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Abstract

Coverage Path Planning in Dynamic Environment through Guided Reinforcement Learning

by

Ming Lung Raymond Chong

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Claire J. Tomlin, Chair

Path planning for mobile robots has been, and remains, a design and development challenge.
In addition to well known path planning tasks such as searching for a shortest path from a
start point to its end, Coverage Path Planning (CPP) is a task to design a trajectory by which
agents can traverse every point in an area of interest. Generating an e�cient CPP algorithm
is, therefore, far more challenging than calculating a shortest path. In particular, environ-
ments with both static and dynamic obstacles require robots to navigate e�ciently while
simultaneously avoiding obstructions and other potential agents. Traditional approaches to
address the challenges that dynamic obstacles introduce often require replanning strategies
for coverage as the environment changes. Such replanning mechanisms and computations
are both expensive and suboptimal, often resulting in path detours.

In this report, we first investigate several methods for conducting CPP with dynamic obsta-
cles using a graph search algorithm (Spanning Tree Coverage) and on-policy reinforcement
learning algorithm (Proximal Policy Optimization) separately. Then, we introduce a guided
reinforcement learning approach for CPP which incorporates a unique reward structure as
well as additional coverage information generated from Spanning Tree Coverage to help guide
the reinforcement learning agent algorithm. We evaluate our proposed algorithm, Coverage
Path Planning through Guided Reinforcement Learning (CPP-GRL), across di↵erent set-
tings (grid sizes and obstacle locations) and compare with prior research methods. Exper-
imental results show that CPP-GRL generalizes well for both stochastic and deterministic
moving obstacles and performing very similarly to other control-based and learning-based
algorithms, but with fewer constraints (such as following specific control laws) and lower
computational power (such as using Convolutional Neural Network instead).
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Chapter 1

Introduction

Advances in reinforcement learning have a↵ected applications ranging from image classifi-
cation and voice recognition to text translation and robotics. Much literature and research
has focused on reinforcement learning techniques in path planning, particularly concerning
robotic systems, optimal control, and global minimum cost for multi-agent systems [5], [16],
[11].

Motivations of CPP are inspired in applications such as cleaning robots and agriculture.
With drones conducting CPP on agriculture farmland, it is not su�cient to find any route
that completely covers the land but rather a path that is optimal in order to minimize
certain costs (such as batteries in the drones). In the area of precision farming, the CPP
problem is presented for tasks such as harvesting, seeding, spraying, applying fertilizer or
taking imagery of the land. One particular application is deploying drones onto farmland
to take imagery of the land while avoiding the cloud shadows. According to NASA [13], ap-
proximately two thirds of the surface of the Earth is covered by clouds at any given time. As
a result, clouds cast shadows on the ground can interfere with the interpretation of multi-
spectral and hyper-spectral image data. Hence, one can first develop a Long short-term
memory (LSTM) neural network model for predicting the cloud movement. From there, the
prediction can help assist the trajectory planning and decision making of the drones. More
detail of the application can be found at Chapter 6.

In many existing path planning algorithms, both graph-based and learning-based, main ob-
jectives include minimizing cost (determined by the weights of the edges) and finding the
shortest path. Examples of traditional path planning algorithms, such as Dijkstra’s, A* and
Sampling-based algorithms (like RRT, etc.) are beneficial but often involve oversimplified
real-life scenarios [10]. With a learning-based approach, however, the agent can adapt to a
dynamic environment. Currently, within learning-based literature, there is limited research
focusing on coverage path planning or, more precisely, coverage path planning with dynamic
moving obstacle avoidance given a fixed coverage map.
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With all the above in mind, this project aims to develop a reinforcement learning agent that
masters coverage path planning while avoiding dynamic moving obstacles along its trajec-
tory. The main objective is to develop an algorithm/agent that can conduct coverage path
planning with dynamic obstacles in a fully observable environment with information on the
evolution of dynamic obstacles over a fixed time-horizon.

In this work, we introduce a guided reinforcement learning approach, incorporating existing
benefits of reinforcement learning algorithms and traditional coverage path planning using
graph search algorithms. We use coverage path planning with guided reinforcement learning
(CPP-GRL) to address the problem of conducting coverage in an area with dynamic obsta-
cles.
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Chapter 2

Background

Past works on coverage path planning algorithms can be broken down into two main types
of technique: graphical-based and learning-based approaches. Both present their benefits
alongside challenges for coverage path planning tasks.

2.1 Spanning-Tree Coverage (STC)

The STC algorithm [6] is a graphical search-based coverage path planner that computes the
optimal robot path in the minimum number of steps, given some assumptions. The STC
takes O(N) runtime where N, the number of cells comprising the area, represents the size of
an area of interest. It first subdivides the work-area into disjoint cells corresponding to a 2D
grid with square cells. Next, the STC converts the cells into nodes and connects the edges
of those nodes with adjacent ones. Once connected, the nodes and edges can be represented
graphically, and if the graph is connected, a minimum spanning tree can be constructed. In
cases where the weights of the edges are equal, multiple minimum spanning trees become
possible. By circumnavigating the Minimum Spanning Tree (MST), one can generate a
coverage path for the given 2D grid. An example of the STC algorithm is shown in Figure
3.1.

2.2 Proximal Policy Optimization (PPO)

Developed by OpenAI, Proximal Policy Optimization (PPO) [14] is a Deep Reinforcement
Learning (DRL) algorithm based on the concept of Policy Gradient. Policy Gradient is an
on-policy RL method as it attempts to optimize the agent’s policies ⇡ directly by apply-
ing stochastic gradient ascent to the policy parameters. More specifically, within the DRL
framework, a Deep Neural Network (DNN) [12] is used to facilitate the mapping of actions
a 2 A to states s 2 S. One of the advantages of Policy Gradient based algorithms is that the
training data is used only once and then discarded, which helps limit the amount of memory
needed for training. However, this approach also reflects poor data e�ciency as compared to
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other Q-learning methods such as Deep Q-Network (DQN), where sample data can be used
multiple times.

The goal of an agent in a reinforcement learning is to maximize the discounted cumulative
reward function R(⌧), ⌧ = (s0, a0, s1, a1, ...) from the current state up to a terminal state at
time T . With a movement budget, the discounted cumulative reward function is defined as
a finite horizon sum, which can be represented as

R(⌧) =
TX

t=0

�
t
rt (2.1)

with the discount factor � 2 [0, 1] encoding the importance of immediate and future rewards.
rt represents the reward the agent receives for taking action, at, at time step, t. The output
is maximized by training the agent’s policy ⇡. The policy can be deterministic with ⇡(s)
such that ⇡ : S ! A or probabilistic with ⇡(a|s) such that ⇡ : S ⇥ A ! R, resulting in a
probability distribution over the action space for each s 2 S.

Policy: A policy in RL focuses on maximizing the expected discounted cumulative reward
by mapping states or observations to actions. A policy provides a probability distribution
over actions given states, that fully define the behavior of the agent. While most policies
can be deterministic, they are often stochastic. ⇡(s, a) is the probability of taking action a

in state s under policy ⇡.

Q-Function: Q⇡(s, a) is the expected value of the return of the policy after taking action a

in state s and therefore following ⇡.

Q
⇡(s, a) = E⇡[R(⌧)|s, a] (2.2)

Value-Function: V ⇡(s) is the expected value of the return of the policy in state s

V
⇡(s) = E⇡[R(⌧)|s] (2.3)

V
⇡(s) can be described as the weighted probability average of discounted cumulative rewards

over all possible actions in state s. Hence, the relationship between Q-function and value
function can be expressed as

V
⇡(s) =

X

a

⇡(s, a)Q⇡(s, a) (2.4)

Policy Gradient: Building o↵ the foundation of the definition of a policy, a policy gradient
method focuses on optimizing a parameterized policy ⇡✓ and ✓ represents the parameters
learned from the data during training. For example, if neural networks were used for training,
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✓ represents the weights in the neural network. In policy gradient method, one can define
the objective function as the expected discounted cumulative reward

J(✓) = E⇡✓
[R(⌧)] (2.5)

Therefore, one seeks ✓⇤ which maximizes J(✓) such that

✓
⇤ = argmax

✓
J(✓) (2.6)

Advantage Function: The advantage function, which reflects how advantageous a given
action a is compared to the expectation of all actions is defined as:

A
⇡(s, a) = Q

⇡(s, a)� V
⇡(s) (2.7)

Policy gradient methods work by computing an estimator of the policy gradient and plugging
it into a stochastic gradient scent algorithm. Let Ât as a estimator of the advantage function.
Using the definition of R(⌧) and linearity of expectation, one can deriver✓J(✓). A commonly
used gradient estimator follows the form

r✓J(✓) = E⇡✓

"
TX

i=0

r✓ log(⇡✓(st, at))R(⌧)

#
⇡ E⇡✓

"
TX

i=0

r✓ log(⇡✓(st, at))Â
⇡(st, at)

#
(2.8)

Since the policy ⇡✓ is represented by a neural network, the focus is thus on the policy loss
which can be defined as

L
PG(✓) = E⇡✓

"
TX

i=0

r✓ log(⇡✓(st, at))Â
⇡(st, at)

#
(2.9)

L
PG(✓) is the general loss function for policy gradient method. PPO, PPO-Penalty, PPO-

Clip are specific policy gradient methods. Below is the algorithm used for PPO-Clip.



CHAPTER 2. BACKGROUND 6

Algorithm 1: PPO-Clip
Input: Initial policy parameters ✓0, initial value function parameters �0

Output: A stochastic or deterministic policy ⇡
⇤

for k = 0, 1, 2, ... do
Collection set of trajectories Dk = ⌧i by running policy ⇡k = ⇡(✓k) in the
environment
Compute reward-to-go R̂t

Compute advantage estimates, Ât based on the current value function Vk

Update the policy by maximizing the PPO-Clip objective:

✓k+1 = argmax
✓

1

|Dk|T
X

⌧2Dk

TX

t=0

min

✓
⇡✓(at|st)
⇡✓k(at|st)

Â
⇡✓k (st, at)

◆

*typically via stochastic gradient ascent with Adam
Fit value function by regression on the mean-square error:

�k+1 = argmin
�

1

|Dk|T
X

⌧2Dk

TX

t=0

⇣
V�(st)� R̂t

⌘2

*typically via some gradient descent algorithm
end

2.3 Prior Work

Although coverage path planning with dynamic obstacles is an unexplored branch of CPP,
there have been several previous related works. These focus on coverage path planning with
specific applications in UAV and mobile cleaning robots with static obstacles, and existing
research is divisible into two di↵erent categories: graphical search-based and reinforcement
learning-based. All prior work has focused on one of these two approaches.

In 2011, Marija Dakulovic, Sanja Horvatic, and Ivan Petrovic proposed a coverage D* algo-
rithm for path planning in a floor-cleaning mobile robot [4]. In 2014, Zengyu Cai, Shuxia
Li, Yong Gan, Ran Zhang and Qikun Zhang also proposed a coverage planning algorithm
for cleaning robots [3]. Both graphical techniques demonstrated ability to conduct coverage
on deterministic path planning given static obstacles with high coverage rates and low rep-
etition rates using D* and A* searches.

In addition to static obstacles, there has been research on CPP in unknown moving obstacles
avoidance where researchers propose a time varying density function, which represents the
importance of each point of interest and helps the system to avoid collision with obstacles.
In [9], a Lloyd Newton method was proposed to have an optimal coverage control of time
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varying density function. Kooshkbaghi and Abdollahi [8] later presented a control law that
makes the agent follow an unique density function while avoiding unknown moving obsta-
cles for optimal coverage. Although the algorithm has been proven to outperform previous
methods, such as Lloyd method, it is worth noting the design of the time varying density
function has to be continuously di↵erentiable.

As reinforcement learning increased in popularity with robotic applications, researchers be-
gan investigating the application of RL to coverage planning problems. In their respective
publications, Boufous and Theile presented coverage path planning solutions that employed
Deep Q-Network (DQN) and Double Deep Q-Network (DDQN) [15]. Their algorithms were
able to achieve 95% coverage with an agent given a limited number of time steps. As noted,
the problem becomes much more challenging with dynamic moving obstacles should the
agent need to avoid them while conducting coverage.

In addition to the pure learning-based approach, researchers also investigated hybrid ap-
proaches. In [7], the authors presented a hybrid RL approach, BA* wherein the agent has a
partially observable view of the entire environment through a 3D sensor and begins covering
the free areas of the environment by using a simple zigzag movement. When it reaches a
point where there is no free area surrounding itself, the robot re-positions to an available
free area as identified while performing the zigzag movement. Since there can be several
free areas, as well as multiple possible paths to them, BA* deploys the A* search to find
the closest one. However, due to the use of complex image-based observation and the DQN
algorithm, the agent needs to be trained for more than 20,000 episodes.
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Chapter 3

Methodology

Graphical-Based Search Approach: While Spanning-Tree Coverage (STC) Algorithms
are capable of conducting complete coverage on a two-dimensional grid with static obstacles
(where the dimensions must be even), we find it di�cult to directly adapt such an algo-
rithm to dynamic moving obstacles. In section 3.1, we present three di↵erent graph-based
approaches.

Learning-Based Approach: Following the three graph-based methods, we present ad-
ditional reinforcement learning approaches: a naive method and a guided reinforcement
learning method in section 3.2.

3.1 Graph-Based: Constant Re-planning STC

The first and simplest solution is to apply the STC algorithm at each time step and re-plan
accordingly with respect to the new state of the dynamic obstacles. Additionally, we in-
corporate the information from previously covered regions to inform the agent that these
regions have been dealt with. An example of one iteration of STC is shown Figure 3.1.

More specifically, at time step i, the algorithm first subdivides the area of interest into 2D
cell sizes and discards cells that have been previously visited or are currently being covered
by obstacles at time step i. Then, a graph structure G(V,E) is defined whereby the nodes
V are the center points of each cell and the edges E are line segments that help connect
these nodes to adjacent ones. Next, the algorithm constructs a spanning tree for G where a
coverage path can then be generated surrounding the spanning tree. The agent then takes
one step in the direction of the generated path. The process repeats until all cells have been
visited.

Since running the STC algorithm for one agent at each time step takes O(N) runtime, where
N represents the number of tiles (the area of interest broken down into square-shaped 1x1
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cells) to cover, the maximum number of replannings (assuming no static obstacles) is also
N. As a result, the total runtime required using this method is O(N2). However, we must
also be aware of several edge cases and some heuristic designs when picking the path. We
discuss this in later sections.

Figure 3.1: A simple guide to STC, Red = Agent, Blue = Obstacle

Heuristics Design

As previously mentioned, the STC algorithm can return more than one possible path (given
the number of possible spanning trees); hence, it is critical to pick a path that minimizes the
number of turns required. Since in actuality, each turn would require the agent to change
direction (and thus necessitate the use of more energy/power), we impose a penalty every
time the agent makes a turn. Thus, in the proposed algorithm, at each time step during
replanning, the agent chooses the path with the minimum number of turns as shown in
Figure 3.2.
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Figure 3.2: Examples of Di↵erent STC Generated Paths

Edge Case

The STC algorithm is only capable of conducting complete coverage on a grid that is not
obstructed or blocked by obstacles. In the event that the obstacles/covered regions transform
the grid into disjointed sets S, the proposed algorithm will run the STC algorithm on the S
disjointed sets. The disjointed sets will then be connected via the most inexpensive distance
to other sets to ensure connectivity of the entire grid.

Figure 3.3: Examples of Connecting Two Disjointed Set
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Algorithm 2: Constant Re-planning STC Algorithm
Input: A geometrical description of the Map, agent’s position a, obstacles
movements list obs
Output: A coverage paths P
Initialize: 2D-Grid  Map;
k  0;
N  size(Map);
(ax, ay) a;
V isited [];
while k < N do

if len(Map) > 1 then
recursive ; /* If map is not connected (have disjoint set) */

else
G(V,E) obs[k] ; /* Construct MST */

action, step G(V,E) ; /* Takes action from MST path */

k  k + 1;
visited visited+ step;

end
P  visited;

end

3.2 Graph-Based: Longest Path with Time Available
Function

Time Available Function: To help ease and simplify the di�culty of CPP with dy-
namically moving obstacles, we designed a Time Available Function which is capable of
providing the future movement of the obstacles. As a result, the moving obstacles are no
longer stochastic but rather deterministic for a certain time frame into the future. The Time
Available Function aids in converting the information regarding a cloud into a value on each
tile on the grid. Each value represents the remaining time (in seconds for example) during
which the agent can perform coverage before obstacles arrive.

Using the Time Available Function, we have derived a Find Longest Path algorithm
to detect the longest possible path that is valid under the Time Available Function. More
specifically, at every time step i, a tile is valid as part of the longest path if the value on the
tile is � i.. In the event of multiple valid paths with the same lengths, the agent chooses the
one with the least number of turns required for coverage.

The algorithm starts by generating and assigning values to tiles on the grid. The agent then
follows the above-mentioned rules to find the longest possible path. The algorithm resets
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when the agent reaches the end of its determined/programmed path. At this point, the tiles
that have been visited will be assigned with values of infinity so that the covered tiles remain
valid pathways that can still be used to reach those with limited time available for coverage.
The process continues until all tiles have been visited.

Figure 3.4: A complete example of Longest Path with Time Available Function

3.3 Graph-Based: Longest Path with Time Available
Function with STC

While both of the above approaches are feasible, it is important to note their potential flaws.
More specifically, re-planning with STC at every time step is infeasible with a larger dimen-
sional grid, and Find Longest Path may lead to a single region being visited repeatedly.
With those challenges in mind, we plan to combine these approaches to build a hybrid solu-
tion, taking the benefits from both algorithms. Initially, the resulting algorithm will iterate
through all the tiles on the grid, breaking it into smaller islands by the following formula
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and condition (Equation 3.1). Once the grid is broken down, the agent will treat the islands
as one singular tile/node and run the Find Longest Path algorithm previously mentioned.
Having done so, the agent will iterate through the islands and run STC on each one.

Given a N x N grid, we denote c1, c2, ...cw as the considered clusters of cells in the N x N
grid as one island if

min(c1, c2, ...) > floor(1.5 ⇤ w) (3.1)

The intuition beside the design of the equation comes from the fact that if the agent happens
to start in the middle cells of any given island, it has the ability to traverse to one end and
still has time to traverse to the other end of the island.

Figure 3.5: A simple guide to Longest Path-STC

3.4 Learning-Based: RL Coverage Path Planning on
Static Obstacle

To fully comprehend and appreciate the power and benefit reinforcement learning introduces
in coverage path planning in an environment with dynamic obstacles, we first establish a
baseline model whereby we trained an agent on static obstacles. Results in the static obstacle
environment enabled us to better compare and analyze the di↵erent methods discussed later
with dynamic moving obstacles. With the added benefits of the previously discussed policy
gradient methods, we then investigated the performance of well-established DRL Proximal
Policy Optimization (PPO) techniques.

In this section, we will present the preliminaries of the considered problem. A completed
coverage path planning is characterized by the following attributes: Consider K static point
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of interest in a 2D grid where the agent is interested in conducting coverage. More specifically,
we denote each variable with the following notations

• Movement Budget: B

• Total Area Visited: V

• Obstacles Positions (for K obstacles): obs = [(obs1x, obs1y), (obs2x, obs2y), ...(obsKx, obsKy)]

• Agent Position: agent = (ax, ay)

An MDP is described by the tuple (S,A,R, P ), with the set of possible states S, the set of
possible actions A, the reward function R, and the deterministic or stochastic state transi-
tion function P : S ⇥ A! S.

Action Space: The action space A is defined as five discrete actions:

A = {up, down, left, right, stay}

Observation Space: In a NxN grid, the observation space S has the following dimensions:

S = R2
|{z}
position

⇥ RK⇥2
| {z }
obstacles

⇥RN⇥N
| {z }
Map

⇥ R1
|{z}

Coverage

For obstacles positions and map positions, they are all computed in relative distance from
the agent’s current position.

Reward Function: The immediate reward function ri(si, ai) consists of three components:
the newly visited reward, previously visited reward, and obstacles penalty. At time i, we
denote state as si and action as ai The coverage reward is designed as

ri(si, ai) =

8
<

:

10 newly visited
�1 collision with obstacles or boundaries
�0.1 ⇤W previously visited (W represents # of time visited)

Following the formulation of PPO and the above specification, we used a 2-layers multilayer
perceptron (MLP) with 64 units per layers with Tanh activation function.
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Figure 3.6: An example of coverage on static obstacle

3.5 Learning-Based: RL Coverage Path Planning on
Dynamic Obstacle

Once we established a baseline static obstacle policy, we proceeded with dynamic moving
obstacles, where they were able to move in any of the four directions uniformly. Additionally,
the agent’s speed was double that of obstacles’ speed. The action space, observation space,
and reward function remained the same.

Figure 3.7: An example of coverage on dynamic obstacle

3.6 Learning-Based: RL Coverage Path Planning on
Dynamic Obstacle with Memory

To determine the impact moving obstacles have on coverage path planning, we encoded one
step of future movement of the dynamic obstacles within the observation space for the agent
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to better learn. The updated observation space in a grid has the following dimensions:

S = R2
|{z}
position

⇥ RK⇥2
| {z }

current obstacles

⇥ R2
|{z}

future obstacles

⇥RN⇥N
| {z }
Map

⇥ R1
|{z}

Coverage

With the added benefit of one-step future obstacle position information, we hypothesize that
the agent can more e�ciently conduct coverage path planning.

Figure 3.8: An example of coverage on dynamic obstacle with memory

3.7 Learning-Based: Guided RL Coverage Path
Planning on Dynamic Obstacle

Although a learning-based approach can conduct coverage path planning in a dynamic en-
vironment, the training process was typically longer than that of a static environment as
the di�culty of the objective increases. Hence, to help guide the agent, we decided to also
incorporate the STC algorithm during the learning process. During training of the agent at
each time step, the STC path is computed and fed into the observation space of the agent.
More specifically, the observation space:

S = R2
|{z}
position

⇥ RK⇥2
| {z }

current obstacles

⇥RN⇥N
| {z }
Map

⇥ R1
|{z}

Coverage

where the Map, which represents the tiles on the grid, is multiply with a weighted value
from the coverage path. With such a concept, we anticipate that the agent can accelerate
its learning process.
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Figure 3.9: An example of coverage on dynamic obstacle with STC guided RL algorithm
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Chapter 4

Result

4.1 Graph-Based Approaches

Constant Re-planning STC: Figure 4.1 shows time complexity using the constant STC
re-planning algorithm for N x N grid size. Although the time complexity is reasonable,
the number of revisited cells shown in Figure 4.2, which is a measurement of ine�ciency,
increases linearly with respect to the dimensions of the grid. As a result, such a method is
not scalable for larger dimensional grids.

Figure 4.1: Average Time Complexity for N x N grid using Constant STC Re-planning
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Figure 4.2: Average Number of Revisited Cells in N x N grid

To better explain the cause of the increase in revisited cells, see the example below. (Figure
4.3) As the obstacles and the agent move, all tiles visited are also treated as obstacles –
breaking remaining non-visited cells into three disjointed sets. As a result, the agent needs
to revisit some cells in order to conduct complete coverage.

Figure 4.3: Example of STC Re-planning

Longest Path with Time Available Function: Figure 4.4 shows time complexity using
the Longest Path with Time Available Function algorithm on the N x N grid. Since the
algorithm recursively calls itself until all tiles have been visited, it is interesting to visualize
the coverage rate after the first iteration. Figure 4.5 shows the coverage rate after the first
iteration of the Longest Path algorithm. Additionally, the range of the Time Available
Function is {1, 2, 3, ..., 10} – the range of possible values on each tile.
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Figure 4.4: Average Time Complexity for N x N grid for Complete Coverage

Figure 4.5: Average Coverage Rate for N x N grid after First Iteration of Find Longest Path

Longest Path with Time Available Function with STC: Figure 4.6 shows number of
generated islands using the Longest Path with Time Available Function with STC algorithm
on the N x N grid.
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Figure 4.6: Average Number of Islands for N x N grid

4.2 Learning-Based Approaches

In addition to the 3 graph-based approaches, Table 4.1 present the results (total steps to
complete coverage for a 6x6 grid) for the for the 4 di↵erent learning-based trained models
followed by their RL training metrics.

Env:
6x6 Grid

Static
Obstacle

Dynamic
Obstacle

Dynamic
Obstacle & Memory

Dynamic
Obstacle & STC

Mean
Length

36.934 65.147 65.760 70.548

Min
Length

32 37 38 37

Max
Length

47 205 237 308

Standard
Deviation
Length

2.890 21.314 22.340 26.823

Table 4.1: Results using RL-Based Approaches (in Steps to Complete Coverage)
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Training RL Metrics

Mean Episode Length: Average number of steps the agent takes to complete one episode.

Mean Reward Length: Average discounted cumulative reward the agent receives per
episode.

Approximate Mean KL Divergence: Approximate mean KL divergence between old
and new policy (for PPO), it is an estimation of how much changes happened in the update.

Clip Fraction: Mean fraction of surrogate loss that was clipped (above clip range thresh-
old) for PPO.

Mean Entropy Loss: Mean value of the entropy loss (negative of the average policy en-
tropy)

Explained Variance: Fraction of the return variance explained by the value function.

• Explained Variance = 0, random prediction

• Explained Variance = 1, perfect prediction

• Explained Variance  0, worse than random prediction

Training Loss: Current total loss value according to cross entropy loss.

Value Loss: Current value for the value function loss for on-policy algorithms, usually error
between value function output and Monte-Carlo estimate
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Figure 4.7: Mean episode length

Figure 4.8: Mean Reward length
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Figure 4.9: Approximate Mean KL Divergence Figure 4.10: Clip Fraction

Figure 4.11: Mean Entropy Loss Figure 4.12: Explained Variance

Figure 4.13: Training Loss Figure 4.14: Value Loss
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Chapter 5

Analysis

The results exhibit significant applicability of the proposed algorithm to coverage path plan-
ning tasks.

As evidenced in the first and simplest graph-based approach, Constant Re-planning STC
from Section 3.1, although the computation is O(N2), where N represents the dimensions
of the grid, agents are required to recompute the trajectory at every time step. Even when
the agent does take information regarding the possible future positioning of the obstacles
into consideration, the number of revisited states is still significant as shown in Figure 4.2.
And with the current heuristic design, the agent will also have to revisit multiple previously
visited states. Such a method, therefore, can guarantee complete coverage but is ine�cient.

In the second graph-based approach, Longest Path with Time Available Function from Sec-
tion 3.2, we applied the Longest Path algorithm conditioned on a valid tile as defined by the
time available function and presented our result in Figure 4.4 and Figure 4.5. Although this
method allows the agent to account for future movement of obstacles, it fails to deliver the
most e�cient coverage path. We designed the algorithm using depth-first search (DFS) with
memoization, where each function call of the Find Longest Path algorithm results in the
time and memory complexities of O(N2). Since the agent is constantly replanning until the
grid has been fully visited, the worst case could result in O(N4) for both time and memory
complexities. It is worth noting that this algorithm can generate a more e�cient coverage
path as compared to the first method. Unfortunately, it also experiences high computation
in time and memory complexity.

The final graph-based approach, Longest Path with Time Available Function with STC from
Section 3.3, aimed to combine the previous two methods by (1) breaking the grid into valid
islands, (2) finding the longest path on the islands as a singular node, and (3) visiting the
islands according to the result of Find Longest Path and running STC on each one before
proceeding to the next. The intentions of this method were to (1) increase e�ciency and
remove any heuristic design compared to the first method of constant replanning, and (2)
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reduce the average time and space complexities as the Find Longest Path algorithm is used
on clusters of tiles defined as islands. Results shown in Figure 4.6, however, indicate that
this method may populate too many islands, resulting in essentially the same scenario as
method two, above.

Regarding learning-based methods, and using the specific formulation of the coverage prob-
lem in PPO discussed in Section 3.4, the agent’s performance in static obstacle circumstances
was as expected: it visited every tile exactly once in the minimum case and on average re-
quiring 1.1x time steps to visit all tiles. However, the agent still had a standard deviation
of 2.8 and the maximum number of steps was 5x more than the coverage requirement. All
learning-based methods results are presented in Table 4.1.

In the naive dynamic obstacle setting presented in Section 3.5, the agent was still capable
of conducting coverage with an average of 65 steps and a standard deviation of 21 steps. In
this setup, we certainly expect the agent to require more time steps to conduct complete
coverage as compared to the steps required in static-obstacle circumstances, due to unknown
obstacle movement and direction. The high standard deviation also illustrates the agent’s
instability due to the uncertainty of obstacle movement. To compensate, we designed the
agent to move at 2x the speed of the obstacle.

Since the dynamic obstacles were completely stochastic, it is di�cult for the agent to plan
the optimal path. Hence, we introduced a one-step memory of the obstacle in the agent’s
observation space hoping to achieve better path planning. Such method was presented in
Section 3.6. However, according to the results, the agent is still only capable of achieving
similar success to that of the naive setup. We suspect this will require tuning the reward
function as the current penalty for obstacles is not high enough.

As discovered in previous methods, the agent takes time to learn the objective and plan
for coverage, but fails to find the most e�cient path from time to time. Thus, we aim to
incorporate the graph-based STC algorithm in the RL training process in hopes that the
agent is able to learn faster and perform better (achieving the coverage in fewer time steps
compared to the naive approach). The method, Guided RL Coverage Path Planning on Dy-
namic Obstacle, was introduced in Section 3.7. However, results show that the agent su↵ers
from noise due to the constant replanning path generated from the STC. Another way to
visualize the issue is that the STC path generated at every time step di↵ers dramatically
making it di�cult – for even the human brain – to determine optimal action.
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Chapter 6

Application

Recent robots are equipped with auto-navigation systems that incorporate path planning
techniques. These robots, through the use of sensors and visions (LiDARs, images), are
capable of navigating unknown environments. More specific practical applications involve
conducting coverage path planning via UAVs: coverage on farmland with both static and
dynamic obstacles, for example (such as shadows generated by clouds). Further, with the
rise of aerial robots in precision agriculture, aerial vehicles can be used to better support
management of farm inputs by detecting, locating, and identifying nutrient deficiencies, weed
densities, disease, pest infestations, and crop water status. Such detection enables early in-
tervention to protect crop yields. UAVs will also enable the application of inputs including
fertilizer levels, water management and many more. As a result, growers’ yields are expected
to increase, while they also reduce fuel expenditure, time, cost, quantity of inputs, and en-
vironmental impact.

Agricultural robotic systems, however, frequently face a diverse set of competing objectives,
and the greatest obstacle to their wide and e↵ective deployment is the present lack of con-
trol designs that guarantee the accomplishment of multiple goals by multiple collaborating
robotic vehicles. Currently, research labs from the University of California, Berkeley, Stan-
ford University, and the University of Illinois Urbana-Champaign have come together in an
e↵ort to collect shadow-free imagery of farm fields by multi-vehicle robotic systems. Such
applications can be formulated as coverage path planning for farmland where cloud shadows
are considered as dynamic obstacles. Each of the multiple vehicle objectives will represent
a specific task in precision agriculture surrounding the collection of images and crop data
where such collection can only be accomplished during five hours of daylight time. This is
in order to avoid cloud shadows and ensure the safety of the overall system.
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Figure 6.1: Illustration Cloud Movement and Prediction on Farmland
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Chapter 7

Conclusion

While there has been extensive research on the topic of path planning in both traditional
deterministic graph-based algorithms, there still lack e�ciency in both the path planning
task and computational time and memory of these algorithms. Furthermore, coverage path
planning (CPP) with dynamic obstacles has not been well explored by the community.
Hence, with advancement in reinforcement learning, researchers have been trying to use
more learning-based approaches (such as neural networks) to help conduct path planning,
more specifically coverage path planning. However, it is worth noting that there still exist
many unknowns in neural networks and how/why they work from time to time.

Although results from static obstacles using a learning-based approach showcased equali-
vantly e↵ective results (achieving exacting visiting each tile exactly once), the same cannot
be said for dynamic obstacles. Additionally, it is also worth exploring other baseline models
to compare dynamic obstacles results. For static obstacles, one can use the deterministic
graph-based result (which is the most e�cient) compared to that of learning-based methods.
For dynamic obstacles, while the learning-based approach removes issues such as memory
constraint and runtime complexity, it still has its own challenges. For example, it’s di�cult
to provide a good baseline model to compare dynamic obstacles to. In conclusion, more
in-depth investigation can be conducted using learning-based approaches for CPP.



30

Chapter 8

Future Work

Following this paper, future research may focus on refining and tuning the details of the
reinforcement learning model.

Curriculum Learning To further encourage the reinforcement learning agent, aside from
guided reinforcement learning through STC, one can also train the model through curriculum
learning, an idea first introduced by Bengio et al. [2]. Curriculum learning trains the machine
learning model with easier data (or easier subtasks) and gradually increases the di�culty
level of the data (harder subtasks) until the entire training dataset (target task) is reached.
For CPP within dynamic obstacles, subtasks can be broken down into several “levels”:
environments with no obstacles, with static obstacles, with deterministic moving obstacles,
and with stochastic moving obstacles as illustrated in Figure 8.1.

Figure 8.1: Illustration of the Curriculum Learning for Coverage Path Planning
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Curse of Dimensionality Another major consideration given the current RL model is
whether the input (observation) space for the neural network has high dimensions. Depend-
ing on architecture and activation functions [1] such high dimensions may su↵er from the
“curse of dimensionality”. Existing methodology to help circumvent the curse of dimension-
ality involves using di↵erent kernel functions, such as a convolutional network where the
last layer is a softmax layer. Here, the architecture conducts a non-linear projection onto
lower dimensions which, in turn, provide a compressed representation of data. Though basic
multilayer perceptron (MLP) layers do not have such capacity, we can introduce and train
an autoencoder to first compress the observation space into lower dimensions and then feed
into the neural network within the reinforcement learning algorithm. Once the model has
been trained in lower dimensions, we can apply a decoder to reverse into higher ones for
interpretation. We hypothesize that such a method can accelerate the learning process and
improve the accuracy of the model with lower dimensional input. Figure 8.2 illustrates the
autoencoder architecture for dimensionality reduction.

Figure 8.2: Illustration of an Autoencoder
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