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Abstract
Word Sense Disambiguation (WSD) is a well-
researched problem in Natural Language Pro-
cessing with decades of papers written about
it and new techniques coming out every year.
However, this technique is still under-explored
in certain domains such as scientific texts. Sci-
entific papers are a particularly interesting use
case as there is a rich amount of information
associated with each paper that can potentially
improve existing approaches for disambigua-
tion, mainly its title, abstract, and its place in
the citation graph. A related area of study that
also works in this direction is Acronym Disam-
biguation (AD). We believe that these two prob-
lems are related and similar techniques could
strongly perform in both settings. However,
there is a lack of a large dataset for WSD in
scientific texts, motivating the need to create
one artificially, without spending an exorbitant
amount of resources. Thus, we turn towards
Pseudowords as a means of creating this dataset.
We demonstrate that using paper information
can lead to improvements in AD and WSD and
present a brand-new dataset to further research
in Scientific WSD.

1 Introduction

Word Sense Disambiguation (WSD) is a long-
studied problem in natural language processing.
A central theme across many of the methods that
approach this task is to compare the context a word
is used in practice against the typical contexts a
particular sense of the word is used. Since the rise
of distributed representations of words as vectors,
the comparison has now turned towards comparing
vector representations of words against represen-
tations of senses (Tyagi et al., 2022). Now, in the
era of transformers (Vaswani et al., 2017) and pre-
trained models, these representations have mainly
been contextual representations learned via BERT-
like models (Devlin et al., 2019).

Recent work has focused on methods for im-
proving the quality of embeddings produced by

neural language models, often relying on existing
corpora such as WordNet as a knowledge base to
enhance representations (Loureiro et al., 2022) or
finding ways to better incorporate gloss informa-
tion (Huang et al., 2019; Blevins and Zettlemoyer,
2020; Bevilacqua et al., 2020; Barba et al., 2021).
This reliance on a knowledge-base has been shown
to be useful, but does not help in the context of
the general scientific domain where there does not
exist an all encompassing well-defined ontology
of terms and where new terms are often being in-
troduced. These other gloss-based methods do not
demonstrate performance on scientific tasks.

In fact there has been little recent work on WSD
in the domain of scientific text besides work mainly
in the biomedical literature (Duque et al., 2018).
Furthermore, methods also tend to rely on an ontol-
ogy of concepts (Prokofyev et al., 2013), which do
not exist for other scientific fields.

A likely reason that scientific WSD has seldom
been explored beyond the biomedical domain is
the lack of datasets to address this niche. Since the
introduction of the WSD task, significant resources
have been dedicated to creating large, rich datasets
to sufficiently train models on English WSD. A
typical suite used for evaluation was created by Ra-
ganato et al. (2017), which contains the SemCor
dataset (Miller et al., 1994) for training and vari-
ous SemEval (Pradhan et al., 2007; Navigli et al.,
2013; Moro and Navigli, 2015) and SenseEval (Ed-
monds and Cotton, 2001; Snyder and Palmer, 2004)
datasets for validation and testing.

Yet, researchers have found ways around limited
datasets by creating artificial datasets using pseu-
dowords. Pseudowords are a technique for creating
artificial datasets for word sense disambiguation
tasks by creating fake ambiguous words by con-
catenating unambiguous words into a single word
and then replacing instances of each word with
the pseudoword. e.g. we replace sentences that
contain banana and door with banana-door. First



introduced in Gale et al. (1992b), pseudowords
were originally constructed by randomly selecting
unambiguous words. Subsequent work found ways
to improve the quality of pseudowords by picking
senses that more closely matched the sense distri-
butions found in real ambiguous words.

However, the rise of large-scale datasets suit-
able for pre-trained models seems to have lessened
the need for these artificial datasets for English
WSD and research in this field has faded. Yet,
there are niche domains, e.g., scientific papers, and
many languages that do not have access to similar
large datasets (Lu et al., 2006; Kim and chul Kwon,
2021), so we believe there is still potential in ex-
ploring methods to revive pseudowords to create
artificial datasets.

We are particularly interested in scientific doc-
uments given the amount of the time researchers
spend reading papers (Tenopir and King, 2008)
and the known difficulty of the process (Bazerman,
1985). There are many terms such as "kernel" and
"transformer" that have very different meanings de-
pending on the scientific field, so there is a unique
need to build models to help resolve this ambiguity.
Scientific papers are also unique as there is lots
of additional information derived from knowing a
paper is a research paper. Mainly, there is a title,
abstract, and also a whole set of papers that the pa-
per cites and also lots of papers that cite the paper.
All together, these papers form part of the overall
citation graph. The place of a paper within the cita-
tion graph might give hints into the true meaning
of ambiguous words. Current WSD methods never
explore how to use this additional information.

Another related area to WSD is the task of
Acronym Disambiguation (AD). The task is al-
most the same as WSD except instead of having
polysemous words we have acronyms with multi-
ple potential expansions e.g., CNN to Convolution
Neural Networks or Cable News Network. There
has been particular recent interest in AD for scien-
tific text with the introduction of the SciAD dataset
(Pouran Ben Veyseh et al., 2020), a large dataset
of sentences containing acronyms with multiple
potential expansions. The creators of this dataset
ran a shared task to encourage researchers to study
this problem, however, the top performers still fell
short of human performance (Veyseh et al., 2021).
Additionally, this dataset is quite limited as there
was not any particular system in place for dividing
terms between the train, development, and test sets

and there are lots of noisy labels. Furthermore, it
does not enable models to use information about
the paper each example sentence comes from, since
paper information is not provided.

Since these WSD and AD are related we believe
that similar approaches can be developed for each
task. Thus, the main contributions of this work can
be summarized as follows:

• We present a novel method for scientific
acronym disambiguation that outperforms the
current state of the art, reaching human level
performance.

• We resurrect pseudowords using modern se-
mantic similarity techniques and re-establish
its relevance for creating useful datasets for
WSD.

• We show that our method for acronym disam-
biguation also performs well on our artificial
pseudowords dataset for scientific WSD.

2 Related Works

2.1 Word Sense Disambiguation

WSD methods now mainly leverage pretrained-
transformers like BERT (Devlin et al., 2019) and
develop clever mechanisms for best utilizing con-
text and gloss information, while enabling the
model to be robust to unseen or rare senses. Gloss-
BERT (Huang et al., 2019) takes a simple approach
and just concatenates each target sentence with all
possible glosses for a word and passes it into a
BERT model which outputs a representation which
is then used as an input into a classification layer.
BEM (Blevins and Zettlemoyer, 2020) breaks this
process into two steps by training two different
BERT-based encoders, one for the sentence and
one for the gloss. Escher (Barba et al., 2021) out-
performs both of these methods by moving beyond
these embedding-based scoring approaches and in-
stead reframes WSD as Extractive Sense Compre-
hension. In this task, a model picks a span of sense
text as being most align with the terms use in a
sentence. All of these models worked to improve
the state of the art in English WSD, but have not
been put to use in Scientific WSD.

2.1.1 Pseudowords
Shortly after the introduction of pseudowords, it
was shown that these artificial datasets were not
comparable in difficulty to real WSD datasets



(Gaustad, 2001). Thus, future works attempted
to construct more realistic pseudowords by picking
pseudosenses that have more semantically similar
senses and follow distributions seen in real am-
biguous words. Nakov and Hearst (2003) selected
pseudowords using lexical category information
from MeSH (Lipscomb, 2000). Otrusina and Smrz
(2010) developed similarity based methods using
WordNet (Fellbaum, 2000) to find semantically re-
lated terms and by using TF-IDF scoring. Pilehvar
and Navigli (2014) creates one of the largest pseu-
doword datasets using WordNet to find semanti-
cally related words by generating topic signatures.
Work in this area has stalled significantly in recent
years as large-scale WSD resources have grown,
reducing the need for artificial datasets. However,
as new areas such as the general scientific domain
opens itself to WSD, there is potential to revitalize
this method using modern techniques.

2.2 Acronym Disambiguation
The techniques within this space are similar to
WSD methods and focus primarily on neural meth-
ods (Pan et al., 2021) and techniques to create better
representations (Pouran Ben Veyseh et al., 2021).
The current state of art on the SciAD dataset, Deep-
BlueAI, (Pan et al., 2021) takes an approach similar
to GlossBERT and simply concatenates each pos-
sible acronym expansion with the target sentence
to generate an output from a SciBERT (Beltagy
et al., 2019) model which is then passed into a clas-
sification layer. While this method did quite well
on the shared task that was run, it is still shy of
human-level performance. Furthermore, it does not
use any intrinsic properties of the paper each target
sentence came from since the current version of the
SciAD dataset does not provide it.

2.3 Citation-Informed Methods
Often when working on tasks in the scientific do-
main, it is useful to use the additional information
that comes with knowing a document is a published
paper, for example, its place in the citation graph.
Various methods have used citation information for
several different tasks. Caragea et al., 2014 uses
citation-based features to train a Naive-Bayes clas-
sifier for keyword detection. Garg et al., 2021 also
used citation information for keyphrase generation
by taking into consideration of sentences in cited
papers that form a good summary. Viswanathan
et al., 2021 used citation information to improve
performance on Scientific IE tasks by making ci-

tances (Nakov et al., 2004) features for relation ex-
traction and salient entity classification. Lastly, Co-
han et al., 2020 learned embeddings for papers via
a contrastive learning objective that forced papers
that cited each other to have similar embeddings.
These citation-informed embeddings improved per-
formance in a variety of scientific tasks like citation
prediction and document classification. However,
to the best of our knowledge, citation information
has not yet been used for WSD/AD.

3 Scientific Acronym Disambiguation

3.1 Task

In AD, we are a given an input text x which is a
sequence of n words: x = w1, . . . , wi, . . . , wn,
where wi represents an acronym. For each
acronym, we also have a list of k possible expan-
sions e1, . . . , ek, where ej is the correct intended
expansions of wi. The goal of this task is to select
the correct expansion for each input.

Given we are specifically looking at disambiguat-
ing acronyms appearing in sentences in scientific
papers, we extend the amount of information given
in this task by also including the paper title and
abstract, p, for each example.

An example of an input is shown in Figure 1.

Title: A Taxonomy of Deep Convolutional
Neural Nets for Computer Vision
Abstract: Traditional architectures for solving
computer vision problems and the degree of
success . . .
Text: We start with " AlexNet " as our base
CNN and then examine the broad variations
proposed over time to suit different applica-
tions.
Possible Expansions:

• Convolutional Neural Network

• Condensed Nearest Neighbor

• Complicated Neural Networks

• Citation Nearest Neighbour

Output: Convolutional Neural Network

Figure 1: Example of Acronym Disambiguation.



Figure 2: STARDUST model for acronym disambiguation.

3.2 Methodology

In this section, we propose our approach for
Scientific Text AcRonym Disambiguation USing
TriEncoders, STARDUST.

STARDUST combines ideas from DeepBlueAI
Pan et al. (2021) and BEM Blevins and Zettlemoyer
(2020). The overall architecture is visualized in Fig-
ure 2. We treat disambiguation as a binary classifi-
cation task and independently determine for each
expansion the probability that it fits in a given input.
To do this, our model consists of three encoders
and a classifier head.

Our three encoders are (1) a context encoder,
which represents the target acronym and its sur-
rounding context, (2) a paper encoder, which rep-
resents the paper a target sentence is from, and (3)
an expansion encoder that embeds each expansion
for an acronym.

For the context and expansions encoders, we
use a pre-trained Sentence-BERT (Reimers and
Gurevych, 2019) model1 found in the Hugging-
Face transformers model hub (Wolf et al., 2020).
We decided on using a Sentence-BERT model
since it has been shown that these models produce
much stronger representations compared to orig-
inal BERT models. For the paper encoder, we
use SPECTER (Cohan et al., 2020) (also using the

1https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

transformer library) since we believe papers that
cite each other will use acronyms in similar ways.
Thus, having similar embeddings for papers that
cite each other will be useful.

For the classifier head, we use a two-layer feed-
forward network with a ReLU activation for the
hidden layer, a sigmoid activation for the output
layer, and dropout (Srivastava et al., 2014) between
each layer.

To calculate this probability, we use our three
encoders to embed the input context, paper ti-
tle+abstract, and expansion. Then, we concatenate
these three embeddings and pass it into our classi-
fier head, which outputs a probability.

More precisely, the context encoder, which we
will call Tc, takes as input a sentence x containing
an acronym wi. This encoder outputs a sequence
of representations

C = Tc(x).

We are specifically interested in

rc = C[i],

which is the embedding corresponding to the
acronym whose expansion we want to predict. If
the acronym is broken up into multiple subwords
by the tokenizer, we represent the word by the av-
erage of the subword embeddings. For example, if

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


the acronym wi is broken up into the l-th to k-th
tokens, then

rc =
1

k − l

k∑
j=l

C[j].

Next, the paper encoder, which we will call
Tp, takes as input a paper’s title and abstract, p,
padded with the ’[CLS]’ token at the beginning
and the ’[SEP]’ token at the end, This also outputs
a sequence of representations, P. Following the
SPECTER paper, we produce an embedding by
simply taking the embedding vector corresponding
to the ’[CLS]’ token:

rp = P[0].

The expansion encoder, which we will call Te,
takes as input an acronym expansion ei and outputs
a sequence of representations for all the l subwords
in ei. We then take an average over all of them to
get

rei =
1

l

l∑
j=0

Te(ei)[j].

Now, we concatenate our three representations
input a single vector:

zi = [rc; rp; rei ].

We pass zi into the classifier head, H , which out-
puts a probability:

si = H(zi).

We compute probabilities s1, . . . , sk for all k
possible expansions for the acronym wi. During
evaluation, we predict the expansion with the high-
est probability.

To train our model, we use a binary cross-
entropy loss on the probabilities for the expansions.
So, the loss for an expansion probability si is

L(si) =

{
− log si, i = j
− log(1− si), i ̸= j

where sj is the probability corresponding to the
correct expansion ej .

To efficiently train this architecture, we freeze
the pre-trained models and only update our feedfor-
ward layer to learn the best mechanism for scoring.

We train our model using a learning rate of 1e-3
using the Adam optimizer (Kingma and Ba, 2015)
for 10 epochs with a batch size of 1. Training takes
about 2 hours on a NVIDIA Titan RTX.

3.2.1 Context Enhancement
To increase the amount of context for an acronym,
we also search for an additional example of the
target acronym wi being used elsewhere in the pa-
per, selecting the first found example, y. We then
update our context representation, rc, to be the av-
erage of the embeddings for these two sentences:

rc =
Tc(x)[i] + Tc(y)[i]

2

If no additional examples are found, we just use
the representation defined previously.

3.2.2 Using the Citation Graph
The paper embedding is a good indicator about
the field a paper belongs to (Cohan et al., 2020).
One reason for this might be that SPECTER is
trained to produce similar embeddings for papers
that cite each other and papers that cite each other
likely belong to the same field. Our key insight
into choosing to use SPECTER is that it can bring
this understanding of a paper’s field using citation
information since field information is likely useful
in disambiguating acronyms.

However, this is still an indirect way of repre-
senting citation information and it can potentially
be enhanced. So, we try out the following to create
a more direct citation-informed representation of
the field. We look at the set of all papers in the
S2ORC dataset that are cited by or cite the paper
the input text is from. We denote this set as C.
For convenience, we will also include the original
paper in C. Then we use SPECTER to create em-
beddings for all the title+abstract’s of these papers,
pc, and average them into a single representation.
Thus,

rp =
1

|C|
∑
c∈C

Tp(pc)[0]

The intention is that averaging over the citation
neighborhood would emphasize the commonalities
among the papers in the citation neighborhood and
allow the model to be more robust.

3.3 Evaluation

To evaluate our approach, we train and test our
model on the SciAD dataset. However, this dataset
does not natively contain the paper information we
need to train our model. To remedy this we down-
loaded the S2ORC dataset (Lo et al., 2020) and



built an index over it using ElasticSearch2. We then
searched for each input sentence from the SciAD
dataset in the index using an exact match query and
retrieved the paper information. However, we were
not able to match all examples to papers, poten-
tially due to formatting errors or papers not being
present in the S2ORC dataset. In the end, we were
able to recover papers for 20911 out of 50034 train-
ing examples and 2589 out of 6189 development
set examples from SciAD. We do not use the test
set because the labels for it were not made public,
so all results shown will be for the development
set.

3.4 Results

We wished to compare against the current state of
the art given by (Pan et al., 2021) (DeepBlueAI).
Unfortunately, comparing to the numbers given
in the paper is not an exact comparison as their
method used all of the development set, while we
were only able to use a fraction of due to the lim-
itations described earlier. To thoroughly evaluate
our models and the impact of each of our design
choices, we train 5 versions of our model. We show
the results of our models’ performances in Table 1.

First, we establish a simple baseline (DotProd-
uct) that simply uses a dot product between the
expansion embedding and the context embedding

si = rc · rei ,

and predicts the sense with the highest score.
Next, we evaluate a model that only uses the con-

text embedding and the expansion embedding with
a feedforward network for scoring. We call this
model BiEncoder. We also evaluate a version of
this model using the context enhancement strategy
described in 3.2.1. We call this model BiEncoderce

Similarly, we train three versions of the full
STARDUST model. First, we have our base
version (STARDUST). Then, we also utilize
context enhancement in STARDUSTce. Lastly,
STARDUSTce+cg additionally uses an average
of the paper embeddings of papers in the citation
neighborhood as described in Section 3.2.2.

As we can see from the results, our best perform-
ing model gives us a 9 point improvement in F1
compared to our base version. The ablations we
perform show that our various modifications over a
simple baseline are valuable.

2https://github.com/elastic/
elasticsearch

Model Precision Recall F1

DeepBlueAI 0.9629 0.9106 0.9360
DotProduct 0.9040 0.5897 0.7138
BiEncoder 0.9387 0.7992 0.8634
BiEncoderce 0.9751 0.9002 0.9362
STARDUST 0.9780 0.9053 0.9403
STARDUSTce 0.9811 0.9225 0.9509
STARDUSTce+cg 0.9802 0.9123 0.9450

Table 1: Results of experiments on the SciAD devel-
opment set. Note that DeepBlueAI was evaluated on a
larger amount of data in the development set.

Context Enhancement is specifically very useful
as the performance gains of BiEncoderce vs. BiEn-
coder and STARDUSTce vs STARDUST are quite
large (7.3 and 1 F1 points, respectively). This re-
flects the “one sense per discourse” results of Gale
et al. (1992a).

We also see modest gains in using the Paper
information as shown in the performance boosts
of STARDUST over BiEncoder an STARDUSTce
over BiEncoderce (7.7 and 1.4 F1 points, respec-
tively).

Interestingly, our method for paper enhancement
using the citation graph to enhance the paper rep-
resentation does not help the model and actually
slightly worsens performance, but only by 0.5 F1
points. A likely explanation for this is that a lot of
papers that are cited by a paper or cite a paper don’t
necessarily relate too strongly and may only share
tangential details. Thus, the simple averaging over
the citation neighborhood introduces a lot of noise
in many cases in a way that decrease the strength of
the representation. Further work is needed to dis-
cover techniques that more intelligently represent
a paper using its citation neighborhood.

Though our results are not directly compara-
ble with DeepBlueAI, they are promising. First,
we are demonstrating strong performance despite
having less training data. Second, DeepBlueAI’s
training procedure involves finetuning a SciBERT
model, in addition to a feedforward classifier, while
our methodology freezes the encoders, making it
more efficient. Lastly, DeepBlueAI relied on com-
plex training procedures such as Dynamic Negative
Sample Selection, Task Adaptive Pretraining (Gu-
rurangan et al., 2020), Adversarial Training (Miy-
ato et al., 2017), and Pseudolabeling (Iscen et al.,
2019), while we were able to demonstrate strong
performance using a simpler supervised training

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch


objective.

3.4.1 Error Analysis
Next, we perform an error analysis to understand
the types of mistakes our top-performing model
makes. There are several examples that the model
gets wrong, which we believe to be due to noisi-
ness within the dataset. Examining the examples
in Table 2, we can clearly see that the labels are
incorrect. Just by looking at the title we can de-
termine what the expansion should be. This is a
main motivation for wanting to use title/abstract
information in our model.

Text: Hence, RS proves to be robust since the rate
does not saturate, and it is even more preferable
at high SNR.
Prediction: rate splitting
Correct Label: relay station
Paper Title: Rate-Splitting Robustness in Multi-
Pair Massive MIMO Relay Systems
Text: We generate suitable misclassification costs
for DBN using the training set.
Prediction: deep belief network
Correct Label: directed belief net
Paper Title: A Cost-Sensitive Deep Belief Net-
work for Imbalanced Classification
Text: In fact, the ARD model is nearly as robust
as its teacher.
Prediction: adversarially robust distillation
Correct Label: accelerated robust distillation
Paper Title: Adversarially Robust Distillation

Table 2: Examples that demonstrate noise in the SciAD
dataset.

However, there are still several genuine errors
made by our model. We can look at these in Figure
3. These require a keen understanding of the field
and the context to determine the correct expansions.
For example, a machine learning scientist would
likely be able to connect "variational autoencoder"
to "reparameterization trick" since it is a technique
used in training them. However, it seems like the
model is quite confused as "retweets" is not at all
closely related. Further research is required to un-
derstand how we can design models that can infer
these relationships given limited context.

3.4.2 Generalization
Lastly, we want to test the ability of our model to
generalize to new expansions that may arise and
can be added to the dictionary, but are not part of

Text: This solution enables the RT to be used
with a variety of continuous distributions, includ-
ing the Dirichlet distribution.
Prediction: retweets
Correct Label: reparameterization trick
Paper Title: Nested variational autoencoder for
topic modelling on microtexts with word vectors
Text: The original RM presented drawbacks that
have been previously analysed.
Prediction: resource management
Correct Label: roofline model
Paper Title: New Thread Migration Strategies
for NUMA Systems
Text: DAGs in an EC are Markov equivalent; that
is, given an observed dataset, they are statistically
indistinguishable and represent the same set of
independence assertions.
Prediction: eigenvector centrality
Correct Label: equivalence class
Paper Title: Bayesian Structure Learning by Re-
cursive Bootstrap

Table 3: Example in the SciAD dataset our model got
wrong.

the training data. To do this, we specifically look at
examples in the development set that are not part
of the training set. This was not an intentional part
of the dataset design, however, so the number of
samples that fit this criteria are limited. There are
57 examples in our version of the development set
that we can look at, which encompass 54 unique
expansions. Our best trained model only achieves a
42.6% accuracy on these examples, which is signif-
icantly below performance on the overall develop-
ment set. A sample of examples of that the model
failed to generalize to can be found in Table 4.

These examples should be able to be captured by
a model that is capable of understanding the sen-
tence context and the field that is being discussed.
Further work is needed to developing a model that
is more robust to new expansions and even new
acronyms, which is unexplored in this dataset. The
first step towards answering these questions would
be a dataset that is designed with capturing this
ability.

4 Scientific WSD

Now that we have demonstrated performance im-
provements on the AD task, we turn our attention
to Scientific WSD.



Text: and references therein discuss simplifica-
tion techniques in CAS systems further.
Prediction: consensus attention sum
Correct Label: computer algebra systems
Paper Title: Simplifying Probabilistic Expres-
sions in Causal Inference
Text: In the context of ROM and PDE, this de-
composion is also know as Proper Orthogonal
Decomposition (POD).
Prediction: range of motion
Correct Label: reduced-order models
Paper Title: Appraisal of data-driven and mecha-
nistic emulators of nonlinear simulators: The case
of hydrodynamic urban drainage models
Text: Moving on, we execute the second step of
the MI and provide the following theorem.
Prediction: mutual information
Correct Label: mathematical induction
Paper Title: Robust Fuzzy-Learning For Partially
Overlapping Channels Allocation In UAV Com-
munication Networks

Table 4: Examples in the SciAD dataset that have ex-
pansions that are not in the training set.

4.1 Task

The setup for this task is identical to AD since
instead of disambiguation an acronym with k possi-
ble expansions, we have k unique sense definitions
for a given ambiguous word.

An example for this is the word term "trans-
former". To many researchers in the NLP commu-
nity, a transformer (Vaswani et al., 2017) is a deep
learning architecture built around the self-attention
mechanism. However, to electrical engineers a
transformer transfers electrical energy between de-
vices. Our goal is to see if our AD model can also
be trained to perform scientific WSD.

However, as noted in the introduction, there are
not existing datasets for large-scale evaluation of
scientific WSD systems. To overcome this obstacle,
we revisit pseudowords as a technique to create an
artificial dataset to match our needs.

4.2 Pseudowords Revitalized

In this section, we will describe the steps we used
to constructed our artificial WSD dataset.

4.2.1 Term Selection
A critical component of creating a pseudowords
dataset is having a set of unambiguous terms, which

can be used as pseudosenses. Additionally, we are
interested in analyzing performance on scientific
terms in particular, so we needed to collect a large
amount of unambiguous scientific terms.

To automate this collection process, we decided
to scrape pages from Wikipedia since it has a rich
set of terms that cover a large number of fields.
In order to specifically isolate terms in certain re-
search fields, we only selected terms from partic-
ular Wikipedia glossary pages. A list of the glos-
saries we used can be found in the appendix (A.1).

We processed each term in the glossaries (skip-
ping over terms that contained numbers, punctua-
tion, or non-ASCII characters). We then searched
for the terms over a corpus of over 2 million papers
in the S2ORC dataset and kept only terms that ap-
peared in at least 100 different abstracts. Pilehvar
and Navigli (2014) used a minimum frequency of
1000 occurrences in what is one of the most re-
cent works on building a large-scale pseudowords
dataset. However, they were using more common
English terms and searching across the much larger
English Gigaword corpus (Graff et al., 2003). Thus,
we felt it was appropriate to relax the minimum fre-
quency constraint from 1000 to 100. We collected
a total of 2517 unambiguous terms.

For the definition of each term, we simply take
the entirety of the associated summary in the
Wikipedia page for the term. The summaries aver-
aged a length of 209 words. An example is shown
in Figure 3.

Term: Flow Velocity
Summary: In continuum mechanics the flow velocity in
fluid dynamics, also macroscopic velocity in statistical
mechanics, or drift velocity in electromagnetism, is a
vector field used to mathematically describe the motion
of a continuum. The length of the flow velocity vector is
the flow speed and is a scalar. It is also called velocity
field; when evaluated along a line, it is called a velocity
profile (as in, e.g., law of the wall).

Figure 3: Example of an unambiguous term from
Wikipedia and its associated summary.

4.2.2 Dataset Creation
In building our dataset, we need to decide on a
few main properties: size, distribution of number
of senses, the distribution of senses, and train/test
split.
Dataset Size: Our goal is to create a large-scale
dataset for robust training. Previous work (Pilehvar
and Navigli, 2014) has used 1000 examples per



Figure 4: Distribution of number of senses per am-
biguous term collected from Wikipedia. The last bin
contains terms with seven senses or more.

pseudoword. However, since we relaxed our mini-
mum frequency, we will also reduce this constraint
to only 500.
Distribution of Number of Senses: Next, we want
our dataset to have terms with a variety of different
number of senses to ensure a trained model is capa-
ble of disambiguating terms with various levels of
difficulty. To equitably evaluate a model’s ability
across a different number of senses, we uniformly
distribute the number of pseudowords with a cer-
tain number of senses ranging from 2 to 8. We limit
the number of senses to 8 since prior work (Pilehvar
and Navigli, 2014) has shown that the frequency
of terms with senses beyond 8 is quite small. We
confirm this finding by plotting the distribution of
senses for a set of ambiguous Wikipedia terms in
Figure 4.
Distribution of Senses: The various senses of a
term rarely occur with the same frequency. It is
typically the case that one sense will dominate the
others in terms of frequency, which is why the most
frequent sense is a powerful baseline (Kilgarriff,
2004). We want our dataset to capture this uneven
distribution and have models learn to be robust
to these biases. Pilehvar and Navigli (2014) col-
lected empirical data on the distribution of senses
in SemCor, which we will force our pseudowords
to follow.
Train-Test Split In splitting our dataset, we want to
not simply evaluate a model’s ability to generalize
to new examples for senses seen in the training
set, but also new senses for a term and new terms
as well. Thus, we adopt the following split: we
remove 10% of pseudowords from the collected
dataset and create a test set for unseen terms, evenly

Figure 5: Illustration of the Train-Dev-Test split for the
Pseudowords dataset.

selecting terms of various number of senses. We
then remove 10% of all senses and add them to a
test set for unseen senses. For the remaining terms,
we remove 10% of examples per term and create
a test set for these seen terms and senses. We then
remove another 10% to create a dev set. This gives
us the ability to thoroughly evaluate a model in
many scenarios. A diagram of the split is shown in
Figure 5.

4.2.3 Pseudoword Formation

Traditionally, non-random pseudoword formation
has relied on structured knowledge in the form of
task independent resources like WordNet (Pilehvar
and Navigli, 2014). However, we do not have ac-
cess to such a resource in this very general open
domain of scientific terms. The reason such re-
sources are useful is that they make it easy to iden-
tify similar senses using graph-based techniques
for similarity comparison like Personalized PageR-
ank (Haveliwala, 2002). Now, we have access to
pre-trained transformers that are capable of pro-
ducing embedding vectors that are designed to do
this similarity comparison without directly rely-
ing on structured information. Thus, we propose
a pseudoword formulation strategy using BERT-
based embedding vectors. So, we first take each of
the term definitions, described above, and embed
it using a Sentence-BERT model (we use the same
model as in 3.2). We then normalize the embed-
dings to be unit length.

Next, we want to group together vectors in a way
that represents the distribution of senses in real am-
biguous words. Traditional clustering techniques
like K-Means or Agglomerative clustering would
produce lots of clusters with only a single term, so
we need an approach that will allow us to set the
number of terms in a cluster. This will also enable



us to fix the distribution of senses.

We devise the following greedy k-Nearest Neigh-
bor approach. We iterate through our list of unam-
biguous terms. For each term, we fix a number of
terms k to group together. We select these k terms
by simply picking the k nearest embedding vectors.
However, we do not want to reuse a term as a pseu-
dosense for different pseudowords. Thus, in the
case where one of the top k nearest neighbors has
already been selected, we look for the next nearest
neighbor. This approach is more clearly defined in
Algorithm 1.

A drawback of this approach is that many of
the terms in a cluster could be so closely related
it would be quite difficult to distinguish them. To
form pseudowords that more closely model real
ambiguous words, we investigate the sense dis-
tribution of ambiguous terms. In order to gener-
ate a model that would fit the terms in our pseu-
dowords dataset, we specifically select ambiguous
terms from the same Wikipedia categories we se-
lected our unambiguous terms from. To do this,
we scraped the same Wikipedia glossary pages de-
scribed earlier, except now we filtered for ambigu-
ous terms. We collected the senses of a term by fol-
lowing the links on a term’s disambiguation page.
We filtered out a variety of senses using a heuristic
of simple string matching since a lot of terms have
references to pop culture/arts that we did not want
to consider. A list of the strings we filtered out
are in the appendix (A.2). We also wanted to filter
out related terms that were not actually homonyms,
which we could do via a simple regex (also shown
in the appendix).

Now, given this set of ambiguous terms, we take
all of the senses for a term and embed them using
the Sentence-BERT model. We then compute pair-
wise euclidean distances for all of the senses. We
do this for all of the collected ambiguous terms.
We take the median of the minimum distances and
adjust the greedy approach to favor points that are
closer to this threshold. We chose the median of
the minimum values since the goal of this step is
to ensure that the disambiguation is not too hard
or impossible, so our priority is to ensure the dis-
tribution of the minimum distances are sufficiently
large.

We then plot the distribution of the minimum
distances of the real ambiguous words, our pseu-
dowords before the adjustment, and after using a
box plot as shown in Figure 6. A key takeaway is

Figure 6: This chart compares the distribution of the
minimum distance between two senses for real ambigu-
ous words, our unadjusted pseudowords, and our ad-
justed pseudowords.

that our adjusted median minimum is closer to the
median minimum of the real ambiguous terms and
the distribution is tighter making all words more
comparable. We also investigated the distribution
of other relevant order statistics such the the maxi-
mums, medians, and means. However, we didn’t
use these values in our adjustment here. We will
leave investigating this to future work, but will in-
clude plots of these distributions in the appendix
(A.3).

It is an open question on how we can cluster
terms such that we better fit the distribution of real
ambiguous terms. Prior work (Pilehvar and Navigli,
2014) has attempted this by picking pseudo-senses
that are similar to the senses of the ambiguous
word, thus, directly fitting to the distribution of
real ambiguous words. One major difficulty in ac-
complishing this in our use case is having enough
examples per sense since the number of words with
a large number of senses is low. Thus, we will leave
experimenting with this approach using BERT vec-
tors to future work.

We now have a complete process for generating
pseudowords. An example of a generated pseu-
dowords and its senses is shown in Figure 7.

Pseudoword: MSP-246
Senses: Monte Carlo Method, Stochastic Process, Proba-
bility Theory

Figure 7: Example of a generated pseudoword and its
senses. The actual pseudoword is generated by con-
catenating the first character of each sense and then
appending a unique identifier number.



Algorithm 1 Greedy approach for pseudoword formation

1: procedure PSEUDOWORDFORMATION

2: numberOfSenses← [2,3,4,5,6,7,8,2...] ▷ Uniform distribution of number of senses
3: pseudoDictionary←Map()
4: selectedSenses← Set()
5: term← next(psesudoSenses)
6: for k ∈ numberOfSenses do
7: while term in selectedSenses do
8: term← next(psesudoSenses)
9: group← []

10: neighbors← getNN(term) ▷ Returns terms sorted by distance. Nearest neighbor is itself
11: for neighbor ∈ neighbors do
12: if neighbor not in selectedSenses then ▷ Only consider unselected terms
13: group.append(neighbor)
14: selectedSenses.add(neighbor)
15: else if size(group) == k then
16: break
17: pseudoword← getPseudoword(group) ▷ Create pseudoword based on grouped terms
18: pseudoDictionary[pseudoWord]← group
19: return pseudoDictionary

4.3 Results

We now evaluate our STARDUST model on our
pseudowords dataset. We also compare it against
a highly performing English WSD model, BEM
(Blevins and Zettlemoyer, 2020).

We train the BEM model on our train dataset for
10 epochs using a learning rate of 1e-5, the Adam
optimizer (Kingma and Ba, 2015), a warmup of
10000 steps, a linear decay, and a batch size of 2.
For the sake of efficiency, we tie the weights of
the gloss and context encoder since the paper men-
tioned that there is little performance differences in
doing so. We initialize the encoders using BERT-
base. It takes about 4.5 days to train on a NVIDIA
Titan RTX.

We train our base STARDUST model, with no
context enhancement or citation graph information,
on the train set as well. However, we keep the
encoder models frozen and only training the clas-
sifier head using a learning rate of 1e-3, while all
the other hyperparameters were the same as BEM.
It takes about 2 days to train on a NVIDIA Titan
RTX.

We then test our model on the three test sets de-
scribed above: In-Train, New Senses, New Words.
The results can be in Table 5.

As we can see from the table, STARDUST
doesn’t perform as well as BEM on the test set
that has the same distribution as the training set.

Test Set
Model In-

Train
New
Senses

New
Words

BEM 0.7634 0.0799 0.4419
BEM* 0.7625 0.3445 0.4386
STARDUST 0.5568 0.5374 0.4932

Table 5: F1 scores of the BEM and STARDUST models
on our three Pseudoword WSD test sets.

This is expected since the BEM model is finetuning
its encoders on the training dataset, using many
more parameters. However, STARDUST signifi-
cantly outperforms BEM on the other two test sets
that analyze the generalizability of the models.

The New Senses test set contains examples us-
ing the same words as in the training set, however
the correct senses were never used as labels in the
training set. BEM performs quite poorly in this
setting. A possible reason for this is that it still
sees the same definitions while training, but since
those definitions are never assigned to a training
example, the encoders probably learned to bias
against them when scoring. STARDUST, on the
other hand, doesn’t finetune its encoders, so this
same bias can’t be as easily learned, which explains
this significant boost. The justification behind this
type of split is that there do exist definitions of
terms that we know about, but there might not be



any labeled examples. We would ideally want our
models to learn to generalize to these unlabeled
examples without having to change the dictionary.
We also see how BEM compares when it doesn’t
see these definitions while training (BEM*). As
expected, performance drastically increases (while
similar on the other test sets), but still falls short of
STARDUST.

On the New Words test set, STARDUST per-
forms about 5 F1 points above BEM, once again
speaking to its ability to strongly generalize to new
words and definitions. This gap is much smaller
than the New Senses test set, but still significant
given its learning significantly fewer parameters.
Part of this can also be attributed to using SBERT as
the encoder, which has shown to produce stronger
representations, but BEM finetunes its BERT en-
coders, which should make them comparable.

Overall, STARDUST represents the strong per-
formance benefits that come with giving specific
attention to the type of documents at hand when
performing WSD. Generaziliability towards infre-
quent senses is the core challenge in WSD and this
architecture is showing massive improvements in
this direction.

However, much further work is needed to boost
these scores as they are still quite low overall. One
potential next step is to finetune the encoders in the
STARDUST model and see if generalizability is
still able to be maintained while also improving per-
formance on the in train distribution test set, at the
cost of using many more parameters. Additionally,
we can also explore using context enhancement and
more techniques for using the citation graph.

5 Conclusion

In this paper, we investigated the use of auxiliary
paper information for tasks related to Scientific
Sense Disambiguation, specifically Acronym Dis-
ambiguation and Word Sense Disambiguation. We
propose STARDUST, a novel tri-encoder system
that can combine information about a sense, a word,
and a scientific paper into a disambiguation deci-
sion. This technique demonstrates significant im-
provement on AD over methods that forgo this
additional information.

We also present a revitalization of the pseu-
dowords technique to create a modern large-scale
dataset for WSD in Scientific Text, enabling re-
searchers to further the work in this space.

Our method performs competitively against high-

performing methods designed for general English
WSD, specifically in terms of generalizability,
demonstrating the benefits of providing specific
attention to scientific papers in designing WSD
systems.

However, performance is still quite lacking for
infrequent and unseen words/senses, where meth-
ods are performing 30-50 points worse compared
to words/senses seen during training. Closing this
performance gap is critical within scientific fields
due to their fast growing vocabularies.

The immediate next steps are exploring finetun-
ing the STARDUST model end-to-end, increasing
the number of learned parameters to help it fit bet-
ter to the training data, as well as using our context
enhancement technique to enable more robust rep-
resentation when doing inference.

Further work can explore employing our tech-
niques for incorporating paper information with
methods that balance the training signal for more
frequent senses to prevent too much bias towards
more frequent senses.

Additionally, more work is needed to understand
how we can use the citation graph to better update
the representation of a paper. Our approach naively
includes are papers within the one-hop citation
neighborhood. However, some citations/references
are more important than others. Approaches that
can figure out a way to leverage this notion might
be able to reduce the noise that comes with our
naive approach and create a stronger representa-
tion.

Our resurrection of pseudowords using modern
techniques for similarity comparison also enables
a slew of new questions and potential areas of re-
search. First, there is a need for a human evaluation
of the quality of our generated pseudowords to val-
idate our technique. Second, we took a simple
greedy approach to creating clusters that might not
be optimal. So, more work on intelligent cluster-
ing strategies is necessary. Next, we attempted to
model of pseudoword clusters to real ambiguous
words using a very simple heuristic of comparing
pairwise distances of embedded senses. More work
is needed to understand how we can better align
these models. Lastly, we can investigate the viabil-
ity of this technique in other low-resource domains.

To facilitate research, we release our
code and trained models at https://
github.com/ManavR123/definition_
disambiguation.

https://github.com/ManavR123/definition_disambiguation
https://github.com/ManavR123/definition_disambiguation
https://github.com/ManavR123/definition_disambiguation
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aerospace engineering agriculture
architecture artificial intelligence
biology bird terms
botanical terms chemistry terms
climate change computer_science
ecology economics
genetics geography terms
geology terms graph theory
history terms mechanical engineering
medicine meteorology
philosophy physics
probability and statistics virology

Figure 8: List of glossaries we used to select terms for
our pseudowords dataset.

A Pseudowords

A.1 Term Selection

As mentioned in section 4.2.1, we hand-picked sev-
eral Wikipedia glossaries, to scrape terms from for
our pseudowords dataset. A list of these glossaries
can be found in Figure 8.

A.2 Sense Filtering

When seeking out ambiguous terms to understand
the true distribution of senses distances, we filtered
our a variety of Wikipedia senses that we believed
to be noisy i.e. senses that were just movies, songs,
etc. We filtered out these senses by a simple string
matching approach, which works effectively given
how Wikipedia tends to label terms by adding a de-
scriptor inside a set of parentheses e.g. Transformer
(film). A list of all of the strings we filtered out can
be found in Figure 9. We also filtered out senses
that contained non-ascii characters, numbers, and
linked pages that did not contain the original term
since Wikipedia disambiguation pages often link
to pages that are simply related, but not actually
homonyms. We enforced the final constraint by
using a regex that matches only to homonyms. An
example of the regex can be seen in Figure 10.

A.3 Sense Distribution

In section 4.2.3, we describe a process for adjusting
the distribution of pseudoword senses in the em-
bedding space by matching them to the distribution
of distances of real ambiguous words. However,
in that section we only had a discussion of the
minimum values and left out looking at other po-
tentially relevant information. In this section, we
include figures that also show information about
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(film) (band) (album)
(musical) (song) (music)
(game) (novel) (comic)
(name) (disambiguation) (story)
(series) (entertainment) (play)
(character) (composition) (magazine)
(ep) (movie) (serial)
(journal) (channel) the
(actor) (records) (software)
river lake
: " ,

Figure 9: We filtered out senses of ambiguous terms that
contained any of the above words/punctuation. These
were manually selected by manually inspecting the col-
lected data and identifying unwanted senses.

Term: height
Senses: height (abelian group), tree height,
height of a field
Regex: height \([a-z\s]+\)
Matches: height (abelian group)

Figure 10: An example of the regex we used to filter for
homonyms.

the maximums, medians, means, and overall dis-
tribution of sense distances. Figure 11 shows the
broader distribution of distances of real ambiguous
words. Figures 12 and 13 show the before and after
distance distributions of our pseudowords.

Figure 11: Distribution of distances of real ambiguous
words scraped from Wikipedia. The distribution of the
number of senses per term can be found in Figure 4.

Figure 12: Distribution of distances of pseudowords
before applying adjustment.

Figure 13: Distribution of distances of pseudowords
after applying adjustment.
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