorithm requires quadratic time).

Algorithm 1 Computing the bound from iterated descendant counting

procedure IteratedBound(Dagified digital design graph D)
b(s) 0 for all sinks s of D
for each node u of D, in reverse topological order do

b(u) 0
i 0
for each descendant v of u, sorted by decreasing b(v) do

i i+ 1

b(u) max(b(u),
q

i
2 − 2 + b(v))

end for

end for

end procedure

We will not provide a formal analysis of algorithm 1, but note that it can be
run in O(n2 log n) time. Also, note that if the optimal bound on node u counts a
set of descendants, the lowest bound among which is b(v), then we lose nothing
by including all descendants of u with bounds at least b(v); so the “go through

22

descendants in order of bound size and count how many have been considered
so far” approach used by algorithm 1 is valid and optimal.

As an aside, algorithm 1 can actually be modified to include logic delay in the
bound, by adding an appropriate constant to b(u) at the end of each iteration of
the outer loop. This makes it potentially more attractive for practical analysis,
but we do not include logic delay in our empirical results.

Theorem 3.13 (Nearly Linear-Time Descendant Counting). There is a ran-
domized algorithm which runs in time O(n log2 n) on a DAG of n nodes and
O(n) edges and approximates for every node v the number of descendants of v
within 10% accuracy with probability at least 99%.

Proof. The main idea of this algorithm will be to use a sketching data structure,
so that for each node, we can represent its set of descendants with only O(log2 n)
bits.

In particular, we will use the datastructure from the KMV (k-minimum
values) algorithm [1][11]. The main purpose of the KMV datastructure is to
return the number of distinct elements in a stream of n elements, without storing
all distinct elements (in fact, using only O(log n) bits). We refer the reader to
[11] (or the original paper, [1]) for a discussion of how it does this and the
performance it achieves. We will only need the following properties from it:

1. KMV",δ,n() (for ", δ > 0 and n positive integer) instantiates a copy of the
KMV datastructure using ⇥("−2 log(1/δ) log(n)) bits, in time
O("−2 log(1/δ) log(n)). At instantiation, the datastructure represents an
empty set.

2. a.update(m), for a KMV",δ,n datastructure a and element m 2 [n], adds m
to the set of elements represented by a in time O("−2 log(1/δ) log(n)).

3. a.merge(b), for two KMV",δ,n datastructures a and b, updates a to represent
the union of the sets represented by a and b, in timeO("−2 log(1/δ) log(n)).

4. a.count, for a KMV",δ,n datastructure a, returns an estimate t̂ of the total
number of elements in the set represented by a in timeO("−2 log(1/δ) log(n)).
This estimate is very likely to be nearly correct in that |t̂ − t| > "t for
the true count t (that is, it di↵ers from the true count by more than 100"
percent) with probability at most δ.

Our algorithm is as follows:

23

Algorithm 2 Nearly Linear-Time Descendant Counting

procedure DescCount(Dagified digital design graph D, with n nodes iden-
tified by integers in [n])

Initialize an empty map KMVSets, from nodes to KMV datastructures
for each node u of D, in reverse topological order do

KMVSets[u] KMV1/10,1/(100n),n()
KMVSets[u].update(u)
for each out-neighbor v of u do

KMVSets[u].merge(KMVSets[v])
end for

end for

return KMVSets[u].count, for all nodes u
end procedure

It is easy to see that algorithm 2 runs in time O(n log2 n); it performs one
KMV1/10,1/(100n),n intialization and one update for each node in the graph, along
with one merge for each edge; each of these takes

O("−2 log(1/δ) log(n)) = (100 log(100n) log(n)) = O(log2 n) time.

In order to see the correctness of the algorithm, note first that it would be
exactly correct if the KMV datastructure represented sets without error. For
each node u, the set of descendants of u is u itself, plus the union of the sets of
descendants of u’s immediate children.

Now, note that by the bound given in [1], for each individual u,

Pr[|KMVSets[u].count− desc(u)| ≥ desc(u)/10] δ = 1/(100n).

We are actually interested in the probability that any node errors by more
than 10%. To find this, we can simply take a union bound over all nodes:

Pr[any error]
X

u2[n]

1/(100n) = 0.01

In the algorithm above, we have glossed over one subtlety: instantiating
the KMV datastructure involves picking some random hash functions, and in
order to merge two instances, they will need to use the same hash functions.
We ignored this for simplicity in the theoretical algorithm above; our practical
implementation does not require considering it.

We have presented the result above in full for convenience and because we
discovered it independently, but it is not new; a similar algorithm is described
in [10], and a similar result with a di↵erent framework is given by [4].

One note about the lower bounds here is that because they can be found
for input graphs in polynomial time, we should not expect them to be close to
the actual best placement quality for all graphs (just as we should not expect

24

a polynomial-time placement algorithm to find a placement of close to optimal
quality for all graphs). A lower bound algorithm finding a bound within a
small factor of optimal for all graphs would suffice to solve gapped problems:
distinguish whether the optimal placement of a design has maximum path length
at most some `, or at least k` for some factor k (this is the same setting used for
hardness of approximation). We are not aware of an analysis showing hardness
of gapped problems for the precise problem of minimizing the maximum path
length in a two-dimensional layout, but a similar problem in one dimension, the
graph bandwidth problem, is known to be hard [5].

3.2.4 Empirical results

We ran the algorithms described above to compute lower bounds on a set of
common FPGA benchmarks, taken from the VTR benchmark suite [9]. Since
we are focused on simple homogeneous fabrics and we wish to compare our
lower bounds to actual placements, we only include those benchmarks which
do not contain large memories and which worked easily with our synthesis and
placement flow.

All benchmarks listed were synthesized with yosys-abc9, and packed and
placed using nextpnr [16]. The target architecture was a homogeneous fabric
of CLBs, each consisting of one 4-LUT and one flip-flop (nextpnr’s ‘generic’
architecture). The fabric was a square grid, oversized by 10% in both the hori-
zontal and vertical directions relative to the number of LUTs plus the number
of flip-flops in the design. IOs were placed on the edges. The placer used de-
fault settings, except for the ‘criticality exponent,’ which was set to 5 to provide
heavily timing-driven placements. For each benchmark, 5 random scripts for
the abc tool were generated, and placements were generated for each; only the
one which produced the shortest maximum path length was used.

The numbers reported were calculated using a graph read from the netlist
after packing by nextpnr (that is, a graph of CLBs, where some use the flip-flop
and some do not). We report our results in 3 tables.

Table 1 reports basic information for each benchmark:

1. Total number of nodes (CLBs after packing)

2. Unweighted length of longest path in dagified graph (equivalently, the
maximum unweighted criticality in the sense of theorem 3.4)

3. The percentage of nodes in the graph which have at least one connected
edge with unweighted criticality within 20% of the maximum (equivalently,
which are on at least one path of unweighted length within 20% of the
maximum).

4. The (exact) maximum number of descendants that any node has in the
dagified graph

25

5. The maximum number of descendants that any node has in the dagified
graph (as estimated by algorithm 2)

For convenience, our practical implementation of algorithm 2 actually used the
HyperLogLog++ datastructure [6] as implemented by the datasketch python
package [19] instead of the k-minimum-values datastructure of [1]. In addition,
we used a fixed parameter (p = 12) rather than varying the space complexity
with the number of nodes in the design.

Benchmark Nodes Max. Crit. Crit. Frac. Max Desc. (exact) Max Desc. (HLL)
blob merge 5396 16 3.06% 369 369.15
diffeq1 4233 21 53.6% 2592 2607.79
diffeq2 3895 18 54.74% 2138 2163.96
sha 1772 11 8.86% 998 999.64

stereovision0 13421 5 0.43% 2016 2025.56
stereovision1 27227 8 5.21% 2784 2825.15
stereovision2 55091 14 12.52% 1526 1518.78

Table 1: Basic numbers for VTR benchmarks

Table 2 reports results of the lower bounds:

1. The bound found by the iterated descendants method (algorithm 1)

2. The bound found using path radius (theorem 3.11)

3. The pseudo-bound found using weighted radius (theorem 3.12), with weights
assigned by the ‘fair budget assignment’ procedure mentioned below the-
orem 3.4

4. The length (in sum of Manhattan distances) of the longest path in the
actual placement found by nextpnr

For all the designs used here, the iterated descendants bound actually matched
the non-iterated maximum descendant count bound exactly, and so we do not
bother reporting them in two separate columns. We know anecdotally that
iteration sometimes provides a higher bound, though.

Benchmark (Iter.) Desc. Path Weighted nextpnr
blob merge 11.583 19.233 27.174 114
diffeq1 34.0 13.37 77.645 302
diffeq2 30.696 11.121 54.37 250

sha 20.338 12.463 20.338 72
stereovision0 29.749 29.749 29.749 280
stereovision1 35.31 35.242 40.393 325
stereovision2 25.622 26.502 33.325 452

Table 2: Results of lower-bound algorithms on VTR benchmarks

26

The results in table 2 show that there is often a fairly large discrepancy
between the computed lower bounds and the actual placed wirelength. In order
to determine whether the bounds have identified some true ‘difficult-to-place’
part of the design regardless, we also computed the average wirelength in each
design, and the average wirelength in the subgraph of the design which formed
the bound (the subgraph induced on the nodes which “participated” in the
maximum bound). For instance, in the case of the descendants bound, if the
node with the most descendants is u, we report the average wirelength of all
edges both of whose endpoints are descendants of u. Table 3 reports these
results:

1. The average length of edges both of whose endpoints participate in the
simple descendants bound

2. The average length of edges both of whose endpoints are among the m
nodes used for the (

p

m
2 − 2)/r combinational path radius bound

3. The average length over all edges in the whole design

4. The average weighted length of edges both of whose endpoints are among
the m nodes used for the (

p

m
2 − 2)/r weighted radius bound

5. The average weighted length over all edges in the whole design

All weights are assigned by the ‘fair budget assignment’ procedure mentioned
below theorem 3.4.

Benchmark Descendants Path Radius Overall Weighted Radius Weighted Overall
blob merge 14.16 23.48 21.52 17.08 16.61
diffeq1 10.21 31.27 20.62 2.61 6.71
diffeq2 7.98 18.35 17.5 1.03 5.2
sha 11.83 10.81 10.78 8.16 7.64

stereovision0 26.59 26.59 20.8 26.59 19.58
stereovision1 35.08 35.23 29.69 18.02 18.84
stereovision2 47.88 28.12 19.31 14.89 13.02

Table 3: Average wirelength among nodes participating in each bound vs
entire graph

The average wirelength on the ‘bound-defining subgraph’ is often much larger
than the average wirelength in the design overall, especially for the path radius
bound; we see this as encouraging.

Figure 11 shows some of these bound-defining subgraphs, as well as some
of the longest-total-wirelength paths, embedded within the placement of the
design by nextpnr. For some of the benchmarks, two or more of the bounds are
actually defined by the exact same subgraph.

27

(a) The subgraph of
blob merge which defines the
descendant bound

(b) The subgraph of
blob merge which defines the
path and weighted bounds

(c) The longest `1 path of
blob merge

(d) The subgraph of
stereovision2 which defines
the descendant bound

(e) The subgraph of
stereovision2 which defines
the path and weighted
bounds

(f) The longest `1 path of
stereovision2

(g) The subgraph of
diffeq1 which defines
the descendant bound

(h) The subgraph of
diffeq1 which defines
the path radius bound

(i) The subgraph of
diffeq1 which defines
the weighted radius
bound

(j) The longest `1
path of diffeq1

Figure 11: Bound-defining node sets and longest-wirelength paths of some
benchmarks, shown with node locations given by the nextpnr placement,
plus I/O nodes for context

3.3 Critical Regions

Intuitively, combinational paths with more edges are more likely to become
critical after placement; so it makes sense to focus primarily on these paths
when designing FPGA architectures and placement algorithms.

Definition 3.14 (Critical Region). A critical region at criticality k of a (possi-
bly dagified) unweighted digital design graph G is a maximal weakly-connected
subgraph of G in which all edges have criticality k or higher (in the sense of
theorem 3.4).

We include the condition that they be maximal subgraphs satisfying this
property; this means for instance that a single critical path does not constitute
a full critical region if other critical paths are connected to it (although some of
our observations about critical regions will also apply to smaller parts of critical
regions).

28

(a) A critical region from raygentop at
criticality 17

(b) A critical region from diffeq2 at
criticality 25

(c) A critical region from bgm at critical-
ity 27

(d) Connections among several critical
regions in mcml

Figure 12: A few critical regions taken from VTR benchmarks

Figure 12 shows some examples of critical regions in dagified digital designs
from FPGA benchmarks. Looking at those examples, we can notice the first
interesting property of critical regions.

Theorem 3.15 (Critical regions are layered). The nodes of a critical region at
criticality k of a dagified digital design graph can be assigned integer ‘layers’ `(·)
such that every edge (u, v) in the region satisfies 1 `(v) − `(u) m − k + 1,
where m is the maximum criticality of any edge in the region.

Proof. The layer assignment for which this property holds will actually be to
set `(v) = `t(v) for all nodes v; that is, layer nodes according to the length of
the longest combinational path in the design which ends with them.

To see that this layering gives 1 `(v)− `(u) for all edges (u, v), note that
there is a path of length `(u) ending at u. Adding (u, v) to this path produces
a path ending at v of length `(u) + 1, meaning that the length of the longest
path ending at v must be at least `(v) ≥ `(u) + 1.

To see that it gives `(v)− `(u) m− k+ 1, note that all paths from source
to sink in the region have length between k and m. This includes the longest
path containing v, which has length `t(v) + `s(v). It also includes the path
created by joining the longest path ending at u with the edge (u, v) and the
longest path starting at v, which has total length `t(u) + 1 + `s(v). So we have

29

`t(v)+ `s(v) m and −`t(u)−1− `s(v) −k, which when added together give
us `t(v)− `t(u)− 1 m− k, which gives us our result.

Note that this fact does not quite apply to critical regions in non-dagified
digital designs, as critical paths in one pipeline stage may connect to critical
paths in others in non-obvious ways through synchronous elements. Figure 12d
shows a particularly nasty example from one synthesis of the mcml benchmark
from the VTR suite. In that graph, each node represents a collection of flip-
flops, and each edge represents a collection of (maximum-length) combinational
paths connecting the flip-flops at its endpoints. Even though this part of the
design contains no cycles and all edges have the same criticality, the layering
property does not apply without modification.

Perhaps the most striking immediate consequence of theorem 3.15 is that
single-stage regions where all edges have the maximum criticality can be placed
perfectly in layers, with every edge between adjacent layers. This suggests
a timing-first approach to FPGA interconnect design and placement strategy,
where these “layered regions” are placed on “layered interconnect,” with abun-
dant fast routing resources connecting adjacent columns of the fabric and less
attention paid to wires which cross many columns or do not cross any. Unfor-
tunately, after much exploration of this idea, it appears that a huge number of
these inter-column resources would be needed (unless large improvements are
made in finding good orderings of CLBs within columns) and it is not clear
how these routing resources could be provided with the quantity and quality
necessary to make this idea viable. We leave further exploration to future work.

4 Summary, conclusions, and future work

In this report, we presented an updated theory of VLSI computation, together
with several asymptotic lower bounds on execution time in this new model, some
of which have not been previously described in any similar model.

We also presented related bounds on the length of the longest path in FPGA
placements, and showed how they could be computed using efficient algorithms,
yielding tools for analyzing digital designs in the context of timing-driven im-
plementation quality.

We propose that both of these areas should be studied further. We hope that
future work will further explore the theoretical implications of the VLSI model
presented, and extend our results to other performance measures and quantities
of interest, other variations on model assumptions, and other algorithms and
tasks. More importantly, we hope this work can be extended to inform actual
chip designs and execution schedules.

We also hope that future work will improve our approach to bounding place-
ment quality for digital designs. If tools like the ones presented here are reimag-
ined using stronger bounds on total path length, as well as bounds on other
quantities like total wirelength and timing slack, they could become a very

30

useful addition to the techniques used to implement digital designs, both in
placement-aware synthesis and in placement strategies themselves.

References

[1] Ziv Bar-Yossef et al. “Counting Distinct Elements in a Data Stream”. In:
Randomization and Approximation Techniques in Computer Science. Ed.
by José D. P. Rolim and Salil Vadhan. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 1–10. isbn: 978-3-540-45726-8.

[2] Bernard Chazelle and Louis Monier. “A Model of Computation for VLSI
with Related Complexity Results”. In: Journal of the ACM 32 (1985),
pp. 573–588.

[3] Michael Christ et al. Communication lower bounds and optimal algorithms
for programs that reference arrays – Part 1. 2013. doi: 10.48550/ARXIV.
1308.0068. url: https://arxiv.org/abs/1308.0068.

[4] Edith Cohen. “Size-Estimation Framework with Applications to Transi-
tive Closure and Reachability”. In: Journal of Computer and System Sci-
ences 55.3 (1997), pp. 441–453. issn: 0022-0000. doi: https://doi.org/
10.1006/jcss.1997.1534. url: https://www.sciencedirect.com/
science/article/pii/S0022000097915348.

[5] Chandan Dubey, Uriel Feige, and Walter Unger. “Hardness Results for
Approximating the Bandwidth”. In: J. Comput. Syst. Sci. 77.1 (Jan.
2011), pp. 62–90. issn: 0022-0000. doi: 10.1016/j.jcss.2010.06.006.
url: https://doi.org/10.1016/j.jcss.2010.06.006.

[6] Stefan Heule, Marc Nunkesser, and Alex Hall. “HyperLogLog in Practice:
Algorithmic Engineering of a State of The Art Cardinality Estimation
Algorithm”. In: Proceedings of the EDBT 2013 Conference. Genoa, Italy,
2013.

[7] Hong Jia-Wei and H. T. Kung. “I/O Complexity: The Red-Blue Pebble
Game”. In: Proceedings of the Thirteenth Annual ACM Symposium on
Theory of Computing. STOC ’81. Milwaukee, Wisconsin, USA: Associa-
tion for Computing Machinery, 1981, pp. 326–333. isbn: 9781450373920.
doi: 10 . 1145 / 800076 . 802486. url: https : / / doi . org / 10 . 1145 /
800076.802486.

[8] Charles E. Leiserson. “Area-efficient graph layouts”. In: 21st Annual Sym-
posium on Foundations of Computer Science (sfcs 1980). 1980, pp. 270–
281. doi: 10.1109/SFCS.1980.13.

[9] Jason Luu et al. “VTR 7.0: Next Generation Architecture and CAD Sys-
tem for FPGAs”. In: ACM Trans. Reconfigurable Technol. Syst. 7.2 (July
2014). issn: 1936-7406. doi: 10.1145/2617593. url: https://doi.org/
10.1145/2617593.

31

[10] Suman Nath et al. “Synopsis Di↵usion for Robust Aggregation in Sensor
Networks”. In: Proceedings of the 2nd International Conference on Em-
bedded Networked Sensor Systems. SenSys ’04. Baltimore, MD, USA: As-
sociation for Computing Machinery, 2004, pp. 250–262. isbn: 1581138792.
doi: 10.1145/1031495.1031525. url: https://doi.org/10.1145/
1031495.1031525.

[11] Jelani Nelson. Sketching Algorithms. https://www.sketchingbigdata.
org/fall20/lec/notes.pdf. Dec. 2020.

[12] M. S. Paterson, W. L. Ruzzo, and L. Snyder. “Bounds on Minimax Edge
Length for Complete Binary Trees”. In: Proceedings of the Thirteenth An-
nual ACM Symposium on Theory of Computing. STOC ’81. Milwaukee,
Wisconsin, USA: Association for Computing Machinery, 1981, pp. 293–
299. isbn: 9781450373920. doi: 10.1145/800076.802481. url: https:
//doi.org/10.1145/800076.802481.

[13] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital
integrated circuits- A design perspective. 2ed. Prentice Hall, 2004.

[14] John E. Savage. “Area—time tradeo↵s for matrix multiplication and re-
lated problems in VLSI models”. In: Journal of Computer and System Sci-
ences 22.2 (1981), pp. 230–242. issn: 0022-0000. doi: https://doi.org/
10.1016/0022-0000(81)90029-5. url: https://www.sciencedirect.
com/science/article/pii/0022000081900295.

[15] John E. Savage. Models of Computation: Exploring the Power of Comput-
ing. 1st. USA: Addison-Wesley Longman Publishing Co., Inc., 1997. isbn:
0201895390.

[16] David Shah et al. Yosys+nextpnr: an Open Source Framework from Ver-
ilog to Bitstream for Commercial FPGAs. 2019. doi: 10.48550/ARXIV.
1903.10407. url: https://arxiv.org/abs/1903.10407.

[17] C. D. Thompson. “A Complexity Theory for VLSI”. PhD thesis. Carnegie-
Mellon University, 1980. doi: 10.1184/R1/6714269.v1. url: https:
//kilthub.cmu.edu/articles/thesis/A_Complexity_Theory_for_

VLSI/6714269.

[18] C. D. Thompson. “Area-Time Complexity for VLSI”. In: Proceedings of
the Eleventh Annual ACM Symposium on Theory of Computing. STOC
’79. Atlanta, Georgia, USA: Association for Computing Machinery, 1979,
pp. 81–88. isbn: 9781450374385. doi: 10.1145/800135.804401. url:
https://doi.org/10.1145/800135.804401.

[19] Eric Zhu. datasketch. https://ekzhu.github.io/datasketch. Ver-
sion 1.5.7.

32

