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Abstract

Evaluating the use of sequence-to-expression predictors for personalized expression
prediction

by

Parth Baokar

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Nilah Ioannidis, Chair

With rapid advances in deep neural network architectures, there has been recent interest in
using these complex models to understand the regulatory factors that govern gene expression.
Recent state-of-the-art models are trained to predict expression levels in different cell types
from the reference genome sequence around the start site of each gene. These models ex-
plain a large fraction of the variation in expression across different genes in the genome, and
have demonstrated an ability to recognize biologically relevant regulatory motifs. However,
here we show that model performance is limited when applied to sequences from personal
genomes to explain variation in expression across individuals. Our results suggest a relative
insensitivity of these models to small but biologically meaningful perturbations in the input
sequence. We also demonstrate that while the models identify some key sites of regulatory
variation corresponding to those found in eQTL (expression quantitative trait loci) studies,
they often fail to capture the correct direction of effect on expression. This work highlights
potential shortcomings of these deep learning models when applied to personal genome in-
terpretation in a clinical setting, and suggests further avenues of exploration for improving
model performance on personalized genomes.
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Chapter 1

Introduction

1.1 Background

Understanding the effects of genomic variation on transcriptional expression levels can pro-
vide key insights in functional genomics and personalized medicine. Traditional studies such
as genome-wide association studies (GWAS) have affirmed the relationship between genetic
variation and clinical phenotypes, identifying loci in the genome associated with phenotypic
effects and providing an effect size for each [1]. However, the results of GWAS suffer from a
few challenges in interpretation. First, the identified associated variants tend to be within
non-coding regions of the genome, and the mechanisms governing the effects of non-coding
variants are not well understood or easily studied [2, 3]. Additionally, the multiple testing
burden imposes a strict significance threshold for determining associations, so GWAS can fail
to capture intermediate frequency variants with small effects or rare variants with moderate
effects [1]. Since these variants likely play an important role in disease, it limits the clini-
cal impact of GWAS-based disease risk prediction [1]. Finally, the phenomenon of linkage
disequilibrium obfuscates the true causal variants [4]. Variants at nearby positions tend to
be inherited together and have correlated dosages, making it difficult to identify the true
causal variant from statistical association studies (a process known as fine-mapping). An
approach similar to GWAS is used to identify statistically-significant associations between
genetic variants and translational output, or expression quantitative trait loci (eQTLs), but
suffers from similar challenges.

As a result, several computational models for predicting expression directly from genomic
sequences have been developed as a complementary tool for compiling and characterizing
the effects of variants on gene expression. The regulation of transcription rate is controlled
by a variety of mechanisms, involving the binding of transcription factors (TFs) to short
DNA motifs [5], epigenomic modifications such as histone marks and methylation [6], and
genomic regulatory elements such as promoters and enhancers [7]. The steady-state mRNA
expression level of a given gene is also a function of the decay rate, which involves degradation
mechanisms such as mi-RNA silencing or nonsense-mediated mRNA decay [8]. Advances in



CHAPTER 1. INTRODUCTION 2

deep learning techniques have unlocked the capability to model these complex interactions
between different regulatory mechanisms, with the hope of uncovering new insights into
biological pathways to motivate and guide future study. Here we focus on four specific
sequence-to-expression prediction models.

1.2 Expression prediction models

Many state-of-the-art methods rely on deep convolutional neural networks (CNNs) to uncover
important motifs within the genomic sequence. The input sequences are located around the
transcription start site (TSS) of genes, as it has been shown that promoter sequences play a
primary role in determining gene expression.

Xpresso. Xpresso [9] is one such method that consists of two convolutional blocks
and two fully connected layers to predict gene expression levels. The model is trained on
normalized RNA-seq data across 56 tissues and cell lines from the Epigenomics Roadmap
Consortium [10]. There are two types of Xpresso models, one where the model is trained
on median expression data across cell types, and another where models are trained on cell-
type specific expression. As found through cross-validation, the optimal input sequence for
Xpresso is a small 10.5kb region asymmetrically centered around the transcription start site
(TSS). The median cell type model achieved an R2 of 0.54 when predicting median expres-
sion, while cell-type specific models were initially only able to achieve a best R2 of 0.51 when
predicting cell-type specific expression. The residuals were shown to be consistent with our
biological understanding of cell-type specific regulatory elements, where overrepresentation
of certain enhancers and silencers skewed the distribution of residuals. Additionally, includ-
ing mRNA half-life estimates as features improved performance, by capturing the impact
of post-transcriptional regulation as well. When visualizing saliency scores computed for
the input DNA sequence, it was found that the model assigns the greatest importance to
the 1kb sequence (the core promoter sequence) centered on the TSS, in accordance with
experimental results.

Basenji2. While promoters are close in proximity to the TSS, enhancer regions are
frequently found within a 100-150kb region upstream and downstream [11]. In order to
capture these more distal interactions, models would need to increase their receptive field
to consider a significantly larger input sequence. Basenji2 [12, 13] makes progress towards
this goal, increasing the input sequence to 131kb and the receptive field to 44kb, adding
more vanilla convolutional layers, and introducing dilated convolutional layers that allow
the model to consider exponentially larger areas in the input sequence and capture a greater
diversity of interactions between different regulatory elements. The model is trained in a
multitask fashion, predicting other epigenetic features and markers of regulatory activity in
addition to transcript abundance as measured by CAGE. Basenji2 is able to significantly
outperform Xpresso, achieving a Pearson correlation of 0.85 between log prediction and
log experiment across all tested genes. Basenji2 performance does suffer for more variable
genes, however. Although Basenji2 does learn that these genes display a higher diversity
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in expression levels, it does not predict the full range of variability. However, the benefit
of the wider receptive field of Basenji2 is reflected in the saliency scores. Basenji2 picks
up on the effects of the promoter sequence, similar to Xpresso, but also identifies enhancer
and silencing motifs. This implies that Basenji2 could be useful for fine-mapping eQTLs,
and it was found that Basenji2 achieves statistically significant correlation in predicting
the direction of effect of regulatory variants in the Gene Tissue Expression (GTEx) data
[14]. However, the convolutional architecture of Basenji2 still limits its ability to learn
relationships between distal elements.

Enformer. In order to overcome this burden of locality while still taking advantage of
the propensity of CNNs to recognize sequence motifs, Enformer [15] replaces the dilated con-
volutions of Basenji2 with a self-attention mechanism inspired by work in natural language
processing (NLP). Self-attention [16] has been utilized in Transformer architectures to facil-
itate the learning of long-range dependencies within sequence in a computationally efficient
and simple manner. These architectural changes lead to improvements in cell-type specific
expression predictions over Basenji2 [15]. In addition, the Enformer model takes in an even
larger input sequence, 196kb, and is able to more reliably predict expression for genes with
high and low variance in the CAGE datasets. Further study of the attention mechanisms
revealed that the model developed a much better understanding of tissue-specific regulatory
elements, which led to improved predictions of direction of effect for GTEx eQTLs.

ExPecto. The final method evaluated implements a hierarchical model, utilizing a con-
volutional neural network to predict various chromatin features based on DeepSEA [17], and
using the results to build tissue-specific linear models to predict expression. This architec-
ture, known as ExPecto [18], is trained on Roadmap, GTEx, and ENCODE [19] expression
and regulatory feature data. Since epigenetic marks play a central role in regulating gene
expression [20], predicting epigenetic features such as transcription factor (TF) binding and
histone modifications as an intermediate task helps ExPecto learn differences in expression
across tissue types [18]. This in turn helps ExPecto predict direction of effect when evalu-
ated on significant GTEx eQTL variants. ExPecto was used to interpret GWAS data and
prioritize putative causal variants; for example, the method identified variants that were
pinpointed to be causal across several GWAS, and even prioritized variants that were later
confirmed to be causal in follow-up analyses.

1.3 CAGE and RNA-Seq

Although all of the above methods utilize gene expression data in training, they use datasets
with gene expression measurements from two different methods. In RNA-seq experiments,
RNA is first isolated from a biological sample and converted into complementary DNA
(cDNA). The sequences then go through an enrichment procedure where specific types of
RNA (e.g. messenger RNA, microRNA, etc.) are selected by depleting non-desired forms
of RNA [21]. The reads are then sequenced, aligned, and quantified to determine gene
expression at the granularity of a gene. CAGE experiments, on the other hand, identify
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and quantify the 5’-ends of capped RNA through cDNA cap trappers [22]. Expression is
measured as a continuous output across the genome at single nucleotide resolution [23]. Due
to the gene-level resolution of RNA-seq, it is difficult for models trained on RNA-seq data
to be evaluated on CAGE data, but the opposite task is reasonable. Around the TSS, the
results of both methods are highly correlated with each other, although CAGE is less stable
and reproducible when considering expression at a specific single-nucleotide TSS [24]. In
order to combat this issue, it is common practice to consider a window around the TSS
when quantifying expression predicted by a computational model trained on CAGE.

1.4 Personalized expression prediction

Modern deep learning architectures such as those described above have helped make large
strides in understanding patterns of gene expression in both cell-type specific and agnostic
settings. However, the evaluation of these models has primarily been performed in the
“reference” sequence setting; namely, by evaluating the models’ ability to explain variation
in expression levels across different genes in the transcriptome, using the reference sequence
around each gene TSS as input. To our knowledge, the ability of these models to explain
variation in expression of a given gene across individuals, incorporating personal genome
variation around each promoter sequence, has not yet been evaluated. In this work, we assess
the four above models when applied to personalized genomes for personalized expression
prediction and aim to characterize the strengths and shortcomings of these approaches.
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Chapter 2

Methods

2.1 Dataset

The data used for gene expression prediction was gathered from the Geuvadis consortium [25],
which includes paired gene expression and whole genome sequencing data from individuals
in the 1000 Genomes Project. The E-GEUV-1 release includes mRNA sequencing data from
lymphoblastoid cell lines (LCLs) from a total of 465 samples. After excluding samples with
unphased imputed genotypes, there were 421 Geuvadis individuals with phased whole genome
sequencing data. These samples originated from five different populations with ancestry in
Europe and Africa continents.

2.2 Creation of personalized input sequences

To prepare the samples for gene expression inference, we extracted the personal genome
sequence around each gene for each individual in the dataset. In particular, we constructed
the sequence of each haplotype for each individual centered around the TSS of each gene
using the bcftools consensus command and the personal genome variation data in the Geu-
vadis VCF files. Information regarding the ENSEMBL Gene ID, TSS position, strand, and
chromosome was also obtained from Geuvadis. The gene symbol was acquired using a con-
verter from BioTools [26]. These tables were combined to create a csv file with all necessary
metadata.

The different gene expression prediction methods each have different size receptive fields
and thus required separate personalized input sequences. Xpresso uses an asymmetric input
sequence of 7Kb upstream of the TSS and 3.5Kb downstream of the TSS; thus, the required
input sequence for Xpresso depends on the orientation of the gene. For genes located on
the positive strand, we directly computed the personal sequences. For genes located on the
negative strand, we extracted the reference sequence with swapped boundaries of 3.5kb up-
stream and 7kb downstream, applied bcftools consensus, then took the reverse complement.
The input sequences for Expecto, Basenji2, and Enformer are all symmetric about the TSS.
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Expecto and Basenji2 both have a receptive field of approximately 40kb, while Enformer
has a much larger receptive field of 196kb. All personalized sequences were computed with
a combination of samtools and bcftools.

For our current analysis, we considered only single nucleotide variants (SNVs) and filtered
out indels when creating the personalized input sequences, since SNVs do not change the
length of the input sequence around each gene. Since the Geuvadis VCFs are based on hg19,
we used hg19 as the reference genome for creating personal sequences. After creating these
sequences, we performed a verification step by comparing the number of variants expected
from the VCF file to the edit distance between the reference and personal sequences. Except
where otherwise noted, results are shown across all genes that contained a significant eQTL
in the Geuvadis EUR eQTL analysis.

2.3 Gene expression inference

We predicted gene expression levels for each individual using four state-of-the-art methods,
and averaged the predictions from each individual’s two haplotypes.

Xpresso. We used two pre-trained Xpresso models—human median expression and
lymphoblastoid cell expression—to perform inference with a per-gene fasta as input. Input
fasta sequences for all individuals were combined to create one fasta file for each gene,
containing all of the individual data. The resulting mRNA expression predictions from
Xpresso were stored in a two column plain text format containing the name of the sample
according to the fasta and the predicted log RPKM expression value.

ExPecto. ExPecto predicts tissue-specific expression from sequence alone using deep-
learning-based predictions of transcription factor binding, DNA accessibility, and histone
marks in various cell types. The personalized sequences for each individual were fed into
a pre-trained model (Beluga) that generates predictions of all of these epigenomic features
for the 40-kb region surrounding the TSS, followed by a spatial transformation module as
described in Zhou et al [18]. The resulting spatially transformed features are then used as
input features for an L2-regularized linear regression model in order to predict expression
for a given gene. To obtain expression predictions in a matching cell line to the Geuvadis
experiments, we used the publicly available ExPecto model trained on EBV-transformed
lymphocytes.

Basenji2. Basenji2 predicts expression for 5,313 epigenetic and transcriptional profiles
taken from the ENCODE and FANTOM consortiums in 128-bp bins across the genome.
To obtain expression predictions in a matching cell line to the Geuvadis RNA-seq experi-
ments, we used Basenji2 predictions for CAGE measurements performed on the GM12878
lymphoblastoid cell line. The prediction of expression for a given gene was computed by
averaging the predicted CAGE signals in the bin containing the TSS, the 5 bins upstream of
the TSS, and the 5 bins downstream of the TSS. Since the region closest to the TSS has the
greatest impact on gene expression, we use only these bins closest to the TSS of the gene to
aggregate one value for the predicted expression of the gene of interest.
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Enformer. Enformer utilizes 196kb of personalized input sequence and predicts expres-
sion for 5,313 epigenetic tracks in 128 bp bins across 114,688 bp, so the predictions are of
length 896 for each haplotype. While the authors of Enformer averaged predictions within
a 3-bin window around each gene TSS, we found that the 5-bin range (as also used above
for Basenji2) had better performance on the Geuvadis data.
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Chapter 3

Results

We started by visualizing the RNA-seq data provided in Geuvadis. We look at the distri-
butions of median expression (Fig 3.1a) and variance of expression (Fig 3.1b), noticing the
heavy right skew of the data. These patterns are to similar to those of the experimental
expression data in GTEx [9] and serves as a baseline check for our expectations of these
models on Geuvadis data. The measurements made in RNA-Seq are often noisy, so we could
reasonably expect a small drop in performance.
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(a)

(b)

Figure 3.1: Visualized distributions of median (a) gene expression and variance (b) of gene expres-
sion for all genes with a significant eQTL in Geuvadis. The expression values are all transformed
by log10(RPKM + 0.1).
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3.1 Computational models tend to underperform on

individuals

In order to characterize the general performance of these methods after inference, we calcu-
lated the correlation between the Geuvadis and predicted expression.

(a) (b)

(c) (d)

Figure 3.2: Distribution of Spearman correlations between predicted expression and Geuvadis ex-
pression. The correlations are calculated for Xpresso (a, b) and Basenji (c, d). The left distributions
show the correlations computed for predictions across each gene (so there are 3000+ correlations),
and the right distributions show the correlations computed for predictions across each individual
(so there are 463 correlations). The data for all genes for Expecto and Enformer is not currently
available.

The distribution of Spearman correlations for Xpresso and Basenji when computed across
genes (Fig 3.2a and 3.2c) is approximately normal and centered at 0. This suggests that
these methods tend not to be capturing the relationships between variants for many of these
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(a) (b)

Figure 3.3: Xpresso (a) and Basenji (b) predictions on reference sequence for all genes versus the
median log10 Geuvadis expression. The data is currently unavailable for Expecto and Enformer.

genes. Since, Xpresso and Basenji are trained on reference sequences for several different
genes, this likely indicates that with this training procedure, the models are able to learn a
representation for general important regulatory motifs, but fail to understand the nuances of
single nucleotide variants in these motifs. We also see the models misconstrue associations
since a large chunk of genes have negative correlations. We do, however, note that when
the correlations are computed across each sample, the distribution for Xpresso (Fig 3.2b) is
centered at a 0.320 Spearman r versus Basenji (Fig 3.2d) at 0.509 Spearman r. These results
testify that Xpresso and Basenji have shown a propensity to learn the general expressivity of
each gene. Although we do expect the correlations to be lower than what was reported in the
respective articles, the drop in correlation from predictions (Fig 3.3) on reference sequence
to predictions on individuals entails that these sequence-to-expression models underperform
when tested on individuals.

To investigate this phenomenon a bit further, we specifically focused on genes that were
measured to have high variance in expression across individuals (Fig 3.4). The models exhibit
a relatively high variance in the predictions, although there is a systematic reduction in
absolute range of the expression when compared with that of the experiment. Basenji2 (Fig
3.4c) more heavily compresses the variance even further, consistent with the findings when
it was trained that the model consistently underestimates the degree of variance [12]. RNA-
seq experiments often suffer from biological and technical noise generated from transcription,
enrichment procedures, and other factors associated with sequencing [27, 28]. The deeper
network with several convolutional and pooling layers likely acts as a denoising mechanism
that can limit the dynamicity in prediction variance. We additionally analyzed the edit
distance of each of the predictions to gather insight into how these models react to the
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(a) (b)

(c) (d)

Figure 3.4: Shows predicted expression versus Geuvadis expression for the high variance gene
HLA-B colored by the edit distance for an individual from the reference sequence. The resulting
expressions are shown for Xpresso (a), Expecto (b), Basenji (c), and Enformer (d). Spearman r is
only shown for Xpresso and Enformer.

consensus sequences. These models, especially Xpresso (Fig 3.4a), tend to understand that
a higher volume of variants in the sequence lead to more varied expression.

We further inspected lower variance genes to see if the trend still holds. In accordance
with our expectations, the variance in predictions has been significantly restricted (Fig 3.5).
Low abundance-low variance scenarios such as CPAMD8 seem to be much more difficult
for the models to understand as the relationship between number of variants and expression
starts to break down. Interestingly, in both the high variance and low variance scenarios,
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Xpresso predictions (Fig 3.4a and 3.5a) have the wrong sign, which could be a result of the
smaller receptive field.

3.2 Methods can learn signficant eQTLs but struggle

with direction of effect

While the methods had poor correlation with the high and low variance genes, we were
next interested in understanding how these methods performed on genes with the most
significant eQTLs as identified by Geuvadis. We subsetted to find genes with significant
eQTLs within the Xpresso’s receptive field since it is the smallest, and focused on the top 10
most significant eQTLs. We cannot reasonably expect Xpresso to perform well in predictions
when the significant determinants of expression lie outside the input sequence. Two of the
chosen genes, SNHG5 (Fig 3.6) and PEX6 (Fig 3.7), are shown here. Within both genes,
we see a clear three clusters of predictions forming with a high magnitude in correlation.
While the clustering could initially seem to be related to the number of variants, analyzing
the predictions as a function of dosage of the putatively causal SNP (Fig 3.8 and 3.9) reveals
that the methods are capable of identifying very significant loci contributing to expression.

Crucially, while the models may learn to recognize significant variants, the models may
not always understand the correct direction of effect. In SNHG5, Expecto (Fig 3.8b), Basenji
(Fig 3.8c), and Enformer (Fig 3.8d) all predict a negative direction of effect while rs1059307
variant actually increases expression. Xpresso (Fig 3.8a) is the only method that manages to
capture this relationship, which could be due to a combination of the close proximity of the
SNP to the TSS and the smaller receptive field. Up-regulation of SNHG5 has been shown
to be associated with elevated tumor growth [29] so the methods with longer receptive fields
could be considering silencing regulatory features when predicting expression. The models
are all shown to agree for PEX6, but further experiments would need to be conducted as to
the difference in importance of features between the two genes.

Additionally, we consider the difference in expression between the reference sequence
and the reference sequence with the alternate allele at the most significant SNP (alternate
sequence), and are shown in Figures 3.8 and 3.9. For all methods, the difference between
reference and alternate do not span the entire range of variance of the predictions. Given
that the predictions have more than one variant and there are explicit clusters of predictions,
this likely suggests that these significant variants are in LD. Groups of variants within these
receptive fields are likely inherited together or are more likely to co-occur, leading to the
additional scope of predicted abundance.

The discordant opinions of the models on direction of effect prompted a more extensive
study of the top eQTLs. We computed SNP expression difference (SED) scores, which is
defined as the difference in expression between the earlier computed reference and alternate
sequences. When plotted against the experimentally determined directions of effect, we
see gradual improvements with respect to the complexity of the models (Fig ??). As these
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(a) (b)

(c) (d)

Figure 3.5: Shows predicted expression versus Geuvadis expression for the low variance gene
CPAMD8 colored by the edit distance for an individual from the reference sequence. The re-
sulting expressions are shown for Xpresso (a), Expecto (b), Basenji (c), and Enformer (d). The
Geuvadis expression is log transformed for all methods, and Spearman r is only shown for Xpresso
and Enformer.

models are able to capture and incorporate more distal information, they are more capable in
ascertaining the appropriate direction of effect. The multi-task nature of Basenji also entails
that developing a common representation for a more diverse set of regulatory features proves
more helpful when considering direction of effect. Aggregating and integrating information
from all the changes in regulatory features offers a much more complete picture of the
mechanisms involved in affecting expression.
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(a) (b)

(c) (d)

Figure 3.6: Shows predicted expression versus Geuvadis expression for the gene SNHG5 by the
edit distance for an individual from the reference sequence. The resulting expressions are shown
for Xpresso (a), Expecto (b), Basenji (c), Enformer (d). Spearman r is only shown for Xpresso and
Enformer.

Finally, we measured the agreement of these models on predictions within the set of
582 eQTLs we studied. The average correlation between these four methods (Fig 3.11a)
seems suggest that Xpresso predictions are relatively random in comparison. However, when
observing the correlations on individual genes, we see that Xpresso tends to strongly agree
or disagree with the other methods. It is reasonable to expect Basenji and Enformer to have
relatively similar prediction patterns given that Enformer inherits from Basenji [15], however
we see that in the case of KLHL7-DT 3.11d, this is not always true. The transformer layers
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(a) (b)

(c) (d)

Figure 3.7: Shows predicted expression versus Geuvadis expression for the gene PEX6 colored by
the edit distance for an individual from the reference sequence. The resulting expressions are shown
for Xpresso (a), Expecto (b), Basenji (c), Enformer (d). Spearman r is only shown for Xpresso and
Enformer.

may allow Enformer to more effectively attend to signals directly around the TSS.
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(a) (b)

(c) (d)

Figure 3.8: Shows predicted expression versus Geuvadis expression for the gene SNHG5 colored
by the dosage for the most significant SNP. The resulting expressions are shown for Xpresso (a),
Expecto (b), Basenji (c), Enformer (d). Spearman r is only shown for Xpresso and Enformer.
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(a) (b)

(c) (d)

Figure 3.9: Shows predicted expression versus Geuvadis expression for the gene PEX6 colored
by the dosage for the most significant SNP. The resulting expressions are shown for Xpresso (a),
Expecto (b), Basenji (c), Enformer (d). Spearman r is only shown for Xpresso and Enformer.
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(a) (b)

(c)

Figure 3.10: SED scores for Xpresso (a), Expecto (b), and Basenji (c) plotted against direction of
effect of all eQTLs within the receptive field of Xpresso. The black dashed line represents a SED
score of 0, which means a variant has no effect on the expression from reference. The data all of
these genes is not yet available for Enformer.
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(a) (b)

(c) (d)

Figure 3.11: Heatmap of Spearman correlations across the predicted expressions of the four meth-
ods. The correlations are averaged (a) across all 10 genes containing the most significant eQTLs.
The correlations for 3 of those individual genes are also shown: SNHG5 (b), SLFN5 (c), and
KLHL7-DT (d).
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Chapter 4

Discussion

4.1 Conclusions

Recent advances in deep learning have led to improved models for predicting gene expression
from genetic sequences. These large networks are able to learn increasingly complex func-
tions; in the biological setting, this has translated to an improved capacity to understand,
characterize, and uncover complex regulatory interactions within long input sequences. How-
ever, the clinical applications of these sequence-to-expression models are largely unexplored.

We establish a framework and analyze the performance of four state-of-the-art sequence-
to-expression architectures—Xpresso, ExPecto, Basenji, and Enformer—on personalized ex-
pression prediction. These models, while successful in learning sequence features that ex-
plain variation in expression across different genes in the genome, consistently underperform
when predicting differences in expression across individuals based on a smaller set of inter-
individual differences in the input DNA sequence. Although these models possess the ability
to recognize some regulatory variants, they do not reliably predict the effects of those vari-
ants on expression. While current state-of-the-art models may still be unsuited to personal
genome interpretation, we propose some strategies for improving these models below.

4.2 Future Work

We suggest several further experiments to confirm our findings and offer a few avenues of
exploration to consider for improving performance on personal genomes. We first plan to
repeat these experiments on additional datasets, such as GTEx [14], to confirm the results
of this study. In addition, a current shortcoming of the analyses above is the lack of con-
sideration of insertions and deletions within the personal genome sequences. Indels are an
important contributor to variance in human gene expression [30] that could partially explain
differences between predicted and experimentally measured expression levels. The addition
of mRNA half-life features could also improve the accuracy of these predictions; for example,
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new methods that aim to predict half-life from sequence could be incorporated into these
models [31].

Finally, we plan to implement new training and fine-tuning procedures for these models
to determine whether it is possible to improve their sensitivity to small changes in input
sequences. In particular, instead of training solely on reference sequence, we aim to include
paired personal genome and expression data in the training of these models and analyze
changes in the important features learned by the models.
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