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Abstract

Visualizing High-Dimensional Hyperbolic Data

by

Haoran Guo

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Stella Yu, Chair

Hierarchies can often be found in real-world data and semantics. Hyperbolic space can
naturally embed hierarchical structures, making it an attractive alternative to traditional
Euclidean or spherical space when learning representations. Many popular machine learning
methods and architectures have been adapted to embed and use hierarchical data, leading
to significant improvements over Euclidean counterparts. Additionally, high-dimensional
embeddings can capture more information than low-dimensional ones, which can also lead
to performance improvements. While high-dimensional hyperbolic embeddings can lead to
better representations, visualizing them in a human understandable way can be challenging.
Visualizations of learned embeddings are important for both understanding the representa-
tion model and characteristics of the data, so for this and other reasons, many hyperbolic
models do not leverage high-dimensional embeddings. To address this problem, we propose
CO-SNE which extends the Euclidean space visualization tool, t-SNE to hyperbolic space.
CO-SNE is able to deflate high-dimensional embeddings into low-dimensional space without
losing their hyperbolic characteristics. We present results that show CO-SNE outperforms
previous methods on visualizing high-dimensional hyperbolic data, including real-life biolog-
ical data and learned hyperbolic embeddings. We also show the the hierarchical nature of
image segmentation by visualizing the results of hierarchical semantic segmentation. Over-
all, CO-SNE is able to successfully visualize high-dimensional hyperbolic data, resulting in
visualizations that can present insight on the data and the methods generating the data.
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Chapter 1

Introduction

Hierarchical structures can be found in many datasets and real-world applications. Social
networks [14] and complex networks [1] are representative examples of hierarchical data.
Words datasets with hypernymy relations [29] and visual inputs [20, 25] also exhibit hier-
archical characteristics. Euclidean and spherical spaces are common choices for embedding
data, but they cannot embed hierarchical data without distortion. Thus, hyperbolic space
has been widely used as an alternative in representation learning [20, 25, 29] on hierarchical
data. Hyperbolic space is a non-Euclidean space with interesting characteristics, as visualized
in Figure 1.1. Importantly, the hyperbolic metric can closely approximate the tree metric
since hyperbolic spaces expand exponentially in volume in contrast to Euclidean space which
exhibits polynomial expansion. As such, hyperbolic spaces are continuous analogues to trees,
which naturally represent hierarchies [20]. Algorithms that operate directly on hyperbolic
space [10, 7, 41] have been introduced, furthering the prevalence of hyperbolic embeddings.
These studies have shown performance improvements over Euclidean counterparts, especially
when working with hierarchical data.

Learning high dimensional embeddings can generally lead to better hyperbolic represen-
tation quality, but often many methods still stick with two-dimensional hyperbolic space [17,
29]. One main reason is for the ease of visualization, which is crucial for better understanding
of the embedding space. Visualizations can elucidate underlying structures of the embedded
data, such as hierarchies in particular for hyperbolic data, as well as insights on what a repre-
sentation model is learning. For hyperbolic data, the Poincaré ball model is one of the most
popular models among several isometrically equivalent models for representing hyperbolic
space and in hyperbolic representation learning [13, 17, 29]. Two-dimensional hyperbolic
embeddings based on the Poincaré ball model can be easily visualized within a Euclidean
unit circle. However, for high-dimensional hyperbolic data, the task is not so straightforward
as many visualization methods assume Euclidean data input and/or visualize in a Euclidean
space.

Embeddings in the Poincaré ball model have two main properties that should ideally be
maintained when visualized:
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1. The embeddings have a global hierarchical structure such that root nodes are in the
center of the ball and leaf nodes are close to the boundary of the ball.

2. The embeddings possess a local similarity structure. Sibling nodes should be close in
the embedding space.

Figure 1.1: In Euclidean space, there is only one parallel line (red) to the green line that
intersects point a. In hyperbolic space (visualized on the Poincaré disk), there are multiple
lines (blue and red) that are parallel to the green line that intersect point a. The colored
lines in the hyperbolic model are known as geodesics, a generalization of Euclidean straight
lines.

One of the most popular visualization methods for high-dimensional Euclidean embeddings
is t-SNE [40]. Since it is built for Euclidean embeddings, it does not preserve the global hier-
archical structure of hyperbolic embeddings. HoroPCA [5] is a recently proposed extension
of PCA [18] to hyperbolic space that does specifically cater to hyperbolic data. However,
it can struggle to preserve the local similarity structure of the data. Therefore, we propose
a new method, CO-SNE, which aims to fill the need for a visualization method suitable
for high-dimesional hyperbolic embeddings (see Figure 1.2). CO-SNE extends the standard
t-SNE method’s ability to maintain local similarity to hyperbolic space by adopting hyper-
bolic versions of the normal and Cauchy distributions. To maintain the global hierarchical
structure we use a distance loss function which seeks to preserve the individual distances of
high-dimensional hyperbolic embeddings to the Origin in low-dimensional hyperbolic space.

This thesis is based on the original CO-SNE work [12]. We will first introduce some
related work in Chapter 2. Then, Chapter 3 will present a more detailed look into hyperbolic
space, the Poincaré ball model, and t-SNE. In Chapter 4, CO-SNE and its development from
HT-SNE is introduced. Experiments and results of CO-SNE as compared with relevant
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Figure 1.2: Hyperbolic space is suitable for hierarchical data such as the mammal subtree of
WordNet visualized above. The visualizations from t-SNE, HoroPCA, and CO-SNE on the
high-dimensional hyperbolic Poincaré embeddings of the mammal subtree shows the ability
of CO-SNE to better preserve the global hierarchy with the root node in the center and leaf
nodes toward the boundary. Additionally, the local similarities are maintained better since
the sibling nodes are closer together.

baseline methods are presented in Chapter 5. The conclusion and future work discussion
follow in Chapter 6.
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Chapter 2

Related Work

This chapter surveys previous work, focusing on hyperbolic learning methods that could
be better supported and extended by visualizations from CO-SNE as well as previous data
visualization and dimensionality reduction methods.

2.1 Hyperbolic Learning

Many traditionally Euclidean learning methods have been extended to hyperbolic space.
These methods generally introduce hyperbolic analogues to Euclidean operations and distri-
butions, providing frameworks for learning and working with hyperbolic embeddings.

Large-margin Classification

Large-margin Classification [7] in hyperbolic space was proposed by adapting Support Vector
Machines (SVM) [15] from Euclidean geometry to hyperbolic. They find the analogous set
of possible hyperbolic decision rules, which are decision hyperplanes not unlike the linear de-
cision boundaries familiar in the Euclidean SVM. For the hierarchically structured datasets
they present, the hyperbolic embeddings outperform the Euclidean counterparts and the
hyperbolic SVM they present matches or outperforms the Euclidean SVM. These datasets
include a biological gene function prediction task and social networks data, which have nat-
ural hierarchical structure. Another work provides a robust large-margin classification [41]
method in hyperbolic space. By adapting learning via adversarial examples [6] to hyperbolic
space, they give the first theoretical guarantees for learning a hyperbolic classifier.

Hyperbolic Neural Networks (++)

Hyperbolic Neural Networks (HNNs) [10] is a work that extends several familiar neural net-
work architectures and layers such as multinomial logistic regression (MLR), fully connected
layers and Recurrent Neural Networks to hyperbolic space. The use gyrovector space opera-
tions [39] to parallel the Euclidean vector operations. The hierarchical datasets they present
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are mostly word and sentence based datasets, including the WordNet noun hierarchy we
experiment on. Another work [20] further proves the efficacy of hyperbolic neural network
layers by appending them to the end of several computer vision architectures. They find this
setup can outperform Euclidean neural networks on tasks such as few-shot classification and
person re-identification.

In a follow-up work, Hyperbolic Neural Networks++ [36], first reformulates the hyper-
bolic MLR from [10] by reducing the number of parameters necessary for linear functions,
⟨a,x⟩−b. Previously, [10] had required almost twice as many parameters in their formulation
of the hyperbolic MLR. This improvement lead to their version of hyperbolic fully connected
layers as well as their extension to hyperbolic convolutional layers. They also introduce some
ideas for building hyperbolic attention mechanisms which are also explored in the previous
work introduced below.

Hyperbolic Attention Networks

Hyperbolic attention networks [11] are proposed by extending attention operations to hy-
perbolic space in a manner similar to [10]. The core computation for attention [3] can
be broken down into a matching and aggregation phase. The matching computes atten-
tion weights, while the aggregation phase involves computing a weighted average using the
matching weights. For hyperbolic attention matching, [11] takes advantage of the hyperbolic
metric. Aggregation is the done through the Einstein midpoint, which is an extension of
the weighted midpoint to hyperbolic space posed by Ungar [38]. They show efficacy for rep-
resenting graphs and show comparable performance to Euclidean transformers on a neural
machine translation task.

Poincaré Variational Autoencoders

The variational autoencoder (VAE) [21], a popular generative model, has also been extended
to hyperbolic space [25]. The use hyperbolic counterparts to the traditionally Euclidean la-
tent space distributions of the VAE. We use one of these distributions, the Riemannian
normal, in CO-SNE. With a decoder architecture that specifically takes into account the
hyperbolic geometry, [25] is able to yield more interpretable representations. As seen in
this work, the latent space used is two-dimensional in order to easily visualize representa-
tions. Meanwhile, the best results are with higher dimensional representations. This draws
attention to the need for a hyperbolic data visualization method.

Hyperbolic Segmentation Methods

Some of the previously detailed methods have been able to learn appealing representations in
hyperbolic space, leading to [17] and [42] successfully leveraging them for segmentation tasks.
A 3D hyperbolic VAE is introduced by [42] as the basis for their unsupervised 3D segmen-
tation method. They demonstrate the effectiveness on biological-based datasets including
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3D MRI scans. [42] uses hyperbolic embeddings to better capture hierarchical structure in
segmented objects, leading to superior results than Euclidean space representations in their
ablation study.

The hyperbolic learning works introduced here show results where hyperbolic methods per-
form better over Euclidean counterparts, usually due to some underlying hierarchical struc-
ture at play. They use hyperbolic embeddings in the intermediate representations, and for
high-dimensional representations, methods for visualization are needed.

2.2 Data Visualization and Dimensionality Reduction

Data visualization of high-dimensional data involves generating low-dimensional represen-
tations that maintain the interesting structures and relative similarities of the given data.
Dimensionality reduction methods can directly accomplish this task and be used for data
visualization, although they may not be tuned for the specific goal of visualization.

SNE

CO-SNE’s main framework structure is first introduced by Stochastic Neighbor Embedding
(SNE) [16]. SNE is a probabilistic approach which computes an asymmetrical probabilities
for between pairs of points. These probabilities represent the likelihood a particular point i
would pick another point j as its neighbor. Two probability distributions are created in this
way, one for the high-dimensional input data and one for the low-dimensional representation
being created. The final low-dimensional representation is then found by gradient descent
on the Kullback-Leibler divergence between these two distributions.

t-SNE

t-distributed stochastic neighbor embedding (t-SNE) [40] is one of the most widely used
data visualization methods today. It is heavily based on SNE, but introduces a symmet-
rical probability model between points. It also uses the Student’s t-distribution to model
the similarities between low-dimensional points rather than a normal distribution. These
adjustments allow t-SNE to improve on SNE, directly addressing some weaknesses of SNE
such as the “crowding problem”, which we discuss more in Section 4.2. We base CO-SNE
off of t-SNE so we present more details of the methodology in Section 3.2.

UMAP

Uniform Manifold Approximation and Projection (UMAP) [26] is a more recent method
that uses a manifold learning technique. It can be viewed in a similar lens as t-SNE by
considering that both methods essentially construct a weighted graph representation of the
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high-dimensional data and optimize a low dimensional representation to be structurally
similar. UMAP uses fuzzy simplicial sets [37] to construct the weighted graph, with the
“fuzzy” nature of the graph due to decreasing likelihoods of connections as distance grows.
The selection of the weights of the edges are different and UMAP uses a cross-entropy based
loss function. UMAP is generally better than t-SNE for preserving global structure and in
terms of speed. However, it can struggle on some structures as compared to t-SNE, visualized
in Figure 2.1. While the metric in UMAP is exchangeable, it does not provide any specific
support for hyperbolic data.

Figure 2.1: Visualizations of t-SNE and UMAP on a dense cluster inside of a wider, sparse
cluster from [8]. t-SNE is able to separate the clusters, but UMAP is not. However, UMAP
generally is better for preserving global structures.

PCA

Principle Component Analysis (PCA) is a well-studied technique for dimensionality reduc-
tion [18]. PCA reduces the dimensionality of data while preserving as much variation of
information as possible. As a dimensionality reduction method, PCA can be used for vi-
sualization high-dimensional of data. Compared to t-SNE and UMAP, it cannot maintain
local structures as well, but does provide many advantages. One main advantage is that it
is much more simple to interpret - exactly how stochastic methods like t-SNE and UMAP
warp high-dimensional data into low-dimensional space isn’t explicit. Additionally, as a de-
terministic method, there are no hyperparameters to tune that can affect the results. PCA
would not be suited to directly apply to hyperbolic data, so HoroPCA (below) attempts to
address that problem.
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HoroPCA

HoroPCA [5] introduces a hyperbolic version of PCA by generalizing the three main aspects
of PCA to hyperbolic space: a sequence of affine subspaces spanned by a set of directions,
a projection method onto those spaces, and an objective for selecting the set of directions.
The nested sequence of affine subspaces made of the linear spans of more and more compo-
nents is known as a flag in Euclidean space. The hyperbolic analogy used by HoroPCA is
a nested sequence of geodesic submanifolds. Figure 2.2 shows the horospherical projections
that substitute orthogonal projections in Euclidean space. Similar to orthognal Euclidean
projections, the horospherical projections can preserve distance along a direction after pro-
jection. Finally, the variance objective is easily converted by replacing the Euclidean distance
with hyperbolic distance. The authors show HoroPCA’s efficacy on dimensionality reduc-
tion, hyperbolic data whitening, and visualization. As with PCA, however, HoroPCA should
not be able to maintain local similarities as well as methods such as t-SNE.

Figure 2.2: Visualizations of two points, x and y, and their horospherical projections, x′ and
y′, onto a single direction, the geodesic γ. The blue lines show the geodesic projections.

The aforementioned data visualization and dimensionality reduction methods provide a wide
suite of techniques for working with high-dimensional data with various trade-offs among
them. However, many of them are not apt for hyperbolic data, with HoroPCA being the
only one specifically designed for hyperbolic dimensionality reduction. HoroPCA can create
interesting visualizations, but like its Euclidean counterpart, is much better at maintaining
global structure than local structure. Thus, there poses a need for a data visualization
method for high-dimensional hyperbolic data. In the next chapter we discuss the necessary
background about hyperbolic geometry and the details of t-SNE for the development of
CO-SNE.
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Chapter 3

Background

Our work focuses on extending t-SNE to hyperbolic space, so this chapter presents some
background about hyperbolic geometry and t-SNE to develop CO-SNE.

3.1 Hyperbolic Geometry

Non-Euclidean Geometry

Hyperbolic geometry is a non-Euclidean geometry with negative curvature, as opposed to
zero and positive curvature for Euclidean and spherical geometry, respectively. It is consid-
ered a non-Euclidean geometry as it satisfies all of Euclid’s postulates except the fifth, which
is also known as the Parallel Postulate [32].

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment may be extended to any finite length.

3. A circle may be described with any given point as its center and any distance as its
radius.

4. All right angles are congruent.

5. If two lines are drawn which intersect a third in such away that the sum of the inner
angles on one side is less than two right angles, then the two lines inevitably must
intersect each other on that side if extended far enough.

Euclidean geometry satisfies all five postulates. The Parallel Postulate was found diffi-
cult to prove, and eventually the negations of this postulate lead to various non-Euclidean
geometries that were proven to be equally consistent as Euclidean geometry. An equivalent
statement to the Parallel Postulate is that there is a triangle where the sum of the angles is
180◦. Figure 3.1 visualizes this statement for Euclidean, spherical, and hyperbolic geometry.
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Figure 1.1 is a visualization of another equivalent statement. Due to the different character-
istics of hyperbolic space and the hyperbolic metric, hyperbolic geometry can be an useful
alternative to Euclidean geometry. We next introduce Riemannian geometry, which is useful
for describing hyperbolic space models.

Figure 3.1: Triangles in Euclidean, spherical, and hyperbolic space which have 0, positive,
and negative curvature, respectively. Only the Euclidean triangle satisfies the equivalent
statement to the Parallel Postulate.

Riemannian Geometry

Riemannian geometry is a branch of differential geometry studying Riemannian manifolds
which are smooth manifolds with a Riemannian metric. A hyperbolic space is a Riemannian
manifold with constant negative curvature of -1, so equipping ourselves with some definitions
important to Riemannian geometry will allow us to describe and work with the models for
hyperbolic space presented below. Previous works [10, 32] provide some of these definitions,
while [34] provides a comprehensive overview of Riemannian geometry.

An n-dimensional manifold M is a space that can locally be approximated by the Eu-
clidean space Rn. For example, the Earth is modeled by a sphere with positive curvature,
but locally the surface of the Earth appears flat, like R2.

The tangent space of a point x ∈ M is the first order linear approximation ofM around
x and is denoted as TxM. It is isomorphic to Euclidean space, meaning there is a structure
preserving mapping between a tangent space and Euclidean space.

A Riemannian metric gx is a collection of smooth inner products on the tangent space
associated with x — gx : TxM× TxM. The Riemannian metric gives rise to local notions
of angles, length of curves, surface area, and volume [32]. Global quantities can be derived
from these local values by integrating the local contributions [25].
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A Riemannian manifold is then the tuple (M, g), a manifoldM that is equipped with a
group of Riemannian metrics, g. Isometric models for hyperbolic space can be described in
this form, with various manifold specifications and Riemannian metric tensors.

A geodesic is the generalization of a Euclidean straight line, and is the path of minimal
length between two points. Two geodesics in hyperbolic space are visualized in pink in Figure
3.2

The exponential map expx of a manifold maps a vector v ∈ TxM in the tangent space of a
particular point x, to a point on the manifoldM by moving a unit length along the geodesic
starting at x in the direction of v. The logarithmic map is the inverse to the exponential
map, projecting points on the manifold into the tangent space of other points. Figure 3.2
show two examples of the exponential map in the Poincaré ball model. Note in the rest of
this work, “exp” with no subscript refers to just the normal exponential operation, not the
exponential map.

Figure 3.2: Two geodesics (pink) and two exponential mappings (blue) on the Poincaré disk,
the 2D Poincaré ball.

With these definitions we can then detail models for hyperbolic space, including the
Poincaré ball that is the focus in this work.

Poincaré Ball Model

In order to work with and visualize hyperbolic space, there are several isometrically equiv-
alent models available. We choose the Poincaré ball model since it is the most commonly
used one in hyperbolic representation learning [10, 29] and is suitable for visualizations. The
n-dimensional Poincaré ball model is defined as (Bn, gx), where Bn = {x ∈ Rn : ∥x∥ < 1}
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and gx = (γx)
2In is the Riemannian metric tensor. γx = 2

1−∥x∥2 is the conformal factor and
In is the Euclidean metric tensor. Given two points u ∈ Bn and v ∈ Bn, the hyperbolic
distance between them is defined as,

dBn(u,v) = arcosh

(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(3.1)

where arcosh is the inverse hyperbolic cosine function and ∥·∥ is the usual Euclidean norm.
Compared to Euclidean distance, hyperbolic distance grows exponentially as we move the
points towards the boundary of the Poincaré ball as seen in Figure 3.3. The exponential
growth in volume is analogous to the exponential growth in nodes when moving from the
root of a tree to the leaf level. As such, hyperbolic spaces can be see as the continuous
counterpart to trees, leading to studies on their use in representing hierarchical data.

a) Poincaré disk tiling b) Distance growth comparision

Figure 3.3: a) Hyperbolic tiling of the Poincaré disk, the 2-dimensional Poincaré ball, which
results in a tree structure [35]. b) Comparision of Euclidean distance and hyperbolic distance
as we move towards the boundary of the Poincaré ball

.

Gyrovector Spaces and Operations

Hyperbolic neural networks [10] and many algorithms working with hyperbolic data will
require vector arithmetic operations like vector addition, subtraction, and scalar multiplica-
tion. Gyrovector spaces are generalizations of Euclidean vector spaces to models of hyper-
bolic space via Möbius transformations. Ungar [39] introduces gyrovector spaces to study
hyperbolic geometry, using them in a way analogous to vector spaces for Euclidean geom-
etry. The aforementioned vector arithmetic operations are extended for hyperbolic space,
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including vector addition, named Möbius addition:

u⊕ v =
(1 + 2c⟨u,v⟩+ c∥v∥2)u+ (c∥u∥2)v

1 + 2c⟨u,v⟩+ c2∥u∥2∥v∥2
(3.2)

where c is the curvature, so c = 0 recovers the Euclidean addition operation. Hyperbolic
distance (as in Equation 3.1) can be calculated using the Möbius addition as follows:

dBn(u,v) =
2√
c
tanh−1(

√
c∥−u⊕ v∥) (3.3)

For the implementation of CO-SNE, this is how hyperbolic distances are calculated.

Riemannian Stochastic Gradient Descent

Parameters of hyperbolic algorithms that live in hyperbolic space such as learned hyperbolic
embeddings or biases of hyperbolic layers of hyperbolic neural networks [10] cannot be op-
timized with standard gradient descent methods, as those generally operate on Euclidean
data. Instead, Riemannian stochastic gradient descent [4] can be used. As a reminder, the
standard stochastic gradient descent rule is:

θt+1 ← θt − λ∇L (3.4)

where∇L is the gradient of the loss and λ is the learning rate. The update rule in Riemannian
stochastic gradient descent is instead:

θt+1 ← expθt(−λ∇RL) (3.5)

where exp θt is the exponential map with respect to the current parameters and λ∇RL
is the Riemannian gradient. For the Poincaré ball model, the Riemannian gradient is a
straightforward scaling of the standard Euclidean gradient. Since the exponential map is
not always easy and sometimes inefficient to compute, a first order approximation called a
retraction can be used in place of it. The Riemannian gradient descent update rule that we
use is introduced in [29]. They use Rθ(v) = θ + v as the retraction for the Poincaré ball
model and additionally project the updated parameters like so:

proj(θ) =

{
θ/∥θ∥ − ϵ if ∥θ∥ ≥ 1

θ else
(3.6)

with ϵ being a small constant for stability purposes. Putting it all together the Riemannian
stochastic gradient descent update rule which we use in CO-SNE is:

θt+1 ← proj(θt − λ
(1− ∥θt∥2)2

4
∇L) (3.7)
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We have now introduced the concept of non-Euclidean geometry and presented definitions of
Riemannian geometry in order to develop the Poincaré ball model for hyperbolic geometry.
We also acquainted the reader with the notion of gyrovector space and operations as well
as Riemannian gradient descent for the purposes of extending the corresponding Euclidean
concepts in t-SNE. The next section covers the specific algorithm of t-SNE in more detail,
the moving parts of which will be replaced by the hyperbolic concepts we have covered.

3.2 t-SNE

Our method is based on t-SNE [40] which draws from Stochastic Neighbor Embeddding
(SNE) [16]. SNE introduces the two step process which both our method and t-SNE repli-
cate. First, distances in the high and low dimensional spaces are converted into probability
distributions to model pairwise similarities between points. Then, a loss function is mini-
mized, mainly a minimization of divergence between the probability distributions.

t-SNE begins by using high-dimensional distances between the input datapoints to gen-
erate the similarity values between them, forming a joint probability distribution. The joint
probability pij represents the probability a point will pick another as its neighbor if neighbors
are picked in proportion to the probability density of a distribution centered at that point. To
define pij, t-SNE first defines the conditional probability pj|i, the probability that the point
xi will pick a point xj as its neighbor, using a normal distribution centered at the point xi.

t-SNE then defines the joint probability distribution P , by setting pij =
pi|j+pj|i

2m
as a way to

increase the cost contribution of outlier points, where m is the number of high-dimensional
datapoints. The conditional probability density pj|i is

pj|i =
exp(−d(xi,xj)

2/2σ2
i )∑

k ̸=i exp(−d(xi,xk)2/2σ2
i )

(3.8)

where d(xi,xj) is the distance between xi and xj. In the low-dimensional space, Student’s
t-distribution is used instead of a normal distribution (see Section 4.2) for modeling the joint
probability distribution Q between embeddings, and qij is defined as

qij =
(1 + d(yi,yj)

2)−1∑
k ̸=l(1 + d(yk,yl)2)−1

(3.9)

where yi is the corresponding low-dimensional embedding of xi. Then, to best maintain
the structures of the high-dimensional dataset, the cost function to minimize for embed-
ding the low dimensional points is the Kullback-Leibler divergence between the probability
distributions P and Q:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(3.10)

The KL divergence is minimized through gradient descent with a couple of optimization
tricks. They have an “early compression” loss in the early stages of training in order to
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keep the points clusters close together for a certain amount of iterations. In this time, it
is easier for the clusters to move around due to the lower distance between them. They
also use “early exaggeration” which exaggerates the probabilities for the high-dimensional
space distribution P in early iterations. This forces the low-dimensional embeddings further
apart, creating more space in the map. The overall structure of the algorithm is given in
in Algorithm 1. The standard t-SNE uses Euclidean distance and distributions not suited
for hyperbolic space. Therefore, we makes some replacements and extensions to develop
CO-SNE, as described in the next chapter.
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Chapter 4

CO-SNE

This chapter presents CO-SNE by first introducing a direct extension of t-SNE that we call
HT-SNE and then providing the explanation and details for adjustments and changes to
create the final algorithm.

4.1 HT-SNE

Our first direct extension of t-SNE, HT-SNE, replaces a couple aspects of t-SNE with hy-
perbolic parallels to directly handle hyperbolic data. Algorithm 1 gives the main process
for generating low-dimensional embeddings of t-SNE, which HT-SNE mirrors. To compute
the pairwise affinities in high-dimensional space in line 1 of the algorithm, we replace the
normal distribution of t-SNE with the hyperbolic normal distribution. Then, in line 4, we
replace the Student’s t-distribution in t-SNE with the hyperbolic Student’s t-distribution.
Additionally, the Euclidean gradient of t-SNE in line 5 is changed to the Riemannian gra-
dient. Similar, the standard gradient descent update rule in line 6 is substituted for the
Riemannian gradient descent update.

Algorithm 1: t-SNE and HT-SNE algorithm

Input: High-dimensional data, X = {x1, x2, ..., xn}
Result: Low-dimensional data embeddings, Y = {y1, y2, ..., yn}

1 compute pairwise affinities of X , pij, obtaining distribution P ;

2 initialize low-dimensional embeddings Y(0);
3 for t in range (1, T ) do

4 compute pairwise affinities of Y(t−1), q
(t−1)
ij , obtaining distribution Q(t−1);

5 compute gradient of cost function based on P and Q;

6 update Y(t) using gradient descent update rule;

7 end
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The hyperbolic normal and and hyperbolic Student’s t-distributions are introduced below.

Hyperbolic Normal Distribution

To define the conditional probability in the high-dimensional hyperbolic space, we need to
generalize the normal distribution to hyperbolic space. One natural generalization is called
the Riemannian normal distribution which is the maximum entropy probability distribution
given an expectation and a variance [33]. Given the Fréchet mean µ ∈ Bn

c and a dispersion
parameter σ > 0, the Riemannian normal distribution is defined as,

NBn(x|µ, σ2) =
1

Z
exp(−dBn(µ,x)2

2σ2
) (4.1)

where Z is the normalization constant. There are other generalizations of the normal dis-
tribution in hyperbolic space [25]. We choose to use the Riemannian normal distribution
for simplicity. Thereafter, we refer to Riemannian normal distribution as hyperbolic normal
distribution.

Hyperbolic Student’s t-Distribution

One way to define the Student’s t-distribution is to express the random variable t as,

t =
u√
v/n

(4.2)

where u is a random variable sampled from a standard normal distribution and v is a random
variable sampled from a χ2-distribution of n degrees of freedom. In particular, t-SNE adopts
a Student’s t-distribution with one degree of freedom and the probability density function
is defined as

f(t; t0) =
1

π(1 + (t− t0)2)
(4.3)

To extend the Student’s t-distribution to hyperbolic space, we derive the probability density
function as

fBn(t; t0) =
1

π(1 + dBn(t, t0)2)
(4.4)

HT-SNE Results

Using the hyperbolic normal distribution to define conditional probabilities in high-dimensional
space and the hyperbolic Student’s t-distribution in the low-dimensional space, we obtain
our first implementation of a hyperbolic extension of t-SNE, HT-SNE. However, as shown
in Figure 4.1, we see that HT-SNE seems to suffer from something that appears to match
the description of the “crowding problem” mentioned in [40], with points crowded near the
center. Additionally, points in clusters have almost no separation between them. In the next
section, we examine and address these problems.
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a) t-SNE Visualization b) HT-SNE Visualization

Figure 4.1: An initial result of HT-SNE. a) Clusters visualized by t-SNE have meaningful
separation between points in the green, yellow, black, and blue clusters. b) Clusters vi-
sualized by HT-SNE show crowding, where the green, yellow, black, and blue clusters are
crushed together near the center. The visualized data is five hyperbolic normal distribution
clusters of dimension five.

4.2 From HT-SNE to CO-SNE

Addressing Crowding

One of t-SNE’s main contributions is addressing the “crowding problem” [40] in SNE. The
problem arises from the greater area available in high-dimensional space, which scales with rn

for an n-dimensional sphere. As such, as we move further from a particular point, the relative
amount of space available in the low-dimensional space is much smaller. Consider then a
particular cluster with many moderately distanced points around it. In high-dimensional
space, these points can be spaced around in the moderately distanced area from the cluster.
In low-dimensional space, there is not nearly as much volume in the moderated distanced
area, so many of these points have to be placed very far away. They are so far away, that
a large amount of small attractive forces act on them from the points in the cluster, pulling
them towards the center. To address this, t-SNE uses the Student’s t-distribution in the
low-dimensional space to model distances as opposed to the normal distribution for high-
dimensional space. The heavier tails of the Student’s t-distribution allow for points to be
placed further away in the low-dimensional map, since the larger probability in the tails
makes them match up with the probability of moderately distanced points in the normal
distribution.

We use the hyperbolic Student’s t-distribution to mirror t-SNE’s solution, but as seen
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a) Normal and Cauchy Dist. b) t-SNE

c) HT-SNE d) CO-SNE

Figure 4.2: a) The probability density function of the hyperbolic normal distribution, hy-
perbolic Cauchy distribution with γ = 0.1 and hyperbolic Cauchy distribution with γ = 1.0.
Hyperbolic Student’s t-distribution (hyperbolic Cauchy distribution with γ = 1.0) does not
have much heavier tails. b) The gradients of the t-SNE as a function of low-dimensional
and high-dimensional Euclidean distance. c) The gradients of the HT-SNE as a function
of low-dimensional and high-dimensional hyperbolic distance. d) The gradients of CO-SNE
as a function of low-dimensional and high-dimensional hyperbolic distance. There is strong
repulsion when dissimilar high-dimensional datapoints are projected close.
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in the HT-SNE results, there is still crowding towards the center, as well as points in a
cluster stacking together in a very small area. We first observe that the hyperbolic Stu-
dent’s t-distribution is does not have much heavier tails than the hyperbolic normal distri-
bution. Then, we look into the gradient response between two points as a function of their
low-dimensional distances and high-dimensional distances. Figure 4.2 visualizes this using
Euclidean distance for t-SNE and hyperbolic distance for HT-SNE, with positive values sig-
nifying attraction and negative values signifying repulsion. It is clear that HT-SNE lacks
repulsion forces that t-SNE has in this resolution, attracting even dissimilar high-dimensional
points that are embedded close together in the low dimensional space. This suggests that
rather than heavier tails in the low-dimension distribution, we actually require heavier peaks
to encourage dissimilar points in the high-dimensional space to repel each other if they are
placed close together in the low-dimensional space.

To alleviate this problem, we consider the hyperbolic Cauchy distribution, which has the
probability density function

f(t; t0, γ) =
1

πγ
[

γ2

dBn(t, t0)2 + γ2
] (4.5)

where γ is the scale parameter. Notice that the Student’s t-distribution is a special case
of the Cauchy distribution with γ = 1.0. With a small γ, the Cauchy distribution has a
higher peak as seen in part a) of Figure 4.2. By using the Cauchy distribution with a small γ
for the low-dimensional probability mapping, high dimensional points that are placed close
together in the low-dimensional embedding space, but are dissimilar in the high-dimensional
space, will incur a higher probability in the low-dimensional probability conversion than the
high-dimensional conversion. This results in a repulsion force as the gradient (detailed later
in Equation 4.8) will become negative.

Distance Loss

As mentioned before, hyperbolic space can aptly be used for embedding tree structures which
are hierarchical in nature. The exponential growth in volume away from the origin of the
Poincaré ball is analogous to the exponential growth in nodes away from the root of a tree.
Therefore, the origin of the Poincaré ball is analogous to the root of a tree, and the points
near the boundary are analogous to the leaf nodes. The depth or level of a node in the tree
is then represented by the norm of a datapoint in the Poincaré ball. The cost function of
t-SNE does not consider this structure, so we attempt to keep the norm invariant through
adding an additional loss. This leads to the following loss function which minimizes the
difference between the norms of the high-dimensional datapoint xi and the corresponding
low-dimensional embedding yi.

H =
1

m

m∑
i=1

(∥xi∥2 − ∥yi∥2)2 (4.6)
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With the distance loss, we can preserve the global hierarchy of the high-dimensional hyper-
bolic embeddings.

Optimization

The final criterion of CO-SNE is then composed of the KL-divergence for maintaining local
similarity as seen in Equation 3.10 and the distance loss of Equation 4.6 for maintaining the
global hierarchy:

L = λ1C + λ2H (4.7)

where λ1 and λ2 are hyperparameters. With this loss rather than just a KL divergence loss
and the hyperbolic Cauchy distribution to model the low-dimensional probabilities, we move
from HT-SNE (our more direct hyperbolic makeover of t-SNE) to arrive at our method
which we call CO-SNE. A comparison of the t-SNE, HT-SNE, and CO-SNE in terms of
metric of point similarity, distributions used to model point attraction, and loss function for
optimization is presented in Table 4.1.

Metric High/low-dimensional Dist. Losses

t-SNE Euclidean Normal/t-distribution KL-div

HT-SNE hyperbolic hyperbolic normal/hyperbolic t-distribution KL-div

CO-SNE hyperbolic hyperbolic normal/hyperbolic Cauchy KL-div + Distance

Table 4.1: Our CO-SNE extends t-SNE by adopting hyperbolic normal distribution and hy-
perbolic Cauchy distribution. Compared with t-SNE, CO-SNE assumes the high-dimensional
and low-dimensional space are hyperbolic. t-SNE cannot maintain the global hierarchy of the
hyperbolic embeddings. Compared with HT-SNE, CO-SNE adopts hyperbolic Cauchy dis-
tribution and an additional distance loss. HT-SNE cannot push dissimilar high-dimensional
points away in the low-dimensional space.

To train CO-SNE, the cost function is optimized with respect to the low-dimensional
embeddings. The gradient of the KL-divergence C with respect to yi, a particular low-
dimensional embedding, is given by

δC
δyi

=
∑
j

δC
δdBn(yi,yj)

δdBn(yi,yj)

δyi

= 2
∑
j

(pij − qij)(1 + dBn(yi,yj)
2)−1 δdBn(yi,yj)

δyi

(4.8)

The partial gradient of the distance with respect to the low dimensional embedding yi is
given by

δdBn(yi,yj)

δyi
=

4

β
√

γ2 − 1

(
||yj ||2 − 2⟨yi,yj⟩+ 1

α2
yi −

yj

α

)
(4.9)
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where α = 1−||yi||2, β = 1−||yj||2, γ = 1+ 2
αβ
||yi−yj||2. We use the Riemannian stochastic

gradient descent [4], detailed in Section 3.1, for the KL-divergence C. The gradient of the
distance loss H with respect to yi is computed as

δH
δyi

= −4(∥xi∥2 − ∥yi∥2)yi (4.10)

We constrain the embeddings to the Poincaré ball after each update as in [29].
We find that the a two-stage training process produces the best results. In the first stage

of 500 iterations, we only train with the local similarity loss of Equation 3.10. Then, we
add the distance loss as in Equation 4.7. This seems to work better in practice as moving
points locally when they are closer to the boundary is tough due to the exponentially growing
distances away from the origin. With our method developed, we compare it with baselines
and show visual results in the next chapter.
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Chapter 5

Visualizing Hyperbolic Data with
CO-SNE

In this chapter, we experiment with and present the results of CO-SNE on high-dimensional
hyperbolic data. First, we compare the visualizations of CO-SNE on several hyperbolic
datasets with other data visualization methods. Next, we show the ability of CO-SNE to
visualize hierarchical semantic segmentation. Finally, we perform an ablation experiment to
show the effects of adjusting the cost function hyperparameters and CO-SNE’s robustness
to hyperparameter selection.

5.1 Hyperbolic Data Visualizations and Comparisons

In this section, we test CO-SNE on several hyperbolic datasets and compare with 4 baseline
algorithms:

• t-SNE [40]: this is the standard t-SNE which adopts Euclidean distance for computing
the similarities in the high-dimensional space and the low-dimensional space. We use
the t-SNE implementation from sci-kit learn [31] in our experiments and initialize
the low-dimensional embedding using a normal distribution with mean 0.01 and unit
variance. The training follows the standard setups as in [31]

• Principal Component Analysis (PCA) [18]: PCA is a commonly used dimensionality
reduction method which attempts to maintain the maximal variation of the data.
However, as a linear dimensionality method, PCA cannot reduce high-dimensional
data to two dimensions in a meaningful way [2]. Again, we use the implementation
from sci-kit learn [31], running with default hyperparameters.

• HoroPCA [5]: HoroPCA is a recently proposed extension of PCA on hyperbolic space.
HoroPCA proposed to parameterize geodesic subspaces by ideal points in the Poincaré
ball. HoroPCA can be used as a data whitening method for hyperbolic data and as
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a visualization method as well. We use the implementation provided by the authors
with default hyperparameters here: https://github.com/HazyResearch/HoroPCA .

• UMAP [26]: UMAP is a recently proposed dimensionality reduction and visualization
method based on the ideas from Riemannian geometry and topology. UMAP is com-
petitive with t-SNE and can better preserve the global structure of the data. We use
the implementation provided in [27] with default hyperparameters.

We implement CO-SNE based on t-SNE by modifying the way of computing similarities
and the optimization procedure as described in the previous chapter. We initialize the low
dimensional embeddings the same as t-SNE above, using a normal distribution with mean
0.01 and unit variance. The scaling parameter for the hyperbolic Cauchy distribution, γ,
is set to 0.1. The hyperparameter λ1 is usually set to 10.0 and the hyperparameter λ2 is
usually set to 0.01.

We experiment on the 5 following datasets which are described in more detail in the
following sections: 1) synthetic dataset sampled from a mixture of hyperbolic normal dis-
tributions, 2) biological dataset of cellular differentiation, 3) embedded hierarchical word
taxonomies, 4) supervised hyperbolic neural network embeddings, and 5) unsupervised hy-
perbolic variational autoencoder embeddings.

Synthetic Point Clusters

We first use a synthetic dataset to validate the efficacy of CO-SNE. We randomly generate
five point clusters of twenty points each in the five-dimensional hyperbolic space. Each
cluster follows a hyperbolic normal distribution with the unit variance and the mean located
on a different axis. The first and second means are close to the origin, at [0.1, 0, 0, 0, 0] and
[0, -0.2, 0, 0, 0] respectively, whereas the third and fourth means are far from and equidistant
to the origin, at [0, 0, 0.9, 0, 0] and [0, 0, 0, -0.9, 0] respectively. The last mean is right at
the origin [0, 0, 0, 0, 0]. Figure 5.1 shows the 2D visualization results of these 5D points by
different methods.

CO-SNE produces a much better visualization than the baselines. With CO-SNE, the
projected two-dimensional hyperbolic embeddings can preserve both the local similarity
structure and the global hierarchical structure of high-dimensional datapoints well. Also,
CO-SNE can prevent the high-dimensional datapoints from being projected too close which
usually happens with Euclidean distance based methods. Note that HT-SNE does not have
enough repulsion between points, resulting in crowding and collapsing of clusters. The draw-
backs of each baseline are as follows:

• Standard t-SNE: Euclidean distances are used for computing similarities in the high-
dimensional space. Hyperbolic distances grow much faster than Euclidean distances.
For high-dimensional hyperbolic datapoints which are close to boundary of the Poincaré
ball, the standard t-SNE wrongly underestimates the distance between them. As a con-
sequence, the standard t-SNE takes dissimilar high-dimensional data points as neigh-
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UMAP PCA t-SNE

HoroPCA HT-SNE CO-SNE

Figure 5.1: The projection of high-dimensional hyperbolic datapoints sampled from a mix-
ture of hyperbolic normal distributions in a two-dimensional space with different methods.
CO-SNE produces two-dimensional hyperbolic embeddings which preserve the hierarchical
and similarity structure of the high-dimensional hyperbolic datapoints.

bors. The resulting low-dimensional embeddings collapse into one point which leads
to poor visualization.

• PCA and HoroPCA: as mentioned above, PCA and HoroPCA are linear dimension-
ality reduction methods which are not generally suitable for visualization in a two-
dimensional space. Both PCA and HoroPCA cannot preserve local similarity of the
hyperbolic data.

• UMAP: UMAP suffers from the same issue as t-SNE since Euclidean distance is used
for computing high-dimensional similarities.

For the rest of the results, we compare CO-SNE with HoroPCA since HoroPCA is the only
baseline specifically designed for hyperbolic data.
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a) Canonical hematopoietic cell lineage tree [22]

b) HoroPCA c) CO-SNE

Figure 5.2: Visualization of the high-dimensional biological datapoints of the mouse
myelopoiesis dataset. a) The hierarchy of the original data from [22]. b) The two-dimensional
embeddings generated by HoroPCA. c) The two-dimensional embeddings generated by CO-
SNE. Both the local similarities and hierarchical structure is captured.

Biological Cellular Differentiation

Biological data can reveal naturally occurring hierarchies, such as in single cell RNA sequenc-
ing data [22]. In [22], they analyze cellular differentiation data, the transition of immature
cells to specialized types. The immature cells can be viewed as the root of the tree and can
branch off into several different types of cells, creating hierarchical data of cells in different
states of progress in the transition process. One dataset we adapt from [22] is the mouse
myelopoiesis dataset presented by [30], where there are 532 cells of 9 types. Two of the types,
HSPC-1 and HSPC-2, form the root of the hierarchy, while megakaryocytic (Meg), erythro-
cytic (Eryth), monocyte-dendritic cell precursor (MDP), monocytic (Mono), and myelocyte
(myelocytes and metamyelocytes) type cells are states father from the root. Granulocytic
(Gran) cells are a precursor to myelocytes and multi-lineage primed (Multi-Lin) cells are in
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an intermediate state.
The data has originally 382 dimensions (noisy) and like [22] we first reduce it to 20

dimensions via PCA to reduce the noises. We then scale the data to fit within the Poincaré
ball and run CO-SNE and HoroPCA to produce two-dimensional hyperbolic embeddings.
Noted that this dataset is not centered. The results are shown in Figure 5.2. The proposed
low-dimensional embeddings by CO-SNE capture the hierarchical structure in the original
data.

Hierarchical Word Embeddings

Hyperbolic space has been used to embed hierarchical representations of symbolic data.
In [29], the authors adopt hyperbolic space for embedding taxonomies, in particular, the
transitive closure of WordNet noun hierarchy [28]. As shown in [29], higher-dimensional
hyperbolic embeddings often lead to better representations, but they are harder to visualize.
Following [29], we embed the hypernymy relations of the mammals subtree of WordNet
in hyperbolic space (more details in the embedding methodology is available in Section
5.2). We use the open source implementation provided by [29] to train the ten-dimensional
embeddings. We use HoroPCA and CO-SNE to visualize the learned embeddings in a two-
dimensional hyperbolic space.

Figure 5.3 shows that compared with HoroPCA, CO-SNE can better preserve the hier-
archical and similarity structure of the high-dimensional datapoints. For example, the word
feline and canine are close to carnivore in the CO-SNE embeddings, which is not the case
in HoroPCA. The embeddings produced by CO-SNE also more resemble the two-dimensional
embeddings as shown in Figure 2b of [29].

Features of Hyperbolic Neural Networks

We next visualize the embeddings produced by hyperbolic neural networks for supervised
image classification. First, we train a hyperbolic neural network (HNN) [10] with feature
clipping [13] on MNIST, using clipping value of 1.0 and feature dimension of 64. Then, we
use HoroPCA and CO-SNE to reduce the dimensionality of the features to two. The full
test set of MNIST cannot be used due to the out-of-memory issue of HoroPCA. Therefore,
we randomly sample 100 images for each class and visualize the embeddings.

Figure 5.4 shows the two-dimensional embeddings generated by HoroPCA and CO-SNE.
The visualization produced by CO-SNE is significantly better the visualization produced by
HoroPCA. In CO-SNE, the classes are well separated and have a clear hierarchical structure.
We further train hyperbolic classifiers [10] on the frozen two-dimensional features. We use
a learning rate of 0.001 and the number of epoch is 10. The classification accuracy of the
features generated by HoroPCA is 30.2% while the accuracy of the features generated by
CO-SNE is 61.2%. This implies that low-dimensional features generated by CO-SNE are
more separated and respect the structure of original high-dimensional embeddings.
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a) HoroPCA b) CO-SNE

Figure 5.3: Visualization of high-dimensional Poincaré word embeddings of the WordNet
mammals subtree. a) The two-dimensional Poincaré word embeddings generated from
HoroPCA. b) The two-dimensional Poincaré word embeddings generated from CO-SNE. In
the embeddings generated by CO-SNE, the word feline and canine are close to carnivore,
which is not the case in HoroPCA.

a) HoroPCA b) CO-SNE

Figure 5.4: CO-SNE produces better visualization of hyperbolic neural networks’ (HNNs)
features than HoroPCA. a) The visualization produced by HoroPCA. b) The visualization
produced by CO-SNE. In CO-SNE, the classes are well separated and have a clear hierarchical
structure.
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Latent Space of Poincaré VAE

The variational autoencoder (VAE) [21] is a popular architecture for unsupervised learning.
Standard VAEs assume the latent space is Euclidean. [25] extends standard VAEs by assum-
ing the latent space is hyperbolic, creating Poincaré VAEs. Compared to standard VAEs,
Poincaré VAEs can embed tree-like structures more efficiently. For using CO-SNE to visu-
alize the latent space of Poincaré VAEs, we train a Poincaré VAE with a latent dimension
of five on the MNIST dataset [23], following the procedure from [25]. We further generate
the latent space representations of 1000 randomly sampled images with the encoder.

Figure 5.5 shows the visualizations produced by HoroPCA and CO-SNE. Clearly, CO-
SNE produces much better visualization than HoroPCA. In particular, we can easily observe
the hierarchical and clustering structures in the latent space which are totally distorted in the
visualization produced by HoroPCA. Thus, CO-SNE can be used to understand the latent
space of Poincaré VAEs and facilitate the development of better unsupervised hyperbolic
learning methods.

a) HoroPCA b) CO-SNE

Figure 5.5: Visualization of the high-dimensional latent space representations generated
by the encoder of the Poincaré VAE. a) The two-dimensional latent Poincaré embeddings
generated from HoroPCA. b) The two-dimensional latent Poincaré embeddings generated
from CO-SNE. CO-SNE can capture the hierarchical and clustering structures of the high-
dimensional latent representations while HoroPCA cannot.
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Discussion

Through our visualization experiments, we can see that CO-SNE is able to accomplish the
two main features we would like to maintain when embedding high-dimensional hyperbolic
data into low-dimensional space: the local similarities between points and their hierarchical
global structure. Previous methods such as t-SNE [40] and UMAP [26] which use Euclidean
distance to compute similarities are not able to visualize the global hierarchical structure.
CO-SNE is able to do so by keeping the norm of the datapoints mostly invariant. Compared
to HoroPCA [5], which does cater to hyperbolic data, CO-SNE is able to create visualizations
that have better local similarity results for the most part.

CO-SNE does still suffer from some weaknesses just as the original t-SNE method does.
The curse of dimensionality is still inevitable as it is impossible to fully represent the intrinsic
structure of high-dimensional data in lower dimensions. The non-convex cost function leads
to natural challenges in optimization and stopping rules. These weaknesses are visible in
some of the visualizations. For example, there are some points that are far away from any
other points as in Figure 5.4 and away from the cluster of their ground truth label that is
not seen in the HoroPCA visualization. Despite some weaknesses, CO-SNE is overall a good
visualization method for working with hyperbolic data, including features from hyperbolic
learning methods. In the next section, we show the hierarchical nature of visual segmentation
through [19] and CO-SNE.

5.2 Visualizing Unsupervised Hierarchical Semantic

Segmentation

Hierarchical relations can be found in visual data, especially in the task of unsupervised
semantic segmentation. In semantic segmentation, the goal is to assign a semantic cate-
gory to every pixel in the given images. If supervision is available in the the form of pixel
groupings, then the problem can be reduced to image recognition. If there are image level
semantic category labels, then pixels labels can be predicted through classification. In un-
supervised semantic segmentation, the problem is a matter of finding the groupings that
best capture object-invariance and view-invariance of categories. Groupings have an intrin-
sic characteristic of granularity, which affects the resulting segmentation from the groups.
At higher granularity, all the pixels on a human may be grouped together. Meanwhile, at
lower granularity, groupings may be granular to each body part, such as a torso. A natural
hierarchy can be formed between groupings as a less granular grouping may be made up of
more fine-grained groups.

While many methods for unsupervised semantic segmentation do not address this ambi-
guity of granularity of groupings directly, [19] presents a hierarchical unsupervised segmenta-
tion method takes advantage of the notion of granularity. The authors perform hierarchical
groupings at multiple levels of granularity, and improve the learned features using these
hierarchies. To do this, they first learn pixel-level features. The most granular groupings
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are then clusters of these features. From there, they create increasingly less granular group-
ings through further clustering. Additionally, they make use of clustering transformers that
enforce consistency across levels of grouping granularity. The less granular groupings are
formed by the merging of the previous level of more granular groupings. Figure 5.6 shows
this process. This forms a natural hierarchy that can be embedded into hyperbolic space.

To generate the hyperbolic embeddings, we first extract the hierarchical relations from
[19] by extracting granular feature clusters and their relations to the next level of clusters.
Then, using [29], we embed these relations as into five-dimensional hyperbolic space. The
main procedure of [29] is to minimize a loss function with respect to the generated embeddings
θi as so:

Θ′ ← argmin
Θ′

L(Θ) s.t. ∀θi ∈ Θ : ∥θi∥ < 1 (5.1)

The constraint for θi assures the embeddings to be within the Poincaré ball. The loss
function to be optimized is task dependent. In this task, we use the same one as used for
the WordNet transitive closure embeddings in [29], since the relations in both datasets form
a directed acylic graph. The loss function is given as

L(Θ) =
∑

(u,v)∈D

log
exp(−dBn(θu,θv))∑

v′∈N (u) exp(−dBn(θu,θv′))
(5.2)

where D contains the relations between the related objects (in our case, segments of various
levels of granularity) and dBn is the hyperbolic distance function on the Poincaré ball as in
Equation 3.1. N (u) is defined as N (u) = {v|(u, v) /∈ D} ∪ {u} which is the set of negative
examples for u where there are no relation connections. This loss is a soft ranking loss,
moving related objects closer together than ones without. The objects that are low in the
hierarchy, representing the leaf nodes, are thus spread apart within clusters that huddle close
to the object in the next level of the hierarchy that they are close to. This naturally pushes
the objects high in the hierarchy, the root nodes, closer to the center. For training, N (u)
is formed by random sample of 10 negative examples. The Riemannian stochastic gradient
descent method is used for optimization, using the rule in Equation 3.7.

We do the above procedure for images in the Pascal VOC2012 dataset [9], and embed their
hierarchically organized segments in five-dimensional hyperbolic space. We then map these
embeddings to two-dimensional space using CO-SNE. Figure 5.7 shows a visualization of the
image from Figure 5.6 and its segments, plotting the segments in the Poincaré ball at their
embedded two-dimensional location. CO-SNE is able to maintain the global hierarchical
structure, with the higher hierarchical level, less granular segments closer to the origin than
the lower hierarchical level, more granular segments. Furthermore, the most fine-grained
objects (visualized as points in Figure 5.7, which are the first level clusterings of the pixel-
level features, are clustered close together near their next level parent segment. This shows
the ability for CO-SNE to maintain local similarities as well.
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Figure 5.6: The generation of different levels of hierarchical groupings. The pixel-level
features generated by a convolutional neural network are clustered into initial cluster (green
dots), then into fine segments (blue), then coarse segments (red), which make up the whole
image. The hyperbolic embedding of these various entities are visualized in Figure 5.7.
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Figure 5.7: The various hierarchically leveled segments and clusters of a sample VOC2012
image, segmented by [19] and embedded into five-dimensional hyperbolic space via [29], and
visualized by CO-SNE. The full image is placed at the center, with red lines connecting it
to the most coarse image segments. Blue lines connect these most coarse segments to finer
grained segments. The green dots near the blue segments are pixel-feature clusters, the most
granular entity we visualize. The global hierarchy is clear, with the less granular elements a
level closer to the origin than the most granular elements. The local similarity is also good
at the most granular level, evidenced by the clusters of pixel-feature clusters (green dots).
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5.3 Ablation Experiment

We perform an ablation experiment on the hyperparameters, λ1 and λ2, of the CO-SNE
loss function given in Equation 4.7. λ1 weights the KL divergence loss, given by Equation
3.10, between the pairwise affinity distributions. λ2 weights the distance loss in Equation
4.6. Figure 5.8 shows the ablation results on a mixture of five clusters of hyperbolic normal
distribution samples in five-dimensional hyperbolic space. The results show us how the two
losses affect the generated low-dimensional embeddings in different ways and a general idea
of the best hyperparameters to choose.

The top left corner in Figure 5.8 shows the initialization of the low-dimensional embed-
dings. The first column of visualizations shows the effect of the KL divergence loss on the
embeddings without the distance loss. The local similarities seem to be maintained for the
most part, but the global hierarchy is not, with all the points being pushed to the boundary
in most of the visualizations. The first row then shows the effect of the distance loss without
the KL divergence loss. The distance from the origin of the points is maintained, so we see
that the global hierarchy is visualized with no local similarities. The combination of the two
losses in the remaining figures are able to visualize both the local and global structures of
the data. We see a trade off between the two hyperparameters in terms of local and global
structures, but overall CO-SNE is fairly robust to the selection of these hyperparameters.
One matter to note is that the magnitude of the gradient of the distance loss is much larger
than magnitude of the gradient the KL divergence loss, so λ1 should be larger than λ2. We
chose λ1 = 10 and λ2 = 0.1 for most of the visualizations in the previous sections.
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λ2 = 0.0 λ2 = 0.01 λ2 = 0.05 λ2 = 0.1 λ2 = 0.2

λ1 = 0

λ1 = 5

λ1 = 10

λ1 = 15

λ1 = 20

Figure 5.8: The effect of λ1 and λ2 visualizations of CO-SNE on a mixture of five hyperbolic
normal distributions in a five-dimensional hyperbolic space. We can observe that λ1 is
responsible for preserving the local similarity structure and λ2 is responsible for preserving
the global hierarchical structure.
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Chapter 6

Conclusion and Future Work

Hyperbolic geometry has gained traction for its use in embedding hierarchical data, with
the hyperbolic metric being apt as a continuous approximation of the tree metric. High-
dimensional hyperbolic representations can often outperform low-dimensional counterparts,
but hyperbolic data lacks the solid visualization methods that are readily available for Eu-
clidean data. In this work, we address this problem by introducing CO-SNE.

CO-SNE extends t-SNE to hyperbolic space and is able to maintain the local similar-
ities as well as global hierarchical structure of high-dimensional hyperbolic data in low-
dimensional space. Our development process begins with a direct extension of t-SNE to
hyperbolic space, HT-SNE. To alleviate the shortcomings of HT-SNE, we substitute the hy-
perbolic Cauchy distribution to model similarities between the low-dimensional embeddings
and introduce a distance loss. We demonstrate the effectiveness of CO-SNE by visualizing
several relevant hyperbolic datasets such as real-life biological data and learned representa-
tions of hyperbolic neural networks. We also show the hierarchical nature of visual data by
using CO-SNE to visualize the embedded hierarchies of unsupervised hierarchical semantic
segmentation [19].

We hope that future work will be able to leverage CO-SNE as a tool in working with
high-dimensional hyperbolic data. Visualizing features is an important step in tasks such
as representation learning to gain a better understanding of the data and the method being
developed. Hyperbolic geometry has already shown significant gains over Euclidean geometry
in several previous methods [7, 10, 20, 24], especially on datasets with strong hierarchical
structure. There is also room for further work on data visualization and dimensionality
reduction of hyperbolic data. We discussed some weaknesses of CO-SNE in Section 5.1,
which may be improved through exploration of different distributions to model similarities
and other potential losses. Additionally, dimensionality reduction to dimensions greater
than the 2 in the visualizations provided could be explored for hyperbolic data. HoroPCA
[5] provides one example of this dimensionality reduction. Improvements in visualization and
dimensionality reduction tools can in turn greatly improve our understanding of complicated
learning systems and representations.
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[22] Anna Klimovskaia et al. “Poincaré maps for analyzing complex hierarchies in single-cell
data”. In: Nature communications 11.1 (2020), pp. 1–9.

[23] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.
com/exdb/mnist/ ().

[24] Qi Liu, Maximilian Nickel, and Douwe Kiela. “Hyperbolic graph neural networks”. In:
arXiv preprint arXiv:1910.12892 (2019).

[25] Emile Mathieu et al. “Continuous Hierarchical Representations with Poincar\’e Vari-
ational Auto-Encoders”. In: arXiv preprint arXiv:1901.06033 (2019).

[26] Leland McInnes, John Healy, and James Melville. “Umap: Uniform manifold approxi-
mation and projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426
(2018).

[27] Leland McInnes et al. “UMAP: Uniform Manifold Approximation and Projection”. In:
The Journal of Open Source Software 3.29 (2018), p. 861.

[28] George A Miller. “WordNet: a lexical database for English”. In: Communications of
the ACM 38.11 (1995), pp. 39–41.

[29] Maximilian Nickel and Douwe Kiela. “Poincar\’e embeddings for learning hierarchical
representations”. In: arXiv preprint arXiv:1705.08039 (2017).

[30] Andre Olsson et al. “Single-cell analysis of mixed-lineage states leading to a binary
cell fate choice”. In: Nature (2016).



BIBLIOGRAPHY 39

[31] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[32] Wei Peng et al. “Hyperbolic deep neural networks: A survey”. In: arXiv preprint
arXiv:2101.04562 (2021).

[33] Xavier Pennec. “Intrinsic statistics on Riemannian manifolds: Basic tools for geometric
measurements”. In: Journal of Mathematical Imaging and Vision 25.1 (2006), pp. 127–
154.

[34] Peter Petersen. Riemannian geometry. Vol. 171. Springer, 2006.

[35] François Sausset et al. “Bootstrap Percolation and Kinetically Constrained Models on
Hyperbolic Lattices”. In: Journal of Statistical Physics 138 (July 2009). doi: 10.1007/
s10955-009-9903-1.

[36] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. “Hyperbolic neural networks++”.
In: arXiv preprint arXiv:2006.08210 (2020).

[37] David I Spivak. “Metric realization of fuzzy simplicial sets”. In: Preprint (2009), p. 4.

[38] Abraham A Ungar. Analytic hyperbolic geometry: Mathematical foundations and ap-
plications. World Scientific, 2005.

[39] Abraham Albert Ungar. “A gyrovector space approach to hyperbolic geometry”. In:
Synthesis Lectures on Mathematics and Statistics 1.1 (2008), pp. 1–194.

[40] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In:
Journal of machine learning research 9.11 (2008).

[41] Melanie Weber et al. “Robust large-margin learning in hyperbolic space”. In: arXiv
preprint arXiv:2004.05465 (2020).

[42] Zhenzhen Weng et al. “Unsupervised Discovery of the Long-Tail in Instance Segmen-
tation Using Hierarchical Self-Supervision”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2021, pp. 2603–2612.


