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Abstract
Assisting Reinforcement Learning in Real-time Strategy Environments with SCENIC
by
Qiancheng Wu
Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

The success of Reinforcement Learning (RL) methods relies heavily on the diversity and
quality of learning scenarios generated by the environment. However, while RL methods
are applied to increasingly complex environments, the support for environment modeling
is lagging behind. This work introduces the Scenic4RL interface that enables researchers
to use a probabilistic scenario specification language, Scenic, to intuitively model, specify,
and generate complex environments. We interface Scenic with a real-time-strategy game
environment, Google Research Football (GRF), to demonstrate the benefits of adopting
a formal scenario specification language to assist RL researchers in training, debugging,
and evaluating RL policies. Our interface allows researchers to easily model players’ initial
positions and dynamic behaviors as Scenic scenarios, and with options to customize the
environment’s reward and termination conditions. In addition, we release a benchmark of
mini-game scenarios encoded in Scenic for both the single-agent and multi-agent settings to
train and test the agents’ generalization abilities. Lastly, we demonstrate that researchers
can use the interface to facilitate automated curriculum learning.
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Chapter 1

Introduction

Reinforcement learning (RL) methods have shown great potential in solving challenging
tasks in complex environments. It has demonstrated great success in games, with RL agents
exceeding top human performance in games from Atari [34] to Go [27] to multi-agent real-
time strategy games [36]. Meanwhile, it is used extensively in real-world settings such as
traffic management [28], Internet of Things networks [4], and robot coordination [17]. These
successes rely heavily on simulation environments [2, 3], publicly accessible benchmarks [5,
9, 30], and the ability to quickly model and specify the environment to facilitate develop-
ment [8].

However, as the environment complexity grows, environment modeling and specifica-
tion capabilities fall behind [26]. Existing real-time strategy (RTS) games, including Star-
craft [32], Dota 2 [23], and soccer [16], lack the support for modeling diverse scenarios
involving sophisticated interactive behaviors. These RTS games pose several challenges
to effectively modeling the environment. First, these environments consist of many RL-
controlled entities cooperating and competing with non-RL-controlled entities, resulting in a
large state space over a long horizon. Second, stochasticity in the environment makes mod-
eling the environment difficult. Third, effective strategies require interactions with multiple
entities, so defining dynamic, sophisticated behaviors is difficult. Yet, existing simulators
only support the generation of environments based on predefined layout settings and offer
limited flexibility and control over the environment dynamics.

The lack of environment modeling and specification capabilities poses several challenges
to RL research [6, 5, 19, 20]. First, finding large sets of diverse and realistic training data is
difficult since it is infeasible to gather trajectories manually. Second, it was challenging to
comprehensively evaluate the policy’s generalization ability due to the lack of control over
the environment dynamics in complex RTS environments.

This work addresses these challenges by introducing the Scenic for RL interface, which
enables researchers to use a formal scenario specification language called Scenic [12, 13]
to intuitively model and generate various realistic scenarios in a flexible, systematic, and
programmatic way. Each Scenic scenario describes a distribution over the environment’s
initial conditions and the transition dynamics, and can be used to create a wide range of
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RL environments for training and evaluation of RL policies. We demonstrate the benefits of
the Scenic for RL interface on an RTS environment [1], Google Research Football (GRF), a
football video game that resembles real-world soccer [16]. The code is open-source and can
be found at https://github.com/BerkeleyLearnVerify/Scenic4RL.

1.1 Backgrounds

Reinforcement Learning

In the standard reinforcement learning setting, the RL agent interacts with the environment,
and the sequential process is formulated as a Markov decision process (MDP). Formally, a
MDP is represented as a tuple (S, A,T,r), where S is state space, A action space, T the
transition operator capturing the environment’s dynamics, r : S x A — R the reward
function. The agent’s decision making procedure is characterized by a policy my(a|s) where
a € A, s € S and 0 is the parameter vector. At each time step ¢, the agent chooses an action
a according to its policy and receive an reward r. The goal for the RL agent is to learn a
policy that gives the highest rewards in expectation.

However, in practice, the agent usually does not have perfect information of the state of
the environment and can only make observations to estimate the state. In this case, we extend
the MDP formulation to be a Partially Observable Markov decision process (POMDP). A
POMDP is defined as a tuple (S, A,0,T,e,r) where (S, A, T,r) are the same as MDP, O is
the observation space and ¢ is the emission probability p(o|s) where o € O,;s € S. At each
time step t, the agent observed o and choose an action a according to its policy. Its goal
remains the same to maximize expected rewards.

Google Research Football

The Google Research Football (GRF) simulator [16] is a physics-based 3D simulator pro-
viding a realistic soccer environment to train and test RL agents. The game rule closely
resembles those defined by Fédération Internationale de Football Association [11]. Unlike
other football environments [21, 15|, GRF focus on high-level actions, allowing inputs such
as dribbling and shooting, rather than low-level physical control of humanoid robots. The
simulator supports an arbitrary number of RL-controlled players. All players are either con-
trolled by the RL agents or by rule-based built-in Al bots. In the single-agent setting, similar
to most soccer video games, the simulator dynamically determines the RL-controlled player
to be the left team player who is closest to the ball. In the multiagent setting, the controlled
players are determined once at the start of the game based on the proximity to the ball. In
addition, GRF comes with 11 offensive scenarios to help researchers train and evaluate RL
agents and provides some pre-trained model checkpoints for a subset of the scenarios.
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Scenario Specification Language: Scenic

Scenic [12, 13] is an object-oriented, probabilistic programming language with syntax and
semantics specifically designed to support intuitive modeling and specification of environ-
ments. The user can encode a distribution of environment using the Scenic language in
a script called a Scenic program. A Scenic program describes an abstract scenario, which
includes distributions over the properties of objects, such as the initial position and its dy-
namic behaviors over time. To generate a concrete environment, or a scene, from a Scenic
program, the Scenic server samples the defined distributions to determine the initial position
of all objects in the scene to create the environment. Distributions defined inside dynamic
behaviors are sampled and executed at runtime. Therefore, the user can describe a distri-
bution of environments and model the dynamic behaviors in a Scenic script, and use Scenic
to generate scenes from the scenarios.

To interface Scenic with an environment, the user needs to define the model library and
the action library. The model library defines objects in the environment and their properties,
such as position and heading. The action library defines the basic actions an object can take
in the environment. The user can specify a default distribution over these properties in the
library, so the user doesn’t have to re-define every property in the scripts.

1.2 Contributions

Acknowledgement

The Scenic for RL interface described in Chapter 2 was led by Abdus Salam Azad and
Edward Kim, who made significant contributions, and in collaboration with Kimin Lee,
Professor Ton Stoica, Professor Pieter Abbeel, and Professor Sanjit A. Seshia [1]. Abdus
Salam Azad and Edward Kim provided insightful advice and guidance throughout the work
in Chapters 3 and 4. In Chapter 4, Edward Kim contributed to the implementation effort,
and Michael Wu and Debbie Liang helped with the experiments.

Contribution Outline

The contribution of this work can be summarized as follows.

e In Chapter 2, we introduce our open-sourced Scenic4RL interface that enables re-
searchers to flexibly model, specify, and generate scenarios to assist RL development.
We demonstrate the benefits of adopting a scenario specification language to facili-
tate training and testing of RL agents in the single agent setting of Google Research
Football. The interface enables researchers to endow domain knowledge in training to
improve agent performance and to fine-tune the agent in various scenarios to enhance
generalization.
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e Chapter 3 demonstrates Scenic4RL’s functionality in the multi-agent RL setting. In
addition to allowing researchers to define complex, interactive behaviors for multiple
entities, it allows researchers to select which entities to be controlled by the RL agent
to create custom multi-agent scenarios. We show that researchers can easily endow
domain knowledge to pretrain RL agents in the multi-agent setting to improve per-
formance, and release a multi-agent mini-game scenario benchmark to assist future
research.

e In Chapter 4, we demonstrate Scenic naturally facilitates unsupervised environment
design framework. By modeling a Scenic program into an under-specified POMDP,
we can automatically generate a curriculum of scenarios with progressively increasing
difficulty that can be used to train RL agents to solve challenging tasks. We interface
Scenic4RL with PAIRED algorithm [8] and evaluate its performance.



Chapter 2

Formal Scenario Modeling Language
Support for RL

This chapter introduce the Scenic for RL (Scenic4RL) interface, which enables researchers
to use Scenic, a Scenario Specification Language, to intuitively model, specify, and generate
RL environments. Researchers can specify the desired environment setup, which can be
either a concrete scene or a distribution of scenarios, using Scenic language. The interface
will sample environments according to the distribution defined in the Scenic program and
generate an OpenAl-Gym environment to be interfaced with the RL framework.

2.1 Problem Definition

Formally, a concrete environment, or a concrete scenario, can be represented as a Markov
Decision Process (MDPs) [29] defined as a tuple (S, A, p, 7, po), where S is the state space,
A the action space, p (s'|s, a) the transition dynamic, r (s, a) the reward function, and py the
initial state distribution. Researchers can model a distribution of environment as a Scenic
scenario. Scenic allows the user to model the environment’s (i) the initial state distribution,
(ii) the transition dynamics (specifically players’ behaviors), and (iii) the reward function.

Modeling Initial State Distribution

Users can easily specify initial state distributions of the players and the ball with Scenic’s
intuitive syntax that resembles natural English. For example, the user can easily define a
region on the field to be the player’s spawning region. In the 3v3 Cross from side example
2.1, the get_reg_from_edges function defines a rectangular area from which Scenic can sample
points to be the spawning position (see line 32, 34, 36). Scenic also supports more than 20
different syntaxes to specify the advanced spatial relationships, such as positioning the ball
in front of a player’s heading (line 37). Therefore, the user can quickly define a complex
distribution over the spawning positions for all players using Scenic. Scenic also provides
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param game_duration = 400

param deterministic = False

param offsides = False

param end_episode_on_score = True
param end_episode_on_out_of_play = True

leftLeftBackRegion = get_reg_from_edges(-70, -60, 20, 15)
leftCenterBackRegion = get_reg_from_edges(-70, -65, 10, -10)
leftRightMidRegion = get_reg_from_edges(-70, -65, -10, -20)
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— =
— O

rightRightMidRegion = get_reg_from_edges(-55, -50, 20, 15)
rightCenterMidRegion = get_reg_from_edges(-65, -60, 0, 5)
rightLeftMidRegion get_reg_from_edges(-55, -50, -30, -35)

—
[\

—_
w

=
=
I

—
ot

rightRM_AttackRegion
rightAM_AttackRegion
rightLM_AttackRegion

get_reg_from_edges(-80, -70, 5, -5)
get_reg_from_edges(-90, -85, -5, -10)
get_reg_from_edges(-80, -75, -25, -30)

[
(=2}
I

[Er g —
oo

behavior runToReceiveCrossAndShoot(destinationPoint):
do MoveToPosition(destinationPoint)
do HoldPosition() until self.owns_ball
do dribbleToAndShoot(-80 @ 0)
do HoldPosition()

N DN NNDN DN -
T = W NN = O O

behavior rightLMBehavior(destinationPoint):
do MoveToPosition(destinationPoint)
do HighPassTo(Uniform(ego, right_RightMid))
do HoldPosition()

W N N NN
S © 0 N O

RightGK
right_RightMid = RightRM rightRightMidRegion,

behavior runToReceiveCrossAndShoot(Point rightRM_AttackRegion)
ego = RightAM rightCenterMidRegion,

behavior runToReceiveCrossAndShoot (Point rightAM_AttackRegion)
right_LeftMid = RightLM rightLeftMidRegion,

behavior rightLMBehavior(Point rightLM_AttackRegion)
ball = Ball right_LeftMid 2

W W W W W W w w w
© 00 N O U ke W N

LeftGK behavior HoldPosition()
leftlB = LeftLB leftLeftBackRegion
leftCB = LeftCB leftCenterBackRegion
leftRB = LeftRM leftRightMidRegion

=
()

e
[\

Figure 2.1: The Scenic Program defining the 3v3 Cross From Side Scenario.
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Figure 2.2: An initial scene of the 3v3 Cross From Side Scenario

default spawning regions based on player roles. The role is abbreviated as two letters in the
player’s name. For example, in line 30, despite the user not specifying its spawning position,
the opponent goalkeeper will be spawned in the opponent goal region.

Modeling Transition Dynamics of the Environments

Scenic allows the user to flexibly control the transition dynamics of the environment by
modeling the dynamic behaviors of all players. Each player in Scenic can be assigned a
behavior that models its actions throughout the episode. Scenic behaviors are hierarchical,
so each behavior can invoke other behaviors. Scenic4dRL provided an extensive library of
pre-defined behaviors and actions to allow the user to quickly model desired interactive
behaviors. For example, line 19 models a behavior that invokes four pre-defined behaviors,
and this behavior is assigned to players defined in lines 31 and 33. Users can also model
conditional behaviors that invoke other behaviors and actions based on the defined conditions
using if-else statements.

Modeling Rewards

Users can customize environment rewards directly in the Scenic program. User can imple-
ment the logic to modify scenic rewards in the monitor construct. At every simulation step,
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1 monitor CustomRewardMonitor:

2 sim = simulation()

3 while True:

4 ball_x = sim.game_ds.ball.position.x
5 ball_y = sim.game_ds.ball.position.y
6 if ball_y > 70 and abs(ball_y) < 50:
7 sim.scenic_reward = 0.1

8 else:

9 sim.scenic_reward = 0O

10

11 wait

Figure 2.3: An example monitor that gives additional rewards based on the ball’s position.

1 monitor CustomTerminationMonitor:

2 sim = simulation()

3 while True:

4 ball_x = sim.game_ds.ball.position.x
5 if ball_x > O:

6 terminate

7
8

wait

Figure 2.4: An example monitor that terminates the scene if the ball is in the right half of
the field.

the monitor is executed and the scenic_reward parameter is added to the environment re-
ward. Example 2.3 defines a monitor that gives a small additional reward if the ball is close
to the opponent goal at each timestep. The wait syntax in line 11 tells the Scenic server to
halt executing the monitor until the next timestep.

Custom Termination Conditions

There are two ways to specify termination conditions in a Scenic program. First, user can
enable GRF built-in termination conditions by setting the relevant environment parameters
to true using the param keyword. For example, in line 4 of Scenic program 2.1, we set the
GRF parameter to end each episode on scoring. Second, users can specify custom termination
conditions in the monitor construct, which are checked at every simulation time step, to end
the episode when conditions are met. Figure 2.4 shows an example monitor that terminates
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Reinforcement Learning

Scenic4RL
Framework 1
1
1
1
1 state,
Scenic Scrlpt reward
action
gym.en (fwm s -— RGoogleh
ym.env cenic esearc
Reset
Algor-thm 0 APl | ~_~ Server Football
state, —_— -
Step(action) rewand Simulator
I actions
| (for all
: players)

Figure 2.5: Overview of the Scenic4RL interface architecture.

an episode if the ball is in the right half of the field.

2.2 Approach

Scenic4RL Interface Architecture

The scenic4RL interface consists of two main components: the RL interface and the Scenic
Server. The RL interface generates a Gym environment from the Scenic simulation and
bridges the internal Scenic server and the RL framework. The Scenic server executes the
Scenic program and maintains the simulation objects by communicating with the underlying
simulator. The interface creates concrete environments from the given Scenic scenario and
exposes a Gym RL interface [3] so that researchers can seamlessly use Scenic4RL with RL
frameworks. Figure 2.5 shows the overview of the architecture.

When a new simulation is created from a Scenic Program, the Scenic server parses the
program and maintains a list of all samplable variables, such as the players’ initial positions
if they are defined as a distribution over a region. When reset() is called, the server randomly
samples all samplable variables to generate a scene and establish communications with the
underlying GRF environment to start simulating the scene. Based on the initial state, it
updates its internal world models that include the positions of all players and the ball. It is
worth noting that the Scenic server controls the actions of all players, regardless of the num-
ber of players controlled by the RL agent. At every timestep, the Scenic server communicates
with the underlying GRF environment to receive the next state and observations, while the
RL interface receives input from the RL framework about the RL agent’s action. Then the



CHAPTER 2. FORMAL SCENARIO MODELING LANGUAGE SUPPORT FOR RL 10

Scenic server calculates the actions of all players based on RL agent inputs and the player
behaviors defined in the Scenic program. It then sends the actions to the underlying GRF
environment to receive the next state and observations and update its internal world mod-
els. Finally, it executes the monitors to determine custom rewards and check termination
conditions before forwarding the updated observations to the RL framework. The process
repeats until the environment is terminated or the reset() function is called, in which case
the server will start to create a new scene.

Interfacing Scenic to a new RL environment

To use Scenic to model and generate an RL environment such as an RTS game like Google
Research Football environment, we must first interface Scenic to the simulator. It is rel-
atively straightforward to interface Scenic with a new simulator since Scenic has already
been interfaced with other simulators [7] in fields such as autonomous driving, aviation, and
robotics. We defined a model library, an action library, and a behavior library according to
the environment specifications. Therefore, the user can easily reuse these libraries to build
complex scenarios and model dynamic player behaviors.

In the model library, we define the template for all the objects in the environment. For
example, in GRF, the objects include players and the ball. For players, we define a default
spawning area based on the player’s roles and assign their default behavior to use the built-in
AT bot. We also define region objects such as the goal area and the penalty box areas and
directional objects representing the compass directions for convenience.

The action library defines the action space of the RL environment. These actions are
used in behaviors that model the environment dynamics. In GRF, we included 19 actions,
including an idle action, movement actions in eight compass directions including reset di-
rection, three types of passing, a shooting action, a sliding action, and actions to start and
stop dribbling and sprinting. Although GRF includes a built-in Al Bot action that lets the
built-in AI control the player, we did not allow RL agents to take this action.

The behavior library defines the basic behaviors that can be used as the building block
for more complex behaviors and the helper functions. In GRF, it consists of widely used
basic soccer skills such as passing to the nearest teammate, evasive zigzag dribbling to avoid
the opponent from intercepting the ball, and aiming at the corner to shoot. In addition, we
defined several helper functions that can be used to create more complex behaviors. These
include finding the closest teammates, finding the player closest to the ball, and whether
there is an opponent near a teammate’s running direction.

2.3 Evaluation

This section demonstrates some use cases of Scenic4dRL to train, debug, and evaluate RL
agents in the GRF single-agent settings.
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Experimental Setup

96
positions of players on the left team
- - positions of players on the right team
P position of the ball
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Figure 2.6: Figure illustrating the stacked SMM representation of the observation used in
the experiment. Each SMM representation is a 72*96*4 bitmap representing the position
of players and the ball. The observation is a concatenation of the SMM representations of
the previous four timesteps. The red color in the figure denotes the value of 255, and green
denotes the value of 0.

We run the experiments on the single-agent setting of GRF, where the RL agent always
controls the left player who is closest to the ball. We train the RL policy using the PPO [25]
algorithm for 5M timesteps on a single GPU machine (NVIDIA T4) with 16 parallel work-
ers. Unless otherwise specified, all experiments are repeated ten times using random seeds.
Finally, we evaluate the trained policy on the evaluation scenarios for 10k timesteps. The
GRF environment setup is as follows. We use the stacked Super Minimap (SMM) represen-
tation of the observation, where the observation at timestep t is the concatenation of the
SMM representation from time ¢,¢ — 1,t — 2,t — 3. Each SMM observation is a bit map of
dimension 72*96*4, where each channel represents the location of left players, right players,
the control player, and the ball, respectively. Figure 2.6 illustrates the observation format.
The agent receives a reward of 1 if the left (RL-controlled) team scores and -1 if the opposing
team scores. We set GRF termination conditions as those in provided GRF scenarios [16],

ending if either team scores, the ball changes team possession, or the ball goes out of the
field.
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Minigame Benchmark
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Figure 2.7: Average Goal Difference of PPO agents on the mini-game scenarios. Blue bars
represents offense scenarios and yellow bars represents defense scenarios. The error bar shows
95% confidence intervals.

It is challenging to train an RL agent to play the 11vs11 full game. Previous study [16]
has shown that training an agent to solve the complete game can take up to 50M timesteps.
To enable RL researchers to develop and test models quickly, we released a set of 13 mini-
game scenarios inspired by everyday situations in real-world soccer games. These mini-game
involves few players, but they still require the policy to master combinations of soccer skills
to solve. The scenario’s simple environment configuration reduces the training time to speed
up RL development.

The mini-game scenarios include four offense and nine defense scenarios. The offense
scenarios require the RL-controlled player to create an attack opportunity to score. In
defense scenarios, the opponent players spawn in the left half of the field with the ball, ready
to attack and score, and the RL-controlled player must intercept the ball to prevent the
opponent from scoring. We modeled the behavior of the opponent players to ensure they
were capable of launching an effective attack. In fact, example 2.1 is adopted from one of
the defensive scenarios, 3v3 cross from the side.

We benchmark our mini-game scenarios using the PPO algorithm [25]. Figure 2.7 shows
the average goal difference of the RL agent in these scenarios. For offense scenarios, an ideal
agent should achieve the goal difference of 1, which indicates it scores every time. Similarly,
a goal difference of -1 is optimal for defense scenarios as it implies the RL agent can stop
the attack every time. From the graph, we can see the scenarios vary in difficulty. For
example, PPO agents scores consistently high on the avoid, pass and shoot offense scenarios
but struggle to solve the hard crossing scenario. The provided defense scenarios have a range
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of difficulties, with GK vs. Opponent being the easiest and the defender vs. an opponent
with hesitant dribble the most challenging.

It is worth noting that because of the stochasticity of the GRF environment, we observe
some significant variations in training performance between runs in some scenarios. For
example, in the 11 vs. GK scenario, one experiment achieves a 0.93 average goal difference
while another failed to learn anything.

Testing for Generalization
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Figure 2.8: Evaluation of the generalization ability of PPO agents in varying initial con-
ditions. The blue bar represents the agent performance on the training scenarios, and the
yellow bar represents the performance on the test scenarios.

We test the generalization ability of the PPO agents by evaluating them on unseen
scenarios with different initial positions. We create evaluation environments for all the mini-
game scenarios and selected GRF scenarios by changing the distribution over the initial
player position while keeping the formation and behaviors of the players the same. For
example, figure 2.9 shows the bird-eye view of the pass and shoot scenario. In this case, the
testing scenario is a mirrored image of the training scenario.

Fig 2.8 compares the performance of trained PPO agents in the training and testing sce-
narios. We observe a large drop in performance in the testing scenarios of offense scenarios,
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(a) Training Scenario (b) Testing Scenario

Figure 2.9: Bird-eye view of the training and testing scenario for Pass and Shoot.

but the performance difference between training and testing scenarios in the defense scenar-
ios is less significant. One explanation is that defensive scenarios generally contain larger
distributions over the initial state, and the larger variation in scenes contributes to better
generalization.

Facilitating Training with Probabilistic Scenic Policies

Scenic4RL enables researchers to model player behaviors to incorporate domain knowledge
into training. Researchers can encode expert strategies as probabilistic Scenic behaviors in a
scenario and generate demonstration data to pre-train the RL agent to reduce training time.
In this section, we define semi-expert Scenic policies for five scenarios where the PPO agent
struggles to learn. For each scenario, we generate 8k episodes of offline demonstration data
and run the behavior cloning algorithm on the data for 2M timesteps. We then fine-tune the
agent using PPO for an additional 5M timesteps. Figure 2.10 shows the performance of pre-
trained agents and that of PPO agents without pretraining. It also includes the performance
of our semi-expert policy and the performance of the intermediary behavior cloning (BC)
agent.

The result demonstrates the effectiveness of imitation learning from a relatively low
amount of demonstration data in the GRF single-agent setting, as the performance of the BC
agent generally matches that of the provided Scenic policy. In addition, we find a significant
improvement in agent performance after pretraining and fine-tuning compared to agents
trained using PPO directly. In all five scenarios, the fine-tuned PPO agent overperforms
the vanilla PPO agent and the provided semi-expert Scenic policy. Therefore, researchers
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Figure 2.10: Performance of PPO agents with and without pretraining with demonstration
data from semi-expert Scenic policies, and the performance of the behavior cloning agent
and the semi-expert Scenic policies.

can write stochastic Scenic policies to pretrain the agents to improve training performance,
especially in challenging scenarios where the PPO method alone is not sufficient to train an
RL policy.
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Chapter 3

Scenic for RL in Multi-Agent
Environments

Scenic enables intuitive modeling, specification, and generation of RL environments. In
Chapter 2, we focus on the single-agent environment, in which the RL agent controls one
player and interacts with bot-controlled teammates and opponents. While GRF’s rule-based
built-in bots can perform simple maneuvers, they do not coordinate with the controlled
player or other bots. Since the RL agent has no control over other players in the single-
agent environment, bot teammates will not move to correct positions or support the player
to facilitate an ongoing attack, and opponent bots often fail to organize effective defenses.
Fortunately, Scenic supports seamless generation of multi-agent environments from existing
Scenic programs. Researchers can easily specify players to be controlled by RL agents,
and the Scenic4RL interface would create the corresponding multi-agent RL environment.
Researchers can also define interactive, dynamic behaviors for all players using Scenic’s
behavior and action library. It allows researchers to develop diverse training scenarios, and
to endow human knowledge to help pretraining the RL agents to solve challenging tasks.

3.1 Problem Definition

In the multi-agent setting, we extend the POMDP formulation of reinforcement learning as
a decentralized partially observable Markov decision process (Dec-POMDP) [22]. Formally,
a Dec-POMDP can be described as a tuple (I,5,A,0,T,¢,r) where I = [1,...,n] is the
set of n agents, S the state space, A the joint action space, O the joint observation space,
T the transition operator, ¢ = p(o|s,a) the emission probability, the probability of seeing
observation o given the state is s and the action taken is a, and r the global reward function.
At each time ¢, each agent i receives its local observation o! from the joint observation o; € O
and choose an action a! according to the RL policy. All agents’ actions forms a joint action
a; € A and all agents receive the same reward r; based on the reward function r.
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3.2 Approach

Scenic4RL uses a control mode parameter to determine the type of generated RL environ-
ment. The control mode determines how RL agents should control the players defined in the
Scenic program. By default, if the control mode is not set, it will generate a single-agent gym
environment where the RL agent controls the left player closest to the ball at the moment.
The environment expects one action at each timestep and returns the observation specific
to the controlled player.

If the control mode is set to a multi-agent option, it will first determine players whose con-
trol be exposed to the RL agents, and create a multi-agent gym environment with modified
observation space and action space to account for all controlled players. The environment ex-
pects a list of actions, one for each player at each timestep, and returns a list of observations,
each corresponding to a currently-controlled player.

Calculating Player Actions

Recall the Scenic4RL interface consists of two components. The RL interface bridges the
RL framework and the Scenic server, receiving input actions from the RL framework and
outputting the observations and rewards. The Scenic server parses the Scenic program,
communicates with the underlying simulator, and maintains the simulation state, including
the position of all players and the ball.

At each time step, the Scenic server calculates and forwards all players’ actions, including
those for the opponent players, to the underlying simulator regardless of the environment
type (single-agent or multi-agent environment). To properly apply the input action from the
RL agent via step(), it maintains a list of players in the Scenic internal states who are to
be controlled by the RL agent at the moment, and the list is recalculated at every step to
ensure the RL agents always control the desired players. It then applies the input actions
to the corresponding internal Scenic players. For the rest of the players not controlled by
the RL agent, Scenic will compute their actions if that player has an active Scenic behavior;
otherwise, it assigns the built-in bot action.

In the multi-agent setting, when reset() is called, the episode will start from a new
sampled scene, but the control mode, observation space, and action space format will remain
the same.

Please note that the Scenic4RL interface creates and maintains the gym multi-agent
environment. Still, there are many flexibilities for the RL framework regarding using the
environment, e.g., how to unpack the observation and assign agent-policy mapping.

Control Modes

To create a multi-agent RL environment from a Scenic program, the user needs to 1) specify
the number of controlled agents and 2) decide how to map these controlled agents to players.
The number of controlled agents determines the size of the action and observation spaces. It
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can range from 2 to the total number of players in the left (RL controlled) team. Scenic4RL
provides two methods to map controlled agents to players: Fixed and Dynamic. In the
fixed method, the mapping of controlled agents to players is determined at the start of the
episode and remains constant throughout the episode. In the dynamic method, the mapping
is recalculated at every time step based on the player’s proximity to the ball. As a result, the
first controlled agent (index=0) may be mapped to player A at the start and be mapped to
player B in another timestep because the distances between the ball and the players change.

The combination of both settings is summarized as the control mode, which the user
specifies at the creation of the Scenic4RL environment. Scenic4RL currently supports the
following control modes.

Fixed Mapping

All The RL agents control all left players. The number of controlled players is automati-
cally set to the total number of left players. This mode is useful in defensive mini-game
scenarios where we want RL agents to learn to coordinate defenses.

AllNonGK The RL agents control all left players except the goalkeeper. The goalkeeper will be
controlled by the built-in AI bot. The number of controlled players is set to the total
number of left players - 1. This mode is mostly used in offensive scenarios where the
goalkeeper is unlikely to participate in attacks.

Variable The user can enter the number of controlled players as an integer as the control mode.
In this case, the controlled player mapping is determined at the start of the episode
based on the proximity to the ball. For example, if the control mode is set to 3 in the
11 versus goalkeeper scenario, the controlled agent at index 0 will be mapped to the
left player closest to the ball at the start of the game, index 1 to the second closest
player, and index 2 to the third closest player. If the number exceeds the total number
of left players, the simulator will raise an exception. This setting is equivalent to the
vanilla GRF multi-agent environment.

Dynamic Mapping

closest1l This is the default control mode and produces a single-agent environment. The con-
trolled agent is mapped to the player closest to the ball at any time in the episode.
This mode reflects the vanilla GRF single-agent environment.

closest2 The RL agents always control the two closest players to the ball at any moment in the
episode. This is similar to the variable mode, but the mapping is updated at every
step.

closest3 Similar to closest2, but the RL agents control the three closest players to the ball at
any moment in the episode.
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Multi-agent Observation and Action Spaces

In the multi-agent setting, the observation and action spaces are different from those in the
single-agent settings because we have to distinguish individual observations and actions of
each controlled agent. Let n denotes the number of controlled players. At each timestep,
all controlled agents receive their individual observations specific to its mapped players, and
the environment expects a joint action of length n consisting of all controlled-agents/players’
actions. Formally, the observation space O = x;0; is the set of joint observations where O;
is the set of observations for agent ¢. The action space A = x;A; is the set of joint actions
where A; is the set of actions for agent 1.

In the implementation, the observation is list of n individual observations, each corre-
sponding to a controlled agent’s observation. The action is a list of n actions, each corre-
sponding to an agent’s action.

3.3 Evaluation

Experimental Setup

For all the experiments, we use GRF’s stacked super minimap (Stacked SMM) representation
of the observation. Each controlled agent only sees the observation specific to that player.
Each observation at time ¢ is a concatenation of the SMMs of time ¢, t — 1, t — 2, t — 3,
where each SMM is a 4x72x96 bit matrix representing the position of left team players, right
team players, controlled player and the ball. RL policies are not allowed to use the default
built-in bot action. All agents receive a reward of +1 if the left team scores, and a —1 if the
right (opponent) team scores. An episode ends if either team scores, or the ball is out of the
fields, or the ball possession changes.

We use RLIib library to train and evaluate RL policies. We train a separate policy for
each controlled agent in the multi-agent RL environment. Unless otherwise specified, we
train each policy using PPO algorithm for 5M in-game timesteps with 16 parallel workers
on a single GPU machine (Nvidia T4). Each experiment is repeated for 5 random seeds.

Multiagent Minigame Benchmark

Multi-agent RL is challenging. Recent studies show that conventional RL training methods
are insufficient to train policies to solve the 11v11 full game [14]. In fact, in our testing, PPO
agents struggle to learn to solve even moderately challenging scenarios involving fewer play-
ers. To give researchers a benchmark for evaluating RL methods, we create and benchmark
a set of multi-agent mini-game scenarios consisting of 13 scenarios based on single-agent
scenarios. It includes a mix of offensive and defensive scenarios involving 3 - 11 controllable
players. Each scenario represents a situation common in the actual soccer game that requires
coordination between players to solve.
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Figure 3.1: Bar chart showing the average goal difference of PPO agents on the multi-agent
mini-game benchmark. The error bar represents 95% confidence interval. Blue bars denote
offensive scenarios and orange bars denote defensive scenarios.

The user can control the number of RL-controlled players using the control mode setting.
Although, in theory, increasing the number of RL-controlled players allows better coordina-
tion between players to achieve better performance, it significantly increases the environment
complexity and makes training more difficult. Therefore, to allow for rapid development and
testing, most scenarios comprise no more than four active players to represent the situation
without creating additional challenges.

We propose defensive scenarios where the opponent player spawns with the ball close to
the RL Team’s goal. The scenario scripts define the opponents’ behaviors to ensure their
attack is effective. The objective of RL policies is to utilize all defense players and the
goalkeeper to defend the aggression and prevent the opponent from scoring. Therefore, we
recommend using the "all” control mode for all defensive scenarios to enable RL agents to
organize defense with all available players.

The set also includes offensive scenarios where the RL players must maintain ball pos-
session and score. Most scenarios require team coordination to bypass opponent defenders.
Therefore, we recommend using the ”allNonGK” control mode to maximize teamwork po-
tential.

We benchmark the proposed mini-game scenarios by training RL agents with PPO for 5M
timesteps and repeated for 5 random seeds. We use the ”all” and "allNonGK” control modes
for defensive and offensive scenarios, respectively, except for 11vsGK scenario where we
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repeat experiments with 2 and 3 controlled players with fixed mapping. Figure 3.1 compares
the mean agent performance on benchmark scenarios. Table 3.1 details the scenario settings
and the average goal difference of the RL team. Because we end episodes if either team
scores, the goal difference is between -1 and 1. For offensive scenarios, an optimal policy
should achieve a goal difference of 1 (consistently scores), and for defensive scenarios, it
should be 0 (always prevent the opponent from scoring).

From the graph, we can see the scenarios in the benchmark have varying difficulties.
While RL agents can achieve near-perfect performance on the pass and shoot with keeper
scenario, they struggle to make progress in scenarios such as hard crossing and run, pass and
shoot with keeper. Defensive scenarios also pose challenges to the agent in the multi-agent
setting. The RL agents can only reduce the goal difference to around -0.4 on moderately-
difficult 2v1 scenarios such as Defender vs. Opponent with Zigzag Dribble and Defender vs.
Opponent with Hesitant Dribble.

Pretraining with Domain Knowledge

While it is challenging to train RL policies from the stretch in the multi-agent environment
with many controlled players, researchers[14] have used offline RL training methods such as
imitation learning to train RL agents to solve a simpler version of the 11v11 full game®. How-
ever, the offline RL algorithm generally requires a large dataset of trajectories of successful
runs. These trajectories are hard to get because they require a working model capable of
playing the game in multi-agent settings, which the RL community currently lacks. Alter-
natively, researchers have to rely on human experts to manually define multiple controlled
players’ trajectories, which is often impractical and tedious.

Researchers can use Scenic4RL to easily generate offline training data from Scenic pro-
grams. Similar to the single-agent environment, Scenic allows the researcher to directly en-
code expert strategies for all controlled players using Scenic’s extensive behavior and action
library. In the experiments, we define distributions of behaviors instead of deterministic ac-
tions to ensure the diversity of the generated datasets. To facilitate development, Scenic4RL
provides a utility script to automatically generate trajectories from Scenic programs and
record them in an RLIlib-compatible file to be used for future training.

Therefore, Scenic4RL enables researchers to endow domain knowledge to facilitate train-
ing. Before training the multi-agent policies using PPO, researchers can pretrain the policies
on the generated demonstration data through behavior cloning. To demonstrate, we com-
posed a semi-expert policy in Scenic for each of the four multi-agent scenarios and used it
to generate 8k sample trajectories. Then, we run the behavior cloning algorithm on the
generated dataset for 2M timesteps and then further fine-tune the policies using PPO for
additional 5M timesteps. Figure 3.2 compares the performance of the PPO agents with
pretraining with that of agents without pretraining. Table 3.2 details the average goal dif-

'In this setting, RL policies are allowed to take the built-in Al action. However, we don’t allow the
policy to take this action in our experiments.
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Number 1(\)Ifu glgr?—r Avg Goal
Scenario (;fl;eft trolled gDi F 95% C.I.
yer Player
Offensive Scenarios
pass and shoot with keeper 3 2 0.7013 0.2773
avoid pass and shoot 3 2 0.5856 0.5482
easy crossing 3 2 0.54029 0.2772
11 vs GK (2) 11 2 0.12 0.0399
11 vs GK (3) 11 3 0.11 0.0498
hard crossing 4 3 -0.024 0.0613
run pass and shoot with keeper 3 2 -0.034 0.0423
3vl 4 3 0.591 0.592
Defensive Scenarios
Defender vs O]gﬁg?j:t with Zigzag 9 9 041 0.1199
I
3vs3 with cross from side 4 4 -0.534 0.2572
3vs3 side buildup play 4 4 -0.5573 0.3267
2v2 3 3 -0.7372 0.1801
3vs2 Counterattack 4 4 -0.7517 0.1769
2v2 CounterAttack 3 3 -0.794 0.1749

Table 3.1: Table of PPO agent performances on Multi-agent Mini-game Benchmark.
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Figure 3.2: Bar chart comparing the performance of agents trained with and without demon-
stration data. The first two columns represent the average goal difference of RL agents with-
out pretraining and with pretraining. The third and fourth columns show the performance
of the semi-expert Scenic policy and the behavior-cloned agents. The first two scenarios,
11vsGK and Counterattack Easy, had environment-controlled teammates, while the last two
scenarios, Pass and Shoot with Keeper and Avoid Pass and Shoot, had all relevant players
controlled by RL agents.

ference of PPO agents with and without pretraining, the semi-expect Scenic Policy, and the
intermediate behavior cloning agent.

The experiment results show that behavior cloning agents were relatively successful in
fitting the semi-expert behavior in most scenarios. However, the effectiveness of further PPO
fine-tuning depends on whether there were uncontrolled teammates in the scenario. If the
RL agent controls all the relevant players in the scenario, e.g., Pass and Shoot with Keeper
and Avoid Pass and Shoot, then we see a significant improvement in agent performance
after pretraining with demonstration data similar to the result in the single-agent setting.
However, for scenarios 11vsGK and Counterattack Easy, which consist of 3 RL-controlled
players and 7 RL-controlled teammates (excluding the goalkeeper), further PPO training
gradually reduces the performance of the behavior cloned agent close to the level of PPO
agents without pretraining. The decrease in performance after fine-tuning may be due to
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several reasons. First, the network model we used may be too simple to handle environments
with many players, as evident by the poor performance on the 11vGK scenario. Second, the
presence of non-RL-controlled players adds significant variance to the environment, which
adds difficulty for pretrained agents to generalize to these unseen situations.

Number Number PPO PPO
Seenario 01} lefs of con- without with Scenic Behavior
trolled | Pretrain- | Pretrain- | Policy Cloning
player i ’
player ing ing
11vsGK 11 3 0.11 0.125 0.4 0.12
Counterattack 11 3 0.01 0.05 0.69 0.5
Easy
Pass and Shoot 3 p 0.7013 0.948 0.51 0.4
with Keeper
Avoid Pass and 3 2 0.5856 0.861 0.32 0.4
Shoot

Table 3.2: Table showing the average goal difference of the agents trained with and without
demonstration data, and the performance of semi-expert Scenic policy and the behavior-
cloned agents.
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Chapter 4

Automatic Curriculum Learning via
Environment Generation

Previous chapters introduce Scenic4RL’s capability to allow RL researchers to model and
specify distributions of environments. Yet, manually defining environment distributions is
time-consuming, error-prone, and insufficient to facilitate many RL algorithms such as trans-
fer learning [35] and emergent complexity methods [33] that require extensive sets of diverse
scenarios. For example, in generated curriculum based curriculum learning method, RL
agents are trained on a curriculum of scenarios that are simple at first but get progressively
more difficult as the learning progresses. The idea is to let the RL agent start easy, gradually
picking up skills in each marginally more challenging scenario until it can solve the target
task. Clearly, it is infeasible to create such a curriculum for each target task manually: it
is impossible to cover all variations and edge cases, and humans can not accurately build
scenarios suitable to the agent’s learning progress since we as humans can not accurately
determine scenario difficulty for RL agents.

The solution is to automate the environment generation process. This chapter describes
an alternative environment definition paradigm called Unsupervised Environment Design
(UED)[8]. In this setting, instead of directly specifying the environment in the Scenic pro-
gram, researchers provide an under-specified environment with free parameters that are used
to automatically create a distribution over feasible environments. Each Scenic program now
contains free environment parameters that an external agent can set to generate a new
distribution of environments, from which the Scenic server can sample fully-specified RL
environments. In the evaluation section, we modify and apply the state-of-the-art automatic
curriculum learning algorithm, PAIRED, and evaluate its performance on custom Scenic
scenarios in GRF.
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4.1 Problem Definition

Automated Curriculum Learning

Automated curriculum learning methods aim to train the RL agent to solve previously
unsolvable tasks with 1) high sample efficiency and 2) good generalizability to diverse envi-
ronments. It achieves the goal by training the RL agent on automatically generated environ-
ments (curriculums) suitable for the RL agent’s learning progress to facilitate incremental
learning. These methods usually use a teacher network to create environments, and the
RL agent is referred to as the student. At every iteration, the teacher network creates new
scenarios based on the student’s performance, and then the student is trained on these sce-
narios. The process repeats until the student can solve the target tasks. The student agent
is then evaluated in similar but unseen environments to test its generalization ability.

Under-Specified POMDP

Sampled scenes from Scenic are fully-specified environments because they don’t contain any
non-determinism. Therefore, consistent with previous chapters, we can formulate a fully-
specified environment as a POMDP. On the other hand, an under-specified environment
is an environment with free environment parameters that control its features and behav-
ior. Formally, it is formulated as an Under-specified Partially Observable Markov Decision
Process (UPOMDP), which can be represented as a tuple M = (SM A O, T &M M 9).
The difference between a UPOMDP and POMDP is the addition of 6, the free environment
parameters that can be set at any timestep. Incorporating the environment parameters,
TM . Sx Ax@ — S is the transition function and the rest are the same as those in POMDP.
A setting of environment parameter 6 can be combined with an under-specified environment
M to produce a fully-specified POMDP Mj.

Unsupervised Environment Design

Unsupervised Environment Design (UED) is the task of generating a distribution of full-
specified environments from a given under-specified environment automatically. Ideally, we
want the generated distribution to suit the RL agent’s current ability to facilitate learning.
Formally, the solution to UED can be characterized as an environment policy A : II — 67
where II is the set of possible RL policies and 67 is the set of possible sequence of environment
parameters. In plain words, an environment policy produces trajectories of environment
parameters to curate the environment distribution to facilitate RL agent’s learning.

Common UED policies include domain randomization, where the environment parameters
are sampled randomly from the distribution, and minimax adversary, where an adversary
agent sets the environment parameters to minimize the reward of the RL agent. However,
as we describe in detail in the PAIRED algorithm section, both methods fail to generate a
viable curriculum of environments in most contexts.
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spawn_area = get_reg_from_edges(0, 80, -25, 25)

1
2
3 ego = LeftCM on spawn_area

4 opponent = RightGK on spawn_area
5

6

7

MyGK
ball = Ball ahead of ego by 2

Figure 4.1: Example Scenic script that defines a distribution of environments.

4.2 Approach
SCENIC Program as Under Specified POMDP

Scenic allows the user to define a scenario expressing a distribution of concrete scenes. Since
each concrete scene is a fully-specified environment, such a scenario, encoded in a Scenic
program, can be seen as defining an under-specified environment, with the environment
variables being the random variables in the program.

For example, in the following simple
Scenic script defining a 1v1 scenario between
an RL-controlled attacker and an opponent
goalkeeper, we define a distribution over the
area where both players could spawn. If we
train the RL agent on this scenario, at every
reset() step, the Scenic server will randomly
sample two points in the spawn area to de-
termine the exact spawning locations to cre-
ate a fully-specified scene. Therefore, Scenic
implicitly implements an environment policy
of domain randomization, where all the envi-
ronment parameters are sampled randomly
from the defined distributions. Figure 4.2: Illustration of the 1v1 scenario de-

However, the domain randomization pol- fined in 4.1. The yellow rectangle represents
icy is not optimal for creating a curriculum the spawn area of both players.
on which to train an RL agent to master the
1v1 skill. Since we randomly sample the spawning locations for the controlled player and the
opponent from the spawn area, it will generate scenes that are not helpful in training. For
example, it can generate trivially easy scenes if the controlled player with the ball spawns in
front of the opponent goalkeeper. It can also generate impossible scenes where the RL agent
can’t score, e.g., if the opponent spawns closer to the ball than the RL player. While it is
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1 X1 = Range (0, 80)

2 Y1 = Range (-25, 25)

3 X2 = Range (0, 80)

4 Y2 = Range (-25, 25)

5

6 ego = LeftCM (X1 @ Y1)

7 opponent = RightGK (X2 @ Y2)
8

9 MyGK

10 ball = Ball ego 2

Figure 4.3: Equivalent Scenic script to Example 4.1

possible to create rules to prevent the generation of such scenes, it is time-consuming and
infeasible to manually tune the distribution in complex scenarios with a large environment
parameter space. Domain randomization also does not consider the RL agent’s learning
progress to create an adaptive curriculum.

We can expose all environment parameters in a Scenic scenario to let an external agent
control the distribution of the environment. Therefore we can use an external agent to
determine the environment parameters to shape the distribution to support the RL agent’s
learning. In this setting, all the distributions defined in the Scenic scenario are translated
into a vector of environment parameters. While Range objects are mapped directly as an
entry of the vector, area objects are translated into two variables representing the x and y
coordinates. Figure 3 shows the equivalent scripts to the previous example with environment
variables explicitly written as Range objects. The environment variable of the example script
is therefore 0§ = [ X1, Y], Xo, 3.

To model a Scenic program as a UPOMDP, we provided an environment wrapper on
Scenic4RL’s Gym environment that exposes the environment parameters as a list. Further-
more, we rescale the environment parameters from —1 to 1 to allow easy integration with
neural net models. The interface will scale back the input environment parameters according
to the defined ranges when sampling scenes. The wrapped gym environment consists of two
additional functions.

reset_random(): Randomly reset all environment parameters and reset the environ-
ment.

step_adversary(env_params): Set the environment parameters.

Using the UPOMDP wrapper, we can train another RL agent as the environment policy.
For example, we can train a minimax adversary RL agent to set the environment parameters
with the goal of minimizing the player agent’s reward. However, this approach may not
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work in most scenarios since the adversary agent can always create impossible environments
if such configuration exists to prevent the player agent from scoring.

PAIRED Algorithm

PAIRED [8], or Protagonist Antagonist Induced Regret Environment Design, is an environ-
ment policy capable of generating challenging yet feasible environments suitable to the RL
agent’s capability. It trains an adversary environment agent whose goal is to minimize the
difference between the reward of the player RL agent (protagonist) and the reward of a rival
RL agent (antagonist). Because the environment agent’s reward is based on the difference
in learning progress between the two RL agents, the environment agent is encouraged to
generate environments that are challenging to the protagonist but are solvable by the RL
agents!.
In the PAIRED method, we train three RL agents:

1. The protagonist, which is the agent we want to train to solve the task.
2. The antagonist, identical to the protagonist, acts as the protagonist’s rival.

3. The adversarial environment agent, which generates the environment parameters to
create a distribution of environment that is feasible and incrementally challenging for
both the protagonist and the antagonist.

To calculate the reward for these agents during training, we define regret as the difference
between the reward of the protagonist and the reward of the antagonist under a POMDP
created from a UPOMDP under environment parameters 6.

REGRET(x",7%) = max U (z%) — E[U%(x")]

where U = U g(w) = ZzT:O ryt is the discounted cumulative rewards of an agent, and « is
the discount factor.

The three agents are randomly initialized at the start. In each training iteration, the
adversarial environment agent will generate and set the environment parameters to tailor the
distribution of environments to suit the protagonist’s learning progress. Once the scenario is
set, we run the protagonist and antagonist on the sample scenes from the scenario to estimate
the regret. Then we update all agents based on the regret and repeat. The algorithm can
be summarized as follows.

'If the training environment is trivial, then both the protagonist and the antagonist will do well, so the
difference is low. If the environment is unsolvable, then the difference is zero. Therefore, the environment
adversary agent has to devise the easiest scenario protagonist can’t solve but antagonist can to maximize its
rewards.
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Algorithm 1: PAIRED Algorithm
Input: A SCENIC program P defining an UPOMDP M;

Randomly initialize Protagonist 7%, Antagonist 7, and Environment Adversary A :
while not converged do

Use adversary to generate environment parameters: 0 ~ A. Use to create
POMDP My ;

Collect Protagonist trajectory 7% in My. Compute: U 5(’/TP ) = Z;TFZO Tyt
Collect Antagonist trajectory 7% in My, Compute: U g(WA) = ZiT:o Tyt
Compute: REGRET(7F, 74) = max, 4 UJ(TA) —E,.r [Ug(TP)] ;

Train Protagonist policy 7 with RL update and reward R(r) = —REGRET ;
Train Antagonist policy 7 with RL update and reward R(7) = REGRET ;

Train Adversary policy A with RL update and reward R(7") = REGRET ;
end

4.3 Evaluation

The experiments in this section aim to compare the learning performance of agents trained
with and without an unsupervised curriculum learning algorithm (PAIRED [8]). We build
4 mini-game programs encoded in SCENIC, each containing a distribution of environment
resembling a common real-world soccer situation. Each mini-game consists of 1) a training
scenario that contains samplable environment parameters that define a broad distribution of
the initial players and ball positions and/or opponent behaviors, 2) 2 to 4 testing scenarios
each defining a concrete environment with all environment parameters set within the training
distribution. The testing scenario ranges in difficulties as defined by human knowledge. The
learning performance is measured by the average return of the agent evaluated on the training
and all testing scenarios. Due to computation resource limitations, the mini-game contains
fewer players (no more than 6) than the 22-player real soccer game.

Experiment Setup

For each mini-game, we train two agents using PPO [24] with identical network structure
and hyperparameters, one with the PAIRED algorithm and the other with the domain
randomization algorithm, on the training scenario for 5M timesteps and repeated for 2 seeds.
The agent is evaluated on each scenario for 500 episodes.

For Google Research Football settings, the observation type is stacked super minimap
representation: a 72*96 image with 16 channels representing the location of players, balls,
and the currently controlled player over the last 4 timestamps. An episode of the game
terminates on scoring, ball possession change, or upon reaching 400 timesteps. The reward
is 1 if the agent scores, -1 if the opponent scores, and 0 otherwise. All non-controlled players
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are controlled by the built-in Al, except players with pre-defined behaviors encoded in the
SCENIC program.

Scenic Scenarios

Every scenario is a SCENIC program. All samplable environment parameters are in the
form of Range(low, high), denoting a continuous range from low to high. If a scenario
contains samplable environment parameters, during each reset, their values are updated by
the adversarial environment agent if using PAIRED [8], or chosen uniformly random if using
domain randomization.

1v1 (Restricted) In this scenario, the agent controls a striker who spawns in a narrow
rectangular area in front of the opponent’s goal trying to score. The opponent goalkeeper
spawns in a rectangular area between the striker and the goal. The difficulties and strategies
vary depending on the spawn locations. If the initial position of the goalkeeper doesn’t block
the striker’s shot, the agent can simply shoot at once to score. Otherwise, the agent has to
learn to pass the goalkeeper before shooting.

There are 3 test scenarios ranging from easy to hard. In test scenario 0 (easy), the
opponent goalkeeper spawns on the opposite side of the striker and hence it is easy for the
striker to score. In scenario 1 (medium), the goalkeeper blocks half of the goal, but it is still
feasible to score by shooting immediately. In scenario 3 (hard), the striker spawns further
away from the goal and has the goalkeeper directly in front; therefore the agent has to pass
the goalkeeper, or move to the side to create an opening.

1v1l (Free) This scenario has the same setting as 1vl (Restricted) except that both
the striker and the goalkeeper can spawn anywhere on the right half-field. Compared to
1vl (Restricted), the training scenario contains a broader range of samplable environment
parameters enabling the goalkeeper to spawn behind the striker (easy) or next to the ball
(hard). The testing scenarios are the training and testing scenarios in 1v1 (Restricted).

Choose Passing The initial player is placed with the ball in the middle, and two team-
mates spawn near the two corners of the goal ready to shoot once they received the ball.
An opponent defender spawns within a rectangular area between the two teammates, and
the opponent goalkeeper spawns in front of the initial player to block direct shooting. The
difficulty varies based on the position of the opponent defender since the agent has to learn
to pass the ball to the teammate away from the opponent to have the best scoring chance.

There are 2 testing scenarios of equal difficulty. The first scenario has the opponent
defender blocking the top teammates while the second scenario has the defender blocking
the bottom teammates.

3v2 4 behaviors This scenario resembles an attacking scenario in which 3 attackers are
spawned within the opponent’s penalty area, facing an opponent defender and the goalkeeper
in front of the goal. The attackers controlled by the agent are ready to perform a pincer
movement to score. The training scenario not only defines a distribution of players’ initial
position but also defines 4 different defense strategies encoded as SCENIC behaviors for
the opponent defender. A samplable environment parameter (Range(0,1)) controls which
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Oppenent Score
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Figure 4.4: Bar chart showing the performance of the four scenic policies facing the built-in
Al

strategy to use in the game. The 4 testing scenarios test the agent’s performance under each
of the 4 defense strategies.

The 4 defense strategies are summarized as follows. The performance of the strategies
against the built-in Al bot is shown in figure 4.4.

A The opponent will keep moving towards the ball and intercept the ball.
B The opponent will move towards the player who owns the ball.

C The opponent will move towards the midpoint of the closest left player and the left
player closest to the ball owner before trying to intercept the ball.

D The opponent will help the goal keeper guard the door against the RL agent.

Domain Randomization Experiments

While the Impala-CNN-based [10] model used in the Google Research Football paper [16]
can handle complex 11v11 full game scenarios, despite our best effort, we can not replicate
their result after translating the model to our codebase in Pytorch. Therefore we develop a
lightweight CNN model inspired by the Nature CNN model [18] as our feature extractor that
is then used by the actor and critic. Figure 4.10 shows the network architecture, and Table
4.2 lists the hyperparameters used in the experiments. To ensure our model is capable of
learning mini-games scenarios, we first trained and tested the agent network on some soccer
scenarios defined in the single agent mini-game benchmark. We train the agent with the
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Scenario Our Avg Return  GRF Avg Return
EasyCrossing 0.87 0.5
Pass and Shoot 0.85 0.62
AvoidPassShoot (10M) 0.66 0.72
Defense2V2HighPassForward -0.32 -0.14
Defense3V3CrossFromSide -0.53 -0.16
DefenseDefenderOpponentZigzag 0 -0.17

Table 4.1: Comparison of average returns of our agents and returns of GRF agents on mini-
games with domain randomization.

domain randomization algorithm [31] with the best-found hyperparameters for 5M timesteps.
In each episode, we uniformly randomly sample values for environment parameters in the
SCENIC program. The results are summarized in table 4.1. Compared to the GRF model,
we find that our model achieves good performance in most offensive scenarios, but falls short
in defensive scenarios. Therefore in this section, we focus on offensive mini-game scenarios.

PAIRED Experiments

For each PAIRED experiment, we train 3 RL agents in total. We train 2 player agents learn-
ing to play the minigame: the protagonist and the antagonist, and an adversarial environ-
ment agent that builds environments based on the player agents’ abilities. The protagonist
and the antagonist are identical to the RL agent in domain randomization experiments and
are trained using the same hyperparameters. The adversarial environment agent has the
same observation space as the player agents but has a continuous action space with the di-
mension equal to the number of samplable environment parameters in the training scenario.
Since the parameters have different ranges, to facilitate training, we squash the model out-
put to [-1,1] using the hyperbolic tangent function and scale them back in the environment
abstraction layer. One downside of this approach is that we no longer have an analytical
form for entropy and have to estimate from samples instead.

There is a small possibility that the adversarial environment agent outputs a set of
parameters that will result in an invalid scenario. For example, the initial position of two
players may be too close so they overlap. In this case, we randomly sample a valid set of
parameters, apply it to build the environment, and relabel the agent action in the storage
with these valid parameters.

Figure 4.5, 4.6, 4.7, 4.8 show the average returns of the protagonist agent in PAIRED
and the returns of domain randomization agent on the testing scenarios of each minigame.
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The learning curves are included in Figure 4.9.
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Figure 4.5: Evaluations Results of trained RL agents on 1v1 Restricted
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Figure 4.6: Evaluations Results of trained RL agents on 1v1 Free
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Figure 4.7: Evaluations Results of trained RL agents on Choose Pass
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Figure 4.8: Evaluations Results on 3v2 4 behaviors
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Figure 4.9: Comparing mean agent return, mean adversary agent return, and mean environ-
ment return of PAIRED with domain randomization in the four scenarios

Analysis

In this section, we define PAIRED agent as the protagonist agent in the PAIRED algorithm,
and the DR agent as the RL agent training using the domain randomization algorithm. From
the evaluation results shown in Figure 4.9, we find that PAIRED agent achieves similar
or better returns on all training scenarios compared to DR agent, with PAIRED agent
generally performing better on more difficult test scenarios. However, PAIRED agent’s lack
of performance on the 1vl Medium testing in both the free and restricted training setting
suggests that the agent might forget how to play easy scenarios as the training progresses.
The data confirm the hypothesis that PAIRED agents’ ability to perform well in difficult
environments is due to the increasingly challenging curriculum built by the adversarial envi-
ronment agent over time. As the player agents improve their skills as the training continues,
the adversarial environment agent also learns to output environment parameters that pro-
duce challenging scenarios relative to the player agents’ current abilities, implicitly creating
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a curriculum of training environment of increasing difficulties from the given distribution of
training scenarios. This is evident comparing the testing results of PAIRED and DR agents
in 1v1l Restricted and 1v1 Free mini-games. The 1v1 free training scenario defines a much
broader environment distribution (16M pixel area) compared with the 1v1 restricted scenario
(0.4M pixel area), so with domain randomization, the RL agent gets less chance of seeing the
difficult environment during training to develop skills to avoid or pass the opponent goal-
keeper, while the PATRED agents are more likely to replay these hard environments to pick
up the skill. Therefore the DR agent performs significantly poorly on the hard 1v1 testing
scenario if trained in 1v1 free than the DR agent trained in 1v1 restricted, which achieves
similar results as that of PAIRED agent.

However, this regret-driven curriculum generation may cause the PAIRED agent to play
less challenging scenarios and forget the skills to solve easy environments, as evident by the
PAIRED agent’s low returns on 1v1 test medium for both 1v1 restricted and 1v1 free mini-
games. As the adversarial environment agent learns to choose challenging scenarios for the
player agents, it slowly converges those scenarios that require more complex actions to solve
since these scenarios usually lead to higher regret. (Why? Consider a trivial 1v1l scenario
of an empty goal, both the protagonist and the antagonist would easily learn to shoot
immediately and score, achieving near-perfect returns every time so the regret is almost
always 0. However for a challenging scenario such as a close standoff between the striker and
the goalkeeper, even an adept agent who knows how to pass the goalkeeper may fail to score
due to the stochasticity of the game, and thus the regret would often be high). Therefore as
the training progresses, it is easy for the adversarial environment agent to overfit to a specific
region of parameters representing just one challenging configuration. In the “choose pass”
mini-game, the two testing scenarios are almost mirrored images of each other: one requires
the agent to pass to the open teammate at the bottom and the other requires passing to the
top player, yet PAIRED agent only performs well on one of the two scenarios despite that
these two scenarios test the same skill.

It is also interesting to note that PAIRED agent overperforms the DR agent on a 3v2
mini-game on all scenarios, including the training scenarios. The 4 testing scenarios of this
minigame corresponds to the 4 defense strategies used by the opponent defender, and the
training scenario consists of a single continuous random variable to select strategies and a
distribution of the player’s initial position within the opponent penalty area. This suggests
that PAIRED performs well in building curriculums from behaviors distributions in addition
to initial-position distributions, and is a promising result for future works such as using the
adversarial environment agent to select compose scenarios for training.

The performance of the PAIRED algorithm depends heavily on the adversarial environ-
ment agent’s ability to output diverse, yet progressively more difficult training environments.
Therefore, we need to be aware of the risk of overfitting the environment agent, especially in
complex minigames with multiple configurations of difficult scenarios. One potential remedy
is to employ an exploration strategy encouraging the environment agent to test previously-
unseen parameter spaces to avoid getting mired in one difficult environment configuration
and causing the player agents to also overfit.
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Table 4.2:

Hyperparameters Value
adv-entropy-coef 0.01
adv-max-grad-norm 0.5
adv-num-mini-batch 1
adv-ppo-epoch 5
algo ppo
alpha 0.99
clip-param 0.27
entropy-coef 0.01
eps 0.00001
gae-lambda 0.95
gamma 0.993
Ir 0.00008
max-grad-norm 0.5
num-mini-batch 8
num-steps 128
ppo-epoch 4
value-loss-coef 0.5

Hyperparameters used in PAIRED experiments
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GFootballNetwork(

(cnn_layer): feature_extractor(
(convl): Conv2d(16, 32, kernel_size=(8, 8), stride=(4, 4))
(conv2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(conv3): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=1280, out_features=512, bias=True)

)

(critic): Linear(in_features=512, out_features=1, bias=True)

(actor): Linear(in_features=512, out_features=19, bias=True)

GFootballAdversaryNetwork(

(cnn_layer): feature_extractor(
(convl): Conv2d(16, 32, kernel_size=(8, 8), stride=(4, 4))
(conv2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(convd): Conv2d (64, 32, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=1280, out_features=512, bias=True)

)

(critic): Linear(in_features=512, out_features=1, bias=True)

(mean_net) : Linear(in_features=512, out_features=6, bias=True)

Figure 4.10: Network structure of our lightweight RL agent.
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Chapter 5

Conclusion

In this work, we introduced the benefit of adopting a formal scenario specification language,
Scenic, to assist RL researchers in flexibly modeling and generating the environment to
facilitate training. We released an open-source interface, Scenic4RL, that allows seamless
integration of Scenic with the RL framework through a Gym environment corresponding to
the scene sampled from the Scenic program. As a result, RL researchers can model, specify,
and generate distributions of training environments in both single-agent and multi-agent
settings. We interfaced Scenic with the Google Research Football environment and released
a benchmark of minigames to assist training and evaluation of RL agents. In addition,
we demonstrated multiple methods researchers could use the interface to facilitate training,
debugging, and evaluating RL policies. Moreover, researchers can manually define expert
strategies as probabilistic behaviors in the Scenic program and generate demonstration data
using the interface to pre-train RL policies. Chapter 4 showed that researchers can transform
a Scenic program into an under-specific POMDP to allow an external environment policy to
control the environment distribution. We adopted the PAIRED algorithm as the environment
policy to automatically generate a set of training scenarios to form a curriculum to support
learning. Last, we compared the performance of agents trained using PAIRED and agents
trained with domain randomization.

5.1 Future Works

Integration with Other Environments

We interfaced Scenic with Google Research Football to demonstrate the benefits of adopting
a scenario specification language in RL development. Both Scenic and the Scenic4RL in-
terface can easily be integrated with other RL environments and simulators. There are two
methods to adapt our framework to a new environment. First, if Scenic already models the
environment, then the integration is relatively straightforward. The user has to define the
desired Gym environment format, such as the reward function and the format of observation
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space and action space, in the Scenic4RL interface. Second, if Scenic does not yet support
the environment, the user needs to integrate it with the Scenic language before defining the
RL environment specifications in the Scenic4RL interface.

Scenario Composition

In this work, RL agents are trained on one Scenic scenario to learn a single skill. There-
fore, we did not explore Scenic’s scenario composition functionality that enables scenes to be
generated from multiple Scenic scenarios. Researchers can write reusable modular scenarios
representing parts of the scene and design a method to compose them to create dynamic,
complex environments. In addition, we can extend the UPOMDP wrapper of Scenic4RL to
allow an external policy to control the composition logic. For example, to achieve automatic
curriculum learning of the 11vsl1 full game, researchers can provide a set of training sce-
narios for each skill and train a teacher agent to use scenario composition to create training
environments that facilitate the learning of multiples skills.
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