
Investigating Intuitions and Predicting Success using

Fine Grained Student Code Snapshot Data

Henry Maier

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-128

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-128.html

May 14, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

12 May 2022

Investigating Intuitions and Predicting
Success using Fine Grained Student Code

Snapshot Data
Henry Maier

University of California, Berkeley
henrymaier@berkeley.edu

ABSTRACT
At UC Berkeley, unprecedented growth and demand
for Computer Science education has resulted in di�-
culties assessing how students navigate introductory
Computer Science courses. Instructors are left using
intuition, low quality survey data and information re-
layed by large course sta�s to determine pain points
and identify students at risk of underperforming. In
response, previous work developed Snaps [10], a tool
for CS61B (CS 2) at UC Berkeley that captures �ne-
grained snapshots of student work as they complete
assignments. We build simple metrics for assignment
completion time and working habits using the Snaps
dataset from CS61B Spring 2021. Using these metrics,
we investigate individual associations between these
metrics and performance, as measured by scores on
exams and �nal course grade. We �nd rough associ-
ations that con�rm intuitions relating working time
and working habits to performance. Speci�cally, we
�nd that students who spend longer and start later on
assignments tend to perform worse in the course. Ad-
ditionally, we develop and evaluate models that use
our metrics, as well as grade data from CS61A (CS 1)
at UC Berkeley as features and �nd an early predic-
tion model based on data from the �rst 2 weeks of the
course for exam points ('2 = 0.656) and �nal course
grade ('2 = 0.585) with limited accuracy.

1 INTRODUCTION
In the past decade, Higher Education Computer Sci-
ence programs have seen rapid enrollment growth and
never before seen high demand for quality education [8].
To keep pace with this growth and demand, programs
have employed a variety of strategies to continue to

deliver high quality education. At UC Berkeley, instruc-
tors have turned to automated grading and delivering
course o�erings online to handle large class sizes. Un-
fortunately, these strategies result in limited one on one
attention for students.
At any given moment, instructors have only a few

data points that provide insight into how students are
doing in the course: exam results and performance on
assignments. In order to get insight into challenging
concepts and student work habits, some instructors em-
ploy techniques such as weekly student surveys, and
asking for feedback from course sta� members about
their interactions with students. These techniques give
a biased view of how students are doing in the course:
surveys su�er from response biases and non-response
bias, and course sta� feedback focuses on the propor-
tion of the class that is consistently engaging with
course resources, in addition to being clouded by the
biases of the course sta� members.
While at some institutions, the failures of the above

mechanisms are not severe due to an abundance of sta�
capable of providing more personalized attention and
time, Computer Science programs operating at scale
are without the time to provide a level of individualized
attention that would result in high quality feedback to
instructors. At UC Berkeley, there are as many as 2000
and 1500 students enrolled in CS 1 and CS 2 respectively
[1], with each class employing upwards of 60 course
sta� members.
With imperfect information and operating at scale,

instructors of large classes are unable tomake pedagogy
decisions driven by data andmust rely on roughmetrics,
intuition and experience alone. This is especially true
when it comes to identifying struggling students in in-
troductory courses. While current techniques (surveys,
course sta� feedback) can identify students in danger of

underperforming, many students appear solid accord-
ing to these techniques only to do poorly on exams or
large scale programming assignments.
Furthermore, without a strong signal, instructors are

left with little feedback on how the decisions they make
impact the performance of students until midterm exam
or �nal grades are released, and even then, cannot reli-
ably relate certain decisions to grade outcomes. Take,
for example, an instructor who implemented a mecha-
nism to encourage students to start assignments early
(such as a “checkpoint”, where a small portion of the
assignment is due a week or so before the full assign-
ment is due). There is simply not enough information
for the instructor to reliably assess whether or not this
mechanism is working to improve student performance
or working habits.
In the 2020-2021 academic year, to address these is-

sues, Snaps [10] was developed and deployed in UC
Berkeley’s CS 2 course (CS61B: Data Structures and
Algorithms). Snaps is a piece of software that collects
�ne grained snapshots of student code as they work on
programming assignments and makes these snapshots
available to instructors and members of course sta�.
Each Snaps data point is a record of a student’s entire
code base at a given moment in time, and these records
are taken roughly every few seconds while students
work on assignments.
In this report, we utilize the Snaps dataset from the

Spring 2021 semester to develop custommetrics to com-
bat the lack of informative data available in introduc-
tory computer science courses, while keeping in mind
the time constraints on instructors and course sta�
members. We then use these metrics to understand the
interaction between student assignment completion
times, work habits and performance as measured by
points earned. Finally, we discuss the impact of our
�ndings on current decision making by instructors at
UC Berkeley and directions for future work.

2 RELATEDWORK
2.1 Predicting Success
With the ability to accurately predict student success, in-
structors of large scale Computer Science courses would
be able to focus course resources where they are most
needed, performing timely interventions and updating
course policies/curricula to provide more support for
areas associated with poor performance. To illustrate,

imagine a tool was built to detect when students were
heavily relying on print statement debugging rather
than using a debugger, and one found that not using
a debugger was predictive of poor performance. An
instructor could deploy content to encourage students
to use a debugger, using the data from the tool to un-
derstand the e�ectiveness of this content or customize
it for particularly debugger-averse students.
“Predicting success” is a broad term, and has been

formalized in a number of di�erent ways in other work.
One approach has been to take data from performance
on assignments and exams in prior courses, and try to
use this as an indicator for performance on exams and
assignments [5]. In fact, a large-scale analysis using UC
Berkeley data concluded that a very strong predictor
of a grade in an introductory computer science course
is the grade received in the previously taken course [6].
Other approaches use non-grade factors from before
beginning a course as predictors of success as measured
by exam scores and assignment grades, such as mathe-
matics background, prior programming experience, or
even attitude towards learning Computer Science and
success in the course [12]. While bene�cial for generat-
ing lists of potentially struggling students very early on
in a course, these approaches fail to incorporate data
from the current course or give an instructor actionable
insights for how to change their course.
There are approaches to predicting student success

that have incorporated current data, using code snap-
shots and machine learning techniques to get accurate
and early predictions for struggling students [4]. While
these approaches do allow for timely intervention based
on current course data, they rely on students actively
creating code snapshots, which reduces accuracy on
low-participation students. Additionally, the use of deep
learning techniques reduces interpretability, essentially
making the model a black box and resulting in di�cul-
ties providing actionable insights to instructors.

2.2 Automatic Snapshot Data
Other tools have been developed to automatically col-
lect student code snapshots, andmake the data available
to instructors. As the tools have been developed at dif-
ferent institutions, they rely on certain portions of the
course infrastructure, for example the Integrated De-
velopment Environment (IDE) that the course expects
students to use while completing assignments, or the

2

version control system that is used for students to make
code checkpoints. While there are di�erences in imple-
mentation details, these tools essentially provide the
same data: timestamped snapshots of student code col-
lected at semi-regular intervals that give a �ne-grained
view into how students complete assignments.
Yan et. al. considered a number of use cases for this

data. First, in TMOSS, the snapshots were used for
plagiarism detection between intermediary snapshots,
rather than just �nal submissions as is standard prac-
tice [13]. Second, in Pensieve, the snapshots were used
as a part of a tool developed to optimize pedagogical
best practice in one-on-one feedback sessions between
course sta� and students [14].
Rodriguez-Rivera et. al. uses the source control snap-

shots to understand student progress in large scale
classes. A tool is designed to aggregate the snapshot
data to provide real time insights [9]. The tool surfaces
metrics such as estimated time spent, progress based on
the test suite, lines added/deleted and code similarity
to instructors.
These previous approaches provide good motivation

for the use of such a tool at UC Berkeley, and provide
insight into potential pitfalls when analyzing the Snaps
dataset. The details of the courses these approaches
were used in must also be kept in mind as they di�er in
the scale and implementation details of the Snaps tool.

3 BACKGROUND INFORMATION
3.1 CS61B
CS61B: Data Structures and Algorithms is UC Berke-
ley’s CS 2 course. Programming assignments are done
in Java, and are mainly completed using the IntelliJ
IDE. It is the second semester-long course in a series
of three courses required in order to declare the CS
major. A large portion of the students in a given se-
mester have just completed the CS 1 course (which is
taught in Python) and intend to declare the CS major,
though there are students intending to major in other
subjects (most notably Data Science, Cognitive Science,
or some �avor of Engineering), or who have not taken
UC Berkeley’s CS 1 course.
A student’s grade in CS61B during the Spring 2021 se-

mester was determined by their performance on weekly
Lab programming assignments, three written Home-
work assignments, two Midterm exams, a Final exam,

and four large programming Projects [3]. Students ad-
ditionally receive points for completing non-technical
surveys throughout the semester about their experience
with the course. Students’ CS61B grades are primarily
determined by their performance on exams, as median
grades for other assignments are near 100%. That said,
the programming projects represent the majority of the
hours students spend on CS61B in a given semester. In
Spring 2021, the projects students completed were:

• Project 0: 2048, in which students �ll in methods
in order to implement the game logic for a Java
version of the popular 2048 mobile game.

• Project 1: Data Structures, in which students im-
plement both an Array and Linked List backed
version of a Deque interface. Students are also
required to write tests to ensure correctness for
their implementations.

• Project 2: Gitlet, in which students implement
a simpler version of the Git version control sys-
tem given descriptions of the functionality of
commands, and vague guidance on the classes
that should be written to implement these com-
mands.

• Project 3: Build Your Own World (BYOW), in
which students work with a partner to imple-
ment the generation of random 2D graphical
worlds that subscribe to certain speci�cations,
as well as the ability of a user to explore these
worlds through keypresses. A graphical render-
ing engine is given in the starter code.

Students learn course material through lectures and
optional weekly lab and discussion sections. Students
can receive support on assignments by asking questions
on a course forum, as well as attending O�ce Hours
available many times throughout the week.

3.2 Snaps
The tool used to actually capture student data was
the CS61B Snaps IntelliJ IDE plugin developed by Itai
Smith and described in [10]. In the �rst lab assign-
ment, students download necessary software to com-
plete CS61B assignments, including installing and set-
ting up the CS61B Snaps plugin. Throughout the course
of the semester, students work on assignments in a local
Git repository, which is connected to a remote Github
repository that can be used to submit assignments to
autograders. The Snaps plugin creates a separate local

3

Git repository that tracks and checks in intermediate
changes, or "snapshots", of their code as they work
through assignments.
The Snaps IntelliJ plugin checks in snapshots when-

ever IntelliJ "saves" code, which can happen due to
changes made to a �le open in IntelliJ, or when code is
compiled [7]. As these snapshots are stored as Git com-
mits, the plugin additionally stores the time at which
the snapshot was made, and a list of the �le names that
have changed in that snapshot. In practice, the tech-
nique of using IntelliJ “save” events to trigger Git snap-
shots resulted in both very �ne granularity of snapshots
(some snapshots are taken within tens of seconds of
each other) and low memory and compute constraints,
as Git handles all of the change tracking and recording
[2].
In the Spring 2021 semester of CS61B, we asked stu-

dents to push their Snaps repositories consisting of the
snapshots collected to a Github repository that instruc-
tors could access at four times throughout the semester
(aligning with the deadlines of the four Projects).
The Snaps plugin was designed with simplicity in

mind so that students could focus on actually complet-
ing the course, rather than setting up an experimental
tool. In practice, some students had issues with setup or
the plugin stopped working (for example, if a student
switched computers at some point during the semester).
We detail how we handle this inconsistent data in the
next section.

3.3 Data Cleaning
Our dataset consists of 1550 Snaps repositories collected
using the Snaps IntelliJ plugin during the Spring 2021
semester o�ering of CS61B. In practice, the Snaps plugin
ended up being less reliable than expected, with some
students running into errors due to setup problems or
computer switching, and others neglecting to push their
repositories following project assignments. There were
also external factors that contributed to incomplete data,
such as students dropping the course, taking the course
for a Pass/Fail grade, or not completing assignments
(per course policy, students were able to skip some Lab
assignments without penalty).
In our analysis, we did not consider students who

dropped the course or took the course for a Pass/Fail
grade. While it is still important for instructors to get an
understanding of the path these students took through

the class, we measure success through �nal class perfor-
mance and exam performance, so including these data
only results in outliers and confounds relationships.
The nature of certain assignments additionally cause

incompleteness and missing data. For example, Project
3 is open ended and gives students the freedom to create
their own �le structure. As we use �le names to classify
snapshots as belonging to a certain assignment, it is
challenging to con�dently classify a snapshot as being
taken while a student works on Project 3. Additionally,
Lab 4 and 5 both do not require students to edit code
in IntelliJ, though some choose to. Finally, Lab 12 and
Lab 13 are often skipped by students due to the course
policy, or had snapshots that failed to make it in the
pushed Snaps repository as more students neglected
to push their Snaps repositories after the �nal project
than in previous projects.
Table 1 shows the number of unique students our

dataset contains snapshots for for each assignment.

Table 1: Count of unique students who have
recorded snapshots for each CS 61B Spring 2021
assignment.

Assignment Count

Project 1 1391
Lab 1 1359

Project 0 1334
Lab 3 1291
Lab 2 1266

Project 2 1208
Lab 7 1136
Lab 6 936
Lab 4 369
Lab 5 239
Lab 12 181
Project 3 88
Lab 13 20

Based on these �ndings and reasoning, we removed
snapshots from assignments Lab 13, Project 3, Lab 12,
Lab 4 and Lab 5 from our analysis.
Additionally, bymanually inspecting the Snaps repos-

itories resulting in the lowest and highest total work-
ing times computed (this calculation is detailed in the
"Building a Working Time Metric" section below), we
found that some students manually made commits to

4

their Snaps repositories or had large gaps in their snap-
shot history. As a result, we did not consider students
with a total calculated working time of less than 10
hours in our analysis.
After cleaning the data based on manual inspection

of Snaps repositories, the details of certain class as-
signments, and the grading policy chosen, we analyzed
over 1.5 million (1,644,418) snapshots from 954 unique
students.

4 METRICS
Given some snapshot containing a timestamp, a mes-
sage listing �les changes and code change data, we used
a list of per-assignment �le names to classify that snap-
shot by which assignment was being worked on when
it was made. For example, in Project 0, students work on
a �le called Board.java, so any snapshots that contain
edits to Board.java are considered a Project 0 commit.
Note that snapshots can belong to multiple assign-

ments, as it is possible that a student changed �les from
multiple assignments in between IntelliJ "saves".
To formalize this, for each student 8 and each assign-

ment : , we have an ordered set (8: = {C1, C2, C3, . . . , C=},
where C8 is the timestamp of the 8’th snapshot taken.
Speci�cally, C1 is the timestamp of the earliest snapshot
taken when student 8 was editing �les for assignment
: , and C= is the timestamp of the �nal snapshot taken
when student i was editing �les for assignment k. No-
tice that for di�erent students and assignments, the
number of snapshots (|(8: |) will not necessarily be the
same, and could even be zero if a student skipped an
assignment entirely.

4.1 Building a Working Time Metric
In order to compute an estimate of the amount of time
a student spent working on an assignment, we used an
approach employed in the previous Snaps report [10],
and in other analyses of timestamped code snapshot
data to estimate the amount of time a student spends
in IntelliJ [9][14]. To convert a list of timestamps attrib-
uted to one assignment, we take a running sum of the
gaps in between timestamps, only including timestamp
gaps under a certain value in the sum.
Formally, we compute the time student 8 spent work-

ing on assignment : as

)8: =
’

C8 2(8:^8<1
(C8 � C8�1)1[C8 � C8�1 < ⇠]

⇠ is some constant representing the maximum time
between snapshots that should still be added to the
running sum. We will refer to ⇠ as the “maximum al-
lowable gap time”. The choice of⇠ is nontrivial, as there
are many reasons why a student may not be actively
writing code in IntelliJ. A student may, for example, be
watching a video walk through of a concept related to
the assignment they are working on, using a debugger,
or text messaging their friends. In the �rst two cases,
we want to consider the time as a part of the working
time, but not in the third case.
To illustrate, consider the following example. Sup-

pose Snaps collects a snapshot for the Lab 1 assignment
from a student at time 0. Snaps also collects snapshots
for the Lab 1 assignment at time 15 seconds (15 sec-
onds after the one at time 0), time 30 seconds, time 10
minutes, and then every 15 seconds after time 10 min-
utes until time 20 minutes is reached. Given this record
for Lab 1, the working time calculated for this student
would depend on the maximum allowable gap time.
Using a maximum allowable gap time of 1 minute, we
would calculate this student’s working time on Lab 1 to
be 10.5 minutes, as we would not include the 9.5 minute
gap between time 30 seconds and time 10 minutes in the
working time. Using a maximum allowable gap time of
10 minutes, we would calculate this student’s working
time on Lab 1 to be 20 minutes.
In previous work, the maximum allowable gap time

chosen has di�ered: 10 minutes is used in Yan et. al. [14]
and in the previous Snaps report [10], and 20 minutes
is used as an example in Rodriguez-Rivera et. al. [9]. In
Figure 1, we overlay plots of the estimated distribution
of working times on Project 1 calculated in this way
using di�erent values for the maximum allowable gap
time (ranging from 1 to 60 minutes).
The choice of maximum allowable gap time clearly

in�uences the distribution. When using 1 minute, the
mode working time is around .1 days, whereas when
using 20 minutes, the mode is nearer to .6 days. In order
to �nd a maximum allowable gap time to use when
creating the working time metric for our analysis, we
chose to dissect the actual code changes that made up
the snapshots collected to get a “ground truth” approx-
imation of working time.
To get the “ground truth” approximation, we built a

tool to manually examine the code di�erences between
subsequent snapshots and determine whether that gap
time should be counted in the running total or not for

5

(a) Distribution of estimated working times on Project 1 for various maximum allowable gap times.

(b) The tool used to manually inspect di�erences between subsequent snapshots. The tool shows the changes each
snapshot made with respect to the previous snapshot, and the user indicates whether or not that time gap should
be added to the running total working time.

Figure 1: Determining a maximum allowable gap time for our working time metric.

snapshots from Project 1 for 5 students. 2 labelers with
experience taking CS61B examined these Project 1 snap-
shots. The factors used to make the decision whether
to include a gap time or not was largely subjective, but
based on the labeler’s experience, the code di�erences
between the snapshots, and the time elapsed. One case
often caught by the labelers was snapshots that were
clearly from a period of time when the student was
debugging, consisting of 5-10 minute gaps and small,
repetitive changes around the same few lines of code.
A screenshot from this tool can be seen in Figure 1.
We determined that using a maximum allowable gap

time of approximately 20 minutes resulted in calculated
working times that were closest to the average of the
“ground truth” approximations. From this observation,
we decided to use 20minutes as themaximum allowable
gap time for all student work.

4.2 Working Time Results
We calculate the total working time of a student by
summing the per-assignment working times. We addi-
tionally calculate the “initial assignment” working time
of a student by summing the per-assignment working
times only for the �rst three assignments of CS61B
Spring 2021, Lab 1, Lab 2, and Project 0. Appendix A
details why we chose these assignments in particular.
If a student had no snapshots for a given assignment,
when computing the sum, their working time was con-
sidered to be the average working time amongst all
other students. Figure 2 depicts the distribution of total
working times and initial assignment working times in
hours in CS61B Spring 2021.
It appears that the distribution of working times is

relatively normal, with a long right tail. A portion of
outlier students spend considerably more time than
their peers working on CS61B assignments. Next, we

6

(a) Distribution of total and initial assignment (Lab 1, Lab 2, and Project 0) working times in hours in CS61B
Spring 2021. For total working time, the lower quartile was 47.38 hours, the median was 60.94 hours, and the upper
quartile was 75.46 hours. For initial assignment (Lab 1, Lab 2, and Project 0) working time, the lower quartile was
3.74 hours, the median was 5.2 hours, and the upper quartile was 7.15 hours.

(b) Relationships between total working time and total course points (top left, '2 = 0.104), total working time and
exam points (bottom left, '2 = 0.226), initial assignment working time and total points (top right, '2 = 0.212), and
initial assignment working time and exam points (bottom right, '2 = 0.321).

Figure 2: Distribution of our working time metric, and associations between working time and course
performance.

investigate the relationship between working time and
performance. It is intuitive to believe that students who
spend longer on assignments should do better, to a point.
Those who spend too little time may not engage with
the material enough, while spending too much time is
likely an indication of struggling with the material in
the course.
Figure 2 gives the relationship betweenworking times

and class performance. We measure class performance
through total points in the class (out of 12800 possible

points), as well performance on only the exams (out of
6400 possible points). Using total working time as a pre-
dictor, the coe�cient of determination was '2 = 0.104
for total points, and'2 = 0.226 for only exam points. Us-
ing initial assignment working time as a predictor, the
correlation coe�cient was '2 = 0.212 for total points,
and '2 = 0.321 for exams.
The scatterplots hint at an inverse relationship be-

tween working time and performance, though there are
a number of outlying points in the bottom left corner,

7

students who performed poorly and spent very little
time on the course, that decrease the strength of the
association. The long right tail of working time is as-
sociated with a clear decrease in exam performance,
while the average working time student appears in a
noisy cloud.
It is evident that similar or stronger associations are

seen just by using the �rst three assignments completed
by CS61B students. We are unsure of the cause of this
result, but hypothesize that working times on initial as-
signments are positively correlated with total working
times, in addition to the lower likelihood of the Snaps
plugin malfunctioning during the �rst few assignments,
limiting the noise in the initial assignment data. We
move onto building metrics from the Snaps dataset to
uncover information about how students work on as-
signments beyond time spent.

4.3 Building Working Habits
Metrics

In addition to the total amount of time a student spends
on an assignment, we are also interested in the details
of when students complete assignments in CS61B. Cur-
rently, CS61B course sta� uses rough metrics such as
checking the total number of submissions made to an
assignment’s autograder as the deadline approaches to
understand when students are completing assignments.
This approach only captures the behavior of the entire
class as a whole, and fails to incorporate students who
may be working on the assignment but have not yet
made a submission to the autograder.
Using the timestamped snapshots, we de�ne a metric

that can be used as a measure of when students are com-
pleting assignments. The "lateness" metric is calculated
as the average snapshot timestamp, minus the midpoint
timestamp in between the assignment release date and
the assignment due date. Using the formalization above,
if assignment : has release date ': and due date ⇡: ,
the "lateness" of student 8 on assignment : is given by:

!8: =
1
=

’
C 2(8:

C �
✓
⇡: + ':

2

◆

Intuitively, positive lateness values mean the stu-
dent’s average commit time is past the assignment mid-
point, with more positive lateness indicating that more
of the student’s work is done after the assignment mid-
point. Similarly, negative lateness values indicate the

student’s average commit time is before the assignment
midpoint.
Subtracting the midpoint has the e�ect of centering

the average timestamp around 0. If a student did all of
the work for an assignment on the deadline (had an
average commit time of ⇡:), their lateness would be
equal to ⇡:�':

2 , and if a student did all of the work for
an assignment on the release date, their lateness would
be equal to �⇡:�':

2 .
Lateness does not give all of the details an instructor

may be interested in while considering when students
complete assignments. A student who completed the
entire assignment in one sitting at the midpoint be-
tween the release date and the due date, and a student
who spent a few minutes working on the assignment
every day in between the release date and the due date
would both have very similar lateness scores (as the av-
erage commit time would be similar), but clearly these
students completed this assignment in a very di�erent
manner.
Again using the timestamped snapshots, we de�ne a

metric that can be used to di�erentiate the two cases
above (and provide more information than the “late-
ness” metric alone). The “spread” metric is calculated as
the standard deviation of the snapshot timestamps. For-
mally, the spread of student 8 on assignment : de�ning
C̄ = 1

=

Õ
C 2(8: C is:

f8: =
1
=

s’
C 2(8:

(C � C̄)2

Intuitively, large spread indicates the student worked
on the assignment over a longer period of time, and
worked more steadily. Small (close to 0) spread would
indicate the student did much or all of the work on the
assignment in a short interval of time.

4.4 Working Habits Metrics Results
In order to aggregate the lateness and spread measures
calculated per assignment, we sum the measures across
all assignments, and across the initial assignments used
in our previous analysis (Lab 1, Lab 2 and Project 0) to
get a “Total Lateness/Spread” and a “Initial Assignments
Lateness/Spread” measure.When calculating this aggre-
gated metric, we replace missing values (students who
did not have any timestamps for a given assignment)
with the average lateness or spread for that assignment.

8

(a) Distributions of total lateness in days (lower quartile=3.99 days, median=12.4 days, upper quartile=19.84 days)
and initial assignment lateness (lower quartile=-5.05 days, median=-2.63 days, upper quartile=0.37 days).

(b) Relationships between total lateness and total course points (top left, '2 = 0.088), total lateness and exam points
(bottom left, '2 = 0.084), initial assignment lateness and total points (top right, '2 = 0.127), and initial assignment
lateness and exam points (bottom right, '2 = 0.100).

Figure 3: Distribution of our lateness metric, and associations between lateness and course performance.

Figure 3 gives the distribution of total lateness for
all assignments and total lateness for only initial as-
signments for all of the students in the cleaned Snaps
dataset. We omit plotting distributions for total and
initial assignment spread, as this metric is less inter-
pretable.
The total lateness distribution is relatively normal,

with a heavier left tail. There appears to be a portion
of students who consistently start assignments early,
which leads naturally into investigating associations
between lateness and performance. The distribution
for initial assignment average lateness is considerably

shifted left from the distribution for total average late-
ness, which we hypothesize is due to a combination of
student work ethic attrition, higher variance in behav-
ior over fewer assignments, and assignments increasing
in di�culty and length as the semester goes on.
Figure 3 additionally gives relationships between

lateness and course performance. The general trend,
though weak in association, is a negative relationship
between our lateness metric and performance in the
course. The association using the lateness metric cal-
culated from all assignments has similar strength to
the association seen using our working time metric,

9

Figure 4: Relationships between total spread and total course points (top left, '2 = 0.008), total spread and
exam points (bottom left, '2 = 0.027), initial assignment spread and total points (top right, '2 = 0.057),
and initial assignment spread and exam points (bottom right, '2 = 0.081).

while the metric calculated using only the initial as-
signments is less strong than that seen using the initial
assignment working time metric. Additionally, the as-
sociation when using Exam Points as the dependent
variable is less strong than the association seen using
our working time metric.
We hypothesize that these results stem from assign-

ment working habits not being as informative about
exam performance as assignment working habits are
likely not tied to theoretical understanding. We do see
a similar trend that using only the data from the ini-
tial assignments gives a stronger association, which we
hope indicates that only initial assignment data may be
usable as a good predictor of success.
Figure 4 gives relationships between our spread met-

ric and course performance. The association between
the spread metric and performance in the course (both
using Total Points and Exam points as the dependent
variable) is essentially nonexistent. We believe that the
spread metric may be more useful for predicting suc-
cess in conjunctionwith the lateness (andworking time)
metrics. We turn to exploring the performance of pre-
dictive models using these metrics as features.

5 PREDICTING SUCCESS
Above, we explored the association between student
performance as measured by total class points and exam
points, and aggregated versions of our working time,

lateness and spread metrics. Now, we move onto uti-
lizing all of the per-assignment metrics to �t models
for prediction of these performance outcomes. We start
with a baseline model that only uses a student’s CS61A
(CS 1 at UC Berkeley) grade, as this was determined to
be a useful predictor of course performance in previous
work [6]. We then incorporate our per-assignment met-
rics for various subsets of assignments into these mod-
els to investigate any improvement in model accuracy,
with special attention to early subsets of assignments.
Students’ CS61A grade are self-reported on the Pre-

Semester survey. In the survey, students were asked
“If you took CS 61A at Berkeley, what grade did you
get?”. The possible responses were the letter grades
A-F (with + and - for A-C as options), P or NP for the
pass/fail grading option, “I did not take CS61A at Berke-
ley” and “Decline to state”. As the Pre-Semester survey
was voluntary, use a subset of our dataset containing
only students who responded to the survey (N=856).
As a baseline, we one-hot encode the CS61A grade

data, and use a LASSO linear regression model [11],
which regularizes coe�cients and tends to give weight
of 0 to features that only result in over�tting to noise.
While over�tting is unlikely with so few features, the
LASSO model is used so that a comparison can be made
when incorporating ourmetrics, as this will increase the
amount of features. Both total points and exam points
are used as the prediction targets. We report the aver-
age 5-fold cross validation coe�cient of determination

10

Figure 5: A portion of the regression decision tree �t using only self-reported CS61A grade to predict
a student’s total points in CS61B. Grades were one hot encoded, so a value of 1 corresponds to having
earned that grade in CS61A. The "value" of each node corresponds to the average CS61B grade earned
by datapoints in that node, and the "value" in a leaf node is the prediction returned by the model for
datapoints in that node.

('2) score as a measure of the model’s accuracy. We use
the cross validation score to evaluate our models as we
are interested in their ability to predict unseen data, as
might be the case in a future semester. As a result, an
apples to apples comparison cannot be made between
the predictive models’ '2 scores and those of the ag-
gregated working time, lateness and spread metrics as
the scores reported above resulted from �tting on the
entirety of the dataset.
Using only the CS61A grade data, an average 5-fold

cross validation '2 value of 0.557 is achieved when pre-
dicting total points, and a value of 0.610 is achieved
when predicting exam points. This result agrees with
the �ndings of previous work, as the coe�cient of de-
termination values from CS61A grade data are consid-
erably higher than any from our aggregated metrics
(working time, lateness, and spread).
Figure 5 visualizes a portion of a regression decision

tree �t on the one-hot encoded CS61A grade data. The

decision tree algorithm will just form a spindly tree
that predicts the average value in each category for
other values in that category. As expected, students
who earned higher grades in CS61A are predicted to
earn a higher grade in CS61B. Particularly, students
who earn an A+ in CS61A are predicted to receive an A
in CS61B, while students who earn a C in CS61A are
predicted to earn a C- in CS61B.
Given baseline '2 scores from using only CS61A

grade data, we consider models that incorporate both
CS61A grade and our metrics to predict course per-
formance. We �t models using assignments up to and
including Project 0 (2 weeks into the course, also re-
ferred to as “Initial Assignments”), up to and including
Project 1 (5 weeks into the course), and all remaining as-
signments used in the dataset (11 weeks into the course).
As now some features are not just binary values, we
standardize each feature before �tting LASSO linear re-
gression models. Table 2 gives the average 5-fold cross

11

Assignments Used Total Points '2 Exam Points '2

CS61A Grade 0.557 0.610
CS61A Grade and Initial Assignments 0.585 0.656

CS61A Grade and Assignments Through Project 1 0.585 0.670
CS61A Grade and All Assignments 0.588 0.666

Table 2: Average 5-fold cross validation '2 scores of LASSO linear regression models for various sets of
features that include CS61A (CS 1) grades using total points and exam points in CS61B as outcomes.

Figure 6: A visualization of a regression decision tree using working time, lateness, and spread metrics
from all CS 61B assignments to predict total points ('2 = 0.185). The "value" of each node corresponds to
the average CS61B grade earned by datapoints in that node, and the "value" in a leaf node is the prediction
returned by the model for datapoints in that node.

validation coe�cient of determination ('2) score for
�tting the LASSO linear model using di�erent sets of
features to Total Points and Exam Points outcomes.
As observed when comparing relationships between

each of our metrics individually with student points,
our metrics in addition to CS61A grade data are able
to predict exam scores more accurately than the total
points earned in the class. This is counterintuitive as
the Snaps data comes from only the assignments, but
we believe this result is related to exam scores being a
less noisy measure of student performance, as well as
the data cleaning process in which we replaced missing
exam scores with the average exam score.
While using our metrics in addition to the CS61A

grade data does not show spectacular increase in coef-
�cient of determination score, we are encouraged by
the results as including our metrics as features gives an
average cross validation '2 increase of about 3% when
predicting total points and about 6% when predicting

exam points. Furthermore, we see a similar increase
when only including assignments from the �rst two
weeks of the course.
In order to understand more about what student be-

haviors result in high or low predicted performance as
measured by our metrics, we �t a regression decision
tree using data from all of the assignments to predict
total score. We used a cross validation grid search to
select hyperparameters for the decision tree in order to
prevent over�tting while still being complex enough to
predict performance. The search resulted in a decision
tree that minimizes the squared error loss and has a
maximum depth of 3. Figure 6 gives a visualization of
the decision tree, which resulted in an average cross
validation coe�cient of determination score of 0.185.
Following the branch that leads to the highest pre-

dicted score (11592.17, an A-), we �nd that the model
gives this prediction to students who:

12

• Spend less than or equal to 9.405 hours on Project
1.

• Have an average Project 0 commit time that is
less than or equal to 3.885 days after the mid-
point.

• Have an average Project 1 commit time that is
less than or equal to 4.014 days after the mid-
point.

Following the branch that leads to the lowest pre-
dicted score that is not a single datapoint (8101.978, a
C+), we see that this prediction is assigned to students
who:

• Spend more than 16.806 hours on Project 1.
• Have an average Project 1 commit time that is
more than 3.412 days after the midpoint.

The "midpoint" refers to the halfway point between
the release date and due date of an assignment.
The takeaways from this decision tree model are lim-

ited given its low average cross validation score com-
pared to the LASSO models, as well as the randomness
involved in the order of splits that are considered. That
said, it is clear that the combination of lateness and
working time metrics result in informative splits (with-
out one clearly dominating the other), while the spread
metric is rarely chosen to split a node. Furthermore,
some of the same associations from the single-metric
evaluation are seen in the paths to the lowest and high-
est predicted scores in the decision tree: spending too
long on an assignment, or starting too late results in
predictions for performing worse.

6 DISCUSSION AND FUTURE
WORK

6.1 Instructor Intuitions
One motivation for building metrics from the Snaps
dataset was to investigate the validity of the rough in-
tuitions instructors use to evaluate course performance
and make policy decisions.
When building the working time metric, we were in-

terested in determining whether or not spending more
time on assignments resulted in better performance,
as instructors tend to see spending too much time as
an indicator of struggling with concepts, and too lit-
tle time as being detrimental to understanding. When
building the lateness and spread metrics, we desired to
understand if the student who starts early and works

steadily really performs as well as instructors would
expect them to, or if the student who �nishes the as-
signment at the last possible moment actually is doing
themself a disservice.
The rough negative association between our working

time metric and class performance does agree with in-
structor intuition in that students who spend longer on
both initial and all assignments are more likely to per-
form poorly on exams and receive a lower letter grade.
As the negative association also shows that students
who complete assignments very quickly are more likely
to perform better, this analysis does not give good in-
formation regarding students who �nish assignments
so fast that they miss out on the learning objectives of
the assignment. It is possible that �tting a curve with
a term of degree two to the working time and perfor-
mance scatterplot could give more information about
this intuition. Finally, there are many additional factors
at play, so there is no basis whatsoever to imply that
the time a student spends working on an assignment
causes a change in their score.
Again, the rough negative association between our

lateness metric and class performance aligns with intu-
ition. Students who start earlier are more likely to earn
more points on exams and in the course. The e�ect of
lateness is slightly stronger than that of working time
with respect to total points, but weaker with respect
to exam points. One possible interpretation is that this
result is due to assignment completion behaviors being
more independent of exam studying behaviors while
working time is closer tied to conceptual understanding,
though further work is necessary to con�rm this claim.
The association between our spread metric and class

performance is negligible. We continue to believe that
there is more information to be had from the times at
which students are working on assignments than only
the average (our lateness metric).
In order to make stronger statements about these

instructor intuitions, we are interested in surveys of
instructors to con�rm claims of what intuitions are held
and used. As UC Berkeley Computer Science courses
regularly gather self-reported data, incorporating data
such as self-reported working time, starting time and
di�culty level may give more insight into the reliability
of these intuitions.
Additionally, we believe that a more robust method

of computing a working time that relies on the contents
of student code snapshots, and a tool less prone to error

13

could improve the strength of the performance-working
time association. The Snaps tool could be improved in
a number of ways depending on the intended usage.
If one wanted only to use the timestamps of the snap-
shots as in this report, the tool could be modi�ed to only
capture timestamps, which would lower the complex-
ity of setup required and likely reduce the amount of
noise in the data. If the code di�erences are desired, one
could standardize the amount of time between snap-
shots rather than relying on IntelliJ autosave events,
and increase the frequency between required "check-
points" in which students push their Snaps repositories
to limit malfunctions and decrease variance in the data.
Finally, one could improve the way in which snapshots
are associated with particular assignments by using
more information than the �lename, such as the di-
rectory the student made changes in (in CS61B, each
assignment gets its own directory).

6.2 Early Prediction
A second motivation for building metrics from the
Snaps dataset was to determine the ability of models
to predict student success using data from only assign-
ments completed early on in the semester. With accu-
rate early prediction models, instructors could have the
ability to identify struggling students and update policy
decisions despite large class sizes.
We found that relatively simple linear models were

able to predict students’ total exam scores and �nal
grades with limited accuracy based on our metrics,
though the models were more accurate at predicting
total exam scores than �nal grades. By �tting a deci-
sion tree model, we found anecdotal evidence that the
lateness and working time metrics were most e�ective
for predicting performance.
As suggested by previous research, we found that

using grade data from CS61A (CS1 at Berkeley) re-
sulted in substantially more accurate models. When
combined with data from CS61B assignments from the
�rst 2 weeks of the course, we saw an increase in accu-
racy, which indicates that our metrics gathered from
these initial assignments can result in early prediction
of �nal grade and total exam scores.
An instructor could potentially implement an inter-

vention for students who, per an early prediction model
based on Snaps metrics and previous course grade, are
more likely to perform poorly in the course. It would

be telling to gather data on how student performance
changed as a result of this intervention as compared to
performance based on this dataset. This intervention
should be vetted and well thought out to control for
the risk of bias associated with using the predictions
of a statistical model in a human setting, as well as the
damage an incorrect prediction might have.
While using our metrics calculated from snapshot

timestamps as features does improve accuracy from
the naive CS61A grade model, we believe that there is
rich information available in the code contents of the
snapshots. Careful manual inspection, in addition to
static code analysis and more complex machine learn-
ing techniques may result in better metrics, as well as
stronger predictions.
Finally, we acknowledge that the use of point totals

as a proxy for student success may not be fully sound.
There are other metrics for success that may be more
bene�cial for students, instructors, and model accuracy.
One potentially informative outcome is performance on
the �rst or second midterm exam alone (rather than the
total performance on exams), which would also allow
for investigating what results in improved (or worse)
performance comparing early in the course to the end of
the course. We would also be interested in considering
self-reported satisfaction level or goal achievement as
a di�erent way of measuring success.

7 ACKNOWLEDGEMENTS
I am lucky to have found peers and mentors who pro-
vided me with invaluable advice and support as a stu-
dent, teaching assistant, and while working on this
report. Speci�cally, I’d like to thank Itai Smith, Prof.
Josh Hug and Daniel Edrisian for their contributions
and guidance. Additionally, this report would not have
been possible without the hard work and dedication of
the CS 61B Course Sta�.

REFERENCES
[1] UC Berkeley Course catalog. URL https://classes.berkeley.

edu/.
[2] About: Small and fast. URL https://git-scm.com/about.
[3] About: CS 61B Spring 2021, 2021. URL https://sp21.

datastructur.es/about.html.
[4] K. Arakawa, Q. Hao, W. Deneke, I. Cowan, S. Wolfman, and

A. Peterson. Early identi�cation of student struggles at the
topic level using context-agnostic features. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science

14

https://classes.berkeley.edu/
https://classes.berkeley.edu/
https://git-scm.com/about
https://sp21.datastructur.es/about.html
https://sp21.datastructur.es/about.html

Education V. 1, SIGCSE 2022, page 147–153, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN
9781450390705. doi: 10.1145/3478431.3499298. URL https:
//doi.org/10.1145/3478431.3499298.

[5] L. Beck, P. Kraft, and A.W. Chizhik. Predicting student success
in cs2: A study of cs1 exam questions. In Proceedings of the
53rd ACM Technical Symposium on Computer Science Education
V. 1, SIGCSE 2022, page 140–146, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450390705.
doi: 10.1145/3478431.3499276. URL https://doi.org/10.1145/
3478431.3499276.

[6] A. Guo. Analysis of factors and interventions relating
to student performance in CS1 and CS2. Master’s thesis,
EECS Department, University of California, Berkeley, May
2020. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2020/EECS-2020-22.html.

[7] JetBrains. Save and revert changes: Intellij IDEA, Nov
2021. URL https://www.jetbrains.com/help/idea/saving-and-
reverting-changes.html.

[8] N. A. of Sciences Engineering and Medicine. Assessing and
Responding to the Growth of Computer Science Undergraduate
Enrollments. The National Academies Press, Washington, DC,
2018.

[9] G. Rodriguez-Rivera, J. Turkstra, J. Buckmaster, K. LeClainche,
S. Montgomery,W. Reed, R. Sullivan, and J. Lee. Tracking large
class projects in real-time using �ne-grained source control. In
Proceedings of the 53rd ACMTechnical Symposium on Computer
Science Education V. 1, SIGCSE 2022, page 565–570, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN
9781450390705. doi: 10.1145/3478431.3499389. URL https:
//doi.org/10.1145/3478431.3499389.

[10] I. Smith. Snaps: A tool for understanding students
in large computer science classes. Master’s thesis,
EECS Department, University of California, Berkeley, May
2021. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2021/EECS-2021-118.html.

[11] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
58(1):267–288, 1996. ISSN 00359246. URL http://www.jstor.
org/stable/2346178.

[12] B. C. Wilson and S. Shrock. Contributing to success in an in-
troductory computer science course: A study of twelve factors.
SIGCSE Bull., 33(1):184–188, feb 2001. ISSN 0097-8418. doi:
10.1145/366413.364581. URL https://doi.org/10.1145/366413.
364581.

[13] L. Yan, N. McKeown, M. Sahami, and C. Piech. Tmoss: Using
intermediate assignment work to understand excessive collab-
oration in large classes. In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education, SIGCSE ’18,
page 110–115, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450351034. doi: 10.1145/3159450.
3159490. URL https://doi.org/10.1145/3159450.3159490.

[14] L. Yan, A. Hu, and C. Piech. Pensieve: Feedback on coding
process for novices. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19, page

253–259, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450358903. doi: 10.1145/3287324.
3287483. URL https://doi.org/10.1145/3287324.3287483.

15

https://doi.org/10.1145/3478431.3499298
https://doi.org/10.1145/3478431.3499298
https://doi.org/10.1145/3478431.3499276
https://doi.org/10.1145/3478431.3499276
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-22.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-22.html
https://www.jetbrains.com/help/idea/saving-and-reverting-changes.html
https://www.jetbrains.com/help/idea/saving-and-reverting-changes.html
https://doi.org/10.1145/3478431.3499389
https://doi.org/10.1145/3478431.3499389
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-118.html
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://doi.org/10.1145/366413.364581
https://doi.org/10.1145/366413.364581
https://doi.org/10.1145/3159450.3159490
https://doi.org/10.1145/3287324.3287483

A APPENDIX A: CHOOSING
INITIAL ASSIGNMENTS

Predicting student success at an early stage in a course
allows instructors to both implement interventions that
target students predicted to do poorly as well as evalu-
ate syllabus decisions that can impact the predictors of
success.
Using the Snaps data, we investigate relationships

between student work habits and performance in the
course using per-assignment metrics computed from
the timestamped snapshots. To get a big picture under-
standing of the interaction between these metrics and
performance in the course as measured by exam points
and total points, we aggregate the per-assignment met-
rics. When evaluating early success prediction, we are
interested in �nding a subset of assignments delivered
early in the semester that are still predictive of total
points and exam points.
To choose this subset of assignments, we line the

assignments up in chronological order based on the

due date. Then, for each assignment, we �t linear re-
gressions using the working time calculated for that
assignment and all previous assignments as features on
both total points in the course and total exam points.
Figure 7 plots the “score” (cross validation coe�cient
of determination) of each model. Using 5-fold cross
validation allows us to control for over�tting, as the
coe�cient of determination on the entire dataset would
always increase as a result of adding a new feature.
Based on this analysis, it appears that Project 0 had

the most predictive power (or explained a higher pro-
portion of the variance in exam and total scores), as
adding metrics calculated from this assignment as a
features resulted in the largest increase in the cross val-
idation coe�cient of determination of the linear model.
Given that Project 0 is due two weeks into the semester,
we chose to use Lab 1, Lab 2 and Project 0 as the “initial
assignments” when aggregating metrics and investigat-
ing associations.

16

Figure 7: 5-fold cross validation scores (coe�cient of determination) for linear regressions �t using
working times, lateness, and spread of CS 61B assignments based on chronological order of due date.
The linear regression corresponding to a particular assignment uses the metric from that assignment
and any assignment due before it as a feature.

17

	Abstract
	1 Introduction
	2 Related Work
	2.1 Predicting Success
	2.2 Automatic Snapshot Data

	3 Background Information
	3.1 CS61B
	3.2 Snaps
	3.3 Data Cleaning

	4 Metrics
	4.1 Building a Working Time Metric
	4.2 Working Time Results
	4.3 Building Working Habits Metrics
	4.4 Working Habits Metrics Results

	5 Predicting Success
	6 Discussion and Future Work
	6.1 Instructor Intuitions
	6.2 Early Prediction

	7 Acknowledgements
	References
	A Appendix A: Choosing Initial Assignments

