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Abstract

This project studies the impact of overhead-communication in large-scale machine learning

models on throughput and resource utilization. Recent machine learning scale-out frameworks

such as ZionEX and ZeRO-Infinity, have shown the importance of increasing interconnect

bandwidth on computation efficiency; in this project, we will measure the impact of overhead

communication and its interconnect bandwidth on the GShard Mixture-of-Experts architecture.

We measured and analyzed the performance of the training model using the Google Cloud

Platform and version-3 TPUs, and its profiling tool, Tensorboard. The results showed that the

communication portion of the training process increases as we increase the model size and

scale-out the model. As a result, given the trend of increasing model size in machine learning to

improve accuracy, it is important to scale interconnect bandwidth with respect to model size to

maintain computation efficiency.
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1. Introduction

Machine learning is widely used nowadays in different areas, from server level search engines to

smart home devices; it has become an integral part of our lives and it is essential to have better

predictions from the machine learning models. To improve model performance and accuracy, we

need bigger models with more parameters to capture extra details of the training samples and

consider them in predictions. However, increasing the model size and the number of parameters

is limited by hardware capabilities. One compute node does not have the memory space required

to store a large-scale model. Therefore, different forms of parallelism emerged to solve the

scaling problem. Data parallelism can be used to scale training to distributed devices, with each

device working on a different piece of data and combining their result at the end. Model

parallelism can partition the large-scale model into multiple devices, such that each partition

agrees with the device memory capacity. Pipeline parallelism breaks tasks into a sequence of

processing stages to increase throughput. Combining the three parallelisms, we can distribute a

large-scale model into multiple devices and solve the scaling problem.

While using parallelism to construct a large-scale machine learning model solves the memory

capacity problem, it brings us other challenges. First, in order to implement parallelisms,

machine learning scientists would need to refactor their code to partition the model. This

involves changing the model architecture and sharding the model wisely (choosing which parts

to be partitioned and what not to). However, changing the model architecture would require users

to also provide an effective communication strategy in order to maintain the model throughput.

Second, the nodes that hold the distributed model may have sequential dependencies and cannot

achieve true parallelism. For example, a simple partitioned model that uses model parallelism

would not utilize the resources efficiently, since parts of the model would have to stall and wait

for the output from its parent parts. This leads to under-utilization of the resources and would

require users to either change the model architecture or migrate the code to a specific framework.

Third, for each of the nodes to communicate with each other, it requires overhead

communication to transfer data between nodes such as dispatching data to the devices or

aggregating the results computed by the devices. This communication is essential since it allows

the model to be distributed into multiple devices. However, the overhead communication  is

hindering the model performance in terms of training time and prediction time. While the nodes



are communicating with each other using the overhead communication network, the nodes are

under-utilized as they are waiting for the data to be sent or received. However, current

frameworks do not size communication bandwidth as fast as model size, and this would lead to

data congestion/traffic in the overhead communication network, which results in extended

latency.

There are many existing large-scale frameworks that use the parallelism strategies, and each has

a unique way of tackling the challenges that it brings. Learning about the recent related

large-scale machine learning model training frameworks allows us to compare the computation

efficiency of different frameworks. Then, we would study the overhead communication of the

GShard Mixture-of-Experts machine learning model. Investigation of this model can help us

understand the overall compute efficiency and learn what scaling problems that model can solve.

Furthermore, it would illustrate the importance of having higher communication bandwidth in an

efficient machine learning framework.

1.1 Recent Related Frameworks

1.1.1  ZionEX

In the ZionEX paper, it introduces NEO, a software-hardware co-designed system for

high-performance distributed training of large-scale deep learning recommendation models. It

combines table-wise, row-wise, column-wise, and data parallelism when training massive

models and uses ZionEX, a new hardware platform based on the  co-designed with NEO’s 4D

parallelism for optimizing communications for large-scale model training.

Figure 1 [5]. 4D parallelism introduced in the ZionEX paper.



The system provides the above parallelism strategies, and users can test different combinations

of them to determine the best partition strategy when constructing large-scale machine learning

models. Note that this hybrid 4D parallelism strategy requires all-to-all communications for

results sharing and input distributions. The all-to-all communication is often the bottleneck for

computation performance due to limited communication bandwidth and data dependencies

among devices. Therefore, the ZionEX paper also introduced ZionEX, a revised version of their

previous hardware platform design, Zion, to improve the communication bandwidth.

Figure 2&3 [5].

2: ZionEX framework and its parent framework, Zion.

3: Data dependency graph using the ZionEX framework.

The tasks would be divided into GPUs and CPUs based on their operation, with compute heavy

tasks allocated to GPUs and relatively cheaper tasks allocated to CPUs; CPUs and GPUs would

then need to transfer data to each other to perform a complete run. The ZionEX architecture aims

to solve the problem of increased overhead communication such as data transfers between CPUs

and GPUs and inter-socket communication.



One optimization that ZionEX made is to increase the communication bandwidth of the GPUs by

introducing RDMA NIC (network interface cards) to each of the GPUs connected to the PCIe

switch (peripheral component interconnect express, an interface standard for connecting

high-speed components switch). This allows extra communication between nodes compared to

the old architecture, Zion, where inter-node communication had to go through the PCIe, then

interrupt the CPU in order to gain access to the normal NIC before transferring data. In other

words, transferring data between nodes would require CPU intervention and additional

GPU-CPU communications.

Furthermore, the communication of this RDMA NIC uses an isolated network from the common

communication network (original NICs). Therefore, “each GPU can communicate with GPUs on

a different node through the dedicated low-latency high-bandwidth RoCE NIC, without

involving host CPUs.” [5]

1.1.2 ZeRO-Infinity

In the ZeRO-Infinity paper, it introduces a novel heterogeneous system that supports large-scale

model sizes on limited GPU resources by exploiting CPU and NVMe memory simultaneously.

Users can use fewer GPU nodes to construct a large model since parts of the model will be

distributed to CPU or NVMe memory. The entire model is partitioned into multiple devices

using model parallelism and parameters such as tensor weight could be distributed among GPUs

and CPUs/NVMe memory.

The ZeRO-Infinity framework uses a GPU-CPU memory architecture. This architecture favors

overhead communication since it increases the bandwidth by allowing communication between

CPU or NVMe to GPUs, where GPUs would be able to talk to other nodes using the GPU

network, and at the same time can talk to its connected CPU and NVMe using a separate

network. The distributed model utilizes data 3D parallelism; data parallelism to distribute the

training, model parallelism to partition the model to fit device memory, pipeline parallelism to

pipeline the training process. Similar to the ZionEX paper introduced in the previous section, the

distributed devices would need to communicate with each other and transfer data to make a

complete training step.



Figure 3 [4]. ZeRO-Infinity framework.

The data would be transferred using a broadcast-based/all-gather approach; since each piece of

data is owned by one of the devices, the data must be first read from the NVMe to CPU memory,

then copy the read data to GPU memory, and finally allow inter-node data transfer. Therefore,

the total communication time would be the sum of the above three data transfer times. To

optimize the communication bandwidth, the paper uses a bandwidth-centric partitioning design,

where each GPU is allowed to request data from its CPU/NVMe in parallel, thus, each adding

1/DP data to the communication process, whereas DP represents the degree of data parallelism.

Moreover, with the overlap centric design, ZeRO-Infinity overlaps GPU-GPU communication

with GPU computation, NVMe-CPU communication, and CPU-GPU communication to hide the

sequential nature of the NVMe to GPUs data movements. The following bandwidth table shows

that the communication bandwidth increases with the above architecture, and “the effective

communication bandwidth between NVMe or CPU to the GPU, increases linearly with the DP

degree.” [4]



Table 1 [4]. The table shows the extra bandwidth that the architecture provides by providing CPU and NVMe

bandwidth for communication.

1.1.3 Evaluation Framework

From the above examples, we can see that the current trend to have improve scale-out efficiency

is to increase interconnection bandwidth; adding switches to nodes can increase the interconnect

communication and increase the computation efficiency since less time would be spent on

talking to other nodes and would allow us to better utilize the resources.

In the ZionEX paper, it introduces a way to estimate the overall per-iteration latency [5],
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We can see that the main components of the estimation are computation time and communication

time.

On the other hand, the ZeRO-Infinity paper introduces an interesting way to quantify the

relationship between computation and communication [4], it uses a function of ait (arithmetic

intensity, the ratio between the total computation and the data required by the computation),

compute time, and communication time to measure the system’s efficiency.

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑝𝑒𝑎𝑘

𝑡𝑝
 

𝑎𝑖𝑡 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑡𝑜𝑡𝑎𝑙_𝑑𝑎𝑡𝑎_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡



𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 = 𝑡𝑜𝑡𝑎𝑙_𝑑𝑎𝑡𝑎_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡
𝑏𝑤

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒
𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒+𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒

In this project, we will use the efficiency calculation to measure the computation efficiency. Both

compute time and communication time measurements would be introduced in a later section.



2. GShard Mixture-of-Experts Model

2.1 Model Architecture

The GShard Mixture-of-Experts (MoE) paper introduced us GShard, a lightweight annotation

API as the XLA compiler extension that provides an easier way to achieve parallel computation

with little to no changes to the model source code. This essentially solves the problem of

refactoring model codes discussed in the previous section. Users no longer need to focus on

customizing the model architecture to fit the framework, instead, they can just “plug and play”.

The GShard MoE model uses the Transformer [2] architecture as its building block. By stacking

multiple Transformer layers, we can form an encoder or a decoder. An encoder is formed by

using a self-attention layer [2] followed by a position-wise feed-forward layer [reference

number]; a decoder layer is formed by appending a cross-attention layer to the encoder, which

purpose is to attend over the encoder’s outputs. The GShard Mixture-of-Experts model replaces

every other feed-forward layer with a Top-2 gating layer followed by a Position-wise

Mixture-of-Experts (MoE) layer.

Figure 4 [6]. GShard MoE architecture, with alternating FFN-MoE layers.



The Top2-gating layer serves as a distributor, which chooses the best expert to dispatch the input

token to. The ideal scenario is that each expert focuses on one aspect of the training, and the

gating function would then choose the best expert to work on the input token based on the

expert’s expertise. Therefore, it is possible that a second expert is not chosen for the input token,

as they might have found the most suitable expert to deploy the job already. One thing to notice

is that in order to prevent the gating function from always choosing the same few experts, the

paper introduced an auxiliary loss function, which keeps track of expert capacities and the input

tokens they received and aims to average the amount of input token received by each expert.

Figure 5 [6]. Note that on line 17, the second expert would be chosen based on a probability proportional to the

second expert gating weight.



After getting the gating weights, it would then dispatch the input tokens to the respective experts

based on the gating weights and the expert capacities. Most of the computations are covered by

the Einum Tensorflow operation. The Einsum operation is a powerful operation that can do

matrix reordering and matrix multiplication. After the dispatch operation (line 3&4), each expert

would then compute the expert results using a series of Einsum and ReLU operations (line 5-7).

Then, the experts results would be aggregated through the combine operation, which is also an

Einsum operation that combines the expert results with respect to their gating weights.

Figure 6 [6]. Algorithm representation of the GShard MoE architecture.

The paper then proceeded to evaluate the training efficiency of the mentioned architecture. The

evaluation model is designed to have the number of experts equal to the number of cores used,

and each expert would have the same dimension as the regular Feed Forward Network. The MoE

layers are distributed in every other Transformer layer (Figure 4), and there are 12/36 layers in

total (18 FFN-MoE combo layers). The following figures show the evaluation framework and the

results.

Table 2 [6]. The evaluation framework from the GShard paper. Note that for (1) and (2), the correct experts total

should have been 36864 and 12288.



Figure 7 [6]. The timing result for each operation as an aggregate model with 36 layers. Note that MoE dispatch and

combine represents the all-to-all communication.

The roofline data is an estimation of the training time; we can see that the measured model

underperformed the roofline model, this is because as the model size increases, the overhead

communication between nodes becomes harder, as there are more nodes need to talk to each

other with an unchanged communication throughput between nodes. The most critical

communication operation is all-to-all (MoE dispatch and combine). This result agrees with the

results found in the two papers introduced in the previous section (ZionEX and ZeRO-Infinity),

where communication bandwidth has become the bottleneck for large-scale machine learning

models.

In this project, we would like to quantify the effect of communication time on machine learning

model performance and computation efficiency, especially the ratio between compute and

interconnect.



2.2 Key operations

Replication and sharding are two key operations for this model to perform parallelisms.

Replication is required to copy the data in the form of tensors across different nodes, for

instance, replication is used to replicate the weights for the Top-2 gating function as the gating

function of each node must have the same gating results and agree upon the best expert for a

certain input token. Sharding is required to partition the tensor into smaller parts along some

dimension and place them onto different devices. For example, the Mixture-of-Experts layer will

have to be sharded across the TPU cores (one expert per core) to achieve model parallelism. The

replication and sharding operations are achieved using the following XLA operations,

Einsum

Einsum allows defining Tensors by defining their element-wise computation. “It is the

most critical operator in implementing the MoE model. They are represented as a Dot

operation in XLA HLO.” [6] For example, when doing resharding, the dispatch operation

requires the tensor to change its partitioning dimension, therefore, a Einsum is done

locally first before performing the all-to-all operation.

CollectivePermute

“This operator specifies a list of source-destination pairs, and the input data of a source is

sent to the corresponding destination. It is used in two places: changing a sharded

tensor’s device order among partitions, and halo exchange.” [6]

AllGather

“This operator concatenates tensors from all participants following a specified order. It is

used to change a sharded tensor to a replicated tensor.” [6]

AllReduce

“This operator performs elementwise reduction (e.g., summation) over the inputs from

all participants. It is used to combine partially reduced intermediate tensors from different

partitions. In a TPU device network, AllReduce has a constant cost when the number of

partitions grows.” [6]



AllToAll

“This operator logically splits the input of each participant along one dimension, then

sends each piece to a different participant. On receiving data pieces from others, each

participant concatenates the pieces to produce its result. It is used to reshard a sharded

tensor from one dimension to another dimension. AllToAll is an efficient way for such

resharding in a TPU device network, where its cost increases sublinearly when the

number of partitions grows.” [6] This operator is used extensively in the dispatch

(distribution of input token to respective experts) and combine (aggregate experts results

based on respective gating weights) operations, and thus, the domination communication

primitive in the overhead interconnect.



3. Evaluation Structure and Framework

3.1 Google Cloud Platform

Resources required:

- Virtual Machine: To store our code and give commands

- TPU cores: Optimized for machine learning operations such as vector operations and

matrix multiplication

- Google Cloud storage: To store the intermediate training weights and the model

information such as params/hyperparams

- Cloud network: To connect all the above tools

1. Permissions setup

Menu bar -> IAM & Admin -> IAM

Required roles:

- Editor

- Project IAM Admin

- Project Lien Modifier

- Project Mover

- Storage Admin: Required to access Cloud storage (detailed in Cloud Storage setup)

- TPU Admin

2. Cloud network setup

Menu bar -> VPC network -> VPC networks -> Create a VPC network

- Name: network name

- Subnet creation mode: Automatic

- Firewall rules: Create the firewall rules (detailed below)

- Dynamic routing mode: Regional

- Maximum transmission unit: Default, 1460



3. Firewall setup

Menu bar -> VPC network -> Firewall -> CREATE FIREWALL RULE

The firewall is set to allow ssh-ing to the VM instance

- Logs: Whether we want to generate log or not

- Network: Choose the created network

- Priority: Default (1000)

- Direction of traffic: One each: Ingress (incoming traffic, for connecting to VM through

ssh); Egress (outbound traffic, for outputting data when using tensorboard)

- Action on match: Allow

- Targets: All instances in the network

- Source filter: IPv4 ranges

- Source IPv4 ranges: 0.0.0.0/0, 192.168.2.0/24

- Second source filter: None

- Protocols and ports: Allow all (for simplicity, allow all; tensorboard needs access to port

6006)

4. Cloud Storage setup

Menu bar -> Cloud Storage -> Browser -> CREATE BUCKET

- Name your bucket: bucket name (We will have to create 2 buckets, one for storing model

information/intermediate values, and one for tensorboard profiling data)

- Location type: Region, choose the region that you plan to use the resources, (detailed in

Virtual Machine setup); the Region location type is also the cheapest

- Default storage class: Standard

- Control access to objects: DO NOT prevent public access, as we need to access data

using Tensorboard

- Access control: Uniform

- Protection tools: None

5. Virtual Machine setup

Menu bar -> Compute Engine -> VM instances (Under VIRTUAL MACHINES) -> CREATE

INSTANCE



- Name

- Region: For v3 (required to use v3) 16-core or more, choose europe-west4 only, as it is

the only region that provides 16 or more cores

- Zone: For v3 16-core or more, choose europe-west4-a only, it is the only zone that

provides 16 or more cores

- Series: Default

- Machine type: Default

- Display device: Default

- Confidential VM service: Default

6. TPU setup

Note that we are using Cloud TPU nodes but not TPU VMs.

Menu bar -> Compute Engine -> TPUs (Under VIRTUAL MACHINES) -> CREATE TPU

NODE

- Name

- Zone: see above section for zone selection

- TPU settings: TPU node architecture

- TPU type: v3-# (has to use v3; note that devices greater than 8 nodes cannot be stopped,

it can only be deleted after done running)

- TPU software version: refer to the required Tensorflow version in the README in

https://github.com/tensorflow/lingvo.git

- Network: Select the created network

- IP address range: Leave empty

7. Virtual Machine + TPU alternative setup

Instead of doing step 5 & 6, we can utilize the Cloud Shell to create a VM + TPU execution

group. This method is preferred as the TPU and VM created are put into the same execution

group.

Cloud shell command:

https://github.com/tensorflow/lingvo.git


gcloud compute tpus execution-groups create --name=[TPU_NAME] --zone=[ZONE]

--tf-version=[TENSORFLOW_VERSION] --accelerator-type=[v3-NUMBER_OF_CORES]

--network=[NETWORK_NAME]

- TENSORFLOW_VERSION should match the required tensorflow version stated in the

README in https://github.com/tensorflow/lingvo.git

- NETWORK_NAME should match the created network name

3.2 Tensorboard Platform

3.2.1 Tensorboard Setup

Tensorboard is a profiling platform that is installed as part of Tensorflow; by using tensorboard,

we can capture the TPU node information such as the TPU FLOP utilization and the time taken

for each tensorflow operation.

To use tensorboard, we first have to ssh to the Virtual Machine through the 6006 port, using the

following gcloud command on GCP shell,

gcloud compute ssh [TPU_NAME] --zone=[ZONE] --ssh-flag=-L6006:localhost:6006

To capture the TPU usage data, we have to capture the data at the model training stage, in which

we have added custom logging statements to indicate the current training step of the training

procedure. Note that it is important to capture the data at the right time, otherwise it wouldn’t be

able to capture any useful data. The preferred moment to capture the training data is when the

custom logging statement prints “done training.” When the “done training” flag is seen, we can

capture the TPU usage information using the following command,

capture_tpu_profile --tpu=[TPU_NAME] --logdir=gs://[PROFILE_BUCKET]

--duration_ms=[DURATION]

Note that PROFILE_BUCKET must not be the same bucket used for storing intermediate

training data when running the model, and users can specify DURATION to capture more

training steps.

https://github.com/tensorflow/lingvo.git


To access the tensorboard data via the Tensorboard platform, we first have to delete the event file

in the GCP cloud bucket, which indicates that the tensorboard data is empty (this file is

auto-generated after each capture and must be deleted before accessing the tensorboard data).

Figure 8. Must delete events.out.tf.events… before accessing Tensorboard.

The Trace Viewer tool shows a detailed breakdown on when and how the operation is called and

executed. For example, it shows how long each training step took and the parent-child

relationship of the Tensorflow operation being called and executed. Note that in model training,

there are tensorflow operations and XLA operations, where the tensorflow operation represents

the operation initialized by the model, and the XLA operations represents the operations

initialized by the compiler. When inspecting the operations and communication pattern, it is

more accurate to observe the XLA operations as some of the tensorflow operations would be

pipelined as multiple XLA operations.

The Op Profile tool displays the performance of the XLA operations, which shows how well the

model training uses the TPU resources in terms of TPU FLOPS utilization. It also shows the

average step time of the training procedure and provides details of individual operations, such as

shape, padding and expressions that use the operation. However, small operations such as



all-reduce in smaller nodes would not show up due to its small utilization. We would use a

custom parser to retrieve and analyze the result.

3.3 Run and Capture the model training

1. Start both the Virtual Machine and TPU node

We can either

- Use the GCP Console to start the resources

Figure 9. Starting Virtual Instance using the GCP console.

Figure 10. Starting the TPU node using the GCP console.

- Use the Cloud Shell command to start the resources

gcloud alpha compute tpus start [TPU_NAME] --zone=[ZONE]

2. SSH to Virtual Instance



We can either

- Use GCP Console to connect to the Virtual Instance

- Use Cloud Shell to connect to the Virtual Instance

3. Check available resources

In the Virtual Instance shell, the command to check the availability is

gcloud alpha compute tpus list --zone=[ZONE]

4. Resources configuration setup

This step is required every time we connect to the Virtual Instance; each Virtual Instance shell (if

opening many) would need to be configured in order to utilize the resources (i.e. TPU nodes)

outside of our region/zone.

gcloud config set project [PROJECT_NAME]

gcloud config set compute/region [REGION]

gcloud config set compute/zone [ZONE]

5. Code setup

This step is only required when the Virtual Instance is first created, skip this step if the following

has been done.

In the Virtual Instance shell, the setup commands are

- sudo apt-get update

- sudo apt-get install git

- sudo apt-get install python3-pip

- git clone  https://github.com/tensorflow/lingvo.git

- # Get docker

- curl -fsSL https://get.docker.com -o get-docker.sh

- chmod +x get-docker.sh

- ./get-docker.sh

- gcloud auth configure-docker

- sudo usermod -aG docker $(whoami)

- sudo systemctl restart docker



- # Lingvo docker installation

- sudo docker build --tag tensorflow:lingvo_dev_lm - <

lingvo/docker/dev.dockerfile

6. Run the GShard training model

In Virtual Machine:

- export TPU_NAME=[TPU_NAME]

- sudo docker run --rm -it -v /home/$(whoami)/lingvo:/tmp/lingvo -e

TPU_NAME=${TPU_NAME} --name lingvo tensorflow:lingvo_dev_lm bash

In Docker:

- export LOGDIR=gs://[TRAIN_BUCKET]

- bazel run -c opt //lingvo:trainer -- --mode=sync --alsologtostderr

--model=lm.synthetic_packed_input.[MODEL_NAME]

--logdir=${LOGDIR} --tpu=${TPU_NAME}

--worker_split_size=[NUMBER_OF_CORES]

--ps_replicas=[NUMBER_OF_CORES / 8] --job=executor_tpu

--disable_tf2=true

7. Stop the resources after running

Note that TPU nodes greater than 8 can only be deleted.

Figure 11. Stop or delete the TPU node using the GCP console.



4. GShard Mixture-of-Expert Code Profiling

4.1 Training Flow and Structure

The trainer.py module would parse the command line flags, determine which training model to

be used, and define the Google Cloud bucket to be used to store intermediate training data as

checkpoints.

It will first initialize the infrastructure to train the model, for example, it would establish a

connection to the provided TPU cluster and configure the TPU cluster such as defining the

number of devices to be used and provide the model distribution details to the cluster sharder.

Then, it will fetch the params based on the flags it received by calling the get_params.py

method. It will find the training schedule parameters to determine how to train the model, such as

when to make a forward and backward propagation, define the learning rate of each training step,

and how many steps it should train the model based on the maximum training step parameter.

It will construct the model based on the hyperparameters provided in synthetic_packed_input.py.

It specifies the model

After building the model and having the training schedule set up, trainer.py will start the training

process and record the intermediate training data to the specified Google Cloud bucket.

4.2 Modules Descriptions

Key modules detailed descriptions:

trainer.py:

1. Take in command line params

2. Configure the Cloud TPUs

3. Call helper function to get the params needed to instantiate the TPU executor

4. Create TPU executor/runner

5. Run the TPU executor

executor.py:

1. Helper function to retrieve the params needed to instantiate the TPU executor



2. Create an runner that does arbitrary multi-program execution on TPU

a. During the construction process, all programs would construct their subgraphs,

which would be aggregated to form a mega-graph

b. After creating the graph, a sequence of programs is then executed associated with

the task specified in the params retrieved

3. Execute the runner after done constructing the model

synthetic_packed_input.py:

1. Set up model architecture parameters such as model dimension on Feed-Forward layer

and batch size

2. Set up training inputs

3. Set up training parameters such as learning rates and number of training iterations/steps

gshard_builder.py:

1. Defines the model architecture based on the training parameters. For example, it defines

the number of layers and model dimension of the FFN. This module then construct the

TPU graph that is specified in the GShard research paper using the building blocks

specified in gshard_layer.py

2. Supply default sharding annotations to building blocks in gshard_layer.py

gshard_layer.py:

1. This module contains the building blocks of the model. It contains blocks such as Top-2

Gating, Feed Forward Neural Network layer, Mixture-of-Expert layer, Attention layer

2. Depending on the training parameters, this module provides a sharding function for the

above layers to be distributed to multiple devices and achieve model parallelism.

3. When running the model, this module provides the forward and backward propagation

method for each of the layers

program.py:

1. Initialize the training program and supply random data as training input to the model.

Since the purpose of the project is to investigate the communication pattern, we decided

to use random inputs as training data.



2. We have added custom logging statements to indicate the current training step; this is to

notify users when to capture the TPU information using the tensorboard command

4.3 Key Params

The synthetic_packed_input.py file defines the model parameters; by changing the parameters

introduced in the following part of this section, users can change the model architecture and

training behavior.

The Task method in this file defines the model hyperparameters such as model dimension for the

Feed-Forward layer and batch size. The important parameters are:

NUM_DEVICES_PER_SPLIT:

Defines the number of TPUV3 cores used for the model; it is the maximum number of

partitions for the model.

DEVICE_MESH_SHAPE:

A tuple of two integers (x, y), each of which defines the number of partitions along some

dimension of a tensor or variable. The product x and y must equal to

NUM_DEVICES_PER_SPLIT.

BATCH_DIM_PER_DEVICE:

The batch size that each device (core) would take; we have chosen the batch size per core

to be 0.125, and the batch size per TPU node to be 0.125 * 8 = 1. Note that the total batch

size would equal to the product of BATCH_DIM_PER_DEVICE and

NUM_DEVICES_PER_SPLIT.

NUM_TRANSFORMER_LAYERS:

Defines the number of transformer layers in the model. The GShard MoE architecture is

defined to have an alternating layer of normal Feed Forward Network (FFN) layer and

MoE layer. Since we are more interested in the communication pattern within the

FFN-MoE combo layer, we have chosen the number of transformer layers to be 2, one

each for FFN and MoE.



model_dim:

The model dimension for the Feed Forward Neural Network. It is the key component of

the Transformer layer; a larger model dimension would be able to capture more features

of the training data and potentially give a more accurate training model. When changing

the model_dim parameter, note that it is constrained by the TPU’s high-bandwidth

memory.

moe:

An boolean flag that indicates the use of Mixture-of-Experts (MoE) layers. A MoE layer

will be used in every other Transformer layer, which replaces the normal Feed Forward

Network with a MoE layer.

num_groups:

Defines the number of groups the input batch would be divided into; the groups are

processed in parallel. Each group is assigned a fractional capacity of each expert, this

way, we can ensure that the input tokens dispatched to the experts is balanced

e_dim:

Defines the number of experts existing in the training model. To match the research

paper, we chose to make the number of experts match the number of cores used in the

training model.

c_dim:

Defines the input token capacity that each expert can take. The expert capacity is used to

ensure that the input tokens received by the experts is balanced. This is to avoid the

situation where all the input tokens are dispatched to the same expert and under-utilize

the other experts.



5. Data and Result

5.1 Tensorboard raw data

One key finding is that we found that the combined operation would not show up due to random

routing of the second expert; we confirmed this finding by referencing other papers [1] and [3].

The idea behind this is that the second expert would only be chosen by a small random

probability based on the gating weights; if the weight for the second expert is small enough, we

can ignore the second expert being chosen and thus, save expert capacity for the second expert.

Since this project is interested in the communication pattern and utilization of the TPUs but not

the accuracy of the training model, we have set our maximum training steps to be around 100, it

is very likely that the second expert would not be chosen at all, and therefore, the all-to-all

combine operation would not be seen.

The captured data can be viewed using the Trace Viewer tool, which gives an interactive view of

the time taken for each operation. Since the tensorflow operations would often be pipelined as

multiple XLA operations, it is more accurate to account for the XLA operations than the original

tensorflow operations. For example, the Einsum operation would be pipelined into multiple XLA

Fusion operations.

Figure 12. Trace viewer that shows the timeline for the model training.

The captured result is also available in json format, where we would later use a custom parser to

process the data.



Figure 13. Screenshot of parts of the json raw result.

5.2 Parsed Result

We have constructed a custom parser to better interpret the collected data. The custom result

parser allows us to collect more accurate results, as we can look into the pipelined XLA

operations instead of the Tensorflow operations. The custom parser can be found in the following

repo,

https://github.com/sunjin-choi/gshard_eval.git

First, we looked into the relationship between the size of the model, in terms of the number of

TPU cores used in the training model, to the ratio of overhead communication during model

training. As shown in the table below, when the size of the model increases, where we use more

TPU cores to construct our model, the percentage of overhead communication, in terms of

all-to-all communication, increases superlinearly. The most significant increase is when we

doubled the number of cores from 64 to 128, the time taken for all-to-all communication

increased by 2.19x. It is expected that as we increase the number of nodes to 512 and 1024, the

all-to-all communication time would increase by a greater extent. We then calculated the

efficiency using the previously mentioned evaluation method,

https://github.com/sunjin-choi/gshard_eval.git


𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒
𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒+𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒

Table 3. Key operations’ contributions to one training step time, with overall TPU FLOP utilization as reference.

Figure 14. Relationship between operation latencies and number of cores used in the model.

The result is as expected, since the interconnection throughput between TPU nodes does not

increase proportionally to the number of nodes as we increase the scale-out the training model,

therefore, when there are more nodes trying to transfer data to each other, the overhead

communication would have to stall for some of the transfers since the data transaction

throughput did not scale fast enough.



We then inspected the relationship between model sizes and timing. A larger model dimension in

the Feed Forward Network means there are more weights in the network and would require more

computation per layer to complete one training pass. We have chosen the hidden layer dimension

to be eight times the model dimension for simplicity. The maximum TPU FLOP utilization we

were able to push to was 33%; model sizes larger than 10240 would result in TPU

high-bandwidth memory exhaustion.

Table 4. Relationship between model dimensions and operation latencies.

Figure 15. Relationship between operation latencies and model dimensions.

From the result, we can observe that a larger model size would have higher node utilization, and

this can hide some of the overhead communication cost in the overall latency calculation.



However, due to memory capacity, we have a maximum model size to respect and could not

further improve the efficiency.



6. Conclusion and Future Direction

To conclude, both this project and the recent large-scale machine learning framework papers

have shown that interconnection bandwidth and overhead communication have become the

bottleneck of efficient computation and resource utilization in large-scale machine learning

frameworks. As machine learning models scale-out, they require efficient overhead

communication to reduce node idle time and reduce the overall training or computing latency.

For example, in the ZeRO-Infinity, it presented the bandwidth requirement for its framework if

we want to achieve more efficient computation in the future using the same topology,

Table 5 [4]. Table of bandwidth requirements for ZeRO-Infinity to remain efficient on a cluster of 512 accelerator

devices with 10x and 100x more achievable compute than NVIDIA V100 GPUs [4].

Furthermore, it also showed that as model size increases, the throughput decreases. This is due to

interconnection bandwidth not sizing fast enough as the model size and lead to data conjunction

in the overhead communication network.



Figure 16 [4]. Throughput decreases as model size increases, using the same hardware framework.

The ZeRO-Infinity paper also showed the increase in efficiency as bandwidth increases, which

again illustrates the importance of scaling bandwidth,

Figure 17 [4]. The impact of bandwidth on efficiency.

The ZionEX paper also showed the importance of increasing the bandwidth, as it can greatly

reduce the overall latency and allow better resource utilization. We can see that as model size

increases (from 8 GPUs to 128 GPUs), the communication primitives dominate the overall

latency.

Figure 18 [5]. Dominant operator time breakdown (serialized and exposed time) per GPU. [5]



In the future, we hope to construct an architecture that maximizes the node abilities based on the

data collected in this project. It would require sophisticated interconnect/routing networks and

increase in communication bandwidth such as adding additional switches to the existing

hardware frameworks.
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